xref: /freebsd/sys/dev/ice/ice_switch.c (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2024, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "ice_common.h"
33 #include "ice_switch.h"
34 #include "ice_flex_type.h"
35 #include "ice_flow.h"
36 
37 #define ICE_ETH_DA_OFFSET		0
38 #define ICE_ETH_ETHTYPE_OFFSET		12
39 #define ICE_ETH_VLAN_TCI_OFFSET		14
40 #define ICE_MAX_VLAN_ID			0xFFF
41 #define ICE_IPV6_ETHER_ID		0x86DD
42 #define ICE_PPP_IPV6_PROTO_ID		0x0057
43 #define ICE_ETH_P_8021Q			0x8100
44 
45 /* Dummy ethernet header needed in the ice_sw_rule_*
46  * struct to configure any switch filter rules.
47  * {DA (6 bytes), SA(6 bytes),
48  * Ether type (2 bytes for header without VLAN tag) OR
49  * VLAN tag (4 bytes for header with VLAN tag) }
50  *
51  * Word on Hardcoded values
52  * byte 0 = 0x2: to identify it as locally administered DA MAC
53  * byte 6 = 0x2: to identify it as locally administered SA MAC
54  * byte 12 = 0x81 & byte 13 = 0x00:
55  *	In case of VLAN filter first two bytes defines ether type (0x8100)
56  *	and remaining two bytes are placeholder for programming a given VLAN ID
57  *	In case of Ether type filter it is treated as header without VLAN tag
58  *	and byte 12 and 13 is used to program a given Ether type instead
59  */
60 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
61 							0x2, 0, 0, 0, 0, 0,
62 							0x81, 0, 0, 0};
63 
64 static bool
65 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle);
66 
67 /**
68  * ice_init_def_sw_recp - initialize the recipe book keeping tables
69  * @hw: pointer to the HW struct
70  * @recp_list: pointer to sw recipe list
71  *
72  * Allocate memory for the entire recipe table and initialize the structures/
73  * entries corresponding to basic recipes.
74  */
75 int
76 ice_init_def_sw_recp(struct ice_hw *hw, struct ice_sw_recipe **recp_list)
77 {
78 	struct ice_sw_recipe *recps;
79 	u8 i;
80 
81 	recps = (struct ice_sw_recipe *)
82 		ice_calloc(hw, ICE_MAX_NUM_RECIPES, sizeof(*recps));
83 	if (!recps)
84 		return ICE_ERR_NO_MEMORY;
85 
86 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
87 		recps[i].root_rid = i;
88 		INIT_LIST_HEAD(&recps[i].filt_rules);
89 		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
90 		INIT_LIST_HEAD(&recps[i].rg_list);
91 		ice_init_lock(&recps[i].filt_rule_lock);
92 	}
93 
94 	*recp_list = recps;
95 
96 	return 0;
97 }
98 
99 /**
100  * ice_aq_get_sw_cfg - get switch configuration
101  * @hw: pointer to the hardware structure
102  * @buf: pointer to the result buffer
103  * @buf_size: length of the buffer available for response
104  * @req_desc: pointer to requested descriptor
105  * @num_elems: pointer to number of elements
106  * @cd: pointer to command details structure or NULL
107  *
108  * Get switch configuration (0x0200) to be placed in buf.
109  * This admin command returns information such as initial VSI/port number
110  * and switch ID it belongs to.
111  *
112  * NOTE: *req_desc is both an input/output parameter.
113  * The caller of this function first calls this function with *request_desc set
114  * to 0. If the response from f/w has *req_desc set to 0, all the switch
115  * configuration information has been returned; if non-zero (meaning not all
116  * the information was returned), the caller should call this function again
117  * with *req_desc set to the previous value returned by f/w to get the
118  * next block of switch configuration information.
119  *
120  * *num_elems is output only parameter. This reflects the number of elements
121  * in response buffer. The caller of this function to use *num_elems while
122  * parsing the response buffer.
123  */
124 static int
125 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
126 		  u16 buf_size, u16 *req_desc, u16 *num_elems,
127 		  struct ice_sq_cd *cd)
128 {
129 	struct ice_aqc_get_sw_cfg *cmd;
130 	struct ice_aq_desc desc;
131 	int status;
132 
133 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
134 	cmd = &desc.params.get_sw_conf;
135 	cmd->element = CPU_TO_LE16(*req_desc);
136 
137 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
138 	if (!status) {
139 		*req_desc = LE16_TO_CPU(cmd->element);
140 		*num_elems = LE16_TO_CPU(cmd->num_elems);
141 	}
142 
143 	return status;
144 }
145 
146 /**
147  * ice_alloc_rss_global_lut - allocate a RSS global LUT
148  * @hw: pointer to the HW struct
149  * @shared_res: true to allocate as a shared resource and false to allocate as a dedicated resource
150  * @global_lut_id: output parameter for the RSS global LUT's ID
151  */
152 int ice_alloc_rss_global_lut(struct ice_hw *hw, bool shared_res, u16 *global_lut_id)
153 {
154 	struct ice_aqc_alloc_free_res_elem *sw_buf;
155 	int status;
156 	u16 buf_len;
157 
158 	buf_len = ice_struct_size(sw_buf, elem, 1);
159 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
160 	if (!sw_buf)
161 		return ICE_ERR_NO_MEMORY;
162 
163 	sw_buf->num_elems = CPU_TO_LE16(1);
164 	sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH |
165 				       (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED :
166 				       ICE_AQC_RES_TYPE_FLAG_DEDICATED));
167 
168 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, ice_aqc_opc_alloc_res, NULL);
169 	if (status) {
170 		ice_debug(hw, ICE_DBG_RES, "Failed to allocate %s RSS global LUT, status %d\n",
171 			  shared_res ? "shared" : "dedicated", status);
172 		goto ice_alloc_global_lut_exit;
173 	}
174 
175 	*global_lut_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
176 
177 ice_alloc_global_lut_exit:
178 	ice_free(hw, sw_buf);
179 	return status;
180 }
181 
182 /**
183  * ice_free_rss_global_lut - free a RSS global LUT
184  * @hw: pointer to the HW struct
185  * @global_lut_id: ID of the RSS global LUT to free
186  */
187 int ice_free_rss_global_lut(struct ice_hw *hw, u16 global_lut_id)
188 {
189 	struct ice_aqc_alloc_free_res_elem *sw_buf;
190 	u16 buf_len, num_elems = 1;
191 	int status;
192 
193 	buf_len = ice_struct_size(sw_buf, elem, num_elems);
194 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
195 	if (!sw_buf)
196 		return ICE_ERR_NO_MEMORY;
197 
198 	sw_buf->num_elems = CPU_TO_LE16(num_elems);
199 	sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH);
200 	sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(global_lut_id);
201 
202 	status = ice_aq_alloc_free_res(hw, num_elems, sw_buf, buf_len, ice_aqc_opc_free_res, NULL);
203 	if (status)
204 		ice_debug(hw, ICE_DBG_RES, "Failed to free RSS global LUT %d, status %d\n",
205 			  global_lut_id, status);
206 
207 	ice_free(hw, sw_buf);
208 	return status;
209 }
210 
211 /**
212  * ice_alloc_sw - allocate resources specific to switch
213  * @hw: pointer to the HW struct
214  * @ena_stats: true to turn on VEB stats
215  * @shared_res: true for shared resource, false for dedicated resource
216  * @sw_id: switch ID returned
217  * @counter_id: VEB counter ID returned
218  *
219  * allocates switch resources (SWID and VEB counter) (0x0208)
220  */
221 int
222 ice_alloc_sw(struct ice_hw *hw, bool ena_stats, bool shared_res, u16 *sw_id,
223 	     u16 *counter_id)
224 {
225 	struct ice_aqc_alloc_free_res_elem *sw_buf;
226 	struct ice_aqc_res_elem *sw_ele;
227 	u16 buf_len;
228 	int status;
229 
230 	buf_len = ice_struct_size(sw_buf, elem, 1);
231 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
232 	if (!sw_buf)
233 		return ICE_ERR_NO_MEMORY;
234 
235 	/* Prepare buffer for switch ID.
236 	 * The number of resource entries in buffer is passed as 1 since only a
237 	 * single switch/VEB instance is allocated, and hence a single sw_id
238 	 * is requested.
239 	 */
240 	sw_buf->num_elems = CPU_TO_LE16(1);
241 	sw_buf->res_type =
242 		CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID |
243 			    (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED :
244 			    ICE_AQC_RES_TYPE_FLAG_DEDICATED));
245 
246 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
247 				       ice_aqc_opc_alloc_res, NULL);
248 
249 	if (status)
250 		goto ice_alloc_sw_exit;
251 
252 	sw_ele = &sw_buf->elem[0];
253 	*sw_id = LE16_TO_CPU(sw_ele->e.sw_resp);
254 
255 	if (ena_stats) {
256 		/* Prepare buffer for VEB Counter */
257 		enum ice_adminq_opc opc = ice_aqc_opc_alloc_res;
258 		struct ice_aqc_alloc_free_res_elem *counter_buf;
259 		struct ice_aqc_res_elem *counter_ele;
260 
261 		counter_buf = (struct ice_aqc_alloc_free_res_elem *)
262 				ice_malloc(hw, buf_len);
263 		if (!counter_buf) {
264 			status = ICE_ERR_NO_MEMORY;
265 			goto ice_alloc_sw_exit;
266 		}
267 
268 		/* The number of resource entries in buffer is passed as 1 since
269 		 * only a single switch/VEB instance is allocated, and hence a
270 		 * single VEB counter is requested.
271 		 */
272 		counter_buf->num_elems = CPU_TO_LE16(1);
273 		counter_buf->res_type =
274 			CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER |
275 				    ICE_AQC_RES_TYPE_FLAG_DEDICATED);
276 		status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
277 					       opc, NULL);
278 
279 		if (status) {
280 			ice_free(hw, counter_buf);
281 			goto ice_alloc_sw_exit;
282 		}
283 		counter_ele = &counter_buf->elem[0];
284 		*counter_id = LE16_TO_CPU(counter_ele->e.sw_resp);
285 		ice_free(hw, counter_buf);
286 	}
287 
288 ice_alloc_sw_exit:
289 	ice_free(hw, sw_buf);
290 	return status;
291 }
292 
293 /**
294  * ice_free_sw - free resources specific to switch
295  * @hw: pointer to the HW struct
296  * @sw_id: switch ID returned
297  * @counter_id: VEB counter ID returned
298  *
299  * free switch resources (SWID and VEB counter) (0x0209)
300  *
301  * NOTE: This function frees multiple resources. It continues
302  * releasing other resources even after it encounters error.
303  * The error code returned is the last error it encountered.
304  */
305 int ice_free_sw(struct ice_hw *hw, u16 sw_id, u16 counter_id)
306 {
307 	struct ice_aqc_alloc_free_res_elem *sw_buf, *counter_buf;
308 	int status, ret_status;
309 	u16 buf_len;
310 
311 	buf_len = ice_struct_size(sw_buf, elem, 1);
312 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
313 	if (!sw_buf)
314 		return ICE_ERR_NO_MEMORY;
315 
316 	/* Prepare buffer to free for switch ID res.
317 	 * The number of resource entries in buffer is passed as 1 since only a
318 	 * single switch/VEB instance is freed, and hence a single sw_id
319 	 * is released.
320 	 */
321 	sw_buf->num_elems = CPU_TO_LE16(1);
322 	sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID);
323 	sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(sw_id);
324 
325 	ret_status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
326 					   ice_aqc_opc_free_res, NULL);
327 
328 	if (ret_status)
329 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
330 
331 	/* Prepare buffer to free for VEB Counter resource */
332 	counter_buf = (struct ice_aqc_alloc_free_res_elem *)
333 			ice_malloc(hw, buf_len);
334 	if (!counter_buf) {
335 		ice_free(hw, sw_buf);
336 		return ICE_ERR_NO_MEMORY;
337 	}
338 
339 	/* The number of resource entries in buffer is passed as 1 since only a
340 	 * single switch/VEB instance is freed, and hence a single VEB counter
341 	 * is released
342 	 */
343 	counter_buf->num_elems = CPU_TO_LE16(1);
344 	counter_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER);
345 	counter_buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
346 
347 	status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
348 				       ice_aqc_opc_free_res, NULL);
349 	if (status) {
350 		ice_debug(hw, ICE_DBG_SW, "VEB counter resource could not be freed\n");
351 		ret_status = status;
352 	}
353 
354 	ice_free(hw, counter_buf);
355 	ice_free(hw, sw_buf);
356 	return ret_status;
357 }
358 
359 /**
360  * ice_aq_add_vsi
361  * @hw: pointer to the HW struct
362  * @vsi_ctx: pointer to a VSI context struct
363  * @cd: pointer to command details structure or NULL
364  *
365  * Add a VSI context to the hardware (0x0210)
366  */
367 int
368 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
369 	       struct ice_sq_cd *cd)
370 {
371 	struct ice_aqc_add_update_free_vsi_resp *res;
372 	struct ice_aqc_add_get_update_free_vsi *cmd;
373 	struct ice_aq_desc desc;
374 	int status;
375 
376 	cmd = &desc.params.vsi_cmd;
377 	res = &desc.params.add_update_free_vsi_res;
378 
379 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
380 
381 	if (!vsi_ctx->alloc_from_pool)
382 		cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num |
383 					   ICE_AQ_VSI_IS_VALID);
384 	cmd->vf_id = vsi_ctx->vf_num;
385 
386 	cmd->vsi_flags = CPU_TO_LE16(vsi_ctx->flags);
387 
388 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
389 
390 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
391 				 sizeof(vsi_ctx->info), cd);
392 
393 	if (!status) {
394 		vsi_ctx->vsi_num = LE16_TO_CPU(res->vsi_num) & ICE_AQ_VSI_NUM_M;
395 		vsi_ctx->vsis_allocd = LE16_TO_CPU(res->vsi_used);
396 		vsi_ctx->vsis_unallocated = LE16_TO_CPU(res->vsi_free);
397 	}
398 
399 	return status;
400 }
401 
402 /**
403  * ice_aq_free_vsi
404  * @hw: pointer to the HW struct
405  * @vsi_ctx: pointer to a VSI context struct
406  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
407  * @cd: pointer to command details structure or NULL
408  *
409  * Free VSI context info from hardware (0x0213)
410  */
411 int
412 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
413 		bool keep_vsi_alloc, struct ice_sq_cd *cd)
414 {
415 	struct ice_aqc_add_update_free_vsi_resp *resp;
416 	struct ice_aqc_add_get_update_free_vsi *cmd;
417 	struct ice_aq_desc desc;
418 	int status;
419 
420 	cmd = &desc.params.vsi_cmd;
421 	resp = &desc.params.add_update_free_vsi_res;
422 
423 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
424 
425 	cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
426 	if (keep_vsi_alloc)
427 		cmd->cmd_flags = CPU_TO_LE16(ICE_AQ_VSI_KEEP_ALLOC);
428 
429 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
430 	if (!status) {
431 		vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
432 		vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
433 	}
434 
435 	return status;
436 }
437 
438 /**
439  * ice_aq_update_vsi
440  * @hw: pointer to the HW struct
441  * @vsi_ctx: pointer to a VSI context struct
442  * @cd: pointer to command details structure or NULL
443  *
444  * Update VSI context in the hardware (0x0211)
445  */
446 int
447 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
448 		  struct ice_sq_cd *cd)
449 {
450 	struct ice_aqc_add_update_free_vsi_resp *resp;
451 	struct ice_aqc_add_get_update_free_vsi *cmd;
452 	struct ice_aq_desc desc;
453 	int status;
454 
455 	cmd = &desc.params.vsi_cmd;
456 	resp = &desc.params.add_update_free_vsi_res;
457 
458 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
459 
460 	cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
461 
462 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
463 
464 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
465 				 sizeof(vsi_ctx->info), cd);
466 
467 	if (!status) {
468 		vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
469 		vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
470 	}
471 
472 	return status;
473 }
474 
475 /**
476  * ice_is_vsi_valid - check whether the VSI is valid or not
477  * @hw: pointer to the HW struct
478  * @vsi_handle: VSI handle
479  *
480  * check whether the VSI is valid or not
481  */
482 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
483 {
484 	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
485 }
486 
487 /**
488  * ice_get_hw_vsi_num - return the HW VSI number
489  * @hw: pointer to the HW struct
490  * @vsi_handle: VSI handle
491  *
492  * return the HW VSI number
493  * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
494  */
495 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
496 {
497 	return hw->vsi_ctx[vsi_handle]->vsi_num;
498 }
499 
500 /**
501  * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
502  * @hw: pointer to the HW struct
503  * @vsi_handle: VSI handle
504  *
505  * return the VSI context entry for a given VSI handle
506  */
507 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
508 {
509 	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
510 }
511 
512 /**
513  * ice_save_vsi_ctx - save the VSI context for a given VSI handle
514  * @hw: pointer to the HW struct
515  * @vsi_handle: VSI handle
516  * @vsi: VSI context pointer
517  *
518  * save the VSI context entry for a given VSI handle
519  */
520 static void
521 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
522 {
523 	hw->vsi_ctx[vsi_handle] = vsi;
524 }
525 
526 /**
527  * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
528  * @hw: pointer to the HW struct
529  * @vsi_handle: VSI handle
530  */
531 void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
532 {
533 	struct ice_vsi_ctx *vsi;
534 	u8 i;
535 
536 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
537 	if (!vsi)
538 		return;
539 	ice_for_each_traffic_class(i) {
540 		if (vsi->lan_q_ctx[i]) {
541 			ice_free(hw, vsi->lan_q_ctx[i]);
542 			vsi->lan_q_ctx[i] = NULL;
543 		}
544 		if (vsi->rdma_q_ctx[i]) {
545 			ice_free(hw, vsi->rdma_q_ctx[i]);
546 			vsi->rdma_q_ctx[i] = NULL;
547 		}
548 	}
549 }
550 
551 /**
552  * ice_clear_vsi_ctx - clear the VSI context entry
553  * @hw: pointer to the HW struct
554  * @vsi_handle: VSI handle
555  *
556  * clear the VSI context entry
557  */
558 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
559 {
560 	struct ice_vsi_ctx *vsi;
561 
562 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
563 	if (vsi) {
564 		ice_clear_vsi_q_ctx(hw, vsi_handle);
565 		ice_free(hw, vsi);
566 		hw->vsi_ctx[vsi_handle] = NULL;
567 	}
568 }
569 
570 /**
571  * ice_clear_all_vsi_ctx - clear all the VSI context entries
572  * @hw: pointer to the HW struct
573  */
574 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
575 {
576 	u16 i;
577 
578 	for (i = 0; i < ICE_MAX_VSI; i++)
579 		ice_clear_vsi_ctx(hw, i);
580 }
581 
582 /**
583  * ice_add_vsi - add VSI context to the hardware and VSI handle list
584  * @hw: pointer to the HW struct
585  * @vsi_handle: unique VSI handle provided by drivers
586  * @vsi_ctx: pointer to a VSI context struct
587  * @cd: pointer to command details structure or NULL
588  *
589  * Add a VSI context to the hardware also add it into the VSI handle list.
590  * If this function gets called after reset for existing VSIs then update
591  * with the new HW VSI number in the corresponding VSI handle list entry.
