xref: /freebsd/sys/dev/ice/ice_sched.c (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2021, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*$FreeBSD$*/
32 
33 #include "ice_sched.h"
34 
35 /**
36  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
37  * @pi: port information structure
38  * @info: Scheduler element information from firmware
39  *
40  * This function inserts the root node of the scheduling tree topology
41  * to the SW DB.
42  */
43 static enum ice_status
44 ice_sched_add_root_node(struct ice_port_info *pi,
45 			struct ice_aqc_txsched_elem_data *info)
46 {
47 	struct ice_sched_node *root;
48 	struct ice_hw *hw;
49 
50 	if (!pi)
51 		return ICE_ERR_PARAM;
52 
53 	hw = pi->hw;
54 
55 	root = (struct ice_sched_node *)ice_malloc(hw, sizeof(*root));
56 	if (!root)
57 		return ICE_ERR_NO_MEMORY;
58 
59 	/* coverity[suspicious_sizeof] */
60 	root->children = (struct ice_sched_node **)
61 		ice_calloc(hw, hw->max_children[0], sizeof(*root));
62 	if (!root->children) {
63 		ice_free(hw, root);
64 		return ICE_ERR_NO_MEMORY;
65 	}
66 
67 	ice_memcpy(&root->info, info, sizeof(*info), ICE_DMA_TO_NONDMA);
68 	pi->root = root;
69 	return ICE_SUCCESS;
70 }
71 
72 /**
73  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
74  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
75  * @teid: node TEID to search
76  *
77  * This function searches for a node matching the TEID in the scheduling tree
78  * from the SW DB. The search is recursive and is restricted by the number of
79  * layers it has searched through; stopping at the max supported layer.
80  *
81  * This function needs to be called when holding the port_info->sched_lock
82  */
83 struct ice_sched_node *
84 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
85 {
86 	u16 i;
87 
88 	/* The TEID is same as that of the start_node */
89 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
90 		return start_node;
91 
92 	/* The node has no children or is at the max layer */
93 	if (!start_node->num_children ||
94 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
95 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
96 		return NULL;
97 
98 	/* Check if TEID matches to any of the children nodes */
99 	for (i = 0; i < start_node->num_children; i++)
100 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
101 			return start_node->children[i];
102 
103 	/* Search within each child's sub-tree */
104 	for (i = 0; i < start_node->num_children; i++) {
105 		struct ice_sched_node *tmp;
106 
107 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
108 						  teid);
109 		if (tmp)
110 			return tmp;
111 	}
112 
113 	return NULL;
114 }
115 
116 /**
117  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
118  * @hw: pointer to the HW struct
119  * @cmd_opc: cmd opcode
120  * @elems_req: number of elements to request
121  * @buf: pointer to buffer
122  * @buf_size: buffer size in bytes
123  * @elems_resp: returns total number of elements response
124  * @cd: pointer to command details structure or NULL
125  *
126  * This function sends a scheduling elements cmd (cmd_opc)
127  */
128 static enum ice_status
129 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
130 			    u16 elems_req, void *buf, u16 buf_size,
131 			    u16 *elems_resp, struct ice_sq_cd *cd)
132 {
133 	struct ice_aqc_sched_elem_cmd *cmd;
134 	struct ice_aq_desc desc;
135 	enum ice_status status;
136 
137 	cmd = &desc.params.sched_elem_cmd;
138 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
139 	cmd->num_elem_req = CPU_TO_LE16(elems_req);
140 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
141 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
142 	if (!status && elems_resp)
143 		*elems_resp = LE16_TO_CPU(cmd->num_elem_resp);
144 
145 	return status;
146 }
147 
148 /**
149  * ice_aq_query_sched_elems - query scheduler elements
150  * @hw: pointer to the HW struct
151  * @elems_req: number of elements to query
152  * @buf: pointer to buffer
153  * @buf_size: buffer size in bytes
154  * @elems_ret: returns total number of elements returned
155  * @cd: pointer to command details structure or NULL
156  *
157  * Query scheduling elements (0x0404)
158  */
159 enum ice_status
160 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
161 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
162 			 u16 *elems_ret, struct ice_sq_cd *cd)
163 {
164 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
165 					   elems_req, (void *)buf, buf_size,
166 					   elems_ret, cd);
167 }
168 
169 /**
170  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
171  * @pi: port information structure
172  * @layer: Scheduler layer of the node
173  * @info: Scheduler element information from firmware
174  *
175  * This function inserts a scheduler node to the SW DB.
176  */
177 enum ice_status
178 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
179 		   struct ice_aqc_txsched_elem_data *info)
180 {
181 	struct ice_aqc_txsched_elem_data elem;
182 	struct ice_sched_node *parent;
183 	struct ice_sched_node *node;
184 	enum ice_status status;
185 	struct ice_hw *hw;
186 
187 	if (!pi)
188 		return ICE_ERR_PARAM;
189 
190 	hw = pi->hw;
191 
192 	/* A valid parent node should be there */
193 	parent = ice_sched_find_node_by_teid(pi->root,
194 					     LE32_TO_CPU(info->parent_teid));
195 	if (!parent) {
196 		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
197 			  LE32_TO_CPU(info->parent_teid));
198 		return ICE_ERR_PARAM;
199 	}
200 
201 	/* query the current node information from FW before adding it
202 	 * to the SW DB
203 	 */
204 	status = ice_sched_query_elem(hw, LE32_TO_CPU(info->node_teid), &elem);
205 	if (status)
206 		return status;
207 	node = (struct ice_sched_node *)ice_malloc(hw, sizeof(*node));
208 	if (!node)
209 		return ICE_ERR_NO_MEMORY;
210 	if (hw->max_children[layer]) {
211 		/* coverity[suspicious_sizeof] */
212 		node->children = (struct ice_sched_node **)
213 			ice_calloc(hw, hw->max_children[layer], sizeof(*node));
214 		if (!node->children) {
215 			ice_free(hw, node);
216 			return ICE_ERR_NO_MEMORY;
217 		}
218 	}
219 
220 	node->in_use = true;
221 	node->parent = parent;
222 	node->tx_sched_layer = layer;
223 	parent->children[parent->num_children++] = node;
224 	node->info = elem;
225 	return ICE_SUCCESS;
226 }
227 
228 /**
229  * ice_aq_delete_sched_elems - delete scheduler elements
230  * @hw: pointer to the HW struct
231  * @grps_req: number of groups to delete
232  * @buf: pointer to buffer
233  * @buf_size: buffer size in bytes
234  * @grps_del: returns total number of elements deleted
235  * @cd: pointer to command details structure or NULL
236  *
237  * Delete scheduling elements (0x040F)
238  */
239 static enum ice_status
240 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
241 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
242 			  u16 *grps_del, struct ice_sq_cd *cd)
243 {
244 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
245 					   grps_req, (void *)buf, buf_size,
246 					   grps_del, cd);
247 }
248 
249 /**
250  * ice_sched_remove_elems - remove nodes from HW
251  * @hw: pointer to the HW struct
252  * @parent: pointer to the parent node
253  * @num_nodes: number of nodes
254  * @node_teids: array of node teids to be deleted
255  *
256  * This function remove nodes from HW
257  */
258 static enum ice_status
259 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
260 		       u16 num_nodes, u32 *node_teids)
261 {
262 	struct ice_aqc_delete_elem *buf;
263 	u16 i, num_groups_removed = 0;
264 	enum ice_status status;
265 	u16 buf_size;
266 
267 	buf_size = ice_struct_size(buf, teid, num_nodes);
268 	buf = (struct ice_aqc_delete_elem *)ice_malloc(hw, buf_size);
269 	if (!buf)
270 		return ICE_ERR_NO_MEMORY;
271 
272 	buf->hdr.parent_teid = parent->info.node_teid;
273 	buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
274 	for (i = 0; i < num_nodes; i++)
275 		buf->teid[i] = CPU_TO_LE32(node_teids[i]);
276 
277 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
278 					   &num_groups_removed, NULL);
279 	if (status != ICE_SUCCESS || num_groups_removed != 1)
280 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
281 			  hw->adminq.sq_last_status);
282 
283 	ice_free(hw, buf);
284 	return status;
285 }
286 
287 /**
288  * ice_sched_get_first_node - get the first node of the given layer
289  * @pi: port information structure
290  * @parent: pointer the base node of the subtree
291  * @layer: layer number
292  *
293  * This function retrieves the first node of the given layer from the subtree
294  */
295 static struct ice_sched_node *
296 ice_sched_get_first_node(struct ice_port_info *pi,
297 			 struct ice_sched_node *parent, u8 layer)
298 {
299 	return pi->sib_head[parent->tc_num][layer];
300 }
301 
302 /**
303  * ice_sched_get_tc_node - get pointer to TC node
304  * @pi: port information structure
305  * @tc: TC number
306  *
307  * This function returns the TC node pointer
308  */
309 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
310 {
311 	u8 i;
312 
313 	if (!pi || !pi->root)
314 		return NULL;
315 	for (i = 0; i < pi->root->num_children; i++)
316 		if (pi->root->children[i]->tc_num == tc)
317 			return pi->root->children[i];
318 	return NULL;
319 }
320 
321 /**
322  * ice_free_sched_node - Free a Tx scheduler node from SW DB
323  * @pi: port information structure
324  * @node: pointer to the ice_sched_node struct
325  *
326  * This function frees up a node from SW DB as well as from HW
327  *
328  * This function needs to be called with the port_info->sched_lock held
329  */
330 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
331 {
332 	struct ice_sched_node *parent;
333 	struct ice_hw *hw = pi->hw;
334 	u8 i, j;
335 
336 	/* Free the children before freeing up the parent node
337 	 * The parent array is updated below and that shifts the nodes
338 	 * in the array. So always pick the first child if num children > 0
339 	 */
340 	while (node->num_children)
341 		ice_free_sched_node(pi, node->children[0]);
342 
343 	/* Leaf, TC and root nodes can't be deleted by SW */
344 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
345 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
346 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
347 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
348 		u32 teid = LE32_TO_CPU(node->info.node_teid);
349 
350 		ice_sched_remove_elems(hw, node->parent, 1, &teid);
351 	}
352 	parent = node->parent;
353 	/* root has no parent */
354 	if (parent) {
355 		struct ice_sched_node *p;
356 
357 		/* update the parent */
358 		for (i = 0; i < parent->num_children; i++)
359 			if (parent->children[i] == node) {
360 				for (j = i + 1; j < parent->num_children; j++)
361 					parent->children[j - 1] =
362 						parent->children[j];
363 				parent->num_children--;
364 				break;
365 			}
366 
367 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
368 		while (p) {
369 			if (p->sibling == node) {
370 				p->sibling = node->sibling;
371 				break;
372 			}
373 			p = p->sibling;
374 		}
375 
376 		/* update the sibling head if head is getting removed */
377 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
378 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
379 				node->sibling;
380 	}
381 
382 	/* leaf nodes have no children */
383 	if (node->children)
384 		ice_free(hw, node->children);
385 	ice_free(hw, node);
386 }
387 
388 /**
389  * ice_aq_get_dflt_topo - gets default scheduler topology
