xref: /freebsd/sys/dev/ice/ice_switch.c (revision d11f81afd5a4a71d5f725950b0592ca212084780)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2021, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*$FreeBSD$*/
32 
33 #include "ice_switch.h"
34 #include "ice_flex_type.h"
35 #include "ice_flow.h"
36 
37 #define ICE_ETH_DA_OFFSET		0
38 #define ICE_ETH_ETHTYPE_OFFSET		12
39 #define ICE_ETH_VLAN_TCI_OFFSET		14
40 #define ICE_MAX_VLAN_ID			0xFFF
41 #define ICE_ETH_P_8021Q			0x8100
42 
43 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
44  * struct to configure any switch filter rules.
45  * {DA (6 bytes), SA(6 bytes),
46  * Ether type (2 bytes for header without VLAN tag) OR
47  * VLAN tag (4 bytes for header with VLAN tag) }
48  *
49  * Word on Hardcoded values
50  * byte 0 = 0x2: to identify it as locally administered DA MAC
51  * byte 6 = 0x2: to identify it as locally administered SA MAC
52  * byte 12 = 0x81 & byte 13 = 0x00:
53  *	In case of VLAN filter first two bytes defines ether type (0x8100)
54  *	and remaining two bytes are placeholder for programming a given VLAN ID
55  *	In case of Ether type filter it is treated as header without VLAN tag
56  *	and byte 12 and 13 is used to program a given Ether type instead
57  */
58 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
59 							0x2, 0, 0, 0, 0, 0,
60 							0x81, 0, 0, 0};
61 
62 /**
63  * ice_init_def_sw_recp - initialize the recipe book keeping tables
64  * @hw: pointer to the HW struct
65  * @recp_list: pointer to sw recipe list
66  *
67  * Allocate memory for the entire recipe table and initialize the structures/
68  * entries corresponding to basic recipes.
69  */
70 enum ice_status
71 ice_init_def_sw_recp(struct ice_hw *hw, struct ice_sw_recipe **recp_list)
72 {
73 	struct ice_sw_recipe *recps;
74 	u8 i;
75 
76 	recps = (struct ice_sw_recipe *)
77 		ice_calloc(hw, ICE_MAX_NUM_RECIPES, sizeof(*recps));
78 	if (!recps)
79 		return ICE_ERR_NO_MEMORY;
80 
81 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
82 		recps[i].root_rid = i;
83 		INIT_LIST_HEAD(&recps[i].filt_rules);
84 		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
85 		INIT_LIST_HEAD(&recps[i].rg_list);
86 		ice_init_lock(&recps[i].filt_rule_lock);
87 	}
88 
89 	*recp_list = recps;
90 
91 	return ICE_SUCCESS;
92 }
93 
94 /**
95  * ice_aq_get_sw_cfg - get switch configuration
96  * @hw: pointer to the hardware structure
97  * @buf: pointer to the result buffer
98  * @buf_size: length of the buffer available for response
99  * @req_desc: pointer to requested descriptor
100  * @num_elems: pointer to number of elements
101  * @cd: pointer to command details structure or NULL
102  *
103  * Get switch configuration (0x0200) to be placed in buf.
104  * This admin command returns information such as initial VSI/port number
105  * and switch ID it belongs to.
106  *
107  * NOTE: *req_desc is both an input/output parameter.
108  * The caller of this function first calls this function with *request_desc set
109  * to 0. If the response from f/w has *req_desc set to 0, all the switch
110  * configuration information has been returned; if non-zero (meaning not all
111  * the information was returned), the caller should call this function again
112  * with *req_desc set to the previous value returned by f/w to get the
113  * next block of switch configuration information.
114  *
115  * *num_elems is output only parameter. This reflects the number of elements
116  * in response buffer. The caller of this function to use *num_elems while
117  * parsing the response buffer.
118  */
119 static enum ice_status
120 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
121 		  u16 buf_size, u16 *req_desc, u16 *num_elems,
122 		  struct ice_sq_cd *cd)
123 {
124 	struct ice_aqc_get_sw_cfg *cmd;
125 	struct ice_aq_desc desc;
126 	enum ice_status status;
127 
128 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
129 	cmd = &desc.params.get_sw_conf;
130 	cmd->element = CPU_TO_LE16(*req_desc);
131 
132 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
133 	if (!status) {
134 		*req_desc = LE16_TO_CPU(cmd->element);
135 		*num_elems = LE16_TO_CPU(cmd->num_elems);
136 	}
137 
138 	return status;
139 }
140 
141 /**
142  * ice_alloc_rss_global_lut - allocate a RSS global LUT
143  * @hw: pointer to the HW struct
144  * @shared_res: true to allocate as a shared resource and false to allocate as a dedicated resource
145  * @global_lut_id: output parameter for the RSS global LUT's ID
146  */
147 enum ice_status ice_alloc_rss_global_lut(struct ice_hw *hw, bool shared_res, u16 *global_lut_id)
148 {
149 	struct ice_aqc_alloc_free_res_elem *sw_buf;
150 	enum ice_status status;
151 	u16 buf_len;
152 
153 	buf_len = ice_struct_size(sw_buf, elem, 1);
154 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
155 	if (!sw_buf)
156 		return ICE_ERR_NO_MEMORY;
157 
158 	sw_buf->num_elems = CPU_TO_LE16(1);
159 	sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH |
160 				       (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED :
161 				       ICE_AQC_RES_TYPE_FLAG_DEDICATED));
162 
163 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, ice_aqc_opc_alloc_res, NULL);
164 	if (status) {
165 		ice_debug(hw, ICE_DBG_RES, "Failed to allocate %s RSS global LUT, status %d\n",
166 			  shared_res ? "shared" : "dedicated", status);
167 		goto ice_alloc_global_lut_exit;
168 	}
169 
170 	*global_lut_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
171 
172 ice_alloc_global_lut_exit:
173 	ice_free(hw, sw_buf);
174 	return status;
175 }
176 
177 /**
178  * ice_free_global_lut - free a RSS global LUT
179  * @hw: pointer to the HW struct
180  * @global_lut_id: ID of the RSS global LUT to free
181  */
182 enum ice_status ice_free_rss_global_lut(struct ice_hw *hw, u16 global_lut_id)
183 {
184 	struct ice_aqc_alloc_free_res_elem *sw_buf;
185 	u16 buf_len, num_elems = 1;
186 	enum ice_status status;
187 
188 	buf_len = ice_struct_size(sw_buf, elem, num_elems);
189 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
190 	if (!sw_buf)
191 		return ICE_ERR_NO_MEMORY;
192 
193 	sw_buf->num_elems = CPU_TO_LE16(num_elems);
194 	sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH);
195 	sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(global_lut_id);
196 
197 	status = ice_aq_alloc_free_res(hw, num_elems, sw_buf, buf_len, ice_aqc_opc_free_res, NULL);
198 	if (status)
199 		ice_debug(hw, ICE_DBG_RES, "Failed to free RSS global LUT %d, status %d\n",
200 			  global_lut_id, status);
201 
202 	ice_free(hw, sw_buf);
203 	return status;
204 }
205 
206 /**
207  * ice_alloc_sw - allocate resources specific to switch
208  * @hw: pointer to the HW struct
209  * @ena_stats: true to turn on VEB stats
210  * @shared_res: true for shared resource, false for dedicated resource
211  * @sw_id: switch ID returned
212  * @counter_id: VEB counter ID returned
213  *
214  * allocates switch resources (SWID and VEB counter) (0x0208)
215  */
216 enum ice_status
217 ice_alloc_sw(struct ice_hw *hw, bool ena_stats, bool shared_res, u16 *sw_id,
218 	     u16 *counter_id)
219 {
220 	struct ice_aqc_alloc_free_res_elem *sw_buf;
221 	struct ice_aqc_res_elem *sw_ele;
222 	enum ice_status status;
223 	u16 buf_len;
224 
225 	buf_len = ice_struct_size(sw_buf, elem, 1);
226 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
227 	if (!sw_buf)
228 		return ICE_ERR_NO_MEMORY;
229 
230 	/* Prepare buffer for switch ID.
231 	 * The number of resource entries in buffer is passed as 1 since only a
232 	 * single switch/VEB instance is allocated, and hence a single sw_id
233 	 * is requested.
234 	 */
235 	sw_buf->num_elems = CPU_TO_LE16(1);
236 	sw_buf->res_type =
237 		CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID |
238 			    (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED :
239 			    ICE_AQC_RES_TYPE_FLAG_DEDICATED));
240 
241 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
242 				       ice_aqc_opc_alloc_res, NULL);
243 
244 	if (status)
245 		goto ice_alloc_sw_exit;
246 
247 	sw_ele = &sw_buf->elem[0];
248 	*sw_id = LE16_TO_CPU(sw_ele->e.sw_resp);
249 
250 	if (ena_stats) {
251 		/* Prepare buffer for VEB Counter */
252 		enum ice_adminq_opc opc = ice_aqc_opc_alloc_res;
253 		struct ice_aqc_alloc_free_res_elem *counter_buf;
254 		struct ice_aqc_res_elem *counter_ele;
255 
256 		counter_buf = (struct ice_aqc_alloc_free_res_elem *)
257 				ice_malloc(hw, buf_len);
258 		if (!counter_buf) {
259 			status = ICE_ERR_NO_MEMORY;
260 			goto ice_alloc_sw_exit;
261 		}
262 
263 		/* The number of resource entries in buffer is passed as 1 since
264 		 * only a single switch/VEB instance is allocated, and hence a
265 		 * single VEB counter is requested.
266 		 */
267 		counter_buf->num_elems = CPU_TO_LE16(1);
268 		counter_buf->res_type =
269 			CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER |
270 				    ICE_AQC_RES_TYPE_FLAG_DEDICATED);
271 		status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
272 					       opc, NULL);
273 
274 		if (status) {
275 			ice_free(hw, counter_buf);
276 			goto ice_alloc_sw_exit;
277 		}
278 		counter_ele = &counter_buf->elem[0];
279 		*counter_id = LE16_TO_CPU(counter_ele->e.sw_resp);
280 		ice_free(hw, counter_buf);
281 	}
282 
283 ice_alloc_sw_exit:
284 	ice_free(hw, sw_buf);
285 	return status;
286 }
287 
288 /**
289  * ice_free_sw - free resources specific to switch
290  * @hw: pointer to the HW struct
291  * @sw_id: switch ID returned
292  * @counter_id: VEB counter ID returned
293  *
294  * free switch resources (SWID and VEB counter) (0x0209)
295  *
296  * NOTE: This function frees multiple resources. It continues
297  * releasing other resources even after it encounters error.
298  * The error code returned is the last error it encountered.
299  */
300 enum ice_status ice_free_sw(struct ice_hw *hw, u16 sw_id, u16 counter_id)
301 {
302 	struct ice_aqc_alloc_free_res_elem *sw_buf, *counter_buf;
303 	enum ice_status status, ret_status;
304 	u16 buf_len;
305 
306 	buf_len = ice_struct_size(sw_buf, elem, 1);
307 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
308 	if (!sw_buf)
309 		return ICE_ERR_NO_MEMORY;
310 
311 	/* Prepare buffer to free for switch ID res.
312 	 * The number of resource entries in buffer is passed as 1 since only a
313 	 * single switch/VEB instance is freed, and hence a single sw_id
314 	 * is released.
315 	 */
316 	sw_buf->num_elems = CPU_TO_LE16(1);
317 	sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID);
318 	sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(sw_id);
319 
320 	ret_status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
321 					   ice_aqc_opc_free_res, NULL);
322 
323 	if (ret_status)
324 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
325 
326 	/* Prepare buffer to free for VEB Counter resource */
327 	counter_buf = (struct ice_aqc_alloc_free_res_elem *)
328 			ice_malloc(hw, buf_len);
329 	if (!counter_buf) {
330 		ice_free(hw, sw_buf);
331 		return ICE_ERR_NO_MEMORY;
332 	}
333 
334 	/* The number of resource entries in buffer is passed as 1 since only a
335 	 * single switch/VEB instance is freed, and hence a single VEB counter
336 	 * is released
337 	 */
338 	counter_buf->num_elems = CPU_TO_LE16(1);
339 	counter_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER);
340 	counter_buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
341 
342 	status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
343 				       ice_aqc_opc_free_res, NULL);
344 	if (status) {
345 		ice_debug(hw, ICE_DBG_SW, "VEB counter resource could not be freed\n");
346 		ret_status = status;
347 	}
348 
349 	ice_free(hw, counter_buf);
350 	ice_free(hw, sw_buf);
351 	return ret_status;
352 }
353 
354 /**
355  * ice_aq_add_vsi
356  * @hw: pointer to the HW struct
357  * @vsi_ctx: pointer to a VSI context struct
358  * @cd: pointer to command details structure or NULL
359  *
360  * Add a VSI context to the hardware (0x0210)
361  */
362 enum ice_status
363 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
364 	       struct ice_sq_cd *cd)
365 {
366 	struct ice_aqc_add_update_free_vsi_resp *res;
367 	struct ice_aqc_add_get_update_free_vsi *cmd;
368 	struct ice_aq_desc desc;
369 	enum ice_status status;
370 
371 	cmd = &desc.params.vsi_cmd;
372 	res = &desc.params.add_update_free_vsi_res;
373 
374 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
375 
376 	if (!vsi_ctx->alloc_from_pool)
377 		cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num |
378 					   ICE_AQ_VSI_IS_VALID);
379 	cmd->vf_id = vsi_ctx->vf_num;
380 
381 	cmd->vsi_flags = CPU_TO_LE16(vsi_ctx->flags);
382 
383 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
384 
385 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
386 				 sizeof(vsi_ctx->info), cd);
387 
388 	if (!status) {
389 		vsi_ctx->vsi_num = LE16_TO_CPU(res->vsi_num) & ICE_AQ_VSI_NUM_M;
390 		vsi_ctx->vsis_allocd = LE16_TO_CPU(res->vsi_used);
391 		vsi_ctx->vsis_unallocated = LE16_TO_CPU(res->vsi_free);
392 	}
393 
394 	return status;
395 }
396 
397 /**
398  * ice_aq_free_vsi
399  * @hw: pointer to the HW struct
400  * @vsi_ctx: pointer to a VSI context struct
401  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
402  * @cd: pointer to command details structure or NULL
403  *
404  * Free VSI context info from hardware (0x0213)
405  */
406 enum ice_status
407 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
408 		bool keep_vsi_alloc, struct ice_sq_cd *cd)
409 {
410 	struct ice_aqc_add_update_free_vsi_resp *resp;
411 	struct ice_aqc_add_get_update_free_vsi *cmd;
412 	struct ice_aq_desc desc;
413 	enum ice_status status;
414 
415 	cmd = &desc.params.vsi_cmd;
416 	resp = &desc.params.add_update_free_vsi_res;
417 
418 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
419 
420 	cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
421 	if (keep_vsi_alloc)
422 		cmd->cmd_flags = CPU_TO_LE16(ICE_AQ_VSI_KEEP_ALLOC);
423 
424 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
425 	if (!status) {
426 		vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
427 		vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
428 	}
429 
430 	return status;
431 }
432 
433 /**
434  * ice_aq_update_vsi
435  * @hw: pointer to the HW struct
436  * @vsi_ctx: pointer to a VSI context struct
437  * @cd: pointer to command details structure or NULL
438  *
439  * Update VSI context in the hardware (0x0211)
440  */
441 enum ice_status
442 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
443 		  struct ice_sq_cd *cd)
444 {
445 	struct ice_aqc_add_update_free_vsi_resp *resp;
446 	struct ice_aqc_add_get_update_free_vsi *cmd;
447 	struct ice_aq_desc desc;
448 	enum ice_status status;
449 
450 	cmd = &desc.params.vsi_cmd;
451 	resp = &desc.params.add_update_free_vsi_res;
452 
453 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
454 
455 	cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
456 
457 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
458 
459 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
460 				 sizeof(vsi_ctx->info), cd);
461 
462 	if (!status) {
463 		vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
464 		vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
465 	}
466 
467 	return status;
468 }
469 
470 /**
471  * ice_is_vsi_valid - check whether the VSI is valid or not
472  * @hw: pointer to the HW struct
473  * @vsi_handle: VSI handle
474  *
475  * check whether the VSI is valid or not
476  */
477 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
478 {
479 	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
480 }
481 
482 /**
483  * ice_get_hw_vsi_num - return the HW VSI number
484  * @hw: pointer to the HW struct
485  * @vsi_handle: VSI handle
486  *
487  * return the HW VSI number
488  * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
489  */
490 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
491 {
492 	return hw->vsi_ctx[vsi_handle]->vsi_num;
493 }
494 
495 /**
496  * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
497  * @hw: pointer to the HW struct
498  * @vsi_handle: VSI handle
499  *
500  * return the VSI context entry for a given VSI handle
501  */
502 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
503 {
504 	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
505 }
506 
507 /**
508  * ice_save_vsi_ctx - save the VSI context for a given VSI handle
509  * @hw: pointer to the HW struct
510  * @vsi_handle: VSI handle
511  * @vsi: VSI context pointer
512  *
513  * save the VSI context entry for a given VSI handle
514  */
515 static void
516 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
517 {
518 	hw->vsi_ctx[vsi_handle] = vsi;
519 }
520 
521 /**
522  * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
523  * @hw: pointer to the HW struct
524  * @vsi_handle: VSI handle
525  */
526 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
527 {
528 	struct ice_vsi_ctx *vsi;
529 	u8 i;
530 
531 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
532 	if (!vsi)
533 		return;
534 	ice_for_each_traffic_class(i) {
535 		if (vsi->lan_q_ctx[i]) {
536 			ice_free(hw, vsi->lan_q_ctx[i]);
537 			vsi->lan_q_ctx[i] = NULL;
538 		}
539 	}
540 }
541 
542 /**
543  * ice_clear_vsi_ctx - clear the VSI context entry
544  * @hw: pointer to the HW struct
545  * @vsi_handle: VSI handle
546  *
547  * clear the VSI context entry
548  */
549 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
550 {
551 	struct ice_vsi_ctx *vsi;
552 
553 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
554 	if (vsi) {
555 		ice_clear_vsi_q_ctx(hw, vsi_handle);
556 		ice_free(hw, vsi);
557 		hw->vsi_ctx[vsi_handle] = NULL;
558 	}
559 }
560 
561 /**
562  * ice_clear_all_vsi_ctx - clear all the VSI context entries
563  * @hw: pointer to the HW struct
564  */
565 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
566 {
567 	u16 i;
568 
569 	for (i = 0; i < ICE_MAX_VSI; i++)
570 		ice_clear_vsi_ctx(hw, i);
571 }
572 
573 /**
574  * ice_add_vsi - add VSI context to the hardware and VSI handle list
575  * @hw: pointer to the HW struct
576  * @vsi_handle: unique VSI handle provided by drivers
577  * @vsi_ctx: pointer to a VSI context struct
578  * @cd: pointer to command details structure or NULL
579  *
580  * Add a VSI context to the hardware also add it into the VSI handle list.
581  * If this function gets called after reset for existing VSIs then update
582  * with the new HW VSI number in the corresponding VSI handle list entry.
