xref: /freebsd/sys/dev/ice/ice_sched.c (revision f08bf5a3acf146b17794fbde41279645ddbaa086)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2024, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "ice_sched.h"
33 
34 /**
35  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
36  * @pi: port information structure
37  * @info: Scheduler element information from firmware
38  *
39  * This function inserts the root node of the scheduling tree topology
40  * to the SW DB.
41  */
42 static enum ice_status
43 ice_sched_add_root_node(struct ice_port_info *pi,
44 			struct ice_aqc_txsched_elem_data *info)
45 {
46 	struct ice_sched_node *root;
47 	struct ice_hw *hw;
48 
49 	if (!pi)
50 		return ICE_ERR_PARAM;
51 
52 	hw = pi->hw;
53 
54 	root = (struct ice_sched_node *)ice_malloc(hw, sizeof(*root));
55 	if (!root)
56 		return ICE_ERR_NO_MEMORY;
57 
58 	root->children = (struct ice_sched_node **)
59 		ice_calloc(hw, hw->max_children[0], sizeof(*root->children));
60 	if (!root->children) {
61 		ice_free(hw, root);
62 		return ICE_ERR_NO_MEMORY;
63 	}
64 
65 	ice_memcpy(&root->info, info, sizeof(*info), ICE_DMA_TO_NONDMA);
66 	pi->root = root;
67 	return ICE_SUCCESS;
68 }
69 
70 /**
71  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
72  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
73  * @teid: node TEID to search
74  *
75  * This function searches for a node matching the TEID in the scheduling tree
76  * from the SW DB. The search is recursive and is restricted by the number of
77  * layers it has searched through; stopping at the max supported layer.
78  *
79  * This function needs to be called when holding the port_info->sched_lock
80  */
81 struct ice_sched_node *
82 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
83 {
84 	u16 i;
85 
86 	/* The TEID is same as that of the start_node */
87 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
88 		return start_node;
89 
90 	/* The node has no children or is at the max layer */
91 	if (!start_node->num_children ||
92 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
93 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
94 		return NULL;
95 
96 	/* Check if TEID matches to any of the children nodes */
97 	for (i = 0; i < start_node->num_children; i++)
98 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
99 			return start_node->children[i];
100 
101 	/* Search within each child's sub-tree */
102 	for (i = 0; i < start_node->num_children; i++) {
103 		struct ice_sched_node *tmp;
104 
105 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
106 						  teid);
107 		if (tmp)
108 			return tmp;
109 	}
110 
111 	return NULL;
112 }
113 
114 /**
115  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
116  * @hw: pointer to the HW struct
117  * @cmd_opc: cmd opcode
118  * @elems_req: number of elements to request
119  * @buf: pointer to buffer
120  * @buf_size: buffer size in bytes
121  * @elems_resp: returns total number of elements response
122  * @cd: pointer to command details structure or NULL
123  *
124  * This function sends a scheduling elements cmd (cmd_opc)
125  */
126 static enum ice_status
127 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
128 			    u16 elems_req, void *buf, u16 buf_size,
129 			    u16 *elems_resp, struct ice_sq_cd *cd)
130 {
131 	struct ice_aqc_sched_elem_cmd *cmd;
132 	struct ice_aq_desc desc;
133 	enum ice_status status;
134 
135 	cmd = &desc.params.sched_elem_cmd;
136 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
137 	cmd->num_elem_req = CPU_TO_LE16(elems_req);
138 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
139 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
140 	if (!status && elems_resp)
141 		*elems_resp = LE16_TO_CPU(cmd->num_elem_resp);
142 
143 	return status;
144 }
145 
146 /**
147  * ice_aq_query_sched_elems - query scheduler elements
148  * @hw: pointer to the HW struct
149  * @elems_req: number of elements to query
150  * @buf: pointer to buffer
151  * @buf_size: buffer size in bytes
152  * @elems_ret: returns total number of elements returned
153  * @cd: pointer to command details structure or NULL
154  *
155  * Query scheduling elements (0x0404)
156  */
157 enum ice_status
158 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
159 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
160 			 u16 *elems_ret, struct ice_sq_cd *cd)
161 {
162 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
163 					   elems_req, (void *)buf, buf_size,
164 					   elems_ret, cd);
165 }
166 
167 /**
168  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
169  * @pi: port information structure
170  * @layer: Scheduler layer of the node
171  * @info: Scheduler element information from firmware
172  * @prealloc_node: preallocated ice_sched_node struct for SW DB
173  *
174  * This function inserts a scheduler node to the SW DB.
175  */
176 enum ice_status
177 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
178 		   struct ice_aqc_txsched_elem_data *info,
179 		   struct ice_sched_node *prealloc_node)
180 {
181 	struct ice_aqc_txsched_elem_data elem;
182 	struct ice_sched_node *parent;
183 	struct ice_sched_node *node;
184 	enum ice_status status;
185 	struct ice_hw *hw;
186 
187 	if (!pi)
188 		return ICE_ERR_PARAM;
189 
190 	hw = pi->hw;
191 
192 	/* A valid parent node should be there */
193 	parent = ice_sched_find_node_by_teid(pi->root,
194 					     LE32_TO_CPU(info->parent_teid));
195 	if (!parent) {
196 		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
197 			  LE32_TO_CPU(info->parent_teid));
198 		return ICE_ERR_PARAM;
199 	}
200 
201 	/* query the current node information from FW before adding it
202 	 * to the SW DB
203 	 */
204 	status = ice_sched_query_elem(hw, LE32_TO_CPU(info->node_teid), &elem);
205 	if (status)
206 		return status;
207 
208 	if (prealloc_node)
209 		node = prealloc_node;
210 	else
211 		node = (struct ice_sched_node *)ice_malloc(hw, sizeof(*node));
212 	if (!node)
213 		return ICE_ERR_NO_MEMORY;
214 	if (hw->max_children[layer]) {
215 		node->children = (struct ice_sched_node **)
216 			ice_calloc(hw, hw->max_children[layer],
217 				   sizeof(*node->children));
218 		if (!node->children) {
219 			ice_free(hw, node);
220 			return ICE_ERR_NO_MEMORY;
221 		}
222 	}
223 
224 	node->in_use = true;
225 	node->parent = parent;
226 	node->tx_sched_layer = layer;
227 	parent->children[parent->num_children++] = node;
228 	node->info = elem;
229 	return ICE_SUCCESS;
230 }
231 
232 /**
233  * ice_aq_delete_sched_elems - delete scheduler elements
234  * @hw: pointer to the HW struct
235  * @grps_req: number of groups to delete
236  * @buf: pointer to buffer
237  * @buf_size: buffer size in bytes
238  * @grps_del: returns total number of elements deleted
239  * @cd: pointer to command details structure or NULL
240  *
241  * Delete scheduling elements (0x040F)
242  */
243 static enum ice_status
244 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
245 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
246 			  u16 *grps_del, struct ice_sq_cd *cd)
247 {
248 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
249 					   grps_req, (void *)buf, buf_size,
250 					   grps_del, cd);
251 }
252 
253 /**
254  * ice_sched_remove_elems - remove nodes from HW
255  * @hw: pointer to the HW struct
256  * @parent: pointer to the parent node
257  * @num_nodes: number of nodes
258  * @node_teids: array of node teids to be deleted
259  *
260  * This function remove nodes from HW
261  */
262 static enum ice_status
263 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
264 		       u16 num_nodes, u32 *node_teids)
265 {
266 	struct ice_aqc_delete_elem *buf;
267 	u16 i, num_groups_removed = 0;
268 	enum ice_status status;
269 	u16 buf_size;
270 
271 	buf_size = ice_struct_size(buf, teid, num_nodes);
272 	buf = (struct ice_aqc_delete_elem *)ice_malloc(hw, buf_size);
273 	if (!buf)
274 		return ICE_ERR_NO_MEMORY;
275 
276 	buf->hdr.parent_teid = parent->info.node_teid;
277 	buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
278 	for (i = 0; i < num_nodes; i++)
279 		buf->teid[i] = CPU_TO_LE32(node_teids[i]);
280 
281 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
282 					   &num_groups_removed, NULL);
283 	if (status != ICE_SUCCESS || num_groups_removed != 1)
284 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
285 			  hw->adminq.sq_last_status);
286 
287 	ice_free(hw, buf);
288 	return status;
289 }
290 
291 /**
292  * ice_sched_get_first_node - get the first node of the given layer
293  * @pi: port information structure
294  * @parent: pointer the base node of the subtree
295  * @layer: layer number
296  *
297  * This function retrieves the first node of the given layer from the subtree
298  */
299 static struct ice_sched_node *
300 ice_sched_get_first_node(struct ice_port_info *pi,
301 			 struct ice_sched_node *parent, u8 layer)
302 {
303 	return pi->sib_head[parent->tc_num][layer];
304 }
305 
306 /**
307  * ice_sched_get_tc_node - get pointer to TC node
308  * @pi: port information structure
309  * @tc: TC number
310  *
311  * This function returns the TC node pointer
312  */
313 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
314 {
315 	u8 i;
316 
317 	if (!pi || !pi->root)
318 		return NULL;
319 	for (i = 0; i < pi->root->num_children; i++)
320 		if (pi->root->children[i]->tc_num == tc)
321 			return pi->root->children[i];
322 	return NULL;
323 }
324 
325 /**
326  * ice_free_sched_node - Free a Tx scheduler node from SW DB
327  * @pi: port information structure
328  * @node: pointer to the ice_sched_node struct
329  *
330  * This function frees up a node from SW DB as well as from HW
331  *
332  * This function needs to be called with the port_info->sched_lock held
333  */
334 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
335 {
336 	struct ice_sched_node *parent;
337 	struct ice_hw *hw = pi->hw;
338 	u8 i, j;
339 
340 	/* Free the children before freeing up the parent node
341 	 * The parent array is updated below and that shifts the nodes
342 	 * in the array. So always pick the first child if num children > 0
343 	 */
344 	while (node->num_children)
345 		ice_free_sched_node(pi, node->children[0]);
346 
347 	/* Leaf, TC and root nodes can't be deleted by SW */
348 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
349 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
350 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
351 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
352 		u32 teid = LE32_TO_CPU(node->info.node_teid);
353 
354 		ice_sched_remove_elems(hw, node->parent, 1, &teid);
355 	}
356 	parent = node->parent;
357 	/* root has no parent */
358 	if (parent) {
359 		struct ice_sched_node *p;
360 
361 		/* update the parent */
362 		for (i = 0; i < parent->num_children; i++)
363 			if (parent->children[i] == node) {
364 				for (j = i + 1; j < parent->num_children; j++)
365 					parent->children[j - 1] =
366 						parent->children[j];
367 				parent->num_children--;
368 				break;
369 			}
370 
371 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
372 		while (p) {
373 			if (p->sibling == node) {
374 				p->sibling = node->sibling;
375 				break;
376 			}
377 			p = p->sibling;
378 		}
379 
380 		/* update the sibling head if head is getting removed */
381 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
382 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
383 				node->sibling;
384 	}
385 
386 	/* leaf nodes have no children */
387 	if (node->children)
388 		ice_free(hw, node->children);
389 	ice_free(hw, node);
390 }
391 
392 /**
393  * ice_aq_get_dflt_topo - gets default scheduler topology
394  * @hw: pointer to the HW struct
395  * @lport: logical port number
396  * @buf: pointer to buffer
397  * @buf_size: buffer size in bytes
398  * @num_branches: returns total number of queue to port branches
399  * @cd: pointer to command details structure or NULL
400  *
401  * Get default scheduler topology (0x400)
402  */
403 static enum ice_status
404 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
405 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
406 		     u8 *num_branches, struct ice_sq_cd *cd)
407 {
408 	struct ice_aqc_get_topo *cmd;
409 	struct ice_aq_desc desc;
410 	enum ice_status status;
411 
412 	cmd = &desc.params.get_topo;
413 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
414 	cmd->port_num = lport;
415 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
416 	if (!status && num_branches)
417 		*num_branches = cmd->num_branches;
418 
419 	return status;
420 }
421 
422 /**
423  * ice_aq_add_sched_elems - adds scheduling element
424  * @hw: pointer to the HW struct
425  * @grps_req: the number of groups that are requested to be added
426  * @buf: pointer to buffer
427  * @buf_size: buffer size in bytes
428  * @grps_added: returns total number of groups added
429  * @cd: pointer to command details structure or NULL
430  *
431  * Add scheduling elements (0x0401)
432  */
433 static enum ice_status
434 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
435 		       struct ice_aqc_add_elem *buf, u16 buf_size,
436 		       u16 *grps_added, struct ice_sq_cd *cd)
437 {
438 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
439 					   grps_req, (void *)buf, buf_size,
440 					   grps_added, cd);
441 }
442 
443 /**
444  * ice_aq_cfg_sched_elems - configures scheduler elements
445  * @hw: pointer to the HW struct
446  * @elems_req: number of elements to configure
447  * @buf: pointer to buffer
448  * @buf_size: buffer size in bytes
449  * @elems_cfgd: returns total number of elements configured
450  * @cd: pointer to command details structure or NULL
451  *
452  * Configure scheduling elements (0x0403)
453  */
454 static enum ice_status
455 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
456 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
457 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
458 {
459 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
460 					   elems_req, (void *)buf, buf_size,
461 					   elems_cfgd, cd);
462 }
463 
464 /**
465  * ice_aq_move_sched_elems - move scheduler elements
466  * @hw: pointer to the HW struct
467  * @grps_req: number of groups to move
468  * @buf: pointer to buffer
469  * @buf_size: buffer size in bytes
470  * @grps_movd: returns total number of groups moved
471  * @cd: pointer to command details structure or NULL
472  *
473  * Move scheduling elements (0x0408)
474  */
475 enum ice_status
476 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
477 			struct ice_aqc_move_elem *buf, u16 buf_size,
478 			u16 *grps_movd, struct ice_sq_cd *cd)
479 {
480 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
481 					   grps_req, (void *)buf, buf_size,
482 					   grps_movd, cd);
483 }
484 
485 /**
486  * ice_aq_suspend_sched_elems - suspend scheduler elements
487  * @hw: pointer to the HW struct
488  * @elems_req: number of elements to suspend
489  * @buf: pointer to buffer
490  * @buf_size: buffer size in bytes
491  * @elems_ret: returns total number of elements suspended
492  * @cd: pointer to command details structure or NULL
493  *
494  * Suspend scheduling elements (0x0409)
495  */
496 static enum ice_status
497 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
498 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
499 {
500 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
501 					   elems_req, (void *)buf, buf_size,
502 					   elems_ret, cd);
503 }
504 
505 /**
506  * ice_aq_resume_sched_elems - resume scheduler elements
507  * @hw: pointer to the HW struct
508  * @elems_req: number of elements to resume
509  * @buf: pointer to buffer
510  * @buf_size: buffer size in bytes
511  * @elems_ret: returns total number of elements resumed
512  * @cd: pointer to command details structure or NULL
513  *
514  * resume scheduling elements (0x040A)
515  */
516 static enum ice_status
517 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
518 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
519 {
520 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
521 					   elems_req, (void *)buf, buf_size,
522 					   elems_ret, cd);
523 }
524 
525 /**
526  * ice_aq_query_sched_res - query scheduler resource
527  * @hw: pointer to the HW struct
528  * @buf_size: buffer size in bytes
529  * @buf: pointer to buffer
530  * @cd: pointer to command details structure or NULL
531  *
532  * Query scheduler resource allocation (0x0412)
533  */
534 static enum ice_status
535 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
536 		       struct ice_aqc_query_txsched_res_resp *buf,
537 		       struct ice_sq_cd *cd)
538 {
539 	struct ice_aq_desc desc;
540 
541 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
542 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
543 }
544 
545 /**
546  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
547  * @hw: pointer to the HW struct
548  * @num_nodes: number of nodes
549  * @node_teids: array of node teids to be suspended or resumed
550  * @suspend: true means suspend / false means resume
551  *
552  * This function suspends or resumes HW nodes
553  */
554 static enum ice_status
555 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
556 			       bool suspend)
557 {
558 	u16 i, buf_size, num_elem_ret = 0;
559 	enum ice_status status;
560 	__le32 *buf;
561 
562 	buf_size = sizeof(*buf) * num_nodes;
563 	buf = (__le32 *)ice_malloc(hw, buf_size);
564 	if (!buf)
565 		return ICE_ERR_NO_MEMORY;
566 
567 	for (i = 0; i < num_nodes; i++)
568 		buf[i] = CPU_TO_LE32(node_teids[i]);
569 
570 	if (suspend)
571 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
572 						    buf_size, &num_elem_ret,
573 						    NULL);
574 	else
575 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
576 						   buf_size, &num_elem_ret,
577 						   NULL);
578 	if (status != ICE_SUCCESS || num_elem_ret != num_nodes)
579 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
580 
581 	ice_free(hw, buf);
582 	return status;
583 }
584 
585 /**
586  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
587  * @hw: pointer to the HW struct
588  * @vsi_handle: VSI handle
589  * @tc: TC number
590  * @new_numqs: number of queues
591  */
592 static enum ice_status
593 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
594 {
595 	struct ice_vsi_ctx *vsi_ctx;
596 	struct ice_q_ctx *q_ctx;
597 
598 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
599 	if (!vsi_ctx)
600 		return ICE_ERR_PARAM;
601 	/* allocate LAN queue contexts */
602 	if (!vsi_ctx->lan_q_ctx[tc]) {
603 		vsi_ctx->lan_q_ctx[tc] = (struct ice_q_ctx *)
604 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
605 		if (!vsi_ctx->lan_q_ctx[tc])
606 			return ICE_ERR_NO_MEMORY;
607 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
608 		return ICE_SUCCESS;
609 	}
610 	/* num queues are increased, update the queue contexts */
611 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
612 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
613 
614 		q_ctx = (struct ice_q_ctx *)
615 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
616 		if (!q_ctx)
617 			return ICE_ERR_NO_MEMORY;
618 		ice_memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
619 			   prev_num * sizeof(*q_ctx), ICE_DMA_TO_NONDMA);
620 		ice_free(hw, vsi_ctx->lan_q_ctx[tc]);
621 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
622 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
623 	}
624 	return ICE_SUCCESS;
625 }
626 
627 /**
628  * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
629  * @hw: pointer to the HW struct
630  * @vsi_handle: VSI handle
631  * @tc: TC number
632  * @new_numqs: number of queues
633  */
634 static enum ice_status
635 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
636 {
637 	struct ice_vsi_ctx *vsi_ctx;
638 	struct ice_q_ctx *q_ctx;
639 
640 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
641 	if (!vsi_ctx)
642 		return ICE_ERR_PARAM;
643 	/* allocate RDMA queue contexts */
644 	if (!vsi_ctx->rdma_q_ctx[tc]) {
645 		vsi_ctx->rdma_q_ctx[tc] = (struct ice_q_ctx *)
646 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
647 		if (!vsi_ctx->rdma_q_ctx[tc])
648 			return ICE_ERR_NO_MEMORY;
649 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
650 		return ICE_SUCCESS;
651 	}
652 	/* num queues are increased, update the queue contexts */
653 	if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
654 		u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
655 
656 		q_ctx = (struct ice_q_ctx *)
657 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
658 		if (!q_ctx)
659 			return ICE_ERR_NO_MEMORY;
660 		ice_memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
661 			   prev_num * sizeof(*q_ctx), ICE_DMA_TO_NONDMA);
662 		ice_free(hw, vsi_ctx->rdma_q_ctx[tc]);
663 		vsi_ctx->rdma_q_ctx[tc] = q_ctx;
664 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
665 	}
666 	return ICE_SUCCESS;
667 }
668 
669 /**
670  * ice_aq_rl_profile - performs a rate limiting task
671  * @hw: pointer to the HW struct
672  * @opcode: opcode for add, query, or remove profile(s)
673  * @num_profiles: the number of profiles
674  * @buf: pointer to buffer
675  * @buf_size: buffer size in bytes
676  * @num_processed: number of processed add or remove profile(s) to return
677  * @cd: pointer to command details structure
678  *
679  * RL profile function to add, query, or remove profile(s)
680  */
681 static enum ice_status
682 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
683 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
684 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
685 {
686 	struct ice_aqc_rl_profile *cmd;
687 	struct ice_aq_desc desc;
688 	enum ice_status status;
689 
690 	cmd = &desc.params.rl_profile;
691 
692 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
693 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
694 	cmd->num_profiles = CPU_TO_LE16(num_profiles);
695 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
696 	if (!status && num_processed)
697 		*num_processed = LE16_TO_CPU(cmd->num_processed);
698 	return status;
699 }
700 
701 /**
702  * ice_aq_add_rl_profile - adds rate limiting profile(s)
703  * @hw: pointer to the HW struct
704  * @num_profiles: the number of profile(s) to be add
705  * @buf: pointer to buffer
706  * @buf_size: buffer size in bytes
707  * @num_profiles_added: total number of profiles added to return
708  * @cd: pointer to command details structure
709  *
710  * Add RL profile (0x0410)
711  */
712 static enum ice_status
713 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
714 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
715 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
716 {
717 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
718 				 buf, buf_size, num_profiles_added, cd);
719 }
720 
721 /**
722  * ice_aq_query_rl_profile - query rate limiting profile(s)
723  * @hw: pointer to the HW struct
724  * @num_profiles: the number of profile(s) to query
725  * @buf: pointer to buffer
726  * @buf_size: buffer size in bytes
727  * @cd: pointer to command details structure
728  *
729  * Query RL profile (0x0411)
730  */
731 enum ice_status
732 ice_aq_query_rl_profile(struct ice_hw *hw, u16 num_profiles,
733 			struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
734 			struct ice_sq_cd *cd)
735 {
736 	return ice_aq_rl_profile(hw, ice_aqc_opc_query_rl_profiles,
737 				 num_profiles, buf, buf_size, NULL, cd);
738 }
739 
740 /**
741  * ice_aq_remove_rl_profile - removes RL profile(s)
742  * @hw: pointer to the HW struct
743  * @num_profiles: the number of profile(s) to remove
744  * @buf: pointer to buffer
745  * @buf_size: buffer size in bytes
746  * @num_profiles_removed: total number of profiles removed to return
747  * @cd: pointer to command details structure or NULL
748  *
749  * Remove RL profile (0x0415)
750  */
751 static enum ice_status
752 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
753 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
754 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
755 {
756 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
757 				 num_profiles, buf, buf_size,
758 				 num_profiles_removed, cd);
759 }
760 
761 /**
762  * ice_sched_del_rl_profile - remove RL profile
763  * @hw: pointer to the HW struct
764  * @rl_info: rate limit profile information
765  *
766  * If the profile ID is not referenced anymore, it removes profile ID with
767  * its associated parameters from HW DB,and locally. The caller needs to
768  * hold scheduler lock.
769  */
770 static enum ice_status
771 ice_sched_del_rl_profile(struct ice_hw *hw,
772 			 struct ice_aqc_rl_profile_info *rl_info)
773 {
774 	struct ice_aqc_rl_profile_elem *buf;
775 	u16 num_profiles_removed;
776 	enum ice_status status;
777 	u16 num_profiles = 1;
778 
779 	if (rl_info->prof_id_ref != 0)
780 		return ICE_ERR_IN_USE;
781 
782 	/* Safe to remove profile ID */
783 	buf = &rl_info->profile;
784 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
785 					  &num_profiles_removed, NULL);
786 	if (status || num_profiles_removed != num_profiles)
787 		return ICE_ERR_CFG;
788 
789 	/* Delete stale entry now */
790 	LIST_DEL(&rl_info->list_entry);
791 	ice_free(hw, rl_info);
792 	return status;
793 }
794 
795 /**
796  * ice_sched_clear_rl_prof - clears RL prof entries
797  * @pi: port information structure
798  *
799  * This function removes all RL profile from HW as well as from SW DB.
800  */
801 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
802 {
803 	u16 ln;
804 	struct ice_hw *hw = pi->hw;
805 
806 	for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
807 		struct ice_aqc_rl_profile_info *rl_prof_elem;
808 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
809 
810 		LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
811 					 &hw->rl_prof_list[ln],
812 					 ice_aqc_rl_profile_info, list_entry) {
813 			enum ice_status status;
814 
815 			rl_prof_elem->prof_id_ref = 0;
816 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
817 			if (status) {
818 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
819 				/* On error, free mem required */
820 				LIST_DEL(&rl_prof_elem->list_entry);
821 				ice_free(hw, rl_prof_elem);
822 			}
823 		}
824 	}
825 }
826 
827 /**
828  * ice_sched_clear_agg - clears the aggregator related information
829  * @hw: pointer to the hardware structure
830  *
831  * This function removes aggregator list and free up aggregator related memory
832  * previously allocated.