390  * @hw: pointer to the HW struct
391  * @lport: logical port number
392  * @buf: pointer to buffer
393  * @buf_size: buffer size in bytes
394  * @num_branches: returns total number of queue to port branches
395  * @cd: pointer to command details structure or NULL
396  *
397  * Get default scheduler topology (0x400)
398  */
399 static enum ice_status
400 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
401 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
402 		     u8 *num_branches, struct ice_sq_cd *cd)
403 {
404 	struct ice_aqc_get_topo *cmd;
405 	struct ice_aq_desc desc;
406 	enum ice_status status;
407 
408 	cmd = &desc.params.get_topo;
409 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
410 	cmd->port_num = lport;
411 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
412 	if (!status && num_branches)
413 		*num_branches = cmd->num_branches;
414 
415 	return status;
416 }
417 
418 /**
419  * ice_aq_add_sched_elems - adds scheduling element
420  * @hw: pointer to the HW struct
421  * @grps_req: the number of groups that are requested to be added
422  * @buf: pointer to buffer
423  * @buf_size: buffer size in bytes
424  * @grps_added: returns total number of groups added
425  * @cd: pointer to command details structure or NULL
426  *
427  * Add scheduling elements (0x0401)
428  */
429 static enum ice_status
430 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
431 		       struct ice_aqc_add_elem *buf, u16 buf_size,
432 		       u16 *grps_added, struct ice_sq_cd *cd)
433 {
434 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
435 					   grps_req, (void *)buf, buf_size,
436 					   grps_added, cd);
437 }
438 
439 /**
440  * ice_aq_cfg_sched_elems - configures scheduler elements
441  * @hw: pointer to the HW struct
442  * @elems_req: number of elements to configure
443  * @buf: pointer to buffer
444  * @buf_size: buffer size in bytes
445  * @elems_cfgd: returns total number of elements configured
446  * @cd: pointer to command details structure or NULL
447  *
448  * Configure scheduling elements (0x0403)
449  */
450 static enum ice_status
451 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
452 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
453 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
454 {
455 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
456 					   elems_req, (void *)buf, buf_size,
457 					   elems_cfgd, cd);
458 }
459 
460 /**
461  * ice_aq_move_sched_elems - move scheduler elements
462  * @hw: pointer to the HW struct
463  * @grps_req: number of groups to move
464  * @buf: pointer to buffer
465  * @buf_size: buffer size in bytes
466  * @grps_movd: returns total number of groups moved
467  * @cd: pointer to command details structure or NULL
468  *
469  * Move scheduling elements (0x0408)
470  */
471 static enum ice_status
472 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
473 			struct ice_aqc_move_elem *buf, u16 buf_size,
474 			u16 *grps_movd, struct ice_sq_cd *cd)
475 {
476 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
477 					   grps_req, (void *)buf, buf_size,
478 					   grps_movd, cd);
479 }
480 
481 /**
482  * ice_aq_suspend_sched_elems - suspend scheduler elements
483  * @hw: pointer to the HW struct
484  * @elems_req: number of elements to suspend
485  * @buf: pointer to buffer
486  * @buf_size: buffer size in bytes
487  * @elems_ret: returns total number of elements suspended
488  * @cd: pointer to command details structure or NULL
489  *
490  * Suspend scheduling elements (0x0409)
491  */
492 static enum ice_status
493 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
494 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
495 {
496 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
497 					   elems_req, (void *)buf, buf_size,
498 					   elems_ret, cd);
499 }
500 
501 /**
502  * ice_aq_resume_sched_elems - resume scheduler elements
503  * @hw: pointer to the HW struct
504  * @elems_req: number of elements to resume
505  * @buf: pointer to buffer
506  * @buf_size: buffer size in bytes
507  * @elems_ret: returns total number of elements resumed
508  * @cd: pointer to command details structure or NULL
509  *
510  * resume scheduling elements (0x040A)
511  */
512 static enum ice_status
513 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
514 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
515 {
516 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
517 					   elems_req, (void *)buf, buf_size,
518 					   elems_ret, cd);
519 }
520 
521 /**
522  * ice_aq_query_sched_res - query scheduler resource
523  * @hw: pointer to the HW struct
524  * @buf_size: buffer size in bytes
525  * @buf: pointer to buffer
526  * @cd: pointer to command details structure or NULL
527  *
528  * Query scheduler resource allocation (0x0412)
529  */
530 static enum ice_status
531 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
532 		       struct ice_aqc_query_txsched_res_resp *buf,
533 		       struct ice_sq_cd *cd)
534 {
535 	struct ice_aq_desc desc;
536 
537 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
538 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
539 }
540 
541 /**
542  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
543  * @hw: pointer to the HW struct
544  * @num_nodes: number of nodes
545  * @node_teids: array of node teids to be suspended or resumed
546  * @suspend: true means suspend / false means resume
547  *
548  * This function suspends or resumes HW nodes
549  */
550 static enum ice_status
551 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
552 			       bool suspend)
553 {
554 	u16 i, buf_size, num_elem_ret = 0;
555 	enum ice_status status;
556 	__le32 *buf;
557 
558 	buf_size = sizeof(*buf) * num_nodes;
559 	buf = (__le32 *)ice_malloc(hw, buf_size);
560 	if (!buf)
561 		return ICE_ERR_NO_MEMORY;
562 
563 	for (i = 0; i < num_nodes; i++)
564 		buf[i] = CPU_TO_LE32(node_teids[i]);
565 
566 	if (suspend)
567 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
568 						    buf_size, &num_elem_ret,
569 						    NULL);
570 	else
571 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
572 						   buf_size, &num_elem_ret,
573 						   NULL);
574 	if (status != ICE_SUCCESS || num_elem_ret != num_nodes)
575 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
576 
577 	ice_free(hw, buf);
578 	return status;
579 }
580 
581 /**
582  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
583  * @hw: pointer to the HW struct
584  * @vsi_handle: VSI handle
585  * @tc: TC number
586  * @new_numqs: number of queues
587  */
588 static enum ice_status
589 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
590 {
591 	struct ice_vsi_ctx *vsi_ctx;
592 	struct ice_q_ctx *q_ctx;
593 
594 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
595 	if (!vsi_ctx)
596 		return ICE_ERR_PARAM;
597 	/* allocate LAN queue contexts */
598 	if (!vsi_ctx->lan_q_ctx[tc]) {
599 		vsi_ctx->lan_q_ctx[tc] = (struct ice_q_ctx *)
600 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
601 		if (!vsi_ctx->lan_q_ctx[tc])
602 			return ICE_ERR_NO_MEMORY;
603 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
604 		return ICE_SUCCESS;
605 	}
606 	/* num queues are increased, update the queue contexts */
607 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
608 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
609 
610 		q_ctx = (struct ice_q_ctx *)
611 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
612 		if (!q_ctx)
613 			return ICE_ERR_NO_MEMORY;
614 		ice_memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
615 			   prev_num * sizeof(*q_ctx), ICE_DMA_TO_NONDMA);
616 		ice_free(hw, vsi_ctx->lan_q_ctx[tc]);
617 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
618 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
619 	}
620 	return ICE_SUCCESS;
621 }
622 
623 /**
624  * ice_aq_rl_profile - performs a rate limiting task
625  * @hw: pointer to the HW struct
626  * @opcode: opcode for add, query, or remove profile(s)
627  * @num_profiles: the number of profiles
628  * @buf: pointer to buffer
629  * @buf_size: buffer size in bytes
630  * @num_processed: number of processed add or remove profile(s) to return
631  * @cd: pointer to command details structure
632  *
633  * RL profile function to add, query, or remove profile(s)
634  */
635 static enum ice_status
636 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
637 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
638 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
639 {
640 	struct ice_aqc_rl_profile *cmd;
641 	struct ice_aq_desc desc;
642 	enum ice_status status;
643 
644 	cmd = &desc.params.rl_profile;
645 
646 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
647 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
648 	cmd->num_profiles = CPU_TO_LE16(num_profiles);
649 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
650 	if (!status && num_processed)
651 		*num_processed = LE16_TO_CPU(cmd->num_processed);
652 	return status;
653 }
654 
655 /**
656  * ice_aq_add_rl_profile - adds rate limiting profile(s)
657  * @hw: pointer to the HW struct
658  * @num_profiles: the number of profile(s) to be add
659  * @buf: pointer to buffer
660  * @buf_size: buffer size in bytes
661  * @num_profiles_added: total number of profiles added to return
662  * @cd: pointer to command details structure
663  *
664  * Add RL profile (0x0410)
665  */
666 static enum ice_status
667 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
668 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
669 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
670 {
671 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
672 				 buf, buf_size, num_profiles_added, cd);
673 }
674 
675 /**
676  * ice_aq_query_rl_profile - query rate limiting profile(s)
677  * @hw: pointer to the HW struct
678  * @num_profiles: the number of profile(s) to query
679  * @buf: pointer to buffer
680  * @buf_size: buffer size in bytes
681  * @cd: pointer to command details structure
682  *
683  * Query RL profile (0x0411)
684  */
685 enum ice_status
686 ice_aq_query_rl_profile(struct ice_hw *hw, u16 num_profiles,
687 			struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
688 			struct ice_sq_cd *cd)
689 {
690 	return ice_aq_rl_profile(hw, ice_aqc_opc_query_rl_profiles,
691 				 num_profiles, buf, buf_size, NULL, cd);
692 }
693 
694 /**
695  * ice_aq_remove_rl_profile - removes RL profile(s)
696  * @hw: pointer to the HW struct
697  * @num_profiles: the number of profile(s) to remove
698  * @buf: pointer to buffer
699  * @buf_size: buffer size in bytes
700  * @num_profiles_removed: total number of profiles removed to return
701  * @cd: pointer to command details structure or NULL
702  *
703  * Remove RL profile (0x0415)
704  */
705 static enum ice_status
706 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
707 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
708 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
709 {
710 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
711 				 num_profiles, buf, buf_size,
712 				 num_profiles_removed, cd);
713 }
714 
715 /**
716  * ice_sched_del_rl_profile - remove RL profile
717  * @hw: pointer to the HW struct
718  * @rl_info: rate limit profile information
719  *
720  * If the profile ID is not referenced anymore, it removes profile ID with
721  * its associated parameters from HW DB,and locally. The caller needs to
722  * hold scheduler lock.
