1 /* SPDX-License-Identifier: BSD-3-Clause */ 2 /* Copyright (c) 2021, Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * 3. Neither the name of the Intel Corporation nor the names of its 16 * contributors may be used to endorse or promote products derived from 17 * this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /*$FreeBSD$*/ 32 33 #include "ice_switch.h" 34 #include "ice_flex_type.h" 35 #include "ice_flow.h" 36 37 #define ICE_ETH_DA_OFFSET 0 38 #define ICE_ETH_ETHTYPE_OFFSET 12 39 #define ICE_ETH_VLAN_TCI_OFFSET 14 40 #define ICE_MAX_VLAN_ID 0xFFF 41 #define ICE_IPV6_ETHER_ID 0x86DD 42 #define ICE_ETH_P_8021Q 0x8100 43 44 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem 45 * struct to configure any switch filter rules. 46 * {DA (6 bytes), SA(6 bytes), 47 * Ether type (2 bytes for header without VLAN tag) OR 48 * VLAN tag (4 bytes for header with VLAN tag) } 49 * 50 * Word on Hardcoded values 51 * byte 0 = 0x2: to identify it as locally administered DA MAC 52 * byte 6 = 0x2: to identify it as locally administered SA MAC 53 * byte 12 = 0x81 & byte 13 = 0x00: 54 * In case of VLAN filter first two bytes defines ether type (0x8100) 55 * and remaining two bytes are placeholder for programming a given VLAN ID 56 * In case of Ether type filter it is treated as header without VLAN tag 57 * and byte 12 and 13 is used to program a given Ether type instead 58 */ 59 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0, 60 0x2, 0, 0, 0, 0, 0, 61 0x81, 0, 0, 0}; 62 63 /** 64 * ice_init_def_sw_recp - initialize the recipe book keeping tables 65 * @hw: pointer to the HW struct 66 * @recp_list: pointer to sw recipe list 67 * 68 * Allocate memory for the entire recipe table and initialize the structures/ 69 * entries corresponding to basic recipes. 70 */ 71 enum ice_status 72 ice_init_def_sw_recp(struct ice_hw *hw, struct ice_sw_recipe **recp_list) 73 { 74 struct ice_sw_recipe *recps; 75 u8 i; 76 77 recps = (struct ice_sw_recipe *) 78 ice_calloc(hw, ICE_MAX_NUM_RECIPES, sizeof(*recps)); 79 if (!recps) 80 return ICE_ERR_NO_MEMORY; 81 82 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 83 recps[i].root_rid = i; 84 INIT_LIST_HEAD(&recps[i].filt_rules); 85 INIT_LIST_HEAD(&recps[i].filt_replay_rules); 86 INIT_LIST_HEAD(&recps[i].rg_list); 87 ice_init_lock(&recps[i].filt_rule_lock); 88 } 89 90 *recp_list = recps; 91 92 return ICE_SUCCESS; 93 } 94 95 /** 96 * ice_aq_get_sw_cfg - get switch configuration 97 * @hw: pointer to the hardware structure 98 * @buf: pointer to the result buffer 99 * @buf_size: length of the buffer available for response 100 * @req_desc: pointer to requested descriptor 101 * @num_elems: pointer to number of elements 102 * @cd: pointer to command details structure or NULL 103 * 104 * Get switch configuration (0x0200) to be placed in buf. 105 * This admin command returns information such as initial VSI/port number 106 * and switch ID it belongs to. 107 * 108 * NOTE: *req_desc is both an input/output parameter. 109 * The caller of this function first calls this function with *request_desc set 110 * to 0. If the response from f/w has *req_desc set to 0, all the switch 111 * configuration information has been returned; if non-zero (meaning not all 112 * the information was returned), the caller should call this function again 113 * with *req_desc set to the previous value returned by f/w to get the 114 * next block of switch configuration information. 115 * 116 * *num_elems is output only parameter. This reflects the number of elements 117 * in response buffer. The caller of this function to use *num_elems while 118 * parsing the response buffer. 119 */ 120 static enum ice_status 121 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf, 122 u16 buf_size, u16 *req_desc, u16 *num_elems, 123 struct ice_sq_cd *cd) 124 { 125 struct ice_aqc_get_sw_cfg *cmd; 126 struct ice_aq_desc desc; 127 enum ice_status status; 128 129 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg); 130 cmd = &desc.params.get_sw_conf; 131 cmd->element = CPU_TO_LE16(*req_desc); 132 133 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 134 if (!status) { 135 *req_desc = LE16_TO_CPU(cmd->element); 136 *num_elems = LE16_TO_CPU(cmd->num_elems); 137 } 138 139 return status; 140 } 141 142 /** 143 * ice_alloc_rss_global_lut - allocate a RSS global LUT 144 * @hw: pointer to the HW struct 145 * @shared_res: true to allocate as a shared resource and false to allocate as a dedicated resource 146 * @global_lut_id: output parameter for the RSS global LUT's ID 147 */ 148 enum ice_status ice_alloc_rss_global_lut(struct ice_hw *hw, bool shared_res, u16 *global_lut_id) 149 { 150 struct ice_aqc_alloc_free_res_elem *sw_buf; 151 enum ice_status status; 152 u16 buf_len; 153 154 buf_len = ice_struct_size(sw_buf, elem, 1); 155 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); 156 if (!sw_buf) 157 return ICE_ERR_NO_MEMORY; 158 159 sw_buf->num_elems = CPU_TO_LE16(1); 160 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH | 161 (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED : 162 ICE_AQC_RES_TYPE_FLAG_DEDICATED)); 163 164 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, ice_aqc_opc_alloc_res, NULL); 165 if (status) { 166 ice_debug(hw, ICE_DBG_RES, "Failed to allocate %s RSS global LUT, status %d\n", 167 shared_res ? "shared" : "dedicated", status); 168 goto ice_alloc_global_lut_exit; 169 } 170 171 *global_lut_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp); 172 173 ice_alloc_global_lut_exit: 174 ice_free(hw, sw_buf); 175 return status; 176 } 177 178 /** 179 * ice_free_rss_global_lut - free a RSS global LUT 180 * @hw: pointer to the HW struct 181 * @global_lut_id: ID of the RSS global LUT to free 182 */ 183 enum ice_status ice_free_rss_global_lut(struct ice_hw *hw, u16 global_lut_id) 184 { 185 struct ice_aqc_alloc_free_res_elem *sw_buf; 186 u16 buf_len, num_elems = 1; 187 enum ice_status status; 188 189 buf_len = ice_struct_size(sw_buf, elem, num_elems); 190 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); 191 if (!sw_buf) 192 return ICE_ERR_NO_MEMORY; 193 194 sw_buf->num_elems = CPU_TO_LE16(num_elems); 195 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH); 196 sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(global_lut_id); 197 198 status = ice_aq_alloc_free_res(hw, num_elems, sw_buf, buf_len, ice_aqc_opc_free_res, NULL); 199 if (status) 200 ice_debug(hw, ICE_DBG_RES, "Failed to free RSS global LUT %d, status %d\n", 201 global_lut_id, status); 202 203 ice_free(hw, sw_buf); 204 return status; 205 } 206 207 /** 208 * ice_alloc_sw - allocate resources specific to switch 209 * @hw: pointer to the HW struct 210 * @ena_stats: true to turn on VEB stats 211 * @shared_res: true for shared resource, false for dedicated resource 212 * @sw_id: switch ID returned 213 * @counter_id: VEB counter ID returned 214 * 215 * allocates switch resources (SWID and VEB counter) (0x0208) 216 */ 217 enum ice_status 218 ice_alloc_sw(struct ice_hw *hw, bool ena_stats, bool shared_res, u16 *sw_id, 219 u16 *counter_id) 220 { 221 struct ice_aqc_alloc_free_res_elem *sw_buf; 222 struct ice_aqc_res_elem *sw_ele; 223 enum ice_status status; 224 u16 buf_len; 225 226 buf_len = ice_struct_size(sw_buf, elem, 1); 227 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); 228 if (!sw_buf) 229 return ICE_ERR_NO_MEMORY; 230 231 /* Prepare buffer for switch ID. 232 * The number of resource entries in buffer is passed as 1 since only a 233 * single switch/VEB instance is allocated, and hence a single sw_id 234 * is requested. 235 */ 236 sw_buf->num_elems = CPU_TO_LE16(1); 237 sw_buf->res_type = 238 CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID | 239 (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED : 240 ICE_AQC_RES_TYPE_FLAG_DEDICATED)); 241 242 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, 243 ice_aqc_opc_alloc_res, NULL); 244 245 if (status) 246 goto ice_alloc_sw_exit; 247 248 sw_ele = &sw_buf->elem[0]; 249 *sw_id = LE16_TO_CPU(sw_ele->e.sw_resp); 250 251 if (ena_stats) { 252 /* Prepare buffer for VEB Counter */ 253 enum ice_adminq_opc opc = ice_aqc_opc_alloc_res; 254 struct ice_aqc_alloc_free_res_elem *counter_buf; 255 struct ice_aqc_res_elem *counter_ele; 256 257 counter_buf = (struct ice_aqc_alloc_free_res_elem *) 258 ice_malloc(hw, buf_len); 259 if (!counter_buf) { 260 status = ICE_ERR_NO_MEMORY; 261 goto ice_alloc_sw_exit; 262 } 263 264 /* The number of resource entries in buffer is passed as 1 since 265 * only a single switch/VEB instance is allocated, and hence a 266 * single VEB counter is requested. 267 */ 268 counter_buf->num_elems = CPU_TO_LE16(1); 269 counter_buf->res_type = 270 CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER | 271 ICE_AQC_RES_TYPE_FLAG_DEDICATED); 272 status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len, 273 opc, NULL); 274 275 if (status) { 276 ice_free(hw, counter_buf); 277 goto ice_alloc_sw_exit; 278 } 279 counter_ele = &counter_buf->elem[0]; 280 *counter_id = LE16_TO_CPU(counter_ele->e.sw_resp); 281 ice_free(hw, counter_buf); 282 } 283 284 ice_alloc_sw_exit: 285 ice_free(hw, sw_buf); 286 return status; 287 } 288 289 /** 290 * ice_free_sw - free resources specific to switch 291 * @hw: pointer to the HW struct 292 * @sw_id: switch ID returned 293 * @counter_id: VEB counter ID returned 294 * 295 * free switch resources (SWID and VEB counter) (0x0209) 296 * 297 * NOTE: This function frees multiple resources. It continues 298 * releasing other resources even after it encounters error. 299 * The error code returned is the last error it encountered. 300 */ 301 enum ice_status ice_free_sw(struct ice_hw *hw, u16 sw_id, u16 counter_id) 302 { 303 struct ice_aqc_alloc_free_res_elem *sw_buf, *counter_buf; 304 enum ice_status status, ret_status; 305 u16 buf_len; 306 307 buf_len = ice_struct_size(sw_buf, elem, 1); 308 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); 309 if (!sw_buf) 310 return ICE_ERR_NO_MEMORY; 311 312 /* Prepare buffer to free for switch ID res. 313 * The number of resource entries in buffer is passed as 1 since only a 314 * single switch/VEB instance is freed, and hence a single sw_id 315 * is released. 316 */ 317 sw_buf->num_elems = CPU_TO_LE16(1); 318 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID); 319 sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(sw_id); 320 321 ret_status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, 322 ice_aqc_opc_free_res, NULL); 323 324 if (ret_status) 325 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n"); 326 327 /* Prepare buffer to free for VEB Counter resource */ 328 counter_buf = (struct ice_aqc_alloc_free_res_elem *) 329 ice_malloc(hw, buf_len); 330 if (!counter_buf) { 331 ice_free(hw, sw_buf); 332 return ICE_ERR_NO_MEMORY; 333 } 334 335 /* The number of resource entries in buffer is passed as 1 since only a 336 * single switch/VEB instance is freed, and hence a single VEB counter 337 * is released 338 */ 339 counter_buf->num_elems = CPU_TO_LE16(1); 340 counter_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER); 341 counter_buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id); 342 343 status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len, 344 ice_aqc_opc_free_res, NULL); 345 if (status) { 346 ice_debug(hw, ICE_DBG_SW, "VEB counter resource could not be freed\n"); 347 ret_status = status; 348 } 349 350 ice_free(hw, counter_buf); 351 ice_free(hw, sw_buf); 352 return ret_status; 353 } 354 355 /** 356 * ice_aq_add_vsi 357 * @hw: pointer to the HW struct 358 * @vsi_ctx: pointer to a VSI context struct 359 * @cd: pointer to command details structure or NULL 360 * 361 * Add a VSI context to the hardware (0x0210) 362 */ 363 enum ice_status 364 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 365 struct ice_sq_cd *cd) 366 { 367 struct ice_aqc_add_update_free_vsi_resp *res; 368 struct ice_aqc_add_get_update_free_vsi *cmd; 369 struct ice_aq_desc desc; 370 enum ice_status status; 371 372 cmd = &desc.params.vsi_cmd; 373 res = &desc.params.add_update_free_vsi_res; 374 375 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi); 376 377 if (!vsi_ctx->alloc_from_pool) 378 cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | 379 ICE_AQ_VSI_IS_VALID); 380 cmd->vf_id = vsi_ctx->vf_num; 381 382 cmd->vsi_flags = CPU_TO_LE16(vsi_ctx->flags); 383 384 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 385 386 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 387 sizeof(vsi_ctx->info), cd); 388 389 if (!status) { 390 vsi_ctx->vsi_num = LE16_TO_CPU(res->vsi_num) & ICE_AQ_VSI_NUM_M; 391 vsi_ctx->vsis_allocd = LE16_TO_CPU(res->vsi_used); 392 vsi_ctx->vsis_unallocated = LE16_TO_CPU(res->vsi_free); 393 } 394 395 return status; 396 } 397 398 /** 399 * ice_aq_free_vsi 400 * @hw: pointer to the HW struct 401 * @vsi_ctx: pointer to a VSI context struct 402 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 403 * @cd: pointer to command details structure or NULL 404 * 405 * Free VSI context info from hardware (0x0213) 406 */ 407 enum ice_status 408 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 409 bool keep_vsi_alloc, struct ice_sq_cd *cd) 410 { 411 struct ice_aqc_add_update_free_vsi_resp *resp; 412 struct ice_aqc_add_get_update_free_vsi *cmd; 413 struct ice_aq_desc desc; 414 enum ice_status status; 415 416 cmd = &desc.params.vsi_cmd; 417 resp = &desc.params.add_update_free_vsi_res; 418 419 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi); 420 421 cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 422 if (keep_vsi_alloc) 423 cmd->cmd_flags = CPU_TO_LE16(ICE_AQ_VSI_KEEP_ALLOC); 424 425 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 426 if (!status) { 427 vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used); 428 vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free); 429 } 430 431 return status; 432 } 433 434 /** 435 * ice_aq_update_vsi 436 * @hw: pointer to the HW struct 437 * @vsi_ctx: pointer to a VSI context struct 438 * @cd: pointer to command details structure or NULL 439 * 440 * Update VSI context in the hardware (0x0211) 441 */ 442 enum ice_status 443 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 444 struct ice_sq_cd *cd) 445 { 446 struct ice_aqc_add_update_free_vsi_resp *resp; 447 struct ice_aqc_add_get_update_free_vsi *cmd; 448 struct ice_aq_desc desc; 449 enum ice_status status; 450 451 cmd = &desc.params.vsi_cmd; 452 resp = &desc.params.add_update_free_vsi_res; 453 454 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi); 455 456 cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 457 458 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 459 460 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 461 sizeof(vsi_ctx->info), cd); 462 463 if (!status) { 464 vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used); 465 vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free); 466 } 467 468 return status; 469 } 470 471 /** 472 * ice_is_vsi_valid - check whether the VSI is valid or not 473 * @hw: pointer to the HW struct 474 * @vsi_handle: VSI handle 475 * 476 * check whether the VSI is valid or not 477 */ 478 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle) 479 { 480 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle]; 481 } 482 483 /** 484 * ice_get_hw_vsi_num - return the HW VSI number 485 * @hw: pointer to the HW struct 486 * @vsi_handle: VSI handle 487 * 488 * return the HW VSI number 489 * Caution: call this function only if VSI is valid (ice_is_vsi_valid) 490 */ 491 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle) 492 { 493 return hw->vsi_ctx[vsi_handle]->vsi_num; 494 } 495 496 /** 497 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle 498 * @hw: pointer to the HW struct 499 * @vsi_handle: VSI handle 500 * 501 * return the VSI context entry for a given VSI handle 502 */ 503 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 504 { 505 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle]; 506 } 507 508 /** 509 * ice_save_vsi_ctx - save the VSI context for a given VSI handle 510 * @hw: pointer to the HW struct 511 * @vsi_handle: VSI handle 512 * @vsi: VSI context pointer 513 * 514 * save the VSI context entry for a given VSI handle 515 */ 516 static void 517 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi) 518 { 519 hw->vsi_ctx[vsi_handle] = vsi; 520 } 521 522 /** 523 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs 524 * @hw: pointer to the HW struct 525 * @vsi_handle: VSI handle 526 */ 527 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle) 528 { 529 struct ice_vsi_ctx *vsi; 530 u8 i; 531 532 vsi = ice_get_vsi_ctx(hw, vsi_handle); 533 if (!vsi) 534 return; 535 ice_for_each_traffic_class(i) { 536 if (vsi->lan_q_ctx[i]) { 537 ice_free(hw, vsi->lan_q_ctx[i]); 538 vsi->lan_q_ctx[i] = NULL; 539 } 540 } 541 } 542 543 /** 544 * ice_clear_vsi_ctx - clear the VSI context entry 545 * @hw: pointer to the HW struct 546 * @vsi_handle: VSI handle 547 * 548 * clear the VSI context entry 549 */ 550 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 551 { 552 struct ice_vsi_ctx *vsi; 553 554 vsi = ice_get_vsi_ctx(hw, vsi_handle); 555 if (vsi) { 556 ice_clear_vsi_q_ctx(hw, vsi_handle); 557 ice_free(hw, vsi); 558 hw->vsi_ctx[vsi_handle] = NULL; 559 } 560 } 561 562 /** 563 * ice_clear_all_vsi_ctx - clear all the VSI context entries 564 * @hw: pointer to the HW struct 565 */ 566 void ice_clear_all_vsi_ctx(struct ice_hw *hw) 567 { 568 u16 i; 569 570 for (i = 0; i < ICE_MAX_VSI; i++) 571 ice_clear_vsi_ctx(hw, i); 572 } 573 574 /** 575 * ice_add_vsi - add VSI context to the hardware and VSI handle list 576 * @hw: pointer to the HW struct 577 * @vsi_handle: unique VSI handle provided by drivers 578 * @vsi_ctx: pointer to a VSI context struct 579 * @cd: pointer to command details structure or NULL 580 * 581 * Add a VSI context to the hardware also add it into the VSI handle list. 582 * If this function gets called after reset for existing VSIs then update 583 * with the new HW VSI number in the corresponding VSI handle list entry. 