583  */
584 enum ice_status
585 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
586 	    struct ice_sq_cd *cd)
587 {
588 	struct ice_vsi_ctx *tmp_vsi_ctx;
589 	enum ice_status status;
590 
591 	if (vsi_handle >= ICE_MAX_VSI)
592 		return ICE_ERR_PARAM;
593 	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
594 	if (status)
595 		return status;
596 	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
597 	if (!tmp_vsi_ctx) {
598 		/* Create a new VSI context */
599 		tmp_vsi_ctx = (struct ice_vsi_ctx *)
600 			ice_malloc(hw, sizeof(*tmp_vsi_ctx));
601 		if (!tmp_vsi_ctx) {
602 			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
603 			return ICE_ERR_NO_MEMORY;
604 		}
605 		*tmp_vsi_ctx = *vsi_ctx;
606 
607 		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
608 	} else {
609 		/* update with new HW VSI num */
610 		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
611 	}
612 
613 	return ICE_SUCCESS;
614 }
615 
616 /**
617  * ice_free_vsi- free VSI context from hardware and VSI handle list
618  * @hw: pointer to the HW struct
619  * @vsi_handle: unique VSI handle
620  * @vsi_ctx: pointer to a VSI context struct
621  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
622  * @cd: pointer to command details structure or NULL
623  *
624  * Free VSI context info from hardware as well as from VSI handle list
625  */
626 enum ice_status
627 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
628 	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
629 {
630 	enum ice_status status;
631 
632 	if (!ice_is_vsi_valid(hw, vsi_handle))
633 		return ICE_ERR_PARAM;
634 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
635 	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
636 	if (!status)
637 		ice_clear_vsi_ctx(hw, vsi_handle);
638 	return status;
639 }
640 
641 /**
642  * ice_update_vsi
643  * @hw: pointer to the HW struct
644  * @vsi_handle: unique VSI handle
645  * @vsi_ctx: pointer to a VSI context struct
646  * @cd: pointer to command details structure or NULL
647  *
648  * Update VSI context in the hardware
649  */
650 enum ice_status
651 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
652 	       struct ice_sq_cd *cd)
653 {
654 	if (!ice_is_vsi_valid(hw, vsi_handle))
655 		return ICE_ERR_PARAM;
656 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
657 	return ice_aq_update_vsi(hw, vsi_ctx, cd);
658 }
659 
660 /**
661  * ice_aq_get_vsi_params
662  * @hw: pointer to the HW struct
663  * @vsi_ctx: pointer to a VSI context struct
664  * @cd: pointer to command details structure or NULL
665  *
666  * Get VSI context info from hardware (0x0212)
667  */
668 enum ice_status
669 ice_aq_get_vsi_params(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
670 		      struct ice_sq_cd *cd)
671 {
672 	struct ice_aqc_add_get_update_free_vsi *cmd;
673 	struct ice_aqc_get_vsi_resp *resp;
674 	struct ice_aq_desc desc;
675 	enum ice_status status;
676 
677 	cmd = &desc.params.vsi_cmd;
678 	resp = &desc.params.get_vsi_resp;
679 
680 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_vsi_params);
681 
682 	cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
683 
684 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
685 				 sizeof(vsi_ctx->info), cd);
686 	if (!status) {
687 		vsi_ctx->vsi_num = LE16_TO_CPU(resp->vsi_num) &
688 					ICE_AQ_VSI_NUM_M;
689 		vsi_ctx->vf_num = resp->vf_id;
690 		vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
691 		vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
692 	}
693 
694 	return status;
695 }
696 
697 /**
698  * ice_aq_add_update_mir_rule - add/update a mirror rule
699  * @hw: pointer to the HW struct
700  * @rule_type: Rule Type
701  * @dest_vsi: VSI number to which packets will be mirrored
702  * @count: length of the list
703  * @mr_buf: buffer for list of mirrored VSI numbers
704  * @cd: pointer to command details structure or NULL
705  * @rule_id: Rule ID
706  *
707  * Add/Update Mirror Rule (0x260).
708  */
709 enum ice_status
710 ice_aq_add_update_mir_rule(struct ice_hw *hw, u16 rule_type, u16 dest_vsi,
711 			   u16 count, struct ice_mir_rule_buf *mr_buf,
712 			   struct ice_sq_cd *cd, u16 *rule_id)
713 {
714 	struct ice_aqc_add_update_mir_rule *cmd;
715 	struct ice_aq_desc desc;
716 	enum ice_status status;
717 	__le16 *mr_list = NULL;
718 	u16 buf_size = 0;
719 
720 	switch (rule_type) {
721 	case ICE_AQC_RULE_TYPE_VPORT_INGRESS:
722 	case ICE_AQC_RULE_TYPE_VPORT_EGRESS:
723 		/* Make sure count and mr_buf are set for these rule_types */
724 		if (!(count && mr_buf))
725 			return ICE_ERR_PARAM;
726 
727 		buf_size = count * sizeof(__le16);
728 		mr_list = (_FORCE_ __le16 *)ice_malloc(hw, buf_size);
729 		if (!mr_list)
730 			return ICE_ERR_NO_MEMORY;
731 		break;
732 	case ICE_AQC_RULE_TYPE_PPORT_INGRESS:
733 	case ICE_AQC_RULE_TYPE_PPORT_EGRESS:
734 		/* Make sure count and mr_buf are not set for these
735 		 * rule_types
736 		 */
737 		if (count || mr_buf)
738 			return ICE_ERR_PARAM;
739 		break;
740 	default:
741 		ice_debug(hw, ICE_DBG_SW, "Error due to unsupported rule_type %u\n", rule_type);
742 		return ICE_ERR_OUT_OF_RANGE;
743 	}
744 
745 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_update_mir_rule);
746 
747 	/* Pre-process 'mr_buf' items for add/update of virtual port
748 	 * ingress/egress mirroring (but not physical port ingress/egress
749 	 * mirroring)
750 	 */
751 	if (mr_buf) {
752 		int i;
753 
754 		for (i = 0; i < count; i++) {
755 			u16 id;
756 
757 			id = mr_buf[i].vsi_idx & ICE_AQC_RULE_MIRRORED_VSI_M;
758 
759 			/* Validate specified VSI number, make sure it is less
760 			 * than ICE_MAX_VSI, if not return with error.
761 			 */
762 			if (id >= ICE_MAX_VSI) {
763 				ice_debug(hw, ICE_DBG_SW, "Error VSI index (%u) out-of-range\n",
764 					  id);
765 				ice_free(hw, mr_list);
766 				return ICE_ERR_OUT_OF_RANGE;
767 			}
768 
769 			/* add VSI to mirror rule */
770 			if (mr_buf[i].add)
771 				mr_list[i] =
772 					CPU_TO_LE16(id | ICE_AQC_RULE_ACT_M);
773 			else /* remove VSI from mirror rule */
774 				mr_list[i] = CPU_TO_LE16(id);
775 		}
776 	}
777 
778 	cmd = &desc.params.add_update_rule;
779 	if ((*rule_id) != ICE_INVAL_MIRROR_RULE_ID)
780 		cmd->rule_id = CPU_TO_LE16(((*rule_id) & ICE_AQC_RULE_ID_M) |
781 					   ICE_AQC_RULE_ID_VALID_M);
782 	cmd->rule_type = CPU_TO_LE16(rule_type & ICE_AQC_RULE_TYPE_M);
783 	cmd->num_entries = CPU_TO_LE16(count);
784 	cmd->dest = CPU_TO_LE16(dest_vsi);
785 
786 	status = ice_aq_send_cmd(hw, &desc, mr_list, buf_size, cd);
787 	if (!status)
788 		*rule_id = LE16_TO_CPU(cmd->rule_id) & ICE_AQC_RULE_ID_M;
789 
790 	ice_free(hw, mr_list);
791 
792 	return status;
793 }
794 
795 /**
796  * ice_aq_delete_mir_rule - delete a mirror rule
797  * @hw: pointer to the HW struct
798  * @rule_id: Mirror rule ID (to be deleted)
799  * @keep_allocd: if set, the VSI stays part of the PF allocated res,
800  *		 otherwise it is returned to the shared pool
801  * @cd: pointer to command details structure or NULL
802  *
803  * Delete Mirror Rule (0x261).
804  */
805 enum ice_status
806 ice_aq_delete_mir_rule(struct ice_hw *hw, u16 rule_id, bool keep_allocd,
807 		       struct ice_sq_cd *cd)
808 {
809 	struct ice_aqc_delete_mir_rule *cmd;
810 	struct ice_aq_desc desc;
811 
812 	/* rule_id should be in the range 0...63 */
813 	if (rule_id >= ICE_MAX_NUM_MIRROR_RULES)
814 		return ICE_ERR_OUT_OF_RANGE;
815 
816 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_del_mir_rule);
817 
818 	cmd = &desc.params.del_rule;
819 	rule_id |= ICE_AQC_RULE_ID_VALID_M;
820 	cmd->rule_id = CPU_TO_LE16(rule_id);
821 
822 	if (keep_allocd)
823 		cmd->flags = CPU_TO_LE16(ICE_AQC_FLAG_KEEP_ALLOCD_M);
824 
825 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
826 }
827 
828 /**
829  * ice_aq_alloc_free_vsi_list
830  * @hw: pointer to the HW struct
831  * @vsi_list_id: VSI list ID returned or used for lookup
832  * @lkup_type: switch rule filter lookup type
833  * @opc: switch rules population command type - pass in the command opcode
834  *
835  * allocates or free a VSI list resource
836  */
837 static enum ice_status
838 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
839 			   enum ice_sw_lkup_type lkup_type,
840 			   enum ice_adminq_opc opc)
841 {
842 	struct ice_aqc_alloc_free_res_elem *sw_buf;
843 	struct ice_aqc_res_elem *vsi_ele;
844 	enum ice_status status;
845 	u16 buf_len;
846 
847 	buf_len = ice_struct_size(sw_buf, elem, 1);
848 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
849 	if (!sw_buf)
850 		return ICE_ERR_NO_MEMORY;
851 	sw_buf->num_elems = CPU_TO_LE16(1);
852 
853 	if (lkup_type == ICE_SW_LKUP_MAC ||
854 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
855 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
856 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
857 	    lkup_type == ICE_SW_LKUP_PROMISC ||
858 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
859 	    lkup_type == ICE_SW_LKUP_LAST) {
860 		sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
861 	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
862 		sw_buf->res_type =
863 			CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
864 	} else {
865 		status = ICE_ERR_PARAM;
866 		goto ice_aq_alloc_free_vsi_list_exit;
867 	}
868 
869 	if (opc == ice_aqc_opc_free_res)
870 		sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(*vsi_list_id);
871 
872 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
873 	if (status)
874 		goto ice_aq_alloc_free_vsi_list_exit;
875 
876 	if (opc == ice_aqc_opc_alloc_res) {
877 		vsi_ele = &sw_buf->elem[0];
878 		*vsi_list_id = LE16_TO_CPU(vsi_ele->e.sw_resp);
879 	}
880 
881 ice_aq_alloc_free_vsi_list_exit:
882 	ice_free(hw, sw_buf);
883 	return status;
884 }
885 
886 /**
887  * ice_aq_set_storm_ctrl - Sets storm control configuration
888  * @hw: pointer to the HW struct
889  * @bcast_thresh: represents the upper threshold for broadcast storm control
890  * @mcast_thresh: represents the upper threshold for multicast storm control
891  * @ctl_bitmask: storm control knobs
892  *
893  * Sets the storm control configuration (0x0280)
894  */
895 enum ice_status
896 ice_aq_set_storm_ctrl(struct ice_hw *hw, u32 bcast_thresh, u32 mcast_thresh,
897 		      u32 ctl_bitmask)
898 {
899 	struct ice_aqc_storm_cfg *cmd;
900 	struct ice_aq_desc desc;
901 
902 	cmd = &desc.params.storm_conf;
903 
904 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_storm_cfg);
905 
906 	cmd->bcast_thresh_size = CPU_TO_LE32(bcast_thresh & ICE_AQ_THRESHOLD_M);
907 	cmd->mcast_thresh_size = CPU_TO_LE32(mcast_thresh & ICE_AQ_THRESHOLD_M);
908 	cmd->storm_ctrl_ctrl = CPU_TO_LE32(ctl_bitmask);
909 
910 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
911 }
912 
913 /**
914  * ice_aq_get_storm_ctrl - gets storm control configuration
915  * @hw: pointer to the HW struct
916  * @bcast_thresh: represents the upper threshold for broadcast storm control
917  * @mcast_thresh: represents the upper threshold for multicast storm control
918  * @ctl_bitmask: storm control knobs
919  *
920  * Gets the storm control configuration (0x0281)
921  */
922 enum ice_status
923 ice_aq_get_storm_ctrl(struct ice_hw *hw, u32 *bcast_thresh, u32 *mcast_thresh,
924 		      u32 *ctl_bitmask)
925 {
926 	enum ice_status status;
927 	struct ice_aq_desc desc;
928 
929 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_storm_cfg);
930 
931 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
932 	if (!status) {
933 		struct ice_aqc_storm_cfg *resp = &desc.params.storm_conf;
934 
935 		if (bcast_thresh)
936 			*bcast_thresh = LE32_TO_CPU(resp->bcast_thresh_size) &
937 				ICE_AQ_THRESHOLD_M;
938 		if (mcast_thresh)
939 			*mcast_thresh = LE32_TO_CPU(resp->mcast_thresh_size) &
940 				ICE_AQ_THRESHOLD_M;
941 		if (ctl_bitmask)
942 			*ctl_bitmask = LE32_TO_CPU(resp->storm_ctrl_ctrl);
943 	}
944 
945 	return status;
946 }
947 
948 /**
949  * ice_aq_sw_rules - add/update/remove switch rules
950  * @hw: pointer to the HW struct
951  * @rule_list: pointer to switch rule population list
952  * @rule_list_sz: total size of the rule list in bytes
953  * @num_rules: number of switch rules in the rule_list
954  * @opc: switch rules population command type - pass in the command opcode
955  * @cd: pointer to command details structure or NULL
956  *
957  * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
958  */
959 static enum ice_status
960 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
961 		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
962 {
963 	struct ice_aq_desc desc;
964 	enum ice_status status;
965 
966 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
967 
968 	if (opc != ice_aqc_opc_add_sw_rules &&
969 	    opc != ice_aqc_opc_update_sw_rules &&
970 	    opc != ice_aqc_opc_remove_sw_rules)
971 		return ICE_ERR_PARAM;
972 
973 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
974 
975 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
976 	desc.params.sw_rules.num_rules_fltr_entry_index =
977 		CPU_TO_LE16(num_rules);
978 	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
979 	if (opc != ice_aqc_opc_add_sw_rules &&
980 	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
981 		status = ICE_ERR_DOES_NOT_EXIST;
982 
983 	return status;
984 }
985 
986 /* ice_init_port_info - Initialize port_info with switch configuration data
987  * @pi: pointer to port_info
988  * @vsi_port_num: VSI number or port number
989  * @type: Type of switch element (port or VSI)
990  * @swid: switch ID of the switch the element is attached to
991  * @pf_vf_num: PF or VF number
992  * @is_vf: true if the element is a VF, false otherwise
993  */
994 static void
995 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
996 		   u16 swid, u16 pf_vf_num, bool is_vf)
997 {
998 	switch (type) {
999 	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
1000 		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
1001 		pi->sw_id = swid;
1002 		pi->pf_vf_num = pf_vf_num;
1003 		pi->is_vf = is_vf;
1004 		pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL;
1005 		pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL;
1006 		break;
1007 	default:
1008 		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
1009 		break;
1010 	}
1011 }
1012 
1013 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
1014  * @hw: pointer to the hardware structure
1015  */
1016 enum ice_status ice_get_initial_sw_cfg(struct ice_hw *hw)
1017 {
1018 	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
1019 	enum ice_status status;
1020 	u8 num_total_ports;
1021 	u16 req_desc = 0;
1022 	u16 num_elems;
1023 	u8 j = 0;
1024 	u16 i;
1025 
1026 	num_total_ports = 1;
1027 
1028 	rbuf = (struct ice_aqc_get_sw_cfg_resp_elem *)
1029 		ice_malloc(hw, ICE_SW_CFG_MAX_BUF_LEN);
1030 
1031 	if (!rbuf)
1032 		return ICE_ERR_NO_MEMORY;
1033 
1034 	/* Multiple calls to ice_aq_get_sw_cfg may be required
1035 	 * to get all the switch configuration information. The need
1036 	 * for additional calls is indicated by ice_aq_get_sw_cfg
1037 	 * writing a non-zero value in req_desc
1038 	 */
1039 	do {
1040 		struct ice_aqc_get_sw_cfg_resp_elem *ele;
1041 
1042 		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
1043 					   &req_desc, &num_elems, NULL);
1044 
1045 		if (status)
1046 			break;
1047 
1048 		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
1049 			u16 pf_vf_num, swid, vsi_port_num;
1050 			bool is_vf = false;
1051 			u8 res_type;
1052 
1053 			vsi_port_num = LE16_TO_CPU(ele->vsi_port_num) &
1054 				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
1055 
1056 			pf_vf_num = LE16_TO_CPU(ele->pf_vf_num) &
1057 				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
1058 
1059 			swid = LE16_TO_CPU(ele->swid);
1060 
1061 			if (LE16_TO_CPU(ele->pf_vf_num) &
1062 			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
1063 				is_vf = true;
1064 
1065 			res_type = (u8)(LE16_TO_CPU(ele->vsi_port_num) >>
1066 					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
1067 
1068 			switch (res_type) {
1069 			case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
1070 			case ICE_AQC_GET_SW_CONF_RESP_VIRT_PORT:
1071 				if (j == num_total_ports) {
1072 					ice_debug(hw, ICE_DBG_SW, "more ports than expected\n");
1073 					status = ICE_ERR_CFG;
1074 					goto out;
1075 				}
1076 				ice_init_port_info(hw->port_info,
1077 						   vsi_port_num, res_type, swid,
1078 						   pf_vf_num, is_vf);
1079 				j++;
1080 				break;
1081 			default:
1082 				break;
1083 			}
1084 		}
1085 	} while (req_desc && !status);
1086 
1087 out:
1088 	ice_free(hw, rbuf);
1089 	return status;
1090 }
1091 
1092 /**
1093  * ice_fill_sw_info - Helper function to populate lb_en and lan_en
1094  * @hw: pointer to the hardware structure
1095  * @fi: filter info structure to fill/update
1096  *
1097  * This helper function populates the lb_en and lan_en elements of the provided
1098  * ice_fltr_info struct using the switch's type and characteristics of the
1099  * switch rule being configured.
1100  */
1101 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
1102 {
1103 	fi->lb_en = false;
1104 	fi->lan_en = false;
1105 	if ((fi->flag & ICE_FLTR_TX) &&
1106 	    (fi->fltr_act == ICE_FWD_TO_VSI ||
1107 	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
1108 	     fi->fltr_act == ICE_FWD_TO_Q ||
1109 	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
1110 		/* Setting LB for prune actions will result in replicated
1111 		 * packets to the internal switch that will be dropped.
1112 		 */
1113 		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
1114 			fi->lb_en = true;
1115 
1116 		/* Set lan_en to TRUE if
1117 		 * 1. The switch is a VEB AND
1118 		 * 2
1119 		 * 2.1 The lookup is a directional lookup like ethertype,
1120 		 * promiscuous, ethertype-MAC, promiscuous-VLAN
1121 		 * and default-port OR
1122 		 * 2.2 The lookup is VLAN, OR
1123 		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
1124 		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
1125 		 *
1126 		 * OR
1127 		 *
1128 		 * The switch is a VEPA.
1129 		 *
1130 		 * In all other cases, the LAN enable has to be set to false.