833  */
834 void ice_sched_clear_agg(struct ice_hw *hw)
835 {
836 	struct ice_sched_agg_info *agg_info;
837 	struct ice_sched_agg_info *atmp;
838 
839 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &hw->agg_list,
840 				 ice_sched_agg_info,
841 				 list_entry) {
842 		struct ice_sched_agg_vsi_info *agg_vsi_info;
843 		struct ice_sched_agg_vsi_info *vtmp;
844 
845 		LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
846 					 &agg_info->agg_vsi_list,
847 					 ice_sched_agg_vsi_info, list_entry) {
848 			LIST_DEL(&agg_vsi_info->list_entry);
849 			ice_free(hw, agg_vsi_info);
850 		}
851 		LIST_DEL(&agg_info->list_entry);
852 		ice_free(hw, agg_info);
853 	}
854 }
855 
856 /**
857  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
858  * @pi: port information structure
859  *
860  * This function removes all the nodes from HW as well as from SW DB.
861  */
862 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
863 {
864 	if (!pi)
865 		return;
866 	/* remove RL profiles related lists */
867 	ice_sched_clear_rl_prof(pi);
868 	if (pi->root) {
869 		ice_free_sched_node(pi, pi->root);
870 		pi->root = NULL;
871 	}
872 }
873 
874 /**
875  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
876  * @pi: port information structure
877  *
878  * Cleanup scheduling elements from SW DB
879  */
880 void ice_sched_clear_port(struct ice_port_info *pi)
881 {
882 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
883 		return;
884 
885 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
886 	ice_acquire_lock(&pi->sched_lock);
887 	ice_sched_clear_tx_topo(pi);
888 	ice_release_lock(&pi->sched_lock);
889 	ice_destroy_lock(&pi->sched_lock);
890 }
891 
892 /**
893  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
894  * @hw: pointer to the HW struct
895  *
896  * Cleanup scheduling elements from SW DB for all the ports
897  */
898 void ice_sched_cleanup_all(struct ice_hw *hw)
899 {
900 	if (!hw)
901 		return;
902 
903 	if (hw->layer_info) {
904 		ice_free(hw, hw->layer_info);
905 		hw->layer_info = NULL;
906 	}
907 
908 	ice_sched_clear_port(hw->port_info);
909 
910 	hw->num_tx_sched_layers = 0;
911 	hw->num_tx_sched_phys_layers = 0;
912 	hw->flattened_layers = 0;
913 	hw->max_cgds = 0;
914 }
915 
916 /**
917  * ice_aq_cfg_node_attr - configure nodes' per-cone flattening attributes
918  * @hw: pointer to the HW struct
919  * @num_nodes: the number of nodes whose attributes to configure
920  * @buf: pointer to buffer
921  * @buf_size: buffer size in bytes
922  * @cd: pointer to command details structure or NULL
923  *
924  * Configure Node Attributes (0x0417)
925  */
926 enum ice_status
927 ice_aq_cfg_node_attr(struct ice_hw *hw, u16 num_nodes,
928 		     struct ice_aqc_node_attr_elem *buf, u16 buf_size,
929 		     struct ice_sq_cd *cd)
930 {
931 	struct ice_aqc_node_attr *cmd;
932 	struct ice_aq_desc desc;
933 
934 	cmd = &desc.params.node_attr;
935 	ice_fill_dflt_direct_cmd_desc(&desc,
936 				      ice_aqc_opc_cfg_node_attr);
937 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
938 
939 	cmd->num_entries = CPU_TO_LE16(num_nodes);
940 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
941 }
942 
943 /**
944  * ice_aq_cfg_l2_node_cgd - configures L2 node to CGD mapping
945  * @hw: pointer to the HW struct
946  * @num_l2_nodes: the number of L2 nodes whose CGDs to configure
947  * @buf: pointer to buffer
948  * @buf_size: buffer size in bytes
949  * @cd: pointer to command details structure or NULL
950  *
951  * Configure L2 Node CGD (0x0414)
952  */
953 enum ice_status
954 ice_aq_cfg_l2_node_cgd(struct ice_hw *hw, u16 num_l2_nodes,
955 		       struct ice_aqc_cfg_l2_node_cgd_elem *buf,
956 		       u16 buf_size, struct ice_sq_cd *cd)
957 {
958 	struct ice_aqc_cfg_l2_node_cgd *cmd;
959 	struct ice_aq_desc desc;
960 
961 	cmd = &desc.params.cfg_l2_node_cgd;
962 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_l2_node_cgd);
963 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
964 
965 	cmd->num_l2_nodes = CPU_TO_LE16(num_l2_nodes);
966 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
967 }
968 
969 /**
970  * ice_sched_add_elems - add nodes to HW and SW DB
971  * @pi: port information structure
972  * @tc_node: pointer to the branch node
973  * @parent: pointer to the parent node
974  * @layer: layer number to add nodes
975  * @num_nodes: number of nodes
976  * @num_nodes_added: pointer to num nodes added
977  * @first_node_teid: if new nodes are added then return the TEID of first node
978  * @prealloc_nodes: preallocated nodes struct for software DB
979  *
980  * This function add nodes to HW as well as to SW DB for a given layer
981  */
982 enum ice_status
983 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
984 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
985 		    u16 *num_nodes_added, u32 *first_node_teid,
986 		    struct ice_sched_node **prealloc_nodes)
987 {
988 	struct ice_sched_node *prev, *new_node;
989 	struct ice_aqc_add_elem *buf;
990 	u16 i, num_groups_added = 0;
991 	enum ice_status status = ICE_SUCCESS;
992 	struct ice_hw *hw = pi->hw;
993 	u16 buf_size;
994 	u32 teid;
995 
996 	buf_size = ice_struct_size(buf, generic, num_nodes);
997 	buf = (struct ice_aqc_add_elem *)ice_malloc(hw, buf_size);
998 	if (!buf)
999 		return ICE_ERR_NO_MEMORY;
1000 
1001 	buf->hdr.parent_teid = parent->info.node_teid;
1002 	buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
1003 	for (i = 0; i < num_nodes; i++) {
1004 		buf->generic[i].parent_teid = parent->info.node_teid;
1005 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
1006 		buf->generic[i].data.valid_sections =
1007 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
1008 			ICE_AQC_ELEM_VALID_EIR;
1009 		buf->generic[i].data.generic = 0;
1010 		buf->generic[i].data.cir_bw.bw_profile_idx =
1011 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
1012 		buf->generic[i].data.cir_bw.bw_alloc =
1013 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
1014 		buf->generic[i].data.eir_bw.bw_profile_idx =
1015 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
1016 		buf->generic[i].data.eir_bw.bw_alloc =
1017 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
1018 	}
1019 
1020 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
1021 					&num_groups_added, NULL);
1022 	if (status != ICE_SUCCESS || num_groups_added != 1) {
1023 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
1024 			  hw->adminq.sq_last_status);
1025 		ice_free(hw, buf);
1026 		return ICE_ERR_CFG;
1027 	}
1028 
1029 	*num_nodes_added = num_nodes;
1030 	/* add nodes to the SW DB */
1031 	for (i = 0; i < num_nodes; i++) {
1032 		if (prealloc_nodes)
1033 			status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]);
1034 		else
1035 			status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL);
1036 
1037 		if (status != ICE_SUCCESS) {
1038 			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
1039 				  status);
1040 			break;
1041 		}
1042 
1043 		teid = LE32_TO_CPU(buf->generic[i].node_teid);
1044 		new_node = ice_sched_find_node_by_teid(parent, teid);
1045 		if (!new_node) {
1046 			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
1047 			break;
1048 		}
1049 
1050 		new_node->sibling = NULL;
1051 		new_node->tc_num = tc_node->tc_num;
1052 
1053 		/* add it to previous node sibling pointer */
1054 		/* Note: siblings are not linked across branches */
1055 		prev = ice_sched_get_first_node(pi, tc_node, layer);
1056 		if (prev && prev != new_node) {
1057 			while (prev->sibling)
1058 				prev = prev->sibling;
1059 			prev->sibling = new_node;
1060 		}
1061 
1062 		/* initialize the sibling head */
1063 		if (!pi->sib_head[tc_node->tc_num][layer])
1064 			pi->sib_head[tc_node->tc_num][layer] = new_node;
1065 
1066 		if (i == 0)
1067 			*first_node_teid = teid;
1068 	}
1069 
1070 	ice_free(hw, buf);
1071 	return status;
1072 }
1073 
1074 /**
1075  * ice_sched_add_nodes_to_hw_layer - Add nodes to hw layer
1076  * @pi: port information structure
1077  * @tc_node: pointer to TC node
1078  * @parent: pointer to parent node
1079  * @layer: layer number to add nodes
1080  * @num_nodes: number of nodes to be added
1081  * @first_node_teid: pointer to the first node TEID
1082  * @num_nodes_added: pointer to number of nodes added
1083  *
1084  * Add nodes into specific hw layer.
1085  */
1086 static enum ice_status
1087 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1088 				struct ice_sched_node *tc_node,
1089 				struct ice_sched_node *parent, u8 layer,
1090 				u16 num_nodes, u32 *first_node_teid,
1091 				u16 *num_nodes_added)
1092 {
1093 	u16 max_child_nodes;
1094 
1095 	*num_nodes_added = 0;
1096 
1097 	if (!num_nodes)
1098 		return ICE_SUCCESS;
1099 
1100 	if (!parent || layer < pi->hw->sw_entry_point_layer)
1101 		return ICE_ERR_PARAM;
1102 
1103 	/* max children per node per layer */
1104 	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1105 
1106 	/* current number of children + required nodes exceed max children */
1107 	if ((parent->num_children + num_nodes) > max_child_nodes) {
1108 		/* Fail if the parent is a TC node */
1109 		if (parent == tc_node)
1110 			return ICE_ERR_CFG;
1111 		return ICE_ERR_MAX_LIMIT;
1112 	}
1113 
1114 	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1115 				   num_nodes_added, first_node_teid, NULL);
1116 }
1117 
1118 /**
1119  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1120  * @pi: port information structure
1121  * @tc_node: pointer to TC node
1122  * @parent: pointer to parent node
1123  * @layer: layer number to add nodes
1124  * @num_nodes: number of nodes to be added
1125  * @first_node_teid: pointer to the first node TEID
1126  * @num_nodes_added: pointer to number of nodes added
1127  *
1128  * This function add nodes to a given layer.
1129  */
1130 static enum ice_status
1131 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1132 			     struct ice_sched_node *tc_node,
1133 			     struct ice_sched_node *parent, u8 layer,
1134 			     u16 num_nodes, u32 *first_node_teid,
1135 			     u16 *num_nodes_added)
1136 {
1137 	u32 *first_teid_ptr = first_node_teid;
1138 	u16 new_num_nodes = num_nodes;
1139 	enum ice_status status = ICE_SUCCESS;
1140 	u32 temp;
1141 
1142 	*num_nodes_added = 0;
1143 	while (*num_nodes_added < num_nodes) {
1144 		u16 max_child_nodes, num_added = 0;
1145 
1146 		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1147 							 layer,	new_num_nodes,
1148 							 first_teid_ptr,
1149 							 &num_added);
1150 		if (status == ICE_SUCCESS)
1151 			*num_nodes_added += num_added;
1152 		/* added more nodes than requested ? */
1153 		if (*num_nodes_added > num_nodes) {
1154 			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1155 				  *num_nodes_added);
1156 			status = ICE_ERR_CFG;
1157 			break;
1158 		}
1159 		/* break if all the nodes are added successfully */
1160 		if (status == ICE_SUCCESS && (*num_nodes_added == num_nodes))
1161 			break;
1162 		/* break if the error is not max limit */
1163 		if (status != ICE_SUCCESS && status != ICE_ERR_MAX_LIMIT)
1164 			break;
1165 		/* Exceeded the max children */
1166 		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1167 		/* utilize all the spaces if the parent is not full */
1168 		if (parent->num_children < max_child_nodes) {
1169 			new_num_nodes = max_child_nodes - parent->num_children;
1170 		} else {
1171 			/* This parent is full, try the next sibling */
1172 			parent = parent->sibling;
1173 			/* Don't modify the first node TEID memory if the
1174 			 * first node was added already in the above call.
1175 			 * Instead send some temp memory for all other
1176 			 * recursive calls.
1177 			 */
1178 			if (num_added)
1179 				first_teid_ptr = &temp;
1180 
1181 			new_num_nodes = num_nodes - *num_nodes_added;
1182 		}
1183 	}
1184 	return status;
1185 }
1186 
1187 /**
1188  * ice_sched_get_qgrp_layer - get the current queue group layer number
1189  * @hw: pointer to the HW struct
1190  *
1191  * This function returns the current queue group layer number
1192  */
1193 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1194 {
1195 	/* It's always total layers - 1, the array is 0 relative so -2 */
1196 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1197 }
1198 
1199 /**
1200  * ice_sched_get_vsi_layer - get the current VSI layer number
1201  * @hw: pointer to the HW struct
1202  *
1203  * This function returns the current VSI layer number
1204  */
1205 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1206 {
1207 	/* Num Layers       VSI layer
1208 	 *     9               6
1209 	 *     7               4
1210 	 *     5 or less       sw_entry_point_layer
1211 	 */
1212 	/* calculate the VSI layer based on number of layers. */
1213 	if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS)
1214 		return hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1215 	else if (hw->num_tx_sched_layers == ICE_SCHED_5_LAYERS)
1216 		/* qgroup and VSI layers are same */
1217 		return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1218 	return hw->sw_entry_point_layer;
1219 }
1220 
1221 /**
1222  * ice_sched_get_agg_layer - get the current aggregator layer number
1223  * @hw: pointer to the HW struct
1224  *
1225  * This function returns the current aggregator layer number
1226  */
1227 static u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1228 {
1229 	/* Num Layers       aggregator layer
1230 	 *     9               4
1231 	 *     7 or less       sw_entry_point_layer
1232 	 */
1233 	/* calculate the aggregator layer based on number of layers. */
1234 	if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS)
1235 		return hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1236 	return hw->sw_entry_point_layer;
1237 }
1238 
1239 /**
1240  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1241  * @pi: port information structure
1242  *
1243  * This function removes the leaf node that was created by the FW
1244  * during initialization
1245  */
1246 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1247 {
1248 	struct ice_sched_node *node;
1249 
1250 	node = pi->root;
1251 	while (node) {
1252 		if (!node->num_children)
1253 			break;
1254 		node = node->children[0];
1255 	}
1256 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1257 		u32 teid = LE32_TO_CPU(node->info.node_teid);
1258 		enum ice_status status;
1259 
1260 		/* remove the default leaf node */
1261 		status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1262 		if (!status)
1263 			ice_free_sched_node(pi, node);
1264 	}
1265 }
1266 
1267 /**
1268  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1269  * @pi: port information structure
1270  *
1271  * This function frees all the nodes except root and TC that were created by
1272  * the FW during initialization
1273  */
1274 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1275 {
1276 	struct ice_sched_node *node;
1277 
1278 	ice_rm_dflt_leaf_node(pi);
1279 
1280 	/* remove the default nodes except TC and root nodes */
1281 	node = pi->root;
1282 	while (node) {
1283 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1284 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1285 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1286 			ice_free_sched_node(pi, node);
1287 			break;
1288 		}
1289 
1290 		if (!node->num_children)
1291 			break;
1292 		node = node->children[0];
1293 	}
1294 }
1295 
1296 /**
1297  * ice_sched_init_port - Initialize scheduler by querying information from FW
1298  * @pi: port info structure for the tree to cleanup
1299  *
1300  * This function is the initial call to find the total number of Tx scheduler
1301  * resources, default topology created by firmware and storing the information
1302  * in SW DB.
1303  */
1304 enum ice_status ice_sched_init_port(struct ice_port_info *pi)
1305 {
1306 	struct ice_aqc_get_topo_elem *buf;
1307 	enum ice_status status;
1308 	struct ice_hw *hw;
1309 	u8 num_branches;
1310 	u16 num_elems;
1311 	u8 i, j;
1312 
1313 	if (!pi)
1314 		return ICE_ERR_PARAM;
1315 	hw = pi->hw;
1316 
1317 	/* Query the Default Topology from FW */
1318 	buf = (struct ice_aqc_get_topo_elem *)ice_malloc(hw,
1319 							 ICE_AQ_MAX_BUF_LEN);
1320 	if (!buf)
1321 		return ICE_ERR_NO_MEMORY;
1322 
1323 	/* Query default scheduling tree topology */
1324 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1325 				      &num_branches, NULL);
1326 	if (status)
1327 		goto err_init_port;
1328 
1329 	/* num_branches should be between 1-8 */
1330 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1331 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1332 			  num_branches);
1333 		status = ICE_ERR_PARAM;
1334 		goto err_init_port;
1335 	}
1336 
1337 	/* get the number of elements on the default/first branch */
1338 	num_elems = LE16_TO_CPU(buf[0].hdr.num_elems);
1339 
1340 	/* num_elems should always be between 1-9 */
1341 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1342 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1343 			  num_elems);
1344 		status = ICE_ERR_PARAM;
1345 		goto err_init_port;
1346 	}
1347 
1348 	/* If the last node is a leaf node then the index of the queue group
1349 	 * layer is two less than the number of elements.
1350 	 */
1351 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1352 	    ICE_AQC_ELEM_TYPE_LEAF)
1353 		pi->last_node_teid =
1354 			LE32_TO_CPU(buf[0].generic[num_elems - 2].node_teid);
1355 	else
1356 		pi->last_node_teid =
1357 			LE32_TO_CPU(buf[0].generic[num_elems - 1].node_teid);
1358 
1359 	/* Insert the Tx Sched root node */
1360 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1361 	if (status)
1362 		goto err_init_port;
1363 
1364 	/* Parse the default tree and cache the information */
1365 	for (i = 0; i < num_branches; i++) {
1366 		num_elems = LE16_TO_CPU(buf[i].hdr.num_elems);
1367 
1368 		/* Skip root element as already inserted */
1369 		for (j = 1; j < num_elems; j++) {
1370 			/* update the sw entry point */
1371 			if (buf[0].generic[j].data.elem_type ==
1372 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1373 				hw->sw_entry_point_layer = j;
1374 
1375 			status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL);
1376 			if (status)
1377 				goto err_init_port;
1378 		}
1379 	}
1380 
1381 	/* Remove the default nodes. */
1382 	if (pi->root)
1383 		ice_sched_rm_dflt_nodes(pi);
1384 
1385 	/* initialize the port for handling the scheduler tree */
1386 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1387 	ice_init_lock(&pi->sched_lock);
1388 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1389 		INIT_LIST_HEAD(&hw->rl_prof_list[i]);
1390 
1391 err_init_port:
1392 	if (status && pi->root) {
1393 		ice_free_sched_node(pi, pi->root);
1394 		pi->root = NULL;
1395 	}
1396 
1397 	ice_free(hw, buf);
1398 	return status;
1399 }
1400 
1401 /**
1402  * ice_sched_get_node - Get the struct ice_sched_node for given TEID
1403  * @pi: port information structure
1404  * @teid: Scheduler node TEID
1405  *
1406  * This function retrieves the ice_sched_node struct for given TEID from
1407  * the SW DB and returns it to the caller.
1408  */
1409 struct ice_sched_node *ice_sched_get_node(struct ice_port_info *pi, u32 teid)
1410 {
1411 	struct ice_sched_node *node;
1412 
1413 	if (!pi)
1414 		return NULL;
1415 
1416 	/* Find the node starting from root */
1417 	ice_acquire_lock(&pi->sched_lock);
1418 	node = ice_sched_find_node_by_teid(pi->root, teid);
1419 	ice_release_lock(&pi->sched_lock);
1420 
1421 	if (!node)
1422 		ice_debug(pi->hw, ICE_DBG_SCHED, "Node not found for teid=0x%x\n", teid);
1423 
1424 	return node;
1425 }
1426 
1427 /**
1428  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1429  * @hw: pointer to the HW struct
1430  *
1431  * query FW for allocated scheduler resources and store in HW struct
1432  */
1433 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
1434 {
1435 	struct ice_aqc_query_txsched_res_resp *buf;
1436 	enum ice_status status = ICE_SUCCESS;
1437 	__le16 max_sibl;
1438 	u8 i;
1439 
1440 	if (hw->layer_info)
1441 		return status;
1442 
1443 	buf = (struct ice_aqc_query_txsched_res_resp *)
1444 		ice_malloc(hw, sizeof(*buf));
1445 	if (!buf)
1446 		return ICE_ERR_NO_MEMORY;
1447 
1448 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1449 	if (status)
1450 		goto sched_query_out;
1451 
1452 	hw->num_tx_sched_layers =
1453 		(u8)LE16_TO_CPU(buf->sched_props.logical_levels);
1454 	hw->num_tx_sched_phys_layers =
1455 		(u8)LE16_TO_CPU(buf->sched_props.phys_levels);
1456 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1457 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1458 
1459 	/* max sibling group size of current layer refers to the max children
1460 	 * of the below layer node.
1461 	 * layer 1 node max children will be layer 2 max sibling group size
1462 	 * layer 2 node max children will be layer 3 max sibling group size
1463 	 * and so on. This array will be populated from root (index 0) to
1464 	 * qgroup layer 7. Leaf node has no children.
1465 	 */
1466 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1467 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1468 		hw->max_children[i] = LE16_TO_CPU(max_sibl);
1469 	}
1470 
1471 	hw->layer_info = (struct ice_aqc_layer_props *)
1472 			 ice_memdup(hw, buf->layer_props,
1473 				    (hw->num_tx_sched_layers *
1474 				     sizeof(*hw->layer_info)),
1475 				    ICE_NONDMA_TO_NONDMA);
1476 	if (!hw->layer_info) {
1477 		status = ICE_ERR_NO_MEMORY;
1478 		goto sched_query_out;
1479 	}
1480 
1481 sched_query_out:
1482 	ice_free(hw, buf);
1483 	return status;
1484 }
1485 
1486 /**
1487  * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1488  * @hw: pointer to the HW struct
1489  *
1490  * Determine the PSM clock frequency and store in HW struct
1491  */
1492 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1493 {
1494 	u32 val, clk_src;
1495 
1496 	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1497 	clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1498 		GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1499 
1500 	switch (clk_src) {
1501 	case PSM_CLK_SRC_367_MHZ:
1502 		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1503 		break;
1504 	case PSM_CLK_SRC_416_MHZ:
1505 		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1506 		break;
1507 	case PSM_CLK_SRC_446_MHZ:
1508 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1509 		break;
1510 	case PSM_CLK_SRC_390_MHZ:
1511 		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1512 		break;
1513 
1514 	/* default condition is not required as clk_src is restricted
1515 	 * to a 2-bit value from GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M mask.
1516 	 * The above switch statements cover the possible values of
1517 	 * this variable.
1518 	 */
1519 	}
1520 }
1521 
1522 /**
1523  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1524  * @hw: pointer to the HW struct
1525  * @base: pointer to the base node
1526  * @node: pointer to the node to search
1527  *
1528  * This function checks whether a given node is part of the base node
1529  * subtree or not
1530  */
1531 bool
1532 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1533 			       struct ice_sched_node *node)
1534 {
1535 	u8 i;
1536 
1537 	for (i = 0; i < base->num_children; i++) {
1538 		struct ice_sched_node *child = base->children[i];
1539 
1540 		if (node == child)
1541 			return true;
1542 
1543 		if (child->tx_sched_layer > node->tx_sched_layer)
1544 			return false;
1545 
1546 		/* this recursion is intentional, and wouldn't
1547 		 * go more than 8 calls
1548 		 */
1549 		if (ice_sched_find_node_in_subtree(hw, child, node))
1550 			return true;
1551 	}
1552 	return false;
1553 }
1554 
1555 /**
1556  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1557  * @pi: port information structure
1558  * @vsi_node: software VSI handle
1559  * @qgrp_node: first queue group node identified for scanning
1560  * @owner: LAN or RDMA
1561  *
1562  * This function retrieves a free LAN or RDMA queue group node by scanning
1563  * qgrp_node and its siblings for the queue group with the fewest number
1564  * of queues currently assigned.
1565  */
1566 static struct ice_sched_node *
1567 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1568 			struct ice_sched_node *vsi_node,
1569 			struct ice_sched_node *qgrp_node, u8 owner)
1570 {
1571 	struct ice_sched_node *min_qgrp;
1572 	u8 min_children;
1573 
1574 	if (!qgrp_node)
1575 		return qgrp_node;
1576 	min_children = qgrp_node->num_children;
1577 	if (!min_children)
1578 		return qgrp_node;
1579 	min_qgrp = qgrp_node;
1580 	/* scan all queue groups until find a node which has less than the
1581 	 * minimum number of children. This way all queue group nodes get
1582 	 * equal number of shares and active. The bandwidth will be equally
1583 	 * distributed across all queues.