584 */ 585 enum ice_status 586 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 587 struct ice_sq_cd *cd) 588 { 589 struct ice_vsi_ctx *tmp_vsi_ctx; 590 enum ice_status status; 591 592 if (vsi_handle >= ICE_MAX_VSI) 593 return ICE_ERR_PARAM; 594 status = ice_aq_add_vsi(hw, vsi_ctx, cd); 595 if (status) 596 return status; 597 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 598 if (!tmp_vsi_ctx) { 599 /* Create a new VSI context */ 600 tmp_vsi_ctx = (struct ice_vsi_ctx *) 601 ice_malloc(hw, sizeof(*tmp_vsi_ctx)); 602 if (!tmp_vsi_ctx) { 603 ice_aq_free_vsi(hw, vsi_ctx, false, cd); 604 return ICE_ERR_NO_MEMORY; 605 } 606 *tmp_vsi_ctx = *vsi_ctx; 607 608 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx); 609 } else { 610 /* update with new HW VSI num */ 611 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num; 612 } 613 614 return ICE_SUCCESS; 615 } 616 617 /** 618 * ice_free_vsi- free VSI context from hardware and VSI handle list 619 * @hw: pointer to the HW struct 620 * @vsi_handle: unique VSI handle 621 * @vsi_ctx: pointer to a VSI context struct 622 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 623 * @cd: pointer to command details structure or NULL 624 * 625 * Free VSI context info from hardware as well as from VSI handle list 626 */ 627 enum ice_status 628 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 629 bool keep_vsi_alloc, struct ice_sq_cd *cd) 630 { 631 enum ice_status status; 632 633 if (!ice_is_vsi_valid(hw, vsi_handle)) 634 return ICE_ERR_PARAM; 635 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 636 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd); 637 if (!status) 638 ice_clear_vsi_ctx(hw, vsi_handle); 639 return status; 640 } 641 642 /** 643 * ice_update_vsi 644 * @hw: pointer to the HW struct 645 * @vsi_handle: unique VSI handle 646 * @vsi_ctx: pointer to a VSI context struct 647 * @cd: pointer to command details structure or NULL 648 * 649 * Update VSI context in the hardware 650 */ 651 enum ice_status 652 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 653 struct ice_sq_cd *cd) 654 { 655 if (!ice_is_vsi_valid(hw, vsi_handle)) 656 return ICE_ERR_PARAM; 657 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 658 return ice_aq_update_vsi(hw, vsi_ctx, cd); 659 } 660 661 /** 662 * ice_aq_get_vsi_params 663 * @hw: pointer to the HW struct 664 * @vsi_ctx: pointer to a VSI context struct 665 * @cd: pointer to command details structure or NULL 666 * 667 * Get VSI context info from hardware (0x0212) 668 */ 669 enum ice_status 670 ice_aq_get_vsi_params(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 671 struct ice_sq_cd *cd) 672 { 673 struct ice_aqc_add_get_update_free_vsi *cmd; 674 struct ice_aqc_get_vsi_resp *resp; 675 struct ice_aq_desc desc; 676 enum ice_status status; 677 678 cmd = &desc.params.vsi_cmd; 679 resp = &desc.params.get_vsi_resp; 680 681 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_vsi_params); 682 683 cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 684 685 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 686 sizeof(vsi_ctx->info), cd); 687 if (!status) { 688 vsi_ctx->vsi_num = LE16_TO_CPU(resp->vsi_num) & 689 ICE_AQ_VSI_NUM_M; 690 vsi_ctx->vf_num = resp->vf_id; 691 vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used); 692 vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free); 693 } 694 695 return status; 696 } 697 698 /** 699 * ice_aq_add_update_mir_rule - add/update a mirror rule 700 * @hw: pointer to the HW struct 701 * @rule_type: Rule Type 702 * @dest_vsi: VSI number to which packets will be mirrored 703 * @count: length of the list 704 * @mr_buf: buffer for list of mirrored VSI numbers 705 * @cd: pointer to command details structure or NULL 706 * @rule_id: Rule ID 707 * 708 * Add/Update Mirror Rule (0x260). 709 */ 710 enum ice_status 711 ice_aq_add_update_mir_rule(struct ice_hw *hw, u16 rule_type, u16 dest_vsi, 712 u16 count, struct ice_mir_rule_buf *mr_buf, 713 struct ice_sq_cd *cd, u16 *rule_id) 714 { 715 struct ice_aqc_add_update_mir_rule *cmd; 716 struct ice_aq_desc desc; 717 enum ice_status status; 718 __le16 *mr_list = NULL; 719 u16 buf_size = 0; 720 721 switch (rule_type) { 722 case ICE_AQC_RULE_TYPE_VPORT_INGRESS: 723 case ICE_AQC_RULE_TYPE_VPORT_EGRESS: 724 /* Make sure count and mr_buf are set for these rule_types */ 725 if (!(count && mr_buf)) 726 return ICE_ERR_PARAM; 727 728 buf_size = count * sizeof(__le16); 729 mr_list = (_FORCE_ __le16 *)ice_malloc(hw, buf_size); 730 if (!mr_list) 731 return ICE_ERR_NO_MEMORY; 732 break; 733 case ICE_AQC_RULE_TYPE_PPORT_INGRESS: 734 case ICE_AQC_RULE_TYPE_PPORT_EGRESS: 735 /* Make sure count and mr_buf are not set for these 736 * rule_types 737 */ 738 if (count || mr_buf) 739 return ICE_ERR_PARAM; 740 break; 741 default: 742 ice_debug(hw, ICE_DBG_SW, "Error due to unsupported rule_type %u\n", rule_type); 743 return ICE_ERR_OUT_OF_RANGE; 744 } 745 746 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_update_mir_rule); 747 748 /* Pre-process 'mr_buf' items for add/update of virtual port 749 * ingress/egress mirroring (but not physical port ingress/egress 750 * mirroring) 751 */ 752 if (mr_buf) { 753 int i; 754 755 for (i = 0; i < count; i++) { 756 u16 id; 757 758 id = mr_buf[i].vsi_idx & ICE_AQC_RULE_MIRRORED_VSI_M; 759 760 /* Validate specified VSI number, make sure it is less 761 * than ICE_MAX_VSI, if not return with error. 762 */ 763 if (id >= ICE_MAX_VSI) { 764 ice_debug(hw, ICE_DBG_SW, "Error VSI index (%u) out-of-range\n", 765 id); 766 ice_free(hw, mr_list); 767 return ICE_ERR_OUT_OF_RANGE; 768 } 769 770 /* add VSI to mirror rule */ 771 if (mr_buf[i].add) 772 mr_list[i] = 773 CPU_TO_LE16(id | ICE_AQC_RULE_ACT_M); 774 else /* remove VSI from mirror rule */ 775 mr_list[i] = CPU_TO_LE16(id); 776 } 777 } 778 779 cmd = &desc.params.add_update_rule; 780 if ((*rule_id) != ICE_INVAL_MIRROR_RULE_ID) 781 cmd->rule_id = CPU_TO_LE16(((*rule_id) & ICE_AQC_RULE_ID_M) | 782 ICE_AQC_RULE_ID_VALID_M); 783 cmd->rule_type = CPU_TO_LE16(rule_type & ICE_AQC_RULE_TYPE_M); 784 cmd->num_entries = CPU_TO_LE16(count); 785 cmd->dest = CPU_TO_LE16(dest_vsi); 786 787 status = ice_aq_send_cmd(hw, &desc, mr_list, buf_size, cd); 788 if (!status) 789 *rule_id = LE16_TO_CPU(cmd->rule_id) & ICE_AQC_RULE_ID_M; 790 791 ice_free(hw, mr_list); 792 793 return status; 794 } 795 796 /** 797 * ice_aq_delete_mir_rule - delete a mirror rule 798 * @hw: pointer to the HW struct 799 * @rule_id: Mirror rule ID (to be deleted) 800 * @keep_allocd: if set, the VSI stays part of the PF allocated res, 801 * otherwise it is returned to the shared pool 802 * @cd: pointer to command details structure or NULL 803 * 804 * Delete Mirror Rule (0x261). 805 */ 806 enum ice_status 807 ice_aq_delete_mir_rule(struct ice_hw *hw, u16 rule_id, bool keep_allocd, 808 struct ice_sq_cd *cd) 809 { 810 struct ice_aqc_delete_mir_rule *cmd; 811 struct ice_aq_desc desc; 812 813 /* rule_id should be in the range 0...63 */ 814 if (rule_id >= ICE_MAX_NUM_MIRROR_RULES) 815 return ICE_ERR_OUT_OF_RANGE; 816 817 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_del_mir_rule); 818 819 cmd = &desc.params.del_rule; 820 rule_id |= ICE_AQC_RULE_ID_VALID_M; 821 cmd->rule_id = CPU_TO_LE16(rule_id); 822 823 if (keep_allocd) 824 cmd->flags = CPU_TO_LE16(ICE_AQC_FLAG_KEEP_ALLOCD_M); 825 826 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 827 } 828 829 /** 830 * ice_aq_alloc_free_vsi_list 831 * @hw: pointer to the HW struct 832 * @vsi_list_id: VSI list ID returned or used for lookup 833 * @lkup_type: switch rule filter lookup type 834 * @opc: switch rules population command type - pass in the command opcode 835 * 836 * allocates or free a VSI list resource 837 */ 838 static enum ice_status 839 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id, 840 enum ice_sw_lkup_type lkup_type, 841 enum ice_adminq_opc opc) 842 { 843 struct ice_aqc_alloc_free_res_elem *sw_buf; 844 struct ice_aqc_res_elem *vsi_ele; 845 enum ice_status status; 846 u16 buf_len; 847 848 buf_len = ice_struct_size(sw_buf, elem, 1); 849 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); 850 if (!sw_buf) 851 return ICE_ERR_NO_MEMORY; 852 sw_buf->num_elems = CPU_TO_LE16(1); 853 854 if (lkup_type == ICE_SW_LKUP_MAC || 855 lkup_type == ICE_SW_LKUP_MAC_VLAN || 856 lkup_type == ICE_SW_LKUP_ETHERTYPE || 857 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 858 lkup_type == ICE_SW_LKUP_PROMISC || 859 lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 860 lkup_type == ICE_SW_LKUP_LAST) { 861 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_REP); 862 } else if (lkup_type == ICE_SW_LKUP_VLAN) { 863 sw_buf->res_type = 864 CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE); 865 } else { 866 status = ICE_ERR_PARAM; 867 goto ice_aq_alloc_free_vsi_list_exit; 868 } 869 870 if (opc == ice_aqc_opc_free_res) 871 sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(*vsi_list_id); 872 873 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL); 874 if (status) 875 goto ice_aq_alloc_free_vsi_list_exit; 876 877 if (opc == ice_aqc_opc_alloc_res) { 878 vsi_ele = &sw_buf->elem[0]; 879 *vsi_list_id = LE16_TO_CPU(vsi_ele->e.sw_resp); 880 } 881 882 ice_aq_alloc_free_vsi_list_exit: 883 ice_free(hw, sw_buf); 884 return status; 885 } 886 887 /** 888 * ice_aq_set_storm_ctrl - Sets storm control configuration 889 * @hw: pointer to the HW struct 890 * @bcast_thresh: represents the upper threshold for broadcast storm control 891 * @mcast_thresh: represents the upper threshold for multicast storm control 892 * @ctl_bitmask: storm control knobs 893 * 894 * Sets the storm control configuration (0x0280) 895 */ 896 enum ice_status 897 ice_aq_set_storm_ctrl(struct ice_hw *hw, u32 bcast_thresh, u32 mcast_thresh, 898 u32 ctl_bitmask) 899 { 900 struct ice_aqc_storm_cfg *cmd; 901 struct ice_aq_desc desc; 902 903 cmd = &desc.params.storm_conf; 904 905 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_storm_cfg); 906 907 cmd->bcast_thresh_size = CPU_TO_LE32(bcast_thresh & ICE_AQ_THRESHOLD_M); 908 cmd->mcast_thresh_size = CPU_TO_LE32(mcast_thresh & ICE_AQ_THRESHOLD_M); 909 cmd->storm_ctrl_ctrl = CPU_TO_LE32(ctl_bitmask); 910 911 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 912 } 913 914 /** 915 * ice_aq_get_storm_ctrl - gets storm control configuration 916 * @hw: pointer to the HW struct 917 * @bcast_thresh: represents the upper threshold for broadcast storm control 918 * @mcast_thresh: represents the upper threshold for multicast storm control 919 * @ctl_bitmask: storm control knobs 920 * 921 * Gets the storm control configuration (0x0281) 922 */ 923 enum ice_status 924 ice_aq_get_storm_ctrl(struct ice_hw *hw, u32 *bcast_thresh, u32 *mcast_thresh, 925 u32 *ctl_bitmask) 926 { 927 enum ice_status status; 928 struct ice_aq_desc desc; 929 930 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_storm_cfg); 931 932 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 933 if (!status) { 934 struct ice_aqc_storm_cfg *resp = &desc.params.storm_conf; 935 936 if (bcast_thresh) 937 *bcast_thresh = LE32_TO_CPU(resp->bcast_thresh_size) & 938 ICE_AQ_THRESHOLD_M; 939 if (mcast_thresh) 940 *mcast_thresh = LE32_TO_CPU(resp->mcast_thresh_size) & 941 ICE_AQ_THRESHOLD_M; 942 if (ctl_bitmask) 943 *ctl_bitmask = LE32_TO_CPU(resp->storm_ctrl_ctrl); 944 } 945 946 return status; 947 } 948 949 /** 950 * ice_aq_sw_rules - add/update/remove switch rules 951 * @hw: pointer to the HW struct 952 * @rule_list: pointer to switch rule population list 953 * @rule_list_sz: total size of the rule list in bytes 954 * @num_rules: number of switch rules in the rule_list 955 * @opc: switch rules population command type - pass in the command opcode 956 * @cd: pointer to command details structure or NULL 957 * 958 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware 959 */ 960 static enum ice_status 961 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz, 962 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd) 963 { 964 struct ice_aq_desc desc; 965 enum ice_status status; 966 967 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 968 969 if (opc != ice_aqc_opc_add_sw_rules && 970 opc != ice_aqc_opc_update_sw_rules && 971 opc != ice_aqc_opc_remove_sw_rules) 972 return ICE_ERR_PARAM; 973 974 ice_fill_dflt_direct_cmd_desc(&desc, opc); 975 976 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 977 desc.params.sw_rules.num_rules_fltr_entry_index = 978 CPU_TO_LE16(num_rules); 979 status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd); 980 if (opc != ice_aqc_opc_add_sw_rules && 981 hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT) 982 status = ICE_ERR_DOES_NOT_EXIST; 983 984 return status; 985 } 986 987 /* ice_init_port_info - Initialize port_info with switch configuration data 988 * @pi: pointer to port_info 989 * @vsi_port_num: VSI number or port number 990 * @type: Type of switch element (port or VSI) 991 * @swid: switch ID of the switch the element is attached to 992 * @pf_vf_num: PF or VF number 993 * @is_vf: true if the element is a VF, false otherwise 994 */ 995 static void 996 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type, 997 u16 swid, u16 pf_vf_num, bool is_vf) 998 { 999 switch (type) { 1000 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT: 1001 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK); 1002 pi->sw_id = swid; 1003 pi->pf_vf_num = pf_vf_num; 1004 pi->is_vf = is_vf; 1005 pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL; 1006 pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL; 1007 break; 1008 default: 1009 ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n"); 1010 break; 1011 } 1012 } 1013 1014 /* ice_get_initial_sw_cfg - Get initial port and default VSI data 1015 * @hw: pointer to the hardware structure 1016 */ 1017 enum ice_status ice_get_initial_sw_cfg(struct ice_hw *hw) 1018 { 1019 struct ice_aqc_get_sw_cfg_resp_elem *rbuf; 1020 enum ice_status status; 1021 u8 num_total_ports; 1022 u16 req_desc = 0; 1023 u16 num_elems; 1024 u8 j = 0; 1025 u16 i; 1026 1027 num_total_ports = 1; 1028 1029 rbuf = (struct ice_aqc_get_sw_cfg_resp_elem *) 1030 ice_malloc(hw, ICE_SW_CFG_MAX_BUF_LEN); 1031 1032 if (!rbuf) 1033 return ICE_ERR_NO_MEMORY; 1034 1035 /* Multiple calls to ice_aq_get_sw_cfg may be required 1036 * to get all the switch configuration information. The need 1037 * for additional calls is indicated by ice_aq_get_sw_cfg 1038 * writing a non-zero value in req_desc 1039 */ 1040 do { 1041 struct ice_aqc_get_sw_cfg_resp_elem *ele; 1042 1043 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN, 1044 &req_desc, &num_elems, NULL); 1045 1046 if (status) 1047 break; 1048 1049 for (i = 0, ele = rbuf; i < num_elems; i++, ele++) { 1050 u16 pf_vf_num, swid, vsi_port_num; 1051 bool is_vf = false; 1052 u8 res_type; 1053 1054 vsi_port_num = LE16_TO_CPU(ele->vsi_port_num) & 1055 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M; 1056 1057 pf_vf_num = LE16_TO_CPU(ele->pf_vf_num) & 1058 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M; 1059 1060 swid = LE16_TO_CPU(ele->swid); 1061 1062 if (LE16_TO_CPU(ele->pf_vf_num) & 1063 ICE_AQC_GET_SW_CONF_RESP_IS_VF) 1064 is_vf = true; 1065 1066 res_type = (u8)(LE16_TO_CPU(ele->vsi_port_num) >> 1067 ICE_AQC_GET_SW_CONF_RESP_TYPE_S); 1068 1069 switch (res_type) { 1070 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT: 1071 case ICE_AQC_GET_SW_CONF_RESP_VIRT_PORT: 1072 if (j == num_total_ports) { 1073 ice_debug(hw, ICE_DBG_SW, "more ports than expected\n"); 1074 status = ICE_ERR_CFG; 1075 goto out; 1076 } 1077 ice_init_port_info(hw->port_info, 1078 vsi_port_num, res_type, swid, 1079 pf_vf_num, is_vf); 1080 j++; 1081 break; 1082 default: 1083 break; 1084 } 1085 } 1086 } while (req_desc && !status); 1087 1088 out: 1089 ice_free(hw, rbuf); 1090 return status; 1091 } 1092 1093 /** 1094 * ice_fill_sw_info - Helper function to populate lb_en and lan_en 1095 * @hw: pointer to the hardware structure 1096 * @fi: filter info structure to fill/update 1097 * 1098 * This helper function populates the lb_en and lan_en elements of the provided 1099 * ice_fltr_info struct using the switch's type and characteristics of the 1100 * switch rule being configured. 1101 */ 1102 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi) 1103 { 1104 fi->lb_en = false; 1105 fi->lan_en = false; 1106 if ((fi->flag & ICE_FLTR_TX) && 1107 (fi->fltr_act == ICE_FWD_TO_VSI || 1108 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 1109 fi->fltr_act == ICE_FWD_TO_Q || 1110 fi->fltr_act == ICE_FWD_TO_QGRP)) { 1111 /* Setting LB for prune actions will result in replicated 1112 * packets to the internal switch that will be dropped. 