1131 		 */
1132 		if (hw->evb_veb) {
1133 			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1134 			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
1135 			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1136 			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1137 			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
1138 			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
1139 			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
1140 			     !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)) ||
1141 			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
1142 			     !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)))
1143 				fi->lan_en = true;
1144 		} else {
1145 			fi->lan_en = true;
1146 		}
1147 	}
1148 }
1149 
1150 /**
1151  * ice_fill_sw_rule - Helper function to fill switch rule structure
1152  * @hw: pointer to the hardware structure
1153  * @f_info: entry containing packet forwarding information
1154  * @s_rule: switch rule structure to be filled in based on mac_entry
1155  * @opc: switch rules population command type - pass in the command opcode
1156  */
1157 static void
1158 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
1159 		 struct ice_aqc_sw_rules_elem *s_rule, enum ice_adminq_opc opc)
1160 {
1161 	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
1162 	u16 vlan_tpid = ICE_ETH_P_8021Q;
1163 	void *daddr = NULL;
1164 	u16 eth_hdr_sz;
1165 	u8 *eth_hdr;
1166 	u32 act = 0;
1167 	__be16 *off;
1168 	u8 q_rgn;
1169 
1170 	if (opc == ice_aqc_opc_remove_sw_rules) {
1171 		s_rule->pdata.lkup_tx_rx.act = 0;
1172 		s_rule->pdata.lkup_tx_rx.index =
1173 			CPU_TO_LE16(f_info->fltr_rule_id);
1174 		s_rule->pdata.lkup_tx_rx.hdr_len = 0;
1175 		return;
1176 	}
1177 
1178 	eth_hdr_sz = sizeof(dummy_eth_header);
1179 	eth_hdr = s_rule->pdata.lkup_tx_rx.hdr;
1180 
1181 	/* initialize the ether header with a dummy header */
1182 	ice_memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz, ICE_NONDMA_TO_NONDMA);
1183 	ice_fill_sw_info(hw, f_info);
1184 
1185 	switch (f_info->fltr_act) {
1186 	case ICE_FWD_TO_VSI:
1187 		act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
1188 			ICE_SINGLE_ACT_VSI_ID_M;
1189 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
1190 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
1191 				ICE_SINGLE_ACT_VALID_BIT;
1192 		break;
1193 	case ICE_FWD_TO_VSI_LIST:
1194 		act |= ICE_SINGLE_ACT_VSI_LIST;
1195 		act |= (f_info->fwd_id.vsi_list_id <<
1196 			ICE_SINGLE_ACT_VSI_LIST_ID_S) &
1197 			ICE_SINGLE_ACT_VSI_LIST_ID_M;
1198 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
1199 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
1200 				ICE_SINGLE_ACT_VALID_BIT;
1201 		break;
1202 	case ICE_FWD_TO_Q:
1203 		act |= ICE_SINGLE_ACT_TO_Q;
1204 		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
1205 			ICE_SINGLE_ACT_Q_INDEX_M;
1206 		break;
1207 	case ICE_DROP_PACKET:
1208 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
1209 			ICE_SINGLE_ACT_VALID_BIT;
1210 		break;
1211 	case ICE_FWD_TO_QGRP:
1212 		q_rgn = f_info->qgrp_size > 0 ?
1213 			(u8)ice_ilog2(f_info->qgrp_size) : 0;
1214 		act |= ICE_SINGLE_ACT_TO_Q;
1215 		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
1216 			ICE_SINGLE_ACT_Q_INDEX_M;
1217 		act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
1218 			ICE_SINGLE_ACT_Q_REGION_M;
1219 		break;
1220 	default:
1221 		return;
1222 	}
1223 
1224 	if (f_info->lb_en)
1225 		act |= ICE_SINGLE_ACT_LB_ENABLE;
1226 	if (f_info->lan_en)
1227 		act |= ICE_SINGLE_ACT_LAN_ENABLE;
1228 
1229 	switch (f_info->lkup_type) {
1230 	case ICE_SW_LKUP_MAC:
1231 		daddr = f_info->l_data.mac.mac_addr;
1232 		break;
1233 	case ICE_SW_LKUP_VLAN:
1234 		vlan_id = f_info->l_data.vlan.vlan_id;
1235 		if (f_info->l_data.vlan.tpid_valid)
1236 			vlan_tpid = f_info->l_data.vlan.tpid;
1237 		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
1238 		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
1239 			act |= ICE_SINGLE_ACT_PRUNE;
1240 			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
1241 		}
1242 		break;
1243 	case ICE_SW_LKUP_ETHERTYPE_MAC:
1244 		daddr = f_info->l_data.ethertype_mac.mac_addr;
1245 		/* fall-through */
1246 	case ICE_SW_LKUP_ETHERTYPE:
1247 		off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
1248 		*off = CPU_TO_BE16(f_info->l_data.ethertype_mac.ethertype);
1249 		break;
1250 	case ICE_SW_LKUP_MAC_VLAN:
1251 		daddr = f_info->l_data.mac_vlan.mac_addr;
1252 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
1253 		break;
1254 	case ICE_SW_LKUP_PROMISC_VLAN:
1255 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
1256 		/* fall-through */
1257 	case ICE_SW_LKUP_PROMISC:
1258 		daddr = f_info->l_data.mac_vlan.mac_addr;
1259 		break;
1260 	default:
1261 		break;
1262 	}
1263 
1264 	s_rule->type = (f_info->flag & ICE_FLTR_RX) ?
1265 		CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_RX) :
1266 		CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_TX);
1267 
1268 	/* Recipe set depending on lookup type */
1269 	s_rule->pdata.lkup_tx_rx.recipe_id = CPU_TO_LE16(f_info->lkup_type);
1270 	s_rule->pdata.lkup_tx_rx.src = CPU_TO_LE16(f_info->src);
1271 	s_rule->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
1272 
1273 	if (daddr)
1274 		ice_memcpy(eth_hdr + ICE_ETH_DA_OFFSET, daddr, ETH_ALEN,
1275 			   ICE_NONDMA_TO_NONDMA);
1276 
1277 	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
1278 		off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
1279 		*off = CPU_TO_BE16(vlan_id);
1280 		off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
1281 		*off = CPU_TO_BE16(vlan_tpid);
1282 	}
1283 
1284 	/* Create the switch rule with the final dummy Ethernet header */
1285 	if (opc != ice_aqc_opc_update_sw_rules)
1286 		s_rule->pdata.lkup_tx_rx.hdr_len = CPU_TO_LE16(eth_hdr_sz);
1287 }
1288 
1289 /**
1290  * ice_add_marker_act
1291  * @hw: pointer to the hardware structure
1292  * @m_ent: the management entry for which sw marker needs to be added
1293  * @sw_marker: sw marker to tag the Rx descriptor with
1294  * @l_id: large action resource ID
1295  *
1296  * Create a large action to hold software marker and update the switch rule
1297  * entry pointed by m_ent with newly created large action
1298  */
1299 static enum ice_status
1300 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
1301 		   u16 sw_marker, u16 l_id)
1302 {
1303 	struct ice_aqc_sw_rules_elem *lg_act, *rx_tx;
1304 	/* For software marker we need 3 large actions
1305 	 * 1. FWD action: FWD TO VSI or VSI LIST
1306 	 * 2. GENERIC VALUE action to hold the profile ID
1307 	 * 3. GENERIC VALUE action to hold the software marker ID
1308 	 */
1309 	const u16 num_lg_acts = 3;
1310 	enum ice_status status;
1311 	u16 lg_act_size;
1312 	u16 rules_size;
1313 	u32 act;
1314 	u16 id;
1315 
1316 	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
1317 		return ICE_ERR_PARAM;
1318 
1319 	/* Create two back-to-back switch rules and submit them to the HW using
1320 	 * one memory buffer:
1321 	 *    1. Large Action
1322 	 *    2. Look up Tx Rx
1323 	 */
1324 	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_lg_acts);
1325 	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
1326 	lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rules_size);
1327 	if (!lg_act)
1328 		return ICE_ERR_NO_MEMORY;
1329 
1330 	rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size);
1331 
1332 	/* Fill in the first switch rule i.e. large action */
1333 	lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
1334 	lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id);
1335 	lg_act->pdata.lg_act.size = CPU_TO_LE16(num_lg_acts);
1336 
1337 	/* First action VSI forwarding or VSI list forwarding depending on how
1338 	 * many VSIs
1339 	 */
1340 	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
1341 		m_ent->fltr_info.fwd_id.hw_vsi_id;
1342 
1343 	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
1344 	act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M;
1345 	if (m_ent->vsi_count > 1)
1346 		act |= ICE_LG_ACT_VSI_LIST;
1347 	lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act);
1348 
1349 	/* Second action descriptor type */
1350 	act = ICE_LG_ACT_GENERIC;
1351 
1352 	act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
1353 	lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act);
1354 
1355 	act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
1356 	       ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
1357 
1358 	/* Third action Marker value */
1359 	act |= ICE_LG_ACT_GENERIC;
1360 	act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
1361 		ICE_LG_ACT_GENERIC_VALUE_M;
1362 
1363 	lg_act->pdata.lg_act.act[2] = CPU_TO_LE32(act);
1364 
1365 	/* call the fill switch rule to fill the lookup Tx Rx structure */
1366 	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
1367 			 ice_aqc_opc_update_sw_rules);
1368 
1369 	/* Update the action to point to the large action ID */
1370 	rx_tx->pdata.lkup_tx_rx.act =
1371 		CPU_TO_LE32(ICE_SINGLE_ACT_PTR |
1372 			    ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
1373 			     ICE_SINGLE_ACT_PTR_VAL_M));
1374 
1375 	/* Use the filter rule ID of the previously created rule with single
1376 	 * act. Once the update happens, hardware will treat this as large
1377 	 * action
1378 	 */
1379 	rx_tx->pdata.lkup_tx_rx.index =
1380 		CPU_TO_LE16(m_ent->fltr_info.fltr_rule_id);
1381 
1382 	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
1383 				 ice_aqc_opc_update_sw_rules, NULL);
1384 	if (!status) {
1385 		m_ent->lg_act_idx = l_id;
1386 		m_ent->sw_marker_id = sw_marker;
1387 	}
1388 
1389 	ice_free(hw, lg_act);
1390 	return status;
1391 }
1392 
1393 /**
1394  * ice_add_counter_act - add/update filter rule with counter action
1395  * @hw: pointer to the hardware structure
1396  * @m_ent: the management entry for which counter needs to be added
1397  * @counter_id: VLAN counter ID returned as part of allocate resource
1398  * @l_id: large action resource ID
1399  */
1400 static enum ice_status
1401 ice_add_counter_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
1402 		    u16 counter_id, u16 l_id)
1403 {
1404 	struct ice_aqc_sw_rules_elem *lg_act;
1405 	struct ice_aqc_sw_rules_elem *rx_tx;
1406 	enum ice_status status;
1407 	/* 2 actions will be added while adding a large action counter */
1408 	const int num_acts = 2;
1409 	u16 lg_act_size;
1410 	u16 rules_size;
1411 	u16 f_rule_id;
1412 	u32 act;
1413 	u16 id;
1414 
1415 	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
1416 		return ICE_ERR_PARAM;
1417 
1418 	/* Create two back-to-back switch rules and submit them to the HW using
1419 	 * one memory buffer:
1420 	 * 1. Large Action
1421 	 * 2. Look up Tx Rx
1422 	 */
1423 	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_acts);
1424 	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
1425 	lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rules_size);
1426 	if (!lg_act)
1427 		return ICE_ERR_NO_MEMORY;
1428 
1429 	rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size);
1430 
1431 	/* Fill in the first switch rule i.e. large action */
1432 	lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
1433 	lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id);
1434 	lg_act->pdata.lg_act.size = CPU_TO_LE16(num_acts);
1435 
1436 	/* First action VSI forwarding or VSI list forwarding depending on how
1437 	 * many VSIs
1438 	 */
1439 	id = (m_ent->vsi_count > 1) ?  m_ent->fltr_info.fwd_id.vsi_list_id :
1440 		m_ent->fltr_info.fwd_id.hw_vsi_id;
1441 
1442 	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
1443 	act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) &
1444 		ICE_LG_ACT_VSI_LIST_ID_M;
1445 	if (m_ent->vsi_count > 1)
1446 		act |= ICE_LG_ACT_VSI_LIST;
1447 	lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act);
1448 
1449 	/* Second action counter ID */
1450 	act = ICE_LG_ACT_STAT_COUNT;
1451 	act |= (counter_id << ICE_LG_ACT_STAT_COUNT_S) &
1452 		ICE_LG_ACT_STAT_COUNT_M;
1453 	lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act);
1454 
1455 	/* call the fill switch rule to fill the lookup Tx Rx structure */
1456 	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
1457 			 ice_aqc_opc_update_sw_rules);
1458 
1459 	act = ICE_SINGLE_ACT_PTR;
1460 	act |= (l_id << ICE_SINGLE_ACT_PTR_VAL_S) & ICE_SINGLE_ACT_PTR_VAL_M;
1461 	rx_tx->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
1462 
1463 	/* Use the filter rule ID of the previously created rule with single
1464 	 * act. Once the update happens, hardware will treat this as large
1465 	 * action
1466 	 */
1467 	f_rule_id = m_ent->fltr_info.fltr_rule_id;
1468 	rx_tx->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_rule_id);
1469 
1470 	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
1471 				 ice_aqc_opc_update_sw_rules, NULL);
1472 	if (!status) {
1473 		m_ent->lg_act_idx = l_id;
1474 		m_ent->counter_index = counter_id;
1475 	}
1476 
1477 	ice_free(hw, lg_act);
1478 	return status;
1479 }
1480 
1481 /**
1482  * ice_create_vsi_list_map
1483  * @hw: pointer to the hardware structure
1484  * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
1485  * @num_vsi: number of VSI handles in the array
1486  * @vsi_list_id: VSI list ID generated as part of allocate resource
1487  *
1488  * Helper function to create a new entry of VSI list ID to VSI mapping
1489  * using the given VSI list ID
1490  */
1491 static struct ice_vsi_list_map_info *
1492 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1493 			u16 vsi_list_id)
1494 {
1495 	struct ice_switch_info *sw = hw->switch_info;
1496 	struct ice_vsi_list_map_info *v_map;
1497 	int i;
1498 
1499 	v_map = (struct ice_vsi_list_map_info *)ice_malloc(hw, sizeof(*v_map));
1500 	if (!v_map)
1501 		return NULL;
1502 
1503 	v_map->vsi_list_id = vsi_list_id;
1504 	v_map->ref_cnt = 1;
1505 	for (i = 0; i < num_vsi; i++)
1506 		ice_set_bit(vsi_handle_arr[i], v_map->vsi_map);
1507 
1508 	LIST_ADD(&v_map->list_entry, &sw->vsi_list_map_head);
1509 	return v_map;
1510 }
1511 
1512 /**
1513  * ice_update_vsi_list_rule
1514  * @hw: pointer to the hardware structure
1515  * @vsi_handle_arr: array of VSI handles to form a VSI list
1516  * @num_vsi: number of VSI handles in the array
1517  * @vsi_list_id: VSI list ID generated as part of allocate resource
1518  * @remove: Boolean value to indicate if this is a remove action
1519  * @opc: switch rules population command type - pass in the command opcode
1520  * @lkup_type: lookup type of the filter
1521  *
1522  * Call AQ command to add a new switch rule or update existing switch rule
1523  * using the given VSI list ID
1524  */
1525 static enum ice_status
1526 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1527 			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
1528 			 enum ice_sw_lkup_type lkup_type)
1529 {
1530 	struct ice_aqc_sw_rules_elem *s_rule;
1531 	enum ice_status status;
1532 	u16 s_rule_size;
1533 	u16 rule_type;
1534 	int i;
1535 
1536 	if (!num_vsi)
1537 		return ICE_ERR_PARAM;
1538 
1539 	if (lkup_type == ICE_SW_LKUP_MAC ||
1540 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1541 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1542 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1543 	    lkup_type == ICE_SW_LKUP_PROMISC ||
1544 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1545 	    lkup_type == ICE_SW_LKUP_LAST)
1546 		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
1547 			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
1548 	else if (lkup_type == ICE_SW_LKUP_VLAN)
1549 		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
1550 			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
1551 	else
1552 		return ICE_ERR_PARAM;
1553 
1554 	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(num_vsi);
1555 	s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size);
1556 	if (!s_rule)
1557 		return ICE_ERR_NO_MEMORY;
1558 	for (i = 0; i < num_vsi; i++) {
1559 		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
1560 			status = ICE_ERR_PARAM;
1561 			goto exit;
1562 		}
1563 		/* AQ call requires hw_vsi_id(s) */
1564 		s_rule->pdata.vsi_list.vsi[i] =
1565 			CPU_TO_LE16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
1566 	}
1567 
1568 	s_rule->type = CPU_TO_LE16(rule_type);
1569 	s_rule->pdata.vsi_list.number_vsi = CPU_TO_LE16(num_vsi);
1570 	s_rule->pdata.vsi_list.index = CPU_TO_LE16(vsi_list_id);
1571 
1572 	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
1573 
1574 exit:
1575 	ice_free(hw, s_rule);
1576 	return status;
1577 }
1578 
1579 /**
1580  * ice_create_vsi_list_rule - Creates and populates a VSI list rule
1581  * @hw: pointer to the HW struct
1582  * @vsi_handle_arr: array of VSI handles to form a VSI list
1583  * @num_vsi: number of VSI handles in the array
1584  * @vsi_list_id: stores the ID of the VSI list to be created
1585  * @lkup_type: switch rule filter's lookup type
1586  */
1587 static enum ice_status
1588 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1589 			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
1590 {
1591 	enum ice_status status;
1592 
1593 	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
1594 					    ice_aqc_opc_alloc_res);
1595 	if (status)
1596 		return status;
1597 
1598 	/* Update the newly created VSI list to include the specified VSIs */
1599 	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
1600 					*vsi_list_id, false,
1601 					ice_aqc_opc_add_sw_rules, lkup_type);
1602 }
1603 
1604 /**
1605  * ice_create_pkt_fwd_rule
1606  * @hw: pointer to the hardware structure
1607  * @recp_list: corresponding filter management list
1608  * @f_entry: entry containing packet forwarding information
1609  *
1610  * Create switch rule with given filter information and add an entry
1611  * to the corresponding filter management list to track this switch rule
1612  * and VSI mapping
1613  */
1614 static enum ice_status
1615 ice_create_pkt_fwd_rule(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
1616 			struct ice_fltr_list_entry *f_entry)
1617 {
1618 	struct ice_fltr_mgmt_list_entry *fm_entry;
1619 	struct ice_aqc_sw_rules_elem *s_rule;
1620 	enum ice_status status;
1621 
1622 	s_rule = (struct ice_aqc_sw_rules_elem *)
1623 		ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE);
1624 	if (!s_rule)
1625 		return ICE_ERR_NO_MEMORY;
1626 	fm_entry = (struct ice_fltr_mgmt_list_entry *)
1627 		   ice_malloc(hw, sizeof(*fm_entry));
1628 	if (!fm_entry) {
1629 		status = ICE_ERR_NO_MEMORY;
1630 		goto ice_create_pkt_fwd_rule_exit;
1631 	}
1632 
1633 	fm_entry->fltr_info = f_entry->fltr_info;
1634 
1635 	/* Initialize all the fields for the management entry */
1636 	fm_entry->vsi_count = 1;
1637 	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
1638 	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
1639 	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
1640 
1641 	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
1642 			 ice_aqc_opc_add_sw_rules);
1643 
1644 	status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1,
1645 				 ice_aqc_opc_add_sw_rules, NULL);
1646 	if (status) {
1647 		ice_free(hw, fm_entry);
1648 		goto ice_create_pkt_fwd_rule_exit;
1649 	}
1650 
1651 	f_entry->fltr_info.fltr_rule_id =
1652 		LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
1653 	fm_entry->fltr_info.fltr_rule_id =
1654 		LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
1655 
1656 	/* The book keeping entries will get removed when base driver
1657 	 * calls remove filter AQ command
1658 	 */
1659 	LIST_ADD(&fm_entry->list_entry, &recp_list->filt_rules);
1660 
1661 ice_create_pkt_fwd_rule_exit:
1662 	ice_free(hw, s_rule);
1663 	return status;
1664 }
1665 
1666 /**
1667  * ice_update_pkt_fwd_rule
1668  * @hw: pointer to the hardware structure
1669  * @f_info: filter information for switch rule
1670  *
1671  * Call AQ command to update a previously created switch rule with a
1672  * VSI list ID
1673  */
1674 static enum ice_status
1675 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
1676 {
1677 	struct ice_aqc_sw_rules_elem *s_rule;
1678 	enum ice_status status;
1679 
1680 	s_rule = (struct ice_aqc_sw_rules_elem *)
1681 		ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE);
1682 	if (!s_rule)
1683 		return ICE_ERR_NO_MEMORY;
1684 
1685 	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
1686 
1687 	s_rule->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_info->fltr_rule_id);
1688 
1689 	/* Update switch rule with new rule set to forward VSI list */
1690 	status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1,
1691 				 ice_aqc_opc_update_sw_rules, NULL);
1692 
1693 	ice_free(hw, s_rule);
1694 	return status;
1695 }
1696 
1697 /**
1698  * ice_update_sw_rule_bridge_mode
1699  * @hw: pointer to the HW struct
1700  *
1701  * Updates unicast switch filter rules based on VEB/VEPA mode
1702  */
1703 enum ice_status ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
1704 {
1705 	struct ice_switch_info *sw = hw->switch_info;
1706 	struct ice_fltr_mgmt_list_entry *fm_entry;
1707 	enum ice_status status = ICE_SUCCESS;
1708 	struct LIST_HEAD_TYPE *rule_head;
1709 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
1710 
1711 	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
1712 	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
1713 
1714 	ice_acquire_lock(rule_lock);
1715 	LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry,
1716 			    list_entry) {
1717 		struct ice_fltr_info *fi = &fm_entry->fltr_info;
1718 		u8 *addr = fi->l_data.mac.mac_addr;
1719 
1720 		/* Update unicast Tx rules to reflect the selected
1721 		 * VEB/VEPA mode
1722 		 */
1723 		if ((fi->flag & ICE_FLTR_TX) && IS_UNICAST_ETHER_ADDR(addr) &&
1724 		    (fi->fltr_act == ICE_FWD_TO_VSI ||
1725 		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
1726 		     fi->fltr_act == ICE_FWD_TO_Q ||
1727 		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
1728 			status = ice_update_pkt_fwd_rule(hw, fi);
1729 			if (status)
1730 				break;
1731 		}
1732 	}
1733 
1734 	ice_release_lock(rule_lock);
1735 
1736 	return status;
1737 }
1738 
1739 /**
1740  * ice_add_update_vsi_list
1741  * @hw: pointer to the hardware structure
1742  * @m_entry: pointer to current filter management list entry
1743  * @cur_fltr: filter information from the book keeping entry
1744  * @new_fltr: filter information with the new VSI to be added
1745  *
1746  * Call AQ command to add or update previously created VSI list with new VSI.