592  */
593 int
594 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
595 	    struct ice_sq_cd *cd)
596 {
597 	struct ice_vsi_ctx *tmp_vsi_ctx;
598 	int status;
599 
600 	if (vsi_handle >= ICE_MAX_VSI)
601 		return ICE_ERR_PARAM;
602 	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
603 	if (status)
604 		return status;
605 	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
606 	if (!tmp_vsi_ctx) {
607 		/* Create a new VSI context */
608 		tmp_vsi_ctx = (struct ice_vsi_ctx *)
609 			ice_malloc(hw, sizeof(*tmp_vsi_ctx));
610 		if (!tmp_vsi_ctx) {
611 			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
612 			return ICE_ERR_NO_MEMORY;
613 		}
614 		*tmp_vsi_ctx = *vsi_ctx;
615 
616 		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
617 	} else {
618 		/* update with new HW VSI num */
619 		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
620 	}
621 
622 	return 0;
623 }
624 
625 /**
626  * ice_free_vsi- free VSI context from hardware and VSI handle list
627  * @hw: pointer to the HW struct
628  * @vsi_handle: unique VSI handle
629  * @vsi_ctx: pointer to a VSI context struct
630  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
631  * @cd: pointer to command details structure or NULL
632  *
633  * Free VSI context info from hardware as well as from VSI handle list
634  */
635 int
636 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
637 	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
638 {
639 	int status;
640 
641 	if (!ice_is_vsi_valid(hw, vsi_handle))
642 		return ICE_ERR_PARAM;
643 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
644 	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
645 	if (!status)
646 		ice_clear_vsi_ctx(hw, vsi_handle);
647 	return status;
648 }
649 
650 /**
651  * ice_update_vsi
652  * @hw: pointer to the HW struct
653  * @vsi_handle: unique VSI handle
654  * @vsi_ctx: pointer to a VSI context struct
655  * @cd: pointer to command details structure or NULL
656  *
657  * Update VSI context in the hardware
658  */
659 int
660 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
661 	       struct ice_sq_cd *cd)
662 {
663 	if (!ice_is_vsi_valid(hw, vsi_handle))
664 		return ICE_ERR_PARAM;
665 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
666 	return ice_aq_update_vsi(hw, vsi_ctx, cd);
667 }
668 
669 /**
670  * ice_cfg_iwarp_fltr - enable/disable iWARP filtering on VSI
671  * @hw: pointer to HW struct
672  * @vsi_handle: VSI SW index
673  * @enable: boolean for enable/disable
674  */
675 int
676 ice_cfg_iwarp_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
677 {
678 	struct ice_vsi_ctx *ctx, *cached_ctx;
679 	int status;
680 
681 	cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
682 	if (!cached_ctx)
683 		return ICE_ERR_DOES_NOT_EXIST;
684 
685 	ctx = (struct ice_vsi_ctx *)ice_calloc(hw, 1, sizeof(*ctx));
686 	if (!ctx)
687 		return ICE_ERR_NO_MEMORY;
688 
689 	ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
690 	ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
691 	ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
692 
693 	ctx->info.valid_sections = CPU_TO_LE16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
694 
695 	if (enable)
696 		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
697 	else
698 		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
699 
700 	status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
701 	if (!status) {
702 		cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
703 		cached_ctx->info.valid_sections |= ctx->info.valid_sections;
704 	}
705 
706 	ice_free(hw, ctx);
707 	return status;
708 }
709 
710 /**
711  * ice_aq_get_vsi_params
712  * @hw: pointer to the HW struct
713  * @vsi_ctx: pointer to a VSI context struct
714  * @cd: pointer to command details structure or NULL
715  *
716  * Get VSI context info from hardware (0x0212)
717  */
718 int
719 ice_aq_get_vsi_params(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
720 		      struct ice_sq_cd *cd)
721 {
722 	struct ice_aqc_add_get_update_free_vsi *cmd;
723 	struct ice_aqc_get_vsi_resp *resp;
724 	struct ice_aq_desc desc;
725 	int status;
726 
727 	cmd = &desc.params.vsi_cmd;
728 	resp = &desc.params.get_vsi_resp;
729 
730 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_vsi_params);
731 
732 	cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
733 
734 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
735 				 sizeof(vsi_ctx->info), cd);
736 	if (!status) {
737 		vsi_ctx->vsi_num = LE16_TO_CPU(resp->vsi_num) &
738 					ICE_AQ_VSI_NUM_M;
739 		vsi_ctx->vf_num = resp->vf_id;
740 		vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
741 		vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
742 	}
743 
744 	return status;
745 }
746 
747 /**
748  * ice_aq_add_update_mir_rule - add/update a mirror rule
749  * @hw: pointer to the HW struct
750  * @rule_type: Rule Type
751  * @dest_vsi: VSI number to which packets will be mirrored
752  * @count: length of the list
753  * @mr_buf: buffer for list of mirrored VSI numbers
754  * @cd: pointer to command details structure or NULL
755  * @rule_id: Rule ID
756  *
757  * Add/Update Mirror Rule (0x260).
758  */
759 int
760 ice_aq_add_update_mir_rule(struct ice_hw *hw, u16 rule_type, u16 dest_vsi,
761 			   u16 count, struct ice_mir_rule_buf *mr_buf,
762 			   struct ice_sq_cd *cd, u16 *rule_id)
763 {
764 	struct ice_aqc_add_update_mir_rule *cmd;
765 	struct ice_aq_desc desc;
766 	__le16 *mr_list = NULL;
767 	u16 buf_size = 0;
768 	int status;
769 
770 	switch (rule_type) {
771 	case ICE_AQC_RULE_TYPE_VPORT_INGRESS:
772 	case ICE_AQC_RULE_TYPE_VPORT_EGRESS:
773 		/* Make sure count and mr_buf are set for these rule_types */
774 		if (!(count && mr_buf))
775 			return ICE_ERR_PARAM;
776 
777 		buf_size = count * sizeof(__le16);
778 		mr_list = (_FORCE_ __le16 *)ice_malloc(hw, buf_size);
779 		if (!mr_list)
780 			return ICE_ERR_NO_MEMORY;
781 		break;
782 	case ICE_AQC_RULE_TYPE_PPORT_INGRESS:
783 	case ICE_AQC_RULE_TYPE_PPORT_EGRESS:
784 		/* Make sure count and mr_buf are not set for these
785 		 * rule_types
786 		 */
787 		if (count || mr_buf)
788 			return ICE_ERR_PARAM;
789 		break;
790 	default:
791 		ice_debug(hw, ICE_DBG_SW, "Error due to unsupported rule_type %u\n", rule_type);
792 		return ICE_ERR_OUT_OF_RANGE;
793 	}
794 
795 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_update_mir_rule);
796 
797 	/* Pre-process 'mr_buf' items for add/update of virtual port
798 	 * ingress/egress mirroring (but not physical port ingress/egress
799 	 * mirroring)
800 	 */
801 	if (mr_buf) {
802 		int i;
803 
804 		for (i = 0; i < count; i++) {
805 			u16 id;
806 
807 			id = mr_buf[i].vsi_idx & ICE_AQC_RULE_MIRRORED_VSI_M;
808 
809 			/* Validate specified VSI number, make sure it is less
810 			 * than ICE_MAX_VSI, if not return with error.
811 			 */
812 			if (id >= ICE_MAX_VSI) {
813 				ice_debug(hw, ICE_DBG_SW, "Error VSI index (%u) out-of-range\n",
814 					  id);
815 				ice_free(hw, mr_list);
816 				return ICE_ERR_OUT_OF_RANGE;
817 			}
818 
819 			/* add VSI to mirror rule */
820 			if (mr_buf[i].add)
821 				mr_list[i] =
822 					CPU_TO_LE16(id | ICE_AQC_RULE_ACT_M);
823 			else /* remove VSI from mirror rule */
824 				mr_list[i] = CPU_TO_LE16(id);
825 		}
826 
827 		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
828 	}
829 
830 	cmd = &desc.params.add_update_rule;
831 	if ((*rule_id) != ICE_INVAL_MIRROR_RULE_ID)
832 		cmd->rule_id = CPU_TO_LE16(((*rule_id) & ICE_AQC_RULE_ID_M) |
833 					   ICE_AQC_RULE_ID_VALID_M);
834 	cmd->rule_type = CPU_TO_LE16(rule_type & ICE_AQC_RULE_TYPE_M);
835 	cmd->num_entries = CPU_TO_LE16(count);
836 	cmd->dest = CPU_TO_LE16(dest_vsi);
837 
838 	status = ice_aq_send_cmd(hw, &desc, mr_list, buf_size, cd);
839 	if (!status)
840 		*rule_id = LE16_TO_CPU(cmd->rule_id) & ICE_AQC_RULE_ID_M;
841 
842 	ice_free(hw, mr_list);
843 
844 	return status;
845 }
846 
847 /**
848  * ice_aq_delete_mir_rule - delete a mirror rule
849  * @hw: pointer to the HW struct
850  * @rule_id: Mirror rule ID (to be deleted)
851  * @keep_allocd: if set, the VSI stays part of the PF allocated res,
852  *		 otherwise it is returned to the shared pool
853  * @cd: pointer to command details structure or NULL
854  *
855  * Delete Mirror Rule (0x261).
856  */
857 int
858 ice_aq_delete_mir_rule(struct ice_hw *hw, u16 rule_id, bool keep_allocd,
859 		       struct ice_sq_cd *cd)
860 {
861 	struct ice_aqc_delete_mir_rule *cmd;
862 	struct ice_aq_desc desc;
863 
864 	/* rule_id should be in the range 0...63 */
865 	if (rule_id >= ICE_MAX_NUM_MIRROR_RULES)
866 		return ICE_ERR_OUT_OF_RANGE;
867 
868 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_del_mir_rule);
869 
870 	cmd = &desc.params.del_rule;
871 	rule_id |= ICE_AQC_RULE_ID_VALID_M;
872 	cmd->rule_id = CPU_TO_LE16(rule_id);
873 
874 	if (keep_allocd)
875 		cmd->flags = CPU_TO_LE16(ICE_AQC_FLAG_KEEP_ALLOCD_M);
876 
877 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
878 }
879 
880 /**
881  * ice_aq_alloc_free_vsi_list
882  * @hw: pointer to the HW struct
883  * @vsi_list_id: VSI list ID returned or used for lookup
884  * @lkup_type: switch rule filter lookup type
885  * @opc: switch rules population command type - pass in the command opcode
886  *
887  * allocates or free a VSI list resource
888  */
889 static int
890 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
891 			   enum ice_sw_lkup_type lkup_type,
892 			   enum ice_adminq_opc opc)
893 {
894 	struct ice_aqc_alloc_free_res_elem *sw_buf;
895 	struct ice_aqc_res_elem *vsi_ele;
896 	u16 buf_len;
897 	int status;
898 
899 	buf_len = ice_struct_size(sw_buf, elem, 1);
900 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
901 	if (!sw_buf)
902 		return ICE_ERR_NO_MEMORY;
903 	sw_buf->num_elems = CPU_TO_LE16(1);
904 
905 	if (lkup_type == ICE_SW_LKUP_MAC ||
906 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
907 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
908 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
909 	    lkup_type == ICE_SW_LKUP_PROMISC ||
910 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
911 	    lkup_type == ICE_SW_LKUP_DFLT ||
912 	    lkup_type == ICE_SW_LKUP_LAST) {
913 		sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
914 	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
915 		sw_buf->res_type =
916 			CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
917 	} else {
918 		status = ICE_ERR_PARAM;
919 		goto ice_aq_alloc_free_vsi_list_exit;
920 	}
921 
922 	if (opc == ice_aqc_opc_free_res)
923 		sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(*vsi_list_id);
924 
925 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
926 	if (status)
927 		goto ice_aq_alloc_free_vsi_list_exit;
928 
929 	if (opc == ice_aqc_opc_alloc_res) {
930 		vsi_ele = &sw_buf->elem[0];
931 		*vsi_list_id = LE16_TO_CPU(vsi_ele->e.sw_resp);
932 	}
933 
934 ice_aq_alloc_free_vsi_list_exit:
935 	ice_free(hw, sw_buf);
936 	return status;
937 }
938 
939 /**
940  * ice_aq_set_storm_ctrl - Sets storm control configuration
941  * @hw: pointer to the HW struct
942  * @bcast_thresh: represents the upper threshold for broadcast storm control
943  * @mcast_thresh: represents the upper threshold for multicast storm control
944  * @ctl_bitmask: storm control knobs
945  *
946  * Sets the storm control configuration (0x0280)
947  */
948 int
949 ice_aq_set_storm_ctrl(struct ice_hw *hw, u32 bcast_thresh, u32 mcast_thresh,
950 		      u32 ctl_bitmask)
951 {
952 	struct ice_aqc_storm_cfg *cmd;
953 	struct ice_aq_desc desc;
954 
955 	cmd = &desc.params.storm_conf;
956 
957 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_storm_cfg);
958 
959 	cmd->bcast_thresh_size = CPU_TO_LE32(bcast_thresh & ICE_AQ_THRESHOLD_M);
960 	cmd->mcast_thresh_size = CPU_TO_LE32(mcast_thresh & ICE_AQ_THRESHOLD_M);
961 	cmd->storm_ctrl_ctrl = CPU_TO_LE32(ctl_bitmask);
962 
963 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
964 }
965 
966 /**
967  * ice_aq_get_storm_ctrl - gets storm control configuration
968  * @hw: pointer to the HW struct
969  * @bcast_thresh: represents the upper threshold for broadcast storm control
970  * @mcast_thresh: represents the upper threshold for multicast storm control
971  * @ctl_bitmask: storm control knobs
972  *
973  * Gets the storm control configuration (0x0281)
974  */
975 int
976 ice_aq_get_storm_ctrl(struct ice_hw *hw, u32 *bcast_thresh, u32 *mcast_thresh,
977 		      u32 *ctl_bitmask)
978 {
979 	struct ice_aq_desc desc;
980 	int status;
981 
982 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_storm_cfg);
983 
984 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
985 	if (!status) {
986 		struct ice_aqc_storm_cfg *resp = &desc.params.storm_conf;
987 
988 		if (bcast_thresh)
989 			*bcast_thresh = LE32_TO_CPU(resp->bcast_thresh_size) &
990 				ICE_AQ_THRESHOLD_M;
991 		if (mcast_thresh)
992 			*mcast_thresh = LE32_TO_CPU(resp->mcast_thresh_size) &
993 				ICE_AQ_THRESHOLD_M;
994 		if (ctl_bitmask)
995 			*ctl_bitmask = LE32_TO_CPU(resp->storm_ctrl_ctrl);
996 	}
997 
998 	return status;
999 }
1000 
1001 /**
1002  * ice_aq_sw_rules - add/update/remove switch rules
1003  * @hw: pointer to the HW struct
1004  * @rule_list: pointer to switch rule population list
1005  * @rule_list_sz: total size of the rule list in bytes
1006  * @num_rules: number of switch rules in the rule_list
1007  * @opc: switch rules population command type - pass in the command opcode
1008  * @cd: pointer to command details structure or NULL
1009  *
1010  * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1011  */
1012 int
1013 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1014 		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1015 {
1016 	struct ice_aq_desc desc;
1017 	int status;
1018 
1019 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1020 
1021 	if (opc != ice_aqc_opc_add_sw_rules &&
1022 	    opc != ice_aqc_opc_update_sw_rules &&
1023 	    opc != ice_aqc_opc_remove_sw_rules)
1024 		return ICE_ERR_PARAM;
1025 
1026 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1027 
1028 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1029 	desc.params.sw_rules.num_rules_fltr_entry_index =
1030 		CPU_TO_LE16(num_rules);
1031 	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1032 	if (opc != ice_aqc_opc_add_sw_rules &&
1033 	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1034 		status = ICE_ERR_DOES_NOT_EXIST;
1035 
1036 	return status;
1037 }
1038 
1039 /* ice_init_port_info - Initialize port_info with switch configuration data
1040  * @pi: pointer to port_info
1041  * @vsi_port_num: VSI number or port number
1042  * @type: Type of switch element (port or VSI)
1043  * @swid: switch ID of the switch the element is attached to
1044  * @pf_vf_num: PF or VF number
1045  * @is_vf: true if the element is a VF, false otherwise
1046  */
1047 static void
1048 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
1049 		   u16 swid, u16 pf_vf_num, bool is_vf)
1050 {
1051 	switch (type) {
1052 	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
1053 		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
1054 		pi->sw_id = swid;
1055 		pi->pf_vf_num = pf_vf_num;
1056 		pi->is_vf = is_vf;
1057 		break;
1058 	default:
1059 		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
1060 		break;
1061 	}
1062 }
1063 
1064 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
1065  * @hw: pointer to the hardware structure
1066  */
1067 int ice_get_initial_sw_cfg(struct ice_hw *hw)
1068 {
1069 	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
1070 	u8 num_total_ports;
1071 	u16 req_desc = 0;
1072 	u16 num_elems;
1073 	int status;
1074 	u8 j = 0;
1075 	u16 i;
1076 
1077 	num_total_ports = 1;
1078 
1079 	rbuf = (struct ice_aqc_get_sw_cfg_resp_elem *)
1080 		ice_malloc(hw, ICE_SW_CFG_MAX_BUF_LEN);
1081 
1082 	if (!rbuf)
1083 		return ICE_ERR_NO_MEMORY;
1084 
1085 	/* Multiple calls to ice_aq_get_sw_cfg may be required
1086 	 * to get all the switch configuration information. The need
1087 	 * for additional calls is indicated by ice_aq_get_sw_cfg
1088 	 * writing a non-zero value in req_desc
1089 	 */
1090 	do {
1091 		struct ice_aqc_get_sw_cfg_resp_elem *ele;
1092 
1093 		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
1094 					   &req_desc, &num_elems, NULL);
1095 
1096 		if (status)
1097 			break;
1098 
1099 		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
1100 			u16 pf_vf_num, swid, vsi_port_num;
1101 			bool is_vf = false;
1102 			u8 res_type;
1103 
1104 			vsi_port_num = LE16_TO_CPU(ele->vsi_port_num) &
1105 				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
1106 
1107 			pf_vf_num = LE16_TO_CPU(ele->pf_vf_num) &
1108 				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
1109 
1110 			swid = LE16_TO_CPU(ele->swid);
1111 
1112 			if (LE16_TO_CPU(ele->pf_vf_num) &
1113 			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
1114 				is_vf = true;
1115 
1116 			res_type = (u8)(LE16_TO_CPU(ele->vsi_port_num) >>
1117 					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
1118 
1119 			switch (res_type) {
1120 			case ICE_AQC_GET_SW_CONF_RESP_VSI:
1121 				if (hw->fw_vsi_num != ICE_DFLT_VSI_INVAL)
1122 					ice_debug(hw, ICE_DBG_SW, "fw_vsi_num %d -> %d\n",
1123 						  hw->fw_vsi_num, vsi_port_num);
1124 				hw->fw_vsi_num = vsi_port_num;
1125 				break;
1126 			case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
1127 			case ICE_AQC_GET_SW_CONF_RESP_VIRT_PORT:
1128 				if (j == num_total_ports) {
1129 					ice_debug(hw, ICE_DBG_SW, "more ports than expected\n");
1130 					status = ICE_ERR_CFG;
1131 					goto out;
1132 				}
1133 				ice_init_port_info(hw->port_info,
1134 						   vsi_port_num, res_type, swid,
1135 						   pf_vf_num, is_vf);
1136 				j++;
1137 				break;
1138 			default:
1139 				break;
1140 			}
1141 		}
1142 	} while (req_desc && !status);
1143 
1144 out:
1145 	ice_free(hw, rbuf);
1146 	return status;
1147 }
1148 
1149 /**
1150  * ice_fill_sw_info - Helper function to populate lb_en and lan_en
1151  * @hw: pointer to the hardware structure
1152  * @fi: filter info structure to fill/update
1153  *
1154  * This helper function populates the lb_en and lan_en elements of the provided
1155  * ice_fltr_info struct using the switch's type and characteristics of the
1156  * switch rule being configured.
1157  */
1158 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
1159 {
1160 	fi->lb_en = false;
1161 	fi->lan_en = false;
1162 	if ((fi->flag & ICE_FLTR_TX) &&
1163 	    (fi->fltr_act == ICE_FWD_TO_VSI ||
1164 	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
1165 	     fi->fltr_act == ICE_FWD_TO_Q ||
1166 	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
1167 		/* Setting LB for prune actions will result in replicated
1168 		 * packets to the internal switch that will be dropped.
1169 		 */
1170 		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
1171 			fi->lb_en = true;
1172 
1173 		/* Set lan_en to TRUE if
1174 		 * 1. The switch is a VEB AND
1175 		 * 2
1176 		 * 2.1 The lookup is a directional lookup like ethertype,
1177 		 * promiscuous, ethertype-MAC, promiscuous-VLAN
1178 		 * and default-port OR
1179 		 * 2.2 The lookup is VLAN, OR
1180 		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
1181 		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
1182 		 *
1183 		 * OR
1184 		 *
1185 		 * The switch is a VEPA.
1186 		 *
1187 		 * In all other cases, the LAN enable has to be set to false.