1584 	 */
1585 	while (qgrp_node) {
1586 		/* make sure the qgroup node is part of the VSI subtree */
1587 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1588 			if (qgrp_node->num_children < min_children &&
1589 			    qgrp_node->owner == owner) {
1590 				/* replace the new min queue group node */
1591 				min_qgrp = qgrp_node;
1592 				min_children = min_qgrp->num_children;
1593 				/* break if it has no children, */
1594 				if (!min_children)
1595 					break;
1596 			}
1597 		qgrp_node = qgrp_node->sibling;
1598 	}
1599 	return min_qgrp;
1600 }
1601 
1602 /**
1603  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1604  * @pi: port information structure
1605  * @vsi_handle: software VSI handle
1606  * @tc: branch number
1607  * @owner: LAN or RDMA
1608  *
1609  * This function retrieves a free LAN or RDMA queue group node
1610  */
1611 struct ice_sched_node *
1612 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1613 			   u8 owner)
1614 {
1615 	struct ice_sched_node *vsi_node, *qgrp_node;
1616 	struct ice_vsi_ctx *vsi_ctx;
1617 	u8 qgrp_layer, vsi_layer;
1618 	u16 max_children;
1619 
1620 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1621 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1622 	max_children = pi->hw->max_children[qgrp_layer];
1623 
1624 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1625 	if (!vsi_ctx)
1626 		return NULL;
1627 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1628 	/* validate invalid VSI ID */
1629 	if (!vsi_node)
1630 		return NULL;
1631 
1632 	/* If the queue group and vsi layer are same then queues
1633 	 * are all attached directly to VSI
1634 	 */
1635 	if (qgrp_layer == vsi_layer)
1636 		return vsi_node;
1637 
1638 	/* get the first queue group node from VSI sub-tree */
1639 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1640 	while (qgrp_node) {
1641 		/* make sure the qgroup node is part of the VSI subtree */
1642 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1643 			if (qgrp_node->num_children < max_children &&
1644 			    qgrp_node->owner == owner)
1645 				break;
1646 		qgrp_node = qgrp_node->sibling;
1647 	}
1648 
1649 	/* Select the best queue group */
1650 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1651 }
1652 
1653 /**
1654  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1655  * @pi: pointer to the port information structure
1656  * @tc_node: pointer to the TC node
1657  * @vsi_handle: software VSI handle
1658  *
1659  * This function retrieves a VSI node for a given VSI ID from a given
1660  * TC branch
1661  */
1662 struct ice_sched_node *
1663 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1664 		       u16 vsi_handle)
1665 {
1666 	struct ice_sched_node *node;
1667 	u8 vsi_layer;
1668 
1669 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1670 	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1671 
1672 	/* Check whether it already exists */
1673 	while (node) {
1674 		if (node->vsi_handle == vsi_handle)
1675 			return node;
1676 		node = node->sibling;
1677 	}
1678 
1679 	return node;
1680 }
1681 
1682 /**
1683  * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1684  * @pi: pointer to the port information structure
1685  * @tc_node: pointer to the TC node
1686  * @agg_id: aggregator ID
1687  *
1688  * This function retrieves an aggregator node for a given aggregator ID from
1689  * a given TC branch
1690  */
1691 static struct ice_sched_node *
1692 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1693 		       u32 agg_id)
1694 {
1695 	struct ice_sched_node *node;
1696 	struct ice_hw *hw = pi->hw;
1697 	u8 agg_layer;
1698 
1699 	if (!hw)
1700 		return NULL;
1701 	agg_layer = ice_sched_get_agg_layer(hw);
1702 	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1703 
1704 	/* Check whether it already exists */
1705 	while (node) {
1706 		if (node->agg_id == agg_id)
1707 			return node;
1708 		node = node->sibling;
1709 	}
1710 
1711 	return node;
1712 }
1713 
1714 /**
1715  * ice_sched_check_node - Compare node parameters between SW DB and HW DB
1716  * @hw: pointer to the HW struct
1717  * @node: pointer to the ice_sched_node struct
1718  *
1719  * This function queries and compares the HW element with SW DB node parameters
1720  */
1721 static bool ice_sched_check_node(struct ice_hw *hw, struct ice_sched_node *node)
1722 {
1723 	struct ice_aqc_txsched_elem_data buf;
1724 	enum ice_status status;
1725 	u32 node_teid;
1726 
1727 	node_teid = LE32_TO_CPU(node->info.node_teid);
1728 	status = ice_sched_query_elem(hw, node_teid, &buf);
1729 	if (status != ICE_SUCCESS)
1730 		return false;
1731 
1732 	if (memcmp(&buf, &node->info, sizeof(buf))) {
1733 		ice_debug(hw, ICE_DBG_SCHED, "Node mismatch for teid=0x%x\n",
1734 			  node_teid);
1735 		return false;
1736 	}
1737 
1738 	return true;
1739 }
1740 
1741 /**
1742  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1743  * @hw: pointer to the HW struct
1744  * @num_qs: number of queues
1745  * @num_nodes: num nodes array
1746  *
1747  * This function calculates the number of VSI child nodes based on the
1748  * number of queues.
1749  */
1750 static void
1751 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1752 {
1753 	u16 num = num_qs;
1754 	u8 i, qgl, vsil;
1755 
1756 	qgl = ice_sched_get_qgrp_layer(hw);
1757 	vsil = ice_sched_get_vsi_layer(hw);
1758 
1759 	/* calculate num nodes from queue group to VSI layer */
1760 	for (i = qgl; i > vsil; i--) {
1761 		/* round to the next integer if there is a remainder */
1762 		num = DIVIDE_AND_ROUND_UP(num, hw->max_children[i]);
1763 
1764 		/* need at least one node */
1765 		num_nodes[i] = num ? num : 1;
1766 	}
1767 }
1768 
1769 /**
1770  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1771  * @pi: port information structure
1772  * @vsi_handle: software VSI handle
1773  * @tc_node: pointer to the TC node
1774  * @num_nodes: pointer to the num nodes that needs to be added per layer
1775  * @owner: node owner (LAN or RDMA)
1776  *
1777  * This function adds the VSI child nodes to tree. It gets called for
1778  * LAN and RDMA separately.
1779  */
1780 static enum ice_status
1781 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1782 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1783 			      u8 owner)
1784 {
1785 	struct ice_sched_node *parent, *node;
1786 	struct ice_hw *hw = pi->hw;
1787 	u32 first_node_teid;
1788 	u16 num_added = 0;
1789 	u8 i, qgl, vsil;
1790 
1791 	qgl = ice_sched_get_qgrp_layer(hw);
1792 	vsil = ice_sched_get_vsi_layer(hw);
1793 	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1794 	for (i = vsil + 1; i <= qgl; i++) {
1795 		enum ice_status status;
1796 
1797 		if (!parent)
1798 			return ICE_ERR_CFG;
1799 
1800 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1801 						      num_nodes[i],
1802 						      &first_node_teid,
1803 						      &num_added);
1804 		if (status != ICE_SUCCESS || num_nodes[i] != num_added)
1805 			return ICE_ERR_CFG;
1806 
1807 		/* The newly added node can be a new parent for the next
1808 		 * layer nodes
1809 		 */
1810 		if (num_added) {
1811 			parent = ice_sched_find_node_by_teid(tc_node,
1812 							     first_node_teid);
1813 			node = parent;
1814 			while (node) {
1815 				node->owner = owner;
1816 				node = node->sibling;
1817 			}
1818 		} else {
1819 			parent = parent->children[0];
1820 		}
1821 	}
1822 
1823 	return ICE_SUCCESS;
1824 }
1825 
1826 /**
1827  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1828  * @pi: pointer to the port info structure
1829  * @tc_node: pointer to TC node
1830  * @num_nodes: pointer to num nodes array
1831  *
1832  * This function calculates the number of supported nodes needed to add this
1833  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1834  * layers
1835  */
1836 static void
1837 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1838 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1839 {
1840 	struct ice_sched_node *node;
1841 	u8 vsil;
1842 	int i;
1843 
1844 	vsil = ice_sched_get_vsi_layer(pi->hw);
1845 	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1846 		/* Add intermediate nodes if TC has no children and
1847 		 * need at least one node for VSI
1848 		 */
1849 		if (!tc_node->num_children || i == vsil) {
1850 			num_nodes[i]++;
1851 		} else {
1852 			/* If intermediate nodes are reached max children
1853 			 * then add a new one.
1854 			 */
1855 			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1856 			/* scan all the siblings */
1857 			while (node) {
1858 				if (node->num_children <
1859 				    pi->hw->max_children[i])
1860 					break;
1861 				node = node->sibling;
1862 			}
1863 
1864 			/* tree has one intermediate node to add this new VSI.
1865 			 * So no need to calculate supported nodes for below
1866 			 * layers.
1867 			 */
1868 			if (node)
1869 				break;
1870 			/* all the nodes are full, allocate a new one */
1871 			num_nodes[i]++;
1872 		}
1873 }
1874 
1875 /**
1876  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1877  * @pi: port information structure
1878  * @vsi_handle: software VSI handle
1879  * @tc_node: pointer to TC node
1880  * @num_nodes: pointer to num nodes array
1881  *
1882  * This function adds the VSI supported nodes into Tx tree including the
1883  * VSI, its parent and intermediate nodes in below layers
1884  */
1885 static enum ice_status
1886 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1887 				struct ice_sched_node *tc_node, u16 *num_nodes)
1888 {
1889 	struct ice_sched_node *parent = tc_node;
1890 	u32 first_node_teid;
1891 	u16 num_added = 0;
1892 	u8 i, vsil;
1893 
1894 	if (!pi)
1895 		return ICE_ERR_PARAM;
1896 
1897 	vsil = ice_sched_get_vsi_layer(pi->hw);
1898 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1899 		enum ice_status status;
1900 
1901 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1902 						      i, num_nodes[i],
1903 						      &first_node_teid,
1904 						      &num_added);
1905 		if (status != ICE_SUCCESS || num_nodes[i] != num_added)
1906 			return ICE_ERR_CFG;
1907 
1908 		/* The newly added node can be a new parent for the next
1909 		 * layer nodes
1910 		 */
1911 		if (num_added)
1912 			parent = ice_sched_find_node_by_teid(tc_node,
1913 							     first_node_teid);
1914 		else
1915 			parent = parent->children[0];
1916 
1917 		if (!parent)
1918 			return ICE_ERR_CFG;
1919 
1920 		if (i == vsil)
1921 			parent->vsi_handle = vsi_handle;
1922 	}
1923 
1924 	return ICE_SUCCESS;
1925 }
1926 
1927 /**
1928  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1929  * @pi: port information structure
1930  * @vsi_handle: software VSI handle
1931  * @tc: TC number
1932  *
1933  * This function adds a new VSI into scheduler tree
1934  */
1935 static enum ice_status
1936 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1937 {
1938 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1939 	struct ice_sched_node *tc_node;
1940 
1941 	tc_node = ice_sched_get_tc_node(pi, tc);
1942 	if (!tc_node)
1943 		return ICE_ERR_PARAM;
1944 
1945 	/* calculate number of supported nodes needed for this VSI */
1946 	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1947 
1948 	/* add VSI supported nodes to TC subtree */
1949 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1950 					       num_nodes);
1951 }
1952 
1953 /**
1954  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1955  * @pi: port information structure
1956  * @vsi_handle: software VSI handle
1957  * @tc: TC number
1958  * @new_numqs: new number of max queues
1959  * @owner: owner of this subtree
1960  *
1961  * This function updates the VSI child nodes based on the number of queues
1962  */
1963 static enum ice_status
1964 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1965 				 u8 tc, u16 new_numqs, u8 owner)
1966 {
1967 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1968 	struct ice_sched_node *vsi_node;
1969 	struct ice_sched_node *tc_node;
1970 	struct ice_vsi_ctx *vsi_ctx;
1971 	enum ice_status status = ICE_SUCCESS;
1972 	struct ice_hw *hw = pi->hw;
1973 	u16 prev_numqs;
1974 
1975 	tc_node = ice_sched_get_tc_node(pi, tc);
1976 	if (!tc_node)
1977 		return ICE_ERR_CFG;
1978 
1979 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1980 	if (!vsi_node)
1981 		return ICE_ERR_CFG;
1982 
1983 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1984 	if (!vsi_ctx)
1985 		return ICE_ERR_PARAM;
1986 
1987 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1988 		prev_numqs = vsi_ctx->sched.max_lanq[tc];
1989 	else
1990 		prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1991 	/* num queues are not changed or less than the previous number */
1992 	if (new_numqs <= prev_numqs)
1993 		return status;
1994 	if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1995 		status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1996 		if (status)
1997 			return status;
1998 	} else {
1999 		status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
2000 		if (status)
2001 			return status;
2002 	}
2003 
2004 	if (new_numqs)
2005 		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
2006 	/* Keep the max number of queue configuration all the time. Update the
2007 	 * tree only if number of queues > previous number of queues. This may
2008 	 * leave some extra nodes in the tree if number of queues < previous
2009 	 * number but that wouldn't harm anything. Removing those extra nodes
2010 	 * may complicate the code if those nodes are part of SRL or
2011 	 * individually rate limited.
2012 	 */
2013 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
2014 					       new_num_nodes, owner);
2015 	if (status)
2016 		return status;
2017 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
2018 		vsi_ctx->sched.max_lanq[tc] = new_numqs;
2019 	else
2020 		vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
2021 
2022 	return ICE_SUCCESS;
2023 }
2024 
2025 /**
2026  * ice_sched_cfg_vsi - configure the new/existing VSI
2027  * @pi: port information structure
2028  * @vsi_handle: software VSI handle
2029  * @tc: TC number
2030  * @maxqs: max number of queues
2031  * @owner: LAN or RDMA
2032  * @enable: TC enabled or disabled
2033  *
2034  * This function adds/updates VSI nodes based on the number of queues. If TC is
2035  * enabled and VSI is in suspended state then resume the VSI back. If TC is
2036  * disabled then suspend the VSI if it is not already.
2037  */
2038 enum ice_status
2039 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
2040 		  u8 owner, bool enable)
2041 {
2042 	struct ice_sched_node *vsi_node, *tc_node;
2043 	struct ice_vsi_ctx *vsi_ctx;
2044 	enum ice_status status = ICE_SUCCESS;
2045 	struct ice_hw *hw = pi->hw;
2046 
2047 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
2048 	tc_node = ice_sched_get_tc_node(pi, tc);
2049 	if (!tc_node)
2050 		return ICE_ERR_PARAM;
2051 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
2052 	if (!vsi_ctx)
2053 		return ICE_ERR_PARAM;
2054 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2055 
2056 	/* suspend the VSI if TC is not enabled */
2057 	if (!enable) {
2058 		if (vsi_node && vsi_node->in_use) {
2059 			u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
2060 
2061 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
2062 								true);
2063 			if (!status)
2064 				vsi_node->in_use = false;
2065 		}
2066 		return status;
2067 	}
2068 
2069 	/* TC is enabled, if it is a new VSI then add it to the tree */
2070 	if (!vsi_node) {
2071 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
2072 		if (status)
2073 			return status;
2074 
2075 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2076 		if (!vsi_node)
2077 			return ICE_ERR_CFG;
2078 
2079 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
2080 		vsi_node->in_use = true;
2081 		/* invalidate the max queues whenever VSI gets added first time
2082 		 * into the scheduler tree (boot or after reset). We need to
2083 		 * recreate the child nodes all the time in these cases.
2084 		 */
2085 		vsi_ctx->sched.max_lanq[tc] = 0;
2086 		vsi_ctx->sched.max_rdmaq[tc] = 0;
2087 	}
2088 
2089 	/* update the VSI child nodes */
2090 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
2091 						  owner);
2092 	if (status)
2093 		return status;
2094 
2095 	/* TC is enabled, resume the VSI if it is in the suspend state */
2096 	if (!vsi_node->in_use) {
2097 		u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
2098 
2099 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
2100 		if (!status)
2101 			vsi_node->in_use = true;
2102 	}
2103 
2104 	return status;
2105 }
2106 
2107 /**
2108  * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
2109  * @pi: port information structure
2110  * @vsi_handle: software VSI handle
2111  *
2112  * This function removes single aggregator VSI info entry from
2113  * aggregator list.
2114  */
2115 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
2116 {
2117 	struct ice_sched_agg_info *agg_info;
2118 	struct ice_sched_agg_info *atmp;
2119 
2120 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &pi->hw->agg_list,
2121 				 ice_sched_agg_info,
2122 				 list_entry) {
2123 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2124 		struct ice_sched_agg_vsi_info *vtmp;
2125 
2126 		LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
2127 					 &agg_info->agg_vsi_list,
2128 					 ice_sched_agg_vsi_info, list_entry)
2129 			if (agg_vsi_info->vsi_handle == vsi_handle) {
2130 				LIST_DEL(&agg_vsi_info->list_entry);
2131 				ice_free(pi->hw, agg_vsi_info);
2132 				return;
2133 			}
2134 	}
2135 }
2136 
2137 /**
2138  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2139  * @node: pointer to the sub-tree node
2140  *
2141  * This function checks for a leaf node presence in a given sub-tree node.
2142  */
2143 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2144 {
2145 	u8 i;
2146 
2147 	for (i = 0; i < node->num_children; i++)
2148 		if (ice_sched_is_leaf_node_present(node->children[i]))
2149 			return true;
2150 	/* check for a leaf node */
2151 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2152 }
2153 
2154 /**
2155  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2156  * @pi: port information structure
2157  * @vsi_handle: software VSI handle
2158  * @owner: LAN or RDMA
2159  *
2160  * This function removes the VSI and its LAN or RDMA children nodes from the
2161  * scheduler tree.
2162  */
2163 static enum ice_status
2164 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2165 {
2166 	enum ice_status status = ICE_ERR_PARAM;
2167 	struct ice_vsi_ctx *vsi_ctx;
2168 	u8 i;
2169 
2170 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2171 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2172 		return status;
2173 	ice_acquire_lock(&pi->sched_lock);
2174 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2175 	if (!vsi_ctx)
2176 		goto exit_sched_rm_vsi_cfg;
2177 
2178 	ice_for_each_traffic_class(i) {
2179 		struct ice_sched_node *vsi_node, *tc_node;
2180 		u8 j = 0;
2181 
2182 		tc_node = ice_sched_get_tc_node(pi, i);
2183 		if (!tc_node)
2184 			continue;
2185 
2186 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2187 		if (!vsi_node)
2188 			continue;
2189 
2190 		if (ice_sched_is_leaf_node_present(vsi_node)) {
2191 			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2192 			status = ICE_ERR_IN_USE;
2193 			goto exit_sched_rm_vsi_cfg;
2194 		}
2195 		while (j < vsi_node->num_children) {
2196 			if (vsi_node->children[j]->owner == owner) {
2197 				ice_free_sched_node(pi, vsi_node->children[j]);
2198 
2199 				/* reset the counter again since the num
2200 				 * children will be updated after node removal
2201 				 */
2202 				j = 0;
2203 			} else {
2204 				j++;
2205 			}
2206 		}
2207 		/* remove the VSI if it has no children */
2208 		if (!vsi_node->num_children) {
2209 			ice_free_sched_node(pi, vsi_node);
2210 			vsi_ctx->sched.vsi_node[i] = NULL;
2211 
2212 			/* clean up aggregator related VSI info if any */
2213 			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2214 		}
2215 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2216 			vsi_ctx->sched.max_lanq[i] = 0;
2217 		else
2218 			vsi_ctx->sched.max_rdmaq[i] = 0;
2219 	}
2220 	status = ICE_SUCCESS;
2221 
2222 exit_sched_rm_vsi_cfg:
2223 	ice_release_lock(&pi->sched_lock);
2224 	return status;
2225 }
2226 
2227 /**
2228  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2229  * @pi: port information structure
2230  * @vsi_handle: software VSI handle
2231  *
2232  * This function clears the VSI and its LAN children nodes from scheduler tree
2233  * for all TCs.
2234  */
2235 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2236 {
2237 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2238 }
2239 
2240 /**
2241  * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2242  * @pi: port information structure
2243  * @vsi_handle: software VSI handle
2244  *
2245  * This function clears the VSI and its RDMA children nodes from scheduler tree
2246  * for all TCs.
2247  */
2248 enum ice_status ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2249 {
2250 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2251 }
2252 
2253 /**
2254  * ice_sched_is_tree_balanced - Check tree nodes are identical or not
2255  * @hw: pointer to the HW struct
2256  * @node: pointer to the ice_sched_node struct
2257  *
2258  * This function compares all the nodes for a given tree against HW DB nodes
2259  * This function needs to be called with the port_info->sched_lock held
2260  */
2261 bool ice_sched_is_tree_balanced(struct ice_hw *hw, struct ice_sched_node *node)
2262 {
2263 	u8 i;
2264 
2265 	/* start from the leaf node */
2266 	for (i = 0; i < node->num_children; i++)
2267 		/* Fail if node doesn't match with the SW DB
2268 		 * this recursion is intentional, and wouldn't
2269 		 * go more than 9 calls
2270 		 */
2271 		if (!ice_sched_is_tree_balanced(hw, node->children[i]))
2272 			return false;
2273 
2274 	return ice_sched_check_node(hw, node);
2275 }
2276 
2277 /**
2278  * ice_aq_query_node_to_root - retrieve the tree topology for a given node TEID
2279  * @hw: pointer to the HW struct
2280  * @node_teid: node TEID
2281  * @buf: pointer to buffer
2282  * @buf_size: buffer size in bytes
2283  * @cd: pointer to command details structure or NULL
2284  *
2285  * This function retrieves the tree topology from the firmware for a given
2286  * node TEID to the root node.
2287  */
2288 enum ice_status
2289 ice_aq_query_node_to_root(struct ice_hw *hw, u32 node_teid,
2290 			  struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
2291 			  struct ice_sq_cd *cd)
2292 {
2293 	struct ice_aqc_query_node_to_root *cmd;
2294 	struct ice_aq_desc desc;
2295 
2296 	cmd = &desc.params.query_node_to_root;
2297 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_node_to_root);
2298 	cmd->teid = CPU_TO_LE32(node_teid);
2299 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2300 }
2301 
2302 /**
2303  * ice_get_agg_info - get the aggregator ID
2304  * @hw: pointer to the hardware structure
2305  * @agg_id: aggregator ID
2306  *
2307  * This function validates aggregator ID. The function returns info if
2308  * aggregator ID is present in list otherwise it returns null.
2309  */
2310 static struct ice_sched_agg_info *
2311 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2312 {
2313 	struct ice_sched_agg_info *agg_info;
2314 
2315 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
2316 			    list_entry)
2317 		if (agg_info->agg_id == agg_id)
2318 			return agg_info;
2319 
2320 	return NULL;
2321 }
2322 
2323 /**
2324  * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2325  * @hw: pointer to the HW struct
2326  * @node: pointer to a child node
2327  * @num_nodes: num nodes count array
2328  *
2329  * This function walks through the aggregator subtree to find a free parent
2330  * node
2331  */
2332 static struct ice_sched_node *
2333 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2334 			      u16 *num_nodes)
2335 {
2336 	u8 l = node->tx_sched_layer;
2337 	u8 vsil, i;
2338 
2339 	vsil = ice_sched_get_vsi_layer(hw);
2340 
2341 	/* Is it VSI parent layer ? */
2342 	if (l == vsil - 1)
2343 		return (node->num_children < hw->max_children[l]) ? node : NULL;
2344 
2345 	/* We have intermediate nodes. Let's walk through the subtree. If the
2346 	 * intermediate node has space to add a new node then clear the count
2347 	 */
2348 	if (node->num_children < hw->max_children[l])
2349 		num_nodes[l] = 0;
2350 	/* The below recursive call is intentional and wouldn't go more than
2351 	 * 2 or 3 iterations.
2352 	 */
2353 
2354 	for (i = 0; i < node->num_children; i++) {
2355 		struct ice_sched_node *parent;
2356 
2357 		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2358 						       num_nodes);
2359 		if (parent)
2360 			return parent;
2361 	}
2362 
2363 	return NULL;
2364 }
2365 
2366 /**
2367  * ice_sched_update_parent - update the new parent in SW DB
2368  * @new_parent: pointer to a new parent node
2369  * @node: pointer to a child node
2370  *
2371  * This function removes the child from the old parent and adds it to a new
2372  * parent
2373  */
2374 void
2375 ice_sched_update_parent(struct ice_sched_node *new_parent,
2376 			struct ice_sched_node *node)
2377 {
2378 	struct ice_sched_node *old_parent;
2379 	u8 i, j;
2380 
2381 	old_parent = node->parent;
2382 
2383 	/* update the old parent children */
2384 	for (i = 0; i < old_parent->num_children; i++)
2385 		if (old_parent->children[i] == node) {
2386 			for (j = i + 1; j < old_parent->num_children; j++)
2387 				old_parent->children[j - 1] =
2388 					old_parent->children[j];
2389 			old_parent->num_children--;
2390 			break;
2391 		}
2392 
2393 	/* now move the node to a new parent */
2394 	new_parent->children[new_parent->num_children++] = node;
2395 	node->parent = new_parent;
2396 	node->info.parent_teid = new_parent->info.node_teid;
2397 }
2398 
2399 /**
2400  * ice_sched_move_nodes - move child nodes to a given parent
2401  * @pi: port information structure
2402  * @parent: pointer to parent node
2403  * @num_items: number of child nodes to be moved
2404  * @list: pointer to child node teids
2405  *
2406  * This function move the child nodes to a given parent.