723  */
724 static enum ice_status
725 ice_sched_del_rl_profile(struct ice_hw *hw,
726 			 struct ice_aqc_rl_profile_info *rl_info)
727 {
728 	struct ice_aqc_rl_profile_elem *buf;
729 	u16 num_profiles_removed;
730 	enum ice_status status;
731 	u16 num_profiles = 1;
732 
733 	if (rl_info->prof_id_ref != 0)
734 		return ICE_ERR_IN_USE;
735 
736 	/* Safe to remove profile ID */
737 	buf = &rl_info->profile;
738 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
739 					  &num_profiles_removed, NULL);
740 	if (status || num_profiles_removed != num_profiles)
741 		return ICE_ERR_CFG;
742 
743 	/* Delete stale entry now */
744 	LIST_DEL(&rl_info->list_entry);
745 	ice_free(hw, rl_info);
746 	return status;
747 }
748 
749 /**
750  * ice_sched_clear_rl_prof - clears RL prof entries
751  * @pi: port information structure
752  *
753  * This function removes all RL profile from HW as well as from SW DB.
754  */
755 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
756 {
757 	u16 ln;
758 	struct ice_hw *hw = pi->hw;
759 
760 	for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
761 		struct ice_aqc_rl_profile_info *rl_prof_elem;
762 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
763 
764 		LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
765 					 &hw->rl_prof_list[ln],
766 					 ice_aqc_rl_profile_info, list_entry) {
767 			enum ice_status status;
768 
769 			rl_prof_elem->prof_id_ref = 0;
770 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
771 			if (status) {
772 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
773 				/* On error, free mem required */
774 				LIST_DEL(&rl_prof_elem->list_entry);
775 				ice_free(hw, rl_prof_elem);
776 			}
777 		}
778 	}
779 }
780 
781 /**
782  * ice_sched_clear_agg - clears the aggregator related information
783  * @hw: pointer to the hardware structure
784  *
785  * This function removes aggregator list and free up aggregator related memory
786  * previously allocated.
787  */
788 void ice_sched_clear_agg(struct ice_hw *hw)
789 {
790 	struct ice_sched_agg_info *agg_info;
791 	struct ice_sched_agg_info *atmp;
792 
793 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &hw->agg_list,
794 				 ice_sched_agg_info,
795 				 list_entry) {
796 		struct ice_sched_agg_vsi_info *agg_vsi_info;
797 		struct ice_sched_agg_vsi_info *vtmp;
798 
799 		LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
800 					 &agg_info->agg_vsi_list,
801 					 ice_sched_agg_vsi_info, list_entry) {
802 			LIST_DEL(&agg_vsi_info->list_entry);
803 			ice_free(hw, agg_vsi_info);
804 		}
805 		LIST_DEL(&agg_info->list_entry);
806 		ice_free(hw, agg_info);
807 	}
808 }
809 
810 /**
811  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
812  * @pi: port information structure
813  *
814  * This function removes all the nodes from HW as well as from SW DB.
815  */
816 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
817 {
818 	if (!pi)
819 		return;
820 	/* remove RL profiles related lists */
821 	ice_sched_clear_rl_prof(pi);
822 	if (pi->root) {
823 		ice_free_sched_node(pi, pi->root);
824 		pi->root = NULL;
825 	}
826 }
827 
828 /**
829  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
830  * @pi: port information structure
831  *
832  * Cleanup scheduling elements from SW DB
833  */
834 void ice_sched_clear_port(struct ice_port_info *pi)
835 {
836 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
837 		return;
838 
839 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
840 	ice_acquire_lock(&pi->sched_lock);
841 	ice_sched_clear_tx_topo(pi);
842 	ice_release_lock(&pi->sched_lock);
843 	ice_destroy_lock(&pi->sched_lock);
844 }
845 
846 /**
847  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
848  * @hw: pointer to the HW struct
849  *
850  * Cleanup scheduling elements from SW DB for all the ports
851  */
852 void ice_sched_cleanup_all(struct ice_hw *hw)
853 {
854 	if (!hw)
855 		return;
856 
857 	if (hw->layer_info) {
858 		ice_free(hw, hw->layer_info);
859 		hw->layer_info = NULL;
860 	}
861 
862 	ice_sched_clear_port(hw->port_info);
863 
864 	hw->num_tx_sched_layers = 0;
865 	hw->num_tx_sched_phys_layers = 0;
866 	hw->flattened_layers = 0;
867 	hw->max_cgds = 0;
868 }
869 
870 /**
871  * ice_aq_cfg_l2_node_cgd - configures L2 node to CGD mapping
872  * @hw: pointer to the HW struct
873  * @num_l2_nodes: the number of L2 nodes whose CGDs to configure
874  * @buf: pointer to buffer
875  * @buf_size: buffer size in bytes
876  * @cd: pointer to command details structure or NULL
877  *
878  * Configure L2 Node CGD (0x0414)
879  */
880 enum ice_status
881 ice_aq_cfg_l2_node_cgd(struct ice_hw *hw, u16 num_l2_nodes,
882 		       struct ice_aqc_cfg_l2_node_cgd_elem *buf,
883 		       u16 buf_size, struct ice_sq_cd *cd)
884 {
885 	struct ice_aqc_cfg_l2_node_cgd *cmd;
886 	struct ice_aq_desc desc;
887 
888 	cmd = &desc.params.cfg_l2_node_cgd;
889 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_l2_node_cgd);
890 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
891 
892 	cmd->num_l2_nodes = CPU_TO_LE16(num_l2_nodes);
893 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
894 }
895 
896 /**
897  * ice_sched_add_elems - add nodes to HW and SW DB
898  * @pi: port information structure
899  * @tc_node: pointer to the branch node
900  * @parent: pointer to the parent node
901  * @layer: layer number to add nodes
902  * @num_nodes: number of nodes
903  * @num_nodes_added: pointer to num nodes added
904  * @first_node_teid: if new nodes are added then return the TEID of first node
905  *
906  * This function add nodes to HW as well as to SW DB for a given layer
907  */
908 static enum ice_status
909 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
910 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
911 		    u16 *num_nodes_added, u32 *first_node_teid)
912 {
913 	struct ice_sched_node *prev, *new_node;
914 	struct ice_aqc_add_elem *buf;
915 	u16 i, num_groups_added = 0;
916 	enum ice_status status = ICE_SUCCESS;
917 	struct ice_hw *hw = pi->hw;
918 	u16 buf_size;
919 	u32 teid;
920 
921 	buf_size = ice_struct_size(buf, generic, num_nodes);
922 	buf = (struct ice_aqc_add_elem *)ice_malloc(hw, buf_size);
923 	if (!buf)
924 		return ICE_ERR_NO_MEMORY;
925 
926 	buf->hdr.parent_teid = parent->info.node_teid;
927 	buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
928 	for (i = 0; i < num_nodes; i++) {
929 		buf->generic[i].parent_teid = parent->info.node_teid;
930 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
931 		buf->generic[i].data.valid_sections =
932 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
933 			ICE_AQC_ELEM_VALID_EIR;
934 		buf->generic[i].data.generic = 0;
935 		buf->generic[i].data.cir_bw.bw_profile_idx =
936 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
937 		buf->generic[i].data.cir_bw.bw_alloc =
938 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
939 		buf->generic[i].data.eir_bw.bw_profile_idx =
940 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
941 		buf->generic[i].data.eir_bw.bw_alloc =
942 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
943 	}
944 
945 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
946 					&num_groups_added, NULL);
947 	if (status != ICE_SUCCESS || num_groups_added != 1) {
948 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
949 			  hw->adminq.sq_last_status);
950 		ice_free(hw, buf);
951 		return ICE_ERR_CFG;
952 	}
953 
954 	*num_nodes_added = num_nodes;
955 	/* add nodes to the SW DB */
956 	for (i = 0; i < num_nodes; i++) {
957 		status = ice_sched_add_node(pi, layer, &buf->generic[i]);
958 		if (status != ICE_SUCCESS) {
959 			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
960 				  status);
961 			break;
962 		}
963 
964 		teid = LE32_TO_CPU(buf->generic[i].node_teid);
965 		new_node = ice_sched_find_node_by_teid(parent, teid);
966 		if (!new_node) {
967 			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
968 			break;
969 		}
970 
971 		new_node->sibling = NULL;
972 		new_node->tc_num = tc_node->tc_num;
973 
974 		/* add it to previous node sibling pointer */
975 		/* Note: siblings are not linked across branches */
976 		prev = ice_sched_get_first_node(pi, tc_node, layer);
977 		if (prev && prev != new_node) {
978 			while (prev->sibling)
979 				prev = prev->sibling;
980 			prev->sibling = new_node;
981 		}
982 
983 		/* initialize the sibling head */
984 		if (!pi->sib_head[tc_node->tc_num][layer])
985 			pi->sib_head[tc_node->tc_num][layer] = new_node;
986 
987 		if (i == 0)
988 			*first_node_teid = teid;
989 	}
990 
991 	ice_free(hw, buf);
992 	return status;
993 }
994 
995 /**
996  * ice_sched_add_nodes_to_hw_layer - Add nodes to hw layer
997  * @pi: port information structure
998  * @tc_node: pointer to TC node
999  * @parent: pointer to parent node
1000  * @layer: layer number to add nodes
1001  * @num_nodes: number of nodes to be added
1002  * @first_node_teid: pointer to the first node TEID
1003  * @num_nodes_added: pointer to number of nodes added
1004  *
1005  * Add nodes into specific hw layer.
1006  */
1007 static enum ice_status
1008 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1009 				struct ice_sched_node *tc_node,
1010 				struct ice_sched_node *parent, u8 layer,
1011 				u16 num_nodes, u32 *first_node_teid,
1012 				u16 *num_nodes_added)
1013 {
1014 	u16 max_child_nodes;
1015 
1016 	*num_nodes_added = 0;
1017 
1018 	if (!num_nodes)
1019 		return ICE_SUCCESS;
1020 
1021 	if (!parent || layer < pi->hw->sw_entry_point_layer)
1022 		return ICE_ERR_PARAM;
1023 
1024 	/* max children per node per layer */
1025 	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1026 
1027 	/* current number of children + required nodes exceed max children */
1028 	if ((parent->num_children + num_nodes) > max_child_nodes) {
1029 		/* Fail if the parent is a TC node */
1030 		if (parent == tc_node)
1031 			return ICE_ERR_CFG;
1032 		return ICE_ERR_MAX_LIMIT;
1033 	}
1034 
1035 	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1036 				   num_nodes_added, first_node_teid);
1037 }
1038 
1039 /**
1040  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1041  * @pi: port information structure
1042  * @tc_node: pointer to TC node
1043  * @parent: pointer to parent node
1044  * @layer: layer number to add nodes
1045  * @num_nodes: number of nodes to be added
1046  * @first_node_teid: pointer to the first node TEID
1047  * @num_nodes_added: pointer to number of nodes added
1048  *
1049  * This function add nodes to a given layer.