1188 		 */
1189 
1190 		if (hw->evb_veb) {
1191 			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1192 			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
1193 			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1194 			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1195 			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
1196 			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
1197 			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
1198 			     !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)) ||
1199 			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
1200 			     !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr))) {
1201 				if (!fi->fltVeb_en)
1202 					fi->lan_en = true;
1203 			}
1204 		} else {
1205 			fi->lan_en = true;
1206 		}
1207 	}
1208 	/* To be able to receive packets coming from the VF on the same PF,
1209 	 * unicast filter needs to be added without LB_EN bit
1210 	 */
1211 	if (fi->flag & ICE_FLTR_RX_LB) {
1212 		fi->lb_en = false;
1213 		fi->lan_en = true;
1214 	}
1215 }
1216 
1217 /**
1218  * ice_fill_sw_rule - Helper function to fill switch rule structure
1219  * @hw: pointer to the hardware structure
1220  * @f_info: entry containing packet forwarding information
1221  * @s_rule: switch rule structure to be filled in based on mac_entry
1222  * @opc: switch rules population command type - pass in the command opcode
1223  */
1224 static void
1225 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
1226 		 struct ice_sw_rule_lkup_rx_tx *s_rule,
1227 		 enum ice_adminq_opc opc)
1228 {
1229 	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
1230 	u16 vlan_tpid = ICE_ETH_P_8021Q;
1231 	void *daddr = NULL;
1232 	u16 eth_hdr_sz;
1233 	u8 *eth_hdr;
1234 	u32 act = 0;
1235 	__be16 *off;
1236 	u8 q_rgn;
1237 
1238 	if (opc == ice_aqc_opc_remove_sw_rules) {
1239 		s_rule->act = 0;
1240 		s_rule->index = CPU_TO_LE16(f_info->fltr_rule_id);
1241 		s_rule->hdr_len = 0;
1242 		return;
1243 	}
1244 
1245 	eth_hdr_sz = sizeof(dummy_eth_header);
1246 	eth_hdr = s_rule->hdr_data;
1247 
1248 	/* initialize the ether header with a dummy header */
1249 	ice_memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz, ICE_NONDMA_TO_NONDMA);
1250 	ice_fill_sw_info(hw, f_info);
1251 
1252 	switch (f_info->fltr_act) {
1253 	case ICE_FWD_TO_VSI:
1254 		act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
1255 			ICE_SINGLE_ACT_VSI_ID_M;
1256 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
1257 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
1258 				ICE_SINGLE_ACT_VALID_BIT;
1259 		break;
1260 	case ICE_FWD_TO_VSI_LIST:
1261 		act |= ICE_SINGLE_ACT_VSI_LIST;
1262 		act |= (f_info->fwd_id.vsi_list_id <<
1263 			ICE_SINGLE_ACT_VSI_LIST_ID_S) &
1264 			ICE_SINGLE_ACT_VSI_LIST_ID_M;
1265 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
1266 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
1267 				ICE_SINGLE_ACT_VALID_BIT;
1268 		break;
1269 	case ICE_FWD_TO_Q:
1270 		act |= ICE_SINGLE_ACT_TO_Q;
1271 		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
1272 			ICE_SINGLE_ACT_Q_INDEX_M;
1273 		break;
1274 	case ICE_DROP_PACKET:
1275 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
1276 			ICE_SINGLE_ACT_VALID_BIT;
1277 		break;
1278 	case ICE_FWD_TO_QGRP:
1279 		q_rgn = f_info->qgrp_size > 0 ?
1280 			(u8)ice_ilog2(f_info->qgrp_size) : 0;
1281 		act |= ICE_SINGLE_ACT_TO_Q;
1282 		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
1283 			ICE_SINGLE_ACT_Q_INDEX_M;
1284 		act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
1285 			ICE_SINGLE_ACT_Q_REGION_M;
1286 		break;
1287 	default:
1288 		return;
1289 	}
1290 
1291 	if (f_info->lb_en)
1292 		act |= ICE_SINGLE_ACT_LB_ENABLE;
1293 	if (f_info->lan_en)
1294 		act |= ICE_SINGLE_ACT_LAN_ENABLE;
1295 
1296 	switch (f_info->lkup_type) {
1297 	case ICE_SW_LKUP_MAC:
1298 		daddr = f_info->l_data.mac.mac_addr;
1299 		break;
1300 	case ICE_SW_LKUP_VLAN:
1301 		vlan_id = f_info->l_data.vlan.vlan_id;
1302 		if (f_info->l_data.vlan.tpid_valid)
1303 			vlan_tpid = f_info->l_data.vlan.tpid;
1304 		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
1305 		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
1306 			act |= ICE_SINGLE_ACT_PRUNE;
1307 			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
1308 		}
1309 		break;
1310 	case ICE_SW_LKUP_ETHERTYPE_MAC:
1311 		daddr = f_info->l_data.ethertype_mac.mac_addr;
1312 		/* fall-through */
1313 	case ICE_SW_LKUP_ETHERTYPE:
1314 		off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
1315 		*off = CPU_TO_BE16(f_info->l_data.ethertype_mac.ethertype);
1316 		break;
1317 	case ICE_SW_LKUP_MAC_VLAN:
1318 		daddr = f_info->l_data.mac_vlan.mac_addr;
1319 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
1320 		break;
1321 	case ICE_SW_LKUP_PROMISC_VLAN:
1322 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
1323 		/* fall-through */
1324 	case ICE_SW_LKUP_PROMISC:
1325 		daddr = f_info->l_data.mac_vlan.mac_addr;
1326 		break;
1327 	default:
1328 		break;
1329 	}
1330 
1331 	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
1332 		CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_RX) :
1333 		CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_TX);
1334 
1335 	/* Recipe set depending on lookup type */
1336 	s_rule->recipe_id = CPU_TO_LE16(f_info->lkup_type);
1337 	s_rule->src = CPU_TO_LE16(f_info->src);
1338 	s_rule->act = CPU_TO_LE32(act);
1339 
1340 	if (daddr)
1341 		ice_memcpy(eth_hdr + ICE_ETH_DA_OFFSET, daddr, ETH_ALEN,
1342 			   ICE_NONDMA_TO_NONDMA);
1343 
1344 	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
1345 		off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
1346 		*off = CPU_TO_BE16(vlan_id);
1347 		off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
1348 		*off = CPU_TO_BE16(vlan_tpid);
1349 	}
1350 
1351 	/* Create the switch rule with the final dummy Ethernet header */
1352 	if (opc != ice_aqc_opc_update_sw_rules)
1353 		s_rule->hdr_len = CPU_TO_LE16(eth_hdr_sz);
1354 }
1355 
1356 /**
1357  * ice_add_marker_act
1358  * @hw: pointer to the hardware structure
1359  * @m_ent: the management entry for which sw marker needs to be added
1360  * @sw_marker: sw marker to tag the Rx descriptor with
1361  * @l_id: large action resource ID
1362  *
1363  * Create a large action to hold software marker and update the switch rule
1364  * entry pointed by m_ent with newly created large action
1365  */
1366 static int
1367 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
1368 		   u16 sw_marker, u16 l_id)
1369 {
1370 	struct ice_sw_rule_lkup_rx_tx *rx_tx;
1371 	struct ice_sw_rule_lg_act *lg_act;
1372 	/* For software marker we need 3 large actions
1373 	 * 1. FWD action: FWD TO VSI or VSI LIST
1374 	 * 2. GENERIC VALUE action to hold the profile ID
1375 	 * 3. GENERIC VALUE action to hold the software marker ID
1376 	 */
1377 	const u16 num_lg_acts = 3;
1378 	u16 lg_act_size;
1379 	u16 rules_size;
1380 	int status;
1381 	u32 act;
1382 	u16 id;
1383 
1384 	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
1385 		return ICE_ERR_PARAM;
1386 
1387 	/* Create two back-to-back switch rules and submit them to the HW using
1388 	 * one memory buffer:
1389 	 *    1. Large Action
1390 	 *    2. Look up Tx Rx
1391 	 */
1392 	lg_act_size = (u16)ice_struct_size(lg_act, act, num_lg_acts);
1393 	rules_size = lg_act_size +
1394 		     ice_struct_size(rx_tx, hdr_data, DUMMY_ETH_HDR_LEN);
1395 	lg_act = (struct ice_sw_rule_lg_act *)ice_malloc(hw, rules_size);
1396 	if (!lg_act)
1397 		return ICE_ERR_NO_MEMORY;
1398 
1399 	rx_tx = (struct ice_sw_rule_lkup_rx_tx *)((u8 *)lg_act + lg_act_size);
1400 
1401 	/* Fill in the first switch rule i.e. large action */
1402 	lg_act->hdr.type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
1403 	lg_act->index = CPU_TO_LE16(l_id);
1404 	lg_act->size = CPU_TO_LE16(num_lg_acts);
1405 
1406 	/* First action VSI forwarding or VSI list forwarding depending on how
1407 	 * many VSIs
1408 	 */
1409 	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
1410 		m_ent->fltr_info.fwd_id.hw_vsi_id;
1411 
1412 	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
1413 	act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M;
1414 	if (m_ent->vsi_count > 1)
1415 		act |= ICE_LG_ACT_VSI_LIST;
1416 	lg_act->act[0] = CPU_TO_LE32(act);
1417 
1418 	/* Second action descriptor type */
1419 	act = ICE_LG_ACT_GENERIC;
1420 
1421 	act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
1422 	lg_act->act[1] = CPU_TO_LE32(act);
1423 
1424 	act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
1425 	       ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
1426 
1427 	/* Third action Marker value */
1428 	act |= ICE_LG_ACT_GENERIC;
1429 	act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
1430 		ICE_LG_ACT_GENERIC_VALUE_M;
1431 
1432 	lg_act->act[2] = CPU_TO_LE32(act);
1433 
1434 	/* call the fill switch rule to fill the lookup Tx Rx structure */
1435 	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
1436 			 ice_aqc_opc_update_sw_rules);
1437 
1438 	/* Update the action to point to the large action ID */
1439 	rx_tx->act = CPU_TO_LE32(ICE_SINGLE_ACT_PTR |
1440 				 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
1441 				  ICE_SINGLE_ACT_PTR_VAL_M));
1442 
1443 	/* Use the filter rule ID of the previously created rule with single
1444 	 * act. Once the update happens, hardware will treat this as large
1445 	 * action
1446 	 */
1447 	rx_tx->index = CPU_TO_LE16(m_ent->fltr_info.fltr_rule_id);
1448 
1449 	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
1450 				 ice_aqc_opc_update_sw_rules, NULL);
1451 	if (!status) {
1452 		m_ent->lg_act_idx = l_id;
1453 		m_ent->sw_marker_id = sw_marker;
1454 	}
1455 
1456 	ice_free(hw, lg_act);
1457 	return status;
1458 }
1459 
1460 /**
1461  * ice_add_counter_act - add/update filter rule with counter action
1462  * @hw: pointer to the hardware structure
1463  * @m_ent: the management entry for which counter needs to be added
1464  * @counter_id: VLAN counter ID returned as part of allocate resource
1465  * @l_id: large action resource ID
1466  */
1467 static int
1468 ice_add_counter_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
1469 		    u16 counter_id, u16 l_id)
1470 {
1471 	struct ice_sw_rule_lkup_rx_tx *rx_tx;
1472 	struct ice_sw_rule_lg_act *lg_act;
1473 	/* 2 actions will be added while adding a large action counter */
1474 	const int num_acts = 2;
1475 	u16 lg_act_size;
1476 	u16 rules_size;
1477 	u16 f_rule_id;
1478 	u32 act;
1479 	int status;
1480 	u16 id;
1481 
1482 	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
1483 		return ICE_ERR_PARAM;
1484 
1485 	/* Create two back-to-back switch rules and submit them to the HW using
1486 	 * one memory buffer:
1487 	 * 1. Large Action
1488 	 * 2. Look up Tx Rx
1489 	 */
1490 	lg_act_size = (u16)ice_struct_size(lg_act, act, num_acts);
1491 	rules_size = lg_act_size +
1492 		     ice_struct_size(rx_tx, hdr_data, DUMMY_ETH_HDR_LEN);
1493 	lg_act = (struct ice_sw_rule_lg_act *)ice_malloc(hw, rules_size);
1494 	if (!lg_act)
1495 		return ICE_ERR_NO_MEMORY;
1496 
1497 	rx_tx = (struct ice_sw_rule_lkup_rx_tx *)((u8 *)lg_act +
1498 						      lg_act_size);
1499 
1500 	/* Fill in the first switch rule i.e. large action */
1501 	lg_act->hdr.type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
1502 	lg_act->index = CPU_TO_LE16(l_id);
1503 	lg_act->size = CPU_TO_LE16(num_acts);
1504 
1505 	/* First action VSI forwarding or VSI list forwarding depending on how
1506 	 * many VSIs
1507 	 */
1508 	id = (m_ent->vsi_count > 1) ?  m_ent->fltr_info.fwd_id.vsi_list_id :
1509 		m_ent->fltr_info.fwd_id.hw_vsi_id;
1510 
1511 	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
1512 	act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) &
1513 		ICE_LG_ACT_VSI_LIST_ID_M;
1514 	if (m_ent->vsi_count > 1)
1515 		act |= ICE_LG_ACT_VSI_LIST;
1516 	lg_act->act[0] = CPU_TO_LE32(act);
1517 
1518 	/* Second action counter ID */
1519 	act = ICE_LG_ACT_STAT_COUNT;
1520 	act |= (counter_id << ICE_LG_ACT_STAT_COUNT_S) &
1521 		ICE_LG_ACT_STAT_COUNT_M;
1522 	lg_act->act[1] = CPU_TO_LE32(act);
1523 
1524 	/* call the fill switch rule to fill the lookup Tx Rx structure */
1525 	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
1526 			 ice_aqc_opc_update_sw_rules);
1527 
1528 	act = ICE_SINGLE_ACT_PTR;
1529 	act |= (l_id << ICE_SINGLE_ACT_PTR_VAL_S) & ICE_SINGLE_ACT_PTR_VAL_M;
1530 	rx_tx->act = CPU_TO_LE32(act);
1531 
1532 	/* Use the filter rule ID of the previously created rule with single
1533 	 * act. Once the update happens, hardware will treat this as large
1534 	 * action
1535 	 */
1536 	f_rule_id = m_ent->fltr_info.fltr_rule_id;
1537 	rx_tx->index = CPU_TO_LE16(f_rule_id);
1538 
1539 	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
1540 				 ice_aqc_opc_update_sw_rules, NULL);
1541 	if (!status) {
1542 		m_ent->lg_act_idx = l_id;
1543 		m_ent->counter_index = (u8)counter_id;
1544 	}
1545 
1546 	ice_free(hw, lg_act);
1547 	return status;
1548 }
1549 
1550 /**
1551  * ice_create_vsi_list_map
1552  * @hw: pointer to the hardware structure
1553  * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
1554  * @num_vsi: number of VSI handles in the array
1555  * @vsi_list_id: VSI list ID generated as part of allocate resource
1556  *
1557  * Helper function to create a new entry of VSI list ID to VSI mapping
1558  * using the given VSI list ID
1559  */
1560 static struct ice_vsi_list_map_info *
1561 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1562 			u16 vsi_list_id)
1563 {
1564 	struct ice_switch_info *sw = hw->switch_info;
1565 	struct ice_vsi_list_map_info *v_map;
1566 	int i;
1567 
1568 	v_map = (struct ice_vsi_list_map_info *)ice_malloc(hw, sizeof(*v_map));
1569 	if (!v_map)
1570 		return NULL;
1571 
1572 	v_map->vsi_list_id = vsi_list_id;
1573 	v_map->ref_cnt = 1;
1574 	for (i = 0; i < num_vsi; i++)
1575 		ice_set_bit(vsi_handle_arr[i], v_map->vsi_map);
1576 
1577 	LIST_ADD(&v_map->list_entry, &sw->vsi_list_map_head);
1578 	return v_map;
1579 }
1580 
1581 /**
1582  * ice_update_vsi_list_rule
1583  * @hw: pointer to the hardware structure
1584  * @vsi_handle_arr: array of VSI handles to form a VSI list
1585  * @num_vsi: number of VSI handles in the array
1586  * @vsi_list_id: VSI list ID generated as part of allocate resource
1587  * @remove: Boolean value to indicate if this is a remove action
1588  * @opc: switch rules population command type - pass in the command opcode
1589  * @lkup_type: lookup type of the filter
1590  *
1591  * Call AQ command to add a new switch rule or update existing switch rule
1592  * using the given VSI list ID
1593  */
1594 static int
1595 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1596 			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
1597 			 enum ice_sw_lkup_type lkup_type)
1598 {
1599 	struct ice_sw_rule_vsi_list *s_rule;
1600 	u16 s_rule_size;
1601 	u16 rule_type;
1602 	int status;
1603 	int i;
1604 
1605 	if (!num_vsi)
1606 		return ICE_ERR_PARAM;
1607 
1608 	if (lkup_type == ICE_SW_LKUP_MAC ||
1609 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1610 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1611 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1612 	    lkup_type == ICE_SW_LKUP_PROMISC ||
1613 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1614 	    lkup_type == ICE_SW_LKUP_DFLT ||
1615 	    lkup_type == ICE_SW_LKUP_LAST)
1616 		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
1617 			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
1618 	else if (lkup_type == ICE_SW_LKUP_VLAN)
1619 		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
1620 			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
1621 	else
1622 		return ICE_ERR_PARAM;
1623 
1624 	s_rule_size = (u16)ice_struct_size(s_rule, vsi, num_vsi);
1625 	s_rule = (struct ice_sw_rule_vsi_list *)ice_malloc(hw, s_rule_size);
1626 	if (!s_rule)
1627 		return ICE_ERR_NO_MEMORY;
1628 	for (i = 0; i < num_vsi; i++) {
1629 		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
1630 			status = ICE_ERR_PARAM;
1631 			goto exit;
1632 		}
1633 		/* AQ call requires hw_vsi_id(s) */
1634 		s_rule->vsi[i] =
1635 			CPU_TO_LE16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
1636 	}
1637 
1638 	s_rule->hdr.type = CPU_TO_LE16(rule_type);
1639 	s_rule->number_vsi = CPU_TO_LE16(num_vsi);
1640 	s_rule->index = CPU_TO_LE16(vsi_list_id);
1641 
1642 	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
1643 
1644 exit:
1645 	ice_free(hw, s_rule);
1646 	return status;
1647 }
1648 
1649 /**
1650  * ice_create_vsi_list_rule - Creates and populates a VSI list rule
1651  * @hw: pointer to the HW struct
1652  * @vsi_handle_arr: array of VSI handles to form a VSI list
1653  * @num_vsi: number of VSI handles in the array
1654  * @vsi_list_id: stores the ID of the VSI list to be created
1655  * @lkup_type: switch rule filter's lookup type
1656  */
1657 static int
1658 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1659 			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
1660 {
1661 	int status;
1662 
1663 	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
1664 					    ice_aqc_opc_alloc_res);
1665 	if (status)
1666 		return status;
1667 
1668 	/* Update the newly created VSI list to include the specified VSIs */
1669 	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
1670 					*vsi_list_id, false,
1671 					ice_aqc_opc_add_sw_rules, lkup_type);
1672 }
1673 
1674 /**
1675  * ice_create_pkt_fwd_rule
1676  * @hw: pointer to the hardware structure
1677  * @recp_list: corresponding filter management list
1678  * @f_entry: entry containing packet forwarding information
1679  *
1680  * Create switch rule with given filter information and add an entry
1681  * to the corresponding filter management list to track this switch rule
1682  * and VSI mapping
1683  */
1684 static int
1685 ice_create_pkt_fwd_rule(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
1686 			struct ice_fltr_list_entry *f_entry)
1687 {
1688 	struct ice_fltr_mgmt_list_entry *fm_entry;
1689 	struct ice_sw_rule_lkup_rx_tx *s_rule;
1690 	int status;
1691 
1692 	s_rule = (struct ice_sw_rule_lkup_rx_tx *)
1693 		ice_malloc(hw, ice_struct_size(s_rule, hdr_data,
1694 					       DUMMY_ETH_HDR_LEN));
1695 	if (!s_rule)
1696 		return ICE_ERR_NO_MEMORY;
1697 	fm_entry = (struct ice_fltr_mgmt_list_entry *)
1698 		   ice_malloc(hw, sizeof(*fm_entry));
1699 	if (!fm_entry) {
1700 		status = ICE_ERR_NO_MEMORY;
1701 		goto ice_create_pkt_fwd_rule_exit;
1702 	}
1703 
1704 	fm_entry->fltr_info = f_entry->fltr_info;
1705 
1706 	/* Initialize all the fields for the management entry */
1707 	fm_entry->vsi_count = 1;
1708 	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
1709 	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
1710 	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
1711 
1712 	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
1713 			 ice_aqc_opc_add_sw_rules);
1714 
1715 	status = ice_aq_sw_rules(hw, s_rule,
1716 				 ice_struct_size(s_rule, hdr_data,
1717 						 DUMMY_ETH_HDR_LEN),
1718 				 1, ice_aqc_opc_add_sw_rules, NULL);
1719 	if (status) {
1720 		ice_free(hw, fm_entry);
1721 		goto ice_create_pkt_fwd_rule_exit;
1722 	}
1723 
1724 	f_entry->fltr_info.fltr_rule_id = LE16_TO_CPU(s_rule->index);
1725 	fm_entry->fltr_info.fltr_rule_id = LE16_TO_CPU(s_rule->index);
1726 
1727 	/* The book keeping entries will get removed when base driver
1728 	 * calls remove filter AQ command
1729 	 */
1730 	LIST_ADD(&fm_entry->list_entry, &recp_list->filt_rules);
1731 
1732 ice_create_pkt_fwd_rule_exit:
1733 	ice_free(hw, s_rule);
1734 	return status;
1735 }
1736 
1737 /**
1738  * ice_update_pkt_fwd_rule
1739  * @hw: pointer to the hardware structure
1740  * @f_info: filter information for switch rule
1741  *
1742  * Call AQ command to update a previously created switch rule with a
1743  * VSI list ID
1744  */
1745 static int
1746 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
1747 {
1748 	struct ice_sw_rule_lkup_rx_tx *s_rule;
1749 	int status;
1750 
1751 	s_rule = (struct ice_sw_rule_lkup_rx_tx *)
1752 		ice_malloc(hw, ice_struct_size(s_rule, hdr_data,
1753 					       DUMMY_ETH_HDR_LEN));
1754 	if (!s_rule)
1755 		return ICE_ERR_NO_MEMORY;
1756 
1757 	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
1758 
1759 	s_rule->index = CPU_TO_LE16(f_info->fltr_rule_id);
1760 
1761 	/* Update switch rule with new rule set to forward VSI list */
1762 	status = ice_aq_sw_rules(hw, s_rule,
1763 				 ice_struct_size(s_rule, hdr_data,
1764 						 DUMMY_ETH_HDR_LEN),
1765 				 1, ice_aqc_opc_update_sw_rules, NULL);
1766 
1767 	ice_free(hw, s_rule);
1768 	return status;
1769 }
1770 
1771 /**
1772  * ice_update_sw_rule_bridge_mode
1773  * @hw: pointer to the HW struct
1774  *
1775  * Updates unicast switch filter rules based on VEB/VEPA mode
1776  */
1777 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
1778 {
1779 	struct ice_fltr_mgmt_list_entry *fm_entry;
1780 	struct LIST_HEAD_TYPE *rule_head;
1781 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
1782 	struct ice_switch_info *sw;
1783 	int status = 0;
1784 
1785 	sw = hw->switch_info;
1786 
1787 	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
1788 	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
1789 
1790 	ice_acquire_lock(rule_lock);
1791 	LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry,
1792 			    list_entry) {
1793 		struct ice_fltr_info *fi = &fm_entry->fltr_info;
1794 		u8 *addr = fi->l_data.mac.mac_addr;
1795 
1796 		/* Update unicast Tx rules to reflect the selected
1797 		 * VEB/VEPA mode
1798 		 */
1799 		if ((fi->flag & ICE_FLTR_TX) && IS_UNICAST_ETHER_ADDR(addr) &&
1800 		    (fi->fltr_act == ICE_FWD_TO_VSI ||
1801 		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
1802 		     fi->fltr_act == ICE_FWD_TO_Q ||
1803 		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
1804 			status = ice_update_pkt_fwd_rule(hw, fi);
1805 			if (status)
1806 				break;
1807 		}
1808 	}
1809 
1810 	ice_release_lock(rule_lock);
1811 
1812 	return status;
1813 }
1814 
1815 /**
1816  * ice_add_update_vsi_list
1817  * @hw: pointer to the hardware structure
1818  * @m_entry: pointer to current filter management list entry
1819  * @cur_fltr: filter information from the book keeping entry
1820  * @new_fltr: filter information with the new VSI to be added
1821  *
1822  * Call AQ command to add or update previously created VSI list with new VSI.