1747  *
1748  * Helper function to do book keeping associated with adding filter information
1749  * The algorithm to do the book keeping is described below :
1750  * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
1751  *	if only one VSI has been added till now
1752  *		Allocate a new VSI list and add two VSIs
1753  *		to this list using switch rule command
1754  *		Update the previously created switch rule with the
1755  *		newly created VSI list ID
1756  *	if a VSI list was previously created
1757  *		Add the new VSI to the previously created VSI list set
1758  *		using the update switch rule command
1759  */
1760 static enum ice_status
1761 ice_add_update_vsi_list(struct ice_hw *hw,
1762 			struct ice_fltr_mgmt_list_entry *m_entry,
1763 			struct ice_fltr_info *cur_fltr,
1764 			struct ice_fltr_info *new_fltr)
1765 {
1766 	enum ice_status status = ICE_SUCCESS;
1767 	u16 vsi_list_id = 0;
1768 
1769 	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
1770 	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
1771 		return ICE_ERR_NOT_IMPL;
1772 
1773 	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
1774 	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
1775 	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
1776 	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
1777 		return ICE_ERR_NOT_IMPL;
1778 
1779 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
1780 		/* Only one entry existed in the mapping and it was not already
1781 		 * a part of a VSI list. So, create a VSI list with the old and
1782 		 * new VSIs.
1783 		 */
1784 		struct ice_fltr_info tmp_fltr;
1785 		u16 vsi_handle_arr[2];
1786 
1787 		/* A rule already exists with the new VSI being added */
1788 		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
1789 			return ICE_ERR_ALREADY_EXISTS;
1790 
1791 		vsi_handle_arr[0] = cur_fltr->vsi_handle;
1792 		vsi_handle_arr[1] = new_fltr->vsi_handle;
1793 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
1794 						  &vsi_list_id,
1795 						  new_fltr->lkup_type);
1796 		if (status)
1797 			return status;
1798 
1799 		tmp_fltr = *new_fltr;
1800 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
1801 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
1802 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
1803 		/* Update the previous switch rule of "MAC forward to VSI" to
1804 		 * "MAC fwd to VSI list"
1805 		 */
1806 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
1807 		if (status)
1808 			return status;
1809 
1810 		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
1811 		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
1812 		m_entry->vsi_list_info =
1813 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
1814 						vsi_list_id);
1815 
1816 		if (!m_entry->vsi_list_info)
1817 			return ICE_ERR_NO_MEMORY;
1818 
1819 		/* If this entry was large action then the large action needs
1820 		 * to be updated to point to FWD to VSI list
1821 		 */
1822 		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
1823 			status =
1824 			    ice_add_marker_act(hw, m_entry,
1825 					       m_entry->sw_marker_id,
1826 					       m_entry->lg_act_idx);
1827 	} else {
1828 		u16 vsi_handle = new_fltr->vsi_handle;
1829 		enum ice_adminq_opc opcode;
1830 
1831 		if (!m_entry->vsi_list_info)
1832 			return ICE_ERR_CFG;
1833 
1834 		/* A rule already exists with the new VSI being added */
1835 		if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle))
1836 			return ICE_SUCCESS;
1837 
1838 		/* Update the previously created VSI list set with
1839 		 * the new VSI ID passed in
1840 		 */
1841 		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
1842 		opcode = ice_aqc_opc_update_sw_rules;
1843 
1844 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
1845 						  vsi_list_id, false, opcode,
1846 						  new_fltr->lkup_type);
1847 		/* update VSI list mapping info with new VSI ID */
1848 		if (!status)
1849 			ice_set_bit(vsi_handle,
1850 				    m_entry->vsi_list_info->vsi_map);
1851 	}
1852 	if (!status)
1853 		m_entry->vsi_count++;
1854 	return status;
1855 }
1856 
1857 /**
1858  * ice_find_rule_entry - Search a rule entry
1859  * @list_head: head of rule list
1860  * @f_info: rule information
1861  *
1862  * Helper function to search for a given rule entry
1863  * Returns pointer to entry storing the rule if found
1864  */
1865 static struct ice_fltr_mgmt_list_entry *
1866 ice_find_rule_entry(struct LIST_HEAD_TYPE *list_head,
1867 		    struct ice_fltr_info *f_info)
1868 {
1869 	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
1870 
1871 	LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
1872 			    list_entry) {
1873 		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
1874 			    sizeof(f_info->l_data)) &&
1875 		    f_info->flag == list_itr->fltr_info.flag) {
1876 			ret = list_itr;
1877 			break;
1878 		}
1879 	}
1880 	return ret;
1881 }
1882 
1883 /**
1884  * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
1885  * @recp_list: VSI lists needs to be searched
1886  * @vsi_handle: VSI handle to be found in VSI list
1887  * @vsi_list_id: VSI list ID found containing vsi_handle
1888  *
1889  * Helper function to search a VSI list with single entry containing given VSI
1890  * handle element. This can be extended further to search VSI list with more
1891  * than 1 vsi_count. Returns pointer to VSI list entry if found.
1892  */
1893 static struct ice_vsi_list_map_info *
1894 ice_find_vsi_list_entry(struct ice_sw_recipe *recp_list, u16 vsi_handle,
1895 			u16 *vsi_list_id)
1896 {
1897 	struct ice_vsi_list_map_info *map_info = NULL;
1898 	struct LIST_HEAD_TYPE *list_head;
1899 
1900 	list_head = &recp_list->filt_rules;
1901 	if (recp_list->adv_rule) {
1902 		struct ice_adv_fltr_mgmt_list_entry *list_itr;
1903 
1904 		LIST_FOR_EACH_ENTRY(list_itr, list_head,
1905 				    ice_adv_fltr_mgmt_list_entry,
1906 				    list_entry) {
1907 			if (list_itr->vsi_list_info) {
1908 				map_info = list_itr->vsi_list_info;
1909 				if (ice_is_bit_set(map_info->vsi_map,
1910 						   vsi_handle)) {
1911 					*vsi_list_id = map_info->vsi_list_id;
1912 					return map_info;
1913 				}
1914 			}
1915 		}
1916 	} else {
1917 		struct ice_fltr_mgmt_list_entry *list_itr;
1918 
1919 		LIST_FOR_EACH_ENTRY(list_itr, list_head,
1920 				    ice_fltr_mgmt_list_entry,
1921 				    list_entry) {
1922 			if (list_itr->vsi_count == 1 &&
1923 			    list_itr->vsi_list_info) {
1924 				map_info = list_itr->vsi_list_info;
1925 				if (ice_is_bit_set(map_info->vsi_map,
1926 						   vsi_handle)) {
1927 					*vsi_list_id = map_info->vsi_list_id;
1928 					return map_info;
1929 				}
1930 			}
1931 		}
1932 	}
1933 	return NULL;
1934 }
1935 
1936 /**
1937  * ice_add_rule_internal - add rule for a given lookup type
1938  * @hw: pointer to the hardware structure
1939  * @recp_list: recipe list for which rule has to be added
1940  * @lport: logic port number on which function add rule
1941  * @f_entry: structure containing MAC forwarding information
1942  *
1943  * Adds or updates the rule lists for a given recipe
1944  */
1945 static enum ice_status
1946 ice_add_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
1947 		      u8 lport, struct ice_fltr_list_entry *f_entry)
1948 {
1949 	struct ice_fltr_info *new_fltr, *cur_fltr;
1950 	struct ice_fltr_mgmt_list_entry *m_entry;
1951 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
1952 	enum ice_status status = ICE_SUCCESS;
1953 
1954 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
1955 		return ICE_ERR_PARAM;
1956 
1957 	/* Load the hw_vsi_id only if the fwd action is fwd to VSI */
1958 	if (f_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI)
1959 		f_entry->fltr_info.fwd_id.hw_vsi_id =
1960 			ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
1961 
1962 	rule_lock = &recp_list->filt_rule_lock;
1963 
1964 	ice_acquire_lock(rule_lock);
1965 	new_fltr = &f_entry->fltr_info;
1966 	if (new_fltr->flag & ICE_FLTR_RX)
1967 		new_fltr->src = lport;
1968 	else if (new_fltr->flag & ICE_FLTR_TX)
1969 		new_fltr->src =
1970 			ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
1971 
1972 	m_entry = ice_find_rule_entry(&recp_list->filt_rules, new_fltr);
1973 	if (!m_entry) {
1974 		status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry);
1975 		goto exit_add_rule_internal;
1976 	}
1977 
1978 	cur_fltr = &m_entry->fltr_info;
1979 	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
1980 
1981 exit_add_rule_internal:
1982 	ice_release_lock(rule_lock);
1983 	return status;
1984 }
1985 
1986 /**
1987  * ice_remove_vsi_list_rule
1988  * @hw: pointer to the hardware structure
1989  * @vsi_list_id: VSI list ID generated as part of allocate resource
1990  * @lkup_type: switch rule filter lookup type
1991  *
1992  * The VSI list should be emptied before this function is called to remove the
1993  * VSI list.
1994  */
1995 static enum ice_status
1996 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
1997 			 enum ice_sw_lkup_type lkup_type)
1998 {
1999 	/* Free the vsi_list resource that we allocated. It is assumed that the
2000 	 * list is empty at this point.
2001 	 */
2002 	return ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
2003 					    ice_aqc_opc_free_res);
2004 }
2005 
2006 /**
2007  * ice_rem_update_vsi_list
2008  * @hw: pointer to the hardware structure
2009  * @vsi_handle: VSI handle of the VSI to remove
2010  * @fm_list: filter management entry for which the VSI list management needs to
2011  *	     be done
2012  */
2013 static enum ice_status
2014 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
2015 			struct ice_fltr_mgmt_list_entry *fm_list)
2016 {
2017 	enum ice_sw_lkup_type lkup_type;
2018 	enum ice_status status = ICE_SUCCESS;
2019 	u16 vsi_list_id;
2020 
2021 	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
2022 	    fm_list->vsi_count == 0)
2023 		return ICE_ERR_PARAM;
2024 
2025 	/* A rule with the VSI being removed does not exist */
2026 	if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle))
2027 		return ICE_ERR_DOES_NOT_EXIST;
2028 
2029 	lkup_type = fm_list->fltr_info.lkup_type;
2030 	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
2031 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
2032 					  ice_aqc_opc_update_sw_rules,
2033 					  lkup_type);
2034 	if (status)
2035 		return status;
2036 
2037 	fm_list->vsi_count--;
2038 	ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
2039 
2040 	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
2041 		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
2042 		struct ice_vsi_list_map_info *vsi_list_info =
2043 			fm_list->vsi_list_info;
2044 		u16 rem_vsi_handle;
2045 
2046 		rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map,
2047 						    ICE_MAX_VSI);
2048 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
2049 			return ICE_ERR_OUT_OF_RANGE;
2050 
2051 		/* Make sure VSI list is empty before removing it below */
2052 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
2053 						  vsi_list_id, true,
2054 						  ice_aqc_opc_update_sw_rules,
2055 						  lkup_type);
2056 		if (status)
2057 			return status;
2058 
2059 		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
2060 		tmp_fltr_info.fwd_id.hw_vsi_id =
2061 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
2062 		tmp_fltr_info.vsi_handle = rem_vsi_handle;
2063 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
2064 		if (status) {
2065 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
2066 				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
2067 			return status;
2068 		}
2069 
2070 		fm_list->fltr_info = tmp_fltr_info;
2071 	}
2072 
2073 	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
2074 	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
2075 		struct ice_vsi_list_map_info *vsi_list_info =
2076 			fm_list->vsi_list_info;
2077 
2078 		/* Remove the VSI list since it is no longer used */
2079 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
2080 		if (status) {
2081 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
2082 				  vsi_list_id, status);
2083 			return status;
2084 		}
2085 
2086 		LIST_DEL(&vsi_list_info->list_entry);
2087 		ice_free(hw, vsi_list_info);
2088 		fm_list->vsi_list_info = NULL;
2089 	}
2090 
2091 	return status;
2092 }
2093 
2094 /**
2095  * ice_remove_rule_internal - Remove a filter rule of a given type
2096  *
2097  * @hw: pointer to the hardware structure
2098  * @recp_list: recipe list for which the rule needs to removed
2099  * @f_entry: rule entry containing filter information
2100  */
2101 static enum ice_status
2102 ice_remove_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
2103 			 struct ice_fltr_list_entry *f_entry)
2104 {
2105 	struct ice_fltr_mgmt_list_entry *list_elem;
2106 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2107 	enum ice_status status = ICE_SUCCESS;
2108 	bool remove_rule = false;
2109 	u16 vsi_handle;
2110 
2111 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2112 		return ICE_ERR_PARAM;
2113 	f_entry->fltr_info.fwd_id.hw_vsi_id =
2114 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2115 
2116 	rule_lock = &recp_list->filt_rule_lock;
2117 	ice_acquire_lock(rule_lock);
2118 	list_elem = ice_find_rule_entry(&recp_list->filt_rules,
2119 					&f_entry->fltr_info);
2120 	if (!list_elem) {
2121 		status = ICE_ERR_DOES_NOT_EXIST;
2122 		goto exit;
2123 	}
2124 
2125 	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
2126 		remove_rule = true;
2127 	} else if (!list_elem->vsi_list_info) {
2128 		status = ICE_ERR_DOES_NOT_EXIST;
2129 		goto exit;
2130 	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
2131 		/* a ref_cnt > 1 indicates that the vsi_list is being
2132 		 * shared by multiple rules. Decrement the ref_cnt and
2133 		 * remove this rule, but do not modify the list, as it
2134 		 * is in-use by other rules.
2135 		 */
2136 		list_elem->vsi_list_info->ref_cnt--;
2137 		remove_rule = true;
2138 	} else {
2139 		/* a ref_cnt of 1 indicates the vsi_list is only used
2140 		 * by one rule. However, the original removal request is only
2141 		 * for a single VSI. Update the vsi_list first, and only
2142 		 * remove the rule if there are no further VSIs in this list.
2143 		 */
2144 		vsi_handle = f_entry->fltr_info.vsi_handle;
2145 		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
2146 		if (status)
2147 			goto exit;
2148 		/* if VSI count goes to zero after updating the VSI list */
2149 		if (list_elem->vsi_count == 0)
2150 			remove_rule = true;
2151 	}
2152 
2153 	if (remove_rule) {
2154 		/* Remove the lookup rule */
2155 		struct ice_aqc_sw_rules_elem *s_rule;
2156 
2157 		s_rule = (struct ice_aqc_sw_rules_elem *)
2158 			ice_malloc(hw, ICE_SW_RULE_RX_TX_NO_HDR_SIZE);
2159 		if (!s_rule) {
2160 			status = ICE_ERR_NO_MEMORY;
2161 			goto exit;
2162 		}
2163 
2164 		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
2165 				 ice_aqc_opc_remove_sw_rules);
2166 
2167 		status = ice_aq_sw_rules(hw, s_rule,
2168 					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1,
2169 					 ice_aqc_opc_remove_sw_rules, NULL);
2170 
2171 		/* Remove a book keeping from the list */
2172 		ice_free(hw, s_rule);
2173 
2174 		if (status)
2175 			goto exit;
2176 
2177 		LIST_DEL(&list_elem->list_entry);
2178 		ice_free(hw, list_elem);
2179 	}
2180 exit:
2181 	ice_release_lock(rule_lock);
2182 	return status;
2183 }
2184 
2185 /**
2186  * ice_aq_get_res_alloc - get allocated resources
2187  * @hw: pointer to the HW struct
2188  * @num_entries: pointer to u16 to store the number of resource entries returned
2189  * @buf: pointer to buffer
2190  * @buf_size: size of buf
2191  * @cd: pointer to command details structure or NULL
2192  *
2193  * The caller-supplied buffer must be large enough to store the resource
2194  * information for all resource types. Each resource type is an
2195  * ice_aqc_get_res_resp_elem structure.