1113 */ 1114 if (fi->lkup_type != ICE_SW_LKUP_VLAN) 1115 fi->lb_en = true; 1116 1117 /* Set lan_en to TRUE if 1118 * 1. The switch is a VEB AND 1119 * 2 1120 * 2.1 The lookup is a directional lookup like ethertype, 1121 * promiscuous, ethertype-MAC, promiscuous-VLAN 1122 * and default-port OR 1123 * 2.2 The lookup is VLAN, OR 1124 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR 1125 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC. 1126 * 1127 * OR 1128 * 1129 * The switch is a VEPA. 1130 * 1131 * In all other cases, the LAN enable has to be set to false. 1132 */ 1133 if (hw->evb_veb) { 1134 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE || 1135 fi->lkup_type == ICE_SW_LKUP_PROMISC || 1136 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 1137 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 1138 fi->lkup_type == ICE_SW_LKUP_DFLT || 1139 fi->lkup_type == ICE_SW_LKUP_VLAN || 1140 (fi->lkup_type == ICE_SW_LKUP_MAC && 1141 !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)) || 1142 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN && 1143 !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr))) 1144 fi->lan_en = true; 1145 } else { 1146 fi->lan_en = true; 1147 } 1148 } 1149 } 1150 1151 /** 1152 * ice_fill_sw_rule - Helper function to fill switch rule structure 1153 * @hw: pointer to the hardware structure 1154 * @f_info: entry containing packet forwarding information 1155 * @s_rule: switch rule structure to be filled in based on mac_entry 1156 * @opc: switch rules population command type - pass in the command opcode 1157 */ 1158 static void 1159 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info, 1160 struct ice_aqc_sw_rules_elem *s_rule, enum ice_adminq_opc opc) 1161 { 1162 u16 vlan_id = ICE_MAX_VLAN_ID + 1; 1163 u16 vlan_tpid = ICE_ETH_P_8021Q; 1164 void *daddr = NULL; 1165 u16 eth_hdr_sz; 1166 u8 *eth_hdr; 1167 u32 act = 0; 1168 __be16 *off; 1169 u8 q_rgn; 1170 1171 if (opc == ice_aqc_opc_remove_sw_rules) { 1172 s_rule->pdata.lkup_tx_rx.act = 0; 1173 s_rule->pdata.lkup_tx_rx.index = 1174 CPU_TO_LE16(f_info->fltr_rule_id); 1175 s_rule->pdata.lkup_tx_rx.hdr_len = 0; 1176 return; 1177 } 1178 1179 eth_hdr_sz = sizeof(dummy_eth_header); 1180 eth_hdr = s_rule->pdata.lkup_tx_rx.hdr; 1181 1182 /* initialize the ether header with a dummy header */ 1183 ice_memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz, ICE_NONDMA_TO_NONDMA); 1184 ice_fill_sw_info(hw, f_info); 1185 1186 switch (f_info->fltr_act) { 1187 case ICE_FWD_TO_VSI: 1188 act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) & 1189 ICE_SINGLE_ACT_VSI_ID_M; 1190 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 1191 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 1192 ICE_SINGLE_ACT_VALID_BIT; 1193 break; 1194 case ICE_FWD_TO_VSI_LIST: 1195 act |= ICE_SINGLE_ACT_VSI_LIST; 1196 act |= (f_info->fwd_id.vsi_list_id << 1197 ICE_SINGLE_ACT_VSI_LIST_ID_S) & 1198 ICE_SINGLE_ACT_VSI_LIST_ID_M; 1199 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 1200 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 1201 ICE_SINGLE_ACT_VALID_BIT; 1202 break; 1203 case ICE_FWD_TO_Q: 1204 act |= ICE_SINGLE_ACT_TO_Q; 1205 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 1206 ICE_SINGLE_ACT_Q_INDEX_M; 1207 break; 1208 case ICE_DROP_PACKET: 1209 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | 1210 ICE_SINGLE_ACT_VALID_BIT; 1211 break; 1212 case ICE_FWD_TO_QGRP: 1213 q_rgn = f_info->qgrp_size > 0 ? 1214 (u8)ice_ilog2(f_info->qgrp_size) : 0; 1215 act |= ICE_SINGLE_ACT_TO_Q; 1216 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 1217 ICE_SINGLE_ACT_Q_INDEX_M; 1218 act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) & 1219 ICE_SINGLE_ACT_Q_REGION_M; 1220 break; 1221 default: 1222 return; 1223 } 1224 1225 if (f_info->lb_en) 1226 act |= ICE_SINGLE_ACT_LB_ENABLE; 1227 if (f_info->lan_en) 1228 act |= ICE_SINGLE_ACT_LAN_ENABLE; 1229 1230 switch (f_info->lkup_type) { 1231 case ICE_SW_LKUP_MAC: 1232 daddr = f_info->l_data.mac.mac_addr; 1233 break; 1234 case ICE_SW_LKUP_VLAN: 1235 vlan_id = f_info->l_data.vlan.vlan_id; 1236 if (f_info->l_data.vlan.tpid_valid) 1237 vlan_tpid = f_info->l_data.vlan.tpid; 1238 if (f_info->fltr_act == ICE_FWD_TO_VSI || 1239 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { 1240 act |= ICE_SINGLE_ACT_PRUNE; 1241 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS; 1242 } 1243 break; 1244 case ICE_SW_LKUP_ETHERTYPE_MAC: 1245 daddr = f_info->l_data.ethertype_mac.mac_addr; 1246 /* fall-through */ 1247 case ICE_SW_LKUP_ETHERTYPE: 1248 off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); 1249 *off = CPU_TO_BE16(f_info->l_data.ethertype_mac.ethertype); 1250 break; 1251 case ICE_SW_LKUP_MAC_VLAN: 1252 daddr = f_info->l_data.mac_vlan.mac_addr; 1253 vlan_id = f_info->l_data.mac_vlan.vlan_id; 1254 break; 1255 case ICE_SW_LKUP_PROMISC_VLAN: 1256 vlan_id = f_info->l_data.mac_vlan.vlan_id; 1257 /* fall-through */ 1258 case ICE_SW_LKUP_PROMISC: 1259 daddr = f_info->l_data.mac_vlan.mac_addr; 1260 break; 1261 default: 1262 break; 1263 } 1264 1265 s_rule->type = (f_info->flag & ICE_FLTR_RX) ? 1266 CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_RX) : 1267 CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_TX); 1268 1269 /* Recipe set depending on lookup type */ 1270 s_rule->pdata.lkup_tx_rx.recipe_id = CPU_TO_LE16(f_info->lkup_type); 1271 s_rule->pdata.lkup_tx_rx.src = CPU_TO_LE16(f_info->src); 1272 s_rule->pdata.lkup_tx_rx.act = CPU_TO_LE32(act); 1273 1274 if (daddr) 1275 ice_memcpy(eth_hdr + ICE_ETH_DA_OFFSET, daddr, ETH_ALEN, 1276 ICE_NONDMA_TO_NONDMA); 1277 1278 if (!(vlan_id > ICE_MAX_VLAN_ID)) { 1279 off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET); 1280 *off = CPU_TO_BE16(vlan_id); 1281 off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); 1282 *off = CPU_TO_BE16(vlan_tpid); 1283 } 1284 1285 /* Create the switch rule with the final dummy Ethernet header */ 1286 if (opc != ice_aqc_opc_update_sw_rules) 1287 s_rule->pdata.lkup_tx_rx.hdr_len = CPU_TO_LE16(eth_hdr_sz); 1288 } 1289 1290 /** 1291 * ice_add_marker_act 1292 * @hw: pointer to the hardware structure 1293 * @m_ent: the management entry for which sw marker needs to be added 1294 * @sw_marker: sw marker to tag the Rx descriptor with 1295 * @l_id: large action resource ID 1296 * 1297 * Create a large action to hold software marker and update the switch rule 1298 * entry pointed by m_ent with newly created large action 1299 */ 1300 static enum ice_status 1301 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent, 1302 u16 sw_marker, u16 l_id) 1303 { 1304 struct ice_aqc_sw_rules_elem *lg_act, *rx_tx; 1305 /* For software marker we need 3 large actions 1306 * 1. FWD action: FWD TO VSI or VSI LIST 1307 * 2. GENERIC VALUE action to hold the profile ID 1308 * 3. GENERIC VALUE action to hold the software marker ID 1309 */ 1310 const u16 num_lg_acts = 3; 1311 enum ice_status status; 1312 u16 lg_act_size; 1313 u16 rules_size; 1314 u32 act; 1315 u16 id; 1316 1317 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC) 1318 return ICE_ERR_PARAM; 1319 1320 /* Create two back-to-back switch rules and submit them to the HW using 1321 * one memory buffer: 1322 * 1. Large Action 1323 * 2. Look up Tx Rx 1324 */ 1325 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_lg_acts); 1326 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; 1327 lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rules_size); 1328 if (!lg_act) 1329 return ICE_ERR_NO_MEMORY; 1330 1331 rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size); 1332 1333 /* Fill in the first switch rule i.e. large action */ 1334 lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT); 1335 lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id); 1336 lg_act->pdata.lg_act.size = CPU_TO_LE16(num_lg_acts); 1337 1338 /* First action VSI forwarding or VSI list forwarding depending on how 1339 * many VSIs 1340 */ 1341 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id : 1342 m_ent->fltr_info.fwd_id.hw_vsi_id; 1343 1344 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT; 1345 act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M; 1346 if (m_ent->vsi_count > 1) 1347 act |= ICE_LG_ACT_VSI_LIST; 1348 lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act); 1349 1350 /* Second action descriptor type */ 1351 act = ICE_LG_ACT_GENERIC; 1352 1353 act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M; 1354 lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act); 1355 1356 act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX << 1357 ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M; 1358 1359 /* Third action Marker value */ 1360 act |= ICE_LG_ACT_GENERIC; 1361 act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) & 1362 ICE_LG_ACT_GENERIC_VALUE_M; 1363 1364 lg_act->pdata.lg_act.act[2] = CPU_TO_LE32(act); 1365 1366 /* call the fill switch rule to fill the lookup Tx Rx structure */ 1367 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx, 1368 ice_aqc_opc_update_sw_rules); 1369 1370 /* Update the action to point to the large action ID */ 1371 rx_tx->pdata.lkup_tx_rx.act = 1372 CPU_TO_LE32(ICE_SINGLE_ACT_PTR | 1373 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) & 1374 ICE_SINGLE_ACT_PTR_VAL_M)); 1375 1376 /* Use the filter rule ID of the previously created rule with single 1377 * act. Once the update happens, hardware will treat this as large 1378 * action 1379 */ 1380 rx_tx->pdata.lkup_tx_rx.index = 1381 CPU_TO_LE16(m_ent->fltr_info.fltr_rule_id); 1382 1383 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2, 1384 ice_aqc_opc_update_sw_rules, NULL); 1385 if (!status) { 1386 m_ent->lg_act_idx = l_id; 1387 m_ent->sw_marker_id = sw_marker; 1388 } 1389 1390 ice_free(hw, lg_act); 1391 return status; 1392 } 1393 1394 /** 1395 * ice_add_counter_act - add/update filter rule with counter action 1396 * @hw: pointer to the hardware structure 1397 * @m_ent: the management entry for which counter needs to be added 1398 * @counter_id: VLAN counter ID returned as part of allocate resource 1399 * @l_id: large action resource ID 1400 */ 1401 static enum ice_status 1402 ice_add_counter_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent, 1403 u16 counter_id, u16 l_id) 1404 { 1405 struct ice_aqc_sw_rules_elem *lg_act; 1406 struct ice_aqc_sw_rules_elem *rx_tx; 1407 enum ice_status status; 1408 /* 2 actions will be added while adding a large action counter */ 1409 const int num_acts = 2; 1410 u16 lg_act_size; 1411 u16 rules_size; 1412 u16 f_rule_id; 1413 u32 act; 1414 u16 id; 1415 1416 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC) 1417 return ICE_ERR_PARAM; 1418 1419 /* Create two back-to-back switch rules and submit them to the HW using 1420 * one memory buffer: 1421 * 1. Large Action 1422 * 2. Look up Tx Rx 1423 */ 1424 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_acts); 1425 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; 1426 lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rules_size); 1427 if (!lg_act) 1428 return ICE_ERR_NO_MEMORY; 1429 1430 rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size); 1431 1432 /* Fill in the first switch rule i.e. large action */ 1433 lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT); 1434 lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id); 1435 lg_act->pdata.lg_act.size = CPU_TO_LE16(num_acts); 1436 1437 /* First action VSI forwarding or VSI list forwarding depending on how 1438 * many VSIs 1439 */ 1440 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id : 1441 m_ent->fltr_info.fwd_id.hw_vsi_id; 1442 1443 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT; 1444 act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & 1445 ICE_LG_ACT_VSI_LIST_ID_M; 1446 if (m_ent->vsi_count > 1) 1447 act |= ICE_LG_ACT_VSI_LIST; 1448 lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act); 1449 1450 /* Second action counter ID */ 1451 act = ICE_LG_ACT_STAT_COUNT; 1452 act |= (counter_id << ICE_LG_ACT_STAT_COUNT_S) & 1453 ICE_LG_ACT_STAT_COUNT_M; 1454 lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act); 1455 1456 /* call the fill switch rule to fill the lookup Tx Rx structure */ 1457 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx, 1458 ice_aqc_opc_update_sw_rules); 1459 1460 act = ICE_SINGLE_ACT_PTR; 1461 act |= (l_id << ICE_SINGLE_ACT_PTR_VAL_S) & ICE_SINGLE_ACT_PTR_VAL_M; 1462 rx_tx->pdata.lkup_tx_rx.act = CPU_TO_LE32(act); 1463 1464 /* Use the filter rule ID of the previously created rule with single 1465 * act. Once the update happens, hardware will treat this as large 1466 * action 1467 */ 1468 f_rule_id = m_ent->fltr_info.fltr_rule_id; 1469 rx_tx->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_rule_id); 1470 1471 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2, 1472 ice_aqc_opc_update_sw_rules, NULL); 1473 if (!status) { 1474 m_ent->lg_act_idx = l_id; 1475 m_ent->counter_index = counter_id; 1476 } 1477 1478 ice_free(hw, lg_act); 1479 return status; 1480 } 1481 1482 /** 1483 * ice_create_vsi_list_map 1484 * @hw: pointer to the hardware structure 1485 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping 1486 * @num_vsi: number of VSI handles in the array 1487 * @vsi_list_id: VSI list ID generated as part of allocate resource 1488 * 1489 * Helper function to create a new entry of VSI list ID to VSI mapping 1490 * using the given VSI list ID 1491 */ 1492 static struct ice_vsi_list_map_info * 1493 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 1494 u16 vsi_list_id) 1495 { 1496 struct ice_switch_info *sw = hw->switch_info; 1497 struct ice_vsi_list_map_info *v_map; 1498 int i; 1499 1500 v_map = (struct ice_vsi_list_map_info *)ice_malloc(hw, sizeof(*v_map)); 1501 if (!v_map) 1502 return NULL; 1503 1504 v_map->vsi_list_id = vsi_list_id; 1505 v_map->ref_cnt = 1; 1506 for (i = 0; i < num_vsi; i++) 1507 ice_set_bit(vsi_handle_arr[i], v_map->vsi_map); 1508 1509 LIST_ADD(&v_map->list_entry, &sw->vsi_list_map_head); 1510 return v_map; 1511 } 1512 1513 /** 1514 * ice_update_vsi_list_rule 1515 * @hw: pointer to the hardware structure 1516 * @vsi_handle_arr: array of VSI handles to form a VSI list 1517 * @num_vsi: number of VSI handles in the array 1518 * @vsi_list_id: VSI list ID generated as part of allocate resource 1519 * @remove: Boolean value to indicate if this is a remove action 1520 * @opc: switch rules population command type - pass in the command opcode 1521 * @lkup_type: lookup type of the filter 1522 * 1523 * Call AQ command to add a new switch rule or update existing switch rule 1524 * using the given VSI list ID 1525 */ 1526 static enum ice_status 1527 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 1528 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc, 1529 enum ice_sw_lkup_type lkup_type) 1530 { 1531 struct ice_aqc_sw_rules_elem *s_rule; 1532 enum ice_status status; 1533 u16 s_rule_size; 1534 u16 rule_type; 1535 int i; 1536 1537 if (!num_vsi) 1538 return ICE_ERR_PARAM; 1539 1540 if (lkup_type == ICE_SW_LKUP_MAC || 1541 lkup_type == ICE_SW_LKUP_MAC_VLAN || 1542 lkup_type == ICE_SW_LKUP_ETHERTYPE || 1543 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 1544 lkup_type == ICE_SW_LKUP_PROMISC || 1545 lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 1546 lkup_type == ICE_SW_LKUP_LAST) 1547 rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR : 1548 ICE_AQC_SW_RULES_T_VSI_LIST_SET; 1549 else if (lkup_type == ICE_SW_LKUP_VLAN) 1550 rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR : 1551 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET; 1552 else 1553 return ICE_ERR_PARAM; 1554 1555 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(num_vsi); 1556 s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size); 1557 if (!s_rule) 1558 return ICE_ERR_NO_MEMORY; 1559 for (i = 0; i < num_vsi; i++) { 1560 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) { 1561 status = ICE_ERR_PARAM; 1562 goto exit; 1563 } 1564 /* AQ call requires hw_vsi_id(s) */ 1565 s_rule->pdata.vsi_list.vsi[i] = 1566 CPU_TO_LE16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i])); 1567 } 1568 1569 s_rule->type = CPU_TO_LE16(rule_type); 1570 s_rule->pdata.vsi_list.number_vsi = CPU_TO_LE16(num_vsi); 1571 s_rule->pdata.vsi_list.index = CPU_TO_LE16(vsi_list_id); 1572 1573 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL); 1574 1575 exit: 1576 ice_free(hw, s_rule); 1577 return status; 1578 } 1579 1580 /** 1581 * ice_create_vsi_list_rule - Creates and populates a VSI list rule 1582 * @hw: pointer to the HW struct 1583 * @vsi_handle_arr: array of VSI handles to form a VSI list 1584 * @num_vsi: number of VSI handles in the array 1585 * @vsi_list_id: stores the ID of the VSI list to be created 1586 * @lkup_type: switch rule filter's lookup type 1587 */ 1588 static enum ice_status 1589 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 1590 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type) 1591 { 1592 enum ice_status status; 1593 1594 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type, 1595 ice_aqc_opc_alloc_res); 1596 if (status) 1597 return status; 1598 1599 /* Update the newly created VSI list to include the specified VSIs */ 1600 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi, 1601 *vsi_list_id, false, 1602 ice_aqc_opc_add_sw_rules, lkup_type); 