1050  */
1051 static enum ice_status
1052 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1053 			     struct ice_sched_node *tc_node,
1054 			     struct ice_sched_node *parent, u8 layer,
1055 			     u16 num_nodes, u32 *first_node_teid,
1056 			     u16 *num_nodes_added)
1057 {
1058 	u32 *first_teid_ptr = first_node_teid;
1059 	u16 new_num_nodes = num_nodes;
1060 	enum ice_status status = ICE_SUCCESS;
1061 
1062 	*num_nodes_added = 0;
1063 	while (*num_nodes_added < num_nodes) {
1064 		u16 max_child_nodes, num_added = 0;
1065 		u32 temp;
1066 
1067 		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1068 							 layer,	new_num_nodes,
1069 							 first_teid_ptr,
1070 							 &num_added);
1071 		if (status == ICE_SUCCESS)
1072 			*num_nodes_added += num_added;
1073 		/* added more nodes than requested ? */
1074 		if (*num_nodes_added > num_nodes) {
1075 			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1076 				  *num_nodes_added);
1077 			status = ICE_ERR_CFG;
1078 			break;
1079 		}
1080 		/* break if all the nodes are added successfully */
1081 		if (status == ICE_SUCCESS && (*num_nodes_added == num_nodes))
1082 			break;
1083 		/* break if the error is not max limit */
1084 		if (status != ICE_SUCCESS && status != ICE_ERR_MAX_LIMIT)
1085 			break;
1086 		/* Exceeded the max children */
1087 		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1088 		/* utilize all the spaces if the parent is not full */
1089 		if (parent->num_children < max_child_nodes) {
1090 			new_num_nodes = max_child_nodes - parent->num_children;
1091 		} else {
1092 			/* This parent is full, try the next sibling */
1093 			parent = parent->sibling;
1094 			/* Don't modify the first node TEID memory if the
1095 			 * first node was added already in the above call.
1096 			 * Instead send some temp memory for all other
1097 			 * recursive calls.
1098 			 */
1099 			if (num_added)
1100 				first_teid_ptr = &temp;
1101 
1102 			new_num_nodes = num_nodes - *num_nodes_added;
1103 		}
1104 	}
1105 	return status;
1106 }
1107 
1108 /**
1109  * ice_sched_get_qgrp_layer - get the current queue group layer number
1110  * @hw: pointer to the HW struct
1111  *
1112  * This function returns the current queue group layer number
1113  */
1114 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1115 {
1116 	/* It's always total layers - 1, the array is 0 relative so -2 */
1117 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1118 }
1119 
1120 /**
1121  * ice_sched_get_vsi_layer - get the current VSI layer number
1122  * @hw: pointer to the HW struct
1123  *
1124  * This function returns the current VSI layer number
1125  */
1126 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1127 {
1128 	/* Num Layers       VSI layer
1129 	 *     9               6
1130 	 *     7               4
1131 	 *     5 or less       sw_entry_point_layer
1132 	 */
1133 	/* calculate the VSI layer based on number of layers. */
1134 	if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1135 		u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1136 
1137 		if (layer > hw->sw_entry_point_layer)
1138 			return layer;
1139 	}
1140 	return hw->sw_entry_point_layer;
1141 }
1142 
1143 /**
1144  * ice_sched_get_agg_layer - get the current aggregator layer number
1145  * @hw: pointer to the HW struct
1146  *
1147  * This function returns the current aggregator layer number
1148  */
1149 static u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1150 {
1151 	/* Num Layers       aggregator layer
1152 	 *     9               4
1153 	 *     7 or less       sw_entry_point_layer
1154 	 */
1155 	/* calculate the aggregator layer based on number of layers. */
1156 	if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1157 		u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1158 
1159 		if (layer > hw->sw_entry_point_layer)
1160 			return layer;
1161 	}
1162 	return hw->sw_entry_point_layer;
1163 }
1164 
1165 /**
1166  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1167  * @pi: port information structure
1168  *
1169  * This function removes the leaf node that was created by the FW
1170  * during initialization
1171  */
1172 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1173 {
1174 	struct ice_sched_node *node;
1175 
1176 	node = pi->root;
1177 	while (node) {
1178 		if (!node->num_children)
1179 			break;
1180 		node = node->children[0];
1181 	}
1182 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1183 		u32 teid = LE32_TO_CPU(node->info.node_teid);
1184 		enum ice_status status;
1185 
1186 		/* remove the default leaf node */
1187 		status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1188 		if (!status)
1189 			ice_free_sched_node(pi, node);
1190 	}
1191 }
1192 
1193 /**
1194  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1195  * @pi: port information structure
1196  *
1197  * This function frees all the nodes except root and TC that were created by
1198  * the FW during initialization
1199  */
1200 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1201 {
1202 	struct ice_sched_node *node;
1203 
1204 	ice_rm_dflt_leaf_node(pi);
1205 
1206 	/* remove the default nodes except TC and root nodes */
1207 	node = pi->root;
1208 	while (node) {
1209 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1210 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1211 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1212 			ice_free_sched_node(pi, node);
1213 			break;
1214 		}
1215 
1216 		if (!node->num_children)
1217 			break;
1218 		node = node->children[0];
1219 	}
1220 }
1221 
1222 /**
1223  * ice_sched_init_port - Initialize scheduler by querying information from FW
1224  * @pi: port info structure for the tree to cleanup
1225  *
1226  * This function is the initial call to find the total number of Tx scheduler
1227  * resources, default topology created by firmware and storing the information
1228  * in SW DB.
1229  */
1230 enum ice_status ice_sched_init_port(struct ice_port_info *pi)
1231 {
1232 	struct ice_aqc_get_topo_elem *buf;
1233 	enum ice_status status;
1234 	struct ice_hw *hw;
1235 	u8 num_branches;
1236 	u16 num_elems;
1237 	u8 i, j;
1238 
1239 	if (!pi)
1240 		return ICE_ERR_PARAM;
1241 	hw = pi->hw;
1242 
1243 	/* Query the Default Topology from FW */
1244 	buf = (struct ice_aqc_get_topo_elem *)ice_malloc(hw,
1245 							 ICE_AQ_MAX_BUF_LEN);
1246 	if (!buf)
1247 		return ICE_ERR_NO_MEMORY;
1248 
1249 	/* Query default scheduling tree topology */
1250 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1251 				      &num_branches, NULL);
1252 	if (status)
1253 		goto err_init_port;
1254 
1255 	/* num_branches should be between 1-8 */
1256 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1257 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1258 			  num_branches);
1259 		status = ICE_ERR_PARAM;
1260 		goto err_init_port;
1261 	}
1262 
1263 	/* get the number of elements on the default/first branch */
1264 	num_elems = LE16_TO_CPU(buf[0].hdr.num_elems);
1265 
1266 	/* num_elems should always be between 1-9 */
1267 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1268 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1269 			  num_elems);
1270 		status = ICE_ERR_PARAM;
1271 		goto err_init_port;
1272 	}
1273 
1274 	/* If the last node is a leaf node then the index of the queue group
1275 	 * layer is two less than the number of elements.
1276 	 */
1277 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1278 	    ICE_AQC_ELEM_TYPE_LEAF)
1279 		pi->last_node_teid =
1280 			LE32_TO_CPU(buf[0].generic[num_elems - 2].node_teid);
1281 	else
1282 		pi->last_node_teid =
1283 			LE32_TO_CPU(buf[0].generic[num_elems - 1].node_teid);
1284 
1285 	/* Insert the Tx Sched root node */
1286 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1287 	if (status)
1288 		goto err_init_port;
1289 
1290 	/* Parse the default tree and cache the information */
1291 	for (i = 0; i < num_branches; i++) {
1292 		num_elems = LE16_TO_CPU(buf[i].hdr.num_elems);
1293 
1294 		/* Skip root element as already inserted */
1295 		for (j = 1; j < num_elems; j++) {
1296 			/* update the sw entry point */
1297 			if (buf[0].generic[j].data.elem_type ==
1298 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1299 				hw->sw_entry_point_layer = j;
1300 
1301 			status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
1302 			if (status)
1303 				goto err_init_port;
1304 		}
1305 	}
1306 
1307 	/* Remove the default nodes. */
1308 	if (pi->root)
1309 		ice_sched_rm_dflt_nodes(pi);
1310 
1311 	/* initialize the port for handling the scheduler tree */
1312 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1313 	ice_init_lock(&pi->sched_lock);
1314 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1315 		INIT_LIST_HEAD(&hw->rl_prof_list[i]);
1316 
1317 err_init_port:
1318 	if (status && pi->root) {
1319 		ice_free_sched_node(pi, pi->root);
1320 		pi->root = NULL;
1321 	}
1322 
1323 	ice_free(hw, buf);
1324 	return status;
1325 }
1326 
1327 /**
1328  * ice_sched_get_node - Get the struct ice_sched_node for given TEID
1329  * @pi: port information structure
1330  * @teid: Scheduler node TEID
1331  *
1332  * This function retrieves the ice_sched_node struct for given TEID from
1333  * the SW DB and returns it to the caller.
1334  */
1335 struct ice_sched_node *ice_sched_get_node(struct ice_port_info *pi, u32 teid)
1336 {
1337 	struct ice_sched_node *node;
1338 
1339 	if (!pi)
1340 		return NULL;
1341 
1342 	/* Find the node starting from root */
1343 	ice_acquire_lock(&pi->sched_lock);
1344 	node = ice_sched_find_node_by_teid(pi->root, teid);
1345 	ice_release_lock(&pi->sched_lock);
1346 
1347 	if (!node)
1348 		ice_debug(pi->hw, ICE_DBG_SCHED, "Node not found for teid=0x%x\n", teid);
1349 
1350 	return node;
1351 }
1352 
1353 /**
1354  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1355  * @hw: pointer to the HW struct
1356  *
1357  * query FW for allocated scheduler resources and store in HW struct
1358  */
1359 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
1360 {
1361 	struct ice_aqc_query_txsched_res_resp *buf;
1362 	enum ice_status status = ICE_SUCCESS;
1363 	__le16 max_sibl;
1364 	u8 i;
1365 
1366 	if (hw->layer_info)
1367 		return status;
1368 
1369 	buf = (struct ice_aqc_query_txsched_res_resp *)
1370 		ice_malloc(hw, sizeof(*buf));
1371 	if (!buf)
1372 		return ICE_ERR_NO_MEMORY;
1373 
1374 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1375 	if (status)
1376 		goto sched_query_out;
1377 
1378 	hw->num_tx_sched_layers = LE16_TO_CPU(buf->sched_props.logical_levels);
1379 	hw->num_tx_sched_phys_layers =
1380 		LE16_TO_CPU(buf->sched_props.phys_levels);
1381 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1382 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1383 
1384 	/* max sibling group size of current layer refers to the max children
1385 	 * of the below layer node.
1386 	 * layer 1 node max children will be layer 2 max sibling group size
1387 	 * layer 2 node max children will be layer 3 max sibling group size
1388 	 * and so on. This array will be populated from root (index 0) to
1389 	 * qgroup layer 7. Leaf node has no children.