2196  */
2197 enum ice_status
2198 ice_aq_get_res_alloc(struct ice_hw *hw, u16 *num_entries,
2199 		     struct ice_aqc_get_res_resp_elem *buf, u16 buf_size,
2200 		     struct ice_sq_cd *cd)
2201 {
2202 	struct ice_aqc_get_res_alloc *resp;
2203 	enum ice_status status;
2204 	struct ice_aq_desc desc;
2205 
2206 	if (!buf)
2207 		return ICE_ERR_BAD_PTR;
2208 
2209 	if (buf_size < ICE_AQ_GET_RES_ALLOC_BUF_LEN)
2210 		return ICE_ERR_INVAL_SIZE;
2211 
2212 	resp = &desc.params.get_res;
2213 
2214 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_res_alloc);
2215 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2216 
2217 	if (!status && num_entries)
2218 		*num_entries = LE16_TO_CPU(resp->resp_elem_num);
2219 
2220 	return status;
2221 }
2222 
2223 /**
2224  * ice_aq_get_res_descs - get allocated resource descriptors
2225  * @hw: pointer to the hardware structure
2226  * @num_entries: number of resource entries in buffer
2227  * @buf: structure to hold response data buffer
2228  * @buf_size: size of buffer
2229  * @res_type: resource type
2230  * @res_shared: is resource shared
2231  * @desc_id: input - first desc ID to start; output - next desc ID
2232  * @cd: pointer to command details structure or NULL
2233  */
2234 enum ice_status
2235 ice_aq_get_res_descs(struct ice_hw *hw, u16 num_entries,
2236 		     struct ice_aqc_res_elem *buf, u16 buf_size, u16 res_type,
2237 		     bool res_shared, u16 *desc_id, struct ice_sq_cd *cd)
2238 {
2239 	struct ice_aqc_get_allocd_res_desc *cmd;
2240 	struct ice_aq_desc desc;
2241 	enum ice_status status;
2242 
2243 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2244 
2245 	cmd = &desc.params.get_res_desc;
2246 
2247 	if (!buf)
2248 		return ICE_ERR_PARAM;
2249 
2250 	if (buf_size != (num_entries * sizeof(*buf)))
2251 		return ICE_ERR_PARAM;
2252 
2253 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_allocd_res_desc);
2254 
2255 	cmd->ops.cmd.res = CPU_TO_LE16(((res_type << ICE_AQC_RES_TYPE_S) &
2256 					 ICE_AQC_RES_TYPE_M) | (res_shared ?
2257 					ICE_AQC_RES_TYPE_FLAG_SHARED : 0));
2258 	cmd->ops.cmd.first_desc = CPU_TO_LE16(*desc_id);
2259 
2260 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2261 	if (!status)
2262 		*desc_id = LE16_TO_CPU(cmd->ops.resp.next_desc);
2263 
2264 	return status;
2265 }
2266 
2267 /**
2268  * ice_add_mac_rule - Add a MAC address based filter rule
2269  * @hw: pointer to the hardware structure
2270  * @m_list: list of MAC addresses and forwarding information
2271  * @sw: pointer to switch info struct for which function add rule
2272  * @lport: logic port number on which function add rule
2273  *
2274  * IMPORTANT: When the ucast_shared flag is set to false and m_list has
2275  * multiple unicast addresses, the function assumes that all the
2276  * addresses are unique in a given add_mac call. It doesn't
2277  * check for duplicates in this case, removing duplicates from a given
2278  * list should be taken care of in the caller of this function.
2279  */
2280 static enum ice_status
2281 ice_add_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list,
2282 		 struct ice_switch_info *sw, u8 lport)
2283 {
2284 	struct ice_sw_recipe *recp_list = &sw->recp_list[ICE_SW_LKUP_MAC];
2285 	struct ice_aqc_sw_rules_elem *s_rule, *r_iter;
2286 	struct ice_fltr_list_entry *m_list_itr;
2287 	struct LIST_HEAD_TYPE *rule_head;
2288 	u16 total_elem_left, s_rule_size;
2289 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2290 	enum ice_status status = ICE_SUCCESS;
2291 	u16 num_unicast = 0;
2292 	u8 elem_sent;
2293 
2294 	s_rule = NULL;
2295 	rule_lock = &recp_list->filt_rule_lock;
2296 	rule_head = &recp_list->filt_rules;
2297 
2298 	LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2299 			    list_entry) {
2300 		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
2301 		u16 vsi_handle;
2302 		u16 hw_vsi_id;
2303 
2304 		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
2305 		vsi_handle = m_list_itr->fltr_info.vsi_handle;
2306 		if (!ice_is_vsi_valid(hw, vsi_handle))
2307 			return ICE_ERR_PARAM;
2308 		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
2309 		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
2310 		/* update the src in case it is VSI num */
2311 		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
2312 			return ICE_ERR_PARAM;
2313 		m_list_itr->fltr_info.src = hw_vsi_id;
2314 		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
2315 		    IS_ZERO_ETHER_ADDR(add))
2316 			return ICE_ERR_PARAM;
2317 		if (IS_UNICAST_ETHER_ADDR(add) && !hw->ucast_shared) {
2318 			/* Don't overwrite the unicast address */
2319 			ice_acquire_lock(rule_lock);
2320 			if (ice_find_rule_entry(rule_head,
2321 						&m_list_itr->fltr_info)) {
2322 				ice_release_lock(rule_lock);
2323 				return ICE_ERR_ALREADY_EXISTS;
2324 			}
2325 			ice_release_lock(rule_lock);
2326 			num_unicast++;
2327 		} else if (IS_MULTICAST_ETHER_ADDR(add) ||
2328 			   (IS_UNICAST_ETHER_ADDR(add) && hw->ucast_shared)) {
2329 			m_list_itr->status =
2330 				ice_add_rule_internal(hw, recp_list, lport,
2331 						      m_list_itr);
2332 			if (m_list_itr->status)
2333 				return m_list_itr->status;
2334 		}
2335 	}
2336 
2337 	ice_acquire_lock(rule_lock);
2338 	/* Exit if no suitable entries were found for adding bulk switch rule */
2339 	if (!num_unicast) {
2340 		status = ICE_SUCCESS;
2341 		goto ice_add_mac_exit;
2342 	}
2343 
2344 	/* Allocate switch rule buffer for the bulk update for unicast */
2345 	s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
2346 	s_rule = (struct ice_aqc_sw_rules_elem *)
2347 		ice_calloc(hw, num_unicast, s_rule_size);
2348 	if (!s_rule) {
2349 		status = ICE_ERR_NO_MEMORY;
2350 		goto ice_add_mac_exit;
2351 	}
2352 
2353 	r_iter = s_rule;
2354 	LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2355 			    list_entry) {
2356 		struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
2357 		u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
2358 
2359 		if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
2360 			ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter,
2361 					 ice_aqc_opc_add_sw_rules);
2362 			r_iter = (struct ice_aqc_sw_rules_elem *)
2363 				((u8 *)r_iter + s_rule_size);
2364 		}
2365 	}
2366 
2367 	/* Call AQ bulk switch rule update for all unicast addresses */
2368 	r_iter = s_rule;
2369 	/* Call AQ switch rule in AQ_MAX chunk */
2370 	for (total_elem_left = num_unicast; total_elem_left > 0;
2371 	     total_elem_left -= elem_sent) {
2372 		struct ice_aqc_sw_rules_elem *entry = r_iter;
2373 
2374 		elem_sent = MIN_T(u8, total_elem_left,
2375 				  (ICE_AQ_MAX_BUF_LEN / s_rule_size));
2376 		status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size,
2377 					 elem_sent, ice_aqc_opc_add_sw_rules,
2378 					 NULL);
2379 		if (status)
2380 			goto ice_add_mac_exit;
2381 		r_iter = (struct ice_aqc_sw_rules_elem *)
2382 			((u8 *)r_iter + (elem_sent * s_rule_size));
2383 	}
2384 
2385 	/* Fill up rule ID based on the value returned from FW */
2386 	r_iter = s_rule;
2387 	LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2388 			    list_entry) {
2389 		struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
2390 		u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
2391 		struct ice_fltr_mgmt_list_entry *fm_entry;
2392 
2393 		if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
2394 			f_info->fltr_rule_id =
2395 				LE16_TO_CPU(r_iter->pdata.lkup_tx_rx.index);
2396 			f_info->fltr_act = ICE_FWD_TO_VSI;
2397 			/* Create an entry to track this MAC address */
2398 			fm_entry = (struct ice_fltr_mgmt_list_entry *)
2399 				ice_malloc(hw, sizeof(*fm_entry));
2400 			if (!fm_entry) {
2401 				status = ICE_ERR_NO_MEMORY;
2402 				goto ice_add_mac_exit;
2403 			}
2404 			fm_entry->fltr_info = *f_info;
2405 			fm_entry->vsi_count = 1;
2406 			/* The book keeping entries will get removed when
2407 			 * base driver calls remove filter AQ command
2408 			 */
2409 
2410 			LIST_ADD(&fm_entry->list_entry, rule_head);
2411 			r_iter = (struct ice_aqc_sw_rules_elem *)
2412 				((u8 *)r_iter + s_rule_size);
2413 		}
2414 	}
2415 
2416 ice_add_mac_exit:
2417 	ice_release_lock(rule_lock);
2418 	if (s_rule)
2419 		ice_free(hw, s_rule);
2420 	return status;
2421 }
2422 
2423 /**
2424  * ice_add_mac - Add a MAC address based filter rule
2425  * @hw: pointer to the hardware structure
2426  * @m_list: list of MAC addresses and forwarding information
2427  *
2428  * Function add MAC rule for logical port from HW struct
2429  */
2430 enum ice_status ice_add_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
2431 {
2432 	if (!m_list || !hw)
2433 		return ICE_ERR_PARAM;
2434 
2435 	return ice_add_mac_rule(hw, m_list, hw->switch_info,
2436 				hw->port_info->lport);
2437 }
2438 
2439 /**
2440  * ice_add_vlan_internal - Add one VLAN based filter rule
2441  * @hw: pointer to the hardware structure
2442  * @recp_list: recipe list for which rule has to be added
2443  * @f_entry: filter entry containing one VLAN information
2444  */
2445 static enum ice_status
2446 ice_add_vlan_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
2447 		      struct ice_fltr_list_entry *f_entry)
2448 {
2449 	struct ice_fltr_mgmt_list_entry *v_list_itr;
2450 	struct ice_fltr_info *new_fltr, *cur_fltr;
2451 	enum ice_sw_lkup_type lkup_type;
2452 	u16 vsi_list_id = 0, vsi_handle;
2453 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2454 	enum ice_status status = ICE_SUCCESS;
2455 
2456 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2457 		return ICE_ERR_PARAM;
2458 
2459 	f_entry->fltr_info.fwd_id.hw_vsi_id =
2460 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2461 	new_fltr = &f_entry->fltr_info;
2462 
2463 	/* VLAN ID should only be 12 bits */
2464 	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
2465 		return ICE_ERR_PARAM;
2466 
2467 	if (new_fltr->src_id != ICE_SRC_ID_VSI)
2468 		return ICE_ERR_PARAM;
2469 
2470 	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
2471 	lkup_type = new_fltr->lkup_type;
2472 	vsi_handle = new_fltr->vsi_handle;
2473 	rule_lock = &recp_list->filt_rule_lock;
2474 	ice_acquire_lock(rule_lock);
2475 	v_list_itr = ice_find_rule_entry(&recp_list->filt_rules, new_fltr);
2476 	if (!v_list_itr) {
2477 		struct ice_vsi_list_map_info *map_info = NULL;
2478 
2479 		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
2480 			/* All VLAN pruning rules use a VSI list. Check if
2481 			 * there is already a VSI list containing VSI that we
2482 			 * want to add. If found, use the same vsi_list_id for
2483 			 * this new VLAN rule or else create a new list.
2484 			 */
2485 			map_info = ice_find_vsi_list_entry(recp_list,
2486 							   vsi_handle,
2487 							   &vsi_list_id);
2488 			if (!map_info) {
2489 				status = ice_create_vsi_list_rule(hw,
2490 								  &vsi_handle,
2491 								  1,
2492 								  &vsi_list_id,
2493 								  lkup_type);
2494 				if (status)
2495 					goto exit;
2496 			}
2497 			/* Convert the action to forwarding to a VSI list. */
2498 			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
2499 			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
2500 		}
2501 
2502 		status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry);
2503 		if (!status) {
2504 			v_list_itr = ice_find_rule_entry(&recp_list->filt_rules,
2505 							 new_fltr);
2506 			if (!v_list_itr) {
2507 				status = ICE_ERR_DOES_NOT_EXIST;
2508 				goto exit;
2509 			}
2510 			/* reuse VSI list for new rule and increment ref_cnt */
2511 			if (map_info) {
2512 				v_list_itr->vsi_list_info = map_info;
2513 				map_info->ref_cnt++;
2514 			} else {
2515 				v_list_itr->vsi_list_info =
2516 					ice_create_vsi_list_map(hw, &vsi_handle,
2517 								1, vsi_list_id);
2518 			}
2519 		}
2520 	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
2521 		/* Update existing VSI list to add new VSI ID only if it used
2522 		 * by one VLAN rule.
2523 		 */
2524 		cur_fltr = &v_list_itr->fltr_info;
2525 		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
2526 						 new_fltr);
2527 	} else {
2528 		/* If VLAN rule exists and VSI list being used by this rule is
2529 		 * referenced by more than 1 VLAN rule. Then create a new VSI
2530 		 * list appending previous VSI with new VSI and update existing
2531 		 * VLAN rule to point to new VSI list ID
2532 		 */
2533 		struct ice_fltr_info tmp_fltr;
2534 		u16 vsi_handle_arr[2];
2535 		u16 cur_handle;
2536 
2537 		/* Current implementation only supports reusing VSI list with
2538 		 * one VSI count. We should never hit below condition
2539 		 */
2540 		if (v_list_itr->vsi_count > 1 &&
2541 		    v_list_itr->vsi_list_info->ref_cnt > 1) {
2542 			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
2543 			status = ICE_ERR_CFG;
2544 			goto exit;
2545 		}
2546 
2547 		cur_handle =
2548 			ice_find_first_bit(v_list_itr->vsi_list_info->vsi_map,
2549 					   ICE_MAX_VSI);
2550 
2551 		/* A rule already exists with the new VSI being added */
2552 		if (cur_handle == vsi_handle) {
2553 			status = ICE_ERR_ALREADY_EXISTS;
2554 			goto exit;
2555 		}
2556 
2557 		vsi_handle_arr[0] = cur_handle;
2558 		vsi_handle_arr[1] = vsi_handle;
2559 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
2560 						  &vsi_list_id, lkup_type);
2561 		if (status)
2562 			goto exit;
2563 
2564 		tmp_fltr = v_list_itr->fltr_info;
2565 		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
2566 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
2567 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
2568 		/* Update the previous switch rule to a new VSI list which
2569 		 * includes current VSI that is requested
2570 		 */
2571 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
2572 		if (status)
2573 			goto exit;
2574 
2575 		/* before overriding VSI list map info. decrement ref_cnt of
2576 		 * previous VSI list
2577 		 */
2578 		v_list_itr->vsi_list_info->ref_cnt--;
2579 
2580 		/* now update to newly created list */
2581 		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
2582 		v_list_itr->vsi_list_info =
2583 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
2584 						vsi_list_id);
2585 		v_list_itr->vsi_count++;
2586 	}
2587 
2588 exit:
2589 	ice_release_lock(rule_lock);
2590 	return status;
2591 }
2592 
2593 /**
2594  * ice_add_vlan_rule - Add VLAN based filter rule
2595  * @hw: pointer to the hardware structure
2596  * @v_list: list of VLAN entries and forwarding information
2597  * @sw: pointer to switch info struct for which function add rule
2598  */
2599 static enum ice_status
2600 ice_add_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list,
2601 		  struct ice_switch_info *sw)
2602 {
2603 	struct ice_fltr_list_entry *v_list_itr;
2604 	struct ice_sw_recipe *recp_list;
2605 
2606 	recp_list = &sw->recp_list[ICE_SW_LKUP_VLAN];
2607 	LIST_FOR_EACH_ENTRY(v_list_itr, v_list, ice_fltr_list_entry,
2608 			    list_entry) {
2609 		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
2610 			return ICE_ERR_PARAM;
2611 		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
2612 		v_list_itr->status = ice_add_vlan_internal(hw, recp_list,
2613 							   v_list_itr);
2614 		if (v_list_itr->status)
2615 			return v_list_itr->status;
2616 	}
2617 	return ICE_SUCCESS;
2618 }
2619 
2620 /**
2621  * ice_add_vlan - Add a VLAN based filter rule
2622  * @hw: pointer to the hardware structure
2623  * @v_list: list of VLAN and forwarding information
2624  *
2625  * Function add VLAN rule for logical port from HW struct
2626  */
2627 enum ice_status ice_add_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
2628 {
2629 	if (!v_list || !hw)
2630 		return ICE_ERR_PARAM;
2631 
2632 	return ice_add_vlan_rule(hw, v_list, hw->switch_info);
2633 }
2634 
2635 /**
2636  * ice_add_eth_mac_rule - Add ethertype and MAC based filter rule
2637  * @hw: pointer to the hardware structure
2638  * @em_list: list of ether type MAC filter, MAC is optional
2639  * @sw: pointer to switch info struct for which function add rule
2640  * @lport: logic port number on which function add rule
2641  *
2642  * This function requires the caller to populate the entries in
2643  * the filter list with the necessary fields (including flags to
2644  * indicate Tx or Rx rules).