1603 } 1604 1605 /** 1606 * ice_create_pkt_fwd_rule 1607 * @hw: pointer to the hardware structure 1608 * @recp_list: corresponding filter management list 1609 * @f_entry: entry containing packet forwarding information 1610 * 1611 * Create switch rule with given filter information and add an entry 1612 * to the corresponding filter management list to track this switch rule 1613 * and VSI mapping 1614 */ 1615 static enum ice_status 1616 ice_create_pkt_fwd_rule(struct ice_hw *hw, struct ice_sw_recipe *recp_list, 1617 struct ice_fltr_list_entry *f_entry) 1618 { 1619 struct ice_fltr_mgmt_list_entry *fm_entry; 1620 struct ice_aqc_sw_rules_elem *s_rule; 1621 enum ice_status status; 1622 1623 s_rule = (struct ice_aqc_sw_rules_elem *) 1624 ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE); 1625 if (!s_rule) 1626 return ICE_ERR_NO_MEMORY; 1627 fm_entry = (struct ice_fltr_mgmt_list_entry *) 1628 ice_malloc(hw, sizeof(*fm_entry)); 1629 if (!fm_entry) { 1630 status = ICE_ERR_NO_MEMORY; 1631 goto ice_create_pkt_fwd_rule_exit; 1632 } 1633 1634 fm_entry->fltr_info = f_entry->fltr_info; 1635 1636 /* Initialize all the fields for the management entry */ 1637 fm_entry->vsi_count = 1; 1638 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX; 1639 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID; 1640 fm_entry->counter_index = ICE_INVAL_COUNTER_ID; 1641 1642 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule, 1643 ice_aqc_opc_add_sw_rules); 1644 1645 status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1, 1646 ice_aqc_opc_add_sw_rules, NULL); 1647 if (status) { 1648 ice_free(hw, fm_entry); 1649 goto ice_create_pkt_fwd_rule_exit; 1650 } 1651 1652 f_entry->fltr_info.fltr_rule_id = 1653 LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index); 1654 fm_entry->fltr_info.fltr_rule_id = 1655 LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index); 1656 1657 /* The book keeping entries will get removed when base driver 1658 * calls remove filter AQ command 1659 */ 1660 LIST_ADD(&fm_entry->list_entry, &recp_list->filt_rules); 1661 1662 ice_create_pkt_fwd_rule_exit: 1663 ice_free(hw, s_rule); 1664 return status; 1665 } 1666 1667 /** 1668 * ice_update_pkt_fwd_rule 1669 * @hw: pointer to the hardware structure 1670 * @f_info: filter information for switch rule 1671 * 1672 * Call AQ command to update a previously created switch rule with a 1673 * VSI list ID 1674 */ 1675 static enum ice_status 1676 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info) 1677 { 1678 struct ice_aqc_sw_rules_elem *s_rule; 1679 enum ice_status status; 1680 1681 s_rule = (struct ice_aqc_sw_rules_elem *) 1682 ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE); 1683 if (!s_rule) 1684 return ICE_ERR_NO_MEMORY; 1685 1686 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules); 1687 1688 s_rule->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_info->fltr_rule_id); 1689 1690 /* Update switch rule with new rule set to forward VSI list */ 1691 status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1, 1692 ice_aqc_opc_update_sw_rules, NULL); 1693 1694 ice_free(hw, s_rule); 1695 return status; 1696 } 1697 1698 /** 1699 * ice_update_sw_rule_bridge_mode 1700 * @hw: pointer to the HW struct 1701 * 1702 * Updates unicast switch filter rules based on VEB/VEPA mode 1703 */ 1704 enum ice_status ice_update_sw_rule_bridge_mode(struct ice_hw *hw) 1705 { 1706 struct ice_switch_info *sw = hw->switch_info; 1707 struct ice_fltr_mgmt_list_entry *fm_entry; 1708 enum ice_status status = ICE_SUCCESS; 1709 struct LIST_HEAD_TYPE *rule_head; 1710 struct ice_lock *rule_lock; /* Lock to protect filter rule list */ 1711 1712 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 1713 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; 1714 1715 ice_acquire_lock(rule_lock); 1716 LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry, 1717 list_entry) { 1718 struct ice_fltr_info *fi = &fm_entry->fltr_info; 1719 u8 *addr = fi->l_data.mac.mac_addr; 1720 1721 /* Update unicast Tx rules to reflect the selected 1722 * VEB/VEPA mode 1723 */ 1724 if ((fi->flag & ICE_FLTR_TX) && IS_UNICAST_ETHER_ADDR(addr) && 1725 (fi->fltr_act == ICE_FWD_TO_VSI || 1726 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 1727 fi->fltr_act == ICE_FWD_TO_Q || 1728 fi->fltr_act == ICE_FWD_TO_QGRP)) { 1729 status = ice_update_pkt_fwd_rule(hw, fi); 1730 if (status) 1731 break; 1732 } 1733 } 1734 1735 ice_release_lock(rule_lock); 1736 1737 return status; 1738 } 1739 1740 /** 1741 * ice_add_update_vsi_list 1742 * @hw: pointer to the hardware structure 1743 * @m_entry: pointer to current filter management list entry 1744 * @cur_fltr: filter information from the book keeping entry 1745 * @new_fltr: filter information with the new VSI to be added 1746 * 1747 * Call AQ command to add or update previously created VSI list with new VSI. 1748 * 1749 * Helper function to do book keeping associated with adding filter information 1750 * The algorithm to do the book keeping is described below : 1751 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.) 1752 * if only one VSI has been added till now 1753 * Allocate a new VSI list and add two VSIs 1754 * to this list using switch rule command 1755 * Update the previously created switch rule with the 1756 * newly created VSI list ID 1757 * if a VSI list was previously created 1758 * Add the new VSI to the previously created VSI list set 1759 * using the update switch rule command 1760 */ 1761 static enum ice_status 1762 ice_add_update_vsi_list(struct ice_hw *hw, 1763 struct ice_fltr_mgmt_list_entry *m_entry, 1764 struct ice_fltr_info *cur_fltr, 1765 struct ice_fltr_info *new_fltr) 1766 { 1767 enum ice_status status = ICE_SUCCESS; 1768 u16 vsi_list_id = 0; 1769 1770 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q || 1771 cur_fltr->fltr_act == ICE_FWD_TO_QGRP)) 1772 return ICE_ERR_NOT_IMPL; 1773 1774 if ((new_fltr->fltr_act == ICE_FWD_TO_Q || 1775 new_fltr->fltr_act == ICE_FWD_TO_QGRP) && 1776 (cur_fltr->fltr_act == ICE_FWD_TO_VSI || 1777 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST)) 1778 return ICE_ERR_NOT_IMPL; 1779 1780 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { 1781 /* Only one entry existed in the mapping and it was not already 1782 * a part of a VSI list. So, create a VSI list with the old and 1783 * new VSIs. 1784 */ 1785 struct ice_fltr_info tmp_fltr; 1786 u16 vsi_handle_arr[2]; 1787 1788 /* A rule already exists with the new VSI being added */ 1789 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id) 1790 return ICE_ERR_ALREADY_EXISTS; 1791 1792 vsi_handle_arr[0] = cur_fltr->vsi_handle; 1793 vsi_handle_arr[1] = new_fltr->vsi_handle; 1794 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 1795 &vsi_list_id, 1796 new_fltr->lkup_type); 1797 if (status) 1798 return status; 1799 1800 tmp_fltr = *new_fltr; 1801 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; 1802 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 1803 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 1804 /* Update the previous switch rule of "MAC forward to VSI" to 1805 * "MAC fwd to VSI list" 1806 */ 1807 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 1808 if (status) 1809 return status; 1810 1811 cur_fltr->fwd_id.vsi_list_id = vsi_list_id; 1812 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 1813 m_entry->vsi_list_info = 1814 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 1815 vsi_list_id); 1816 1817 if (!m_entry->vsi_list_info) 1818 return ICE_ERR_NO_MEMORY; 1819 1820 /* If this entry was large action then the large action needs 1821 * to be updated to point to FWD to VSI list 1822 */ 1823 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) 1824 status = 1825 ice_add_marker_act(hw, m_entry, 1826 m_entry->sw_marker_id, 1827 m_entry->lg_act_idx); 1828 } else { 1829 u16 vsi_handle = new_fltr->vsi_handle; 1830 enum ice_adminq_opc opcode; 1831 1832 if (!m_entry->vsi_list_info) 1833 return ICE_ERR_CFG; 1834 1835 /* A rule already exists with the new VSI being added */ 1836 if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle)) 1837 return ICE_SUCCESS; 1838 1839 /* Update the previously created VSI list set with 1840 * the new VSI ID passed in 1841 */ 1842 vsi_list_id = cur_fltr->fwd_id.vsi_list_id; 1843 opcode = ice_aqc_opc_update_sw_rules; 1844 1845 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, 1846 vsi_list_id, false, opcode, 1847 new_fltr->lkup_type); 1848 /* update VSI list mapping info with new VSI ID */ 1849 if (!status) 1850 ice_set_bit(vsi_handle, 1851 m_entry->vsi_list_info->vsi_map); 1852 } 1853 if (!status) 1854 m_entry->vsi_count++; 1855 return status; 1856 } 1857 1858 /** 1859 * ice_find_rule_entry - Search a rule entry 1860 * @list_head: head of rule list 1861 * @f_info: rule information 1862 * 1863 * Helper function to search for a given rule entry 1864 * Returns pointer to entry storing the rule if found 1865 */ 1866 static struct ice_fltr_mgmt_list_entry * 1867 ice_find_rule_entry(struct LIST_HEAD_TYPE *list_head, 1868 struct ice_fltr_info *f_info) 1869 { 1870 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL; 1871 1872 LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry, 1873 list_entry) { 1874 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, 1875 sizeof(f_info->l_data)) && 1876 f_info->flag == list_itr->fltr_info.flag) { 1877 ret = list_itr; 1878 break; 1879 } 1880 } 1881 return ret; 1882 } 1883 1884 /** 1885 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1 1886 * @recp_list: VSI lists needs to be searched 1887 * @vsi_handle: VSI handle to be found in VSI list 1888 * @vsi_list_id: VSI list ID found containing vsi_handle 1889 * 1890 * Helper function to search a VSI list with single entry containing given VSI 1891 * handle element. This can be extended further to search VSI list with more 1892 * than 1 vsi_count. Returns pointer to VSI list entry if found. 1893 */ 1894 static struct ice_vsi_list_map_info * 1895 ice_find_vsi_list_entry(struct ice_sw_recipe *recp_list, u16 vsi_handle, 1896 u16 *vsi_list_id) 1897 { 1898 struct ice_vsi_list_map_info *map_info = NULL; 1899 struct LIST_HEAD_TYPE *list_head; 1900 1901 list_head = &recp_list->filt_rules; 1902 if (recp_list->adv_rule) { 1903 struct ice_adv_fltr_mgmt_list_entry *list_itr; 1904 1905 LIST_FOR_EACH_ENTRY(list_itr, list_head, 1906 ice_adv_fltr_mgmt_list_entry, 1907 list_entry) { 1908 if (list_itr->vsi_list_info) { 1909 map_info = list_itr->vsi_list_info; 1910 if (ice_is_bit_set(map_info->vsi_map, 1911 vsi_handle)) { 1912 *vsi_list_id = map_info->vsi_list_id; 1913 return map_info; 1914 } 1915 } 1916 } 1917 } else { 1918 struct ice_fltr_mgmt_list_entry *list_itr; 1919 1920 LIST_FOR_EACH_ENTRY(list_itr, list_head, 1921 ice_fltr_mgmt_list_entry, 1922 list_entry) { 1923 if (list_itr->vsi_count == 1 && 1924 list_itr->vsi_list_info) { 1925 map_info = list_itr->vsi_list_info; 1926 if (ice_is_bit_set(map_info->vsi_map, 1927 vsi_handle)) { 1928 *vsi_list_id = map_info->vsi_list_id; 1929 return map_info; 1930 } 1931 } 1932 } 1933 } 1934 return NULL; 1935 } 1936 1937 /** 1938 * ice_add_rule_internal - add rule for a given lookup type 1939 * @hw: pointer to the hardware structure 1940 * @recp_list: recipe list for which rule has to be added 1941 * @lport: logic port number on which function add rule 1942 * @f_entry: structure containing MAC forwarding information 1943 * 1944 * Adds or updates the rule lists for a given recipe 1945 */ 1946 static enum ice_status 1947 ice_add_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list, 1948 u8 lport, struct ice_fltr_list_entry *f_entry) 1949 { 1950 struct ice_fltr_info *new_fltr, *cur_fltr; 1951 struct ice_fltr_mgmt_list_entry *m_entry; 1952 struct ice_lock *rule_lock; /* Lock to protect filter rule list */ 1953 enum ice_status status = ICE_SUCCESS; 1954 1955 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 1956 return ICE_ERR_PARAM; 1957 1958 /* Load the hw_vsi_id only if the fwd action is fwd to VSI */ 1959 if (f_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI) 1960 f_entry->fltr_info.fwd_id.hw_vsi_id = 1961 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 1962 1963 rule_lock = &recp_list->filt_rule_lock; 1964 1965 ice_acquire_lock(rule_lock); 1966 new_fltr = &f_entry->fltr_info; 1967 if (new_fltr->flag & ICE_FLTR_RX) 1968 new_fltr->src = lport; 1969 else if (new_fltr->flag & ICE_FLTR_TX) 1970 new_fltr->src = 1971 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 1972 1973 m_entry = ice_find_rule_entry(&recp_list->filt_rules, new_fltr); 1974 if (!m_entry) { 1975 status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry); 1976 goto exit_add_rule_internal; 1977 } 1978 1979 cur_fltr = &m_entry->fltr_info; 1980 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr); 1981 1982 exit_add_rule_internal: 1983 ice_release_lock(rule_lock); 1984 return status; 1985 } 1986 1987 /** 1988 * ice_remove_vsi_list_rule 1989 * @hw: pointer to the hardware structure 1990 * @vsi_list_id: VSI list ID generated as part of allocate resource 1991 * @lkup_type: switch rule filter lookup type 1992 * 1993 * The VSI list should be emptied before this function is called to remove the 1994 * VSI list. 1995 */ 1996 static enum ice_status 1997 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id, 1998 enum ice_sw_lkup_type lkup_type) 1999 { 2000 /* Free the vsi_list resource that we allocated. It is assumed that the 2001 * list is empty at this point. 2002 */ 2003 return ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type, 2004 ice_aqc_opc_free_res); 2005 } 2006 2007 /** 2008 * ice_rem_update_vsi_list 2009 * @hw: pointer to the hardware structure 2010 * @vsi_handle: VSI handle of the VSI to remove 2011 * @fm_list: filter management entry for which the VSI list management needs to 2012 * be done 2013 */ 2014 static enum ice_status 2015 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, 2016 struct ice_fltr_mgmt_list_entry *fm_list) 2017 { 2018 enum ice_sw_lkup_type lkup_type; 2019 enum ice_status status = ICE_SUCCESS; 2020 u16 vsi_list_id; 2021 2022 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST || 2023 fm_list->vsi_count == 0) 2024 return ICE_ERR_PARAM; 2025 2026 /* A rule with the VSI being removed does not exist */ 2027 if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle)) 2028 return ICE_ERR_DOES_NOT_EXIST; 2029 2030 lkup_type = fm_list->fltr_info.lkup_type; 2031 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id; 2032 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, 2033 ice_aqc_opc_update_sw_rules, 2034 lkup_type); 2035 if (status) 2036 return status; 2037 2038 fm_list->vsi_count--; 2039 ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); 2040 2041 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) { 2042 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info; 2043 struct ice_vsi_list_map_info *vsi_list_info = 2044 fm_list->vsi_list_info; 2045 u16 rem_vsi_handle; 2046 2047 rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map, 2048 ICE_MAX_VSI); 2049 if (!ice_is_vsi_valid(hw, rem_vsi_handle)) 2050 return ICE_ERR_OUT_OF_RANGE; 2051 2052 /* Make sure VSI list is empty before removing it below */ 2053 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, 2054 vsi_list_id, true, 2055 ice_aqc_opc_update_sw_rules, 2056 lkup_type); 2057 if (status) 2058 return status; 2059 2060 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI; 2061 tmp_fltr_info.fwd_id.hw_vsi_id = 2062 ice_get_hw_vsi_num(hw, rem_vsi_handle); 2063 tmp_fltr_info.vsi_handle = rem_vsi_handle; 2064 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info); 2065 if (status) { 2066 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", 2067 tmp_fltr_info.fwd_id.hw_vsi_id, status); 2068 return status; 2069 } 2070 2071 fm_list->fltr_info = tmp_fltr_info; 2072 } 2073 2074 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) || 2075 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) { 2076 struct ice_vsi_list_map_info *vsi_list_info = 2077 fm_list->vsi_list_info; 2078 2079 /* Remove the VSI list since it is no longer used */ 2080 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); 2081 if (status) { 2082 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n", 2083 vsi_list_id, status); 2084 return status; 2085 } 2086 2087 LIST_DEL(&vsi_list_info->list_entry); 2088 ice_free(hw, vsi_list_info); 2089 fm_list->vsi_list_info = NULL; 2090 } 2091 2092 return status; 2093 } 2094 2095 /** 2096 * ice_remove_rule_internal - Remove a filter rule of a given type 2097 * 2098 * @hw: pointer to the hardware structure 2099 * @recp_list: recipe list for which the rule needs to removed 2100 * @f_entry: rule entry containing filter information 2101 */ 2102 static enum ice_status 2103 ice_remove_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list, 2104 struct ice_fltr_list_entry *f_entry) 2105 { 2106 struct ice_fltr_mgmt_list_entry *list_elem; 2107 struct ice_lock *rule_lock; /* Lock to protect filter rule list */ 2108 enum ice_status status = ICE_SUCCESS; 2109 bool remove_rule = false; 2110 u16 vsi_handle; 2111 2112 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 2113 return ICE_ERR_PARAM; 2114 f_entry->fltr_info.fwd_id.hw_vsi_id = 2115 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 2116 2117 rule_lock = &recp_list->filt_rule_lock; 2118 ice_acquire_lock(rule_lock); 2119 list_elem = ice_find_rule_entry(&recp_list->filt_rules, 2120 &f_entry->fltr_info); 2121 if (!list_elem) { 2122 status = ICE_ERR_DOES_NOT_EXIST; 2123 goto exit; 2124 } 2125 2126 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) { 2127 remove_rule = true; 2128 } else if (!list_elem->vsi_list_info) { 2129 status = ICE_ERR_DOES_NOT_EXIST; 2130 goto exit; 2131 } else if (list_elem->vsi_list_info->ref_cnt > 1) { 2132 /* a ref_cnt > 1 indicates that the vsi_list is being 2133 * shared by multiple rules. Decrement the ref_cnt and 2134 * remove this rule, but do not modify the list, as it 2135 * is in-use by other rules. 