1390 	 */
1391 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1392 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1393 		hw->max_children[i] = LE16_TO_CPU(max_sibl);
1394 	}
1395 
1396 	hw->layer_info = (struct ice_aqc_layer_props *)
1397 			 ice_memdup(hw, buf->layer_props,
1398 				    (hw->num_tx_sched_layers *
1399 				     sizeof(*hw->layer_info)),
1400 				    ICE_NONDMA_TO_NONDMA);
1401 	if (!hw->layer_info) {
1402 		status = ICE_ERR_NO_MEMORY;
1403 		goto sched_query_out;
1404 	}
1405 
1406 sched_query_out:
1407 	ice_free(hw, buf);
1408 	return status;
1409 }
1410 
1411 /**
1412  * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1413  * @hw: pointer to the HW struct
1414  *
1415  * Determine the PSM clock frequency and store in HW struct
1416  */
1417 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1418 {
1419 	u32 val, clk_src;
1420 
1421 	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1422 	clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1423 		GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1424 
1425 #define PSM_CLK_SRC_367_MHZ 0x0
1426 #define PSM_CLK_SRC_416_MHZ 0x1
1427 #define PSM_CLK_SRC_446_MHZ 0x2
1428 #define PSM_CLK_SRC_390_MHZ 0x3
1429 
1430 	switch (clk_src) {
1431 	case PSM_CLK_SRC_367_MHZ:
1432 		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1433 		break;
1434 	case PSM_CLK_SRC_416_MHZ:
1435 		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1436 		break;
1437 	case PSM_CLK_SRC_446_MHZ:
1438 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1439 		break;
1440 	case PSM_CLK_SRC_390_MHZ:
1441 		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1442 		break;
1443 	default:
1444 		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1445 			  clk_src);
1446 		/* fall back to a safe default */
1447 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1448 	}
1449 }
1450 
1451 /**
1452  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1453  * @hw: pointer to the HW struct
1454  * @base: pointer to the base node
1455  * @node: pointer to the node to search
1456  *
1457  * This function checks whether a given node is part of the base node
1458  * subtree or not
1459  */
1460 bool
1461 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1462 			       struct ice_sched_node *node)
1463 {
1464 	u8 i;
1465 
1466 	for (i = 0; i < base->num_children; i++) {
1467 		struct ice_sched_node *child = base->children[i];
1468 
1469 		if (node == child)
1470 			return true;
1471 
1472 		if (child->tx_sched_layer > node->tx_sched_layer)
1473 			return false;
1474 
1475 		/* this recursion is intentional, and wouldn't
1476 		 * go more than 8 calls
1477 		 */
1478 		if (ice_sched_find_node_in_subtree(hw, child, node))
1479 			return true;
1480 	}
1481 	return false;
1482 }
1483 
1484 /**
1485  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1486  * @pi: port information structure
1487  * @vsi_node: software VSI handle
1488  * @qgrp_node: first queue group node identified for scanning
1489  * @owner: LAN or RDMA
1490  *
1491  * This function retrieves a free LAN or RDMA queue group node by scanning
1492  * qgrp_node and its siblings for the queue group with the fewest number
1493  * of queues currently assigned.
1494  */
1495 static struct ice_sched_node *
1496 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1497 			struct ice_sched_node *vsi_node,
1498 			struct ice_sched_node *qgrp_node, u8 owner)
1499 {
1500 	struct ice_sched_node *min_qgrp;
1501 	u8 min_children;
1502 
1503 	if (!qgrp_node)
1504 		return qgrp_node;
1505 	min_children = qgrp_node->num_children;
1506 	if (!min_children)
1507 		return qgrp_node;
1508 	min_qgrp = qgrp_node;
1509 	/* scan all queue groups until find a node which has less than the
1510 	 * minimum number of children. This way all queue group nodes get
1511 	 * equal number of shares and active. The bandwidth will be equally
1512 	 * distributed across all queues.
1513 	 */
1514 	while (qgrp_node) {
1515 		/* make sure the qgroup node is part of the VSI subtree */
1516 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1517 			if (qgrp_node->num_children < min_children &&
1518 			    qgrp_node->owner == owner) {
1519 				/* replace the new min queue group node */
1520 				min_qgrp = qgrp_node;
1521 				min_children = min_qgrp->num_children;
1522 				/* break if it has no children, */
1523 				if (!min_children)
1524 					break;
1525 			}
1526 		qgrp_node = qgrp_node->sibling;
1527 	}
1528 	return min_qgrp;
1529 }
1530 
1531 /**
1532  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1533  * @pi: port information structure
1534  * @vsi_handle: software VSI handle
1535  * @tc: branch number
1536  * @owner: LAN or RDMA
1537  *
1538  * This function retrieves a free LAN or RDMA queue group node
1539  */
1540 struct ice_sched_node *
1541 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1542 			   u8 owner)
1543 {
1544 	struct ice_sched_node *vsi_node, *qgrp_node;
1545 	struct ice_vsi_ctx *vsi_ctx;
1546 	u16 max_children;
1547 	u8 qgrp_layer;
1548 
1549 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1550 	max_children = pi->hw->max_children[qgrp_layer];
1551 
1552 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1553 	if (!vsi_ctx)
1554 		return NULL;
1555 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1556 	/* validate invalid VSI ID */
1557 	if (!vsi_node)
1558 		return NULL;
1559 
1560 	/* get the first queue group node from VSI sub-tree */
1561 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1562 	while (qgrp_node) {
1563 		/* make sure the qgroup node is part of the VSI subtree */
1564 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1565 			if (qgrp_node->num_children < max_children &&
1566 			    qgrp_node->owner == owner)
1567 				break;
1568 		qgrp_node = qgrp_node->sibling;
1569 	}
1570 
1571 	/* Select the best queue group */
1572 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1573 }
1574 
1575 /**
1576  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1577  * @pi: pointer to the port information structure
1578  * @tc_node: pointer to the TC node
1579  * @vsi_handle: software VSI handle
1580  *
1581  * This function retrieves a VSI node for a given VSI ID from a given
1582  * TC branch
1583  */
1584 struct ice_sched_node *
1585 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1586 		       u16 vsi_handle)
1587 {
1588 	struct ice_sched_node *node;
1589 	u8 vsi_layer;
1590 
1591 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1592 	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1593 
1594 	/* Check whether it already exists */
1595 	while (node) {
1596 		if (node->vsi_handle == vsi_handle)
1597 			return node;
1598 		node = node->sibling;
1599 	}
1600 
1601 	return node;
1602 }
1603 
1604 /**
1605  * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1606  * @pi: pointer to the port information structure
1607  * @tc_node: pointer to the TC node
1608  * @agg_id: aggregator ID
1609  *
1610  * This function retrieves an aggregator node for a given aggregator ID from
1611  * a given TC branch
1612  */
1613 static struct ice_sched_node *
1614 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1615 		       u32 agg_id)
1616 {
1617 	struct ice_sched_node *node;
1618 	struct ice_hw *hw = pi->hw;
1619 	u8 agg_layer;
1620 
1621 	if (!hw)
1622 		return NULL;
1623 	agg_layer = ice_sched_get_agg_layer(hw);
1624 	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1625 
1626 	/* Check whether it already exists */
1627 	while (node) {
1628 		if (node->agg_id == agg_id)
1629 			return node;
1630 		node = node->sibling;
1631 	}
1632 
1633 	return node;
1634 }
1635 
1636 /**
1637  * ice_sched_check_node - Compare node parameters between SW DB and HW DB
1638  * @hw: pointer to the HW struct
1639  * @node: pointer to the ice_sched_node struct
1640  *
1641  * This function queries and compares the HW element with SW DB node parameters
1642  */
1643 static bool ice_sched_check_node(struct ice_hw *hw, struct ice_sched_node *node)
1644 {
1645 	struct ice_aqc_txsched_elem_data buf;
1646 	enum ice_status status;
1647 	u32 node_teid;
1648 
1649 	node_teid = LE32_TO_CPU(node->info.node_teid);
1650 	status = ice_sched_query_elem(hw, node_teid, &buf);
1651 	if (status != ICE_SUCCESS)
1652 		return false;
1653 
1654 	if (memcmp(&buf, &node->info, sizeof(buf))) {
1655 		ice_debug(hw, ICE_DBG_SCHED, "Node mismatch for teid=0x%x\n",
1656 			  node_teid);
1657 		return false;
1658 	}
1659 
1660 	return true;
1661 }
1662 
1663 /**
1664  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1665  * @hw: pointer to the HW struct
1666  * @num_qs: number of queues
1667  * @num_nodes: num nodes array
1668  *
1669  * This function calculates the number of VSI child nodes based on the
1670  * number of queues.
1671  */
1672 static void
1673 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1674 {
1675 	u16 num = num_qs;
1676 	u8 i, qgl, vsil;
1677 
1678 	qgl = ice_sched_get_qgrp_layer(hw);
1679 	vsil = ice_sched_get_vsi_layer(hw);
1680 
1681 	/* calculate num nodes from queue group to VSI layer */
1682 	for (i = qgl; i > vsil; i--) {
1683 		/* round to the next integer if there is a remainder */
1684 		num = DIVIDE_AND_ROUND_UP(num, hw->max_children[i]);
1685 
1686 		/* need at least one node */
1687 		num_nodes[i] = num ? num : 1;
1688 	}
1689 }
1690 
1691 /**
1692  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1693  * @pi: port information structure
1694  * @vsi_handle: software VSI handle
1695  * @tc_node: pointer to the TC node
1696  * @num_nodes: pointer to the num nodes that needs to be added per layer
1697  * @owner: node owner (LAN or RDMA)
1698  *
1699  * This function adds the VSI child nodes to tree. It gets called for
1700  * LAN and RDMA separately.
1701  */
1702 static enum ice_status
1703 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1704 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1705 			      u8 owner)
1706 {
1707 	struct ice_sched_node *parent, *node;
1708 	struct ice_hw *hw = pi->hw;
1709 	enum ice_status status;
1710 	u32 first_node_teid;
1711 	u16 num_added = 0;
1712 	u8 i, qgl, vsil;
1713 
1714 	qgl = ice_sched_get_qgrp_layer(hw);
1715 	vsil = ice_sched_get_vsi_layer(hw);
1716 	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1717 	for (i = vsil + 1; i <= qgl; i++) {
1718 		if (!parent)
1719 			return ICE_ERR_CFG;
1720 
1721 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1722 						      num_nodes[i],
1723 						      &first_node_teid,
1724 						      &num_added);
1725 		if (status != ICE_SUCCESS || num_nodes[i] != num_added)
1726 			return ICE_ERR_CFG;
1727 
1728 		/* The newly added node can be a new parent for the next
1729 		 * layer nodes
1730 		 */
1731 		if (num_added) {
1732 			parent = ice_sched_find_node_by_teid(tc_node,
1733 							     first_node_teid);
1734 			node = parent;
1735 			while (node) {
1736 				node->owner = owner;
1737 				node = node->sibling;
1738 			}
1739 		} else {
1740 			parent = parent->children[0];
1741 		}
1742 	}
1743 
1744 	return ICE_SUCCESS;
1745 }
1746 
1747 /**
1748  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1749  * @pi: pointer to the port info structure
1750  * @tc_node: pointer to TC node
1751  * @num_nodes: pointer to num nodes array
1752  *
1753  * This function calculates the number of supported nodes needed to add this
1754  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1755  * layers
1756  */
1757 static void
1758 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1759 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1760 {
1761 	struct ice_sched_node *node;
1762 	u8 vsil;
1763 	int i;
1764 
1765 	vsil = ice_sched_get_vsi_layer(pi->hw);
1766 	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1767 		/* Add intermediate nodes if TC has no children and
1768 		 * need at least one node for VSI
1769 		 */
1770 		if (!tc_node->num_children || i == vsil) {
1771 			num_nodes[i]++;
1772 		} else {
1773 			/* If intermediate nodes are reached max children
1774 			 * then add a new one.