2645  */
2646 static enum ice_status
2647 ice_add_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list,
2648 		     struct ice_switch_info *sw, u8 lport)
2649 {
2650 	struct ice_fltr_list_entry *em_list_itr;
2651 
2652 	LIST_FOR_EACH_ENTRY(em_list_itr, em_list, ice_fltr_list_entry,
2653 			    list_entry) {
2654 		struct ice_sw_recipe *recp_list;
2655 		enum ice_sw_lkup_type l_type;
2656 
2657 		l_type = em_list_itr->fltr_info.lkup_type;
2658 		recp_list = &sw->recp_list[l_type];
2659 
2660 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
2661 		    l_type != ICE_SW_LKUP_ETHERTYPE)
2662 			return ICE_ERR_PARAM;
2663 
2664 		em_list_itr->status = ice_add_rule_internal(hw, recp_list,
2665 							    lport,
2666 							    em_list_itr);
2667 		if (em_list_itr->status)
2668 			return em_list_itr->status;
2669 	}
2670 	return ICE_SUCCESS;
2671 }
2672 
2673 /**
2674  * ice_add_eth_mac - Add a ethertype based filter rule
2675  * @hw: pointer to the hardware structure
2676  * @em_list: list of ethertype and forwarding information
2677  *
2678  * Function add ethertype rule for logical port from HW struct
2679  */
2680 enum ice_status
2681 ice_add_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
2682 {
2683 	if (!em_list || !hw)
2684 		return ICE_ERR_PARAM;
2685 
2686 	return ice_add_eth_mac_rule(hw, em_list, hw->switch_info,
2687 				    hw->port_info->lport);
2688 }
2689 
2690 /**
2691  * ice_remove_eth_mac_rule - Remove an ethertype (or MAC) based filter rule
2692  * @hw: pointer to the hardware structure
2693  * @em_list: list of ethertype or ethertype MAC entries
2694  * @sw: pointer to switch info struct for which function add rule
2695  */
2696 static enum ice_status
2697 ice_remove_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list,
2698 			struct ice_switch_info *sw)
2699 {
2700 	struct ice_fltr_list_entry *em_list_itr, *tmp;
2701 
2702 	LIST_FOR_EACH_ENTRY_SAFE(em_list_itr, tmp, em_list, ice_fltr_list_entry,
2703 				 list_entry) {
2704 		struct ice_sw_recipe *recp_list;
2705 		enum ice_sw_lkup_type l_type;
2706 
2707 		l_type = em_list_itr->fltr_info.lkup_type;
2708 
2709 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
2710 		    l_type != ICE_SW_LKUP_ETHERTYPE)
2711 			return ICE_ERR_PARAM;
2712 
2713 		recp_list = &sw->recp_list[l_type];
2714 		em_list_itr->status = ice_remove_rule_internal(hw, recp_list,
2715 							       em_list_itr);
2716 		if (em_list_itr->status)
2717 			return em_list_itr->status;
2718 	}
2719 	return ICE_SUCCESS;
2720 }
2721 
2722 /**
2723  * ice_remove_eth_mac - remove a ethertype based filter rule
2724  * @hw: pointer to the hardware structure
2725  * @em_list: list of ethertype and forwarding information
2726  *
2727  */
2728 enum ice_status
2729 ice_remove_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
2730 {
2731 	if (!em_list || !hw)
2732 		return ICE_ERR_PARAM;
2733 
2734 	return ice_remove_eth_mac_rule(hw, em_list, hw->switch_info);
2735 }
2736 
2737 /**
2738  * ice_rem_sw_rule_info
2739  * @hw: pointer to the hardware structure
2740  * @rule_head: pointer to the switch list structure that we want to delete
2741  */
2742 static void
2743 ice_rem_sw_rule_info(struct ice_hw *hw, struct LIST_HEAD_TYPE *rule_head)
2744 {
2745 	if (!LIST_EMPTY(rule_head)) {
2746 		struct ice_fltr_mgmt_list_entry *entry;
2747 		struct ice_fltr_mgmt_list_entry *tmp;
2748 
2749 		LIST_FOR_EACH_ENTRY_SAFE(entry, tmp, rule_head,
2750 					 ice_fltr_mgmt_list_entry, list_entry) {
2751 			LIST_DEL(&entry->list_entry);
2752 			ice_free(hw, entry);
2753 		}
2754 	}
2755 }
2756 
2757 /**
2758  * ice_rem_all_sw_rules_info
2759  * @hw: pointer to the hardware structure
2760  */
2761 void ice_rem_all_sw_rules_info(struct ice_hw *hw)
2762 {
2763 	struct ice_switch_info *sw = hw->switch_info;
2764 	u8 i;
2765 
2766 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
2767 		struct LIST_HEAD_TYPE *rule_head;
2768 
2769 		rule_head = &sw->recp_list[i].filt_rules;
2770 		if (!sw->recp_list[i].adv_rule)
2771 			ice_rem_sw_rule_info(hw, rule_head);
2772 	}
2773 }
2774 
2775 /**
2776  * ice_cfg_dflt_vsi - change state of VSI to set/clear default
2777  * @pi: pointer to the port_info structure
2778  * @vsi_handle: VSI handle to set as default
2779  * @set: true to add the above mentioned switch rule, false to remove it
2780  * @direction: ICE_FLTR_RX or ICE_FLTR_TX
2781  *
2782  * add filter rule to set/unset given VSI as default VSI for the switch
2783  * (represented by swid)
2784  */
2785 enum ice_status
2786 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
2787 		 u8 direction)
2788 {
2789 	struct ice_aqc_sw_rules_elem *s_rule;
2790 	struct ice_fltr_info f_info;
2791 	struct ice_hw *hw = pi->hw;
2792 	enum ice_adminq_opc opcode;
2793 	enum ice_status status;
2794 	u16 s_rule_size;
2795 	u16 hw_vsi_id;
2796 
2797 	if (!ice_is_vsi_valid(hw, vsi_handle))
2798 		return ICE_ERR_PARAM;
2799 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
2800 
2801 	s_rule_size = set ? ICE_SW_RULE_RX_TX_ETH_HDR_SIZE :
2802 		ICE_SW_RULE_RX_TX_NO_HDR_SIZE;
2803 
2804 	s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size);
2805 	if (!s_rule)
2806 		return ICE_ERR_NO_MEMORY;
2807 
2808 	ice_memset(&f_info, 0, sizeof(f_info), ICE_NONDMA_MEM);
2809 
2810 	f_info.lkup_type = ICE_SW_LKUP_DFLT;
2811 	f_info.flag = direction;
2812 	f_info.fltr_act = ICE_FWD_TO_VSI;
2813 	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
2814 
2815 	if (f_info.flag & ICE_FLTR_RX) {
2816 		f_info.src = pi->lport;
2817 		f_info.src_id = ICE_SRC_ID_LPORT;
2818 		if (!set)
2819 			f_info.fltr_rule_id =
2820 				pi->dflt_rx_vsi_rule_id;
2821 	} else if (f_info.flag & ICE_FLTR_TX) {
2822 		f_info.src_id = ICE_SRC_ID_VSI;
2823 		f_info.src = hw_vsi_id;
2824 		if (!set)
2825 			f_info.fltr_rule_id =
2826 				pi->dflt_tx_vsi_rule_id;
2827 	}
2828 
2829 	if (set)
2830 		opcode = ice_aqc_opc_add_sw_rules;
2831 	else
2832 		opcode = ice_aqc_opc_remove_sw_rules;
2833 
2834 	ice_fill_sw_rule(hw, &f_info, s_rule, opcode);
2835 
2836 	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opcode, NULL);
2837 	if (status || !(f_info.flag & ICE_FLTR_TX_RX))
2838 		goto out;
2839 	if (set) {
2840 		u16 index = LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
2841 
2842 		if (f_info.flag & ICE_FLTR_TX) {
2843 			pi->dflt_tx_vsi_num = hw_vsi_id;
2844 			pi->dflt_tx_vsi_rule_id = index;
2845 		} else if (f_info.flag & ICE_FLTR_RX) {
2846 			pi->dflt_rx_vsi_num = hw_vsi_id;
2847 			pi->dflt_rx_vsi_rule_id = index;
2848 		}
2849 	} else {
2850 		if (f_info.flag & ICE_FLTR_TX) {
2851 			pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL;
2852 			pi->dflt_tx_vsi_rule_id = ICE_INVAL_ACT;
2853 		} else if (f_info.flag & ICE_FLTR_RX) {
2854 			pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL;
2855 			pi->dflt_rx_vsi_rule_id = ICE_INVAL_ACT;
2856 		}
2857 	}
2858 
2859 out:
2860 	ice_free(hw, s_rule);
2861 	return status;
2862 }
2863 
2864 /**
2865  * ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry
2866  * @list_head: head of rule list
2867  * @f_info: rule information
2868  *
2869  * Helper function to search for a unicast rule entry - this is to be used
2870  * to remove unicast MAC filter that is not shared with other VSIs on the
2871  * PF switch.
2872  *
2873  * Returns pointer to entry storing the rule if found
2874  */
2875 static struct ice_fltr_mgmt_list_entry *
2876 ice_find_ucast_rule_entry(struct LIST_HEAD_TYPE *list_head,
2877 			  struct ice_fltr_info *f_info)
2878 {
2879 	struct ice_fltr_mgmt_list_entry *list_itr;
2880 
2881 	LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
2882 			    list_entry) {
2883 		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
2884 			    sizeof(f_info->l_data)) &&
2885 		    f_info->fwd_id.hw_vsi_id ==
2886 		    list_itr->fltr_info.fwd_id.hw_vsi_id &&
2887 		    f_info->flag == list_itr->fltr_info.flag)
2888 			return list_itr;
2889 	}
2890 	return NULL;
2891 }
2892 
2893 /**
2894  * ice_remove_mac_rule - remove a MAC based filter rule
2895  * @hw: pointer to the hardware structure
2896  * @m_list: list of MAC addresses and forwarding information
2897  * @recp_list: list from which function remove MAC address
2898  *
2899  * This function removes either a MAC filter rule or a specific VSI from a
2900  * VSI list for a multicast MAC address.
2901  *
2902  * Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by
2903  * ice_add_mac. Caller should be aware that this call will only work if all
2904  * the entries passed into m_list were added previously. It will not attempt to
2905  * do a partial remove of entries that were found.
2906  */
2907 static enum ice_status
2908 ice_remove_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list,
2909 		    struct ice_sw_recipe *recp_list)
2910 {
2911 	struct ice_fltr_list_entry *list_itr, *tmp;
2912 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2913 
2914 	if (!m_list)
2915 		return ICE_ERR_PARAM;
2916 
2917 	rule_lock = &recp_list->filt_rule_lock;
2918 	LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, m_list, ice_fltr_list_entry,
2919 				 list_entry) {
2920 		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
2921 		u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0];
2922 		u16 vsi_handle;
2923 
2924 		if (l_type != ICE_SW_LKUP_MAC)
2925 			return ICE_ERR_PARAM;
2926 
2927 		vsi_handle = list_itr->fltr_info.vsi_handle;
2928 		if (!ice_is_vsi_valid(hw, vsi_handle))
2929 			return ICE_ERR_PARAM;
2930 
2931 		list_itr->fltr_info.fwd_id.hw_vsi_id =
2932 					ice_get_hw_vsi_num(hw, vsi_handle);
2933 		if (IS_UNICAST_ETHER_ADDR(add) && !hw->ucast_shared) {
2934 			/* Don't remove the unicast address that belongs to
2935 			 * another VSI on the switch, since it is not being
2936 			 * shared...
2937 			 */
2938 			ice_acquire_lock(rule_lock);
2939 			if (!ice_find_ucast_rule_entry(&recp_list->filt_rules,
2940 						       &list_itr->fltr_info)) {
2941 				ice_release_lock(rule_lock);
2942 				return ICE_ERR_DOES_NOT_EXIST;
2943 			}
2944 			ice_release_lock(rule_lock);
2945 		}
2946 		list_itr->status = ice_remove_rule_internal(hw, recp_list,
2947 							    list_itr);
2948 		if (list_itr->status)
2949 			return list_itr->status;
2950 	}
2951 	return ICE_SUCCESS;
2952 }
2953 
2954 /**
2955  * ice_remove_mac - remove a MAC address based filter rule
2956  * @hw: pointer to the hardware structure
2957  * @m_list: list of MAC addresses and forwarding information
2958  *
2959  */
2960 enum ice_status ice_remove_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
2961 {
2962 	struct ice_sw_recipe *recp_list;
2963 
2964 	recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
2965 	return ice_remove_mac_rule(hw, m_list, recp_list);
2966 }
2967 
2968 /**
2969  * ice_remove_vlan_rule - Remove VLAN based filter rule
2970  * @hw: pointer to the hardware structure
2971  * @v_list: list of VLAN entries and forwarding information
2972  * @recp_list: list from which function remove VLAN
2973  */
2974 static enum ice_status
2975 ice_remove_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list,
2976 		     struct ice_sw_recipe *recp_list)
2977 {
2978 	struct ice_fltr_list_entry *v_list_itr, *tmp;
2979 
2980 	LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
2981 				 list_entry) {
2982 		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
2983 
2984 		if (l_type != ICE_SW_LKUP_VLAN)
2985 			return ICE_ERR_PARAM;
2986 		v_list_itr->status = ice_remove_rule_internal(hw, recp_list,
2987 							      v_list_itr);
2988 		if (v_list_itr->status)
2989 			return v_list_itr->status;
2990 	}
2991 	return ICE_SUCCESS;
2992 }
2993 
2994 /**
2995  * ice_remove_vlan - remove a VLAN address based filter rule
2996  * @hw: pointer to the hardware structure
2997  * @v_list: list of VLAN and forwarding information
2998  *
2999  */
3000 enum ice_status
3001 ice_remove_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
3002 {
3003 	struct ice_sw_recipe *recp_list;
3004 
3005 	if (!v_list || !hw)
3006 		return ICE_ERR_PARAM;
3007 
3008 	recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_VLAN];
3009 	return ice_remove_vlan_rule(hw, v_list, recp_list);
3010 }
3011 
3012 /**
3013  * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3014  * @fm_entry: filter entry to inspect
3015  * @vsi_handle: VSI handle to compare with filter info
3016  */
3017 static bool
3018 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3019 {
3020 	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3021 		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3022 		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3023 		 fm_entry->vsi_list_info &&
3024 		 (ice_is_bit_set(fm_entry->vsi_list_info->vsi_map,
3025 				 vsi_handle))));
3026 }
3027 
3028 /**
3029  * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3030  * @hw: pointer to the hardware structure
3031  * @vsi_handle: VSI handle to remove filters from
3032  * @vsi_list_head: pointer to the list to add entry to
3033  * @fi: pointer to fltr_info of filter entry to copy & add
3034  *
3035  * Helper function, used when creating a list of filters to remove from
3036  * a specific VSI. The entry added to vsi_list_head is a COPY of the
3037  * original filter entry, with the exception of fltr_info.fltr_act and
3038  * fltr_info.fwd_id fields. These are set such that later logic can
3039  * extract which VSI to remove the fltr from, and pass on that information.
3040  */
3041 static enum ice_status
3042 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3043 			       struct LIST_HEAD_TYPE *vsi_list_head,
3044 			       struct ice_fltr_info *fi)
3045 {
3046 	struct ice_fltr_list_entry *tmp;
3047 
3048 	/* this memory is freed up in the caller function
3049 	 * once filters for this VSI are removed
3050 	 */
3051 	tmp = (struct ice_fltr_list_entry *)ice_malloc(hw, sizeof(*tmp));
3052 	if (!tmp)
3053 		return ICE_ERR_NO_MEMORY;
3054 
3055 	tmp->fltr_info = *fi;
3056 
3057 	/* Overwrite these fields to indicate which VSI to remove filter from,
3058 	 * so find and remove logic can extract the information from the
3059 	 * list entries. Note that original entries will still have proper
3060 	 * values.
3061 	 */
3062 	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3063 	tmp->fltr_info.vsi_handle = vsi_handle;
3064 	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3065 
3066 	LIST_ADD(&tmp->list_entry, vsi_list_head);
3067 
3068 	return ICE_SUCCESS;
3069 }
3070 
3071 /**
3072  * ice_add_to_vsi_fltr_list - Add VSI filters to the list
3073  * @hw: pointer to the hardware structure
3074  * @vsi_handle: VSI handle to remove filters from
3075  * @lkup_list_head: pointer to the list that has certain lookup type filters
3076  * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
3077  *
3078  * Locates all filters in lkup_list_head that are used by the given VSI,
3079  * and adds COPIES of those entries to vsi_list_head (intended to be used
3080  * to remove the listed filters).
3081  * Note that this means all entries in vsi_list_head must be explicitly
3082  * deallocated by the caller when done with list.
3083  */
3084 static enum ice_status
3085 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3086 			 struct LIST_HEAD_TYPE *lkup_list_head,
3087 			 struct LIST_HEAD_TYPE *vsi_list_head)
3088 {
3089 	struct ice_fltr_mgmt_list_entry *fm_entry;
3090 	enum ice_status status = ICE_SUCCESS;
3091 
3092 	/* check to make sure VSI ID is valid and within boundary */
3093 	if (!ice_is_vsi_valid(hw, vsi_handle))
3094 		return ICE_ERR_PARAM;
3095 
3096 	LIST_FOR_EACH_ENTRY(fm_entry, lkup_list_head,
3097 			    ice_fltr_mgmt_list_entry, list_entry) {
3098 		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
3099 			continue;
3100 
3101 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
3102 							vsi_list_head,
3103 							&fm_entry->fltr_info);
3104 		if (status)
3105 			return status;
3106 	}
3107 	return status;
3108 }
3109 
3110 /**
3111  * ice_determine_promisc_mask
3112  * @fi: filter info to parse
3113  *
3114  * Helper function to determine which ICE_PROMISC_ mask corresponds
3115  * to given filter into.
3116  */
3117 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
3118 {
3119 	u16 vid = fi->l_data.mac_vlan.vlan_id;
3120 	u8 *macaddr = fi->l_data.mac.mac_addr;
3121 	bool is_tx_fltr = false;
3122 	u8 promisc_mask = 0;
3123 
3124 	if (fi->flag == ICE_FLTR_TX)
3125 		is_tx_fltr = true;
3126 
3127 	if (IS_BROADCAST_ETHER_ADDR(macaddr))
3128 		promisc_mask |= is_tx_fltr ?
3129 			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
3130 	else if (IS_MULTICAST_ETHER_ADDR(macaddr))
3131 		promisc_mask |= is_tx_fltr ?
3132 			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
3133 	else if (IS_UNICAST_ETHER_ADDR(macaddr))
3134 		promisc_mask |= is_tx_fltr ?
3135 			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
3136 	if (vid)
3137 		promisc_mask |= is_tx_fltr ?