2136 */ 2137 list_elem->vsi_list_info->ref_cnt--; 2138 remove_rule = true; 2139 } else { 2140 /* a ref_cnt of 1 indicates the vsi_list is only used 2141 * by one rule. However, the original removal request is only 2142 * for a single VSI. Update the vsi_list first, and only 2143 * remove the rule if there are no further VSIs in this list. 2144 */ 2145 vsi_handle = f_entry->fltr_info.vsi_handle; 2146 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem); 2147 if (status) 2148 goto exit; 2149 /* if VSI count goes to zero after updating the VSI list */ 2150 if (list_elem->vsi_count == 0) 2151 remove_rule = true; 2152 } 2153 2154 if (remove_rule) { 2155 /* Remove the lookup rule */ 2156 struct ice_aqc_sw_rules_elem *s_rule; 2157 2158 s_rule = (struct ice_aqc_sw_rules_elem *) 2159 ice_malloc(hw, ICE_SW_RULE_RX_TX_NO_HDR_SIZE); 2160 if (!s_rule) { 2161 status = ICE_ERR_NO_MEMORY; 2162 goto exit; 2163 } 2164 2165 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule, 2166 ice_aqc_opc_remove_sw_rules); 2167 2168 status = ice_aq_sw_rules(hw, s_rule, 2169 ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1, 2170 ice_aqc_opc_remove_sw_rules, NULL); 2171 2172 /* Remove a book keeping from the list */ 2173 ice_free(hw, s_rule); 2174 2175 if (status) 2176 goto exit; 2177 2178 LIST_DEL(&list_elem->list_entry); 2179 ice_free(hw, list_elem); 2180 } 2181 exit: 2182 ice_release_lock(rule_lock); 2183 return status; 2184 } 2185 2186 /** 2187 * ice_aq_get_res_alloc - get allocated resources 2188 * @hw: pointer to the HW struct 2189 * @num_entries: pointer to u16 to store the number of resource entries returned 2190 * @buf: pointer to buffer 2191 * @buf_size: size of buf 2192 * @cd: pointer to command details structure or NULL 2193 * 2194 * The caller-supplied buffer must be large enough to store the resource 2195 * information for all resource types. Each resource type is an 2196 * ice_aqc_get_res_resp_elem structure. 2197 */ 2198 enum ice_status 2199 ice_aq_get_res_alloc(struct ice_hw *hw, u16 *num_entries, 2200 struct ice_aqc_get_res_resp_elem *buf, u16 buf_size, 2201 struct ice_sq_cd *cd) 2202 { 2203 struct ice_aqc_get_res_alloc *resp; 2204 enum ice_status status; 2205 struct ice_aq_desc desc; 2206 2207 if (!buf) 2208 return ICE_ERR_BAD_PTR; 2209 2210 if (buf_size < ICE_AQ_GET_RES_ALLOC_BUF_LEN) 2211 return ICE_ERR_INVAL_SIZE; 2212 2213 resp = &desc.params.get_res; 2214 2215 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_res_alloc); 2216 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 2217 2218 if (!status && num_entries) 2219 *num_entries = LE16_TO_CPU(resp->resp_elem_num); 2220 2221 return status; 2222 } 2223 2224 /** 2225 * ice_aq_get_res_descs - get allocated resource descriptors 2226 * @hw: pointer to the hardware structure 2227 * @num_entries: number of resource entries in buffer 2228 * @buf: structure to hold response data buffer 2229 * @buf_size: size of buffer 2230 * @res_type: resource type 2231 * @res_shared: is resource shared 2232 * @desc_id: input - first desc ID to start; output - next desc ID 2233 * @cd: pointer to command details structure or NULL 2234 */ 2235 enum ice_status 2236 ice_aq_get_res_descs(struct ice_hw *hw, u16 num_entries, 2237 struct ice_aqc_res_elem *buf, u16 buf_size, u16 res_type, 2238 bool res_shared, u16 *desc_id, struct ice_sq_cd *cd) 2239 { 2240 struct ice_aqc_get_allocd_res_desc *cmd; 2241 struct ice_aq_desc desc; 2242 enum ice_status status; 2243 2244 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 2245 2246 cmd = &desc.params.get_res_desc; 2247 2248 if (!buf) 2249 return ICE_ERR_PARAM; 2250 2251 if (buf_size != (num_entries * sizeof(*buf))) 2252 return ICE_ERR_PARAM; 2253 2254 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_allocd_res_desc); 2255 2256 cmd->ops.cmd.res = CPU_TO_LE16(((res_type << ICE_AQC_RES_TYPE_S) & 2257 ICE_AQC_RES_TYPE_M) | (res_shared ? 2258 ICE_AQC_RES_TYPE_FLAG_SHARED : 0)); 2259 cmd->ops.cmd.first_desc = CPU_TO_LE16(*desc_id); 2260 2261 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 2262 if (!status) 2263 *desc_id = LE16_TO_CPU(cmd->ops.resp.next_desc); 2264 2265 return status; 2266 } 2267 2268 /** 2269 * ice_add_mac_rule - Add a MAC address based filter rule 2270 * @hw: pointer to the hardware structure 2271 * @m_list: list of MAC addresses and forwarding information 2272 * @sw: pointer to switch info struct for which function add rule 2273 * @lport: logic port number on which function add rule 2274 * 2275 * IMPORTANT: When the umac_shared flag is set to false and m_list has 2276 * multiple unicast addresses, the function assumes that all the 2277 * addresses are unique in a given add_mac call. It doesn't 2278 * check for duplicates in this case, removing duplicates from a given 2279 * list should be taken care of in the caller of this function. 2280 */ 2281 static enum ice_status 2282 ice_add_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list, 2283 struct ice_switch_info *sw, u8 lport) 2284 { 2285 struct ice_sw_recipe *recp_list = &sw->recp_list[ICE_SW_LKUP_MAC]; 2286 struct ice_aqc_sw_rules_elem *s_rule, *r_iter; 2287 struct ice_fltr_list_entry *m_list_itr; 2288 struct LIST_HEAD_TYPE *rule_head; 2289 u16 total_elem_left, s_rule_size; 2290 struct ice_lock *rule_lock; /* Lock to protect filter rule list */ 2291 enum ice_status status = ICE_SUCCESS; 2292 u16 num_unicast = 0; 2293 u8 elem_sent; 2294 2295 s_rule = NULL; 2296 rule_lock = &recp_list->filt_rule_lock; 2297 rule_head = &recp_list->filt_rules; 2298 2299 LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry, 2300 list_entry) { 2301 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0]; 2302 u16 vsi_handle; 2303 u16 hw_vsi_id; 2304 2305 m_list_itr->fltr_info.flag = ICE_FLTR_TX; 2306 vsi_handle = m_list_itr->fltr_info.vsi_handle; 2307 if (!ice_is_vsi_valid(hw, vsi_handle)) 2308 return ICE_ERR_PARAM; 2309 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2310 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id; 2311 /* update the src in case it is VSI num */ 2312 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI) 2313 return ICE_ERR_PARAM; 2314 m_list_itr->fltr_info.src = hw_vsi_id; 2315 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC || 2316 IS_ZERO_ETHER_ADDR(add)) 2317 return ICE_ERR_PARAM; 2318 if (IS_UNICAST_ETHER_ADDR(add) && !hw->umac_shared) { 2319 /* Don't overwrite the unicast address */ 2320 ice_acquire_lock(rule_lock); 2321 if (ice_find_rule_entry(rule_head, 2322 &m_list_itr->fltr_info)) { 2323 ice_release_lock(rule_lock); 2324 continue; 2325 } 2326 ice_release_lock(rule_lock); 2327 num_unicast++; 2328 } else if (IS_MULTICAST_ETHER_ADDR(add) || 2329 (IS_UNICAST_ETHER_ADDR(add) && hw->umac_shared)) { 2330 m_list_itr->status = 2331 ice_add_rule_internal(hw, recp_list, lport, 2332 m_list_itr); 2333 if (m_list_itr->status) 2334 return m_list_itr->status; 2335 } 2336 } 2337 2338 ice_acquire_lock(rule_lock); 2339 /* Exit if no suitable entries were found for adding bulk switch rule */ 2340 if (!num_unicast) { 2341 status = ICE_SUCCESS; 2342 goto ice_add_mac_exit; 2343 } 2344 2345 /* Allocate switch rule buffer for the bulk update for unicast */ 2346 s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; 2347 s_rule = (struct ice_aqc_sw_rules_elem *) 2348 ice_calloc(hw, num_unicast, s_rule_size); 2349 if (!s_rule) { 2350 status = ICE_ERR_NO_MEMORY; 2351 goto ice_add_mac_exit; 2352 } 2353 2354 r_iter = s_rule; 2355 LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry, 2356 list_entry) { 2357 struct ice_fltr_info *f_info = &m_list_itr->fltr_info; 2358 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0]; 2359 2360 if (IS_UNICAST_ETHER_ADDR(mac_addr)) { 2361 ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter, 2362 ice_aqc_opc_add_sw_rules); 2363 r_iter = (struct ice_aqc_sw_rules_elem *) 2364 ((u8 *)r_iter + s_rule_size); 2365 } 2366 } 2367 2368 /* Call AQ bulk switch rule update for all unicast addresses */ 2369 r_iter = s_rule; 2370 /* Call AQ switch rule in AQ_MAX chunk */ 2371 for (total_elem_left = num_unicast; total_elem_left > 0; 2372 total_elem_left -= elem_sent) { 2373 struct ice_aqc_sw_rules_elem *entry = r_iter; 2374 2375 elem_sent = MIN_T(u8, total_elem_left, 2376 (ICE_AQ_MAX_BUF_LEN / s_rule_size)); 2377 status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size, 2378 elem_sent, ice_aqc_opc_add_sw_rules, 2379 NULL); 2380 if (status) 2381 goto ice_add_mac_exit; 2382 r_iter = (struct ice_aqc_sw_rules_elem *) 2383 ((u8 *)r_iter + (elem_sent * s_rule_size)); 2384 } 2385 2386 /* Fill up rule ID based on the value returned from FW */ 2387 r_iter = s_rule; 2388 LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry, 2389 list_entry) { 2390 struct ice_fltr_info *f_info = &m_list_itr->fltr_info; 2391 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0]; 2392 struct ice_fltr_mgmt_list_entry *fm_entry; 2393 2394 if (IS_UNICAST_ETHER_ADDR(mac_addr)) { 2395 f_info->fltr_rule_id = 2396 LE16_TO_CPU(r_iter->pdata.lkup_tx_rx.index); 2397 f_info->fltr_act = ICE_FWD_TO_VSI; 2398 /* Create an entry to track this MAC address */ 2399 fm_entry = (struct ice_fltr_mgmt_list_entry *) 2400 ice_malloc(hw, sizeof(*fm_entry)); 2401 if (!fm_entry) { 2402 status = ICE_ERR_NO_MEMORY; 2403 goto ice_add_mac_exit; 2404 } 2405 fm_entry->fltr_info = *f_info; 2406 fm_entry->vsi_count = 1; 2407 /* The book keeping entries will get removed when 2408 * base driver calls remove filter AQ command 2409 */ 2410 2411 LIST_ADD(&fm_entry->list_entry, rule_head); 2412 r_iter = (struct ice_aqc_sw_rules_elem *) 2413 ((u8 *)r_iter + s_rule_size); 2414 } 2415 } 2416 2417 ice_add_mac_exit: 2418 ice_release_lock(rule_lock); 2419 if (s_rule) 2420 ice_free(hw, s_rule); 2421 return status; 2422 } 2423 2424 /** 2425 * ice_add_mac - Add a MAC address based filter rule 2426 * @hw: pointer to the hardware structure 2427 * @m_list: list of MAC addresses and forwarding information 2428 * 2429 * Function add MAC rule for logical port from HW struct 2430 */ 2431 enum ice_status ice_add_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list) 2432 { 2433 if (!m_list || !hw) 2434 return ICE_ERR_PARAM; 2435 2436 return ice_add_mac_rule(hw, m_list, hw->switch_info, 2437 hw->port_info->lport); 2438 } 2439 2440 /** 2441 * ice_add_vlan_internal - Add one VLAN based filter rule 2442 * @hw: pointer to the hardware structure 2443 * @recp_list: recipe list for which rule has to be added 2444 * @f_entry: filter entry containing one VLAN information 2445 */ 2446 static enum ice_status 2447 ice_add_vlan_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list, 2448 struct ice_fltr_list_entry *f_entry) 2449 { 2450 struct ice_fltr_mgmt_list_entry *v_list_itr; 2451 struct ice_fltr_info *new_fltr, *cur_fltr; 2452 enum ice_sw_lkup_type lkup_type; 2453 u16 vsi_list_id = 0, vsi_handle; 2454 struct ice_lock *rule_lock; /* Lock to protect filter rule list */ 2455 enum ice_status status = ICE_SUCCESS; 2456 2457 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 2458 return ICE_ERR_PARAM; 2459 2460 f_entry->fltr_info.fwd_id.hw_vsi_id = 2461 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 2462 new_fltr = &f_entry->fltr_info; 2463 2464 /* VLAN ID should only be 12 bits */ 2465 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID) 2466 return ICE_ERR_PARAM; 2467 2468 if (new_fltr->src_id != ICE_SRC_ID_VSI) 2469 return ICE_ERR_PARAM; 2470 2471 new_fltr->src = new_fltr->fwd_id.hw_vsi_id; 2472 lkup_type = new_fltr->lkup_type; 2473 vsi_handle = new_fltr->vsi_handle; 2474 rule_lock = &recp_list->filt_rule_lock; 2475 ice_acquire_lock(rule_lock); 2476 v_list_itr = ice_find_rule_entry(&recp_list->filt_rules, new_fltr); 2477 if (!v_list_itr) { 2478 struct ice_vsi_list_map_info *map_info = NULL; 2479 2480 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) { 2481 /* All VLAN pruning rules use a VSI list. Check if 2482 * there is already a VSI list containing VSI that we 2483 * want to add. If found, use the same vsi_list_id for 2484 * this new VLAN rule or else create a new list. 2485 */ 2486 map_info = ice_find_vsi_list_entry(recp_list, 2487 vsi_handle, 2488 &vsi_list_id); 2489 if (!map_info) { 2490 status = ice_create_vsi_list_rule(hw, 2491 &vsi_handle, 2492 1, 2493 &vsi_list_id, 2494 lkup_type); 2495 if (status) 2496 goto exit; 2497 } 2498 /* Convert the action to forwarding to a VSI list. */ 2499 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 2500 new_fltr->fwd_id.vsi_list_id = vsi_list_id; 2501 } 2502 2503 status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry); 2504 if (!status) { 2505 v_list_itr = ice_find_rule_entry(&recp_list->filt_rules, 2506 new_fltr); 2507 if (!v_list_itr) { 2508 status = ICE_ERR_DOES_NOT_EXIST; 2509 goto exit; 2510 } 2511 /* reuse VSI list for new rule and increment ref_cnt */ 2512 if (map_info) { 2513 v_list_itr->vsi_list_info = map_info; 2514 map_info->ref_cnt++; 2515 } else { 2516 v_list_itr->vsi_list_info = 2517 ice_create_vsi_list_map(hw, &vsi_handle, 2518 1, vsi_list_id); 2519 } 2520 } 2521 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) { 2522 /* Update existing VSI list to add new VSI ID only if it used 2523 * by one VLAN rule. 2524 */ 2525 cur_fltr = &v_list_itr->fltr_info; 2526 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr, 2527 new_fltr); 2528 } else { 2529 /* If VLAN rule exists and VSI list being used by this rule is 2530 * referenced by more than 1 VLAN rule. Then create a new VSI 2531 * list appending previous VSI with new VSI and update existing 2532 * VLAN rule to point to new VSI list ID 2533 */ 2534 struct ice_fltr_info tmp_fltr; 2535 u16 vsi_handle_arr[2]; 2536 u16 cur_handle; 2537 2538 /* Current implementation only supports reusing VSI list with 2539 * one VSI count. We should never hit below condition 2540 */ 2541 if (v_list_itr->vsi_count > 1 && 2542 v_list_itr->vsi_list_info->ref_cnt > 1) { 2543 ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n"); 2544 status = ICE_ERR_CFG; 2545 goto exit; 2546 } 2547 2548 cur_handle = 2549 ice_find_first_bit(v_list_itr->vsi_list_info->vsi_map, 2550 ICE_MAX_VSI); 2551 2552 /* A rule already exists with the new VSI being added */ 2553 if (cur_handle == vsi_handle) { 2554 status = ICE_ERR_ALREADY_EXISTS; 2555 goto exit; 2556 } 2557 2558 vsi_handle_arr[0] = cur_handle; 2559 vsi_handle_arr[1] = vsi_handle; 2560 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 2561 &vsi_list_id, lkup_type); 2562 if (status) 2563 goto exit; 2564 2565 tmp_fltr = v_list_itr->fltr_info; 2566 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id; 2567 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 2568 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 2569 /* Update the previous switch rule to a new VSI list which 2570 * includes current VSI that is requested 2571 */ 2572 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 2573 if (status) 2574 goto exit; 2575 2576 /* before overriding VSI list map info. decrement ref_cnt of 2577 * previous VSI list 2578 */ 2579 v_list_itr->vsi_list_info->ref_cnt--; 2580 2581 /* now update to newly created list */ 2582 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id; 2583 v_list_itr->vsi_list_info = 2584 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 2585 vsi_list_id); 2586 v_list_itr->vsi_count++; 2587 } 2588 2589 exit: 2590 ice_release_lock(rule_lock); 2591 return status; 2592 } 2593 2594 /** 2595 * ice_add_vlan_rule - Add VLAN based filter rule 2596 * @hw: pointer to the hardware structure 2597 * @v_list: list of VLAN entries and forwarding information 2598 * @sw: pointer to switch info struct for which function add rule 2599 */ 2600 static enum ice_status 2601 ice_add_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list, 2602 struct ice_switch_info *sw) 2603 { 2604 struct ice_fltr_list_entry *v_list_itr; 2605 struct ice_sw_recipe *recp_list; 2606 2607 recp_list = &sw->recp_list[ICE_SW_LKUP_VLAN]; 2608 LIST_FOR_EACH_ENTRY(v_list_itr, v_list, ice_fltr_list_entry, 2609 list_entry) { 2610 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN) 2611 return ICE_ERR_PARAM; 2612 v_list_itr->fltr_info.flag = ICE_FLTR_TX; 2613 v_list_itr->status = ice_add_vlan_internal(hw, recp_list, 2614 v_list_itr); 2615 if (v_list_itr->status) 2616 return v_list_itr->status; 2617 } 2618 return ICE_SUCCESS; 2619 } 2620 2621 /** 2622 * ice_add_vlan - Add a VLAN based filter rule 2623 * @hw: pointer to the hardware structure 2624 * @v_list: list of VLAN and forwarding information 2625 * 2626 * Function add VLAN rule for logical port from HW struct 2627 */ 2628 enum ice_status ice_add_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list) 2629 { 2630 if (!v_list || !hw) 2631 return ICE_ERR_PARAM; 2632 2633 return ice_add_vlan_rule(hw, v_list, hw->switch_info); 2634 } 2635 2636 /** 2637 * ice_add_eth_mac_rule - Add ethertype and MAC based filter rule 2638 * @hw: pointer to the hardware structure 2639 * @em_list: list of ether type MAC filter, MAC is optional 2640 * @sw: pointer to switch info struct for which function add rule 2641 * @lport: logic port number on which function add rule 2642 * 2643 * This function requires the caller to populate the entries in 2644 * the filter list with the necessary fields (including flags to 2645 * indicate Tx or Rx rules). 