2407  */
2408 enum ice_status
2409 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2410 		     u16 num_items, u32 *list)
2411 {
2412 	struct ice_aqc_move_elem *buf;
2413 	struct ice_sched_node *node;
2414 	enum ice_status status = ICE_SUCCESS;
2415 	u16 i, grps_movd = 0;
2416 	struct ice_hw *hw;
2417 	u16 buf_len;
2418 
2419 	hw = pi->hw;
2420 
2421 	if (!parent || !num_items)
2422 		return ICE_ERR_PARAM;
2423 
2424 	/* Does parent have enough space */
2425 	if (parent->num_children + num_items >
2426 	    hw->max_children[parent->tx_sched_layer])
2427 		return ICE_ERR_AQ_FULL;
2428 
2429 	buf_len = ice_struct_size(buf, teid, 1);
2430 	buf = (struct ice_aqc_move_elem *)ice_malloc(hw, buf_len);
2431 	if (!buf)
2432 		return ICE_ERR_NO_MEMORY;
2433 
2434 	for (i = 0; i < num_items; i++) {
2435 		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2436 		if (!node) {
2437 			status = ICE_ERR_PARAM;
2438 			goto move_err_exit;
2439 		}
2440 
2441 		buf->hdr.src_parent_teid = node->info.parent_teid;
2442 		buf->hdr.dest_parent_teid = parent->info.node_teid;
2443 		buf->teid[0] = node->info.node_teid;
2444 		buf->hdr.num_elems = CPU_TO_LE16(1);
2445 		status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
2446 						 &grps_movd, NULL);
2447 		if (status && grps_movd != 1) {
2448 			status = ICE_ERR_CFG;
2449 			goto move_err_exit;
2450 		}
2451 
2452 		/* update the SW DB */
2453 		ice_sched_update_parent(parent, node);
2454 	}
2455 
2456 move_err_exit:
2457 	ice_free(hw, buf);
2458 	return status;
2459 }
2460 
2461 /**
2462  * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2463  * @pi: port information structure
2464  * @vsi_handle: software VSI handle
2465  * @agg_id: aggregator ID
2466  * @tc: TC number
2467  *
2468  * This function moves a VSI to an aggregator node or its subtree.
2469  * Intermediate nodes may be created if required.
2470  */
2471 static enum ice_status
2472 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2473 			  u8 tc)
2474 {
2475 	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2476 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2477 	u32 first_node_teid, vsi_teid;
2478 	enum ice_status status;
2479 	u16 num_nodes_added;
2480 	u8 aggl, vsil, i;
2481 
2482 	tc_node = ice_sched_get_tc_node(pi, tc);
2483 	if (!tc_node)
2484 		return ICE_ERR_CFG;
2485 
2486 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2487 	if (!agg_node)
2488 		return ICE_ERR_DOES_NOT_EXIST;
2489 
2490 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2491 	if (!vsi_node)
2492 		return ICE_ERR_DOES_NOT_EXIST;
2493 
2494 	/* Is this VSI already part of given aggregator? */
2495 	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2496 		return ICE_SUCCESS;
2497 
2498 	aggl = ice_sched_get_agg_layer(pi->hw);
2499 	vsil = ice_sched_get_vsi_layer(pi->hw);
2500 
2501 	/* set intermediate node count to 1 between aggregator and VSI layers */
2502 	for (i = aggl + 1; i < vsil; i++)
2503 		num_nodes[i] = 1;
2504 
2505 	/* Check if the aggregator subtree has any free node to add the VSI */
2506 	for (i = 0; i < agg_node->num_children; i++) {
2507 		parent = ice_sched_get_free_vsi_parent(pi->hw,
2508 						       agg_node->children[i],
2509 						       num_nodes);
2510 		if (parent)
2511 			goto move_nodes;
2512 	}
2513 
2514 	/* add new nodes */
2515 	parent = agg_node;
2516 	for (i = aggl + 1; i < vsil; i++) {
2517 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2518 						      num_nodes[i],
2519 						      &first_node_teid,
2520 						      &num_nodes_added);
2521 		if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
2522 			return ICE_ERR_CFG;
2523 
2524 		/* The newly added node can be a new parent for the next
2525 		 * layer nodes
2526 		 */
2527 		if (num_nodes_added)
2528 			parent = ice_sched_find_node_by_teid(tc_node,
2529 							     first_node_teid);
2530 		else
2531 			parent = parent->children[0];
2532 
2533 		if (!parent)
2534 			return ICE_ERR_CFG;
2535 	}
2536 
2537 move_nodes:
2538 	vsi_teid = LE32_TO_CPU(vsi_node->info.node_teid);
2539 	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2540 }
2541 
2542 /**
2543  * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2544  * @pi: port information structure
2545  * @agg_info: aggregator info
2546  * @tc: traffic class number
2547  * @rm_vsi_info: true or false
2548  *
2549  * This function move all the VSI(s) to the default aggregator and delete
2550  * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2551  * caller holds the scheduler lock.
2552  */
2553 static enum ice_status
2554 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2555 			     struct ice_sched_agg_info *agg_info, u8 tc,
2556 			     bool rm_vsi_info)
2557 {
2558 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2559 	struct ice_sched_agg_vsi_info *tmp;
2560 	enum ice_status status = ICE_SUCCESS;
2561 
2562 	LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2563 				 ice_sched_agg_vsi_info, list_entry) {
2564 		u16 vsi_handle = agg_vsi_info->vsi_handle;
2565 
2566 		/* Move VSI to default aggregator */
2567 		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2568 			continue;
2569 
2570 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2571 						   ICE_DFLT_AGG_ID, tc);
2572 		if (status)
2573 			break;
2574 
2575 		ice_clear_bit(tc, agg_vsi_info->tc_bitmap);
2576 		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2577 			LIST_DEL(&agg_vsi_info->list_entry);
2578 			ice_free(pi->hw, agg_vsi_info);
2579 		}
2580 	}
2581 
2582 	return status;
2583 }
2584 
2585 /**
2586  * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2587  * @pi: port information structure
2588  * @node: node pointer
2589  *
2590  * This function checks whether the aggregator is attached with any VSI or not.
2591  */
2592 static bool
2593 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2594 {
2595 	u8 vsil, i;
2596 
2597 	vsil = ice_sched_get_vsi_layer(pi->hw);
2598 	if (node->tx_sched_layer < vsil - 1) {
2599 		for (i = 0; i < node->num_children; i++)
2600 			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2601 				return true;
2602 		return false;
2603 	} else {
2604 		return node->num_children ? true : false;
2605 	}
2606 }
2607 
2608 /**
2609  * ice_sched_rm_agg_cfg - remove the aggregator node
2610  * @pi: port information structure
2611  * @agg_id: aggregator ID
2612  * @tc: TC number
2613  *
2614  * This function removes the aggregator node and intermediate nodes if any
2615  * from the given TC
2616  */
2617 static enum ice_status
2618 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2619 {
2620 	struct ice_sched_node *tc_node, *agg_node;
2621 	struct ice_hw *hw = pi->hw;
2622 
2623 	tc_node = ice_sched_get_tc_node(pi, tc);
2624 	if (!tc_node)
2625 		return ICE_ERR_CFG;
2626 
2627 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2628 	if (!agg_node)
2629 		return ICE_ERR_DOES_NOT_EXIST;
2630 
2631 	/* Can't remove the aggregator node if it has children */
2632 	if (ice_sched_is_agg_inuse(pi, agg_node))
2633 		return ICE_ERR_IN_USE;
2634 
2635 	/* need to remove the whole subtree if aggregator node is the
2636 	 * only child.
2637 	 */
2638 	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2639 		struct ice_sched_node *parent = agg_node->parent;
2640 
2641 		if (!parent)
2642 			return ICE_ERR_CFG;
2643 
2644 		if (parent->num_children > 1)
2645 			break;
2646 
2647 		agg_node = parent;
2648 	}
2649 
2650 	ice_free_sched_node(pi, agg_node);
2651 	return ICE_SUCCESS;
2652 }
2653 
2654 /**
2655  * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2656  * @pi: port information structure
2657  * @agg_info: aggregator ID
2658  * @tc: TC number
2659  * @rm_vsi_info: bool value true or false
2660  *
2661  * This function removes aggregator reference to VSI of given TC. It removes
2662  * the aggregator configuration completely for requested TC. The caller needs
2663  * to hold the scheduler lock.
2664  */
2665 static enum ice_status
2666 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2667 		  u8 tc, bool rm_vsi_info)
2668 {
2669 	enum ice_status status = ICE_SUCCESS;
2670 
2671 	/* If nothing to remove - return success */
2672 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2673 		goto exit_rm_agg_cfg_tc;
2674 
2675 	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2676 	if (status)
2677 		goto exit_rm_agg_cfg_tc;
2678 
2679 	/* Delete aggregator node(s) */
2680 	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2681 	if (status)
2682 		goto exit_rm_agg_cfg_tc;
2683 
2684 	ice_clear_bit(tc, agg_info->tc_bitmap);
2685 exit_rm_agg_cfg_tc:
2686 	return status;
2687 }
2688 
2689 /**
2690  * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2691  * @pi: port information structure
2692  * @agg_id: aggregator ID
2693  * @tc_bitmap: 8 bits TC bitmap
2694  *
2695  * Save aggregator TC bitmap. This function needs to be called with scheduler
2696  * lock held.
2697  */
2698 static enum ice_status
2699 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2700 		       ice_bitmap_t *tc_bitmap)
2701 {
2702 	struct ice_sched_agg_info *agg_info;
2703 
2704 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2705 	if (!agg_info)
2706 		return ICE_ERR_PARAM;
2707 	ice_cp_bitmap(agg_info->replay_tc_bitmap, tc_bitmap,
2708 		      ICE_MAX_TRAFFIC_CLASS);
2709 	return ICE_SUCCESS;
2710 }
2711 
2712 /**
2713  * ice_sched_add_agg_cfg - create an aggregator node
2714  * @pi: port information structure
2715  * @agg_id: aggregator ID
2716  * @tc: TC number
2717  *
2718  * This function creates an aggregator node and intermediate nodes if required
2719  * for the given TC
2720  */
2721 static enum ice_status
2722 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2723 {
2724 	struct ice_sched_node *parent, *agg_node, *tc_node;
2725 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2726 	enum ice_status status = ICE_SUCCESS;
2727 	struct ice_hw *hw = pi->hw;
2728 	u32 first_node_teid;
2729 	u16 num_nodes_added;
2730 	u8 i, aggl;
2731 
2732 	tc_node = ice_sched_get_tc_node(pi, tc);
2733 	if (!tc_node)
2734 		return ICE_ERR_CFG;
2735 
2736 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2737 	/* Does Agg node already exist ? */
2738 	if (agg_node)
2739 		return status;
2740 
2741 	aggl = ice_sched_get_agg_layer(hw);
2742 
2743 	/* need one node in Agg layer */
2744 	num_nodes[aggl] = 1;
2745 
2746 	/* Check whether the intermediate nodes have space to add the
2747 	 * new aggregator. If they are full, then SW needs to allocate a new
2748 	 * intermediate node on those layers
2749 	 */
2750 	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2751 		parent = ice_sched_get_first_node(pi, tc_node, i);
2752 
2753 		/* scan all the siblings */
2754 		while (parent) {
2755 			if (parent->num_children < hw->max_children[i])
2756 				break;
2757 			parent = parent->sibling;
2758 		}
2759 
2760 		/* all the nodes are full, reserve one for this layer */
2761 		if (!parent)
2762 			num_nodes[i]++;
2763 	}
2764 
2765 	/* add the aggregator node */
2766 	parent = tc_node;
2767 	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2768 		if (!parent)
2769 			return ICE_ERR_CFG;
2770 
2771 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2772 						      num_nodes[i],
2773 						      &first_node_teid,
2774 						      &num_nodes_added);
2775 		if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
2776 			return ICE_ERR_CFG;
2777 
2778 		/* The newly added node can be a new parent for the next
2779 		 * layer nodes
2780 		 */
2781 		if (num_nodes_added) {
2782 			parent = ice_sched_find_node_by_teid(tc_node,
2783 							     first_node_teid);
2784 			/* register aggregator ID with the aggregator node */
2785 			if (parent && i == aggl)
2786 				parent->agg_id = agg_id;
2787 		} else {
2788 			parent = parent->children[0];
2789 		}
2790 	}
2791 
2792 	return ICE_SUCCESS;
2793 }
2794 
2795 /**
2796  * ice_sched_cfg_agg - configure aggregator node
2797  * @pi: port information structure
2798  * @agg_id: aggregator ID
2799  * @agg_type: aggregator type queue, VSI, or aggregator group
2800  * @tc_bitmap: bits TC bitmap
2801  *
2802  * It registers a unique aggregator node into scheduler services. It
2803  * allows a user to register with a unique ID to track it's resources.
2804  * The aggregator type determines if this is a queue group, VSI group
2805  * or aggregator group. It then creates the aggregator node(s) for requested
2806  * TC(s) or removes an existing aggregator node including its configuration
2807  * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2808  * resources and remove aggregator ID.
2809  * This function needs to be called with scheduler lock held.
2810  */
2811 static enum ice_status
2812 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2813 		  enum ice_agg_type agg_type, ice_bitmap_t *tc_bitmap)
2814 {
2815 	struct ice_sched_agg_info *agg_info;
2816 	enum ice_status status = ICE_SUCCESS;
2817 	struct ice_hw *hw = pi->hw;
2818 	u8 tc;
2819 
2820 	agg_info = ice_get_agg_info(hw, agg_id);
2821 	if (!agg_info) {
2822 		/* Create new entry for new aggregator ID */
2823 		agg_info = (struct ice_sched_agg_info *)
2824 			ice_malloc(hw, sizeof(*agg_info));
2825 		if (!agg_info)
2826 			return ICE_ERR_NO_MEMORY;
2827 
2828 		agg_info->agg_id = agg_id;
2829 		agg_info->agg_type = agg_type;
2830 		agg_info->tc_bitmap[0] = 0;
2831 
2832 		/* Initialize the aggregator VSI list head */
2833 		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2834 
2835 		/* Add new entry in aggregator list */
2836 		LIST_ADD(&agg_info->list_entry, &hw->agg_list);
2837 	}
2838 	/* Create aggregator node(s) for requested TC(s) */
2839 	ice_for_each_traffic_class(tc) {
2840 		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2841 			/* Delete aggregator cfg TC if it exists previously */
2842 			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2843 			if (status)
2844 				break;
2845 			continue;
2846 		}
2847 
2848 		/* Check if aggregator node for TC already exists */
2849 		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2850 			continue;
2851 
2852 		/* Create new aggregator node for TC */
2853 		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2854 		if (status)
2855 			break;
2856 
2857 		/* Save aggregator node's TC information */
2858 		ice_set_bit(tc, agg_info->tc_bitmap);
2859 	}
2860 
2861 	return status;
2862 }
2863 
2864 /**
2865  * ice_cfg_agg - config aggregator node
2866  * @pi: port information structure
2867  * @agg_id: aggregator ID
2868  * @agg_type: aggregator type queue, VSI, or aggregator group
2869  * @tc_bitmap: bits TC bitmap
2870  *
2871  * This function configures aggregator node(s).
2872  */
2873 enum ice_status
2874 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2875 	    u8 tc_bitmap)
2876 {
2877 	ice_bitmap_t bitmap = tc_bitmap;
2878 	enum ice_status status;
2879 
2880 	ice_acquire_lock(&pi->sched_lock);
2881 	status = ice_sched_cfg_agg(pi, agg_id, agg_type,
2882 				   (ice_bitmap_t *)&bitmap);
2883 	if (!status)
2884 		status = ice_save_agg_tc_bitmap(pi, agg_id,
2885 						(ice_bitmap_t *)&bitmap);
2886 	ice_release_lock(&pi->sched_lock);
2887 	return status;
2888 }
2889 
2890 /**
2891  * ice_get_agg_vsi_info - get the aggregator ID
2892  * @agg_info: aggregator info
2893  * @vsi_handle: software VSI handle
2894  *
2895  * The function returns aggregator VSI info based on VSI handle. This function
2896  * needs to be called with scheduler lock held.
2897  */
2898 static struct ice_sched_agg_vsi_info *
2899 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2900 {
2901 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2902 
2903 	LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
2904 			    ice_sched_agg_vsi_info, list_entry)
2905 		if (agg_vsi_info->vsi_handle == vsi_handle)
2906 			return agg_vsi_info;
2907 
2908 	return NULL;
2909 }
2910 
2911 /**
2912  * ice_get_vsi_agg_info - get the aggregator info of VSI
2913  * @hw: pointer to the hardware structure
2914  * @vsi_handle: Sw VSI handle
2915  *
2916  * The function returns aggregator info of VSI represented via vsi_handle. The
2917  * VSI has in this case a different aggregator than the default one. This
2918  * function needs to be called with scheduler lock held.
2919  */
2920 static struct ice_sched_agg_info *
2921 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2922 {
2923 	struct ice_sched_agg_info *agg_info;
2924 
2925 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
2926 			    list_entry) {
2927 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2928 
2929 		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2930 		if (agg_vsi_info)
2931 			return agg_info;
2932 	}
2933 	return NULL;
2934 }
2935 
2936 /**
2937  * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2938  * @pi: port information structure
2939  * @agg_id: aggregator ID
2940  * @vsi_handle: software VSI handle
2941  * @tc_bitmap: TC bitmap of enabled TC(s)
2942  *
2943  * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2944  * lock held.
2945  */
2946 static enum ice_status
2947 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2948 			   ice_bitmap_t *tc_bitmap)
2949 {
2950 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2951 	struct ice_sched_agg_info *agg_info;
2952 
2953 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2954 	if (!agg_info)
2955 		return ICE_ERR_PARAM;
2956 	/* check if entry already exist */
2957 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2958 	if (!agg_vsi_info)
2959 		return ICE_ERR_PARAM;
2960 	ice_cp_bitmap(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2961 		      ICE_MAX_TRAFFIC_CLASS);
2962 	return ICE_SUCCESS;
2963 }
2964 
2965 /**
2966  * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2967  * @pi: port information structure
2968  * @agg_id: aggregator ID
2969  * @vsi_handle: software VSI handle
2970  * @tc_bitmap: TC bitmap of enabled TC(s)
2971  *
2972  * This function moves VSI to a new or default aggregator node. If VSI is
2973  * already associated to the aggregator node then no operation is performed on
2974  * the tree. This function needs to be called with scheduler lock held.
2975  */
2976 static enum ice_status
2977 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2978 			   u16 vsi_handle, ice_bitmap_t *tc_bitmap)
2979 {
2980 	struct ice_sched_agg_vsi_info *agg_vsi_info, *old_agg_vsi_info = NULL;
2981 	struct ice_sched_agg_info *agg_info, *old_agg_info;
2982 	enum ice_status status = ICE_SUCCESS;
2983 	struct ice_hw *hw = pi->hw;
2984 	u8 tc;
2985 
2986 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2987 		return ICE_ERR_PARAM;
2988 	agg_info = ice_get_agg_info(hw, agg_id);
2989 	if (!agg_info)
2990 		return ICE_ERR_PARAM;
2991 	/* If the vsi is already part of another aggregator then update
2992 	 * its vsi info list
2993 	 */
2994 	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2995 	if (old_agg_info && old_agg_info != agg_info) {
2996 		struct ice_sched_agg_vsi_info *vtmp;
2997 
2998 		LIST_FOR_EACH_ENTRY_SAFE(old_agg_vsi_info, vtmp,
2999 					 &old_agg_info->agg_vsi_list,
3000 					 ice_sched_agg_vsi_info, list_entry)
3001 			if (old_agg_vsi_info->vsi_handle == vsi_handle)
3002 				break;
3003 	}
3004 
3005 	/* check if entry already exist */
3006 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
3007 	if (!agg_vsi_info) {
3008 		/* Create new entry for VSI under aggregator list */
3009 		agg_vsi_info = (struct ice_sched_agg_vsi_info *)
3010 			ice_malloc(hw, sizeof(*agg_vsi_info));
3011 		if (!agg_vsi_info)
3012 			return ICE_ERR_PARAM;
3013 
3014 		/* add VSI ID into the aggregator list */
3015 		agg_vsi_info->vsi_handle = vsi_handle;
3016 		LIST_ADD(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
3017 	}
3018 	/* Move VSI node to new aggregator node for requested TC(s) */
3019 	ice_for_each_traffic_class(tc) {
3020 		if (!ice_is_tc_ena(*tc_bitmap, tc))
3021 			continue;
3022 
3023 		/* Move VSI to new aggregator */
3024 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
3025 		if (status)
3026 			break;
3027 
3028 		ice_set_bit(tc, agg_vsi_info->tc_bitmap);
3029 		if (old_agg_vsi_info)
3030 			ice_clear_bit(tc, old_agg_vsi_info->tc_bitmap);
3031 	}
3032 	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
3033 		LIST_DEL(&old_agg_vsi_info->list_entry);
3034 		ice_free(pi->hw, old_agg_vsi_info);
3035 	}
3036 	return status;
3037 }
3038 
3039 /**
3040  * ice_sched_rm_unused_rl_prof - remove unused RL profile
3041  * @hw: pointer to the hardware structure
3042  *
3043  * This function removes unused rate limit profiles from the HW and
3044  * SW DB. The caller needs to hold scheduler lock.
3045  */
3046 static void ice_sched_rm_unused_rl_prof(struct ice_hw *hw)
3047 {
3048 	u16 ln;
3049 
3050 	for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
3051 		struct ice_aqc_rl_profile_info *rl_prof_elem;
3052 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
3053 
3054 		LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
3055 					 &hw->rl_prof_list[ln],
3056 					 ice_aqc_rl_profile_info, list_entry) {
3057 			if (!ice_sched_del_rl_profile(hw, rl_prof_elem))
3058 				ice_debug(hw, ICE_DBG_SCHED, "Removed rl profile\n");
3059 		}
3060 	}
3061 }
3062 
3063 /**
3064  * ice_sched_update_elem - update element
3065  * @hw: pointer to the HW struct
3066  * @node: pointer to node
3067  * @info: node info to update
3068  *
3069  * Update the HW DB, and local SW DB of node. Update the scheduling
3070  * parameters of node from argument info data buffer (Info->data buf) and
3071  * returns success or error on config sched element failure. The caller
3072  * needs to hold scheduler lock.
3073  */
3074 static enum ice_status
3075 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
3076 		      struct ice_aqc_txsched_elem_data *info)
3077 {
3078 	struct ice_aqc_txsched_elem_data buf;
3079 	enum ice_status status;
3080 	u16 elem_cfgd = 0;
3081 	u16 num_elems = 1;
3082 
3083 	buf = *info;
3084 	/* For TC nodes, CIR config is not supported */
3085 	if (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_TC)
3086 		buf.data.valid_sections &= ~ICE_AQC_ELEM_VALID_CIR;
3087 	/* Parent TEID is reserved field in this aq call */
3088 	buf.parent_teid = 0;
3089 	/* Element type is reserved field in this aq call */
3090 	buf.data.elem_type = 0;
3091 	/* Flags is reserved field in this aq call */
3092 	buf.data.flags = 0;
3093 
3094 	/* Update HW DB */
3095 	/* Configure element node */
3096 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
3097 					&elem_cfgd, NULL);
3098 	if (status || elem_cfgd != num_elems) {
3099 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
3100 		return ICE_ERR_CFG;
3101 	}
3102 
3103 	/* Config success case */
3104 	/* Now update local SW DB */
3105 	/* Only copy the data portion of info buffer */
3106 	node->info.data = info->data;
3107 	return status;
3108 }
3109 
3110 /**
3111  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
3112  * @hw: pointer to the HW struct
3113  * @node: sched node to configure
3114  * @rl_type: rate limit type CIR, EIR, or shared
3115  * @bw_alloc: BW weight/allocation
3116  *
3117  * This function configures node element's BW allocation.
3118  */
3119 static enum ice_status
3120 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
3121 			    enum ice_rl_type rl_type, u16 bw_alloc)
3122 {
3123 	struct ice_aqc_txsched_elem_data buf;
3124 	struct ice_aqc_txsched_elem *data;
3125 	enum ice_status status;
3126 
3127 	buf = node->info;
3128 	data = &buf.data;
3129 	if (rl_type == ICE_MIN_BW) {
3130 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3131 		data->cir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
3132 	} else if (rl_type == ICE_MAX_BW) {
3133 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3134 		data->eir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
3135 	} else {
3136 		return ICE_ERR_PARAM;
3137 	}
3138 
3139 	/* Configure element */
3140 	status = ice_sched_update_elem(hw, node, &buf);
3141 	return status;
3142 }
3143 
3144 /**
3145  * ice_move_vsi_to_agg - moves VSI to new or default aggregator
3146  * @pi: port information structure
3147  * @agg_id: aggregator ID
3148  * @vsi_handle: software VSI handle
3149  * @tc_bitmap: TC bitmap of enabled TC(s)
3150  *
3151  * Move or associate VSI to a new or default aggregator node.