1823  *
1824  * Helper function to do book keeping associated with adding filter information
1825  * The algorithm to do the book keeping is described below :
1826  * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
1827  *	if only one VSI has been added till now
1828  *		Allocate a new VSI list and add two VSIs
1829  *		to this list using switch rule command
1830  *		Update the previously created switch rule with the
1831  *		newly created VSI list ID
1832  *	if a VSI list was previously created
1833  *		Add the new VSI to the previously created VSI list set
1834  *		using the update switch rule command
1835  */
1836 static int
1837 ice_add_update_vsi_list(struct ice_hw *hw,
1838 			struct ice_fltr_mgmt_list_entry *m_entry,
1839 			struct ice_fltr_info *cur_fltr,
1840 			struct ice_fltr_info *new_fltr)
1841 {
1842 	u16 vsi_list_id = 0;
1843 	int status = 0;
1844 
1845 	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
1846 	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
1847 		return ICE_ERR_NOT_IMPL;
1848 
1849 	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
1850 	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
1851 	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
1852 	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
1853 		return ICE_ERR_NOT_IMPL;
1854 
1855 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
1856 		/* Only one entry existed in the mapping and it was not already
1857 		 * a part of a VSI list. So, create a VSI list with the old and
1858 		 * new VSIs.
1859 		 */
1860 		struct ice_fltr_info tmp_fltr;
1861 		u16 vsi_handle_arr[2];
1862 
1863 		/* A rule already exists with the new VSI being added */
1864 		if (cur_fltr->vsi_handle == new_fltr->vsi_handle)
1865 			return ICE_ERR_ALREADY_EXISTS;
1866 
1867 		vsi_handle_arr[0] = cur_fltr->vsi_handle;
1868 		vsi_handle_arr[1] = new_fltr->vsi_handle;
1869 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
1870 						  &vsi_list_id,
1871 						  new_fltr->lkup_type);
1872 		if (status)
1873 			return status;
1874 
1875 		tmp_fltr = *new_fltr;
1876 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
1877 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
1878 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
1879 		/* Update the previous switch rule of "MAC forward to VSI" to
1880 		 * "MAC fwd to VSI list"
1881 		 */
1882 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
1883 		if (status)
1884 			return status;
1885 
1886 		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
1887 		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
1888 		m_entry->vsi_list_info =
1889 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
1890 						vsi_list_id);
1891 
1892 		if (!m_entry->vsi_list_info)
1893 			return ICE_ERR_NO_MEMORY;
1894 
1895 		/* If this entry was large action then the large action needs
1896 		 * to be updated to point to FWD to VSI list
1897 		 */
1898 		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
1899 			status =
1900 			    ice_add_marker_act(hw, m_entry,
1901 					       m_entry->sw_marker_id,
1902 					       m_entry->lg_act_idx);
1903 	} else {
1904 		u16 vsi_handle = new_fltr->vsi_handle;
1905 		enum ice_adminq_opc opcode;
1906 
1907 		if (!m_entry->vsi_list_info)
1908 			return ICE_ERR_CFG;
1909 
1910 		/* A rule already exists with the new VSI being added */
1911 		if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle))
1912 			return ICE_ERR_ALREADY_EXISTS;
1913 
1914 		/* Update the previously created VSI list set with
1915 		 * the new VSI ID passed in
1916 		 */
1917 		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
1918 		opcode = ice_aqc_opc_update_sw_rules;
1919 
1920 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
1921 						  vsi_list_id, false, opcode,
1922 						  new_fltr->lkup_type);
1923 		/* update VSI list mapping info with new VSI ID */
1924 		if (!status)
1925 			ice_set_bit(vsi_handle,
1926 				    m_entry->vsi_list_info->vsi_map);
1927 	}
1928 	if (!status)
1929 		m_entry->vsi_count++;
1930 	return status;
1931 }
1932 
1933 /**
1934  * ice_find_rule_entry - Search a rule entry
1935  * @list_head: head of rule list
1936  * @f_info: rule information
1937  *
1938  * Helper function to search for a given rule entry
1939  * Returns pointer to entry storing the rule if found
1940  */
1941 static struct ice_fltr_mgmt_list_entry *
1942 ice_find_rule_entry(struct LIST_HEAD_TYPE *list_head,
1943 		    struct ice_fltr_info *f_info)
1944 {
1945 	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
1946 
1947 	LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
1948 			    list_entry) {
1949 		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
1950 			    sizeof(f_info->l_data)) &&
1951 		    f_info->flag == list_itr->fltr_info.flag) {
1952 			ret = list_itr;
1953 			break;
1954 		}
1955 	}
1956 	return ret;
1957 }
1958 
1959 /**
1960  * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
1961  * @recp_list: VSI lists needs to be searched
1962  * @vsi_handle: VSI handle to be found in VSI list
1963  * @vsi_list_id: VSI list ID found containing vsi_handle
1964  *
1965  * Helper function to search a VSI list with single entry containing given VSI
1966  * handle element. This can be extended further to search VSI list with more
1967  * than 1 vsi_count. Returns pointer to VSI list entry if found.
1968  */
1969 struct ice_vsi_list_map_info *
1970 ice_find_vsi_list_entry(struct ice_sw_recipe *recp_list, u16 vsi_handle,
1971 			u16 *vsi_list_id)
1972 {
1973 	struct ice_vsi_list_map_info *map_info = NULL;
1974 	struct LIST_HEAD_TYPE *list_head;
1975 
1976 	list_head = &recp_list->filt_rules;
1977 	if (recp_list->adv_rule) {
1978 		struct ice_adv_fltr_mgmt_list_entry *list_itr;
1979 
1980 		LIST_FOR_EACH_ENTRY(list_itr, list_head,
1981 				    ice_adv_fltr_mgmt_list_entry,
1982 				    list_entry) {
1983 			if (list_itr->vsi_list_info) {
1984 				map_info = list_itr->vsi_list_info;
1985 				if (ice_is_bit_set(map_info->vsi_map,
1986 						   vsi_handle)) {
1987 					*vsi_list_id = map_info->vsi_list_id;
1988 					return map_info;
1989 				}
1990 			}
1991 		}
1992 	} else {
1993 		struct ice_fltr_mgmt_list_entry *list_itr;
1994 
1995 		LIST_FOR_EACH_ENTRY(list_itr, list_head,
1996 				    ice_fltr_mgmt_list_entry,
1997 				    list_entry) {
1998 			if (list_itr->vsi_count == 1 &&
1999 			    list_itr->vsi_list_info) {
2000 				map_info = list_itr->vsi_list_info;
2001 				if (ice_is_bit_set(map_info->vsi_map,
2002 						   vsi_handle)) {
2003 					*vsi_list_id = map_info->vsi_list_id;
2004 					return map_info;
2005 				}
2006 			}
2007 		}
2008 	}
2009 	return NULL;
2010 }
2011 
2012 /**
2013  * ice_add_rule_internal - add rule for a given lookup type
2014  * @hw: pointer to the hardware structure
2015  * @recp_list: recipe list for which rule has to be added
2016  * @lport: logic port number on which function add rule
2017  * @f_entry: structure containing MAC forwarding information
2018  *
2019  * Adds or updates the rule lists for a given recipe
2020  */
2021 static int
2022 ice_add_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
2023 		      u8 lport, struct ice_fltr_list_entry *f_entry)
2024 {
2025 	struct ice_fltr_info *new_fltr, *cur_fltr;
2026 	struct ice_fltr_mgmt_list_entry *m_entry;
2027 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2028 	int status = 0;
2029 
2030 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2031 		return ICE_ERR_PARAM;
2032 
2033 	/* Load the hw_vsi_id only if the fwd action is fwd to VSI */
2034 	if (f_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI)
2035 		f_entry->fltr_info.fwd_id.hw_vsi_id =
2036 			ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2037 
2038 	rule_lock = &recp_list->filt_rule_lock;
2039 
2040 	ice_acquire_lock(rule_lock);
2041 	new_fltr = &f_entry->fltr_info;
2042 	if (new_fltr->flag & ICE_FLTR_RX)
2043 		new_fltr->src = lport;
2044 	else if (new_fltr->flag & (ICE_FLTR_TX | ICE_FLTR_RX_LB))
2045 		new_fltr->src =
2046 			ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2047 
2048 	m_entry = ice_find_rule_entry(&recp_list->filt_rules, new_fltr);
2049 	if (!m_entry) {
2050 		status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry);
2051 		goto exit_add_rule_internal;
2052 	}
2053 
2054 	cur_fltr = &m_entry->fltr_info;
2055 	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
2056 
2057 exit_add_rule_internal:
2058 	ice_release_lock(rule_lock);
2059 	return status;
2060 }
2061 
2062 /**
2063  * ice_remove_vsi_list_rule
2064  * @hw: pointer to the hardware structure
2065  * @vsi_list_id: VSI list ID generated as part of allocate resource
2066  * @lkup_type: switch rule filter lookup type
2067  *
2068  * The VSI list should be emptied before this function is called to remove the
2069  * VSI list.
2070  */
2071 static int
2072 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
2073 			 enum ice_sw_lkup_type lkup_type)
2074 {
2075 	/* Free the vsi_list resource that we allocated. It is assumed that the
2076 	 * list is empty at this point.
2077 	 */
2078 	return ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
2079 					    ice_aqc_opc_free_res);
2080 }
2081 
2082 /**
2083  * ice_rem_update_vsi_list
2084  * @hw: pointer to the hardware structure
2085  * @vsi_handle: VSI handle of the VSI to remove
2086  * @fm_list: filter management entry for which the VSI list management needs to
2087  *           be done
2088  */
2089 static int
2090 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
2091 			struct ice_fltr_mgmt_list_entry *fm_list)
2092 {
2093 	enum ice_sw_lkup_type lkup_type;
2094 	u16 vsi_list_id;
2095 	int status = 0;
2096 
2097 	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
2098 	    fm_list->vsi_count == 0)
2099 		return ICE_ERR_PARAM;
2100 
2101 	/* A rule with the VSI being removed does not exist */
2102 	if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle))
2103 		return ICE_ERR_DOES_NOT_EXIST;
2104 
2105 	lkup_type = fm_list->fltr_info.lkup_type;
2106 	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
2107 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
2108 					  ice_aqc_opc_update_sw_rules,
2109 					  lkup_type);
2110 	if (status)
2111 		return status;
2112 
2113 	fm_list->vsi_count--;
2114 	ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
2115 
2116 	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
2117 		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
2118 		struct ice_vsi_list_map_info *vsi_list_info =
2119 			fm_list->vsi_list_info;
2120 		u16 rem_vsi_handle;
2121 
2122 		rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map,
2123 						    ICE_MAX_VSI);
2124 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
2125 			return ICE_ERR_OUT_OF_RANGE;
2126 
2127 		/* Make sure VSI list is empty before removing it below */
2128 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
2129 						  vsi_list_id, true,
2130 						  ice_aqc_opc_update_sw_rules,
2131 						  lkup_type);
2132 		if (status)
2133 			return status;
2134 
2135 		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
2136 		tmp_fltr_info.fwd_id.hw_vsi_id =
2137 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
2138 		tmp_fltr_info.vsi_handle = rem_vsi_handle;
2139 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
2140 		if (status) {
2141 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
2142 				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
2143 			return status;
2144 		}
2145 
2146 		fm_list->fltr_info = tmp_fltr_info;
2147 	}
2148 
2149 	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
2150 	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
2151 		struct ice_vsi_list_map_info *vsi_list_info =
2152 			fm_list->vsi_list_info;
2153 
2154 		/* Remove the VSI list since it is no longer used */
2155 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
2156 		if (status) {
2157 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
2158 				  vsi_list_id, status);
2159 			return status;
2160 		}
2161 
2162 		LIST_DEL(&vsi_list_info->list_entry);
2163 		ice_free(hw, vsi_list_info);
2164 		fm_list->vsi_list_info = NULL;
2165 	}
2166 
2167 	return status;
2168 }
2169 
2170 /**
2171  * ice_remove_rule_internal - Remove a filter rule of a given type
2172  * @hw: pointer to the hardware structure
2173  * @recp_list: recipe list for which the rule needs to removed
2174  * @f_entry: rule entry containing filter information
2175  */
2176 static int
2177 ice_remove_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
2178 			 struct ice_fltr_list_entry *f_entry)
2179 {
2180 	struct ice_fltr_mgmt_list_entry *list_elem;
2181 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2182 	bool remove_rule = false;
2183 	int status = 0;
2184 	u16 vsi_handle;
2185 
2186 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2187 		return ICE_ERR_PARAM;
2188 	f_entry->fltr_info.fwd_id.hw_vsi_id =
2189 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2190 
2191 	rule_lock = &recp_list->filt_rule_lock;
2192 	ice_acquire_lock(rule_lock);
2193 
2194 	list_elem = ice_find_rule_entry(&recp_list->filt_rules,
2195 					&f_entry->fltr_info);
2196 	if (!list_elem) {
2197 		status = ICE_ERR_DOES_NOT_EXIST;
2198 		goto exit;
2199 	}
2200 
2201 	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
2202 		remove_rule = true;
2203 	} else if (!list_elem->vsi_list_info) {
2204 		status = ICE_ERR_DOES_NOT_EXIST;
2205 		goto exit;
2206 	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
2207 		/* a ref_cnt > 1 indicates that the vsi_list is being
2208 		 * shared by multiple rules. Decrement the ref_cnt and
2209 		 * remove this rule, but do not modify the list, as it
2210 		 * is in-use by other rules.
2211 		 */
2212 		list_elem->vsi_list_info->ref_cnt--;
2213 		remove_rule = true;
2214 	} else {
2215 		/* a ref_cnt of 1 indicates the vsi_list is only used
2216 		 * by one rule. However, the original removal request is only
2217 		 * for a single VSI. Update the vsi_list first, and only
2218 		 * remove the rule if there are no further VSIs in this list.
2219 		 */
2220 		vsi_handle = f_entry->fltr_info.vsi_handle;
2221 		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
2222 		if (status)
2223 			goto exit;
2224 		/* if VSI count goes to zero after updating the VSI list */
2225 		if (list_elem->vsi_count == 0)
2226 			remove_rule = true;
2227 	}
2228 
2229 	if (remove_rule) {
2230 		/* Remove the lookup rule */
2231 		struct ice_sw_rule_lkup_rx_tx *s_rule;
2232 
2233 		s_rule = (struct ice_sw_rule_lkup_rx_tx *)
2234 			ice_malloc(hw, ice_struct_size(s_rule, hdr_data, 0));
2235 		if (!s_rule) {
2236 			status = ICE_ERR_NO_MEMORY;
2237 			goto exit;
2238 		}
2239 
2240 		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
2241 				 ice_aqc_opc_remove_sw_rules);
2242 
2243 		status = ice_aq_sw_rules(hw, s_rule,
2244 					 ice_struct_size(s_rule, hdr_data, 0),
2245 					 1, ice_aqc_opc_remove_sw_rules, NULL);
2246 
2247 		/* Remove a book keeping from the list */
2248 		ice_free(hw, s_rule);
2249 
2250 		if (status)
2251 			goto exit;
2252 
2253 		LIST_DEL(&list_elem->list_entry);
2254 		ice_free(hw, list_elem);
2255 	}
2256 exit:
2257 	ice_release_lock(rule_lock);
2258 	return status;
2259 }
2260 
2261 /**
2262  * ice_aq_get_res_alloc - get allocated resources
2263  * @hw: pointer to the HW struct
2264  * @num_entries: pointer to u16 to store the number of resource entries returned
2265  * @buf: pointer to buffer
2266  * @buf_size: size of buf
2267  * @cd: pointer to command details structure or NULL
2268  *
2269  * The caller-supplied buffer must be large enough to store the resource
2270  * information for all resource types. Each resource type is an
2271  * ice_aqc_get_res_resp_elem structure.