2646 */ 2647 static enum ice_status 2648 ice_add_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list, 2649 struct ice_switch_info *sw, u8 lport) 2650 { 2651 struct ice_fltr_list_entry *em_list_itr; 2652 2653 LIST_FOR_EACH_ENTRY(em_list_itr, em_list, ice_fltr_list_entry, 2654 list_entry) { 2655 struct ice_sw_recipe *recp_list; 2656 enum ice_sw_lkup_type l_type; 2657 2658 l_type = em_list_itr->fltr_info.lkup_type; 2659 recp_list = &sw->recp_list[l_type]; 2660 2661 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 2662 l_type != ICE_SW_LKUP_ETHERTYPE) 2663 return ICE_ERR_PARAM; 2664 2665 em_list_itr->status = ice_add_rule_internal(hw, recp_list, 2666 lport, 2667 em_list_itr); 2668 if (em_list_itr->status) 2669 return em_list_itr->status; 2670 } 2671 return ICE_SUCCESS; 2672 } 2673 2674 /** 2675 * ice_add_eth_mac - Add a ethertype based filter rule 2676 * @hw: pointer to the hardware structure 2677 * @em_list: list of ethertype and forwarding information 2678 * 2679 * Function add ethertype rule for logical port from HW struct 2680 */ 2681 enum ice_status 2682 ice_add_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list) 2683 { 2684 if (!em_list || !hw) 2685 return ICE_ERR_PARAM; 2686 2687 return ice_add_eth_mac_rule(hw, em_list, hw->switch_info, 2688 hw->port_info->lport); 2689 } 2690 2691 /** 2692 * ice_remove_eth_mac_rule - Remove an ethertype (or MAC) based filter rule 2693 * @hw: pointer to the hardware structure 2694 * @em_list: list of ethertype or ethertype MAC entries 2695 * @sw: pointer to switch info struct for which function add rule 2696 */ 2697 static enum ice_status 2698 ice_remove_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list, 2699 struct ice_switch_info *sw) 2700 { 2701 struct ice_fltr_list_entry *em_list_itr, *tmp; 2702 2703 LIST_FOR_EACH_ENTRY_SAFE(em_list_itr, tmp, em_list, ice_fltr_list_entry, 2704 list_entry) { 2705 struct ice_sw_recipe *recp_list; 2706 enum ice_sw_lkup_type l_type; 2707 2708 l_type = em_list_itr->fltr_info.lkup_type; 2709 2710 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 2711 l_type != ICE_SW_LKUP_ETHERTYPE) 2712 return ICE_ERR_PARAM; 2713 2714 recp_list = &sw->recp_list[l_type]; 2715 em_list_itr->status = ice_remove_rule_internal(hw, recp_list, 2716 em_list_itr); 2717 if (em_list_itr->status) 2718 return em_list_itr->status; 2719 } 2720 return ICE_SUCCESS; 2721 } 2722 2723 /** 2724 * ice_remove_eth_mac - remove a ethertype based filter rule 2725 * @hw: pointer to the hardware structure 2726 * @em_list: list of ethertype and forwarding information 2727 * 2728 */ 2729 enum ice_status 2730 ice_remove_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list) 2731 { 2732 if (!em_list || !hw) 2733 return ICE_ERR_PARAM; 2734 2735 return ice_remove_eth_mac_rule(hw, em_list, hw->switch_info); 2736 } 2737 2738 /** 2739 * ice_rem_sw_rule_info 2740 * @hw: pointer to the hardware structure 2741 * @rule_head: pointer to the switch list structure that we want to delete 2742 */ 2743 static void 2744 ice_rem_sw_rule_info(struct ice_hw *hw, struct LIST_HEAD_TYPE *rule_head) 2745 { 2746 if (!LIST_EMPTY(rule_head)) { 2747 struct ice_fltr_mgmt_list_entry *entry; 2748 struct ice_fltr_mgmt_list_entry *tmp; 2749 2750 LIST_FOR_EACH_ENTRY_SAFE(entry, tmp, rule_head, 2751 ice_fltr_mgmt_list_entry, list_entry) { 2752 LIST_DEL(&entry->list_entry); 2753 ice_free(hw, entry); 2754 } 2755 } 2756 } 2757 2758 /** 2759 * ice_rem_all_sw_rules_info 2760 * @hw: pointer to the hardware structure 2761 */ 2762 void ice_rem_all_sw_rules_info(struct ice_hw *hw) 2763 { 2764 struct ice_switch_info *sw = hw->switch_info; 2765 u8 i; 2766 2767 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 2768 struct LIST_HEAD_TYPE *rule_head; 2769 2770 rule_head = &sw->recp_list[i].filt_rules; 2771 if (!sw->recp_list[i].adv_rule) 2772 ice_rem_sw_rule_info(hw, rule_head); 2773 } 2774 } 2775 2776 /** 2777 * ice_cfg_dflt_vsi - change state of VSI to set/clear default 2778 * @pi: pointer to the port_info structure 2779 * @vsi_handle: VSI handle to set as default 2780 * @set: true to add the above mentioned switch rule, false to remove it 2781 * @direction: ICE_FLTR_RX or ICE_FLTR_TX 2782 * 2783 * add filter rule to set/unset given VSI as default VSI for the switch 2784 * (represented by swid) 2785 */ 2786 enum ice_status 2787 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set, 2788 u8 direction) 2789 { 2790 struct ice_aqc_sw_rules_elem *s_rule; 2791 struct ice_fltr_info f_info; 2792 struct ice_hw *hw = pi->hw; 2793 enum ice_adminq_opc opcode; 2794 enum ice_status status; 2795 u16 s_rule_size; 2796 u16 hw_vsi_id; 2797 2798 if (!ice_is_vsi_valid(hw, vsi_handle)) 2799 return ICE_ERR_PARAM; 2800 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2801 2802 s_rule_size = set ? ICE_SW_RULE_RX_TX_ETH_HDR_SIZE : 2803 ICE_SW_RULE_RX_TX_NO_HDR_SIZE; 2804 2805 s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size); 2806 if (!s_rule) 2807 return ICE_ERR_NO_MEMORY; 2808 2809 ice_memset(&f_info, 0, sizeof(f_info), ICE_NONDMA_MEM); 2810 2811 f_info.lkup_type = ICE_SW_LKUP_DFLT; 2812 f_info.flag = direction; 2813 f_info.fltr_act = ICE_FWD_TO_VSI; 2814 f_info.fwd_id.hw_vsi_id = hw_vsi_id; 2815 2816 if (f_info.flag & ICE_FLTR_RX) { 2817 f_info.src = pi->lport; 2818 f_info.src_id = ICE_SRC_ID_LPORT; 2819 if (!set) 2820 f_info.fltr_rule_id = 2821 pi->dflt_rx_vsi_rule_id; 2822 } else if (f_info.flag & ICE_FLTR_TX) { 2823 f_info.src_id = ICE_SRC_ID_VSI; 2824 f_info.src = hw_vsi_id; 2825 if (!set) 2826 f_info.fltr_rule_id = 2827 pi->dflt_tx_vsi_rule_id; 2828 } 2829 2830 if (set) 2831 opcode = ice_aqc_opc_add_sw_rules; 2832 else 2833 opcode = ice_aqc_opc_remove_sw_rules; 2834 2835 ice_fill_sw_rule(hw, &f_info, s_rule, opcode); 2836 2837 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opcode, NULL); 2838 if (status || !(f_info.flag & ICE_FLTR_TX_RX)) 2839 goto out; 2840 if (set) { 2841 u16 index = LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index); 2842 2843 if (f_info.flag & ICE_FLTR_TX) { 2844 pi->dflt_tx_vsi_num = hw_vsi_id; 2845 pi->dflt_tx_vsi_rule_id = index; 2846 } else if (f_info.flag & ICE_FLTR_RX) { 2847 pi->dflt_rx_vsi_num = hw_vsi_id; 2848 pi->dflt_rx_vsi_rule_id = index; 2849 } 2850 } else { 2851 if (f_info.flag & ICE_FLTR_TX) { 2852 pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL; 2853 pi->dflt_tx_vsi_rule_id = ICE_INVAL_ACT; 2854 } else if (f_info.flag & ICE_FLTR_RX) { 2855 pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL; 2856 pi->dflt_rx_vsi_rule_id = ICE_INVAL_ACT; 2857 } 2858 } 2859 2860 out: 2861 ice_free(hw, s_rule); 2862 return status; 2863 } 2864 2865 /** 2866 * ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry 2867 * @list_head: head of rule list 2868 * @f_info: rule information 2869 * 2870 * Helper function to search for a unicast rule entry - this is to be used 2871 * to remove unicast MAC filter that is not shared with other VSIs on the 2872 * PF switch. 2873 * 2874 * Returns pointer to entry storing the rule if found 2875 */ 2876 static struct ice_fltr_mgmt_list_entry * 2877 ice_find_ucast_rule_entry(struct LIST_HEAD_TYPE *list_head, 2878 struct ice_fltr_info *f_info) 2879 { 2880 struct ice_fltr_mgmt_list_entry *list_itr; 2881 2882 LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry, 2883 list_entry) { 2884 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, 2885 sizeof(f_info->l_data)) && 2886 f_info->fwd_id.hw_vsi_id == 2887 list_itr->fltr_info.fwd_id.hw_vsi_id && 2888 f_info->flag == list_itr->fltr_info.flag) 2889 return list_itr; 2890 } 2891 return NULL; 2892 } 2893 2894 /** 2895 * ice_remove_mac_rule - remove a MAC based filter rule 2896 * @hw: pointer to the hardware structure 2897 * @m_list: list of MAC addresses and forwarding information 2898 * @recp_list: list from which function remove MAC address 2899 * 2900 * This function removes either a MAC filter rule or a specific VSI from a 2901 * VSI list for a multicast MAC address. 2902 * 2903 * Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by 2904 * ice_add_mac. Caller should be aware that this call will only work if all 2905 * the entries passed into m_list were added previously. It will not attempt to 2906 * do a partial remove of entries that were found. 2907 */ 2908 static enum ice_status 2909 ice_remove_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list, 2910 struct ice_sw_recipe *recp_list) 2911 { 2912 struct ice_fltr_list_entry *list_itr, *tmp; 2913 struct ice_lock *rule_lock; /* Lock to protect filter rule list */ 2914 2915 if (!m_list) 2916 return ICE_ERR_PARAM; 2917 2918 rule_lock = &recp_list->filt_rule_lock; 2919 LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, m_list, ice_fltr_list_entry, 2920 list_entry) { 2921 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type; 2922 u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0]; 2923 u16 vsi_handle; 2924 2925 if (l_type != ICE_SW_LKUP_MAC) 2926 return ICE_ERR_PARAM; 2927 2928 vsi_handle = list_itr->fltr_info.vsi_handle; 2929 if (!ice_is_vsi_valid(hw, vsi_handle)) 2930 return ICE_ERR_PARAM; 2931 2932 list_itr->fltr_info.fwd_id.hw_vsi_id = 2933 ice_get_hw_vsi_num(hw, vsi_handle); 2934 if (IS_UNICAST_ETHER_ADDR(add) && !hw->umac_shared) { 2935 /* Don't remove the unicast address that belongs to 2936 * another VSI on the switch, since it is not being 2937 * shared... 2938 */ 2939 ice_acquire_lock(rule_lock); 2940 if (!ice_find_ucast_rule_entry(&recp_list->filt_rules, 2941 &list_itr->fltr_info)) { 2942 ice_release_lock(rule_lock); 2943 return ICE_ERR_DOES_NOT_EXIST; 2944 } 2945 ice_release_lock(rule_lock); 2946 } 2947 list_itr->status = ice_remove_rule_internal(hw, recp_list, 2948 list_itr); 2949 if (list_itr->status) 2950 return list_itr->status; 2951 } 2952 return ICE_SUCCESS; 2953 } 2954 2955 /** 2956 * ice_remove_mac - remove a MAC address based filter rule 2957 * @hw: pointer to the hardware structure 2958 * @m_list: list of MAC addresses and forwarding information 2959 * 2960 */ 2961 enum ice_status ice_remove_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list) 2962 { 2963 struct ice_sw_recipe *recp_list; 2964 2965 recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC]; 2966 return ice_remove_mac_rule(hw, m_list, recp_list); 2967 } 2968 2969 /** 2970 * ice_remove_vlan_rule - Remove VLAN based filter rule 2971 * @hw: pointer to the hardware structure 2972 * @v_list: list of VLAN entries and forwarding information 2973 * @recp_list: list from which function remove VLAN 2974 */ 2975 static enum ice_status 2976 ice_remove_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list, 2977 struct ice_sw_recipe *recp_list) 2978 { 2979 struct ice_fltr_list_entry *v_list_itr, *tmp; 2980 2981 LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry, 2982 list_entry) { 2983 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type; 2984 2985 if (l_type != ICE_SW_LKUP_VLAN) 2986 return ICE_ERR_PARAM; 2987 v_list_itr->status = ice_remove_rule_internal(hw, recp_list, 2988 v_list_itr); 2989 if (v_list_itr->status) 2990 return v_list_itr->status; 2991 } 2992 return ICE_SUCCESS; 2993 } 2994 2995 /** 2996 * ice_remove_vlan - remove a VLAN address based filter rule 2997 * @hw: pointer to the hardware structure 2998 * @v_list: list of VLAN and forwarding information 2999 * 3000 */ 3001 enum ice_status 3002 ice_remove_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list) 3003 { 3004 struct ice_sw_recipe *recp_list; 3005 3006 if (!v_list || !hw) 3007 return ICE_ERR_PARAM; 3008 3009 recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_VLAN]; 3010 return ice_remove_vlan_rule(hw, v_list, recp_list); 3011 } 3012 3013 /** 3014 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter 3015 * @fm_entry: filter entry to inspect 3016 * @vsi_handle: VSI handle to compare with filter info 3017 */ 3018 static bool 3019 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle) 3020 { 3021 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI && 3022 fm_entry->fltr_info.vsi_handle == vsi_handle) || 3023 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST && 3024 fm_entry->vsi_list_info && 3025 (ice_is_bit_set(fm_entry->vsi_list_info->vsi_map, 3026 vsi_handle)))); 3027 } 3028 3029 /** 3030 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list 3031 * @hw: pointer to the hardware structure 3032 * @vsi_handle: VSI handle to remove filters from 3033 * @vsi_list_head: pointer to the list to add entry to 3034 * @fi: pointer to fltr_info of filter entry to copy & add 3035 * 3036 * Helper function, used when creating a list of filters to remove from 3037 * a specific VSI. The entry added to vsi_list_head is a COPY of the 3038 * original filter entry, with the exception of fltr_info.fltr_act and 3039 * fltr_info.fwd_id fields. These are set such that later logic can 3040 * extract which VSI to remove the fltr from, and pass on that information. 3041 */ 3042 static enum ice_status 3043 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 3044 struct LIST_HEAD_TYPE *vsi_list_head, 3045 struct ice_fltr_info *fi) 3046 { 3047 struct ice_fltr_list_entry *tmp; 3048 3049 /* this memory is freed up in the caller function 3050 * once filters for this VSI are removed 3051 */ 3052 tmp = (struct ice_fltr_list_entry *)ice_malloc(hw, sizeof(*tmp)); 3053 if (!tmp) 3054 return ICE_ERR_NO_MEMORY; 3055 3056 tmp->fltr_info = *fi; 3057 3058 /* Overwrite these fields to indicate which VSI to remove filter from, 3059 * so find and remove logic can extract the information from the 3060 * list entries. Note that original entries will still have proper 3061 * values. 3062 */ 3063 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 3064 tmp->fltr_info.vsi_handle = vsi_handle; 3065 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3066 3067 LIST_ADD(&tmp->list_entry, vsi_list_head); 3068 3069 return ICE_SUCCESS; 3070 } 3071 3072 /** 3073 * ice_add_to_vsi_fltr_list - Add VSI filters to the list 3074 * @hw: pointer to the hardware structure 3075 * @vsi_handle: VSI handle to remove filters from 3076 * @lkup_list_head: pointer to the list that has certain lookup type filters 3077 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle 3078 * 3079 * Locates all filters in lkup_list_head that are used by the given VSI, 3080 * and adds COPIES of those entries to vsi_list_head (intended to be used 3081 * to remove the listed filters). 3082 * Note that this means all entries in vsi_list_head must be explicitly 3083 * deallocated by the caller when done with list. 3084 */ 3085 static enum ice_status 3086 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 3087 struct LIST_HEAD_TYPE *lkup_list_head, 3088 struct LIST_HEAD_TYPE *vsi_list_head) 3089 { 3090 struct ice_fltr_mgmt_list_entry *fm_entry; 3091 enum ice_status status = ICE_SUCCESS; 3092 3093 /* check to make sure VSI ID is valid and within boundary */ 3094 if (!ice_is_vsi_valid(hw, vsi_handle)) 3095 return ICE_ERR_PARAM; 3096 3097 LIST_FOR_EACH_ENTRY(fm_entry, lkup_list_head, 3098 ice_fltr_mgmt_list_entry, list_entry) { 3099 if (!ice_vsi_uses_fltr(fm_entry, vsi_handle)) 3100 continue; 3101 3102 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 3103 vsi_list_head, 3104 &fm_entry->fltr_info); 3105 if (status) 3106 return status; 3107 } 3108 return status; 3109 } 3110 3111 /** 3112 * ice_determine_promisc_mask 3113 * @fi: filter info to parse 3114 * 3115 * Helper function to determine which ICE_PROMISC_ mask corresponds 3116 * to given filter into. 3117 */ 3118 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi) 3119 { 3120 u16 vid = fi->l_data.mac_vlan.vlan_id; 3121 u8 *macaddr = fi->l_data.mac.mac_addr; 3122 bool is_tx_fltr = false; 3123 u8 promisc_mask = 0; 3124 3125 if (fi->flag == ICE_FLTR_TX) 3126 is_tx_fltr = true; 3127 3128 if (IS_BROADCAST_ETHER_ADDR(macaddr)) 3129 promisc_mask |= is_tx_fltr ? 3130 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX; 3131 else if (IS_MULTICAST_ETHER_ADDR(macaddr)) 3132 promisc_mask |= is_tx_fltr ? 3133 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX; 3134 else if (IS_UNICAST_ETHER_ADDR(macaddr)) 3135 promisc_mask |= is_tx_fltr ? 3136 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX; 3137 if (vid) 3138 promisc_mask |= is_tx_fltr ? 