3138 			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
3139 
3140 	return promisc_mask;
3141 }
3142 
3143 /**
3144  * _ice_get_vsi_promisc - get promiscuous mode of given VSI
3145  * @hw: pointer to the hardware structure
3146  * @vsi_handle: VSI handle to retrieve info from
3147  * @promisc_mask: pointer to mask to be filled in
3148  * @vid: VLAN ID of promisc VLAN VSI
3149  * @sw: pointer to switch info struct for which function add rule
3150  */
3151 static enum ice_status
3152 _ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
3153 		     u16 *vid, struct ice_switch_info *sw)
3154 {
3155 	struct ice_fltr_mgmt_list_entry *itr;
3156 	struct LIST_HEAD_TYPE *rule_head;
3157 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
3158 
3159 	if (!ice_is_vsi_valid(hw, vsi_handle))
3160 		return ICE_ERR_PARAM;
3161 
3162 	*vid = 0;
3163 	*promisc_mask = 0;
3164 	rule_head = &sw->recp_list[ICE_SW_LKUP_PROMISC].filt_rules;
3165 	rule_lock = &sw->recp_list[ICE_SW_LKUP_PROMISC].filt_rule_lock;
3166 
3167 	ice_acquire_lock(rule_lock);
3168 	LIST_FOR_EACH_ENTRY(itr, rule_head,
3169 			    ice_fltr_mgmt_list_entry, list_entry) {
3170 		/* Continue if this filter doesn't apply to this VSI or the
3171 		 * VSI ID is not in the VSI map for this filter
3172 		 */
3173 		if (!ice_vsi_uses_fltr(itr, vsi_handle))
3174 			continue;
3175 
3176 		*promisc_mask |= ice_determine_promisc_mask(&itr->fltr_info);
3177 	}
3178 	ice_release_lock(rule_lock);
3179 
3180 	return ICE_SUCCESS;
3181 }
3182 
3183 /**
3184  * ice_get_vsi_promisc - get promiscuous mode of given VSI
3185  * @hw: pointer to the hardware structure
3186  * @vsi_handle: VSI handle to retrieve info from
3187  * @promisc_mask: pointer to mask to be filled in
3188  * @vid: VLAN ID of promisc VLAN VSI
3189  */
3190 enum ice_status
3191 ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
3192 		    u16 *vid)
3193 {
3194 	return _ice_get_vsi_promisc(hw, vsi_handle, promisc_mask,
3195 				    vid, hw->switch_info);
3196 }
3197 
3198 /**
3199  * ice_get_vsi_vlan_promisc - get VLAN promiscuous mode of given VSI
3200  * @hw: pointer to the hardware structure
3201  * @vsi_handle: VSI handle to retrieve info from
3202  * @promisc_mask: pointer to mask to be filled in
3203  * @vid: VLAN ID of promisc VLAN VSI
3204  * @sw: pointer to switch info struct for which function add rule
3205  */
3206 static enum ice_status
3207 _ice_get_vsi_vlan_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
3208 			  u16 *vid, struct ice_switch_info *sw)
3209 {
3210 	struct ice_fltr_mgmt_list_entry *itr;
3211 	struct LIST_HEAD_TYPE *rule_head;
3212 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
3213 
3214 	if (!ice_is_vsi_valid(hw, vsi_handle))
3215 		return ICE_ERR_PARAM;
3216 
3217 	*vid = 0;
3218 	*promisc_mask = 0;
3219 	rule_head = &sw->recp_list[ICE_SW_LKUP_PROMISC_VLAN].filt_rules;
3220 	rule_lock = &sw->recp_list[ICE_SW_LKUP_PROMISC_VLAN].filt_rule_lock;
3221 
3222 	ice_acquire_lock(rule_lock);
3223 	LIST_FOR_EACH_ENTRY(itr, rule_head, ice_fltr_mgmt_list_entry,
3224 			    list_entry) {
3225 		/* Continue if this filter doesn't apply to this VSI or the
3226 		 * VSI ID is not in the VSI map for this filter
3227 		 */
3228 		if (!ice_vsi_uses_fltr(itr, vsi_handle))
3229 			continue;
3230 
3231 		*promisc_mask |= ice_determine_promisc_mask(&itr->fltr_info);
3232 	}
3233 	ice_release_lock(rule_lock);
3234 
3235 	return ICE_SUCCESS;
3236 }
3237 
3238 /**
3239  * ice_get_vsi_vlan_promisc - get VLAN promiscuous mode of given VSI
3240  * @hw: pointer to the hardware structure
3241  * @vsi_handle: VSI handle to retrieve info from
3242  * @promisc_mask: pointer to mask to be filled in
3243  * @vid: VLAN ID of promisc VLAN VSI
3244  */
3245 enum ice_status
3246 ice_get_vsi_vlan_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
3247 			 u16 *vid)
3248 {
3249 	return _ice_get_vsi_vlan_promisc(hw, vsi_handle, promisc_mask,
3250 					 vid, hw->switch_info);
3251 }
3252 
3253 /**
3254  * ice_remove_promisc - Remove promisc based filter rules
3255  * @hw: pointer to the hardware structure
3256  * @recp_id: recipe ID for which the rule needs to removed
3257  * @v_list: list of promisc entries
3258  */
3259 static enum ice_status
3260 ice_remove_promisc(struct ice_hw *hw, u8 recp_id,
3261 		   struct LIST_HEAD_TYPE *v_list)
3262 {
3263 	struct ice_fltr_list_entry *v_list_itr, *tmp;
3264 	struct ice_sw_recipe *recp_list;
3265 
3266 	recp_list = &hw->switch_info->recp_list[recp_id];
3267 	LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
3268 				 list_entry) {
3269 		v_list_itr->status =
3270 			ice_remove_rule_internal(hw, recp_list, v_list_itr);
3271 		if (v_list_itr->status)
3272 			return v_list_itr->status;
3273 	}
3274 	return ICE_SUCCESS;
3275 }
3276 
3277 /**
3278  * _ice_clear_vsi_promisc - clear specified promiscuous mode(s)
3279  * @hw: pointer to the hardware structure
3280  * @vsi_handle: VSI handle to clear mode
3281  * @promisc_mask: mask of promiscuous config bits to clear
3282  * @vid: VLAN ID to clear VLAN promiscuous
3283  * @sw: pointer to switch info struct for which function add rule
3284  */
3285 static enum ice_status
3286 _ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
3287 		       u16 vid, struct ice_switch_info *sw)
3288 {
3289 	struct ice_fltr_list_entry *fm_entry, *tmp;
3290 	struct LIST_HEAD_TYPE remove_list_head;
3291 	struct ice_fltr_mgmt_list_entry *itr;
3292 	struct LIST_HEAD_TYPE *rule_head;
3293 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
3294 	enum ice_status status = ICE_SUCCESS;
3295 	u8 recipe_id;
3296 
3297 	if (!ice_is_vsi_valid(hw, vsi_handle))
3298 		return ICE_ERR_PARAM;
3299 
3300 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
3301 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
3302 	else
3303 		recipe_id = ICE_SW_LKUP_PROMISC;
3304 
3305 	rule_head = &sw->recp_list[recipe_id].filt_rules;
3306 	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
3307 
3308 	INIT_LIST_HEAD(&remove_list_head);
3309 
3310 	ice_acquire_lock(rule_lock);
3311 	LIST_FOR_EACH_ENTRY(itr, rule_head,
3312 			    ice_fltr_mgmt_list_entry, list_entry) {
3313 		struct ice_fltr_info *fltr_info;
3314 		u8 fltr_promisc_mask = 0;
3315 
3316 		if (!ice_vsi_uses_fltr(itr, vsi_handle))
3317 			continue;
3318 		fltr_info = &itr->fltr_info;
3319 
3320 		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
3321 		    vid != fltr_info->l_data.mac_vlan.vlan_id)
3322 			continue;
3323 
3324 		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
3325 
3326 		/* Skip if filter is not completely specified by given mask */
3327 		if (fltr_promisc_mask & ~promisc_mask)
3328 			continue;
3329 
3330 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
3331 							&remove_list_head,
3332 							fltr_info);
3333 		if (status) {
3334 			ice_release_lock(rule_lock);
3335 			goto free_fltr_list;
3336 		}
3337 	}
3338 	ice_release_lock(rule_lock);
3339 
3340 	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
3341 
3342 free_fltr_list:
3343 	LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
3344 				 ice_fltr_list_entry, list_entry) {
3345 		LIST_DEL(&fm_entry->list_entry);
3346 		ice_free(hw, fm_entry);
3347 	}
3348 
3349 	return status;
3350 }
3351 
3352 /**
3353  * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
3354  * @hw: pointer to the hardware structure
3355  * @vsi_handle: VSI handle to clear mode
3356  * @promisc_mask: mask of promiscuous config bits to clear
3357  * @vid: VLAN ID to clear VLAN promiscuous
3358  */
3359 enum ice_status
3360 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3361 		      u8 promisc_mask, u16 vid)
3362 {
3363 	return _ice_clear_vsi_promisc(hw, vsi_handle, promisc_mask,
3364 				      vid, hw->switch_info);
3365 }
3366 
3367 /**
3368  * _ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
3369  * @hw: pointer to the hardware structure
3370  * @vsi_handle: VSI handle to configure
3371  * @promisc_mask: mask of promiscuous config bits
3372  * @vid: VLAN ID to set VLAN promiscuous
3373  * @lport: logical port number to configure promisc mode
3374  * @sw: pointer to switch info struct for which function add rule
3375  */
3376 static enum ice_status
3377 _ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
3378 		     u16 vid, u8 lport, struct ice_switch_info *sw)
3379 {
3380 	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
3381 	struct ice_fltr_list_entry f_list_entry;
3382 	struct ice_fltr_info new_fltr;
3383 	enum ice_status status = ICE_SUCCESS;
3384 	bool is_tx_fltr;
3385 	u16 hw_vsi_id;
3386 	int pkt_type;
3387 	u8 recipe_id;
3388 
3389 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3390 
3391 	if (!ice_is_vsi_valid(hw, vsi_handle))
3392 		return ICE_ERR_PARAM;
3393 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3394 
3395 	ice_memset(&new_fltr, 0, sizeof(new_fltr), ICE_NONDMA_MEM);
3396 
3397 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
3398 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
3399 		new_fltr.l_data.mac_vlan.vlan_id = vid;
3400 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
3401 	} else {
3402 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
3403 		recipe_id = ICE_SW_LKUP_PROMISC;
3404 	}
3405 
3406 	/* Separate filters must be set for each direction/packet type
3407 	 * combination, so we will loop over the mask value, store the
3408 	 * individual type, and clear it out in the input mask as it
3409 	 * is found.
3410 	 */
3411 	while (promisc_mask) {
3412 		struct ice_sw_recipe *recp_list;
3413 		u8 *mac_addr;
3414 
3415 		pkt_type = 0;
3416 		is_tx_fltr = false;
3417 
3418 		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
3419 			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
3420 			pkt_type = UCAST_FLTR;
3421 		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
3422 			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
3423 			pkt_type = UCAST_FLTR;
3424 			is_tx_fltr = true;
3425 		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
3426 			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
3427 			pkt_type = MCAST_FLTR;
3428 		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
3429 			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
3430 			pkt_type = MCAST_FLTR;
3431 			is_tx_fltr = true;
3432 		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
3433 			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
3434 			pkt_type = BCAST_FLTR;
3435 		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
3436 			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
3437 			pkt_type = BCAST_FLTR;
3438 			is_tx_fltr = true;
3439 		}
3440 
3441 		/* Check for VLAN promiscuous flag */
3442 		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
3443 			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
3444 		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
3445 			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
3446 			is_tx_fltr = true;
3447 		}
3448 
3449 		/* Set filter DA based on packet type */
3450 		mac_addr = new_fltr.l_data.mac.mac_addr;
3451 		if (pkt_type == BCAST_FLTR) {
3452 			ice_memset(mac_addr, 0xff, ETH_ALEN, ICE_NONDMA_MEM);
3453 		} else if (pkt_type == MCAST_FLTR ||
3454 			   pkt_type == UCAST_FLTR) {
3455 			/* Use the dummy ether header DA */
3456 			ice_memcpy(mac_addr, dummy_eth_header, ETH_ALEN,
3457 				   ICE_NONDMA_TO_NONDMA);
3458 			if (pkt_type == MCAST_FLTR)
3459 				mac_addr[0] |= 0x1;	/* Set multicast bit */
3460 		}
3461 
3462 		/* Need to reset this to zero for all iterations */
3463 		new_fltr.flag = 0;
3464 		if (is_tx_fltr) {
3465 			new_fltr.flag |= ICE_FLTR_TX;
3466 			new_fltr.src = hw_vsi_id;
3467 		} else {
3468 			new_fltr.flag |= ICE_FLTR_RX;
3469 			new_fltr.src = lport;
3470 		}
3471 
3472 		new_fltr.fltr_act = ICE_FWD_TO_VSI;
3473 		new_fltr.vsi_handle = vsi_handle;
3474 		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
3475 		f_list_entry.fltr_info = new_fltr;
3476 		recp_list = &sw->recp_list[recipe_id];
3477 
3478 		status = ice_add_rule_internal(hw, recp_list, lport,
3479 					       &f_list_entry);
3480 		if (status != ICE_SUCCESS)
3481 			goto set_promisc_exit;
3482 	}
3483 
3484 set_promisc_exit:
3485 	return status;
3486 }
3487 
3488 /**
3489  * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
3490  * @hw: pointer to the hardware structure
3491  * @vsi_handle: VSI handle to configure
3492  * @promisc_mask: mask of promiscuous config bits
3493  * @vid: VLAN ID to set VLAN promiscuous
3494  */
3495 enum ice_status
3496 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
3497 		    u16 vid)
3498 {
3499 	return _ice_set_vsi_promisc(hw, vsi_handle, promisc_mask, vid,
3500 				    hw->port_info->lport,
3501 				    hw->switch_info);
3502 }
3503 
3504 /**
3505  * _ice_set_vlan_vsi_promisc
3506  * @hw: pointer to the hardware structure
3507  * @vsi_handle: VSI handle to configure
3508  * @promisc_mask: mask of promiscuous config bits
3509  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
3510  * @lport: logical port number to configure promisc mode
3511  * @sw: pointer to switch info struct for which function add rule
3512  *
3513  * Configure VSI with all associated VLANs to given promiscuous mode(s)
3514  */
3515 static enum ice_status
3516 _ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
3517 			  bool rm_vlan_promisc, u8 lport,
3518 			  struct ice_switch_info *sw)
3519 {
3520 	struct ice_fltr_list_entry *list_itr, *tmp;
3521 	struct LIST_HEAD_TYPE vsi_list_head;
3522 	struct LIST_HEAD_TYPE *vlan_head;
3523 	struct ice_lock *vlan_lock; /* Lock to protect filter rule list */
3524 	enum ice_status status;
3525 	u16 vlan_id;
3526 
3527 	INIT_LIST_HEAD(&vsi_list_head);
3528 	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3529 	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3530 	ice_acquire_lock(vlan_lock);
3531 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
3532 					  &vsi_list_head);
3533 	ice_release_lock(vlan_lock);
3534 	if (status)
3535 		goto free_fltr_list;
3536 
3537 	LIST_FOR_EACH_ENTRY(list_itr, &vsi_list_head, ice_fltr_list_entry,
3538 			    list_entry) {
3539 		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
3540 		if (rm_vlan_promisc)
3541 			status =  _ice_clear_vsi_promisc(hw, vsi_handle,
3542 							 promisc_mask,
3543 							 vlan_id, sw);
3544 		else
3545 			status =  _ice_set_vsi_promisc(hw, vsi_handle,
3546 						       promisc_mask, vlan_id,
3547 						       lport, sw);
3548 		if (status)
3549 			break;
3550 	}
3551 
3552 free_fltr_list:
3553 	LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, &vsi_list_head,
3554 				 ice_fltr_list_entry, list_entry) {
3555 		LIST_DEL(&list_itr->list_entry);
3556 		ice_free(hw, list_itr);
3557 	}
3558 	return status;
3559 }
3560 
3561 /**
3562  * ice_set_vlan_vsi_promisc
3563  * @hw: pointer to the hardware structure
3564  * @vsi_handle: VSI handle to configure
3565  * @promisc_mask: mask of promiscuous config bits
3566  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
3567  *
3568  * Configure VSI with all associated VLANs to given promiscuous mode(s)
3569  */
3570 enum ice_status
3571 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
3572 			 bool rm_vlan_promisc)
3573 {
3574 	return _ice_set_vlan_vsi_promisc(hw, vsi_handle, promisc_mask,
3575 					 rm_vlan_promisc, hw->port_info->lport,
3576 					 hw->switch_info);
3577 }
3578 
3579 /**
3580  * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
3581  * @hw: pointer to the hardware structure
3582  * @vsi_handle: VSI handle to remove filters from
3583  * @recp_list: recipe list from which function remove fltr
3584  * @lkup: switch rule filter lookup type
3585  */
3586 static void
3587 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
3588 			 struct ice_sw_recipe *recp_list,
3589 			 enum ice_sw_lkup_type lkup)
3590 {
3591 	struct ice_fltr_list_entry *fm_entry;
3592 	struct LIST_HEAD_TYPE remove_list_head;
3593 	struct LIST_HEAD_TYPE *rule_head;
3594 	struct ice_fltr_list_entry *tmp;
3595 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
3596 	enum ice_status status;
3597 
3598 	INIT_LIST_HEAD(&remove_list_head);
3599 	rule_lock = &recp_list[lkup].filt_rule_lock;
3600 	rule_head = &recp_list[lkup].filt_rules;
3601 	ice_acquire_lock(rule_lock);
3602 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
3603 					  &remove_list_head);
3604 	ice_release_lock(rule_lock);
3605 	if (status)
3606 		goto free_fltr_list;
3607 
3608 	switch (lkup) {
3609 	case ICE_SW_LKUP_MAC:
3610 		ice_remove_mac_rule(hw, &remove_list_head, &recp_list[lkup]);
3611 		break;
3612 	case ICE_SW_LKUP_VLAN:
3613 		ice_remove_vlan_rule(hw, &remove_list_head, &recp_list[lkup]);
3614 		break;
3615 	case ICE_SW_LKUP_PROMISC:
3616 	case ICE_SW_LKUP_PROMISC_VLAN:
3617 		ice_remove_promisc(hw, lkup, &remove_list_head);
3618 		break;
3619 	case ICE_SW_LKUP_MAC_VLAN:
3620 		ice_debug(hw, ICE_DBG_SW, "MAC VLAN look up is not supported yet\n");
3621 		break;
3622 	case ICE_SW_LKUP_ETHERTYPE:
3623 	case ICE_SW_LKUP_ETHERTYPE_MAC:
3624 		ice_remove_eth_mac(hw, &remove_list_head);
3625 		break;
3626 	case ICE_SW_LKUP_DFLT:
3627 		ice_debug(hw, ICE_DBG_SW, "Remove filters for this lookup type hasn't been implemented yet\n");
3628 		break;
3629 	case ICE_SW_LKUP_LAST:
3630 		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type\n");
3631 		break;
3632 	}
3633 
3634 free_fltr_list:
3635 	LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
3636 				 ice_fltr_list_entry, list_entry) {
3637 		LIST_DEL(&fm_entry->list_entry);
3638 		ice_free(hw, fm_entry);
3639 	}
3640 }
3641 
3642 /**
3643  * ice_remove_vsi_fltr_rule - Remove all filters for a VSI
3644  * @hw: pointer to the hardware structure
3645  * @vsi_handle: VSI handle to remove filters from
3646  * @sw: pointer to switch info struct
3647  */
3648 static void
3649 ice_remove_vsi_fltr_rule(struct ice_hw *hw, u16 vsi_handle,
3650 			 struct ice_switch_info *sw)
3651 {
3652 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3653 
3654 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3655 				 sw->recp_list, ICE_SW_LKUP_MAC);
3656 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3657 				 sw->recp_list, ICE_SW_LKUP_MAC_VLAN);
3658 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3659 				 sw->recp_list, ICE_SW_LKUP_PROMISC);
3660 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3661 				 sw->recp_list, ICE_SW_LKUP_VLAN);
3662 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3663 				 sw->recp_list, ICE_SW_LKUP_DFLT);
3664 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3665 				 sw->recp_list, ICE_SW_LKUP_ETHERTYPE);
3666 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3667 				 sw->recp_list, ICE_SW_LKUP_ETHERTYPE_MAC);
3668 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3669 				 sw->recp_list, ICE_SW_LKUP_PROMISC_VLAN);
3670 }
3671 
3672 /**
3673  * ice_remove_vsi_fltr - Remove all filters for a VSI
3674  * @hw: pointer to the hardware structure
3675  * @vsi_handle: VSI handle to remove filters from
3676  */
3677 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
3678 {
3679 	ice_remove_vsi_fltr_rule(hw, vsi_handle, hw->switch_info);
3680 }
3681 
3682 /**
3683  * ice_alloc_res_cntr - allocating resource counter
3684  * @hw: pointer to the hardware structure
3685  * @type: type of resource
3686  * @alloc_shared: if set it is shared else dedicated
3687  * @num_items: number of entries requested for FD resource type
3688  * @counter_id: counter index returned by AQ call
3689  */
3690 static enum ice_status
3691 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
3692 		   u16 *counter_id)
3693 {
3694 	struct ice_aqc_alloc_free_res_elem *buf;
3695 	enum ice_status status;
3696 	u16 buf_len;
3697 
3698 	/* Allocate resource */
3699 	buf_len = ice_struct_size(buf, elem, 1);
3700 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
3701 	if (!buf)
3702 		return ICE_ERR_NO_MEMORY;
3703 
3704 	buf->num_elems = CPU_TO_LE16(num_items);
3705 	buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
3706 				      ICE_AQC_RES_TYPE_M) | alloc_shared);
3707 
3708 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
3709 				       ice_aqc_opc_alloc_res, NULL);
3710 	if (status)
3711 		goto exit;
3712 
3713 	*counter_id = LE16_TO_CPU(buf->elem[0].e.sw_resp);
3714 
3715 exit:
3716 	ice_free(hw, buf);
3717 	return status;
3718 }
3719 
3720 /**
3721  * ice_free_res_cntr - free resource counter
3722  * @hw: pointer to the hardware structure
3723  * @type: type of resource
3724  * @alloc_shared: if set it is shared else dedicated
3725  * @num_items: number of entries to be freed for FD resource type
3726  * @counter_id: counter ID resource which needs to be freed
3727  */
3728 static enum ice_status
3729 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
3730 		  u16 counter_id)
3731 {
3732 	struct ice_aqc_alloc_free_res_elem *buf;
3733 	enum ice_status status;
3734 	u16 buf_len;
3735 
3736 	/* Free resource */
3737 	buf_len = ice_struct_size(buf, elem, 1);
3738 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
3739 	if (!buf)
3740 		return ICE_ERR_NO_MEMORY;
3741 
3742 	buf->num_elems = CPU_TO_LE16(num_items);
3743 	buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
3744 				      ICE_AQC_RES_TYPE_M) | alloc_shared);
3745 	buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
3746 
3747 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
3748 				       ice_aqc_opc_free_res, NULL);
3749 	if (status)
3750 		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
3751 
3752 	ice_free(hw, buf);
3753 	return status;
3754 }
3755 
3756 /**
3757  * ice_alloc_vlan_res_counter - obtain counter resource for VLAN type
3758  * @hw: pointer to the hardware structure
3759  * @counter_id: returns counter index
3760  */
3761 enum ice_status ice_alloc_vlan_res_counter(struct ice_hw *hw, u16 *counter_id)
3762 {
3763 	return ice_alloc_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
3764 				  ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
3765 				  counter_id);
3766 }
3767 
3768 /**
3769  * ice_free_vlan_res_counter - Free counter resource for VLAN type
3770  * @hw: pointer to the hardware structure
3771  * @counter_id: counter index to be freed
3772  */
3773 enum ice_status ice_free_vlan_res_counter(struct ice_hw *hw, u16 counter_id)
3774 {
3775 	return ice_free_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
3776 				 ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
3777 				 counter_id);
3778 }
3779 
3780 /**
3781  * ice_alloc_res_lg_act - add large action resource
3782  * @hw: pointer to the hardware structure
3783  * @l_id: large action ID to fill it in
3784  * @num_acts: number of actions to hold with a large action entry
3785  */
3786 static enum ice_status
3787 ice_alloc_res_lg_act(struct ice_hw *hw, u16 *l_id, u16 num_acts)
3788 {
3789 	struct ice_aqc_alloc_free_res_elem *sw_buf;
3790 	enum ice_status status;
3791 	u16 buf_len;
3792 
3793 	if (num_acts > ICE_MAX_LG_ACT || num_acts == 0)
3794 		return ICE_ERR_PARAM;
3795 
3796 	/* Allocate resource for large action */
3797 	buf_len = ice_struct_size(sw_buf, elem, 1);
3798 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
3799 	if (!sw_buf)
3800 		return ICE_ERR_NO_MEMORY;
3801 
3802 	sw_buf->num_elems = CPU_TO_LE16(1);
3803 
3804 	/* If num_acts is 1, use ICE_AQC_RES_TYPE_WIDE_TABLE_1.