3152  */
3153 enum ice_status
3154 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
3155 		    u8 tc_bitmap)
3156 {
3157 	ice_bitmap_t bitmap = tc_bitmap;
3158 	enum ice_status status;
3159 
3160 	ice_acquire_lock(&pi->sched_lock);
3161 	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
3162 					    (ice_bitmap_t *)&bitmap);
3163 	if (!status)
3164 		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
3165 						    (ice_bitmap_t *)&bitmap);
3166 	ice_release_lock(&pi->sched_lock);
3167 	return status;
3168 }
3169 
3170 /**
3171  * ice_rm_agg_cfg - remove aggregator configuration
3172  * @pi: port information structure
3173  * @agg_id: aggregator ID
3174  *
3175  * This function removes aggregator reference to VSI and delete aggregator ID
3176  * info. It removes the aggregator configuration completely.
3177  */
3178 enum ice_status ice_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id)
3179 {
3180 	struct ice_sched_agg_info *agg_info;
3181 	enum ice_status status = ICE_SUCCESS;
3182 	u8 tc;
3183 
3184 	ice_acquire_lock(&pi->sched_lock);
3185 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3186 	if (!agg_info) {
3187 		status = ICE_ERR_DOES_NOT_EXIST;
3188 		goto exit_ice_rm_agg_cfg;
3189 	}
3190 
3191 	ice_for_each_traffic_class(tc) {
3192 		status = ice_rm_agg_cfg_tc(pi, agg_info, tc, true);
3193 		if (status)
3194 			goto exit_ice_rm_agg_cfg;
3195 	}
3196 
3197 	if (ice_is_any_bit_set(agg_info->tc_bitmap, ICE_MAX_TRAFFIC_CLASS)) {
3198 		status = ICE_ERR_IN_USE;
3199 		goto exit_ice_rm_agg_cfg;
3200 	}
3201 
3202 	/* Safe to delete entry now */
3203 	LIST_DEL(&agg_info->list_entry);
3204 	ice_free(pi->hw, agg_info);
3205 
3206 	/* Remove unused RL profile IDs from HW and SW DB */
3207 	ice_sched_rm_unused_rl_prof(pi->hw);
3208 
3209 exit_ice_rm_agg_cfg:
3210 	ice_release_lock(&pi->sched_lock);
3211 	return status;
3212 }
3213 
3214 /**
3215  * ice_set_clear_cir_bw_alloc - set or clear CIR BW alloc information
3216  * @bw_t_info: bandwidth type information structure
3217  * @bw_alloc: Bandwidth allocation information
3218  *
3219  * Save or clear CIR BW alloc information (bw_alloc) in the passed param
3220  * bw_t_info.
3221  */
3222 static void
3223 ice_set_clear_cir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
3224 {
3225 	bw_t_info->cir_bw.bw_alloc = bw_alloc;
3226 	if (bw_t_info->cir_bw.bw_alloc)
3227 		ice_set_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
3228 	else
3229 		ice_clear_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
3230 }
3231 
3232 /**
3233  * ice_set_clear_eir_bw_alloc - set or clear EIR BW alloc information
3234  * @bw_t_info: bandwidth type information structure
3235  * @bw_alloc: Bandwidth allocation information
3236  *
3237  * Save or clear EIR BW alloc information (bw_alloc) in the passed param
3238  * bw_t_info.
3239  */
3240 static void
3241 ice_set_clear_eir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
3242 {
3243 	bw_t_info->eir_bw.bw_alloc = bw_alloc;
3244 	if (bw_t_info->eir_bw.bw_alloc)
3245 		ice_set_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
3246 	else
3247 		ice_clear_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
3248 }
3249 
3250 /**
3251  * ice_sched_save_vsi_bw_alloc - save VSI node's BW alloc information
3252  * @pi: port information structure
3253  * @vsi_handle: sw VSI handle
3254  * @tc: traffic class
3255  * @rl_type: rate limit type min or max
3256  * @bw_alloc: Bandwidth allocation information
3257  *
3258  * Save BW alloc information of VSI type node for post replay use.
3259  */
3260 static enum ice_status
3261 ice_sched_save_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3262 			    enum ice_rl_type rl_type, u16 bw_alloc)
3263 {
3264 	struct ice_vsi_ctx *vsi_ctx;
3265 
3266 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3267 		return ICE_ERR_PARAM;
3268 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3269 	if (!vsi_ctx)
3270 		return ICE_ERR_PARAM;
3271 	switch (rl_type) {
3272 	case ICE_MIN_BW:
3273 		ice_set_clear_cir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
3274 					   bw_alloc);
3275 		break;
3276 	case ICE_MAX_BW:
3277 		ice_set_clear_eir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
3278 					   bw_alloc);
3279 		break;
3280 	default:
3281 		return ICE_ERR_PARAM;
3282 	}
3283 	return ICE_SUCCESS;
3284 }
3285 
3286 /**
3287  * ice_set_clear_cir_bw - set or clear CIR BW
3288  * @bw_t_info: bandwidth type information structure
3289  * @bw: bandwidth in Kbps - Kilo bits per sec
3290  *
3291  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
3292  */
3293 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3294 {
3295 	if (bw == ICE_SCHED_DFLT_BW) {
3296 		ice_clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3297 		bw_t_info->cir_bw.bw = 0;
3298 	} else {
3299 		/* Save type of BW information */
3300 		ice_set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3301 		bw_t_info->cir_bw.bw = bw;
3302 	}
3303 }
3304 
3305 /**
3306  * ice_set_clear_eir_bw - set or clear EIR BW
3307  * @bw_t_info: bandwidth type information structure
3308  * @bw: bandwidth in Kbps - Kilo bits per sec
3309  *
3310  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
3311  */
3312 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3313 {
3314 	if (bw == ICE_SCHED_DFLT_BW) {
3315 		ice_clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3316 		bw_t_info->eir_bw.bw = 0;
3317 	} else {
3318 		/* save EIR BW information */
3319 		ice_set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3320 		bw_t_info->eir_bw.bw = bw;
3321 	}
3322 }
3323 
3324 /**
3325  * ice_set_clear_shared_bw - set or clear shared BW
3326  * @bw_t_info: bandwidth type information structure
3327  * @bw: bandwidth in Kbps - Kilo bits per sec
3328  *
3329  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3330  */
3331 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3332 {
3333 	if (bw == ICE_SCHED_DFLT_BW) {
3334 		ice_clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3335 		bw_t_info->shared_bw = 0;
3336 	} else {
3337 		/* save shared BW information */
3338 		ice_set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3339 		bw_t_info->shared_bw = bw;
3340 	}
3341 }
3342 
3343 /**
3344  * ice_sched_save_vsi_bw - save VSI node's BW information
3345  * @pi: port information structure
3346  * @vsi_handle: sw VSI handle
3347  * @tc: traffic class
3348  * @rl_type: rate limit type min, max, or shared
3349  * @bw: bandwidth in Kbps - Kilo bits per sec
3350  *
3351  * Save BW information of VSI type node for post replay use.
3352  */
3353 static enum ice_status
3354 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3355 		      enum ice_rl_type rl_type, u32 bw)
3356 {
3357 	struct ice_vsi_ctx *vsi_ctx;
3358 
3359 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3360 		return ICE_ERR_PARAM;
3361 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3362 	if (!vsi_ctx)
3363 		return ICE_ERR_PARAM;
3364 	switch (rl_type) {
3365 	case ICE_MIN_BW:
3366 		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3367 		break;
3368 	case ICE_MAX_BW:
3369 		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3370 		break;
3371 	case ICE_SHARED_BW:
3372 		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3373 		break;
3374 	default:
3375 		return ICE_ERR_PARAM;
3376 	}
3377 	return ICE_SUCCESS;
3378 }
3379 
3380 /**
3381  * ice_set_clear_prio - set or clear priority information
3382  * @bw_t_info: bandwidth type information structure
3383  * @prio: priority to save
3384  *
3385  * Save or clear priority (prio) in the passed param bw_t_info.
3386  */
3387 static void ice_set_clear_prio(struct ice_bw_type_info *bw_t_info, u8 prio)
3388 {
3389 	bw_t_info->generic = prio;
3390 	if (bw_t_info->generic)
3391 		ice_set_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
3392 	else
3393 		ice_clear_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
3394 }
3395 
3396 /**
3397  * ice_sched_save_vsi_prio - save VSI node's priority information
3398  * @pi: port information structure
3399  * @vsi_handle: Software VSI handle
3400  * @tc: traffic class
3401  * @prio: priority to save
3402  *
3403  * Save priority information of VSI type node for post replay use.
3404  */
3405 static enum ice_status
3406 ice_sched_save_vsi_prio(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3407 			u8 prio)
3408 {
3409 	struct ice_vsi_ctx *vsi_ctx;
3410 
3411 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3412 		return ICE_ERR_PARAM;
3413 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3414 	if (!vsi_ctx)
3415 		return ICE_ERR_PARAM;
3416 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
3417 		return ICE_ERR_PARAM;
3418 	ice_set_clear_prio(&vsi_ctx->sched.bw_t_info[tc], prio);
3419 	return ICE_SUCCESS;
3420 }
3421 
3422 /**
3423  * ice_sched_save_agg_bw_alloc - save aggregator node's BW alloc information
3424  * @pi: port information structure
3425  * @agg_id: node aggregator ID
3426  * @tc: traffic class
3427  * @rl_type: rate limit type min or max
3428  * @bw_alloc: bandwidth alloc information
3429  *
3430  * Save BW alloc information of AGG type node for post replay use.
3431  */
3432 static enum ice_status
3433 ice_sched_save_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3434 			    enum ice_rl_type rl_type, u16 bw_alloc)
3435 {
3436 	struct ice_sched_agg_info *agg_info;
3437 
3438 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3439 	if (!agg_info)
3440 		return ICE_ERR_PARAM;
3441 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
3442 		return ICE_ERR_PARAM;
3443 	switch (rl_type) {
3444 	case ICE_MIN_BW:
3445 		ice_set_clear_cir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
3446 		break;
3447 	case ICE_MAX_BW:
3448 		ice_set_clear_eir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
3449 		break;
3450 	default:
3451 		return ICE_ERR_PARAM;
3452 	}
3453 	return ICE_SUCCESS;
3454 }
3455 
3456 /**
3457  * ice_sched_save_agg_bw - save aggregator node's BW information
3458  * @pi: port information structure
3459  * @agg_id: node aggregator ID
3460  * @tc: traffic class
3461  * @rl_type: rate limit type min, max, or shared
3462  * @bw: bandwidth in Kbps - Kilo bits per sec
3463  *
3464  * Save BW information of AGG type node for post replay use.
3465  */
3466 static enum ice_status
3467 ice_sched_save_agg_bw(struct ice_port_info *pi, u32 agg_id, u8 tc,
3468 		      enum ice_rl_type rl_type, u32 bw)
3469 {
3470 	struct ice_sched_agg_info *agg_info;
3471 
3472 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3473 	if (!agg_info)
3474 		return ICE_ERR_PARAM;
3475 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
3476 		return ICE_ERR_PARAM;
3477 	switch (rl_type) {
3478 	case ICE_MIN_BW:
3479 		ice_set_clear_cir_bw(&agg_info->bw_t_info[tc], bw);
3480 		break;
3481 	case ICE_MAX_BW:
3482 		ice_set_clear_eir_bw(&agg_info->bw_t_info[tc], bw);
3483 		break;
3484 	case ICE_SHARED_BW:
3485 		ice_set_clear_shared_bw(&agg_info->bw_t_info[tc], bw);
3486 		break;
3487 	default:
3488 		return ICE_ERR_PARAM;
3489 	}
3490 	return ICE_SUCCESS;
3491 }
3492 
3493 /**
3494  * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3495  * @pi: port information structure
3496  * @vsi_handle: software VSI handle
3497  * @tc: traffic class
3498  * @rl_type: min or max
3499  * @bw: bandwidth in Kbps
3500  *
3501  * This function configures BW limit of VSI scheduling node based on TC
3502  * information.
3503  */
3504 enum ice_status
3505 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3506 			  enum ice_rl_type rl_type, u32 bw)
3507 {
3508 	enum ice_status status;
3509 
3510 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3511 						  ICE_AGG_TYPE_VSI,
3512 						  tc, rl_type, bw);
3513 	if (!status) {
3514 		ice_acquire_lock(&pi->sched_lock);
3515 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
3516 		ice_release_lock(&pi->sched_lock);
3517 	}
3518 	return status;
3519 }
3520 
3521 /**
3522  * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
3523  * @pi: port information structure
3524  * @vsi_handle: software VSI handle
3525  * @tc: traffic class
3526  * @rl_type: min or max
3527  *
3528  * This function configures default BW limit of VSI scheduling node based on TC
3529  * information.
3530  */
3531 enum ice_status
3532 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3533 			       enum ice_rl_type rl_type)
3534 {
3535 	enum ice_status status;
3536 
3537 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3538 						  ICE_AGG_TYPE_VSI,
3539 						  tc, rl_type,
3540 						  ICE_SCHED_DFLT_BW);
3541 	if (!status) {
3542 		ice_acquire_lock(&pi->sched_lock);
3543 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
3544 					       ICE_SCHED_DFLT_BW);
3545 		ice_release_lock(&pi->sched_lock);
3546 	}
3547 	return status;
3548 }
3549 
3550 /**
3551  * ice_cfg_agg_bw_lmt_per_tc - configure aggregator BW limit per TC
3552  * @pi: port information structure
3553  * @agg_id: aggregator ID
3554  * @tc: traffic class
3555  * @rl_type: min or max
3556  * @bw: bandwidth in Kbps
3557  *
3558  * This function applies BW limit to aggregator scheduling node based on TC
3559  * information.
3560  */
3561 enum ice_status
3562 ice_cfg_agg_bw_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3563 			  enum ice_rl_type rl_type, u32 bw)
3564 {
3565 	enum ice_status status;
3566 
3567 	status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
3568 						  tc, rl_type, bw);
3569 	if (!status) {
3570 		ice_acquire_lock(&pi->sched_lock);
3571 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
3572 		ice_release_lock(&pi->sched_lock);
3573 	}
3574 	return status;
3575 }
3576 
3577 /**
3578  * ice_cfg_agg_bw_dflt_lmt_per_tc - configure aggregator BW default limit per TC
3579  * @pi: port information structure
3580  * @agg_id: aggregator ID
3581  * @tc: traffic class
3582  * @rl_type: min or max
3583  *
3584  * This function applies default BW limit to aggregator scheduling node based
3585  * on TC information.
3586  */
3587 enum ice_status
3588 ice_cfg_agg_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3589 			       enum ice_rl_type rl_type)
3590 {
3591 	enum ice_status status;
3592 
3593 	status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
3594 						  tc, rl_type,
3595 						  ICE_SCHED_DFLT_BW);
3596 	if (!status) {
3597 		ice_acquire_lock(&pi->sched_lock);
3598 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type,
3599 					       ICE_SCHED_DFLT_BW);
3600 		ice_release_lock(&pi->sched_lock);
3601 	}
3602 	return status;
3603 }
3604 
3605 /**
3606  * ice_cfg_vsi_bw_shared_lmt - configure VSI BW shared limit
3607  * @pi: port information structure
3608  * @vsi_handle: software VSI handle
3609  * @min_bw: minimum bandwidth in Kbps
3610  * @max_bw: maximum bandwidth in Kbps
3611  * @shared_bw: shared bandwidth in Kbps
3612  *
3613  * Configure shared rate limiter(SRL) of all VSI type nodes across all traffic
3614  * classes for VSI matching handle.
3615  */
3616 enum ice_status
3617 ice_cfg_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle, u32 min_bw,
3618 			  u32 max_bw, u32 shared_bw)
3619 {
3620 	return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle, min_bw, max_bw,
3621 					       shared_bw);
3622 }
3623 
3624 /**
3625  * ice_cfg_vsi_bw_no_shared_lmt - configure VSI BW for no shared limiter
3626  * @pi: port information structure
3627  * @vsi_handle: software VSI handle
3628  *
3629  * This function removes the shared rate limiter(SRL) of all VSI type nodes
3630  * across all traffic classes for VSI matching handle.
3631  */
3632 enum ice_status
3633 ice_cfg_vsi_bw_no_shared_lmt(struct ice_port_info *pi, u16 vsi_handle)
3634 {
3635 	return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle,
3636 					       ICE_SCHED_DFLT_BW,
3637 					       ICE_SCHED_DFLT_BW,
3638 					       ICE_SCHED_DFLT_BW);
3639 }
3640 
3641 /**
3642  * ice_cfg_agg_bw_shared_lmt - configure aggregator BW shared limit
3643  * @pi: port information structure
3644  * @agg_id: aggregator ID
3645  * @min_bw: minimum bandwidth in Kbps
3646  * @max_bw: maximum bandwidth in Kbps
3647  * @shared_bw: shared bandwidth in Kbps
3648  *
3649  * This function configures the shared rate limiter(SRL) of all aggregator type
3650  * nodes across all traffic classes for aggregator matching agg_id.
3651  */
3652 enum ice_status
3653 ice_cfg_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id, u32 min_bw,
3654 			  u32 max_bw, u32 shared_bw)
3655 {
3656 	return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, min_bw, max_bw,
3657 					       shared_bw);
3658 }
3659 
3660 /**
3661  * ice_cfg_agg_bw_no_shared_lmt - configure aggregator BW for no shared limiter
3662  * @pi: port information structure
3663  * @agg_id: aggregator ID
3664  *
3665  * This function removes the shared rate limiter(SRL) of all aggregator type
3666  * nodes across all traffic classes for aggregator matching agg_id.
3667  */
3668 enum ice_status
3669 ice_cfg_agg_bw_no_shared_lmt(struct ice_port_info *pi, u32 agg_id)
3670 {
3671 	return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, ICE_SCHED_DFLT_BW,
3672 					       ICE_SCHED_DFLT_BW,
3673 					       ICE_SCHED_DFLT_BW);
3674 }
3675 
3676 /**
3677  * ice_cfg_agg_bw_shared_lmt_per_tc - config aggregator BW shared limit per tc
3678  * @pi: port information structure
3679  * @agg_id: aggregator ID
3680  * @tc: traffic class
3681  * @min_bw: minimum bandwidth in Kbps
3682  * @max_bw: maximum bandwidth in Kbps
3683  * @shared_bw: shared bandwidth in Kbps
3684  *
3685  * This function configures the shared rate limiter(SRL) of all aggregator type
3686  * nodes across all traffic classes for aggregator matching agg_id.
3687  */
3688 enum ice_status
3689 ice_cfg_agg_bw_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3690 				 u32 min_bw, u32 max_bw, u32 shared_bw)
3691 {
3692 	return ice_sched_set_agg_bw_shared_lmt_per_tc(pi, agg_id, tc, min_bw,
3693 						      max_bw, shared_bw);
3694 }
3695 
3696 /**
3697  * ice_cfg_agg_bw_no_shared_lmt_per_tc - cfg aggregator BW shared limit per tc
3698  * @pi: port information structure
3699  * @agg_id: aggregator ID
3700  * @tc: traffic class
3701  *
3702  * This function configures the shared rate limiter(SRL) of all aggregator type
3703  * nodes across all traffic classes for aggregator matching agg_id.
3704  */
3705 enum ice_status
3706 ice_cfg_agg_bw_no_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc)
3707 {
3708 	return ice_sched_set_agg_bw_shared_lmt_per_tc(pi, agg_id, tc,
3709 						      ICE_SCHED_DFLT_BW,
3710 						      ICE_SCHED_DFLT_BW,
3711 						      ICE_SCHED_DFLT_BW);
3712 }
3713 
3714 /**
3715  * ice_cfg_vsi_q_priority - config VSI queue priority of node
3716  * @pi: port information structure
3717  * @num_qs: number of VSI queues
3718  * @q_ids: queue IDs array
3719  * @q_prio: queue priority array
3720  *
3721  * This function configures the queue node priority (Sibling Priority) of the
3722  * passed in VSI's queue(s) for a given traffic class (TC).
3723  */
3724 enum ice_status
3725 ice_cfg_vsi_q_priority(struct ice_port_info *pi, u16 num_qs, u32 *q_ids,
3726 		       u8 *q_prio)
3727 {
3728 	enum ice_status status = ICE_ERR_PARAM;
3729 	u16 i;
3730 
3731 	ice_acquire_lock(&pi->sched_lock);
3732 
3733 	for (i = 0; i < num_qs; i++) {
3734 		struct ice_sched_node *node;
3735 
3736 		node = ice_sched_find_node_by_teid(pi->root, q_ids[i]);
3737 		if (!node || node->info.data.elem_type !=
3738 		    ICE_AQC_ELEM_TYPE_LEAF) {
3739 			status = ICE_ERR_PARAM;
3740 			break;
3741 		}
3742 		/* Configure Priority */
3743 		status = ice_sched_cfg_sibl_node_prio(pi, node, q_prio[i]);
3744 		if (status)
3745 			break;
3746 	}
3747 
3748 	ice_release_lock(&pi->sched_lock);
3749 	return status;
3750 }
3751 
3752 /**
3753  * ice_cfg_agg_vsi_priority_per_tc - config aggregator's VSI priority per TC
3754  * @pi: port information structure
3755  * @agg_id: Aggregator ID
3756  * @num_vsis: number of VSI(s)
3757  * @vsi_handle_arr: array of software VSI handles
3758  * @node_prio: pointer to node priority
3759  * @tc: traffic class
3760  *
3761  * This function configures the node priority (Sibling Priority) of the
3762  * passed in VSI's for a given traffic class (TC) of an Aggregator ID.
3763  */
3764 enum ice_status
3765 ice_cfg_agg_vsi_priority_per_tc(struct ice_port_info *pi, u32 agg_id,
3766 				u16 num_vsis, u16 *vsi_handle_arr,
3767 				u8 *node_prio, u8 tc)
3768 {
3769 	struct ice_sched_agg_vsi_info *agg_vsi_info;
3770 	struct ice_sched_node *tc_node, *agg_node;
3771 	enum ice_status status = ICE_ERR_PARAM;
3772 	struct ice_sched_agg_info *agg_info;
3773 	bool agg_id_present = false;
3774 	struct ice_hw *hw = pi->hw;
3775 	u16 i;
3776 
3777 	ice_acquire_lock(&pi->sched_lock);
3778 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
3779 			    list_entry)
3780 		if (agg_info->agg_id == agg_id) {
3781 			agg_id_present = true;
3782 			break;
3783 		}
3784 	if (!agg_id_present)
3785 		goto exit_agg_priority_per_tc;
3786 
3787 	tc_node = ice_sched_get_tc_node(pi, tc);
3788 	if (!tc_node)
3789 		goto exit_agg_priority_per_tc;
3790 
3791 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
3792 	if (!agg_node)
3793 		goto exit_agg_priority_per_tc;
3794 
3795 	if (num_vsis > hw->max_children[agg_node->tx_sched_layer])
3796 		goto exit_agg_priority_per_tc;
3797 
3798 	for (i = 0; i < num_vsis; i++) {
3799 		struct ice_sched_node *vsi_node;
3800 		bool vsi_handle_valid = false;
3801 		u16 vsi_handle;
3802 
3803 		status = ICE_ERR_PARAM;
3804 		vsi_handle = vsi_handle_arr[i];
3805 		if (!ice_is_vsi_valid(hw, vsi_handle))
3806 			goto exit_agg_priority_per_tc;
3807 		/* Verify child nodes before applying settings */
3808 		LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
3809 				    ice_sched_agg_vsi_info, list_entry)
3810 			if (agg_vsi_info->vsi_handle == vsi_handle) {
3811 				vsi_handle_valid = true;
3812 				break;
3813 			}
3814 
3815 		if (!vsi_handle_valid)
3816 			goto exit_agg_priority_per_tc;
3817 
3818 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
3819 		if (!vsi_node)
3820 			goto exit_agg_priority_per_tc;
3821 
3822 		if (ice_sched_find_node_in_subtree(hw, agg_node, vsi_node)) {
3823 			/* Configure Priority */
3824 			status = ice_sched_cfg_sibl_node_prio(pi, vsi_node,
3825 							      node_prio[i]);
3826 			if (status)
3827 				break;
3828 			status = ice_sched_save_vsi_prio(pi, vsi_handle, tc,
3829 							 node_prio[i]);
3830 			if (status)
3831 				break;
3832 		}
3833 	}
3834 
3835 exit_agg_priority_per_tc:
3836 	ice_release_lock(&pi->sched_lock);
3837 	return status;
3838 }
3839 
3840 /**
3841  * ice_cfg_vsi_bw_alloc - config VSI BW alloc per TC
3842  * @pi: port information structure
3843  * @vsi_handle: software VSI handle
3844  * @ena_tcmap: enabled TC map
3845  * @rl_type: Rate limit type CIR/EIR
3846  * @bw_alloc: Array of BW alloc
3847  *
3848  * This function configures the BW allocation of the passed in VSI's
3849  * node(s) for enabled traffic class.