3139 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX; 3140 3141 return promisc_mask; 3142 } 3143 3144 /** 3145 * _ice_get_vsi_promisc - get promiscuous mode of given VSI 3146 * @hw: pointer to the hardware structure 3147 * @vsi_handle: VSI handle to retrieve info from 3148 * @promisc_mask: pointer to mask to be filled in 3149 * @vid: VLAN ID of promisc VLAN VSI 3150 * @sw: pointer to switch info struct for which function add rule 3151 * @lkup: switch rule filter lookup type 3152 */ 3153 static enum ice_status 3154 _ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask, 3155 u16 *vid, struct ice_switch_info *sw, 3156 enum ice_sw_lkup_type lkup) 3157 { 3158 struct ice_fltr_mgmt_list_entry *itr; 3159 struct LIST_HEAD_TYPE *rule_head; 3160 struct ice_lock *rule_lock; /* Lock to protect filter rule list */ 3161 3162 if (!ice_is_vsi_valid(hw, vsi_handle) || 3163 (lkup != ICE_SW_LKUP_PROMISC && lkup != ICE_SW_LKUP_PROMISC_VLAN)) 3164 return ICE_ERR_PARAM; 3165 3166 *vid = 0; 3167 *promisc_mask = 0; 3168 rule_head = &sw->recp_list[lkup].filt_rules; 3169 rule_lock = &sw->recp_list[lkup].filt_rule_lock; 3170 3171 ice_acquire_lock(rule_lock); 3172 LIST_FOR_EACH_ENTRY(itr, rule_head, 3173 ice_fltr_mgmt_list_entry, list_entry) { 3174 /* Continue if this filter doesn't apply to this VSI or the 3175 * VSI ID is not in the VSI map for this filter 3176 */ 3177 if (!ice_vsi_uses_fltr(itr, vsi_handle)) 3178 continue; 3179 3180 *promisc_mask |= ice_determine_promisc_mask(&itr->fltr_info); 3181 } 3182 ice_release_lock(rule_lock); 3183 3184 return ICE_SUCCESS; 3185 } 3186 3187 /** 3188 * ice_get_vsi_promisc - get promiscuous mode of given VSI 3189 * @hw: pointer to the hardware structure 3190 * @vsi_handle: VSI handle to retrieve info from 3191 * @promisc_mask: pointer to mask to be filled in 3192 * @vid: VLAN ID of promisc VLAN VSI 3193 */ 3194 enum ice_status 3195 ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask, 3196 u16 *vid) 3197 { 3198 return _ice_get_vsi_promisc(hw, vsi_handle, promisc_mask, 3199 vid, hw->switch_info, ICE_SW_LKUP_PROMISC); 3200 } 3201 3202 /** 3203 * ice_get_vsi_vlan_promisc - get VLAN promiscuous mode of given VSI 3204 * @hw: pointer to the hardware structure 3205 * @vsi_handle: VSI handle to retrieve info from 3206 * @promisc_mask: pointer to mask to be filled in 3207 * @vid: VLAN ID of promisc VLAN VSI 3208 */ 3209 enum ice_status 3210 ice_get_vsi_vlan_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask, 3211 u16 *vid) 3212 { 3213 return _ice_get_vsi_promisc(hw, vsi_handle, promisc_mask, 3214 vid, hw->switch_info, 3215 ICE_SW_LKUP_PROMISC_VLAN); 3216 } 3217 3218 /** 3219 * ice_remove_promisc - Remove promisc based filter rules 3220 * @hw: pointer to the hardware structure 3221 * @recp_id: recipe ID for which the rule needs to removed 3222 * @v_list: list of promisc entries 3223 */ 3224 static enum ice_status 3225 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, 3226 struct LIST_HEAD_TYPE *v_list) 3227 { 3228 struct ice_fltr_list_entry *v_list_itr, *tmp; 3229 struct ice_sw_recipe *recp_list; 3230 3231 recp_list = &hw->switch_info->recp_list[recp_id]; 3232 LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry, 3233 list_entry) { 3234 v_list_itr->status = 3235 ice_remove_rule_internal(hw, recp_list, v_list_itr); 3236 if (v_list_itr->status) 3237 return v_list_itr->status; 3238 } 3239 return ICE_SUCCESS; 3240 } 3241 3242 /** 3243 * _ice_clear_vsi_promisc - clear specified promiscuous mode(s) 3244 * @hw: pointer to the hardware structure 3245 * @vsi_handle: VSI handle to clear mode 3246 * @promisc_mask: mask of promiscuous config bits to clear 3247 * @vid: VLAN ID to clear VLAN promiscuous 3248 * @sw: pointer to switch info struct for which function add rule 3249 */ 3250 static enum ice_status 3251 _ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 3252 u16 vid, struct ice_switch_info *sw) 3253 { 3254 struct ice_fltr_list_entry *fm_entry, *tmp; 3255 struct LIST_HEAD_TYPE remove_list_head; 3256 struct ice_fltr_mgmt_list_entry *itr; 3257 struct LIST_HEAD_TYPE *rule_head; 3258 struct ice_lock *rule_lock; /* Lock to protect filter rule list */ 3259 enum ice_status status = ICE_SUCCESS; 3260 u8 recipe_id; 3261 3262 if (!ice_is_vsi_valid(hw, vsi_handle)) 3263 return ICE_ERR_PARAM; 3264 3265 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) 3266 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 3267 else 3268 recipe_id = ICE_SW_LKUP_PROMISC; 3269 3270 rule_head = &sw->recp_list[recipe_id].filt_rules; 3271 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock; 3272 3273 INIT_LIST_HEAD(&remove_list_head); 3274 3275 ice_acquire_lock(rule_lock); 3276 LIST_FOR_EACH_ENTRY(itr, rule_head, 3277 ice_fltr_mgmt_list_entry, list_entry) { 3278 struct ice_fltr_info *fltr_info; 3279 u8 fltr_promisc_mask = 0; 3280 3281 if (!ice_vsi_uses_fltr(itr, vsi_handle)) 3282 continue; 3283 fltr_info = &itr->fltr_info; 3284 3285 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN && 3286 vid != fltr_info->l_data.mac_vlan.vlan_id) 3287 continue; 3288 3289 fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info); 3290 3291 /* Skip if filter is not completely specified by given mask */ 3292 if (fltr_promisc_mask & ~promisc_mask) 3293 continue; 3294 3295 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 3296 &remove_list_head, 3297 fltr_info); 3298 if (status) { 3299 ice_release_lock(rule_lock); 3300 goto free_fltr_list; 3301 } 3302 } 3303 ice_release_lock(rule_lock); 3304 3305 status = ice_remove_promisc(hw, recipe_id, &remove_list_head); 3306 3307 free_fltr_list: 3308 LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head, 3309 ice_fltr_list_entry, list_entry) { 3310 LIST_DEL(&fm_entry->list_entry); 3311 ice_free(hw, fm_entry); 3312 } 3313 3314 return status; 3315 } 3316 3317 /** 3318 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI 3319 * @hw: pointer to the hardware structure 3320 * @vsi_handle: VSI handle to clear mode 3321 * @promisc_mask: mask of promiscuous config bits to clear 3322 * @vid: VLAN ID to clear VLAN promiscuous 3323 */ 3324 enum ice_status 3325 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, 3326 u8 promisc_mask, u16 vid) 3327 { 3328 return _ice_clear_vsi_promisc(hw, vsi_handle, promisc_mask, 3329 vid, hw->switch_info); 3330 } 3331 3332 /** 3333 * _ice_set_vsi_promisc - set given VSI to given promiscuous mode(s) 3334 * @hw: pointer to the hardware structure 3335 * @vsi_handle: VSI handle to configure 3336 * @promisc_mask: mask of promiscuous config bits 3337 * @vid: VLAN ID to set VLAN promiscuous 3338 * @lport: logical port number to configure promisc mode 3339 * @sw: pointer to switch info struct for which function add rule 3340 */ 3341 static enum ice_status 3342 _ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 3343 u16 vid, u8 lport, struct ice_switch_info *sw) 3344 { 3345 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR }; 3346 struct ice_fltr_list_entry f_list_entry; 3347 struct ice_fltr_info new_fltr; 3348 enum ice_status status = ICE_SUCCESS; 3349 bool is_tx_fltr; 3350 u16 hw_vsi_id; 3351 int pkt_type; 3352 u8 recipe_id; 3353 3354 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 3355 3356 if (!ice_is_vsi_valid(hw, vsi_handle)) 3357 return ICE_ERR_PARAM; 3358 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3359 3360 ice_memset(&new_fltr, 0, sizeof(new_fltr), ICE_NONDMA_MEM); 3361 3362 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) { 3363 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN; 3364 new_fltr.l_data.mac_vlan.vlan_id = vid; 3365 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 3366 } else { 3367 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC; 3368 recipe_id = ICE_SW_LKUP_PROMISC; 3369 } 3370 3371 /* Separate filters must be set for each direction/packet type 3372 * combination, so we will loop over the mask value, store the 3373 * individual type, and clear it out in the input mask as it 3374 * is found. 3375 */ 3376 while (promisc_mask) { 3377 struct ice_sw_recipe *recp_list; 3378 u8 *mac_addr; 3379 3380 pkt_type = 0; 3381 is_tx_fltr = false; 3382 3383 if (promisc_mask & ICE_PROMISC_UCAST_RX) { 3384 promisc_mask &= ~ICE_PROMISC_UCAST_RX; 3385 pkt_type = UCAST_FLTR; 3386 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) { 3387 promisc_mask &= ~ICE_PROMISC_UCAST_TX; 3388 pkt_type = UCAST_FLTR; 3389 is_tx_fltr = true; 3390 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) { 3391 promisc_mask &= ~ICE_PROMISC_MCAST_RX; 3392 pkt_type = MCAST_FLTR; 3393 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) { 3394 promisc_mask &= ~ICE_PROMISC_MCAST_TX; 3395 pkt_type = MCAST_FLTR; 3396 is_tx_fltr = true; 3397 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) { 3398 promisc_mask &= ~ICE_PROMISC_BCAST_RX; 3399 pkt_type = BCAST_FLTR; 3400 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) { 3401 promisc_mask &= ~ICE_PROMISC_BCAST_TX; 3402 pkt_type = BCAST_FLTR; 3403 is_tx_fltr = true; 3404 } 3405 3406 /* Check for VLAN promiscuous flag */ 3407 if (promisc_mask & ICE_PROMISC_VLAN_RX) { 3408 promisc_mask &= ~ICE_PROMISC_VLAN_RX; 3409 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) { 3410 promisc_mask &= ~ICE_PROMISC_VLAN_TX; 3411 is_tx_fltr = true; 3412 } 3413 3414 /* Set filter DA based on packet type */ 3415 mac_addr = new_fltr.l_data.mac.mac_addr; 3416 if (pkt_type == BCAST_FLTR) { 3417 ice_memset(mac_addr, 0xff, ETH_ALEN, ICE_NONDMA_MEM); 3418 } else if (pkt_type == MCAST_FLTR || 3419 pkt_type == UCAST_FLTR) { 3420 /* Use the dummy ether header DA */ 3421 ice_memcpy(mac_addr, dummy_eth_header, ETH_ALEN, 3422 ICE_NONDMA_TO_NONDMA); 3423 if (pkt_type == MCAST_FLTR) 3424 mac_addr[0] |= 0x1; /* Set multicast bit */ 3425 } 3426 3427 /* Need to reset this to zero for all iterations */ 3428 new_fltr.flag = 0; 3429 if (is_tx_fltr) { 3430 new_fltr.flag |= ICE_FLTR_TX; 3431 new_fltr.src = hw_vsi_id; 3432 } else { 3433 new_fltr.flag |= ICE_FLTR_RX; 3434 new_fltr.src = lport; 3435 } 3436 3437 new_fltr.fltr_act = ICE_FWD_TO_VSI; 3438 new_fltr.vsi_handle = vsi_handle; 3439 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id; 3440 f_list_entry.fltr_info = new_fltr; 3441 recp_list = &sw->recp_list[recipe_id]; 3442 3443 status = ice_add_rule_internal(hw, recp_list, lport, 3444 &f_list_entry); 3445 if (status != ICE_SUCCESS) 3446 goto set_promisc_exit; 3447 } 3448 3449 set_promisc_exit: 3450 return status; 3451 } 3452 3453 /** 3454 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s) 3455 * @hw: pointer to the hardware structure 3456 * @vsi_handle: VSI handle to configure 3457 * @promisc_mask: mask of promiscuous config bits 3458 * @vid: VLAN ID to set VLAN promiscuous 3459 */ 3460 enum ice_status 3461 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 3462 u16 vid) 3463 { 3464 return _ice_set_vsi_promisc(hw, vsi_handle, promisc_mask, vid, 3465 hw->port_info->lport, 3466 hw->switch_info); 3467 } 3468 3469 /** 3470 * _ice_set_vlan_vsi_promisc 3471 * @hw: pointer to the hardware structure 3472 * @vsi_handle: VSI handle to configure 3473 * @promisc_mask: mask of promiscuous config bits 3474 * @rm_vlan_promisc: Clear VLANs VSI promisc mode 3475 * @lport: logical port number to configure promisc mode 3476 * @sw: pointer to switch info struct for which function add rule 3477 * 3478 * Configure VSI with all associated VLANs to given promiscuous mode(s) 3479 */ 3480 static enum ice_status 3481 _ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 3482 bool rm_vlan_promisc, u8 lport, 3483 struct ice_switch_info *sw) 3484 { 3485 struct ice_fltr_list_entry *list_itr, *tmp; 3486 struct LIST_HEAD_TYPE vsi_list_head; 3487 struct LIST_HEAD_TYPE *vlan_head; 3488 struct ice_lock *vlan_lock; /* Lock to protect filter rule list */ 3489 enum ice_status status; 3490 u16 vlan_id; 3491 3492 INIT_LIST_HEAD(&vsi_list_head); 3493 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 3494 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; 3495 ice_acquire_lock(vlan_lock); 3496 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head, 3497 &vsi_list_head); 3498 ice_release_lock(vlan_lock); 3499 if (status) 3500 goto free_fltr_list; 3501 3502 LIST_FOR_EACH_ENTRY(list_itr, &vsi_list_head, ice_fltr_list_entry, 3503 list_entry) { 3504 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id; 3505 if (rm_vlan_promisc) 3506 status = _ice_clear_vsi_promisc(hw, vsi_handle, 3507 promisc_mask, 3508 vlan_id, sw); 3509 else 3510 status = _ice_set_vsi_promisc(hw, vsi_handle, 3511 promisc_mask, vlan_id, 3512 lport, sw); 3513 if (status) 3514 break; 3515 } 3516 3517 free_fltr_list: 3518 LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, &vsi_list_head, 3519 ice_fltr_list_entry, list_entry) { 3520 LIST_DEL(&list_itr->list_entry); 3521 ice_free(hw, list_itr); 3522 } 3523 return status; 3524 } 3525 3526 /** 3527 * ice_set_vlan_vsi_promisc 3528 * @hw: pointer to the hardware structure 3529 * @vsi_handle: VSI handle to configure 3530 * @promisc_mask: mask of promiscuous config bits 3531 * @rm_vlan_promisc: Clear VLANs VSI promisc mode 3532 * 3533 * Configure VSI with all associated VLANs to given promiscuous mode(s) 3534 */ 3535 enum ice_status 3536 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 3537 bool rm_vlan_promisc) 3538 { 3539 return _ice_set_vlan_vsi_promisc(hw, vsi_handle, promisc_mask, 3540 rm_vlan_promisc, hw->port_info->lport, 3541 hw->switch_info); 3542 } 3543 3544 /** 3545 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI 3546 * @hw: pointer to the hardware structure 3547 * @vsi_handle: VSI handle to remove filters from 3548 * @recp_list: recipe list from which function remove fltr 3549 * @lkup: switch rule filter lookup type 3550 */ 3551 static void 3552 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle, 3553 struct ice_sw_recipe *recp_list, 3554 enum ice_sw_lkup_type lkup) 3555 { 3556 struct ice_fltr_list_entry *fm_entry; 3557 struct LIST_HEAD_TYPE remove_list_head; 3558 struct LIST_HEAD_TYPE *rule_head; 3559 struct ice_fltr_list_entry *tmp; 3560 struct ice_lock *rule_lock; /* Lock to protect filter rule list */ 3561 enum ice_status status; 3562 3563 INIT_LIST_HEAD(&remove_list_head); 3564 rule_lock = &recp_list[lkup].filt_rule_lock; 3565 rule_head = &recp_list[lkup].filt_rules; 3566 ice_acquire_lock(rule_lock); 3567 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head, 3568 &remove_list_head); 3569 ice_release_lock(rule_lock); 3570 if (status) 3571 goto free_fltr_list; 3572 3573 switch (lkup) { 3574 case ICE_SW_LKUP_MAC: 3575 ice_remove_mac_rule(hw, &remove_list_head, &recp_list[lkup]); 3576 break; 3577 case ICE_SW_LKUP_VLAN: 3578 ice_remove_vlan_rule(hw, &remove_list_head, &recp_list[lkup]); 3579 break; 3580 case ICE_SW_LKUP_PROMISC: 3581 case ICE_SW_LKUP_PROMISC_VLAN: 3582 ice_remove_promisc(hw, lkup, &remove_list_head); 3583 break; 3584 case ICE_SW_LKUP_MAC_VLAN: 3585 ice_debug(hw, ICE_DBG_SW, "MAC VLAN look up is not supported yet\n"); 3586 break; 3587 case ICE_SW_LKUP_ETHERTYPE: 3588 case ICE_SW_LKUP_ETHERTYPE_MAC: 3589 ice_remove_eth_mac(hw, &remove_list_head); 3590 break; 3591 case ICE_SW_LKUP_DFLT: 3592 ice_debug(hw, ICE_DBG_SW, "Remove filters for this lookup type hasn't been implemented yet\n"); 3593 break; 3594 case ICE_SW_LKUP_LAST: 3595 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type\n"); 3596 break; 3597 } 3598 3599 free_fltr_list: 3600 LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head, 3601 ice_fltr_list_entry, list_entry) { 3602 LIST_DEL(&fm_entry->list_entry); 3603 ice_free(hw, fm_entry); 3604 } 3605 } 3606 3607 /** 3608 * ice_remove_vsi_fltr_rule - Remove all filters for a VSI 3609 * @hw: pointer to the hardware structure 3610 * @vsi_handle: VSI handle to remove filters from 3611 * @sw: pointer to switch info struct 3612 */ 3613 static void 3614 ice_remove_vsi_fltr_rule(struct ice_hw *hw, u16 vsi_handle, 3615 struct ice_switch_info *sw) 3616 { 3617 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 3618 3619 ice_remove_vsi_lkup_fltr(hw, vsi_handle, 3620 sw->recp_list, ICE_SW_LKUP_MAC); 3621 ice_remove_vsi_lkup_fltr(hw, vsi_handle, 3622 sw->recp_list, ICE_SW_LKUP_MAC_VLAN); 3623 ice_remove_vsi_lkup_fltr(hw, vsi_handle, 3624 sw->recp_list, ICE_SW_LKUP_PROMISC); 3625 ice_remove_vsi_lkup_fltr(hw, vsi_handle, 3626 sw->recp_list, ICE_SW_LKUP_VLAN); 3627 ice_remove_vsi_lkup_fltr(hw, vsi_handle, 3628 sw->recp_list, ICE_SW_LKUP_DFLT); 3629 ice_remove_vsi_lkup_fltr(hw, vsi_handle, 3630 sw->recp_list, ICE_SW_LKUP_ETHERTYPE); 3631 ice_remove_vsi_lkup_fltr(hw, vsi_handle, 3632 sw->recp_list, ICE_SW_LKUP_ETHERTYPE_MAC); 3633 ice_remove_vsi_lkup_fltr(hw, vsi_handle, 3634 sw->recp_list, ICE_SW_LKUP_PROMISC_VLAN); 3635 } 3636 3637 /** 3638 * ice_remove_vsi_fltr - Remove all filters for a VSI 3639 * @hw: pointer to the hardware structure 3640 * @vsi_handle: VSI handle to remove filters from 3641 */ 3642 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle) 3643 { 3644 ice_remove_vsi_fltr_rule(hw, vsi_handle, hw->switch_info); 3645 } 3646 3647 /** 3648 * ice_alloc_res_cntr - allocating resource counter 3649 * @hw: pointer to the hardware structure 3650 * @type: type of resource 3651 * @alloc_shared: if set it is shared else dedicated 3652 * @num_items: number of entries requested for FD resource type 3653 * @counter_id: counter index returned by AQ call 3654 */ 3655 static enum ice_status 3656 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, 3657 u16 *counter_id) 3658 { 3659 struct ice_aqc_alloc_free_res_elem *buf; 3660 enum ice_status status; 3661 u16 buf_len; 3662 3663 /* Allocate resource */ 3664 buf_len = ice_struct_size(buf, elem, 1); 3665 buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); 3666 if (!buf) 3667 return ICE_ERR_NO_MEMORY; 3668 3669 buf->num_elems = CPU_TO_LE16(num_items); 3670 buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) & 3671 ICE_AQC_RES_TYPE_M) | alloc_shared); 3672 3673 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len, 3674 ice_aqc_opc_alloc_res, NULL); 3675 if (status) 3676 goto exit; 3677 3678 *counter_id = LE16_TO_CPU(buf->elem[0].e.sw_resp); 3679 3680 exit: 3681 ice_free(hw, buf); 3682 return status; 3683 } 3684 3685 /** 3686 * ice_free_res_cntr - free resource counter 3687 * @hw: pointer to the hardware structure 3688 * @type: type of resource 3689 * @alloc_shared: if set it is shared else dedicated 3690 * @num_items: number of entries to be freed for FD resource type 3691 * @counter_id: counter ID resource which needs to be freed 3692 */ 3693 static enum ice_status 3694 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, 3695 u16 counter_id) 3696 { 3697 struct ice_aqc_alloc_free_res_elem *buf; 3698 enum ice_status status; 3699 u16 buf_len; 3700 3701 /* Free resource */ 3702 buf_len = ice_struct_size(buf, elem, 1); 3703 buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); 3704 if (!buf) 3705 return ICE_ERR_NO_MEMORY; 3706 3707 buf->num_elems = CPU_TO_LE16(num_items); 3708 buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) & 3709 ICE_AQC_RES_TYPE_M) | alloc_shared); 3710 buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id); 3711 3712 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len, 3713 ice_aqc_opc_free_res, NULL); 3714 if (status) 3715 ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n"); 3716 3717 ice_free(hw, buf); 3718 return status; 3719 } 3720 3721 /** 3722 * ice_alloc_vlan_res_counter - obtain counter resource for VLAN type 3723 * @hw: pointer to the hardware structure 3724 * @counter_id: returns counter index 3725 */ 3726 enum ice_status ice_alloc_vlan_res_counter(struct ice_hw *hw, u16 *counter_id) 3727 { 3728 return ice_alloc_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER, 3729 ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1, 3730 counter_id); 3731 } 3732 3733 /** 3734 * ice_free_vlan_res_counter - Free counter resource for VLAN type 3735 * @hw: pointer to the hardware structure 3736 * @counter_id: counter index to be freed 3737 */ 3738 enum ice_status ice_free_vlan_res_counter(struct ice_hw *hw, u16 counter_id) 3739 { 3740 return ice_free_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER, 3741 ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1, 3742 counter_id); 3743 } 3744 3745 /** 3746 * ice_alloc_res_lg_act - add large action resource 3747 * @hw: pointer to the hardware structure 3748 * @l_id: large action ID to fill it in 3749 * @num_acts: number of actions to hold with a large action entry 3750 */ 3751 static enum ice_status 3752 ice_alloc_res_lg_act(struct ice_hw *hw, u16 *l_id, u16 num_acts) 3753 { 3754 struct ice_aqc_alloc_free_res_elem *sw_buf; 3755 enum ice_status status; 3756 u16 buf_len; 3757 3758 if (num_acts > ICE_MAX_LG_ACT || num_acts == 0) 3759 return ICE_ERR_PARAM; 3760 3761 /* Allocate resource for large action */ 3762 buf_len = ice_struct_size(sw_buf, elem, 1); 3763 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); 3764 if (!sw_buf) 3765 return ICE_ERR_NO_MEMORY; 3766 3767 sw_buf->num_elems = CPU_TO_LE16(1); 3768 3769 /* If num_acts is 1, use ICE_AQC_RES_TYPE_WIDE_TABLE_1. 3770 * If num_acts is 2, use ICE_AQC_RES_TYPE_WIDE_TABLE_3. 3771 * If num_acts is greater than 2, then use 3772 * ICE_AQC_RES_TYPE_WIDE_TABLE_4. 3773 * The num_acts cannot exceed 4. This was ensured at the 3774 * beginning of the function. 3775 */ 3776 if (num_acts == 1) 3777 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_1); 3778 else if (num_acts == 2) 3779 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_2); 3780 else 3781 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_4); 3782 3783 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, 3784 ice_aqc_opc_alloc_res, NULL); 3785 if (!status) 3786 *l_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp); 3787 3788 ice_free(hw, sw_buf); 3789 return status; 3790 } 3791 3792 /** 3793 * ice_add_mac_with_sw_marker - add filter with sw marker 3794 * @hw: pointer to the hardware structure 3795 * @f_info: filter info structure containing the MAC filter information 3796 * @sw_marker: sw marker to tag the Rx descriptor with 3797 */ 3798 enum ice_status 3799 ice_add_mac_with_sw_marker(struct ice_hw *hw, struct ice_fltr_info *f_info, 3800 u16 sw_marker) 3801 { 3802 struct ice_fltr_mgmt_list_entry *m_entry; 3803 struct ice_fltr_list_entry fl_info; 3804 struct ice_sw_recipe *recp_list; 3805 struct LIST_HEAD_TYPE l_head; 3806 struct ice_lock *rule_lock; /* Lock to protect filter rule list */ 3807 enum ice_status ret; 3808 bool entry_exists; 3809 u16 lg_act_id; 3810 3811 if (f_info->fltr_act != ICE_FWD_TO_VSI) 3812 return ICE_ERR_PARAM; 3813 3814 if (f_info->lkup_type != ICE_SW_LKUP_MAC) 3815 return ICE_ERR_PARAM; 3816 3817 if (sw_marker == ICE_INVAL_SW_MARKER_ID) 3818 return ICE_ERR_PARAM; 3819 3820 if (!ice_is_vsi_valid(hw, f_info->vsi_handle)) 3821 return ICE_ERR_PARAM; 3822 f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle); 3823 3824 /* Add filter if it doesn't exist so then the adding of large 3825 * action always results in update 3826 */ 3827 3828 INIT_LIST_HEAD(&l_head); 3829 fl_info.fltr_info = *f_info; 3830 LIST_ADD(&fl_info.list_entry, &l_head); 3831 3832 entry_exists = false; 3833 ret = ice_add_mac_rule(hw, &l_head, hw->switch_info, 3834 hw->port_info->lport); 3835 if (ret == ICE_ERR_ALREADY_EXISTS) 3836 entry_exists = true; 3837 else if (ret) 3838 return ret; 3839 3840 recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC]; 3841 rule_lock = &recp_list->filt_rule_lock; 3842 ice_acquire_lock(rule_lock); 3843 /* Get the book keeping entry for the filter */ 3844 m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info); 3845 if (!m_entry) 3846 goto exit_error; 3847 3848 /* If counter action was enabled for this rule then don't enable 3849 * sw marker large action 3850 */ 3851 if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) { 3852 ret = ICE_ERR_PARAM; 3853 goto exit_error; 3854 } 3855 3856 /* if same marker was added before */ 3857 if (m_entry->sw_marker_id == sw_marker) { 3858 ret = ICE_ERR_ALREADY_EXISTS; 3859 goto exit_error; 3860 } 3861 3862 /* Allocate a hardware table entry to hold large act. Three actions 3863 * for marker based large action 3864 */ 3865 ret = ice_alloc_res_lg_act(hw, &lg_act_id, 3); 3866 if (ret) 3867 goto exit_error; 3868 3869 if (lg_act_id == ICE_INVAL_LG_ACT_INDEX) 3870 goto exit_error; 3871 3872 /* Update the switch rule to add the marker action */ 3873 ret = ice_add_marker_act(hw, m_entry, sw_marker, lg_act_id); 3874 if (!ret) { 3875 ice_release_lock(rule_lock); 3876 return ret; 3877 } 3878 3879 exit_error: 3880 ice_release_lock(rule_lock); 3881 /* only remove entry if it did not exist previously */ 3882 if (!entry_exists) 3883 ret = ice_remove_mac(hw, &l_head); 3884 3885 return ret; 3886 } 3887 3888 /** 3889 * ice_add_mac_with_counter - add filter with counter enabled 3890 * @hw: pointer to the hardware structure 3891 * @f_info: pointer to filter info structure containing the MAC filter 3892 * information 3893 */ 3894 enum ice_status 3895 ice_add_mac_with_counter(struct ice_hw *hw, struct ice_fltr_info *f_info) 3896 { 3897 struct ice_fltr_mgmt_list_entry *m_entry; 3898 struct ice_fltr_list_entry fl_info; 3899 struct ice_sw_recipe *recp_list; 3900 struct LIST_HEAD_TYPE l_head; 3901 struct ice_lock *rule_lock; /* Lock to protect filter rule list */ 3902 enum ice_status ret; 3903 bool entry_exist; 3904 u16 counter_id; 3905 u16 lg_act_id; 3906 3907 if (f_info->fltr_act != ICE_FWD_TO_VSI) 3908 return ICE_ERR_PARAM; 3909 3910 if (f_info->lkup_type != ICE_SW_LKUP_MAC) 3911 return ICE_ERR_PARAM; 3912 3913 if (!ice_is_vsi_valid(hw, f_info->vsi_handle)) 3914 return ICE_ERR_PARAM; 3915 f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle); 3916 recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC]; 3917 3918 entry_exist = false; 3919 3920 rule_lock = &recp_list->filt_rule_lock; 3921 3922 /* Add filter if it doesn't exist so then the adding of large 3923 * action always results in update 3924 */ 3925 INIT_LIST_HEAD(&l_head); 3926 3927 fl_info.fltr_info = *f_info; 3928 LIST_ADD(&fl_info.list_entry, &l_head); 3929 3930 ret = ice_add_mac_rule(hw, &l_head, hw->switch_info, 3931 hw->port_info->lport); 3932 if (ret == ICE_ERR_ALREADY_EXISTS) 3933 entry_exist = true; 3934 else if (ret) 3935 return ret; 3936 3937 ice_acquire_lock(rule_lock); 3938 m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info); 3939 if (!m_entry) { 3940 ret = ICE_ERR_BAD_PTR; 3941 goto exit_error; 3942 } 3943 3944 /* Don't enable counter for a filter for which sw marker was enabled */ 3945 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) { 3946 ret = ICE_ERR_PARAM; 3947 goto exit_error; 3948 } 3949 3950 /* If a counter was already enabled then don't need to add again */ 3951 if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) { 3952 ret = ICE_ERR_ALREADY_EXISTS; 3953 goto exit_error; 3954 } 3955 3956 /* Allocate a hardware table entry to VLAN counter */ 3957 ret = ice_alloc_vlan_res_counter(hw, &counter_id); 3958 if (ret) 3959 goto exit_error; 3960 3961 /* Allocate a hardware table entry to hold large act. Two actions for 3962 * counter based large action 3963 */ 3964 ret = ice_alloc_res_lg_act(hw, &lg_act_id, 2); 3965 if (ret) 3966 goto exit_error; 3967 3968 if (lg_act_id == ICE_INVAL_LG_ACT_INDEX) 3969 goto exit_error; 3970 3971 /* Update the switch rule to add the counter action */ 3972 ret = ice_add_counter_act(hw, m_entry, counter_id, lg_act_id); 3973 if (!ret) { 3974 ice_release_lock(rule_lock); 3975 return ret; 3976 } 3977 3978 exit_error: 3979 ice_release_lock(rule_lock); 3980 /* only remove entry if it did not exist previously */ 3981 if (!entry_exist) 3982 ret = ice_remove_mac(hw, &l_head); 3983 3984 return ret; 3985 } 3986 3987 /** 3988 * ice_replay_fltr - Replay all the filters stored by a specific list head 3989 * @hw: pointer to the hardware structure 3990 * @list_head: list for which filters needs to be replayed 3991 * @recp_id: Recipe ID for which rules need to be replayed 3992 */ 3993 static enum ice_status 3994 ice_replay_fltr(struct ice_hw *hw, u8 recp_id, struct LIST_HEAD_TYPE *list_head) 3995 { 3996 struct ice_fltr_mgmt_list_entry *itr; 3997 enum ice_status status = ICE_SUCCESS; 3998 struct ice_sw_recipe *recp_list; 3999 u8 lport = hw->port_info->lport; 4000 struct LIST_HEAD_TYPE l_head; 4001 4002 if (LIST_EMPTY(list_head)) 4003 return status; 4004 4005 recp_list = &hw->switch_info->recp_list[recp_id]; 4006 /* Move entries from the given list_head to a temporary l_head so that 4007 * they can be replayed. Otherwise when trying to re-add the same 4008 * filter, the function will return already exists 4009 */ 4010 LIST_REPLACE_INIT(list_head, &l_head); 4011 4012 /* Mark the given list_head empty by reinitializing it so filters 4013 * could be added again by *handler 4014 */ 4015 LIST_FOR_EACH_ENTRY(itr, &l_head, ice_fltr_mgmt_list_entry, 4016 list_entry) { 4017 struct ice_fltr_list_entry f_entry; 4018 u16 vsi_handle; 4019 4020 f_entry.fltr_info = itr->fltr_info; 4021 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN) { 4022 status = ice_add_rule_internal(hw, recp_list, lport, 4023 &f_entry); 4024 if (status != ICE_SUCCESS) 4025 goto end; 4026 continue; 4027 } 4028 4029 /* Add a filter per VSI separately */ 4030 ice_for_each_set_bit(vsi_handle, itr->vsi_list_info->vsi_map, 4031 ICE_MAX_VSI) { 4032 if (!ice_is_vsi_valid(hw, vsi_handle)) 4033 break; 4034 4035 ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map); 4036 f_entry.fltr_info.vsi_handle = vsi_handle; 4037 f_entry.fltr_info.fwd_id.hw_vsi_id = 4038 ice_get_hw_vsi_num(hw, vsi_handle); 4039 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI; 4040 if (recp_id == ICE_SW_LKUP_VLAN) 4041 status = ice_add_vlan_internal(hw, recp_list, 4042 &f_entry); 4043 else 4044 status = ice_add_rule_internal(hw, recp_list, 4045 lport, 4046 &f_entry); 4047 if (status != ICE_SUCCESS) 4048 goto end; 4049 } 4050 } 4051 end: 4052 /* Clear the filter management list */ 4053 ice_rem_sw_rule_info(hw, &l_head); 4054 return status; 4055 } 4056 4057 /** 4058 * ice_replay_all_fltr - replay all filters stored in bookkeeping lists 4059 * @hw: pointer to the hardware structure 4060 * 4061 * NOTE: This function does not clean up partially added filters on error. 4062 * It is up to caller of the function to issue a reset or fail early. 4063 */ 4064 enum ice_status ice_replay_all_fltr(struct ice_hw *hw) 4065 { 4066 struct ice_switch_info *sw = hw->switch_info; 4067 enum ice_status status = ICE_SUCCESS; 4068 u8 i; 4069 4070 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 4071 struct LIST_HEAD_TYPE *head = &sw->recp_list[i].filt_rules; 4072 4073 status = ice_replay_fltr(hw, i, head); 4074 if (status != ICE_SUCCESS) 4075 return status; 4076 } 4077 return status; 4078 } 4079 4080 /** 4081 * ice_replay_vsi_fltr - Replay filters for requested VSI 4082 * @hw: pointer to the hardware structure 4083 * @pi: pointer to port information structure 4084 * @sw: pointer to switch info struct for which function replays filters 4085 * @vsi_handle: driver VSI handle 4086 * @recp_id: Recipe ID for which rules need to be replayed 4087 * @list_head: list for which filters need to be replayed 4088 * 4089 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle. 4090 * It is required to pass valid VSI handle. 4091 */ 4092 static enum ice_status 4093 ice_replay_vsi_fltr(struct ice_hw *hw, struct ice_port_info *pi, 4094 struct ice_switch_info *sw, u16 vsi_handle, u8 recp_id, 4095 struct LIST_HEAD_TYPE *list_head) 4096 { 4097 struct ice_fltr_mgmt_list_entry *itr; 4098 enum ice_status status = ICE_SUCCESS; 4099 struct ice_sw_recipe *recp_list; 4100 u16 hw_vsi_id; 4101 4102 if (LIST_EMPTY(list_head)) 4103 return status; 4104 recp_list = &sw->recp_list[recp_id]; 4105 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 4106 4107 LIST_FOR_EACH_ENTRY(itr, list_head, ice_fltr_mgmt_list_entry, 4108 list_entry) { 4109 struct ice_fltr_list_entry f_entry; 4110 4111 f_entry.fltr_info = itr->fltr_info; 4112 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN && 4113 itr->fltr_info.vsi_handle == vsi_handle) { 4114 /* update the src in case it is VSI num */ 4115 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 4116 f_entry.fltr_info.src = hw_vsi_id; 4117 status = ice_add_rule_internal(hw, recp_list, 4118 pi->lport, 4119 &f_entry); 4120 if (status != ICE_SUCCESS) 4121 goto end; 4122 continue; 4123 } 4124 if (!itr->vsi_list_info || 4125 !ice_is_bit_set(itr->vsi_list_info->vsi_map, vsi_handle)) 4126 continue; 4127 /* Clearing it so that the logic can add it back */ 4128 ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map); 4129 f_entry.fltr_info.vsi_handle = vsi_handle; 4130 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI; 4131 /* update the src in case it is VSI num */ 4132 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 4133 f_entry.fltr_info.src = hw_vsi_id; 4134 if (recp_id == ICE_SW_LKUP_VLAN) 4135 status = ice_add_vlan_internal(hw, recp_list, &f_entry); 4136 else 4137 status = ice_add_rule_internal(hw, recp_list, 4138 pi->lport, 4139 &f_entry); 4140 if (status != ICE_SUCCESS) 4141 goto end; 4142 } 4143 end: 4144 return status; 4145 } 4146 4147 /** 4148 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists 4149 * @hw: pointer to the hardware structure 4150 * @pi: pointer to port information structure 4151 * @vsi_handle: driver VSI handle 4152 * 4153 * Replays filters for requested VSI via vsi_handle. 4154 */ 4155 enum ice_status 4156 ice_replay_vsi_all_fltr(struct ice_hw *hw, struct ice_port_info *pi, 4157 u16 vsi_handle) 4158 { 4159 struct ice_switch_info *sw = hw->switch_info; 4160 enum ice_status status = ICE_SUCCESS; 4161 u8 i; 4162 4163 /* Update the recipes that were created */ 4164 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 4165 struct LIST_HEAD_TYPE *head; 4166 4167 head = &sw->recp_list[i].filt_replay_rules; 4168 if (!sw->recp_list[i].adv_rule) 4169 status = ice_replay_vsi_fltr(hw, pi, sw, vsi_handle, i, 4170 head); 4171 if (status != ICE_SUCCESS) 4172 return status; 4173 } 4174 4175 return ICE_SUCCESS; 4176 } 4177 4178 /** 4179 * ice_rm_sw_replay_rule_info - helper function to delete filter replay rules 4180 * @hw: pointer to the HW struct 4181 * @sw: pointer to switch info struct for which function removes filters 4182 * 4183 * Deletes the filter replay rules for given switch 4184 */ 4185 void ice_rm_sw_replay_rule_info(struct ice_hw *hw, struct ice_switch_info *sw) 4186 { 4187 u8 i; 4188 4189 if (!sw) 4190 return; 4191 4192 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 4193 if (!LIST_EMPTY(&sw->recp_list[i].filt_replay_rules)) { 4194 struct LIST_HEAD_TYPE *l_head; 4195 4196 l_head = &sw->recp_list[i].filt_replay_rules; 4197 if (!sw->recp_list[i].adv_rule) 4198 ice_rem_sw_rule_info(hw, l_head); 4199 } 4200 } 4201 } 4202 4203 /** 4204 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules 4205 * @hw: pointer to the HW struct 4206 * 4207 * Deletes the filter replay rules. 4208 */ 4209 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw) 4210 { 4211 ice_rm_sw_replay_rule_info(hw, hw->switch_info); 4212 } 4213 4214