3805 	 * If num_acts is 2, use ICE_AQC_RES_TYPE_WIDE_TABLE_3.
3806 	 * If num_acts is greater than 2, then use
3807 	 * ICE_AQC_RES_TYPE_WIDE_TABLE_4.
3808 	 * The num_acts cannot exceed 4. This was ensured at the
3809 	 * beginning of the function.
3810 	 */
3811 	if (num_acts == 1)
3812 		sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_1);
3813 	else if (num_acts == 2)
3814 		sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_2);
3815 	else
3816 		sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_4);
3817 
3818 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
3819 				       ice_aqc_opc_alloc_res, NULL);
3820 	if (!status)
3821 		*l_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
3822 
3823 	ice_free(hw, sw_buf);
3824 	return status;
3825 }
3826 
3827 /**
3828  * ice_add_mac_with_sw_marker - add filter with sw marker
3829  * @hw: pointer to the hardware structure
3830  * @f_info: filter info structure containing the MAC filter information
3831  * @sw_marker: sw marker to tag the Rx descriptor with
3832  */
3833 enum ice_status
3834 ice_add_mac_with_sw_marker(struct ice_hw *hw, struct ice_fltr_info *f_info,
3835 			   u16 sw_marker)
3836 {
3837 	struct ice_fltr_mgmt_list_entry *m_entry;
3838 	struct ice_fltr_list_entry fl_info;
3839 	struct ice_sw_recipe *recp_list;
3840 	struct LIST_HEAD_TYPE l_head;
3841 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
3842 	enum ice_status ret;
3843 	bool entry_exists;
3844 	u16 lg_act_id;
3845 
3846 	if (f_info->fltr_act != ICE_FWD_TO_VSI)
3847 		return ICE_ERR_PARAM;
3848 
3849 	if (f_info->lkup_type != ICE_SW_LKUP_MAC)
3850 		return ICE_ERR_PARAM;
3851 
3852 	if (sw_marker == ICE_INVAL_SW_MARKER_ID)
3853 		return ICE_ERR_PARAM;
3854 
3855 	if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
3856 		return ICE_ERR_PARAM;
3857 	f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
3858 
3859 	/* Add filter if it doesn't exist so then the adding of large
3860 	 * action always results in update
3861 	 */
3862 
3863 	INIT_LIST_HEAD(&l_head);
3864 	fl_info.fltr_info = *f_info;
3865 	LIST_ADD(&fl_info.list_entry, &l_head);
3866 
3867 	entry_exists = false;
3868 	ret = ice_add_mac_rule(hw, &l_head, hw->switch_info,
3869 			       hw->port_info->lport);
3870 	if (ret == ICE_ERR_ALREADY_EXISTS)
3871 		entry_exists = true;
3872 	else if (ret)
3873 		return ret;
3874 
3875 	recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
3876 	rule_lock = &recp_list->filt_rule_lock;
3877 	ice_acquire_lock(rule_lock);
3878 	/* Get the book keeping entry for the filter */
3879 	m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info);
3880 	if (!m_entry)
3881 		goto exit_error;
3882 
3883 	/* If counter action was enabled for this rule then don't enable
3884 	 * sw marker large action
3885 	 */
3886 	if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
3887 		ret = ICE_ERR_PARAM;
3888 		goto exit_error;
3889 	}
3890 
3891 	/* if same marker was added before */
3892 	if (m_entry->sw_marker_id == sw_marker) {
3893 		ret = ICE_ERR_ALREADY_EXISTS;
3894 		goto exit_error;
3895 	}
3896 
3897 	/* Allocate a hardware table entry to hold large act. Three actions
3898 	 * for marker based large action
3899 	 */
3900 	ret = ice_alloc_res_lg_act(hw, &lg_act_id, 3);
3901 	if (ret)
3902 		goto exit_error;
3903 
3904 	if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
3905 		goto exit_error;
3906 
3907 	/* Update the switch rule to add the marker action */
3908 	ret = ice_add_marker_act(hw, m_entry, sw_marker, lg_act_id);
3909 	if (!ret) {
3910 		ice_release_lock(rule_lock);
3911 		return ret;
3912 	}
3913 
3914 exit_error:
3915 	ice_release_lock(rule_lock);
3916 	/* only remove entry if it did not exist previously */
3917 	if (!entry_exists)
3918 		ret = ice_remove_mac(hw, &l_head);
3919 
3920 	return ret;
3921 }
3922 
3923 /**
3924  * ice_add_mac_with_counter - add filter with counter enabled
3925  * @hw: pointer to the hardware structure
3926  * @f_info: pointer to filter info structure containing the MAC filter
3927  *          information
3928  */
3929 enum ice_status
3930 ice_add_mac_with_counter(struct ice_hw *hw, struct ice_fltr_info *f_info)
3931 {
3932 	struct ice_fltr_mgmt_list_entry *m_entry;
3933 	struct ice_fltr_list_entry fl_info;
3934 	struct ice_sw_recipe *recp_list;
3935 	struct LIST_HEAD_TYPE l_head;
3936 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
3937 	enum ice_status ret;
3938 	bool entry_exist;
3939 	u16 counter_id;
3940 	u16 lg_act_id;
3941 
3942 	if (f_info->fltr_act != ICE_FWD_TO_VSI)
3943 		return ICE_ERR_PARAM;
3944 
3945 	if (f_info->lkup_type != ICE_SW_LKUP_MAC)
3946 		return ICE_ERR_PARAM;
3947 
3948 	if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
3949 		return ICE_ERR_PARAM;
3950 	f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
3951 	recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
3952 
3953 	entry_exist = false;
3954 
3955 	rule_lock = &recp_list->filt_rule_lock;
3956 
3957 	/* Add filter if it doesn't exist so then the adding of large
3958 	 * action always results in update
3959 	 */
3960 	INIT_LIST_HEAD(&l_head);
3961 
3962 	fl_info.fltr_info = *f_info;
3963 	LIST_ADD(&fl_info.list_entry, &l_head);
3964 
3965 	ret = ice_add_mac_rule(hw, &l_head, hw->switch_info,
3966 			       hw->port_info->lport);
3967 	if (ret == ICE_ERR_ALREADY_EXISTS)
3968 		entry_exist = true;
3969 	else if (ret)
3970 		return ret;
3971 
3972 	ice_acquire_lock(rule_lock);
3973 	m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info);
3974 	if (!m_entry) {
3975 		ret = ICE_ERR_BAD_PTR;
3976 		goto exit_error;
3977 	}
3978 
3979 	/* Don't enable counter for a filter for which sw marker was enabled */
3980 	if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) {
3981 		ret = ICE_ERR_PARAM;
3982 		goto exit_error;
3983 	}
3984 
3985 	/* If a counter was already enabled then don't need to add again */
3986 	if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
3987 		ret = ICE_ERR_ALREADY_EXISTS;
3988 		goto exit_error;
3989 	}
3990 
3991 	/* Allocate a hardware table entry to VLAN counter */
3992 	ret = ice_alloc_vlan_res_counter(hw, &counter_id);
3993 	if (ret)
3994 		goto exit_error;
3995 
3996 	/* Allocate a hardware table entry to hold large act. Two actions for
3997 	 * counter based large action
3998 	 */
3999 	ret = ice_alloc_res_lg_act(hw, &lg_act_id, 2);
4000 	if (ret)
4001 		goto exit_error;
4002 
4003 	if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
4004 		goto exit_error;
4005 
4006 	/* Update the switch rule to add the counter action */
4007 	ret = ice_add_counter_act(hw, m_entry, counter_id, lg_act_id);
4008 	if (!ret) {
4009 		ice_release_lock(rule_lock);
4010 		return ret;
4011 	}
4012 
4013 exit_error:
4014 	ice_release_lock(rule_lock);
4015 	/* only remove entry if it did not exist previously */
4016 	if (!entry_exist)
4017 		ret = ice_remove_mac(hw, &l_head);
4018 
4019 	return ret;
4020 }
4021 
4022 /**
4023  * ice_replay_fltr - Replay all the filters stored by a specific list head
4024  * @hw: pointer to the hardware structure
4025  * @list_head: list for which filters needs to be replayed
4026  * @recp_id: Recipe ID for which rules need to be replayed
4027  */
4028 static enum ice_status
4029 ice_replay_fltr(struct ice_hw *hw, u8 recp_id, struct LIST_HEAD_TYPE *list_head)
4030 {
4031 	struct ice_fltr_mgmt_list_entry *itr;
4032 	enum ice_status status = ICE_SUCCESS;
4033 	struct ice_sw_recipe *recp_list;
4034 	u8 lport = hw->port_info->lport;
4035 	struct LIST_HEAD_TYPE l_head;
4036 
4037 	if (LIST_EMPTY(list_head))
4038 		return status;
4039 
4040 	recp_list = &hw->switch_info->recp_list[recp_id];
4041 	/* Move entries from the given list_head to a temporary l_head so that
4042 	 * they can be replayed. Otherwise when trying to re-add the same
4043 	 * filter, the function will return already exists
4044 	 */
4045 	LIST_REPLACE_INIT(list_head, &l_head);
4046 
4047 	/* Mark the given list_head empty by reinitializing it so filters
4048 	 * could be added again by *handler
4049 	 */
4050 	LIST_FOR_EACH_ENTRY(itr, &l_head, ice_fltr_mgmt_list_entry,
4051 			    list_entry) {
4052 		struct ice_fltr_list_entry f_entry;
4053 		u16 vsi_handle;
4054 
4055 		f_entry.fltr_info = itr->fltr_info;
4056 		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN) {
4057 			status = ice_add_rule_internal(hw, recp_list, lport,
4058 						       &f_entry);
4059 			if (status != ICE_SUCCESS)
4060 				goto end;
4061 			continue;
4062 		}
4063 
4064 		/* Add a filter per VSI separately */
4065 		ice_for_each_set_bit(vsi_handle, itr->vsi_list_info->vsi_map,
4066 				     ICE_MAX_VSI) {
4067 			if (!ice_is_vsi_valid(hw, vsi_handle))
4068 				break;
4069 
4070 			ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
4071 			f_entry.fltr_info.vsi_handle = vsi_handle;
4072 			f_entry.fltr_info.fwd_id.hw_vsi_id =
4073 				ice_get_hw_vsi_num(hw, vsi_handle);
4074 			f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
4075 			if (recp_id == ICE_SW_LKUP_VLAN)
4076 				status = ice_add_vlan_internal(hw, recp_list,
4077 							       &f_entry);
4078 			else
4079 				status = ice_add_rule_internal(hw, recp_list,
4080 							       lport,
4081 							       &f_entry);
4082 			if (status != ICE_SUCCESS)
4083 				goto end;
4084 		}
4085 	}
4086 end:
4087 	/* Clear the filter management list */
4088 	ice_rem_sw_rule_info(hw, &l_head);
4089 	return status;
4090 }
4091 
4092 /**
4093  * ice_replay_all_fltr - replay all filters stored in bookkeeping lists
4094  * @hw: pointer to the hardware structure
4095  *
4096  * NOTE: This function does not clean up partially added filters on error.
4097  * It is up to caller of the function to issue a reset or fail early.
4098  */
4099 enum ice_status ice_replay_all_fltr(struct ice_hw *hw)
4100 {
4101 	struct ice_switch_info *sw = hw->switch_info;
4102 	enum ice_status status = ICE_SUCCESS;
4103 	u8 i;
4104 
4105 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4106 		struct LIST_HEAD_TYPE *head = &sw->recp_list[i].filt_rules;
4107 
4108 		status = ice_replay_fltr(hw, i, head);
4109 		if (status != ICE_SUCCESS)
4110 			return status;
4111 	}
4112 	return status;
4113 }
4114 
4115 /**
4116  * ice_replay_vsi_fltr - Replay filters for requested VSI
4117  * @hw: pointer to the hardware structure
4118  * @pi: pointer to port information structure
4119  * @sw: pointer to switch info struct for which function replays filters
4120  * @vsi_handle: driver VSI handle
4121  * @recp_id: Recipe ID for which rules need to be replayed
4122  * @list_head: list for which filters need to be replayed
4123  *
4124  * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
4125  * It is required to pass valid VSI handle.
4126  */
4127 static enum ice_status
4128 ice_replay_vsi_fltr(struct ice_hw *hw, struct ice_port_info *pi,
4129 		    struct ice_switch_info *sw, u16 vsi_handle, u8 recp_id,
4130 		    struct LIST_HEAD_TYPE *list_head)
4131 {
4132 	struct ice_fltr_mgmt_list_entry *itr;
4133 	enum ice_status status = ICE_SUCCESS;
4134 	struct ice_sw_recipe *recp_list;
4135 	u16 hw_vsi_id;
4136 
4137 	if (LIST_EMPTY(list_head))
4138 		return status;
4139 	recp_list = &sw->recp_list[recp_id];
4140 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4141 
4142 	LIST_FOR_EACH_ENTRY(itr, list_head, ice_fltr_mgmt_list_entry,
4143 			    list_entry) {
4144 		struct ice_fltr_list_entry f_entry;
4145 
4146 		f_entry.fltr_info = itr->fltr_info;
4147 		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
4148 		    itr->fltr_info.vsi_handle == vsi_handle) {
4149 			/* update the src in case it is VSI num */
4150 			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
4151 				f_entry.fltr_info.src = hw_vsi_id;
4152 			status = ice_add_rule_internal(hw, recp_list,
4153 						       pi->lport,
4154 						       &f_entry);
4155 			if (status != ICE_SUCCESS)
4156 				goto end;
4157 			continue;
4158 		}
4159 		if (!itr->vsi_list_info ||
4160 		    !ice_is_bit_set(itr->vsi_list_info->vsi_map, vsi_handle))
4161 			continue;
4162 		/* Clearing it so that the logic can add it back */
4163 		ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
4164 		f_entry.fltr_info.vsi_handle = vsi_handle;
4165 		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
4166 		/* update the src in case it is VSI num */
4167 		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
4168 			f_entry.fltr_info.src = hw_vsi_id;
4169 		if (recp_id == ICE_SW_LKUP_VLAN)
4170 			status = ice_add_vlan_internal(hw, recp_list, &f_entry);
4171 		else
4172 			status = ice_add_rule_internal(hw, recp_list,
4173 						       pi->lport,
4174 						       &f_entry);
4175 		if (status != ICE_SUCCESS)
4176 			goto end;
4177 	}
4178 end:
4179 	return status;
4180 }
4181 
4182 /**
4183  * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
4184  * @hw: pointer to the hardware structure
4185  * @pi: pointer to port information structure
4186  * @vsi_handle: driver VSI handle
4187  *
4188  * Replays filters for requested VSI via vsi_handle.
4189  */
4190 enum ice_status
4191 ice_replay_vsi_all_fltr(struct ice_hw *hw, struct ice_port_info *pi,
4192 			u16 vsi_handle)
4193 {
4194 	struct ice_switch_info *sw = hw->switch_info;
4195 	enum ice_status status = ICE_SUCCESS;
4196 	u8 i;
4197 
4198 	/* Update the recipes that were created */
4199 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4200 		struct LIST_HEAD_TYPE *head;
4201 
4202 		head = &sw->recp_list[i].filt_replay_rules;
4203 		if (!sw->recp_list[i].adv_rule)
4204 			status = ice_replay_vsi_fltr(hw, pi, sw, vsi_handle, i,
4205 						     head);
4206 		if (status != ICE_SUCCESS)
4207 			return status;
4208 	}
4209 
4210 	return ICE_SUCCESS;
4211 }
4212 
4213 /**
4214  * ice_rm_all_sw_replay_rule - helper function to delete filter replay rules
4215  * @hw: pointer to the HW struct
4216  * @sw: pointer to switch info struct for which function removes filters
4217  *
4218  * Deletes the filter replay rules for given switch
4219  */
4220 void ice_rm_sw_replay_rule_info(struct ice_hw *hw, struct ice_switch_info *sw)
4221 {
4222 	u8 i;
4223 
4224 	if (!sw)
4225 		return;
4226 
4227 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4228 		if (!LIST_EMPTY(&sw->recp_list[i].filt_replay_rules)) {
4229 			struct LIST_HEAD_TYPE *l_head;
4230 
4231 			l_head = &sw->recp_list[i].filt_replay_rules;
4232 			if (!sw->recp_list[i].adv_rule)
4233 				ice_rem_sw_rule_info(hw, l_head);
4234 		}
4235 	}
4236 }
4237 
4238 /**
4239  * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
4240  * @hw: pointer to the HW struct
4241  *
4242  * Deletes the filter replay rules.
4243  */
4244 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
4245 {
4246 	ice_rm_sw_replay_rule_info(hw, hw->switch_info);
4247 }
4248 
4249