2272  */
2273 int
2274 ice_aq_get_res_alloc(struct ice_hw *hw, u16 *num_entries,
2275 		     struct ice_aqc_get_res_resp_elem *buf, u16 buf_size,
2276 		     struct ice_sq_cd *cd)
2277 {
2278 	struct ice_aqc_get_res_alloc *resp;
2279 	struct ice_aq_desc desc;
2280 	int status;
2281 
2282 	if (!buf)
2283 		return ICE_ERR_BAD_PTR;
2284 
2285 	if (buf_size < ICE_AQ_GET_RES_ALLOC_BUF_LEN)
2286 		return ICE_ERR_INVAL_SIZE;
2287 
2288 	resp = &desc.params.get_res;
2289 
2290 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_res_alloc);
2291 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2292 
2293 	if (!status && num_entries)
2294 		*num_entries = LE16_TO_CPU(resp->resp_elem_num);
2295 
2296 	return status;
2297 }
2298 
2299 /**
2300  * ice_aq_get_res_descs - get allocated resource descriptors
2301  * @hw: pointer to the hardware structure
2302  * @num_entries: number of resource entries in buffer
2303  * @buf: structure to hold response data buffer
2304  * @buf_size: size of buffer
2305  * @res_type: resource type
2306  * @res_shared: is resource shared
2307  * @desc_id: input - first desc ID to start; output - next desc ID
2308  * @cd: pointer to command details structure or NULL
2309  */
2310 int
2311 ice_aq_get_res_descs(struct ice_hw *hw, u16 num_entries,
2312 		     struct ice_aqc_res_elem *buf, u16 buf_size, u16 res_type,
2313 		     bool res_shared, u16 *desc_id, struct ice_sq_cd *cd)
2314 {
2315 	struct ice_aqc_get_allocd_res_desc *cmd;
2316 	struct ice_aq_desc desc;
2317 	int status;
2318 
2319 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2320 
2321 	cmd = &desc.params.get_res_desc;
2322 
2323 	if (!buf)
2324 		return ICE_ERR_PARAM;
2325 
2326 	if (buf_size != (num_entries * sizeof(*buf)))
2327 		return ICE_ERR_PARAM;
2328 
2329 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_allocd_res_desc);
2330 
2331 	cmd->ops.cmd.res = CPU_TO_LE16(((res_type << ICE_AQC_RES_TYPE_S) &
2332 					 ICE_AQC_RES_TYPE_M) | (res_shared ?
2333 					ICE_AQC_RES_TYPE_FLAG_SHARED : 0));
2334 	cmd->ops.cmd.first_desc = CPU_TO_LE16(*desc_id);
2335 
2336 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2337 	if (!status)
2338 		*desc_id = LE16_TO_CPU(cmd->ops.resp.next_desc);
2339 
2340 	return status;
2341 }
2342 
2343 /**
2344  * ice_add_mac_rule - Add a MAC address based filter rule
2345  * @hw: pointer to the hardware structure
2346  * @m_list: list of MAC addresses and forwarding information
2347  * @sw: pointer to switch info struct for which function add rule
2348  * @lport: logic port number on which function add rule
2349  *
2350  * IMPORTANT: When the umac_shared flag is set to false and m_list has
2351  * multiple unicast addresses, the function assumes that all the
2352  * addresses are unique in a given add_mac call. It doesn't
2353  * check for duplicates in this case, removing duplicates from a given
2354  * list should be taken care of in the caller of this function.
2355  */
2356 static int
2357 ice_add_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list,
2358 		 struct ice_switch_info *sw, u8 lport)
2359 {
2360 	struct ice_sw_recipe *recp_list = &sw->recp_list[ICE_SW_LKUP_MAC];
2361 	struct ice_sw_rule_lkup_rx_tx *s_rule, *r_iter;
2362 	struct ice_fltr_list_entry *m_list_itr;
2363 	struct LIST_HEAD_TYPE *rule_head;
2364 	u16 total_elem_left, s_rule_size;
2365 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2366 	u16 num_unicast = 0;
2367 	int status = 0;
2368 	u8 elem_sent;
2369 
2370 	s_rule = NULL;
2371 	rule_lock = &recp_list->filt_rule_lock;
2372 	rule_head = &recp_list->filt_rules;
2373 
2374 	LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2375 			    list_entry) {
2376 		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
2377 		u16 vsi_handle;
2378 		u16 hw_vsi_id;
2379 
2380 		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
2381 		vsi_handle = m_list_itr->fltr_info.vsi_handle;
2382 		if (!ice_is_vsi_valid(hw, vsi_handle))
2383 			return ICE_ERR_PARAM;
2384 		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
2385 		if (m_list_itr->fltr_info.fltr_act == ICE_FWD_TO_VSI)
2386 			m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
2387 		/* update the src in case it is VSI num */
2388 		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
2389 			return ICE_ERR_PARAM;
2390 		m_list_itr->fltr_info.src = hw_vsi_id;
2391 		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
2392 		    IS_ZERO_ETHER_ADDR(add))
2393 			return ICE_ERR_PARAM;
2394 		if (IS_UNICAST_ETHER_ADDR(add) && !hw->umac_shared) {
2395 			/* Don't overwrite the unicast address */
2396 			ice_acquire_lock(rule_lock);
2397 			if (ice_find_rule_entry(rule_head,
2398 						&m_list_itr->fltr_info)) {
2399 				ice_release_lock(rule_lock);
2400 				continue;
2401 			}
2402 			ice_release_lock(rule_lock);
2403 			num_unicast++;
2404 		} else if (IS_MULTICAST_ETHER_ADDR(add) ||
2405 			   (IS_UNICAST_ETHER_ADDR(add) && hw->umac_shared)) {
2406 			m_list_itr->status =
2407 				ice_add_rule_internal(hw, recp_list, lport,
2408 						      m_list_itr);
2409 			if (m_list_itr->status)
2410 				return m_list_itr->status;
2411 		}
2412 	}
2413 
2414 	ice_acquire_lock(rule_lock);
2415 	/* Exit if no suitable entries were found for adding bulk switch rule */
2416 	if (!num_unicast) {
2417 		status = 0;
2418 		goto ice_add_mac_exit;
2419 	}
2420 
2421 	/* Allocate switch rule buffer for the bulk update for unicast */
2422 	s_rule_size = ice_struct_size(s_rule, hdr_data, DUMMY_ETH_HDR_LEN);
2423 	s_rule = (struct ice_sw_rule_lkup_rx_tx *)
2424 		ice_calloc(hw, num_unicast, s_rule_size);
2425 	if (!s_rule) {
2426 		status = ICE_ERR_NO_MEMORY;
2427 		goto ice_add_mac_exit;
2428 	}
2429 
2430 	r_iter = s_rule;
2431 	LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2432 			    list_entry) {
2433 		struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
2434 		u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
2435 
2436 		if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
2437 			ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter,
2438 					 ice_aqc_opc_add_sw_rules);
2439 			r_iter = (struct ice_sw_rule_lkup_rx_tx *)
2440 				((u8 *)r_iter + s_rule_size);
2441 		}
2442 	}
2443 
2444 	/* Call AQ bulk switch rule update for all unicast addresses */
2445 	r_iter = s_rule;
2446 	/* Call AQ switch rule in AQ_MAX chunk */
2447 	for (total_elem_left = num_unicast; total_elem_left > 0;
2448 	     total_elem_left -= elem_sent) {
2449 		struct ice_sw_rule_lkup_rx_tx *entry = r_iter;
2450 
2451 		elem_sent = MIN_T(u8, total_elem_left,
2452 				  (ICE_AQ_MAX_BUF_LEN / s_rule_size));
2453 		status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size,
2454 					 elem_sent, ice_aqc_opc_add_sw_rules,
2455 					 NULL);
2456 		if (status)
2457 			goto ice_add_mac_exit;
2458 		r_iter = (struct ice_sw_rule_lkup_rx_tx *)
2459 			((u8 *)r_iter + (elem_sent * s_rule_size));
2460 	}
2461 
2462 	/* Fill up rule ID based on the value returned from FW */
2463 	r_iter = s_rule;
2464 	LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2465 			    list_entry) {
2466 		struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
2467 		u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
2468 		struct ice_fltr_mgmt_list_entry *fm_entry;
2469 
2470 		if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
2471 			f_info->fltr_rule_id =
2472 				LE16_TO_CPU(r_iter->index);
2473 			f_info->fltr_act = ICE_FWD_TO_VSI;
2474 			/* Create an entry to track this MAC address */
2475 			fm_entry = (struct ice_fltr_mgmt_list_entry *)
2476 				ice_malloc(hw, sizeof(*fm_entry));
2477 			if (!fm_entry) {
2478 				status = ICE_ERR_NO_MEMORY;
2479 				goto ice_add_mac_exit;
2480 			}
2481 			fm_entry->fltr_info = *f_info;
2482 			fm_entry->vsi_count = 1;
2483 			/* The book keeping entries will get removed when
2484 			 * base driver calls remove filter AQ command
2485 			 */
2486 
2487 			LIST_ADD(&fm_entry->list_entry, rule_head);
2488 			r_iter = (struct ice_sw_rule_lkup_rx_tx *)
2489 				((u8 *)r_iter + s_rule_size);
2490 		}
2491 	}
2492 
2493 ice_add_mac_exit:
2494 	ice_release_lock(rule_lock);
2495 	if (s_rule)
2496 		ice_free(hw, s_rule);
2497 	return status;
2498 }
2499 
2500 /**
2501  * ice_add_mac - Add a MAC address based filter rule
2502  * @hw: pointer to the hardware structure
2503  * @m_list: list of MAC addresses and forwarding information
2504  *
2505  * Function add MAC rule for logical port from HW struct
2506  */
2507 int ice_add_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
2508 {
2509 	if (!m_list || !hw)
2510 		return ICE_ERR_PARAM;
2511 
2512 	return ice_add_mac_rule(hw, m_list, hw->switch_info,
2513 				hw->port_info->lport);
2514 }
2515 
2516 /**
2517  * ice_add_vlan_internal - Add one VLAN based filter rule
2518  * @hw: pointer to the hardware structure
2519  * @recp_list: recipe list for which rule has to be added
2520  * @f_entry: filter entry containing one VLAN information
2521  */
2522 static int
2523 ice_add_vlan_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
2524 		      struct ice_fltr_list_entry *f_entry)
2525 {
2526 	struct ice_fltr_mgmt_list_entry *v_list_itr;
2527 	struct ice_fltr_info *new_fltr, *cur_fltr;
2528 	enum ice_sw_lkup_type lkup_type;
2529 	u16 vsi_list_id = 0, vsi_handle;
2530 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2531 	int status = 0;
2532 
2533 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2534 		return ICE_ERR_PARAM;
2535 
2536 	f_entry->fltr_info.fwd_id.hw_vsi_id =
2537 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2538 	new_fltr = &f_entry->fltr_info;
2539 
2540 	/* VLAN ID should only be 12 bits */
2541 	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
2542 		return ICE_ERR_PARAM;
2543 
2544 	if (new_fltr->src_id != ICE_SRC_ID_VSI)
2545 		return ICE_ERR_PARAM;
2546 
2547 	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
2548 	lkup_type = new_fltr->lkup_type;
2549 	vsi_handle = new_fltr->vsi_handle;
2550 	rule_lock = &recp_list->filt_rule_lock;
2551 	ice_acquire_lock(rule_lock);
2552 	v_list_itr = ice_find_rule_entry(&recp_list->filt_rules, new_fltr);
2553 	if (!v_list_itr) {
2554 		struct ice_vsi_list_map_info *map_info = NULL;
2555 
2556 		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
2557 			/* All VLAN pruning rules use a VSI list. Check if
2558 			 * there is already a VSI list containing VSI that we
2559 			 * want to add. If found, use the same vsi_list_id for
2560 			 * this new VLAN rule or else create a new list.
2561 			 */
2562 			map_info = ice_find_vsi_list_entry(recp_list,
2563 							   vsi_handle,
2564 							   &vsi_list_id);
2565 			if (!map_info) {
2566 				status = ice_create_vsi_list_rule(hw,
2567 								  &vsi_handle,
2568 								  1,
2569 								  &vsi_list_id,
2570 								  lkup_type);
2571 				if (status)
2572 					goto exit;
2573 			}
2574 			/* Convert the action to forwarding to a VSI list. */
2575 			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
2576 			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
2577 		}
2578 
2579 		status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry);
2580 		if (!status) {
2581 			v_list_itr = ice_find_rule_entry(&recp_list->filt_rules,
2582 							 new_fltr);
2583 			if (!v_list_itr) {
2584 				status = ICE_ERR_DOES_NOT_EXIST;
2585 				goto exit;
2586 			}
2587 			/* reuse VSI list for new rule and increment ref_cnt */
2588 			if (map_info) {
2589 				v_list_itr->vsi_list_info = map_info;
2590 				map_info->ref_cnt++;
2591 			} else {
2592 				v_list_itr->vsi_list_info =
2593 					ice_create_vsi_list_map(hw, &vsi_handle,
2594 								1, vsi_list_id);
2595 			}
2596 		}
2597 	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
2598 		/* Update existing VSI list to add new VSI ID only if it used
2599 		 * by one VLAN rule.
2600 		 */
2601 		cur_fltr = &v_list_itr->fltr_info;
2602 		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
2603 						 new_fltr);
2604 	} else {
2605 		/* If VLAN rule exists and VSI list being used by this rule is
2606 		 * referenced by more than 1 VLAN rule. Then create a new VSI
2607 		 * list appending previous VSI with new VSI and update existing
2608 		 * VLAN rule to point to new VSI list ID
2609 		 */
2610 		struct ice_fltr_info tmp_fltr;
2611 		u16 vsi_handle_arr[2];
2612 		u16 cur_handle;
2613 
2614 		/* Current implementation only supports reusing VSI list with
2615 		 * one VSI count. We should never hit below condition
2616 		 */
2617 		if (v_list_itr->vsi_count > 1 &&
2618 		    v_list_itr->vsi_list_info->ref_cnt > 1) {
2619 			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
2620 			status = ICE_ERR_CFG;
2621 			goto exit;
2622 		}
2623 
2624 		cur_handle =
2625 			ice_find_first_bit(v_list_itr->vsi_list_info->vsi_map,
2626 					   ICE_MAX_VSI);
2627 
2628 		/* A rule already exists with the new VSI being added */
2629 		if (cur_handle == vsi_handle) {
2630 			status = ICE_ERR_ALREADY_EXISTS;
2631 			goto exit;
2632 		}
2633 
2634 		vsi_handle_arr[0] = cur_handle;
2635 		vsi_handle_arr[1] = vsi_handle;
2636 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
2637 						  &vsi_list_id, lkup_type);
2638 		if (status)
2639 			goto exit;
2640 
2641 		tmp_fltr = v_list_itr->fltr_info;
2642 		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
2643 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
2644 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
2645 		/* Update the previous switch rule to a new VSI list which
2646 		 * includes current VSI that is requested
2647 		 */
2648 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
2649 		if (status)
2650 			goto exit;
2651 
2652 		/* before overriding VSI list map info. decrement ref_cnt of
2653 		 * previous VSI list
2654 		 */
2655 		v_list_itr->vsi_list_info->ref_cnt--;
2656 
2657 		/* now update to newly created list */
2658 		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
2659 		v_list_itr->vsi_list_info =
2660 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
2661 						vsi_list_id);
2662 		v_list_itr->vsi_count++;
2663 	}
2664 
2665 exit:
2666 	ice_release_lock(rule_lock);
2667 	return status;
2668 }
2669 
2670 /**
2671  * ice_add_vlan_rule - Add VLAN based filter rule
2672  * @hw: pointer to the hardware structure
2673  * @v_list: list of VLAN entries and forwarding information
2674  * @sw: pointer to switch info struct for which function add rule
2675  */
2676 static int
2677 ice_add_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list,
2678 		  struct ice_switch_info *sw)
2679 {
2680 	struct ice_fltr_list_entry *v_list_itr;
2681 	struct ice_sw_recipe *recp_list;
2682 
2683 	recp_list = &sw->recp_list[ICE_SW_LKUP_VLAN];
2684 	LIST_FOR_EACH_ENTRY(v_list_itr, v_list, ice_fltr_list_entry,
2685 			    list_entry) {
2686 		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
2687 			return ICE_ERR_PARAM;
2688 		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
2689 		v_list_itr->status = ice_add_vlan_internal(hw, recp_list,
2690 							   v_list_itr);
2691 		if (v_list_itr->status)
2692 			return v_list_itr->status;
2693 	}
2694 	return 0;
2695 }
2696 
2697 /**
2698  * ice_add_vlan - Add a VLAN based filter rule
2699  * @hw: pointer to the hardware structure
2700  * @v_list: list of VLAN and forwarding information
2701  *
2702  * Function add VLAN rule for logical port from HW struct
2703  */
2704 int ice_add_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
2705 {
2706 	if (!v_list || !hw)
2707 		return ICE_ERR_PARAM;
2708 
2709 	return ice_add_vlan_rule(hw, v_list, hw->switch_info);
2710 }
2711 
2712 /**
2713  * ice_add_eth_mac_rule - Add ethertype and MAC based filter rule
2714  * @hw: pointer to the hardware structure
2715  * @em_list: list of ether type MAC filter, MAC is optional
2716  * @sw: pointer to switch info struct for which function add rule
2717  * @lport: logic port number on which function add rule
2718  *
2719  * This function requires the caller to populate the entries in
2720  * the filter list with the necessary fields (including flags to
2721  * indicate Tx or Rx rules).
2722  */
2723 static int
2724 ice_add_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list,
2725 		     struct ice_switch_info *sw, u8 lport)
2726 {
2727 	struct ice_fltr_list_entry *em_list_itr;
2728 
2729 	LIST_FOR_EACH_ENTRY(em_list_itr, em_list, ice_fltr_list_entry,
2730 			    list_entry) {
2731 		struct ice_sw_recipe *recp_list;
2732 		enum ice_sw_lkup_type l_type;
2733 
2734 		l_type = em_list_itr->fltr_info.lkup_type;
2735 		recp_list = &sw->recp_list[l_type];
2736 
2737 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
2738 		    l_type != ICE_SW_LKUP_ETHERTYPE)
2739 			return ICE_ERR_PARAM;
2740 
2741 		em_list_itr->status = ice_add_rule_internal(hw, recp_list,
2742 							    lport,
2743 							    em_list_itr);
2744 		if (em_list_itr->status)
2745 			return em_list_itr->status;
2746 	}
2747 	return 0;
2748 }
2749 
2750 /**
2751  * ice_add_eth_mac - Add a ethertype based filter rule
2752  * @hw: pointer to the hardware structure
2753  * @em_list: list of ethertype and forwarding information
2754  *
2755  * Function add ethertype rule for logical port from HW struct
2756  */
2757 int
2758 ice_add_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
2759 {
2760 	if (!em_list || !hw)
2761 		return ICE_ERR_PARAM;
2762 
2763 	return ice_add_eth_mac_rule(hw, em_list, hw->switch_info,
2764 				    hw->port_info->lport);
2765 }
2766 
2767 /**
2768  * ice_remove_eth_mac_rule - Remove an ethertype (or MAC) based filter rule
2769  * @hw: pointer to the hardware structure
2770  * @em_list: list of ethertype or ethertype MAC entries
2771  * @sw: pointer to switch info struct for which function add rule
2772  */
2773 static int
2774 ice_remove_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list,
2775 			struct ice_switch_info *sw)
2776 {
2777 	struct ice_fltr_list_entry *em_list_itr, *tmp;
2778 
2779 	LIST_FOR_EACH_ENTRY_SAFE(em_list_itr, tmp, em_list, ice_fltr_list_entry,
2780 				 list_entry) {
2781 		struct ice_sw_recipe *recp_list;
2782 		enum ice_sw_lkup_type l_type;
2783 
2784 		l_type = em_list_itr->fltr_info.lkup_type;
2785 
2786 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
2787 		    l_type != ICE_SW_LKUP_ETHERTYPE)
2788 			return ICE_ERR_PARAM;
2789 
2790 		recp_list = &sw->recp_list[l_type];
2791 		em_list_itr->status = ice_remove_rule_internal(hw, recp_list,
2792 							       em_list_itr);
2793 		if (em_list_itr->status)
2794 			return em_list_itr->status;
2795 	}
2796 	return 0;
2797 }
2798 
2799 /**
2800  * ice_remove_eth_mac - remove a ethertype based filter rule
2801  * @hw: pointer to the hardware structure
2802  * @em_list: list of ethertype and forwarding information
2803  *
2804  */
2805 int
2806 ice_remove_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
2807 {
2808 	if (!em_list || !hw)
2809 		return ICE_ERR_PARAM;
2810 
2811 	return ice_remove_eth_mac_rule(hw, em_list, hw->switch_info);
2812 }
2813 
2814 /**
2815  * ice_get_lg_act_aqc_res_type - get resource type for a large action
2816  * @res_type: resource type to be filled in case of function success
2817  * @num_acts: number of actions to hold with a large action entry
2818  *
2819  * Get resource type for a large action depending on the number
2820  * of single actions that it contains.