1775 			 */
1776 			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1777 			/* scan all the siblings */
1778 			while (node) {
1779 				if (node->num_children <
1780 				    pi->hw->max_children[i])
1781 					break;
1782 				node = node->sibling;
1783 			}
1784 
1785 			/* tree has one intermediate node to add this new VSI.
1786 			 * So no need to calculate supported nodes for below
1787 			 * layers.
1788 			 */
1789 			if (node)
1790 				break;
1791 			/* all the nodes are full, allocate a new one */
1792 			num_nodes[i]++;
1793 		}
1794 }
1795 
1796 /**
1797  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1798  * @pi: port information structure
1799  * @vsi_handle: software VSI handle
1800  * @tc_node: pointer to TC node
1801  * @num_nodes: pointer to num nodes array
1802  *
1803  * This function adds the VSI supported nodes into Tx tree including the
1804  * VSI, its parent and intermediate nodes in below layers
1805  */
1806 static enum ice_status
1807 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1808 				struct ice_sched_node *tc_node, u16 *num_nodes)
1809 {
1810 	struct ice_sched_node *parent = tc_node;
1811 	enum ice_status status;
1812 	u32 first_node_teid;
1813 	u16 num_added = 0;
1814 	u8 i, vsil;
1815 
1816 	if (!pi)
1817 		return ICE_ERR_PARAM;
1818 
1819 	vsil = ice_sched_get_vsi_layer(pi->hw);
1820 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1821 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1822 						      i, num_nodes[i],
1823 						      &first_node_teid,
1824 						      &num_added);
1825 		if (status != ICE_SUCCESS || num_nodes[i] != num_added)
1826 			return ICE_ERR_CFG;
1827 
1828 		/* The newly added node can be a new parent for the next
1829 		 * layer nodes
1830 		 */
1831 		if (num_added)
1832 			parent = ice_sched_find_node_by_teid(tc_node,
1833 							     first_node_teid);
1834 		else
1835 			parent = parent->children[0];
1836 
1837 		if (!parent)
1838 			return ICE_ERR_CFG;
1839 
1840 		if (i == vsil)
1841 			parent->vsi_handle = vsi_handle;
1842 	}
1843 
1844 	return ICE_SUCCESS;
1845 }
1846 
1847 /**
1848  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1849  * @pi: port information structure
1850  * @vsi_handle: software VSI handle
1851  * @tc: TC number
1852  *
1853  * This function adds a new VSI into scheduler tree
1854  */
1855 static enum ice_status
1856 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1857 {
1858 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1859 	struct ice_sched_node *tc_node;
1860 
1861 	tc_node = ice_sched_get_tc_node(pi, tc);
1862 	if (!tc_node)
1863 		return ICE_ERR_PARAM;
1864 
1865 	/* calculate number of supported nodes needed for this VSI */
1866 	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1867 
1868 	/* add VSI supported nodes to TC subtree */
1869 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1870 					       num_nodes);
1871 }
1872 
1873 /**
1874  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1875  * @pi: port information structure
1876  * @vsi_handle: software VSI handle
1877  * @tc: TC number
1878  * @new_numqs: new number of max queues
1879  * @owner: owner of this subtree
1880  *
1881  * This function updates the VSI child nodes based on the number of queues
1882  */
1883 static enum ice_status
1884 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1885 				 u8 tc, u16 new_numqs, u8 owner)
1886 {
1887 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1888 	struct ice_sched_node *vsi_node;
1889 	struct ice_sched_node *tc_node;
1890 	struct ice_vsi_ctx *vsi_ctx;
1891 	enum ice_status status = ICE_SUCCESS;
1892 	struct ice_hw *hw = pi->hw;
1893 	u16 prev_numqs;
1894 
1895 	tc_node = ice_sched_get_tc_node(pi, tc);
1896 	if (!tc_node)
1897 		return ICE_ERR_CFG;
1898 
1899 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1900 	if (!vsi_node)
1901 		return ICE_ERR_CFG;
1902 
1903 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1904 	if (!vsi_ctx)
1905 		return ICE_ERR_PARAM;
1906 
1907 	prev_numqs = vsi_ctx->sched.max_lanq[tc];
1908 	/* num queues are not changed or less than the previous number */
1909 	if (new_numqs <= prev_numqs)
1910 		return status;
1911 	status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1912 	if (status)
1913 		return status;
1914 
1915 	if (new_numqs)
1916 		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1917 	/* Keep the max number of queue configuration all the time. Update the
1918 	 * tree only if number of queues > previous number of queues. This may
1919 	 * leave some extra nodes in the tree if number of queues < previous
1920 	 * number but that wouldn't harm anything. Removing those extra nodes
1921 	 * may complicate the code if those nodes are part of SRL or
1922 	 * individually rate limited.
1923 	 */
1924 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1925 					       new_num_nodes, owner);
1926 	if (status)
1927 		return status;
1928 	vsi_ctx->sched.max_lanq[tc] = new_numqs;
1929 
1930 	return ICE_SUCCESS;
1931 }
1932 
1933 /**
1934  * ice_sched_cfg_vsi - configure the new/existing VSI
1935  * @pi: port information structure
1936  * @vsi_handle: software VSI handle
1937  * @tc: TC number
1938  * @maxqs: max number of queues
1939  * @owner: LAN or RDMA
1940  * @enable: TC enabled or disabled
1941  *
1942  * This function adds/updates VSI nodes based on the number of queues. If TC is
1943  * enabled and VSI is in suspended state then resume the VSI back. If TC is
1944  * disabled then suspend the VSI if it is not already.
1945  */
1946 enum ice_status
1947 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1948 		  u8 owner, bool enable)
1949 {
1950 	struct ice_sched_node *vsi_node, *tc_node;
1951 	struct ice_vsi_ctx *vsi_ctx;
1952 	enum ice_status status = ICE_SUCCESS;
1953 	struct ice_hw *hw = pi->hw;
1954 
1955 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1956 	tc_node = ice_sched_get_tc_node(pi, tc);
1957 	if (!tc_node)
1958 		return ICE_ERR_PARAM;
1959 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1960 	if (!vsi_ctx)
1961 		return ICE_ERR_PARAM;
1962 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1963 
1964 	/* suspend the VSI if TC is not enabled */
1965 	if (!enable) {
1966 		if (vsi_node && vsi_node->in_use) {
1967 			u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
1968 
1969 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1970 								true);
1971 			if (!status)
1972 				vsi_node->in_use = false;
1973 		}
1974 		return status;
1975 	}
1976 
1977 	/* TC is enabled, if it is a new VSI then add it to the tree */
1978 	if (!vsi_node) {
1979 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1980 		if (status)
1981 			return status;
1982 
1983 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1984 		if (!vsi_node)
1985 			return ICE_ERR_CFG;
1986 
1987 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1988 		vsi_node->in_use = true;
1989 		/* invalidate the max queues whenever VSI gets added first time
1990 		 * into the scheduler tree (boot or after reset). We need to
1991 		 * recreate the child nodes all the time in these cases.
1992 		 */
1993 		vsi_ctx->sched.max_lanq[tc] = 0;
1994 	}
1995 
1996 	/* update the VSI child nodes */
1997 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1998 						  owner);
1999 	if (status)
2000 		return status;
2001 
2002 	/* TC is enabled, resume the VSI if it is in the suspend state */
2003 	if (!vsi_node->in_use) {
2004 		u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
2005 
2006 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
2007 		if (!status)
2008 			vsi_node->in_use = true;
2009 	}
2010 
2011 	return status;
2012 }
2013 
2014 /**
2015  * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
2016  * @pi: port information structure
2017  * @vsi_handle: software VSI handle
2018  *
2019  * This function removes single aggregator VSI info entry from
2020  * aggregator list.
2021  */
2022 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
2023 {
2024 	struct ice_sched_agg_info *agg_info;
2025 	struct ice_sched_agg_info *atmp;
2026 
2027 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &pi->hw->agg_list,
2028 				 ice_sched_agg_info,
2029 				 list_entry) {
2030 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2031 		struct ice_sched_agg_vsi_info *vtmp;
2032 
2033 		LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
2034 					 &agg_info->agg_vsi_list,
2035 					 ice_sched_agg_vsi_info, list_entry)
2036 			if (agg_vsi_info->vsi_handle == vsi_handle) {
2037 				LIST_DEL(&agg_vsi_info->list_entry);
2038 				ice_free(pi->hw, agg_vsi_info);
2039 				return;
2040 			}
2041 	}
2042 }
2043 
2044 /**
2045  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2046  * @node: pointer to the sub-tree node
2047  *
2048  * This function checks for a leaf node presence in a given sub-tree node.
2049  */
2050 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2051 {
2052 	u8 i;
2053 
2054 	for (i = 0; i < node->num_children; i++)
2055 		if (ice_sched_is_leaf_node_present(node->children[i]))
2056 			return true;
2057 	/* check for a leaf node */
2058 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2059 }
2060 
2061 /**
2062  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2063  * @pi: port information structure
2064  * @vsi_handle: software VSI handle
2065  * @owner: LAN or RDMA
2066  *
2067  * This function removes the VSI and its LAN or RDMA children nodes from the
2068  * scheduler tree.