3850  */
3851 enum ice_status
3852 ice_cfg_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 ena_tcmap,
3853 		     enum ice_rl_type rl_type, u8 *bw_alloc)
3854 {
3855 	enum ice_status status = ICE_SUCCESS;
3856 	u8 tc;
3857 
3858 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3859 		return ICE_ERR_PARAM;
3860 
3861 	ice_acquire_lock(&pi->sched_lock);
3862 
3863 	/* Return success if no nodes are present across TC */
3864 	ice_for_each_traffic_class(tc) {
3865 		struct ice_sched_node *tc_node, *vsi_node;
3866 
3867 		if (!ice_is_tc_ena(ena_tcmap, tc))
3868 			continue;
3869 
3870 		tc_node = ice_sched_get_tc_node(pi, tc);
3871 		if (!tc_node)
3872 			continue;
3873 
3874 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
3875 		if (!vsi_node)
3876 			continue;
3877 
3878 		status = ice_sched_cfg_node_bw_alloc(pi->hw, vsi_node, rl_type,
3879 						     bw_alloc[tc]);
3880 		if (status)
3881 			break;
3882 		status = ice_sched_save_vsi_bw_alloc(pi, vsi_handle, tc,
3883 						     rl_type, bw_alloc[tc]);
3884 		if (status)
3885 			break;
3886 	}
3887 
3888 	ice_release_lock(&pi->sched_lock);
3889 	return status;
3890 }
3891 
3892 /**
3893  * ice_cfg_agg_bw_alloc - config aggregator BW alloc
3894  * @pi: port information structure
3895  * @agg_id: aggregator ID
3896  * @ena_tcmap: enabled TC map
3897  * @rl_type: rate limit type CIR/EIR
3898  * @bw_alloc: array of BW alloc
3899  *
3900  * This function configures the BW allocation of passed in aggregator for
3901  * enabled traffic class(s).
3902  */
3903 enum ice_status
3904 ice_cfg_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 ena_tcmap,
3905 		     enum ice_rl_type rl_type, u8 *bw_alloc)
3906 {
3907 	struct ice_sched_agg_info *agg_info;
3908 	bool agg_id_present = false;
3909 	enum ice_status status = ICE_SUCCESS;
3910 	struct ice_hw *hw = pi->hw;
3911 	u8 tc;
3912 
3913 	ice_acquire_lock(&pi->sched_lock);
3914 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
3915 			    list_entry)
3916 		if (agg_info->agg_id == agg_id) {
3917 			agg_id_present = true;
3918 			break;
3919 		}
3920 	if (!agg_id_present) {
3921 		status = ICE_ERR_PARAM;
3922 		goto exit_cfg_agg_bw_alloc;
3923 	}
3924 
3925 	/* Return success if no nodes are present across TC */
3926 	ice_for_each_traffic_class(tc) {
3927 		struct ice_sched_node *tc_node, *agg_node;
3928 
3929 		if (!ice_is_tc_ena(ena_tcmap, tc))
3930 			continue;
3931 
3932 		tc_node = ice_sched_get_tc_node(pi, tc);
3933 		if (!tc_node)
3934 			continue;
3935 
3936 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
3937 		if (!agg_node)
3938 			continue;
3939 
3940 		status = ice_sched_cfg_node_bw_alloc(hw, agg_node, rl_type,
3941 						     bw_alloc[tc]);
3942 		if (status)
3943 			break;
3944 		status = ice_sched_save_agg_bw_alloc(pi, agg_id, tc, rl_type,
3945 						     bw_alloc[tc]);
3946 		if (status)
3947 			break;
3948 	}
3949 
3950 exit_cfg_agg_bw_alloc:
3951 	ice_release_lock(&pi->sched_lock);
3952 	return status;
3953 }
3954 
3955 /**
3956  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3957  * @hw: pointer to the HW struct
3958  * @bw: bandwidth in Kbps
3959  *
3960  * This function calculates the wakeup parameter of RL profile.
3961  */
3962 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3963 {
3964 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3965 	s32 wakeup_f_int;
3966 	u16 wakeup = 0;
3967 
3968 	/* Get the wakeup integer value */
3969 	bytes_per_sec = DIV_S64((s64)bw * 1000, BITS_PER_BYTE);
3970 	wakeup_int = DIV_S64(hw->psm_clk_freq, bytes_per_sec);
3971 	if (wakeup_int > 63) {
3972 		wakeup = (u16)((1 << 15) | wakeup_int);
3973 	} else {
3974 		/* Calculate fraction value up to 4 decimals
3975 		 * Convert Integer value to a constant multiplier
3976 		 */
3977 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3978 		wakeup_a = DIV_S64((s64)ICE_RL_PROF_MULTIPLIER *
3979 				   hw->psm_clk_freq, bytes_per_sec);
3980 
3981 		/* Get Fraction value */
3982 		wakeup_f = wakeup_a - wakeup_b;
3983 
3984 		/* Round up the Fractional value via Ceil(Fractional value) */
3985 		if (wakeup_f > DIV_S64(ICE_RL_PROF_MULTIPLIER, 2))
3986 			wakeup_f += 1;
3987 
3988 		wakeup_f_int = (s32)DIV_S64(wakeup_f * ICE_RL_PROF_FRACTION,
3989 					    ICE_RL_PROF_MULTIPLIER);
3990 		wakeup |= (u16)(wakeup_int << 9);
3991 		wakeup |= (u16)(0x1ff & wakeup_f_int);
3992 	}
3993 
3994 	return wakeup;
3995 }
3996 
3997 /**
3998  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3999  * @hw: pointer to the HW struct
4000  * @bw: bandwidth in Kbps
4001  * @profile: profile parameters to return
4002  *
4003  * This function converts the BW to profile structure format.
4004  */
4005 static enum ice_status
4006 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
4007 			   struct ice_aqc_rl_profile_elem *profile)
4008 {
4009 	enum ice_status status = ICE_ERR_PARAM;
4010 	s64 bytes_per_sec, ts_rate, mv_tmp;
4011 	bool found = false;
4012 	s32 encode = 0;
4013 	s64 mv = 0;
4014 	s32 i;
4015 
4016 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
4017 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
4018 		return status;
4019 
4020 	/* Bytes per second from Kbps */
4021 	bytes_per_sec = DIV_S64((s64)bw * 1000, BITS_PER_BYTE);
4022 
4023 	/* encode is 6 bits but really useful are 5 bits */
4024 	for (i = 0; i < 64; i++) {
4025 		u64 pow_result = BIT_ULL(i);
4026 
4027 		ts_rate = DIV_S64((s64)hw->psm_clk_freq,
4028 				  pow_result * ICE_RL_PROF_TS_MULTIPLIER);
4029 		if (ts_rate <= 0)
4030 			continue;
4031 
4032 		/* Multiplier value */
4033 		mv_tmp = DIV_S64(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
4034 				 ts_rate);
4035 
4036 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
4037 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
4038 
4039 		/* First multiplier value greater than the given
4040 		 * accuracy bytes
4041 		 */
4042 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
4043 			encode = i;
4044 			found = true;
4045 			break;
4046 		}
4047 	}
4048 	if (found) {
4049 		u16 wm;
4050 
4051 		wm = ice_sched_calc_wakeup(hw, bw);
4052 		profile->rl_multiply = CPU_TO_LE16(mv);
4053 		profile->wake_up_calc = CPU_TO_LE16(wm);
4054 		profile->rl_encode = CPU_TO_LE16(encode);
4055 		status = ICE_SUCCESS;
4056 	} else {
4057 		status = ICE_ERR_DOES_NOT_EXIST;
4058 	}
4059 
4060 	return status;
4061 }
4062 
4063 /**
4064  * ice_sched_add_rl_profile - add RL profile
4065  * @hw: pointer to the hardware structure
4066  * @rl_type: type of rate limit BW - min, max, or shared
4067  * @bw: bandwidth in Kbps - Kilo bits per sec
4068  * @layer_num: specifies in which layer to create profile
4069  *
4070  * This function first checks the existing list for corresponding BW
4071  * parameter. If it exists, it returns the associated profile otherwise
4072  * it creates a new rate limit profile for requested BW, and adds it to
4073  * the HW DB and local list. It returns the new profile or null on error.
4074  * The caller needs to hold the scheduler lock.
4075  */
4076 static struct ice_aqc_rl_profile_info *
4077 ice_sched_add_rl_profile(struct ice_hw *hw, enum ice_rl_type rl_type,
4078 			 u32 bw, u8 layer_num)
4079 {
4080 	struct ice_aqc_rl_profile_info *rl_prof_elem;
4081 	u16 profiles_added = 0, num_profiles = 1;
4082 	struct ice_aqc_rl_profile_elem *buf;
4083 	enum ice_status status;
4084 	u8 profile_type;
4085 
4086 	if (!hw || layer_num >= hw->num_tx_sched_layers)
4087 		return NULL;
4088 	switch (rl_type) {
4089 	case ICE_MIN_BW:
4090 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
4091 		break;
4092 	case ICE_MAX_BW:
4093 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
4094 		break;
4095 	case ICE_SHARED_BW:
4096 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
4097 		break;
4098 	default:
4099 		return NULL;
4100 	}
4101 
4102 	LIST_FOR_EACH_ENTRY(rl_prof_elem, &hw->rl_prof_list[layer_num],
4103 			    ice_aqc_rl_profile_info, list_entry)
4104 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
4105 		    profile_type && rl_prof_elem->bw == bw)
4106 			/* Return existing profile ID info */
4107 			return rl_prof_elem;
4108 
4109 	/* Create new profile ID */
4110 	rl_prof_elem = (struct ice_aqc_rl_profile_info *)
4111 		ice_malloc(hw, sizeof(*rl_prof_elem));
4112 
4113 	if (!rl_prof_elem)
4114 		return NULL;
4115 
4116 	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
4117 	if (status != ICE_SUCCESS)
4118 		goto exit_add_rl_prof;
4119 
4120 	rl_prof_elem->bw = bw;
4121 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
4122 	rl_prof_elem->profile.level = layer_num + 1;
4123 	rl_prof_elem->profile.flags = profile_type;
4124 	rl_prof_elem->profile.max_burst_size = CPU_TO_LE16(hw->max_burst_size);
4125 
4126 	/* Create new entry in HW DB */
4127 	buf = &rl_prof_elem->profile;
4128 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
4129 				       &profiles_added, NULL);
4130 	if (status || profiles_added != num_profiles)
4131 		goto exit_add_rl_prof;
4132 
4133 	/* Good entry - add in the list */
4134 	rl_prof_elem->prof_id_ref = 0;
4135 	LIST_ADD(&rl_prof_elem->list_entry, &hw->rl_prof_list[layer_num]);
4136 	return rl_prof_elem;
4137 
4138 exit_add_rl_prof:
4139 	ice_free(hw, rl_prof_elem);
4140 	return NULL;
4141 }
4142 
4143 /**
4144  * ice_sched_cfg_node_bw_lmt - configure node sched params
4145  * @hw: pointer to the HW struct
4146  * @node: sched node to configure
4147  * @rl_type: rate limit type CIR, EIR, or shared
4148  * @rl_prof_id: rate limit profile ID
4149  *
4150  * This function configures node element's BW limit.
4151  */
4152 static enum ice_status
4153 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
4154 			  enum ice_rl_type rl_type, u16 rl_prof_id)
4155 {
4156 	struct ice_aqc_txsched_elem_data buf;
4157 	struct ice_aqc_txsched_elem *data;
4158 
4159 	buf = node->info;
4160 	data = &buf.data;
4161 	switch (rl_type) {
4162 	case ICE_MIN_BW:
4163 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
4164 		data->cir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
4165 		break;
4166 	case ICE_MAX_BW:
4167 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
4168 		data->eir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
4169 		break;
4170 	case ICE_SHARED_BW:
4171 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
4172 		data->srl_id = CPU_TO_LE16(rl_prof_id);
4173 		break;
4174 	default:
4175 		/* Unknown rate limit type */
4176 		return ICE_ERR_PARAM;
4177 	}
4178 
4179 	/* Configure element */
4180 	return ice_sched_update_elem(hw, node, &buf);
4181 }
4182 
4183 /**
4184  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
4185  * @node: sched node
4186  * @rl_type: rate limit type
4187  *
4188  * If existing profile matches, it returns the corresponding rate
4189  * limit profile ID, otherwise it returns an invalid ID as error.
4190  */
4191 static u16
4192 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
4193 			      enum ice_rl_type rl_type)
4194 {
4195 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
4196 	struct ice_aqc_txsched_elem *data;
4197 
4198 	data = &node->info.data;
4199 	switch (rl_type) {
4200 	case ICE_MIN_BW:
4201 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
4202 			rl_prof_id = LE16_TO_CPU(data->cir_bw.bw_profile_idx);
4203 		break;
4204 	case ICE_MAX_BW:
4205 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
4206 			rl_prof_id = LE16_TO_CPU(data->eir_bw.bw_profile_idx);
4207 		break;
4208 	case ICE_SHARED_BW:
4209 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
4210 			rl_prof_id = LE16_TO_CPU(data->srl_id);
4211 		break;
4212 	default:
4213 		break;
4214 	}
4215 
4216 	return rl_prof_id;
4217 }
4218 
4219 /**
4220  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
4221  * @pi: port information structure
4222  * @rl_type: type of rate limit BW - min, max, or shared
4223  * @layer_index: layer index
4224  *
4225  * This function returns requested profile creation layer.
4226  */
4227 static u8
4228 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
4229 			    u8 layer_index)
4230 {
4231 	struct ice_hw *hw = pi->hw;
4232 
4233 	if (layer_index >= hw->num_tx_sched_layers)
4234 		return ICE_SCHED_INVAL_LAYER_NUM;
4235 	switch (rl_type) {
4236 	case ICE_MIN_BW:
4237 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
4238 			return layer_index;
4239 		break;
4240 	case ICE_MAX_BW:
4241 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
4242 			return layer_index;
4243 		break;
4244 	case ICE_SHARED_BW:
4245 		/* if current layer doesn't support SRL profile creation
4246 		 * then try a layer up or down.
4247 		 */
4248 		if (hw->layer_info[layer_index].max_srl_profiles)
4249 			return layer_index;
4250 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
4251 			 hw->layer_info[layer_index + 1].max_srl_profiles)
4252 			return layer_index + 1;
4253 		else if (layer_index > 0 &&
4254 			 hw->layer_info[layer_index - 1].max_srl_profiles)
4255 			return layer_index - 1;
4256 		break;
4257 	default:
4258 		break;
4259 	}
4260 	return ICE_SCHED_INVAL_LAYER_NUM;
4261 }
4262 
4263 /**
4264  * ice_sched_get_srl_node - get shared rate limit node
4265  * @node: tree node
4266  * @srl_layer: shared rate limit layer
4267  *
4268  * This function returns SRL node to be used for shared rate limit purpose.
4269  * The caller needs to hold scheduler lock.
4270  */
4271 static struct ice_sched_node *
4272 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
4273 {
4274 	if (srl_layer > node->tx_sched_layer)
4275 		return node->children[0];
4276 	else if (srl_layer < node->tx_sched_layer)
4277 		/* Node can't be created without a parent. It will always
4278 		 * have a valid parent except root node.
4279 		 */
4280 		return node->parent;
4281 	else
4282 		return node;
4283 }
4284 
4285 /**
4286  * ice_sched_rm_rl_profile - remove RL profile ID
4287  * @hw: pointer to the hardware structure
4288  * @layer_num: layer number where profiles are saved
4289  * @profile_type: profile type like EIR, CIR, or SRL
4290  * @profile_id: profile ID to remove
4291  *
4292  * This function removes rate limit profile from layer 'layer_num' of type
4293  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
4294  * scheduler lock.
4295  */
4296 static enum ice_status
4297 ice_sched_rm_rl_profile(struct ice_hw *hw, u8 layer_num, u8 profile_type,
4298 			u16 profile_id)
4299 {
4300 	struct ice_aqc_rl_profile_info *rl_prof_elem;
4301 	enum ice_status status = ICE_SUCCESS;
4302 
4303 	if (!hw || layer_num >= hw->num_tx_sched_layers)
4304 		return ICE_ERR_PARAM;
4305 	/* Check the existing list for RL profile */
4306 	LIST_FOR_EACH_ENTRY(rl_prof_elem, &hw->rl_prof_list[layer_num],
4307 			    ice_aqc_rl_profile_info, list_entry)
4308 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
4309 		    profile_type &&
4310 		    LE16_TO_CPU(rl_prof_elem->profile.profile_id) ==
4311 		    profile_id) {
4312 			if (rl_prof_elem->prof_id_ref)
4313 				rl_prof_elem->prof_id_ref--;
4314 
4315 			/* Remove old profile ID from database */
4316 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
4317 			if (status && status != ICE_ERR_IN_USE)
4318 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
4319 			break;
4320 		}
4321 	if (status == ICE_ERR_IN_USE)
4322 		status = ICE_SUCCESS;
4323 	return status;
4324 }
4325 
4326 /**
4327  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
4328  * @pi: port information structure
4329  * @node: pointer to node structure
4330  * @rl_type: rate limit type min, max, or shared
4331  * @layer_num: layer number where RL profiles are saved
4332  *
4333  * This function configures node element's BW rate limit profile ID of
4334  * type CIR, EIR, or SRL to default. This function needs to be called
4335  * with the scheduler lock held.
4336  */
4337 static enum ice_status
4338 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
4339 			   struct ice_sched_node *node,
4340 			   enum ice_rl_type rl_type, u8 layer_num)
4341 {
4342 	enum ice_status status;
4343 	struct ice_hw *hw;
4344 	u8 profile_type;
4345 	u16 rl_prof_id;
4346 	u16 old_id;
4347 
4348 	hw = pi->hw;
4349 	switch (rl_type) {
4350 	case ICE_MIN_BW:
4351 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
4352 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
4353 		break;
4354 	case ICE_MAX_BW:
4355 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
4356 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
4357 		break;
4358 	case ICE_SHARED_BW:
4359 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
4360 		/* No SRL is configured for default case */
4361 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
4362 		break;
4363 	default:
4364 		return ICE_ERR_PARAM;
4365 	}
4366 	/* Save existing RL prof ID for later clean up */
4367 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
4368 	/* Configure BW scheduling parameters */
4369 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
4370 	if (status)
4371 		return status;
4372 
4373 	/* Remove stale RL profile ID */
4374 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
4375 	    old_id == ICE_SCHED_INVAL_PROF_ID)
4376 		return ICE_SUCCESS;
4377 
4378 	return ice_sched_rm_rl_profile(hw, layer_num, profile_type, old_id);
4379 }
4380 
4381 /**
4382  * ice_sched_set_node_bw - set node's bandwidth
4383  * @pi: port information structure
4384  * @node: tree node
4385  * @rl_type: rate limit type min, max, or shared
4386  * @bw: bandwidth in Kbps - Kilo bits per sec
4387  * @layer_num: layer number
4388  *
4389  * This function adds new profile corresponding to requested BW, configures
4390  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
4391  * ID from local database. The caller needs to hold scheduler lock.
4392  */
4393 enum ice_status
4394 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
4395 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
4396 {
4397 	struct ice_aqc_rl_profile_info *rl_prof_info;
4398 	enum ice_status status = ICE_ERR_PARAM;
4399 	struct ice_hw *hw = pi->hw;
4400 	u16 old_id, rl_prof_id;
4401 
4402 	rl_prof_info = ice_sched_add_rl_profile(hw, rl_type, bw, layer_num);
4403 	if (!rl_prof_info)
4404 		return status;
4405 
4406 	rl_prof_id = LE16_TO_CPU(rl_prof_info->profile.profile_id);
4407 
4408 	/* Save existing RL prof ID for later clean up */
4409 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
4410 	/* Configure BW scheduling parameters */
4411 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
4412 	if (status)
4413 		return status;
4414 
4415 	/* New changes has been applied */
4416 	/* Increment the profile ID reference count */
4417 	rl_prof_info->prof_id_ref++;
4418 
4419 	/* Check for old ID removal */
4420 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
4421 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
4422 		return ICE_SUCCESS;
4423 
4424 	return ice_sched_rm_rl_profile(hw, layer_num,
4425 				       rl_prof_info->profile.flags &
4426 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
4427 }
4428 
4429 /**
4430  * ice_sched_set_node_priority - set node's priority
4431  * @pi: port information structure
4432  * @node: tree node
4433  * @priority: number 0-7 representing priority among siblings
4434  *
4435  * This function sets priority of a node among it's siblings.
4436  */
4437 enum ice_status
4438 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
4439 			    u16 priority)
4440 {
4441 	struct ice_aqc_txsched_elem_data buf;
4442 	struct ice_aqc_txsched_elem *data;
4443 
4444 	buf = node->info;
4445 	data = &buf.data;
4446 
4447 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4448 	data->generic |= ICE_AQC_ELEM_GENERIC_PRIO_M &
4449 			 (priority << ICE_AQC_ELEM_GENERIC_PRIO_S);
4450 
4451 	return ice_sched_update_elem(pi->hw, node, &buf);
4452 }
4453 
4454 /**
4455  * ice_sched_set_node_weight - set node's weight
4456  * @pi: port information structure
4457  * @node: tree node
4458  * @weight: number 1-200 representing weight for WFQ
4459  *
4460  * This function sets weight of the node for WFQ algorithm.
4461  */
4462 enum ice_status
4463 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
4464 {
4465 	struct ice_aqc_txsched_elem_data buf;
4466 	struct ice_aqc_txsched_elem *data;
4467 
4468 	buf = node->info;
4469 	data = &buf.data;
4470 
4471 	data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
4472 			       ICE_AQC_ELEM_VALID_GENERIC;
4473 	data->cir_bw.bw_alloc = CPU_TO_LE16(weight);
4474 	data->eir_bw.bw_alloc = CPU_TO_LE16(weight);
4475 	data->generic |= ICE_AQC_ELEM_GENERIC_SP_M &
4476 			 (0x0 << ICE_AQC_ELEM_GENERIC_SP_S);
4477 
4478 	return ice_sched_update_elem(pi->hw, node, &buf);
4479 }
4480 
4481 /**
4482  * ice_sched_set_node_bw_lmt - set node's BW limit
4483  * @pi: port information structure
4484  * @node: tree node
4485  * @rl_type: rate limit type min, max, or shared
4486  * @bw: bandwidth in Kbps - Kilo bits per sec
4487  *
4488  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
4489  * EIR, or SRL. The caller needs to hold scheduler lock.
4490  *
4491  * NOTE: Caller provides the correct SRL node in case of shared profile
4492  * settings.
4493  */
4494 enum ice_status
4495 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
4496 			  enum ice_rl_type rl_type, u32 bw)
4497 {
4498 	struct ice_hw *hw;
4499 	u8 layer_num;
4500 
4501 	if (!pi)
4502 		return ICE_ERR_PARAM;
4503 	hw = pi->hw;
4504 	/* Remove unused RL profile IDs from HW and SW DB */
4505 	ice_sched_rm_unused_rl_prof(hw);
4506 
4507 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
4508 						node->tx_sched_layer);
4509 	if (layer_num >= hw->num_tx_sched_layers)
4510 		return ICE_ERR_PARAM;
4511 
4512 	if (bw == ICE_SCHED_DFLT_BW)
4513 		return ice_sched_set_node_bw_dflt(pi, node, rl_type, layer_num);
4514 	return ice_sched_set_node_bw(pi, node, rl_type, bw, layer_num);
4515 }
4516 
4517 /**
4518  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
4519  * @pi: port information structure
4520  * @node: pointer to node structure
4521  * @rl_type: rate limit type min, max, or shared
4522  *
4523  * This function configures node element's BW rate limit profile ID of
4524  * type CIR, EIR, or SRL to default. This function needs to be called
4525  * with the scheduler lock held.
4526  */
4527 static enum ice_status
4528 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
4529 			       struct ice_sched_node *node,
4530 			       enum ice_rl_type rl_type)
4531 {
4532 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
4533 					 ICE_SCHED_DFLT_BW);
4534 }
4535 
4536 /**
4537  * ice_sched_validate_srl_node - Check node for SRL applicability
4538  * @node: sched node to configure
4539  * @sel_layer: selected SRL layer
4540  *
4541  * This function checks if the SRL can be applied to a selceted layer node on
4542  * behalf of the requested node (first argument). This function needs to be
4543  * called with scheduler lock held.
4544  */
4545 static enum ice_status
4546 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
4547 {
4548 	/* SRL profiles are not available on all layers. Check if the
4549 	 * SRL profile can be applied to a node above or below the
4550 	 * requested node. SRL configuration is possible only if the
4551 	 * selected layer's node has single child.