2821  */
2822 static int
2823 ice_get_lg_act_aqc_res_type(u16 *res_type, int num_acts)
2824 {
2825 	if (!res_type)
2826 		return ICE_ERR_BAD_PTR;
2827 
2828 	/* If num_acts is 1, use ICE_AQC_RES_TYPE_WIDE_TABLE_1.
2829 	 * If num_acts is 2, use ICE_AQC_RES_TYPE_WIDE_TABLE_3.
2830 	 * If num_acts is greater than 2, then use
2831 	 * ICE_AQC_RES_TYPE_WIDE_TABLE_4.
2832 	 * The num_acts cannot be equal to 0 or greater than 4.
2833 	 */
2834 	switch (num_acts) {
2835 	case 1:
2836 		*res_type = ICE_AQC_RES_TYPE_WIDE_TABLE_1;
2837 		break;
2838 	case 2:
2839 		*res_type = ICE_AQC_RES_TYPE_WIDE_TABLE_2;
2840 		break;
2841 	case 3:
2842 	case 4:
2843 		*res_type = ICE_AQC_RES_TYPE_WIDE_TABLE_4;
2844 		break;
2845 	default:
2846 		return ICE_ERR_PARAM;
2847 	}
2848 
2849 	return 0;
2850 }
2851 
2852 /**
2853  * ice_alloc_res_lg_act - add large action resource
2854  * @hw: pointer to the hardware structure
2855  * @l_id: large action ID to fill it in
2856  * @num_acts: number of actions to hold with a large action entry
2857  */
2858 static int
2859 ice_alloc_res_lg_act(struct ice_hw *hw, u16 *l_id, u16 num_acts)
2860 {
2861 	struct ice_aqc_alloc_free_res_elem *sw_buf;
2862 	u16 buf_len, res_type;
2863 	int status;
2864 
2865 	if (!l_id)
2866 		return ICE_ERR_BAD_PTR;
2867 
2868 	status = ice_get_lg_act_aqc_res_type(&res_type, num_acts);
2869 	if (status)
2870 		return status;
2871 
2872 	/* Allocate resource for large action */
2873 	buf_len = ice_struct_size(sw_buf, elem, 1);
2874 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
2875 	if (!sw_buf)
2876 		return ICE_ERR_NO_MEMORY;
2877 
2878 	sw_buf->res_type = CPU_TO_LE16(res_type);
2879 	sw_buf->num_elems = CPU_TO_LE16(1);
2880 
2881 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
2882 				       ice_aqc_opc_alloc_res, NULL);
2883 	if (!status)
2884 		*l_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
2885 
2886 	ice_free(hw, sw_buf);
2887 
2888 	return status;
2889 }
2890 
2891 /**
2892  * ice_rem_sw_rule_info
2893  * @hw: pointer to the hardware structure
2894  * @rule_head: pointer to the switch list structure that we want to delete
2895  */
2896 static void
2897 ice_rem_sw_rule_info(struct ice_hw *hw, struct LIST_HEAD_TYPE *rule_head)
2898 {
2899 	if (!LIST_EMPTY(rule_head)) {
2900 		struct ice_fltr_mgmt_list_entry *entry;
2901 		struct ice_fltr_mgmt_list_entry *tmp;
2902 
2903 		LIST_FOR_EACH_ENTRY_SAFE(entry, tmp, rule_head,
2904 					 ice_fltr_mgmt_list_entry, list_entry) {
2905 			LIST_DEL(&entry->list_entry);
2906 			ice_free(hw, entry);
2907 		}
2908 	}
2909 }
2910 
2911 /**
2912  * ice_rem_all_sw_rules_info
2913  * @hw: pointer to the hardware structure
2914  */
2915 void ice_rem_all_sw_rules_info(struct ice_hw *hw)
2916 {
2917 	struct ice_switch_info *sw = hw->switch_info;
2918 	u8 i;
2919 
2920 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
2921 		struct LIST_HEAD_TYPE *rule_head;
2922 
2923 		rule_head = &sw->recp_list[i].filt_rules;
2924 		if (!sw->recp_list[i].adv_rule)
2925 			ice_rem_sw_rule_info(hw, rule_head);
2926 	}
2927 }
2928 
2929 /**
2930  * ice_cfg_dflt_vsi - change state of VSI to set/clear default
2931  * @pi: pointer to the port_info structure
2932  * @vsi_handle: VSI handle to set as default
2933  * @set: true to add the above mentioned switch rule, false to remove it
2934  * @direction: ICE_FLTR_RX or ICE_FLTR_TX
2935  *
2936  * add filter rule to set/unset given VSI as default VSI for the switch
2937  * (represented by swid)
2938  */
2939 int
2940 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
2941 		 u8 direction)
2942 {
2943 	struct ice_fltr_list_entry f_list_entry;
2944 	struct ice_sw_recipe *recp_list = NULL;
2945 	struct ice_fltr_info f_info;
2946 	struct ice_hw *hw = pi->hw;
2947 	u8 lport = pi->lport;
2948 	u16 hw_vsi_id;
2949 	int status;
2950 
2951 	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
2952 
2953 	if (!ice_is_vsi_valid(hw, vsi_handle))
2954 		return ICE_ERR_PARAM;
2955 
2956 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
2957 
2958 	ice_memset(&f_info, 0, sizeof(f_info), ICE_NONDMA_MEM);
2959 
2960 	f_info.lkup_type = ICE_SW_LKUP_DFLT;
2961 	f_info.flag = direction;
2962 	f_info.fltr_act = ICE_FWD_TO_VSI;
2963 	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
2964 	f_info.vsi_handle = vsi_handle;
2965 
2966 	if (f_info.flag & ICE_FLTR_RX) {
2967 		f_info.src = pi->lport;
2968 		f_info.src_id = ICE_SRC_ID_LPORT;
2969 	} else if (f_info.flag & ICE_FLTR_TX) {
2970 		f_info.src_id = ICE_SRC_ID_VSI;
2971 		f_info.src = hw_vsi_id;
2972 	}
2973 	f_list_entry.fltr_info = f_info;
2974 
2975 	if (set)
2976 		status = ice_add_rule_internal(hw, recp_list, lport,
2977 					       &f_list_entry);
2978 	else
2979 		status = ice_remove_rule_internal(hw, recp_list,
2980 						  &f_list_entry);
2981 
2982 	return status;
2983 }
2984 
2985 /**
2986  * ice_check_if_dflt_vsi - check if VSI is default VSI
2987  * @pi: pointer to the port_info structure
2988  * @vsi_handle: vsi handle to check for in filter list
2989  * @rule_exists: indicates if there are any VSI's in the rule list
2990  *
2991  * checks if the VSI is in a default VSI list, and also indicates
2992  * if the default VSI list is empty
2993  */
2994 bool ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
2995 			   bool *rule_exists)
2996 {
2997 	struct ice_fltr_mgmt_list_entry *fm_entry;
2998 	struct LIST_HEAD_TYPE *rule_head;
2999 	struct ice_sw_recipe *recp_list;
3000 	struct ice_lock *rule_lock;
3001 	bool ret = false;
3002 	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3003 	rule_lock = &recp_list->filt_rule_lock;
3004 	rule_head = &recp_list->filt_rules;
3005 
3006 	ice_acquire_lock(rule_lock);
3007 
3008 	if (rule_exists && !LIST_EMPTY(rule_head))
3009 		*rule_exists = true;
3010 
3011 	LIST_FOR_EACH_ENTRY(fm_entry, rule_head,
3012 			    ice_fltr_mgmt_list_entry, list_entry) {
3013 		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3014 			ret = true;
3015 			break;
3016 		}
3017 	}
3018 
3019 	ice_release_lock(rule_lock);
3020 	return ret;
3021 }
3022 
3023 /**
3024  * ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry
3025  * @list_head: head of rule list
3026  * @f_info: rule information
3027  *
3028  * Helper function to search for a unicast rule entry - this is to be used
3029  * to remove unicast MAC filter that is not shared with other VSIs on the
3030  * PF switch.
3031  *
3032  * Returns pointer to entry storing the rule if found
3033  */
3034 static struct ice_fltr_mgmt_list_entry *
3035 ice_find_ucast_rule_entry(struct LIST_HEAD_TYPE *list_head,
3036 			  struct ice_fltr_info *f_info)
3037 {
3038 	struct ice_fltr_mgmt_list_entry *list_itr;
3039 
3040 	LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
3041 			    list_entry) {
3042 		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3043 			    sizeof(f_info->l_data)) &&
3044 		    f_info->fwd_id.hw_vsi_id ==
3045 		    list_itr->fltr_info.fwd_id.hw_vsi_id &&
3046 		    f_info->flag == list_itr->fltr_info.flag)
3047 			return list_itr;
3048 	}
3049 	return NULL;
3050 }
3051 
3052 /**
3053  * ice_remove_mac_rule - remove a MAC based filter rule
3054  * @hw: pointer to the hardware structure
3055  * @m_list: list of MAC addresses and forwarding information
3056  * @recp_list: list from which function remove MAC address
3057  *
3058  * This function removes either a MAC filter rule or a specific VSI from a
3059  * VSI list for a multicast MAC address.
3060  *
3061  * Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by
3062  * ice_add_mac. Caller should be aware that this call will only work if all
3063  * the entries passed into m_list were added previously. It will not attempt to
3064  * do a partial remove of entries that were found.
3065  */
3066 static int
3067 ice_remove_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list,
3068 		    struct ice_sw_recipe *recp_list)
3069 {
3070 	struct ice_fltr_list_entry *list_itr, *tmp;
3071 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
3072 
3073 	if (!m_list)
3074 		return ICE_ERR_PARAM;
3075 
3076 	rule_lock = &recp_list->filt_rule_lock;
3077 	LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, m_list, ice_fltr_list_entry,
3078 				 list_entry) {
3079 		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3080 		u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0];
3081 		u16 vsi_handle;
3082 
3083 		if (l_type != ICE_SW_LKUP_MAC)
3084 			return ICE_ERR_PARAM;
3085 
3086 		vsi_handle = list_itr->fltr_info.vsi_handle;
3087 		if (!ice_is_vsi_valid(hw, vsi_handle))
3088 			return ICE_ERR_PARAM;
3089 
3090 		list_itr->fltr_info.fwd_id.hw_vsi_id =
3091 					ice_get_hw_vsi_num(hw, vsi_handle);
3092 		if (IS_UNICAST_ETHER_ADDR(add) && !hw->umac_shared) {
3093 			/* Don't remove the unicast address that belongs to
3094 			 * another VSI on the switch, since it is not being
3095 			 * shared...
3096 			 */
3097 			ice_acquire_lock(rule_lock);
3098 			if (!ice_find_ucast_rule_entry(&recp_list->filt_rules,
3099 						       &list_itr->fltr_info)) {
3100 				ice_release_lock(rule_lock);
3101 				return ICE_ERR_DOES_NOT_EXIST;
3102 			}
3103 			ice_release_lock(rule_lock);
3104 		}
3105 		list_itr->status = ice_remove_rule_internal(hw, recp_list,
3106 							    list_itr);
3107 		if (list_itr->status)
3108 			return list_itr->status;
3109 	}
3110 	return 0;
3111 }
3112 
3113 /**
3114  * ice_remove_mac - remove a MAC address based filter rule
3115  * @hw: pointer to the hardware structure
3116  * @m_list: list of MAC addresses and forwarding information
3117  *
3118  */
3119 int ice_remove_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
3120 {
3121 	struct ice_sw_recipe *recp_list;
3122 
3123 	recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
3124 	return ice_remove_mac_rule(hw, m_list, recp_list);
3125 }
3126 
3127 /**
3128  * ice_remove_vlan_rule - Remove VLAN based filter rule
3129  * @hw: pointer to the hardware structure
3130  * @v_list: list of VLAN entries and forwarding information
3131  * @recp_list: list from which function remove VLAN
3132  */
3133 static int
3134 ice_remove_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list,
3135 		     struct ice_sw_recipe *recp_list)
3136 {
3137 	struct ice_fltr_list_entry *v_list_itr, *tmp;
3138 
3139 	LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
3140 				 list_entry) {
3141 		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3142 
3143 		if (l_type != ICE_SW_LKUP_VLAN)
3144 			return ICE_ERR_PARAM;
3145 		v_list_itr->status = ice_remove_rule_internal(hw, recp_list,
3146 							      v_list_itr);
3147 		if (v_list_itr->status)
3148 			return v_list_itr->status;
3149 	}
3150 	return 0;
3151 }
3152 
3153 /**
3154  * ice_remove_vlan - remove a VLAN address based filter rule
3155  * @hw: pointer to the hardware structure
3156  * @v_list: list of VLAN and forwarding information
3157  *
3158  */
3159 int
3160 ice_remove_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
3161 {
3162 	struct ice_sw_recipe *recp_list;
3163 
3164 	if (!v_list || !hw)
3165 		return ICE_ERR_PARAM;
3166 
3167 	recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_VLAN];
3168 	return ice_remove_vlan_rule(hw, v_list, recp_list);
3169 }
3170 
3171 /**
3172  * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3173  * @fm_entry: filter entry to inspect
3174  * @vsi_handle: VSI handle to compare with filter info
3175  */
3176 static bool
3177 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3178 {
3179 	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3180 		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3181 		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3182 		 fm_entry->vsi_list_info &&
3183 		 (ice_is_bit_set(fm_entry->vsi_list_info->vsi_map,
3184 				 vsi_handle))));
3185 }
3186 
3187 /**
3188  * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3189  * @hw: pointer to the hardware structure
3190  * @vsi_handle: VSI handle to remove filters from
3191  * @vsi_list_head: pointer to the list to add entry to
3192  * @fi: pointer to fltr_info of filter entry to copy & add
3193  *
3194  * Helper function, used when creating a list of filters to remove from
3195  * a specific VSI. The entry added to vsi_list_head is a COPY of the
3196  * original filter entry, with the exception of fltr_info.fltr_act and
3197  * fltr_info.fwd_id fields. These are set such that later logic can
3198  * extract which VSI to remove the fltr from, and pass on that information.
3199  */
3200 static int
3201 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3202 			       struct LIST_HEAD_TYPE *vsi_list_head,
3203 			       struct ice_fltr_info *fi)
3204 {
3205 	struct ice_fltr_list_entry *tmp;
3206 
3207 	/* this memory is freed up in the caller function
3208 	 * once filters for this VSI are removed
3209 	 */
3210 	tmp = (struct ice_fltr_list_entry *)ice_malloc(hw, sizeof(*tmp));
3211 	if (!tmp)
3212 		return ICE_ERR_NO_MEMORY;
3213 
3214 	tmp->fltr_info = *fi;
3215 
3216 	/* Overwrite these fields to indicate which VSI to remove filter from,
3217 	 * so find and remove logic can extract the information from the
3218 	 * list entries. Note that original entries will still have proper
3219 	 * values.
3220 	 */
3221 	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3222 	tmp->fltr_info.vsi_handle = vsi_handle;
3223 	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3224 
3225 	LIST_ADD(&tmp->list_entry, vsi_list_head);
3226 
3227 	return 0;
3228 }
3229 
3230 /**
3231  * ice_add_to_vsi_fltr_list - Add VSI filters to the list
3232  * @hw: pointer to the hardware structure
3233  * @vsi_handle: VSI handle to remove filters from
3234  * @lkup_list_head: pointer to the list that has certain lookup type filters
3235  * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
3236  *
3237  * Locates all filters in lkup_list_head that are used by the given VSI,
3238  * and adds COPIES of those entries to vsi_list_head (intended to be used
3239  * to remove the listed filters).
3240  * Note that this means all entries in vsi_list_head must be explicitly
3241  * deallocated by the caller when done with list.
3242  */
3243 static int
3244 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3245 			 struct LIST_HEAD_TYPE *lkup_list_head,
3246 			 struct LIST_HEAD_TYPE *vsi_list_head)
3247 {
3248 	struct ice_fltr_mgmt_list_entry *fm_entry;
3249 	int status = 0;
3250 
3251 	/* check to make sure VSI ID is valid and within boundary */
3252 	if (!ice_is_vsi_valid(hw, vsi_handle))
3253 		return ICE_ERR_PARAM;
3254 
3255 	LIST_FOR_EACH_ENTRY(fm_entry, lkup_list_head,
3256 			    ice_fltr_mgmt_list_entry, list_entry) {
3257 		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
3258 			continue;
3259 
3260 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
3261 							vsi_list_head,
3262 							&fm_entry->fltr_info);
3263 		if (status)
3264 			return status;
3265 	}
3266 	return status;
3267 }
3268 
3269 /**
3270  * ice_determine_promisc_mask
3271  * @fi: filter info to parse
3272  * @promisc_mask: pointer to mask to be filled in
3273  *
3274  * Helper function to determine which ICE_PROMISC_ mask corresponds
3275  * to given filter into.