2069  */
2070 static enum ice_status
2071 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2072 {
2073 	enum ice_status status = ICE_ERR_PARAM;
2074 	struct ice_vsi_ctx *vsi_ctx;
2075 	u8 i;
2076 
2077 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2078 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2079 		return status;
2080 	ice_acquire_lock(&pi->sched_lock);
2081 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2082 	if (!vsi_ctx)
2083 		goto exit_sched_rm_vsi_cfg;
2084 
2085 	ice_for_each_traffic_class(i) {
2086 		struct ice_sched_node *vsi_node, *tc_node;
2087 		u8 j = 0;
2088 
2089 		tc_node = ice_sched_get_tc_node(pi, i);
2090 		if (!tc_node)
2091 			continue;
2092 
2093 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2094 		if (!vsi_node)
2095 			continue;
2096 
2097 		if (ice_sched_is_leaf_node_present(vsi_node)) {
2098 			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2099 			status = ICE_ERR_IN_USE;
2100 			goto exit_sched_rm_vsi_cfg;
2101 		}
2102 		while (j < vsi_node->num_children) {
2103 			if (vsi_node->children[j]->owner == owner) {
2104 				ice_free_sched_node(pi, vsi_node->children[j]);
2105 
2106 				/* reset the counter again since the num
2107 				 * children will be updated after node removal
2108 				 */
2109 				j = 0;
2110 			} else {
2111 				j++;
2112 			}
2113 		}
2114 		/* remove the VSI if it has no children */
2115 		if (!vsi_node->num_children) {
2116 			ice_free_sched_node(pi, vsi_node);
2117 			vsi_ctx->sched.vsi_node[i] = NULL;
2118 
2119 			/* clean up aggregator related VSI info if any */
2120 			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2121 		}
2122 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2123 			vsi_ctx->sched.max_lanq[i] = 0;
2124 	}
2125 	status = ICE_SUCCESS;
2126 
2127 exit_sched_rm_vsi_cfg:
2128 	ice_release_lock(&pi->sched_lock);
2129 	return status;
2130 }
2131 
2132 /**
2133  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2134  * @pi: port information structure
2135  * @vsi_handle: software VSI handle
2136  *
2137  * This function clears the VSI and its LAN children nodes from scheduler tree
2138  * for all TCs.
2139  */
2140 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2141 {
2142 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2143 }
2144 
2145 /**
2146  * ice_sched_is_tree_balanced - Check tree nodes are identical or not
2147  * @hw: pointer to the HW struct
2148  * @node: pointer to the ice_sched_node struct
2149  *
2150  * This function compares all the nodes for a given tree against HW DB nodes
2151  * This function needs to be called with the port_info->sched_lock held
2152  */
2153 bool ice_sched_is_tree_balanced(struct ice_hw *hw, struct ice_sched_node *node)
2154 {
2155 	u8 i;
2156 
2157 	/* start from the leaf node */
2158 	for (i = 0; i < node->num_children; i++)
2159 		/* Fail if node doesn't match with the SW DB
2160 		 * this recursion is intentional, and wouldn't
2161 		 * go more than 9 calls
2162 		 */
2163 		if (!ice_sched_is_tree_balanced(hw, node->children[i]))
2164 			return false;
2165 
2166 	return ice_sched_check_node(hw, node);
2167 }
2168 
2169 /**
2170  * ice_aq_query_node_to_root - retrieve the tree topology for a given node TEID
2171  * @hw: pointer to the HW struct
2172  * @node_teid: node TEID
2173  * @buf: pointer to buffer
2174  * @buf_size: buffer size in bytes
2175  * @cd: pointer to command details structure or NULL
2176  *
2177  * This function retrieves the tree topology from the firmware for a given
2178  * node TEID to the root node.
2179  */
2180 enum ice_status
2181 ice_aq_query_node_to_root(struct ice_hw *hw, u32 node_teid,
2182 			  struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
2183 			  struct ice_sq_cd *cd)
2184 {
2185 	struct ice_aqc_query_node_to_root *cmd;
2186 	struct ice_aq_desc desc;
2187 
2188 	cmd = &desc.params.query_node_to_root;
2189 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_node_to_root);
2190 	cmd->teid = CPU_TO_LE32(node_teid);
2191 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2192 }
2193 
2194 /**
2195  * ice_get_agg_info - get the aggregator ID
2196  * @hw: pointer to the hardware structure
2197  * @agg_id: aggregator ID
2198  *
2199  * This function validates aggregator ID. The function returns info if
2200  * aggregator ID is present in list otherwise it returns null.
2201  */
2202 static struct ice_sched_agg_info *
2203 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2204 {
2205 	struct ice_sched_agg_info *agg_info;
2206 
2207 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
2208 			    list_entry)
2209 		if (agg_info->agg_id == agg_id)
2210 			return agg_info;
2211 
2212 	return NULL;
2213 }
2214 
2215 /**
2216  * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2217  * @hw: pointer to the HW struct
2218  * @node: pointer to a child node
2219  * @num_nodes: num nodes count array
2220  *
2221  * This function walks through the aggregator subtree to find a free parent
2222  * node
2223  */
2224 static struct ice_sched_node *
2225 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2226 			      u16 *num_nodes)
2227 {
2228 	u8 l = node->tx_sched_layer;
2229 	u8 vsil, i;
2230 
2231 	vsil = ice_sched_get_vsi_layer(hw);
2232 
2233 	/* Is it VSI parent layer ? */
2234 	if (l == vsil - 1)
2235 		return (node->num_children < hw->max_children[l]) ? node : NULL;
2236 
2237 	/* We have intermediate nodes. Let's walk through the subtree. If the
2238 	 * intermediate node has space to add a new node then clear the count
2239 	 */
2240 	if (node->num_children < hw->max_children[l])
2241 		num_nodes[l] = 0;
2242 	/* The below recursive call is intentional and wouldn't go more than
2243 	 * 2 or 3 iterations.
2244 	 */
2245 
2246 	for (i = 0; i < node->num_children; i++) {
2247 		struct ice_sched_node *parent;
2248 
2249 		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2250 						       num_nodes);
2251 		if (parent)
2252 			return parent;
2253 	}
2254 
2255 	return NULL;
2256 }
2257 
2258 /**
2259  * ice_sched_update_parent - update the new parent in SW DB
2260  * @new_parent: pointer to a new parent node
2261  * @node: pointer to a child node
2262  *
2263  * This function removes the child from the old parent and adds it to a new
2264  * parent
2265  */
2266 static void
2267 ice_sched_update_parent(struct ice_sched_node *new_parent,
2268 			struct ice_sched_node *node)
2269 {
2270 	struct ice_sched_node *old_parent;
2271 	u8 i, j;
2272 
2273 	old_parent = node->parent;
2274 
2275 	/* update the old parent children */
2276 	for (i = 0; i < old_parent->num_children; i++)
2277 		if (old_parent->children[i] == node) {
2278 			for (j = i + 1; j < old_parent->num_children; j++)
2279 				old_parent->children[j - 1] =
2280 					old_parent->children[j];
2281 			old_parent->num_children--;
2282 			break;
2283 		}
2284 
2285 	/* now move the node to a new parent */
2286 	new_parent->children[new_parent->num_children++] = node;
2287 	node->parent = new_parent;
2288 	node->info.parent_teid = new_parent->info.node_teid;
2289 }
2290 
2291 /**
2292  * ice_sched_move_nodes - move child nodes to a given parent
2293  * @pi: port information structure
2294  * @parent: pointer to parent node
2295  * @num_items: number of child nodes to be moved
2296  * @list: pointer to child node teids
2297  *
2298  * This function move the child nodes to a given parent.
2299  */
2300 static enum ice_status
2301 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2302 		     u16 num_items, u32 *list)
2303 {
2304 	struct ice_aqc_move_elem *buf;
2305 	struct ice_sched_node *node;
2306 	enum ice_status status = ICE_SUCCESS;
2307 	u16 i, grps_movd = 0;
2308 	struct ice_hw *hw;
2309 	u16 buf_len;
2310 
2311 	hw = pi->hw;
2312 
2313 	if (!parent || !num_items)
2314 		return ICE_ERR_PARAM;
2315 
2316 	/* Does parent have enough space */
2317 	if (parent->num_children + num_items >
2318 	    hw->max_children[parent->tx_sched_layer])
2319 		return ICE_ERR_AQ_FULL;
2320 
2321 	buf_len = ice_struct_size(buf, teid, 1);
2322 	buf = (struct ice_aqc_move_elem *)ice_malloc(hw, buf_len);
2323 	if (!buf)
2324 		return ICE_ERR_NO_MEMORY;
2325 
2326 	for (i = 0; i < num_items; i++) {
2327 		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2328 		if (!node) {
2329 			status = ICE_ERR_PARAM;
2330 			goto move_err_exit;
2331 		}
2332 
2333 		buf->hdr.src_parent_teid = node->info.parent_teid;
2334 		buf->hdr.dest_parent_teid = parent->info.node_teid;
2335 		buf->teid[0] = node->info.node_teid;
2336 		buf->hdr.num_elems = CPU_TO_LE16(1);
2337 		status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
2338 						 &grps_movd, NULL);
2339 		if (status && grps_movd != 1) {
2340 			status = ICE_ERR_CFG;
2341 			goto move_err_exit;
2342 		}
2343 
2344 		/* update the SW DB */
2345 		ice_sched_update_parent(parent, node);
2346 	}
2347 
2348 move_err_exit:
2349 	ice_free(hw, buf);
2350 	return status;
2351 }
2352 
2353 /**
2354  * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2355  * @pi: port information structure
2356  * @vsi_handle: software VSI handle
2357  * @agg_id: aggregator ID
2358  * @tc: TC number
2359  *
2360  * This function moves a VSI to an aggregator node or its subtree.
2361  * Intermediate nodes may be created if required.
2362  */
2363 static enum ice_status
2364 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2365 			  u8 tc)
2366 {
2367 	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2368 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2369 	u32 first_node_teid, vsi_teid;
2370 	enum ice_status status;
2371 	u16 num_nodes_added;
2372 	u8 aggl, vsil, i;
2373 
2374 	tc_node = ice_sched_get_tc_node(pi, tc);
2375 	if (!tc_node)
2376 		return ICE_ERR_CFG;
2377 
2378 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2379 	if (!agg_node)
2380 		return ICE_ERR_DOES_NOT_EXIST;
2381 
2382 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2383 	if (!vsi_node)
2384 		return ICE_ERR_DOES_NOT_EXIST;
2385 
2386 	/* Is this VSI already part of given aggregator? */
2387 	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2388 		return ICE_SUCCESS;
2389 
2390 	aggl = ice_sched_get_agg_layer(pi->hw);
2391 	vsil = ice_sched_get_vsi_layer(pi->hw);
2392 
2393 	/* set intermediate node count to 1 between aggregator and VSI layers */
2394 	for (i = aggl + 1; i < vsil; i++)
2395 		num_nodes[i] = 1;
2396 
2397 	/* Check if the aggregator subtree has any free node to add the VSI */
2398 	for (i = 0; i < agg_node->num_children; i++) {
2399 		parent = ice_sched_get_free_vsi_parent(pi->hw,
2400 						       agg_node->children[i],
2401 						       num_nodes);
2402 		if (parent)
2403 			goto move_nodes;
2404 	}
2405 
2406 	/* add new nodes */
2407 	parent = agg_node;
2408 	for (i = aggl + 1; i < vsil; i++) {
2409 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2410 						      num_nodes[i],
2411 						      &first_node_teid,
2412 						      &num_nodes_added);
2413 		if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
2414 			return ICE_ERR_CFG;
2415 
2416 		/* The newly added node can be a new parent for the next
2417 		 * layer nodes
2418 		 */
2419 		if (num_nodes_added)
2420 			parent = ice_sched_find_node_by_teid(tc_node,
2421 							     first_node_teid);
2422 		else
2423 			parent = parent->children[0];
2424 
2425 		if (!parent)
2426 			return ICE_ERR_CFG;
2427 	}
2428 
2429 move_nodes:
2430 	vsi_teid = LE32_TO_CPU(vsi_node->info.node_teid);
2431 	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2432 }
2433 
2434 /**
2435  * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2436  * @pi: port information structure
2437  * @agg_info: aggregator info
2438  * @tc: traffic class number
2439  * @rm_vsi_info: true or false
2440  *
2441  * This function move all the VSI(s) to the default aggregator and delete
2442  * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2443  * caller holds the scheduler lock.