4552 	 */
4553 	if (sel_layer == node->tx_sched_layer ||
4554 	    ((sel_layer == node->tx_sched_layer + 1) &&
4555 	    node->num_children == 1) ||
4556 	    ((sel_layer == node->tx_sched_layer - 1) &&
4557 	    (node->parent && node->parent->num_children == 1)))
4558 		return ICE_SUCCESS;
4559 
4560 	return ICE_ERR_CFG;
4561 }
4562 
4563 /**
4564  * ice_sched_save_q_bw - save queue node's BW information
4565  * @q_ctx: queue context structure
4566  * @rl_type: rate limit type min, max, or shared
4567  * @bw: bandwidth in Kbps - Kilo bits per sec
4568  *
4569  * Save BW information of queue type node for post replay use.
4570  */
4571 static enum ice_status
4572 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
4573 {
4574 	switch (rl_type) {
4575 	case ICE_MIN_BW:
4576 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
4577 		break;
4578 	case ICE_MAX_BW:
4579 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
4580 		break;
4581 	case ICE_SHARED_BW:
4582 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
4583 		break;
4584 	default:
4585 		return ICE_ERR_PARAM;
4586 	}
4587 	return ICE_SUCCESS;
4588 }
4589 
4590 /**
4591  * ice_sched_set_q_bw_lmt - sets queue BW limit
4592  * @pi: port information structure
4593  * @vsi_handle: sw VSI handle
4594  * @tc: traffic class
4595  * @q_handle: software queue handle
4596  * @rl_type: min, max, or shared
4597  * @bw: bandwidth in Kbps
4598  *
4599  * This function sets BW limit of queue scheduling node.
4600  */
4601 static enum ice_status
4602 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4603 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
4604 {
4605 	enum ice_status status = ICE_ERR_PARAM;
4606 	struct ice_sched_node *node;
4607 	struct ice_q_ctx *q_ctx;
4608 
4609 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4610 		return ICE_ERR_PARAM;
4611 	ice_acquire_lock(&pi->sched_lock);
4612 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
4613 	if (!q_ctx)
4614 		goto exit_q_bw_lmt;
4615 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4616 	if (!node) {
4617 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
4618 		goto exit_q_bw_lmt;
4619 	}
4620 
4621 	/* Return error if it is not a leaf node */
4622 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
4623 		goto exit_q_bw_lmt;
4624 
4625 	/* SRL bandwidth layer selection */
4626 	if (rl_type == ICE_SHARED_BW) {
4627 		u8 sel_layer; /* selected layer */
4628 
4629 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
4630 							node->tx_sched_layer);
4631 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
4632 			status = ICE_ERR_PARAM;
4633 			goto exit_q_bw_lmt;
4634 		}
4635 		status = ice_sched_validate_srl_node(node, sel_layer);
4636 		if (status)
4637 			goto exit_q_bw_lmt;
4638 	}
4639 
4640 	if (bw == ICE_SCHED_DFLT_BW)
4641 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
4642 	else
4643 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
4644 
4645 	if (!status)
4646 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
4647 
4648 exit_q_bw_lmt:
4649 	ice_release_lock(&pi->sched_lock);
4650 	return status;
4651 }
4652 
4653 /**
4654  * ice_cfg_q_bw_lmt - configure queue BW limit
4655  * @pi: port information structure
4656  * @vsi_handle: sw VSI handle
4657  * @tc: traffic class
4658  * @q_handle: software queue handle
4659  * @rl_type: min, max, or shared
4660  * @bw: bandwidth in Kbps
4661  *
4662  * This function configures BW limit of queue scheduling node.
4663  */
4664 enum ice_status
4665 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4666 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
4667 {
4668 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4669 				      bw);
4670 }
4671 
4672 /**
4673  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
4674  * @pi: port information structure
4675  * @vsi_handle: sw VSI handle
4676  * @tc: traffic class
4677  * @q_handle: software queue handle
4678  * @rl_type: min, max, or shared
4679  *
4680  * This function configures BW default limit of queue scheduling node.
4681  */
4682 enum ice_status
4683 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4684 		      u16 q_handle, enum ice_rl_type rl_type)
4685 {
4686 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4687 				      ICE_SCHED_DFLT_BW);
4688 }
4689 
4690 /**
4691  * ice_sched_save_tc_node_bw - save TC node BW limit
4692  * @pi: port information structure
4693  * @tc: TC number
4694  * @rl_type: min or max
4695  * @bw: bandwidth in Kbps
4696  *
4697  * This function saves the modified values of bandwidth settings for later
4698  * replay purpose (restore) after reset.
4699  */
4700 static enum ice_status
4701 ice_sched_save_tc_node_bw(struct ice_port_info *pi, u8 tc,
4702 			  enum ice_rl_type rl_type, u32 bw)
4703 {
4704 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4705 		return ICE_ERR_PARAM;
4706 	switch (rl_type) {
4707 	case ICE_MIN_BW:
4708 		ice_set_clear_cir_bw(&pi->tc_node_bw_t_info[tc], bw);
4709 		break;
4710 	case ICE_MAX_BW:
4711 		ice_set_clear_eir_bw(&pi->tc_node_bw_t_info[tc], bw);
4712 		break;
4713 	case ICE_SHARED_BW:
4714 		ice_set_clear_shared_bw(&pi->tc_node_bw_t_info[tc], bw);
4715 		break;
4716 	default:
4717 		return ICE_ERR_PARAM;
4718 	}
4719 	return ICE_SUCCESS;
4720 }
4721 
4722 /**
4723  * ice_sched_set_tc_node_bw_lmt - sets TC node BW limit
4724  * @pi: port information structure
4725  * @tc: TC number
4726  * @rl_type: min or max
4727  * @bw: bandwidth in Kbps
4728  *
4729  * This function configures bandwidth limit of TC node.
4730  */
4731 static enum ice_status
4732 ice_sched_set_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
4733 			     enum ice_rl_type rl_type, u32 bw)
4734 {
4735 	enum ice_status status = ICE_ERR_PARAM;
4736 	struct ice_sched_node *tc_node;
4737 
4738 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4739 		return status;
4740 	ice_acquire_lock(&pi->sched_lock);
4741 	tc_node = ice_sched_get_tc_node(pi, tc);
4742 	if (!tc_node)
4743 		goto exit_set_tc_node_bw;
4744 	if (bw == ICE_SCHED_DFLT_BW)
4745 		status = ice_sched_set_node_bw_dflt_lmt(pi, tc_node, rl_type);
4746 	else
4747 		status = ice_sched_set_node_bw_lmt(pi, tc_node, rl_type, bw);
4748 	if (!status)
4749 		status = ice_sched_save_tc_node_bw(pi, tc, rl_type, bw);
4750 
4751 exit_set_tc_node_bw:
4752 	ice_release_lock(&pi->sched_lock);
4753 	return status;
4754 }
4755 
4756 /**
4757  * ice_cfg_tc_node_bw_lmt - configure TC node BW limit
4758  * @pi: port information structure
4759  * @tc: TC number
4760  * @rl_type: min or max
4761  * @bw: bandwidth in Kbps
4762  *
4763  * This function configures BW limit of TC node.
4764  * Note: The minimum guaranteed reservation is done via DCBX.
4765  */
4766 enum ice_status
4767 ice_cfg_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
4768 		       enum ice_rl_type rl_type, u32 bw)
4769 {
4770 	return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, bw);
4771 }
4772 
4773 /**
4774  * ice_cfg_tc_node_bw_dflt_lmt - configure TC node BW default limit
4775  * @pi: port information structure
4776  * @tc: TC number
4777  * @rl_type: min or max
4778  *
4779  * This function configures BW default limit of TC node.
4780  */
4781 enum ice_status
4782 ice_cfg_tc_node_bw_dflt_lmt(struct ice_port_info *pi, u8 tc,
4783 			    enum ice_rl_type rl_type)
4784 {
4785 	return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, ICE_SCHED_DFLT_BW);
4786 }
4787 
4788 /**
4789  * ice_sched_save_tc_node_bw_alloc - save TC node's BW alloc information
4790  * @pi: port information structure
4791  * @tc: traffic class
4792  * @rl_type: rate limit type min or max
4793  * @bw_alloc: Bandwidth allocation information
4794  *
4795  * Save BW alloc information of VSI type node for post replay use.
4796  */
4797 static enum ice_status
4798 ice_sched_save_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4799 				enum ice_rl_type rl_type, u16 bw_alloc)
4800 {
4801 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4802 		return ICE_ERR_PARAM;
4803 	switch (rl_type) {
4804 	case ICE_MIN_BW:
4805 		ice_set_clear_cir_bw_alloc(&pi->tc_node_bw_t_info[tc],
4806 					   bw_alloc);
4807 		break;
4808 	case ICE_MAX_BW:
4809 		ice_set_clear_eir_bw_alloc(&pi->tc_node_bw_t_info[tc],
4810 					   bw_alloc);
4811 		break;
4812 	default:
4813 		return ICE_ERR_PARAM;
4814 	}
4815 	return ICE_SUCCESS;
4816 }
4817 
4818 /**
4819  * ice_sched_set_tc_node_bw_alloc - set TC node BW alloc
4820  * @pi: port information structure
4821  * @tc: TC number
4822  * @rl_type: min or max
4823  * @bw_alloc: bandwidth alloc
4824  *
4825  * This function configures bandwidth alloc of TC node, also saves the
4826  * changed settings for replay purpose, and return success if it succeeds
4827  * in modifying bandwidth alloc setting.
4828  */
4829 static enum ice_status
4830 ice_sched_set_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4831 			       enum ice_rl_type rl_type, u8 bw_alloc)
4832 {
4833 	enum ice_status status = ICE_ERR_PARAM;
4834 	struct ice_sched_node *tc_node;
4835 
4836 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4837 		return status;
4838 	ice_acquire_lock(&pi->sched_lock);
4839 	tc_node = ice_sched_get_tc_node(pi, tc);
4840 	if (!tc_node)
4841 		goto exit_set_tc_node_bw_alloc;
4842 	status = ice_sched_cfg_node_bw_alloc(pi->hw, tc_node, rl_type,
4843 					     bw_alloc);
4844 	if (status)
4845 		goto exit_set_tc_node_bw_alloc;
4846 	status = ice_sched_save_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
4847 
4848 exit_set_tc_node_bw_alloc:
4849 	ice_release_lock(&pi->sched_lock);
4850 	return status;
4851 }
4852 
4853 /**
4854  * ice_cfg_tc_node_bw_alloc - configure TC node BW alloc
4855  * @pi: port information structure
4856  * @tc: TC number
4857  * @rl_type: min or max
4858  * @bw_alloc: bandwidth alloc
4859  *
4860  * This function configures BW limit of TC node.
4861  * Note: The minimum guaranteed reservation is done via DCBX.
4862  */
4863 enum ice_status
4864 ice_cfg_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4865 			 enum ice_rl_type rl_type, u8 bw_alloc)
4866 {
4867 	return ice_sched_set_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
4868 }
4869 
4870 /**
4871  * ice_sched_set_agg_bw_dflt_lmt - set aggregator node's BW limit to default
4872  * @pi: port information structure
4873  * @vsi_handle: software VSI handle
4874  *
4875  * This function retrieves the aggregator ID based on VSI ID and TC,
4876  * and sets node's BW limit to default. This function needs to be
4877  * called with the scheduler lock held.
4878  */
4879 enum ice_status
4880 ice_sched_set_agg_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle)
4881 {
4882 	struct ice_vsi_ctx *vsi_ctx;
4883 	enum ice_status status = ICE_SUCCESS;
4884 	u8 tc;
4885 
4886 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4887 		return ICE_ERR_PARAM;
4888 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4889 	if (!vsi_ctx)
4890 		return ICE_ERR_PARAM;
4891 
4892 	ice_for_each_traffic_class(tc) {
4893 		struct ice_sched_node *node;
4894 
4895 		node = vsi_ctx->sched.ag_node[tc];
4896 		if (!node)
4897 			continue;
4898 
4899 		/* Set min profile to default */
4900 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MIN_BW);
4901 		if (status)
4902 			break;
4903 
4904 		/* Set max profile to default */
4905 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MAX_BW);
4906 		if (status)
4907 			break;
4908 
4909 		/* Remove shared profile, if there is one */
4910 		status = ice_sched_set_node_bw_dflt_lmt(pi, node,
4911 							ICE_SHARED_BW);
4912 		if (status)
4913 			break;
4914 	}
4915 
4916 	return status;
4917 }
4918 
4919 /**
4920  * ice_sched_get_node_by_id_type - get node from ID type
4921  * @pi: port information structure
4922  * @id: identifier
4923  * @agg_type: type of aggregator
4924  * @tc: traffic class
4925  *
4926  * This function returns node identified by ID of type aggregator, and
4927  * based on traffic class (TC). This function needs to be called with
4928  * the scheduler lock held.
4929  */
4930 static struct ice_sched_node *
4931 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
4932 			      enum ice_agg_type agg_type, u8 tc)
4933 {
4934 	struct ice_sched_node *node = NULL;
4935 
4936 	switch (agg_type) {
4937 	case ICE_AGG_TYPE_VSI: {
4938 		struct ice_vsi_ctx *vsi_ctx;
4939 		u16 vsi_handle = (u16)id;
4940 
4941 		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4942 			break;
4943 		/* Get sched_vsi_info */
4944 		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4945 		if (!vsi_ctx)
4946 			break;
4947 		node = vsi_ctx->sched.vsi_node[tc];
4948 		break;
4949 	}
4950 
4951 	case ICE_AGG_TYPE_AGG: {
4952 		struct ice_sched_node *tc_node;
4953 
4954 		tc_node = ice_sched_get_tc_node(pi, tc);
4955 		if (tc_node)
4956 			node = ice_sched_get_agg_node(pi, tc_node, id);
4957 		break;
4958 	}
4959 
4960 	case ICE_AGG_TYPE_Q:
4961 		/* The current implementation allows single queue to modify */
4962 		node = ice_sched_find_node_by_teid(pi->root, id);
4963 		break;
4964 
4965 	case ICE_AGG_TYPE_QG: {
4966 		struct ice_sched_node *child_node;
4967 
4968 		/* The current implementation allows single qg to modify */
4969 		child_node = ice_sched_find_node_by_teid(pi->root, id);
4970 		if (!child_node)
4971 			break;
4972 		node = child_node->parent;
4973 		break;
4974 	}
4975 
4976 	default:
4977 		break;
4978 	}
4979 
4980 	return node;
4981 }
4982 
4983 /**
4984  * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
4985  * @pi: port information structure
4986  * @id: ID (software VSI handle or AGG ID)
4987  * @agg_type: aggregator type (VSI or AGG type node)
4988  * @tc: traffic class
4989  * @rl_type: min or max
4990  * @bw: bandwidth in Kbps
4991  *
4992  * This function sets BW limit of VSI or Aggregator scheduling node
4993  * based on TC information from passed in argument BW.
4994  */
4995 enum ice_status
4996 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
4997 				 enum ice_agg_type agg_type, u8 tc,
4998 				 enum ice_rl_type rl_type, u32 bw)
4999 {
5000 	enum ice_status status = ICE_ERR_PARAM;
5001 	struct ice_sched_node *node;
5002 
5003 	if (!pi)
5004 		return status;
5005 
5006 	if (rl_type == ICE_UNKNOWN_BW)
5007 		return status;
5008 
5009 	ice_acquire_lock(&pi->sched_lock);
5010 	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
5011 	if (!node) {
5012 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
5013 		goto exit_set_node_bw_lmt_per_tc;
5014 	}
5015 	if (bw == ICE_SCHED_DFLT_BW)
5016 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
5017 	else
5018 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
5019 
5020 exit_set_node_bw_lmt_per_tc:
5021 	ice_release_lock(&pi->sched_lock);
5022 	return status;
5023 }
5024 
5025 /**
5026  * ice_sched_validate_vsi_srl_node - validate VSI SRL node
5027  * @pi: port information structure
5028  * @vsi_handle: software VSI handle
5029  *
5030  * This function validates SRL node of the VSI node if available SRL layer is
5031  * different than the VSI node layer on all TC(s).This function needs to be
5032  * called with scheduler lock held.
5033  */
5034 static enum ice_status
5035 ice_sched_validate_vsi_srl_node(struct ice_port_info *pi, u16 vsi_handle)
5036 {
5037 	u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
5038 	u8 tc;
5039 
5040 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5041 		return ICE_ERR_PARAM;
5042 
5043 	/* Return success if no nodes are present across TC */
5044 	ice_for_each_traffic_class(tc) {
5045 		struct ice_sched_node *tc_node, *vsi_node;
5046 		enum ice_rl_type rl_type = ICE_SHARED_BW;
5047 		enum ice_status status;
5048 
5049 		tc_node = ice_sched_get_tc_node(pi, tc);
5050 		if (!tc_node)
5051 			continue;
5052 
5053 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5054 		if (!vsi_node)
5055 			continue;
5056 
5057 		/* SRL bandwidth layer selection */
5058 		if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
5059 			u8 node_layer = vsi_node->tx_sched_layer;
5060 			u8 layer_num;
5061 
5062 			layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5063 								node_layer);
5064 			if (layer_num >= pi->hw->num_tx_sched_layers)
5065 				return ICE_ERR_PARAM;
5066 			sel_layer = layer_num;
5067 		}
5068 
5069 		status = ice_sched_validate_srl_node(vsi_node, sel_layer);
5070 		if (status)
5071 			return status;
5072 	}
5073 	return ICE_SUCCESS;
5074 }
5075 
5076 /**
5077  * ice_sched_set_save_vsi_srl_node_bw - set VSI shared limit values
5078  * @pi: port information structure
5079  * @vsi_handle: software VSI handle
5080  * @tc: traffic class
5081  * @srl_node: sched node to configure
5082  * @rl_type: rate limit type minimum, maximum, or shared
5083  * @bw: minimum, maximum, or shared bandwidth in Kbps
5084  *
5085  * Configure shared rate limiter(SRL) of VSI type nodes across given traffic
5086  * class, and saves those value for later use for replaying purposes. The
5087  * caller holds the scheduler lock.
5088  */
5089 static enum ice_status
5090 ice_sched_set_save_vsi_srl_node_bw(struct ice_port_info *pi, u16 vsi_handle,
5091 				   u8 tc, struct ice_sched_node *srl_node,
5092 				   enum ice_rl_type rl_type, u32 bw)
5093 {
5094 	enum ice_status status;
5095 
5096 	if (bw == ICE_SCHED_DFLT_BW) {
5097 		status = ice_sched_set_node_bw_dflt_lmt(pi, srl_node, rl_type);
5098 	} else {
5099 		status = ice_sched_set_node_bw_lmt(pi, srl_node, rl_type, bw);
5100 		if (status)
5101 			return status;
5102 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
5103 	}
5104 	return status;
5105 }
5106 
5107 /**
5108  * ice_sched_set_vsi_node_srl_per_tc - set VSI node BW shared limit for tc
5109  * @pi: port information structure
5110  * @vsi_handle: software VSI handle
5111  * @tc: traffic class
5112  * @min_bw: minimum bandwidth in Kbps
5113  * @max_bw: maximum bandwidth in Kbps
5114  * @shared_bw: shared bandwidth in Kbps
5115  *
5116  * Configure shared rate limiter(SRL) of  VSI type nodes across requested
5117  * traffic class for VSI matching handle. When BW value of ICE_SCHED_DFLT_BW
5118  * is passed, it removes the corresponding bw from the node. The caller
5119  * holds scheduler lock.
5120  */
5121 static enum ice_status
5122 ice_sched_set_vsi_node_srl_per_tc(struct ice_port_info *pi, u16 vsi_handle,
5123 				  u8 tc, u32 min_bw, u32 max_bw, u32 shared_bw)
5124 {
5125 	struct ice_sched_node *tc_node, *vsi_node, *cfg_node;
5126 	enum ice_status status;
5127 	u8 layer_num;
5128 
5129 	tc_node = ice_sched_get_tc_node(pi, tc);
5130 	if (!tc_node)
5131 		return ICE_ERR_CFG;
5132 
5133 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5134 	if (!vsi_node)
5135 		return ICE_ERR_CFG;
5136 
5137 	layer_num = ice_sched_get_rl_prof_layer(pi, ICE_SHARED_BW,
5138 						vsi_node->tx_sched_layer);
5139 	if (layer_num >= pi->hw->num_tx_sched_layers)
5140 		return ICE_ERR_PARAM;
5141 
5142 	/* SRL node may be different */
5143 	cfg_node = ice_sched_get_srl_node(vsi_node, layer_num);
5144 	if (!cfg_node)
5145 		return ICE_ERR_CFG;
5146 
5147 	status = ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc,
5148 						    cfg_node, ICE_MIN_BW,
5149 						    min_bw);
5150 	if (status)
5151 		return status;
5152 
5153 	status = ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc,
5154 						    cfg_node, ICE_MAX_BW,
5155 						    max_bw);
5156 	if (status)
5157 		return status;
5158 
5159 	return ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc, cfg_node,
5160 						  ICE_SHARED_BW, shared_bw);
5161 }
5162 
5163 /**
5164  * ice_sched_set_vsi_bw_shared_lmt - set VSI BW shared limit
5165  * @pi: port information structure
5166  * @vsi_handle: software VSI handle
5167  * @min_bw: minimum bandwidth in Kbps
5168  * @max_bw: maximum bandwidth in Kbps
5169  * @shared_bw: shared bandwidth in Kbps
5170  *
5171  * Configure shared rate limiter(SRL) of all VSI type nodes across all traffic
5172  * classes for VSI matching handle. When BW value of ICE_SCHED_DFLT_BW is
5173  * passed, it removes those value(s) from the node.
5174  */
5175 enum ice_status
5176 ice_sched_set_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle,
5177 				u32 min_bw, u32 max_bw, u32 shared_bw)
5178 {
5179 	enum ice_status status = ICE_SUCCESS;
5180 	u8 tc;
5181 
5182 	if (!pi)
5183 		return ICE_ERR_PARAM;
5184 
5185 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5186 		return ICE_ERR_PARAM;
5187 
5188 	ice_acquire_lock(&pi->sched_lock);
5189 	status = ice_sched_validate_vsi_srl_node(pi, vsi_handle);
5190 	if (status)
5191 		goto exit_set_vsi_bw_shared_lmt;
5192 	/* Return success if no nodes are present across TC */
5193 	ice_for_each_traffic_class(tc) {
5194 		struct ice_sched_node *tc_node, *vsi_node;
5195 
5196 		tc_node = ice_sched_get_tc_node(pi, tc);
5197 		if (!tc_node)
5198 			continue;
5199 
5200 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5201 		if (!vsi_node)
5202 			continue;
5203 
5204 		status = ice_sched_set_vsi_node_srl_per_tc(pi, vsi_handle, tc,
5205 							   min_bw, max_bw,
5206 							   shared_bw);
5207 		if (status)
5208 			break;
5209 	}
5210 
5211 exit_set_vsi_bw_shared_lmt:
5212 	ice_release_lock(&pi->sched_lock);
5213 	return status;
5214 }
5215 
5216 /**
5217  * ice_sched_validate_agg_srl_node - validate AGG SRL node
5218  * @pi: port information structure
5219  * @agg_id: aggregator ID
5220  *
5221  * This function validates SRL node of the AGG node if available SRL layer is
5222  * different than the AGG node layer on all TC(s).This function needs to be
5223  * called with scheduler lock held.
5224  */
5225 static enum ice_status
5226 ice_sched_validate_agg_srl_node(struct ice_port_info *pi, u32 agg_id)
5227 {
5228 	u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
5229 	struct ice_sched_agg_info *agg_info;
5230 	bool agg_id_present = false;
5231 	enum ice_status status = ICE_SUCCESS;
5232 	u8 tc;
5233 
5234 	LIST_FOR_EACH_ENTRY(agg_info, &pi->hw->agg_list, ice_sched_agg_info,
5235 			    list_entry)
5236 		if (agg_info->agg_id == agg_id) {
5237 			agg_id_present = true;
5238 			break;
5239 		}
5240 	if (!agg_id_present)
5241 		return ICE_ERR_PARAM;
5242 	/* Return success if no nodes are present across TC */
5243 	ice_for_each_traffic_class(tc) {
5244 		struct ice_sched_node *tc_node, *agg_node;
5245 		enum ice_rl_type rl_type = ICE_SHARED_BW;
5246 
5247 		tc_node = ice_sched_get_tc_node(pi, tc);
5248 		if (!tc_node)
5249 			continue;
5250 
5251 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5252 		if (!agg_node)
5253 			continue;
5254 		/* SRL bandwidth layer selection */
5255 		if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
5256 			u8 node_layer = agg_node->tx_sched_layer;
5257 			u8 layer_num;
5258 
5259 			layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5260 								node_layer);
5261 			if (layer_num >= pi->hw->num_tx_sched_layers)
5262 				return ICE_ERR_PARAM;
5263 			sel_layer = layer_num;
5264 		}
5265 
5266 		status = ice_sched_validate_srl_node(agg_node, sel_layer);
5267 		if (status)
5268 			break;
5269 	}
5270 	return status;
5271 }
5272 
5273 /**
5274  * ice_sched_validate_agg_id - Validate aggregator id
5275  * @pi: port information structure
5276  * @agg_id: aggregator ID
5277  *
5278  * This function validates aggregator id. Caller holds the scheduler lock.