3276  */
3277 static void ice_determine_promisc_mask(struct ice_fltr_info *fi,
3278 				       ice_bitmap_t *promisc_mask)
3279 {
3280 	u16 vid = fi->l_data.mac_vlan.vlan_id;
3281 	u8 *macaddr = fi->l_data.mac.mac_addr;
3282 	bool is_rx_lb_fltr = false;
3283 	bool is_tx_fltr = false;
3284 
3285 	ice_zero_bitmap(promisc_mask, ICE_PROMISC_MAX);
3286 
3287 	if (fi->flag == ICE_FLTR_TX)
3288 		is_tx_fltr = true;
3289 	if (fi->flag == ICE_FLTR_RX_LB)
3290 		is_rx_lb_fltr = true;
3291 
3292 	if (IS_BROADCAST_ETHER_ADDR(macaddr)) {
3293 		ice_set_bit(is_tx_fltr ? ICE_PROMISC_BCAST_TX
3294 				       : ICE_PROMISC_BCAST_RX, promisc_mask);
3295 	} else if (IS_MULTICAST_ETHER_ADDR(macaddr)) {
3296 		ice_set_bit(is_tx_fltr ? ICE_PROMISC_MCAST_TX
3297 				       : ICE_PROMISC_MCAST_RX, promisc_mask);
3298 	} else if (IS_UNICAST_ETHER_ADDR(macaddr)) {
3299 		if (is_tx_fltr)
3300 			ice_set_bit(ICE_PROMISC_UCAST_TX, promisc_mask);
3301 		else if (is_rx_lb_fltr)
3302 			ice_set_bit(ICE_PROMISC_UCAST_RX_LB, promisc_mask);
3303 		else
3304 			ice_set_bit(ICE_PROMISC_UCAST_RX, promisc_mask);
3305 	}
3306 
3307 	if (vid) {
3308 		ice_set_bit(is_tx_fltr ? ICE_PROMISC_VLAN_TX
3309 				       : ICE_PROMISC_VLAN_RX, promisc_mask);
3310 	}
3311 }
3312 
3313 /**
3314  * _ice_get_vsi_promisc - get promiscuous mode of given VSI
3315  * @hw: pointer to the hardware structure
3316  * @vsi_handle: VSI handle to retrieve info from
3317  * @promisc_mask: pointer to mask to be filled in
3318  * @vid: VLAN ID of promisc VLAN VSI
3319  * @sw: pointer to switch info struct for which function add rule
3320  * @lkup: switch rule filter lookup type
3321  */
3322 static int
3323 _ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3324 		     ice_bitmap_t *promisc_mask, u16 *vid,
3325 		     struct ice_switch_info *sw, enum ice_sw_lkup_type lkup)
3326 {
3327 	ice_declare_bitmap(fltr_promisc_mask, ICE_PROMISC_MAX);
3328 	struct ice_fltr_mgmt_list_entry *itr;
3329 	struct LIST_HEAD_TYPE *rule_head;
3330 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
3331 
3332 	if (!ice_is_vsi_valid(hw, vsi_handle) ||
3333 	    (lkup != ICE_SW_LKUP_PROMISC && lkup != ICE_SW_LKUP_PROMISC_VLAN))
3334 		return ICE_ERR_PARAM;
3335 
3336 	*vid = 0;
3337 	rule_head = &sw->recp_list[lkup].filt_rules;
3338 	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
3339 
3340 	ice_zero_bitmap(promisc_mask, ICE_PROMISC_MAX);
3341 
3342 	ice_acquire_lock(rule_lock);
3343 	LIST_FOR_EACH_ENTRY(itr, rule_head,
3344 			    ice_fltr_mgmt_list_entry, list_entry) {
3345 		/* Continue if this filter doesn't apply to this VSI or the
3346 		 * VSI ID is not in the VSI map for this filter
3347 		 */
3348 		if (!ice_vsi_uses_fltr(itr, vsi_handle))
3349 			continue;
3350 
3351 		ice_determine_promisc_mask(&itr->fltr_info, fltr_promisc_mask);
3352 		ice_or_bitmap(promisc_mask, promisc_mask, fltr_promisc_mask,
3353 			      ICE_PROMISC_MAX);
3354 
3355 	}
3356 	ice_release_lock(rule_lock);
3357 
3358 	return 0;
3359 }
3360 
3361 /**
3362  * ice_get_vsi_promisc - get promiscuous mode of given VSI
3363  * @hw: pointer to the hardware structure
3364  * @vsi_handle: VSI handle to retrieve info from
3365  * @promisc_mask: pointer to mask to be filled in
3366  * @vid: VLAN ID of promisc VLAN VSI
3367  */
3368 int
3369 ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3370 		    ice_bitmap_t *promisc_mask, u16 *vid)
3371 {
3372 	if (!vid || !promisc_mask || !hw)
3373 		return ICE_ERR_PARAM;
3374 
3375 	return _ice_get_vsi_promisc(hw, vsi_handle, promisc_mask,
3376 				    vid, hw->switch_info, ICE_SW_LKUP_PROMISC);
3377 }
3378 
3379 /**
3380  * ice_get_vsi_vlan_promisc - get VLAN promiscuous mode of given VSI
3381  * @hw: pointer to the hardware structure
3382  * @vsi_handle: VSI handle to retrieve info from
3383  * @promisc_mask: pointer to mask to be filled in
3384  * @vid: VLAN ID of promisc VLAN VSI
3385  */
3386 int
3387 ice_get_vsi_vlan_promisc(struct ice_hw *hw, u16 vsi_handle,
3388 			 ice_bitmap_t *promisc_mask, u16 *vid)
3389 {
3390 	if (!hw || !promisc_mask || !vid)
3391 		return ICE_ERR_PARAM;
3392 
3393 	return _ice_get_vsi_promisc(hw, vsi_handle, promisc_mask,
3394 				    vid, hw->switch_info,
3395 				    ICE_SW_LKUP_PROMISC_VLAN);
3396 }
3397 
3398 /**
3399  * ice_remove_promisc - Remove promisc based filter rules
3400  * @hw: pointer to the hardware structure
3401  * @recp_id: recipe ID for which the rule needs to removed
3402  * @v_list: list of promisc entries
3403  */
3404 static int
3405 ice_remove_promisc(struct ice_hw *hw, u8 recp_id,
3406 		   struct LIST_HEAD_TYPE *v_list)
3407 {
3408 	struct ice_fltr_list_entry *v_list_itr, *tmp;
3409 	struct ice_sw_recipe *recp_list;
3410 
3411 	recp_list = &hw->switch_info->recp_list[recp_id];
3412 	LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
3413 				 list_entry) {
3414 		v_list_itr->status =
3415 			ice_remove_rule_internal(hw, recp_list, v_list_itr);
3416 		if (v_list_itr->status)
3417 			return v_list_itr->status;
3418 	}
3419 	return 0;
3420 }
3421 
3422 /**
3423  * _ice_clear_vsi_promisc - clear specified promiscuous mode(s)
3424  * @hw: pointer to the hardware structure
3425  * @vsi_handle: VSI handle to clear mode
3426  * @promisc_mask: pointer to mask of promiscuous config bits to clear
3427  * @vid: VLAN ID to clear VLAN promiscuous
3428  * @sw: pointer to switch info struct for which function add rule
3429  */
3430 static int
3431 _ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3432 		       ice_bitmap_t *promisc_mask, u16 vid,
3433 		       struct ice_switch_info *sw)
3434 {
3435 	ice_declare_bitmap(compl_promisc_mask, ICE_PROMISC_MAX);
3436 	ice_declare_bitmap(fltr_promisc_mask, ICE_PROMISC_MAX);
3437 	struct ice_fltr_list_entry *fm_entry, *tmp;
3438 	struct LIST_HEAD_TYPE remove_list_head;
3439 	struct ice_fltr_mgmt_list_entry *itr;
3440 	struct LIST_HEAD_TYPE *rule_head;
3441 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
3442 	int status = 0;
3443 	u8 recipe_id;
3444 
3445 	if (!ice_is_vsi_valid(hw, vsi_handle))
3446 		return ICE_ERR_PARAM;
3447 
3448 	if (ice_is_bit_set(promisc_mask, ICE_PROMISC_VLAN_RX) &&
3449 	    ice_is_bit_set(promisc_mask, ICE_PROMISC_VLAN_TX))
3450 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
3451 	else
3452 		recipe_id = ICE_SW_LKUP_PROMISC;
3453 
3454 	rule_head = &sw->recp_list[recipe_id].filt_rules;
3455 	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
3456 
3457 	INIT_LIST_HEAD(&remove_list_head);
3458 
3459 	ice_acquire_lock(rule_lock);
3460 	LIST_FOR_EACH_ENTRY(itr, rule_head,
3461 			    ice_fltr_mgmt_list_entry, list_entry) {
3462 		struct ice_fltr_info *fltr_info;
3463 		ice_zero_bitmap(compl_promisc_mask, ICE_PROMISC_MAX);
3464 
3465 		if (!ice_vsi_uses_fltr(itr, vsi_handle))
3466 			continue;
3467 		fltr_info = &itr->fltr_info;
3468 
3469 		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
3470 		    vid != fltr_info->l_data.mac_vlan.vlan_id)
3471 			continue;
3472 
3473 		ice_determine_promisc_mask(fltr_info, fltr_promisc_mask);
3474 		ice_andnot_bitmap(compl_promisc_mask, fltr_promisc_mask,
3475 				  promisc_mask, ICE_PROMISC_MAX);
3476 
3477 		/* Skip if filter is not completely specified by given mask */
3478 		if (ice_is_any_bit_set(compl_promisc_mask, ICE_PROMISC_MAX))
3479 			continue;
3480 
3481 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
3482 							&remove_list_head,
3483 							fltr_info);
3484 		if (status) {
3485 			ice_release_lock(rule_lock);
3486 			goto free_fltr_list;
3487 		}
3488 	}
3489 	ice_release_lock(rule_lock);
3490 
3491 	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
3492 
3493 free_fltr_list:
3494 	LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
3495 				 ice_fltr_list_entry, list_entry) {
3496 		LIST_DEL(&fm_entry->list_entry);
3497 		ice_free(hw, fm_entry);
3498 	}
3499 
3500 	return status;
3501 }
3502 
3503 /**
3504  * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
3505  * @hw: pointer to the hardware structure
3506  * @vsi_handle: VSI handle to clear mode
3507  * @promisc_mask: pointer to mask of promiscuous config bits to clear
3508  * @vid: VLAN ID to clear VLAN promiscuous
3509  */
3510 int
3511 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3512 		      ice_bitmap_t *promisc_mask, u16 vid)
3513 {
3514 	if (!hw || !promisc_mask)
3515 		return ICE_ERR_PARAM;
3516 
3517 	return _ice_clear_vsi_promisc(hw, vsi_handle, promisc_mask,
3518 				      vid, hw->switch_info);
3519 }
3520 
3521 /**
3522  * _ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
3523  * @hw: pointer to the hardware structure
3524  * @vsi_handle: VSI handle to configure
3525  * @promisc_mask: pointer to mask of promiscuous config bits
3526  * @vid: VLAN ID to set VLAN promiscuous
3527  * @lport: logical port number to configure promisc mode
3528  * @sw: pointer to switch info struct for which function add rule
3529  */
3530 static int
3531 _ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3532 		     ice_bitmap_t *promisc_mask, u16 vid, u8 lport,
3533 		     struct ice_switch_info *sw)
3534 {
3535 	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
3536 	ice_declare_bitmap(p_mask, ICE_PROMISC_MAX);
3537 	struct ice_fltr_list_entry f_list_entry;
3538 	bool is_tx_fltr, is_rx_lb_fltr;
3539 	struct ice_fltr_info new_fltr;
3540 	int status = 0;
3541 	u16 hw_vsi_id;
3542 	int pkt_type;
3543 	u8 recipe_id;
3544 
3545 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3546 
3547 	if (!ice_is_vsi_valid(hw, vsi_handle))
3548 		return ICE_ERR_PARAM;
3549 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3550 
3551 	ice_memset(&new_fltr, 0, sizeof(new_fltr), ICE_NONDMA_MEM);
3552 
3553 	/* Do not modify original bitmap */
3554 	ice_cp_bitmap(p_mask, promisc_mask, ICE_PROMISC_MAX);
3555 
3556 	if (ice_is_bit_set(p_mask, ICE_PROMISC_VLAN_RX) &&
3557 	    ice_is_bit_set(p_mask, ICE_PROMISC_VLAN_TX)) {
3558 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
3559 		new_fltr.l_data.mac_vlan.vlan_id = vid;
3560 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
3561 	} else {
3562 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
3563 		recipe_id = ICE_SW_LKUP_PROMISC;
3564 	}
3565 
3566 	/* Separate filters must be set for each direction/packet type
3567 	 * combination, so we will loop over the mask value, store the
3568 	 * individual type, and clear it out in the input mask as it
3569 	 * is found.
3570 	 */
3571 	while (ice_is_any_bit_set(p_mask, ICE_PROMISC_MAX)) {
3572 		struct ice_sw_recipe *recp_list;
3573 		u8 *mac_addr;
3574 
3575 		pkt_type = 0;
3576 		is_tx_fltr = false;
3577 		is_rx_lb_fltr = false;
3578 
3579 		if (ice_test_and_clear_bit(ICE_PROMISC_UCAST_RX,
3580 					   p_mask)) {
3581 			pkt_type = UCAST_FLTR;
3582 		} else if (ice_test_and_clear_bit(ICE_PROMISC_UCAST_TX,
3583 						  p_mask)) {
3584 			pkt_type = UCAST_FLTR;
3585 			is_tx_fltr = true;
3586 		} else if (ice_test_and_clear_bit(ICE_PROMISC_MCAST_RX,
3587 						  p_mask)) {
3588 			pkt_type = MCAST_FLTR;
3589 		} else if (ice_test_and_clear_bit(ICE_PROMISC_MCAST_TX,
3590 						  p_mask)) {
3591 			pkt_type = MCAST_FLTR;
3592 			is_tx_fltr = true;
3593 		} else if (ice_test_and_clear_bit(ICE_PROMISC_BCAST_RX,
3594 						  p_mask)) {
3595 			pkt_type = BCAST_FLTR;
3596 		} else if (ice_test_and_clear_bit(ICE_PROMISC_BCAST_TX,
3597 						  p_mask)) {
3598 			pkt_type = BCAST_FLTR;
3599 			is_tx_fltr = true;
3600 		} else if (ice_test_and_clear_bit(ICE_PROMISC_UCAST_RX_LB,
3601 						  p_mask)) {
3602 			pkt_type = UCAST_FLTR;
3603 			is_rx_lb_fltr = true;
3604 		}
3605 
3606 		/* Check for VLAN promiscuous flag */
3607 		if (ice_is_bit_set(p_mask, ICE_PROMISC_VLAN_RX)) {
3608 			ice_clear_bit(ICE_PROMISC_VLAN_RX, p_mask);
3609 		} else if (ice_test_and_clear_bit(ICE_PROMISC_VLAN_TX,
3610 						  p_mask)) {
3611 			is_tx_fltr = true;
3612 		}
3613 		/* Set filter DA based on packet type */
3614 		mac_addr = new_fltr.l_data.mac.mac_addr;
3615 		if (pkt_type == BCAST_FLTR) {
3616 			ice_memset(mac_addr, 0xff, ETH_ALEN, ICE_NONDMA_MEM);
3617 		} else if (pkt_type == MCAST_FLTR ||
3618 			   pkt_type == UCAST_FLTR) {
3619 			/* Use the dummy ether header DA */
3620 			ice_memcpy(mac_addr, dummy_eth_header, ETH_ALEN,
3621 				   ICE_NONDMA_TO_NONDMA);
3622 			if (pkt_type == MCAST_FLTR)
3623 				mac_addr[0] |= 0x1;	/* Set multicast bit */
3624 		}
3625 
3626 		/* Need to reset this to zero for all iterations */
3627 		new_fltr.flag = 0;
3628 		if (is_tx_fltr) {
3629 			new_fltr.flag |= ICE_FLTR_TX;
3630 			new_fltr.src = hw_vsi_id;
3631 		} else if (is_rx_lb_fltr) {
3632 			new_fltr.flag |= ICE_FLTR_RX_LB;
3633 			new_fltr.src = hw_vsi_id;
3634 		} else {
3635 			new_fltr.flag |= ICE_FLTR_RX;
3636 			new_fltr.src = lport;
3637 		}
3638 
3639 		new_fltr.fltr_act = ICE_FWD_TO_VSI;
3640 		new_fltr.vsi_handle = vsi_handle;
3641 		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
3642 		f_list_entry.fltr_info = new_fltr;
3643 		recp_list = &sw->recp_list[recipe_id];
3644 
3645 		status = ice_add_rule_internal(hw, recp_list, lport,
3646 					       &f_list_entry);
3647 		if (status)
3648 			goto set_promisc_exit;
3649 	}
3650 
3651 set_promisc_exit:
3652 	return status;
3653 }
3654 
3655 /**
3656  * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
3657  * @hw: pointer to the hardware structure
3658  * @vsi_handle: VSI handle to configure
3659  * @promisc_mask: pointer to mask of promiscuous config bits
3660  * @vid: VLAN ID to set VLAN promiscuous
3661  */
3662 int
3663 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3664 		    ice_bitmap_t *promisc_mask, u16 vid)
3665 {
3666 	if (!hw || !promisc_mask)
3667 		return ICE_ERR_PARAM;
3668 
3669 	return _ice_set_vsi_promisc(hw, vsi_handle, promisc_mask, vid,
3670 				    hw->port_info->lport,
3671 				    hw->switch_info);
3672 }
3673 
3674 /**
3675  * _ice_set_vlan_vsi_promisc
3676  * @hw: pointer to the hardware structure
3677  * @vsi_handle: VSI handle to configure
3678  * @promisc_mask: pointer to mask of promiscuous config bits
3679  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
3680  * @lport: logical port number to configure promisc mode
3681  * @sw: pointer to switch info struct for which function add rule
3682  *
3683  * Configure VSI with all associated VLANs to given promiscuous mode(s)
3684  */
3685 static int
3686 _ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3687 			  ice_bitmap_t *promisc_mask, bool rm_vlan_promisc,
3688 			  u8 lport, struct ice_switch_info *sw)
3689 {
3690 	struct ice_fltr_list_entry *list_itr, *tmp;
3691 	struct LIST_HEAD_TYPE vsi_list_head;
3692 	struct LIST_HEAD_TYPE *vlan_head;
3693 	struct ice_lock *vlan_lock; /* Lock to protect filter rule list */
3694 	int status;
3695 	u16 vlan_id;
3696 
3697 	INIT_LIST_HEAD(&vsi_list_head);
3698 	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3699 	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3700 	ice_acquire_lock(vlan_lock);
3701 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
3702 					  &vsi_list_head);
3703 	ice_release_lock(vlan_lock);
3704 	if (status)
3705 		goto free_fltr_list;
3706 
3707 	LIST_FOR_EACH_ENTRY(list_itr, &vsi_list_head, ice_fltr_list_entry,
3708 			    list_entry) {
3709 		/* Avoid enabling or disabling vlan zero twice when in double
3710 		 * vlan mode
3711 		 */
3712 		if (ice_is_dvm_ena(hw) &&
3713 		    list_itr->fltr_info.l_data.vlan.tpid == 0)
3714 			continue;
3715 
3716 		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
3717 		if (rm_vlan_promisc)
3718 			status =  _ice_clear_vsi_promisc(hw, vsi_handle,
3719 							 promisc_mask,
3720 							 vlan_id, sw);
3721 		else
3722 			status =  _ice_set_vsi_promisc(hw, vsi_handle,
3723 						       promisc_mask, vlan_id,
3724 						       lport, sw);
3725 		if (status && status != ICE_ERR_ALREADY_EXISTS)
3726 			break;
3727 	}
3728 
3729 free_fltr_list:
3730 	LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, &vsi_list_head,
3731 				 ice_fltr_list_entry, list_entry) {
3732 		LIST_DEL(&list_itr->list_entry);
3733 		ice_free(hw, list_itr);
3734 	}
3735 	return status;
3736 }
3737 
3738 /**
3739  * ice_set_vlan_vsi_promisc
3740  * @hw: pointer to the hardware structure
3741  * @vsi_handle: VSI handle to configure
3742  * @promisc_mask: mask of promiscuous config bits
3743  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
3744  *
3745  * Configure VSI with all associated VLANs to given promiscuous mode(s)
3746  */
3747 int
3748 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3749 			 ice_bitmap_t *promisc_mask, bool rm_vlan_promisc)
3750 {
3751 	if (!hw || !promisc_mask)
3752 		return ICE_ERR_PARAM;
3753 
3754 	return _ice_set_vlan_vsi_promisc(hw, vsi_handle, promisc_mask,
3755 					 rm_vlan_promisc, hw->port_info->lport,
3756 					 hw->switch_info);
3757 }
3758 
3759 /**
3760  * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
3761  * @hw: pointer to the hardware structure
3762  * @vsi_handle: VSI handle to remove filters from
3763  * @recp_list: recipe list from which function remove fltr
3764  * @lkup: switch rule filter lookup type
3765  */
3766 static void
3767 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
3768 			 struct ice_sw_recipe *recp_list,
3769 			 enum ice_sw_lkup_type lkup)
3770 {
3771 	struct ice_fltr_list_entry *fm_entry;
3772 	struct LIST_HEAD_TYPE remove_list_head;
3773 	struct LIST_HEAD_TYPE *rule_head;
3774 	struct ice_fltr_list_entry *tmp;
3775 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
3776 	int status;
3777 
3778 	INIT_LIST_HEAD(&remove_list_head);
3779 	rule_lock = &recp_list[lkup].filt_rule_lock;
3780 	rule_head = &recp_list[lkup].filt_rules;
3781 	ice_acquire_lock(rule_lock);
3782 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
3783 					  &remove_list_head);
3784 	ice_release_lock(rule_lock);
3785 	if (status)
3786 		goto free_fltr_list;
3787 
3788 	switch (lkup) {
3789 	case ICE_SW_LKUP_MAC:
3790 		ice_remove_mac_rule(hw, &remove_list_head, &recp_list[lkup]);
3791 		break;
3792 	case ICE_SW_LKUP_VLAN:
3793 		ice_remove_vlan_rule(hw, &remove_list_head, &recp_list[lkup]);
3794 		break;
3795 	case ICE_SW_LKUP_PROMISC:
3796 	case ICE_SW_LKUP_PROMISC_VLAN:
3797 		ice_remove_promisc(hw, (u8)lkup, &remove_list_head);
3798 		break;
3799 	case ICE_SW_LKUP_MAC_VLAN:
3800 		ice_debug(hw, ICE_DBG_SW, "MAC VLAN look up is not supported yet\n");
3801 		break;
3802 	case ICE_SW_LKUP_ETHERTYPE:
3803 	case ICE_SW_LKUP_ETHERTYPE_MAC:
3804 		ice_remove_eth_mac(hw, &remove_list_head);
3805 		break;
3806 	case ICE_SW_LKUP_DFLT:
3807 		ice_debug(hw, ICE_DBG_SW, "Remove filters for this lookup type hasn't been implemented yet\n");
3808 		break;
3809 	case ICE_SW_LKUP_LAST:
3810 		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type\n");