5279  */
5280 static enum ice_status
5281 ice_sched_validate_agg_id(struct ice_port_info *pi, u32 agg_id)
5282 {
5283 	struct ice_sched_agg_info *agg_info;
5284 	struct ice_sched_agg_info *tmp;
5285 	bool agg_id_present = false;
5286 	enum ice_status status;
5287 
5288 	status = ice_sched_validate_agg_srl_node(pi, agg_id);
5289 	if (status)
5290 		return status;
5291 
5292 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, tmp, &pi->hw->agg_list,
5293 				 ice_sched_agg_info, list_entry)
5294 		if (agg_info->agg_id == agg_id) {
5295 			agg_id_present = true;
5296 			break;
5297 		}
5298 
5299 	if (!agg_id_present)
5300 		return ICE_ERR_PARAM;
5301 
5302 	return ICE_SUCCESS;
5303 }
5304 
5305 /**
5306  * ice_sched_set_save_agg_srl_node_bw - set aggregator shared limit values
5307  * @pi: port information structure
5308  * @agg_id: aggregator ID
5309  * @tc: traffic class
5310  * @srl_node: sched node to configure
5311  * @rl_type: rate limit type minimum, maximum, or shared
5312  * @bw: minimum, maximum, or shared bandwidth in Kbps
5313  *
5314  * Configure shared rate limiter(SRL) of aggregator type nodes across
5315  * requested traffic class, and saves those value for later use for
5316  * replaying purposes. The caller holds the scheduler lock.
5317  */
5318 static enum ice_status
5319 ice_sched_set_save_agg_srl_node_bw(struct ice_port_info *pi, u32 agg_id, u8 tc,
5320 				   struct ice_sched_node *srl_node,
5321 				   enum ice_rl_type rl_type, u32 bw)
5322 {
5323 	enum ice_status status;
5324 
5325 	if (bw == ICE_SCHED_DFLT_BW) {
5326 		status = ice_sched_set_node_bw_dflt_lmt(pi, srl_node, rl_type);
5327 	} else {
5328 		status = ice_sched_set_node_bw_lmt(pi, srl_node, rl_type, bw);
5329 		if (status)
5330 			return status;
5331 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
5332 	}
5333 	return status;
5334 }
5335 
5336 /**
5337  * ice_sched_set_agg_node_srl_per_tc - set aggregator SRL per tc
5338  * @pi: port information structure
5339  * @agg_id: aggregator ID
5340  * @tc: traffic class
5341  * @min_bw: minimum bandwidth in Kbps
5342  * @max_bw: maximum bandwidth in Kbps
5343  * @shared_bw: shared bandwidth in Kbps
5344  *
5345  * This function configures the shared rate limiter(SRL) of aggregator type
5346  * node for a given traffic class for aggregator matching agg_id. When BW
5347  * value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the node. Caller
5348  * holds the scheduler lock.
5349  */
5350 static enum ice_status
5351 ice_sched_set_agg_node_srl_per_tc(struct ice_port_info *pi, u32 agg_id,
5352 				  u8 tc, u32 min_bw, u32 max_bw, u32 shared_bw)
5353 {
5354 	struct ice_sched_node *tc_node, *agg_node, *cfg_node;
5355 	enum ice_rl_type rl_type = ICE_SHARED_BW;
5356 	enum ice_status status = ICE_ERR_CFG;
5357 	u8 layer_num;
5358 
5359 	tc_node = ice_sched_get_tc_node(pi, tc);
5360 	if (!tc_node)
5361 		return ICE_ERR_CFG;
5362 
5363 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5364 	if (!agg_node)
5365 		return ICE_ERR_CFG;
5366 
5367 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5368 						agg_node->tx_sched_layer);
5369 	if (layer_num >= pi->hw->num_tx_sched_layers)
5370 		return ICE_ERR_PARAM;
5371 
5372 	/* SRL node may be different */
5373 	cfg_node = ice_sched_get_srl_node(agg_node, layer_num);
5374 	if (!cfg_node)
5375 		return ICE_ERR_CFG;
5376 
5377 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5378 						    ICE_MIN_BW, min_bw);
5379 	if (status)
5380 		return status;
5381 
5382 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5383 						    ICE_MAX_BW, max_bw);
5384 	if (status)
5385 		return status;
5386 
5387 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5388 						    ICE_SHARED_BW, shared_bw);
5389 	return status;
5390 }
5391 
5392 /**
5393  * ice_sched_set_agg_bw_shared_lmt - set aggregator BW shared limit
5394  * @pi: port information structure
5395  * @agg_id: aggregator ID
5396  * @min_bw: minimum bandwidth in Kbps
5397  * @max_bw: maximum bandwidth in Kbps
5398  * @shared_bw: shared bandwidth in Kbps
5399  *
5400  * This function configures the shared rate limiter(SRL) of all aggregator type
5401  * nodes across all traffic classes for aggregator matching agg_id. When
5402  * BW value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the
5403  * node(s).
5404  */
5405 enum ice_status
5406 ice_sched_set_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id,
5407 				u32 min_bw, u32 max_bw, u32 shared_bw)
5408 {
5409 	enum ice_status status;
5410 	u8 tc;
5411 
5412 	if (!pi)
5413 		return ICE_ERR_PARAM;
5414 
5415 	ice_acquire_lock(&pi->sched_lock);
5416 	status = ice_sched_validate_agg_id(pi, agg_id);
5417 	if (status)
5418 		goto exit_agg_bw_shared_lmt;
5419 
5420 	/* Return success if no nodes are present across TC */
5421 	ice_for_each_traffic_class(tc) {
5422 		struct ice_sched_node *tc_node, *agg_node;
5423 
5424 		tc_node = ice_sched_get_tc_node(pi, tc);
5425 		if (!tc_node)
5426 			continue;
5427 
5428 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5429 		if (!agg_node)
5430 			continue;
5431 
5432 		status = ice_sched_set_agg_node_srl_per_tc(pi, agg_id, tc,
5433 							   min_bw, max_bw,
5434 							   shared_bw);
5435 		if (status)
5436 			break;
5437 	}
5438 
5439 exit_agg_bw_shared_lmt:
5440 	ice_release_lock(&pi->sched_lock);
5441 	return status;
5442 }
5443 
5444 /**
5445  * ice_sched_set_agg_bw_shared_lmt_per_tc - set aggregator BW shared lmt per tc
5446  * @pi: port information structure
5447  * @agg_id: aggregator ID
5448  * @tc: traffic class
5449  * @min_bw: minimum bandwidth in Kbps
5450  * @max_bw: maximum bandwidth in Kbps
5451  * @shared_bw: shared bandwidth in Kbps
5452  *
5453  * This function configures the shared rate limiter(SRL) of aggregator type
5454  * node for a given traffic class for aggregator matching agg_id. When BW
5455  * value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the node.
5456  */
5457 enum ice_status
5458 ice_sched_set_agg_bw_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id,
5459 				       u8 tc, u32 min_bw, u32 max_bw,
5460 				       u32 shared_bw)
5461 {
5462 	enum ice_status status;
5463 
5464 	if (!pi)
5465 		return ICE_ERR_PARAM;
5466 	ice_acquire_lock(&pi->sched_lock);
5467 	status = ice_sched_validate_agg_id(pi, agg_id);
5468 	if (status)
5469 		goto exit_agg_bw_shared_lmt_per_tc;
5470 
5471 	status = ice_sched_set_agg_node_srl_per_tc(pi, agg_id, tc, min_bw,
5472 						   max_bw, shared_bw);
5473 
5474 exit_agg_bw_shared_lmt_per_tc:
5475 	ice_release_lock(&pi->sched_lock);
5476 	return status;
5477 }
5478 
5479 /**
5480  * ice_sched_cfg_sibl_node_prio - configure node sibling priority
5481  * @pi: port information structure
5482  * @node: sched node to configure
5483  * @priority: sibling priority
5484  *
5485  * This function configures node element's sibling priority only. This
5486  * function needs to be called with scheduler lock held.
5487  */
5488 enum ice_status
5489 ice_sched_cfg_sibl_node_prio(struct ice_port_info *pi,
5490 			     struct ice_sched_node *node, u8 priority)
5491 {
5492 	struct ice_aqc_txsched_elem_data buf;
5493 	struct ice_aqc_txsched_elem *data;
5494 	struct ice_hw *hw = pi->hw;
5495 	enum ice_status status;
5496 
5497 	if (!hw)
5498 		return ICE_ERR_PARAM;
5499 	buf = node->info;
5500 	data = &buf.data;
5501 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
5502 	priority = (priority << ICE_AQC_ELEM_GENERIC_PRIO_S) &
5503 		   ICE_AQC_ELEM_GENERIC_PRIO_M;
5504 	data->generic &= ~ICE_AQC_ELEM_GENERIC_PRIO_M;
5505 	data->generic |= priority;
5506 
5507 	/* Configure element */
5508 	status = ice_sched_update_elem(hw, node, &buf);
5509 	return status;
5510 }
5511 
5512 /**
5513  * ice_cfg_rl_burst_size - Set burst size value
5514  * @hw: pointer to the HW struct
5515  * @bytes: burst size in bytes
5516  *
5517  * This function configures/set the burst size to requested new value. The new
5518  * burst size value is used for future rate limit calls. It doesn't change the
5519  * existing or previously created RL profiles.
5520  */
5521 enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
5522 {
5523 	u16 burst_size_to_prog;
5524 
5525 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
5526 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
5527 		return ICE_ERR_PARAM;
5528 	if (ice_round_to_num(bytes, 64) <=
5529 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
5530 		/* 64 byte granularity case */
5531 		/* Disable MSB granularity bit */
5532 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
5533 		/* round number to nearest 64 byte granularity */
5534 		bytes = ice_round_to_num(bytes, 64);
5535 		/* The value is in 64 byte chunks */
5536 		burst_size_to_prog |= (u16)(bytes / 64);
5537 	} else {
5538 		/* k bytes granularity case */
5539 		/* Enable MSB granularity bit */
5540 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
5541 		/* round number to nearest 1024 granularity */
5542 		bytes = ice_round_to_num(bytes, 1024);
5543 		/* check rounding doesn't go beyond allowed */
5544 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
5545 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
5546 		/* The value is in k bytes */
5547 		burst_size_to_prog |= (u16)(bytes / 1024);
5548 	}
5549 	hw->max_burst_size = burst_size_to_prog;
5550 	return ICE_SUCCESS;
5551 }
5552 
5553 /**
5554  * ice_sched_replay_node_prio - re-configure node priority
5555  * @hw: pointer to the HW struct
5556  * @node: sched node to configure
5557  * @priority: priority value
5558  *
5559  * This function configures node element's priority value. It
5560  * needs to be called with scheduler lock held.
5561  */
5562 static enum ice_status
5563 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
5564 			   u8 priority)
5565 {
5566 	struct ice_aqc_txsched_elem_data buf;
5567 	struct ice_aqc_txsched_elem *data;
5568 	enum ice_status status;
5569 
5570 	buf = node->info;
5571 	data = &buf.data;
5572 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
5573 	data->generic = priority;
5574 
5575 	/* Configure element */
5576 	status = ice_sched_update_elem(hw, node, &buf);
5577 	return status;
5578 }
5579 
5580 /**
5581  * ice_sched_replay_node_bw - replay node(s) BW
5582  * @hw: pointer to the HW struct
5583  * @node: sched node to configure
5584  * @bw_t_info: BW type information
5585  *
5586  * This function restores node's BW from bw_t_info. The caller needs
5587  * to hold the scheduler lock.
5588  */
5589 static enum ice_status
5590 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
5591 			 struct ice_bw_type_info *bw_t_info)
5592 {
5593 	struct ice_port_info *pi = hw->port_info;
5594 	enum ice_status status = ICE_ERR_PARAM;
5595 	u16 bw_alloc;
5596 
5597 	if (!node)
5598 		return status;
5599 	if (!ice_is_any_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
5600 		return ICE_SUCCESS;
5601 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_PRIO)) {
5602 		status = ice_sched_replay_node_prio(hw, node,
5603 						    bw_t_info->generic);
5604 		if (status)
5605 			return status;
5606 	}
5607 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR)) {
5608 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
5609 						   bw_t_info->cir_bw.bw);
5610 		if (status)
5611 			return status;
5612 	}
5613 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR_WT)) {
5614 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
5615 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
5616 						     bw_alloc);
5617 		if (status)
5618 			return status;
5619 	}
5620 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR)) {
5621 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
5622 						   bw_t_info->eir_bw.bw);
5623 		if (status)
5624 			return status;
5625 	}
5626 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR_WT)) {
5627 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
5628 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
5629 						     bw_alloc);
5630 		if (status)
5631 			return status;
5632 	}
5633 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_SHARED))
5634 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
5635 						   bw_t_info->shared_bw);
5636 	return status;
5637 }
5638 
5639 /**
5640  * ice_sched_replay_agg_bw - replay aggregator node(s) BW
5641  * @hw: pointer to the HW struct
5642  * @agg_info: aggregator data structure
5643  *
5644  * This function re-creates aggregator type nodes. The caller needs to hold
5645  * the scheduler lock.
5646  */
5647 static enum ice_status
5648 ice_sched_replay_agg_bw(struct ice_hw *hw, struct ice_sched_agg_info *agg_info)
5649 {
5650 	struct ice_sched_node *tc_node, *agg_node;
5651 	enum ice_status status = ICE_SUCCESS;
5652 	u8 tc;
5653 
5654 	if (!agg_info)
5655 		return ICE_ERR_PARAM;
5656 	ice_for_each_traffic_class(tc) {
5657 		if (!ice_is_any_bit_set(agg_info->bw_t_info[tc].bw_t_bitmap,
5658 					ICE_BW_TYPE_CNT))
5659 			continue;
5660 		tc_node = ice_sched_get_tc_node(hw->port_info, tc);
5661 		if (!tc_node) {
5662 			status = ICE_ERR_PARAM;
5663 			break;
5664 		}
5665 		agg_node = ice_sched_get_agg_node(hw->port_info, tc_node,
5666 						  agg_info->agg_id);
5667 		if (!agg_node) {
5668 			status = ICE_ERR_PARAM;
5669 			break;
5670 		}
5671 		status = ice_sched_replay_node_bw(hw, agg_node,
5672 						  &agg_info->bw_t_info[tc]);
5673 		if (status)
5674 			break;
5675 	}
5676 	return status;
5677 }
5678 
5679 /**
5680  * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
5681  * @pi: port info struct
5682  * @tc_bitmap: 8 bits TC bitmap to check
5683  * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
5684  *
5685  * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
5686  * may be missing, it returns enabled TCs. This function needs to be called with
5687  * scheduler lock held.
5688  */
5689 static void
5690 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, ice_bitmap_t *tc_bitmap,
5691 			    ice_bitmap_t *ena_tc_bitmap)
5692 {
5693 	u8 tc;
5694 
5695 	/* Some TC(s) may be missing after reset, adjust for replay */
5696 	ice_for_each_traffic_class(tc)
5697 		if (ice_is_tc_ena(*tc_bitmap, tc) &&
5698 		    (ice_sched_get_tc_node(pi, tc)))
5699 			ice_set_bit(tc, ena_tc_bitmap);
5700 }
5701 
5702 /**
5703  * ice_sched_replay_agg - recreate aggregator node(s)
5704  * @hw: pointer to the HW struct
5705  *
5706  * This function recreate aggregator type nodes which are not replayed earlier.
5707  * It also replay aggregator BW information. These aggregator nodes are not
5708  * associated with VSI type node yet.
5709  */
5710 void ice_sched_replay_agg(struct ice_hw *hw)
5711 {
5712 	struct ice_port_info *pi = hw->port_info;
5713 	struct ice_sched_agg_info *agg_info;
5714 
5715 	ice_acquire_lock(&pi->sched_lock);
5716 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
5717 			    list_entry)
5718 		/* replay aggregator (re-create aggregator node) */
5719 		if (!ice_cmp_bitmap(agg_info->tc_bitmap,
5720 				    agg_info->replay_tc_bitmap,
5721 				    ICE_MAX_TRAFFIC_CLASS)) {
5722 			ice_declare_bitmap(replay_bitmap,
5723 					   ICE_MAX_TRAFFIC_CLASS);
5724 			enum ice_status status;
5725 
5726 			ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5727 			ice_sched_get_ena_tc_bitmap(pi,
5728 						    agg_info->replay_tc_bitmap,
5729 						    replay_bitmap);
5730 			status = ice_sched_cfg_agg(hw->port_info,
5731 						   agg_info->agg_id,
5732 						   ICE_AGG_TYPE_AGG,
5733 						   replay_bitmap);
5734 			if (status) {
5735 				ice_info(hw, "Replay agg id[%d] failed\n",
5736 					 agg_info->agg_id);
5737 				/* Move on to next one */
5738 				continue;
5739 			}
5740 			/* Replay aggregator node BW (restore aggregator BW) */
5741 			status = ice_sched_replay_agg_bw(hw, agg_info);
5742 			if (status)
5743 				ice_info(hw, "Replay agg bw [id=%d] failed\n",
5744 					 agg_info->agg_id);
5745 		}
5746 	ice_release_lock(&pi->sched_lock);
5747 }
5748 
5749 /**
5750  * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
5751  * @hw: pointer to the HW struct
5752  *
5753  * This function initialize aggregator(s) TC bitmap to zero. A required
5754  * preinit step for replaying aggregators.
5755  */
5756 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
5757 {
5758 	struct ice_port_info *pi = hw->port_info;
5759 	struct ice_sched_agg_info *agg_info;
5760 
5761 	ice_acquire_lock(&pi->sched_lock);
5762 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
5763 			    list_entry) {
5764 		struct ice_sched_agg_vsi_info *agg_vsi_info;
5765 
5766 		agg_info->tc_bitmap[0] = 0;
5767 		LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
5768 				    ice_sched_agg_vsi_info, list_entry)
5769 			agg_vsi_info->tc_bitmap[0] = 0;
5770 	}
5771 	ice_release_lock(&pi->sched_lock);
5772 }
5773 
5774 /**
5775  * ice_sched_replay_root_node_bw - replay root node BW
5776  * @pi: port information structure
5777  *
5778  * Replay root node BW settings.
5779  */
5780 enum ice_status ice_sched_replay_root_node_bw(struct ice_port_info *pi)
5781 {
5782 	enum ice_status status = ICE_SUCCESS;
5783 
5784 	if (!pi->hw)
5785 		return ICE_ERR_PARAM;
5786 	ice_acquire_lock(&pi->sched_lock);
5787 
5788 	status = ice_sched_replay_node_bw(pi->hw, pi->root,
5789 					  &pi->root_node_bw_t_info);
5790 	ice_release_lock(&pi->sched_lock);
5791 	return status;
5792 }
5793 
5794 /**
5795  * ice_sched_replay_tc_node_bw - replay TC node(s) BW
5796  * @pi: port information structure
5797  *
5798  * This function replay TC nodes.
5799  */
5800 enum ice_status ice_sched_replay_tc_node_bw(struct ice_port_info *pi)
5801 {
5802 	enum ice_status status = ICE_SUCCESS;
5803 	u8 tc;
5804 
5805 	if (!pi->hw)
5806 		return ICE_ERR_PARAM;
5807 	ice_acquire_lock(&pi->sched_lock);
5808 	ice_for_each_traffic_class(tc) {
5809 		struct ice_sched_node *tc_node;
5810 
5811 		tc_node = ice_sched_get_tc_node(pi, tc);
5812 		if (!tc_node)
5813 			continue; /* TC not present */
5814 		status = ice_sched_replay_node_bw(pi->hw, tc_node,
5815 						  &pi->tc_node_bw_t_info[tc]);
5816 		if (status)
5817 			break;
5818 	}
5819 	ice_release_lock(&pi->sched_lock);
5820 	return status;
5821 }
5822 
5823 /**
5824  * ice_sched_replay_vsi_bw - replay VSI type node(s) BW
5825  * @hw: pointer to the HW struct
5826  * @vsi_handle: software VSI handle
5827  * @tc_bitmap: 8 bits TC bitmap
5828  *
5829  * This function replays VSI type nodes bandwidth. This function needs to be
5830  * called with scheduler lock held.
5831  */
5832 static enum ice_status
5833 ice_sched_replay_vsi_bw(struct ice_hw *hw, u16 vsi_handle,
5834 			ice_bitmap_t *tc_bitmap)
5835 {
5836 	struct ice_sched_node *vsi_node, *tc_node;
5837 	struct ice_port_info *pi = hw->port_info;
5838 	struct ice_bw_type_info *bw_t_info;
5839 	struct ice_vsi_ctx *vsi_ctx;
5840 	enum ice_status status = ICE_SUCCESS;
5841 	u8 tc;
5842 
5843 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
5844 	if (!vsi_ctx)
5845 		return ICE_ERR_PARAM;
5846 	ice_for_each_traffic_class(tc) {
5847 		if (!ice_is_tc_ena(*tc_bitmap, tc))
5848 			continue;
5849 		tc_node = ice_sched_get_tc_node(pi, tc);
5850 		if (!tc_node)
5851 			continue;
5852 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5853 		if (!vsi_node)
5854 			continue;
5855 		bw_t_info = &vsi_ctx->sched.bw_t_info[tc];
5856 		status = ice_sched_replay_node_bw(hw, vsi_node, bw_t_info);
5857 		if (status)
5858 			break;
5859 	}
5860 	return status;
5861 }
5862 
5863 /**
5864  * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
5865  * @hw: pointer to the HW struct
5866  * @vsi_handle: software VSI handle
5867  *
5868  * This function replays aggregator node, VSI to aggregator type nodes, and
5869  * their node bandwidth information. This function needs to be called with
5870  * scheduler lock held.
5871  */
5872 static enum ice_status
5873 ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
5874 {
5875 	ice_declare_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5876 	struct ice_sched_agg_vsi_info *agg_vsi_info;
5877 	struct ice_port_info *pi = hw->port_info;
5878 	struct ice_sched_agg_info *agg_info;
5879 	enum ice_status status;
5880 
5881 	ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5882 	if (!ice_is_vsi_valid(hw, vsi_handle))
5883 		return ICE_ERR_PARAM;
5884 	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
5885 	if (!agg_info)
5886 		return ICE_SUCCESS; /* Not present in list - default Agg case */
5887 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
5888 	if (!agg_vsi_info)
5889 		return ICE_SUCCESS; /* Not present in list - default Agg case */
5890 	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
5891 				    replay_bitmap);
5892 	/* Replay aggregator node associated to vsi_handle */
5893 	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
5894 				   ICE_AGG_TYPE_AGG, replay_bitmap);
5895 	if (status)
5896 		return status;
5897 	/* Replay aggregator node BW (restore aggregator BW) */
5898 	status = ice_sched_replay_agg_bw(hw, agg_info);
5899 	if (status)
5900 		return status;
5901 
5902 	ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5903 	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
5904 				    replay_bitmap);
5905 	/* Move this VSI (vsi_handle) to above aggregator */
5906 	status = ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
5907 					    replay_bitmap);
5908 	if (status)
5909 		return status;
5910 	/* Replay VSI BW (restore VSI BW) */
5911 	return ice_sched_replay_vsi_bw(hw, vsi_handle,
5912 				       agg_vsi_info->tc_bitmap);
5913 }
5914 
5915 /**
5916  * ice_replay_vsi_agg - replay VSI to aggregator node
5917  * @hw: pointer to the HW struct
5918  * @vsi_handle: software VSI handle
5919  *
5920  * This function replays association of VSI to aggregator type nodes, and
5921  * node bandwidth information.
5922  */
5923 enum ice_status ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
5924 {
5925 	struct ice_port_info *pi = hw->port_info;
5926 	enum ice_status status;
5927 
5928 	ice_acquire_lock(&pi->sched_lock);
5929 	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
5930 	ice_release_lock(&pi->sched_lock);
5931 	return status;
5932 }
5933 
5934 /**
5935  * ice_sched_replay_q_bw - replay queue type node BW
5936  * @pi: port information structure
5937  * @q_ctx: queue context structure
5938  *
5939  * This function replays queue type node bandwidth. This function needs to be
5940  * called with scheduler lock held.
5941  */
5942 enum ice_status
5943 ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
5944 {
5945 	struct ice_sched_node *q_node;
5946 
5947 	/* Following also checks the presence of node in tree */
5948 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
5949 	if (!q_node)
5950 		return ICE_ERR_PARAM;
5951 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
5952 }
5953