3811 		break;
3812 	}
3813 
3814 free_fltr_list:
3815 	LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
3816 				 ice_fltr_list_entry, list_entry) {
3817 		LIST_DEL(&fm_entry->list_entry);
3818 		ice_free(hw, fm_entry);
3819 	}
3820 }
3821 
3822 /**
3823  * ice_remove_vsi_fltr_rule - Remove all filters for a VSI
3824  * @hw: pointer to the hardware structure
3825  * @vsi_handle: VSI handle to remove filters from
3826  * @sw: pointer to switch info struct
3827  */
3828 static void
3829 ice_remove_vsi_fltr_rule(struct ice_hw *hw, u16 vsi_handle,
3830 			 struct ice_switch_info *sw)
3831 {
3832 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3833 
3834 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3835 				 sw->recp_list, ICE_SW_LKUP_MAC);
3836 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3837 				 sw->recp_list, ICE_SW_LKUP_MAC_VLAN);
3838 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3839 				 sw->recp_list, ICE_SW_LKUP_PROMISC);
3840 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3841 				 sw->recp_list, ICE_SW_LKUP_VLAN);
3842 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3843 				 sw->recp_list, ICE_SW_LKUP_DFLT);
3844 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3845 				 sw->recp_list, ICE_SW_LKUP_ETHERTYPE);
3846 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3847 				 sw->recp_list, ICE_SW_LKUP_ETHERTYPE_MAC);
3848 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3849 				 sw->recp_list, ICE_SW_LKUP_PROMISC_VLAN);
3850 }
3851 
3852 /**
3853  * ice_remove_vsi_fltr - Remove all filters for a VSI
3854  * @hw: pointer to the hardware structure
3855  * @vsi_handle: VSI handle to remove filters from
3856  */
3857 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
3858 {
3859 	ice_remove_vsi_fltr_rule(hw, vsi_handle, hw->switch_info);
3860 }
3861 
3862 /**
3863  * ice_alloc_res_cntr - allocating resource counter
3864  * @hw: pointer to the hardware structure
3865  * @type: type of resource
3866  * @alloc_shared: if set it is shared else dedicated
3867  * @num_items: number of entries requested for FD resource type
3868  * @counter_id: counter index returned by AQ call
3869  */
3870 static int
3871 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
3872 		   u16 *counter_id)
3873 {
3874 	struct ice_aqc_alloc_free_res_elem *buf;
3875 	u16 buf_len;
3876 	int status;
3877 
3878 	/* Allocate resource */
3879 	buf_len = ice_struct_size(buf, elem, 1);
3880 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
3881 	if (!buf)
3882 		return ICE_ERR_NO_MEMORY;
3883 
3884 	buf->num_elems = CPU_TO_LE16(num_items);
3885 	buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
3886 				      ICE_AQC_RES_TYPE_M) | alloc_shared);
3887 
3888 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
3889 				       ice_aqc_opc_alloc_res, NULL);
3890 	if (status)
3891 		goto exit;
3892 
3893 	*counter_id = LE16_TO_CPU(buf->elem[0].e.sw_resp);
3894 
3895 exit:
3896 	ice_free(hw, buf);
3897 	return status;
3898 }
3899 
3900 /**
3901  * ice_free_res_cntr - free resource counter
3902  * @hw: pointer to the hardware structure
3903  * @type: type of resource
3904  * @alloc_shared: if set it is shared else dedicated
3905  * @num_items: number of entries to be freed for FD resource type
3906  * @counter_id: counter ID resource which needs to be freed
3907  */
3908 static int
3909 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
3910 		  u16 counter_id)
3911 {
3912 	struct ice_aqc_alloc_free_res_elem *buf;
3913 	u16 buf_len;
3914 	int status;
3915 
3916 	/* Free resource */
3917 	buf_len = ice_struct_size(buf, elem, 1);
3918 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
3919 	if (!buf)
3920 		return ICE_ERR_NO_MEMORY;
3921 
3922 	buf->num_elems = CPU_TO_LE16(num_items);
3923 	buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
3924 				      ICE_AQC_RES_TYPE_M) | alloc_shared);
3925 	buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
3926 
3927 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
3928 				       ice_aqc_opc_free_res, NULL);
3929 	if (status)
3930 		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
3931 
3932 	ice_free(hw, buf);
3933 	return status;
3934 }
3935 
3936 /**
3937  * ice_alloc_vlan_res_counter - obtain counter resource for VLAN type
3938  * @hw: pointer to the hardware structure
3939  * @counter_id: returns counter index
3940  */
3941 int ice_alloc_vlan_res_counter(struct ice_hw *hw, u16 *counter_id)
3942 {
3943 	return ice_alloc_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
3944 				  ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
3945 				  counter_id);
3946 }
3947 
3948 /**
3949  * ice_free_vlan_res_counter - Free counter resource for VLAN type
3950  * @hw: pointer to the hardware structure
3951  * @counter_id: counter index to be freed
3952  */
3953 int ice_free_vlan_res_counter(struct ice_hw *hw, u16 counter_id)
3954 {
3955 	return ice_free_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
3956 				 ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
3957 				 counter_id);
3958 }
3959 
3960 /**
3961  * ice_add_mac_with_sw_marker - add filter with sw marker
3962  * @hw: pointer to the hardware structure
3963  * @f_info: filter info structure containing the MAC filter information
3964  * @sw_marker: sw marker to tag the Rx descriptor with
3965  */
3966 int
3967 ice_add_mac_with_sw_marker(struct ice_hw *hw, struct ice_fltr_info *f_info,
3968 			   u16 sw_marker)
3969 {
3970 	struct ice_fltr_mgmt_list_entry *m_entry;
3971 	struct ice_fltr_list_entry fl_info;
3972 	struct ice_sw_recipe *recp_list;
3973 	struct LIST_HEAD_TYPE l_head;
3974 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
3975 	bool entry_exists;
3976 	u16 lg_act_id;
3977 	int ret;
3978 
3979 	if (f_info->fltr_act != ICE_FWD_TO_VSI)
3980 		return ICE_ERR_PARAM;
3981 
3982 	if (f_info->lkup_type != ICE_SW_LKUP_MAC)
3983 		return ICE_ERR_PARAM;
3984 
3985 	if (sw_marker == ICE_INVAL_SW_MARKER_ID)
3986 		return ICE_ERR_PARAM;
3987 
3988 	if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
3989 		return ICE_ERR_PARAM;
3990 	f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
3991 
3992 	/* Add filter if it doesn't exist so then the adding of large
3993 	 * action always results in update
3994 	 */
3995 
3996 	INIT_LIST_HEAD(&l_head);
3997 	fl_info.fltr_info = *f_info;
3998 	LIST_ADD(&fl_info.list_entry, &l_head);
3999 
4000 	entry_exists = false;
4001 	ret = ice_add_mac_rule(hw, &l_head, hw->switch_info,
4002 			       hw->port_info->lport);
4003 	if (ret == ICE_ERR_ALREADY_EXISTS)
4004 		entry_exists = true;
4005 	else if (ret)
4006 		return ret;
4007 
4008 	recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
4009 	rule_lock = &recp_list->filt_rule_lock;
4010 	ice_acquire_lock(rule_lock);
4011 	/* Get the book keeping entry for the filter */
4012 	m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info);
4013 	if (!m_entry)
4014 		goto exit_error;
4015 
4016 	/* If counter action was enabled for this rule then don't enable
4017 	 * sw marker large action
4018 	 */
4019 	if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
4020 		ret = ICE_ERR_PARAM;
4021 		goto exit_error;
4022 	}
4023 
4024 	/* if same marker was added before */
4025 	if (m_entry->sw_marker_id == sw_marker) {
4026 		ret = ICE_ERR_ALREADY_EXISTS;
4027 		goto exit_error;
4028 	}
4029 
4030 	/* Allocate a hardware table entry to hold large act. Three actions
4031 	 * for marker based large action
4032 	 */
4033 	ret = ice_alloc_res_lg_act(hw, &lg_act_id, 3);
4034 	if (ret)
4035 		goto exit_error;
4036 
4037 	if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
4038 		goto exit_error;
4039 
4040 	/* Update the switch rule to add the marker action */
4041 	ret = ice_add_marker_act(hw, m_entry, sw_marker, lg_act_id);
4042 	if (!ret) {
4043 		ice_release_lock(rule_lock);
4044 		return ret;
4045 	}
4046 
4047 exit_error:
4048 	ice_release_lock(rule_lock);
4049 	/* only remove entry if it did not exist previously */
4050 	if (!entry_exists)
4051 		ret = ice_remove_mac(hw, &l_head);
4052 
4053 	return ret;
4054 }
4055 
4056 /**
4057  * ice_add_mac_with_counter - add filter with counter enabled
4058  * @hw: pointer to the hardware structure
4059  * @f_info: pointer to filter info structure containing the MAC filter
4060  *          information
4061  */
4062 int
4063 ice_add_mac_with_counter(struct ice_hw *hw, struct ice_fltr_info *f_info)
4064 {
4065 	struct ice_fltr_mgmt_list_entry *m_entry;
4066 	struct ice_fltr_list_entry fl_info;
4067 	struct ice_sw_recipe *recp_list;
4068 	struct LIST_HEAD_TYPE l_head;
4069 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
4070 	bool entry_exist;
4071 	u16 counter_id;
4072 	u16 lg_act_id;
4073 	int ret;
4074 
4075 	if (f_info->fltr_act != ICE_FWD_TO_VSI)
4076 		return ICE_ERR_PARAM;
4077 
4078 	if (f_info->lkup_type != ICE_SW_LKUP_MAC)
4079 		return ICE_ERR_PARAM;
4080 
4081 	if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
4082 		return ICE_ERR_PARAM;
4083 	f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
4084 	recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
4085 
4086 	entry_exist = false;
4087 
4088 	rule_lock = &recp_list->filt_rule_lock;
4089 
4090 	/* Add filter if it doesn't exist so then the adding of large
4091 	 * action always results in update
4092 	 */
4093 	INIT_LIST_HEAD(&l_head);
4094 
4095 	fl_info.fltr_info = *f_info;
4096 	LIST_ADD(&fl_info.list_entry, &l_head);
4097 
4098 	ret = ice_add_mac_rule(hw, &l_head, hw->switch_info,
4099 			       hw->port_info->lport);
4100 	if (ret == ICE_ERR_ALREADY_EXISTS)
4101 		entry_exist = true;
4102 	else if (ret)
4103 		return ret;
4104 
4105 	ice_acquire_lock(rule_lock);
4106 	m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info);
4107 	if (!m_entry) {
4108 		ret = ICE_ERR_BAD_PTR;
4109 		goto exit_error;
4110 	}
4111 
4112 	/* Don't enable counter for a filter for which sw marker was enabled */
4113 	if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) {
4114 		ret = ICE_ERR_PARAM;
4115 		goto exit_error;
4116 	}
4117 
4118 	/* If a counter was already enabled then don't need to add again */
4119 	if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
4120 		ret = ICE_ERR_ALREADY_EXISTS;
4121 		goto exit_error;
4122 	}
4123 
4124 	/* Allocate a hardware table entry to VLAN counter */
4125 	ret = ice_alloc_vlan_res_counter(hw, &counter_id);
4126 	if (ret)
4127 		goto exit_error;
4128 
4129 	/* Allocate a hardware table entry to hold large act. Two actions for
4130 	 * counter based large action
4131 	 */
4132 	ret = ice_alloc_res_lg_act(hw, &lg_act_id, 2);
4133 	if (ret)
4134 		goto exit_error;
4135 
4136 	if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
4137 		goto exit_error;
4138 
4139 	/* Update the switch rule to add the counter action */
4140 	ret = ice_add_counter_act(hw, m_entry, counter_id, lg_act_id);
4141 	if (!ret) {
4142 		ice_release_lock(rule_lock);
4143 		return ret;
4144 	}
4145 
4146 exit_error:
4147 	ice_release_lock(rule_lock);
4148 	/* only remove entry if it did not exist previously */
4149 	if (!entry_exist)
4150 		ret = ice_remove_mac(hw, &l_head);
4151 
4152 	return ret;
4153 }
4154 
4155 /**
4156  * ice_replay_fltr - Replay all the filters stored by a specific list head
4157  * @hw: pointer to the hardware structure
4158  * @list_head: list for which filters needs to be replayed
4159  * @recp_id: Recipe ID for which rules need to be replayed
4160  */
4161 static int
4162 ice_replay_fltr(struct ice_hw *hw, u8 recp_id, struct LIST_HEAD_TYPE *list_head)
4163 {
4164 	struct ice_fltr_mgmt_list_entry *itr;
4165 	struct ice_sw_recipe *recp_list;
4166 	u8 lport = hw->port_info->lport;
4167 	struct LIST_HEAD_TYPE l_head;
4168 	int status = 0;
4169 
4170 	if (LIST_EMPTY(list_head))
4171 		return status;
4172 
4173 	recp_list = &hw->switch_info->recp_list[recp_id];
4174 	/* Move entries from the given list_head to a temporary l_head so that
4175 	 * they can be replayed. Otherwise when trying to re-add the same
4176 	 * filter, the function will return already exists
4177 	 */
4178 	LIST_REPLACE_INIT(list_head, &l_head);
4179 
4180 	/* Mark the given list_head empty by reinitializing it so filters
4181 	 * could be added again by *handler
4182 	 */
4183 	LIST_FOR_EACH_ENTRY(itr, &l_head, ice_fltr_mgmt_list_entry,
4184 			    list_entry) {
4185 		struct ice_fltr_list_entry f_entry;
4186 		u16 vsi_handle;
4187 
4188 		f_entry.fltr_info = itr->fltr_info;
4189 		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN) {
4190 			status = ice_add_rule_internal(hw, recp_list, lport,
4191 						       &f_entry);
4192 			if (status)
4193 				goto end;
4194 			continue;
4195 		}
4196 
4197 		/* Add a filter per VSI separately */
4198 		ice_for_each_set_bit(vsi_handle, itr->vsi_list_info->vsi_map,
4199 				     ICE_MAX_VSI) {
4200 			if (!ice_is_vsi_valid(hw, vsi_handle))
4201 				break;
4202 
4203 			ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
4204 			f_entry.fltr_info.vsi_handle = vsi_handle;
4205 			f_entry.fltr_info.fwd_id.hw_vsi_id =
4206 				ice_get_hw_vsi_num(hw, vsi_handle);
4207 			f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
4208 			if (recp_id == ICE_SW_LKUP_VLAN)
4209 				status = ice_add_vlan_internal(hw, recp_list,
4210 							       &f_entry);
4211 			else
4212 				status = ice_add_rule_internal(hw, recp_list,
4213 							       lport,
4214 							       &f_entry);
4215 			if (status)
4216 				goto end;
4217 		}
4218 	}
4219 end:
4220 	/* Clear the filter management list */
4221 	ice_rem_sw_rule_info(hw, &l_head);
4222 	return status;
4223 }
4224 
4225 /**
4226  * ice_replay_all_fltr - replay all filters stored in bookkeeping lists
4227  * @hw: pointer to the hardware structure
4228  *
4229  * NOTE: This function does not clean up partially added filters on error.
4230  * It is up to caller of the function to issue a reset or fail early.
4231  */
4232 int ice_replay_all_fltr(struct ice_hw *hw)
4233 {
4234 	struct ice_switch_info *sw = hw->switch_info;
4235 	int status = ICE_SUCCESS;
4236 	u8 i;
4237 
4238 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4239 		struct LIST_HEAD_TYPE *head = &sw->recp_list[i].filt_rules;
4240 
4241 		status = ice_replay_fltr(hw, i, head);
4242 		if (status != ICE_SUCCESS)
4243 			return status;
4244 	}
4245 	return status;
4246 }
4247 
4248 /**
4249  * ice_replay_vsi_fltr - Replay filters for requested VSI
4250  * @hw: pointer to the hardware structure
4251  * @pi: pointer to port information structure
4252  * @sw: pointer to switch info struct for which function replays filters
4253  * @vsi_handle: driver VSI handle
4254  * @recp_id: Recipe ID for which rules need to be replayed
4255  * @list_head: list for which filters need to be replayed
4256  *
4257  * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
4258  * It is required to pass valid VSI handle.
4259  */
4260 static int
4261 ice_replay_vsi_fltr(struct ice_hw *hw, struct ice_port_info *pi,
4262 		    struct ice_switch_info *sw, u16 vsi_handle, u8 recp_id,
4263 		    struct LIST_HEAD_TYPE *list_head)
4264 {
4265 	struct ice_fltr_mgmt_list_entry *itr;
4266 	struct ice_sw_recipe *recp_list;
4267 	int status = 0;
4268 	u16 hw_vsi_id;
4269 
4270 	if (LIST_EMPTY(list_head))
4271 		return status;
4272 	recp_list = &sw->recp_list[recp_id];
4273 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4274 
4275 	LIST_FOR_EACH_ENTRY(itr, list_head, ice_fltr_mgmt_list_entry,
4276 			    list_entry) {
4277 		struct ice_fltr_list_entry f_entry;
4278 
4279 		f_entry.fltr_info = itr->fltr_info;
4280 		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
4281 		    itr->fltr_info.vsi_handle == vsi_handle) {
4282 			/* update the src in case it is VSI num */
4283 			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
4284 				f_entry.fltr_info.src = hw_vsi_id;
4285 			status = ice_add_rule_internal(hw, recp_list,
4286 						       pi->lport,
4287 						       &f_entry);
4288 			if (status)
4289 				goto end;
4290 			continue;
4291 		}
4292 		if (!itr->vsi_list_info ||
4293 		    !ice_is_bit_set(itr->vsi_list_info->vsi_map, vsi_handle))
4294 			continue;
4295 		f_entry.fltr_info.vsi_handle = vsi_handle;
4296 		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
4297 		/* update the src in case it is VSI num */
4298 		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
4299 			f_entry.fltr_info.src = hw_vsi_id;
4300 		if (recp_id == ICE_SW_LKUP_VLAN)
4301 			status = ice_add_vlan_internal(hw, recp_list, &f_entry);
4302 		else
4303 			status = ice_add_rule_internal(hw, recp_list,
4304 						       pi->lport,
4305 						       &f_entry);
4306 		if (status)
4307 			goto end;
4308 	}
4309 end:
4310 	return status;
4311 }
4312 
4313 /**
4314  * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
4315  * @hw: pointer to the hardware structure
4316  * @pi: pointer to port information structure
4317  * @vsi_handle: driver VSI handle
4318  *
4319  * Replays filters for requested VSI via vsi_handle.
4320  */
4321 int
4322 ice_replay_vsi_all_fltr(struct ice_hw *hw, struct ice_port_info *pi,
4323 			u16 vsi_handle)
4324 {
4325 	struct ice_switch_info *sw = NULL;
4326 	int status = 0;
4327 	u8 i;
4328 
4329 	sw = hw->switch_info;
4330 
4331 	/* Update the recipes that were created */
4332 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4333 		struct LIST_HEAD_TYPE *head;
4334 
4335 		head = &sw->recp_list[i].filt_replay_rules;
4336 		if (!sw->recp_list[i].adv_rule)
4337 			status = ice_replay_vsi_fltr(hw, pi, sw, vsi_handle, i,
4338 						     head);
4339 		if (status)
4340 			return status;
4341 	}
4342 
4343 	return 0;
4344 }
4345 
4346 /**
4347  * ice_rm_sw_replay_rule_info - helper function to delete filter replay rules
4348  * @hw: pointer to the HW struct
4349  * @sw: pointer to switch info struct for which function removes filters
4350  *
4351  * Deletes the filter replay rules for given switch
4352  */
4353 void ice_rm_sw_replay_rule_info(struct ice_hw *hw, struct ice_switch_info *sw)
4354 {
4355 	u8 i;
4356 
4357 	if (!sw)
4358 		return;
4359 
4360 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4361 		if (!LIST_EMPTY(&sw->recp_list[i].filt_replay_rules)) {
4362 			struct LIST_HEAD_TYPE *l_head;
4363 
4364 			l_head = &sw->recp_list[i].filt_replay_rules;
4365 			if (!sw->recp_list[i].adv_rule)
4366 				ice_rem_sw_rule_info(hw, l_head);
4367 		}
4368 	}
4369 }
4370 
4371 /**
4372  * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
4373  * @hw: pointer to the HW struct
4374  *
4375  * Deletes the filter replay rules.
4376  */
4377 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
4378 {
4379 	ice_rm_sw_replay_rule_info(hw, hw->switch_info);
4380 }
4381 
4382