2444  */
2445 static enum ice_status
2446 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2447 			     struct ice_sched_agg_info *agg_info, u8 tc,
2448 			     bool rm_vsi_info)
2449 {
2450 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2451 	struct ice_sched_agg_vsi_info *tmp;
2452 	enum ice_status status = ICE_SUCCESS;
2453 
2454 	LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2455 				 ice_sched_agg_vsi_info, list_entry) {
2456 		u16 vsi_handle = agg_vsi_info->vsi_handle;
2457 
2458 		/* Move VSI to default aggregator */
2459 		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2460 			continue;
2461 
2462 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2463 						   ICE_DFLT_AGG_ID, tc);
2464 		if (status)
2465 			break;
2466 
2467 		ice_clear_bit(tc, agg_vsi_info->tc_bitmap);
2468 		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2469 			LIST_DEL(&agg_vsi_info->list_entry);
2470 			ice_free(pi->hw, agg_vsi_info);
2471 		}
2472 	}
2473 
2474 	return status;
2475 }
2476 
2477 /**
2478  * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2479  * @pi: port information structure
2480  * @node: node pointer
2481  *
2482  * This function checks whether the aggregator is attached with any VSI or not.
2483  */
2484 static bool
2485 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2486 {
2487 	u8 vsil, i;
2488 
2489 	vsil = ice_sched_get_vsi_layer(pi->hw);
2490 	if (node->tx_sched_layer < vsil - 1) {
2491 		for (i = 0; i < node->num_children; i++)
2492 			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2493 				return true;
2494 		return false;
2495 	} else {
2496 		return node->num_children ? true : false;
2497 	}
2498 }
2499 
2500 /**
2501  * ice_sched_rm_agg_cfg - remove the aggregator node
2502  * @pi: port information structure
2503  * @agg_id: aggregator ID
2504  * @tc: TC number
2505  *
2506  * This function removes the aggregator node and intermediate nodes if any
2507  * from the given TC
2508  */
2509 static enum ice_status
2510 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2511 {
2512 	struct ice_sched_node *tc_node, *agg_node;
2513 	struct ice_hw *hw = pi->hw;
2514 
2515 	tc_node = ice_sched_get_tc_node(pi, tc);
2516 	if (!tc_node)
2517 		return ICE_ERR_CFG;
2518 
2519 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2520 	if (!agg_node)
2521 		return ICE_ERR_DOES_NOT_EXIST;
2522 
2523 	/* Can't remove the aggregator node if it has children */
2524 	if (ice_sched_is_agg_inuse(pi, agg_node))
2525 		return ICE_ERR_IN_USE;
2526 
2527 	/* need to remove the whole subtree if aggregator node is the
2528 	 * only child.
2529 	 */
2530 	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2531 		struct ice_sched_node *parent = agg_node->parent;
2532 
2533 		if (!parent)
2534 			return ICE_ERR_CFG;
2535 
2536 		if (parent->num_children > 1)
2537 			break;
2538 
2539 		agg_node = parent;
2540 	}
2541 
2542 	ice_free_sched_node(pi, agg_node);
2543 	return ICE_SUCCESS;
2544 }
2545 
2546 /**
2547  * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2548  * @pi: port information structure
2549  * @agg_info: aggregator ID
2550  * @tc: TC number
2551  * @rm_vsi_info: bool value true or false
2552  *
2553  * This function removes aggregator reference to VSI of given TC. It removes
2554  * the aggregator configuration completely for requested TC. The caller needs
2555  * to hold the scheduler lock.
2556  */
2557 static enum ice_status
2558 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2559 		  u8 tc, bool rm_vsi_info)
2560 {
2561 	enum ice_status status = ICE_SUCCESS;
2562 
2563 	/* If nothing to remove - return success */
2564 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2565 		goto exit_rm_agg_cfg_tc;
2566 
2567 	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2568 	if (status)
2569 		goto exit_rm_agg_cfg_tc;
2570 
2571 	/* Delete aggregator node(s) */
2572 	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2573 	if (status)
2574 		goto exit_rm_agg_cfg_tc;
2575 
2576 	ice_clear_bit(tc, agg_info->tc_bitmap);
2577 exit_rm_agg_cfg_tc:
2578 	return status;
2579 }
2580 
2581 /**
2582  * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2583  * @pi: port information structure
2584  * @agg_id: aggregator ID
2585  * @tc_bitmap: 8 bits TC bitmap
2586  *
2587  * Save aggregator TC bitmap. This function needs to be called with scheduler
2588  * lock held.
2589  */
2590 static enum ice_status
2591 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2592 		       ice_bitmap_t *tc_bitmap)
2593 {
2594 	struct ice_sched_agg_info *agg_info;
2595 
2596 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2597 	if (!agg_info)
2598 		return ICE_ERR_PARAM;
2599 	ice_cp_bitmap(agg_info->replay_tc_bitmap, tc_bitmap,
2600 		      ICE_MAX_TRAFFIC_CLASS);
2601 	return ICE_SUCCESS;
2602 }
2603 
2604 /**
2605  * ice_sched_add_agg_cfg - create an aggregator node
2606  * @pi: port information structure
2607  * @agg_id: aggregator ID
2608  * @tc: TC number
2609  *
2610  * This function creates an aggregator node and intermediate nodes if required
2611  * for the given TC
2612  */
2613 static enum ice_status
2614 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2615 {
2616 	struct ice_sched_node *parent, *agg_node, *tc_node;
2617 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2618 	enum ice_status status = ICE_SUCCESS;
2619 	struct ice_hw *hw = pi->hw;
2620 	u32 first_node_teid;
2621 	u16 num_nodes_added;
2622 	u8 i, aggl;
2623 
2624 	tc_node = ice_sched_get_tc_node(pi, tc);
2625 	if (!tc_node)
2626 		return ICE_ERR_CFG;
2627 
2628 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2629 	/* Does Agg node already exist ? */
2630 	if (agg_node)
2631 		return status;
2632 
2633 	aggl = ice_sched_get_agg_layer(hw);
2634 
2635 	/* need one node in Agg layer */
2636 	num_nodes[aggl] = 1;
2637 
2638 	/* Check whether the intermediate nodes have space to add the
2639 	 * new aggregator. If they are full, then SW needs to allocate a new
2640 	 * intermediate node on those layers
2641 	 */
2642 	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2643 		parent = ice_sched_get_first_node(pi, tc_node, i);
2644 
2645 		/* scan all the siblings */
2646 		while (parent) {
2647 			if (parent->num_children < hw->max_children[i])
2648 				break;
2649 			parent = parent->sibling;
2650 		}
2651 
2652 		/* all the nodes are full, reserve one for this layer */
2653 		if (!parent)
2654 			num_nodes[i]++;
2655 	}
2656 
2657 	/* add the aggregator node */
2658 	parent = tc_node;
2659 	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2660 		if (!parent)
2661 			return ICE_ERR_CFG;
2662 
2663 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2664 						      num_nodes[i],
2665 						      &first_node_teid,
2666 						      &num_nodes_added);
2667 		if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
2668 			return ICE_ERR_CFG;
2669 
2670 		/* The newly added node can be a new parent for the next
2671 		 * layer nodes
2672 		 */
2673 		if (num_nodes_added) {
2674 			parent = ice_sched_find_node_by_teid(tc_node,
2675 							     first_node_teid);
2676 			/* register aggregator ID with the aggregator node */
2677 			if (parent && i == aggl)
2678 				parent->agg_id = agg_id;
2679 		} else {
2680 			parent = parent->children[0];
2681 		}
2682 	}
2683 
2684 	return ICE_SUCCESS;
2685 }
2686 
2687 /**
2688  * ice_sched_cfg_agg - configure aggregator node
2689  * @pi: port information structure
2690  * @agg_id: aggregator ID
2691  * @agg_type: aggregator type queue, VSI, or aggregator group
2692  * @tc_bitmap: bits TC bitmap
2693  *
2694  * It registers a unique aggregator node into scheduler services. It
2695  * allows a user to register with a unique ID to track it's resources.
2696  * The aggregator type determines if this is a queue group, VSI group
2697  * or aggregator group. It then creates the aggregator node(s) for requested
2698  * TC(s) or removes an existing aggregator node including its configuration
2699  * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2700  * resources and remove aggregator ID.
2701  * This function needs to be called with scheduler lock held.
2702  */
2703 static enum ice_status
2704 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2705 		  enum ice_agg_type agg_type, ice_bitmap_t *tc_bitmap)
2706 {
2707 	struct ice_sched_agg_info *agg_info;
2708 	enum ice_status status = ICE_SUCCESS;
2709 	struct ice_hw *hw = pi->hw;
2710 	u8 tc;
2711 
2712 	agg_info = ice_get_agg_info(hw, agg_id);
2713 	if (!agg_info) {
2714 		/* Create new entry for new aggregator ID */
2715 		agg_info = (struct ice_sched_agg_info *)
2716 			ice_malloc(hw, sizeof(*agg_info));
2717 		if (!agg_info)
2718 			return ICE_ERR_NO_MEMORY;
2719 
2720 		agg_info->agg_id = agg_id;
2721 		agg_info->agg_type = agg_type;
2722 		agg_info->tc_bitmap[0] = 0;
2723 
2724 		/* Initialize the aggregator VSI list head */
2725 		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2726 
2727 		/* Add new entry in aggregator list */
2728 		LIST_ADD(&agg_info->list_entry, &hw->agg_list);
2729 	}
2730 	/* Create aggregator node(s) for requested TC(s) */
2731 	ice_for_each_traffic_class(tc) {
2732 		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2733 			/* Delete aggregator cfg TC if it exists previously */
2734 			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2735 			if (status)
2736 				break;
2737 			continue;
2738 		}
2739 
2740 		/* Check if aggregator node for TC already exists */
2741 		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2742 			continue;
2743 
2744 		/* Create new aggregator node for TC */
2745 		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2746 		if (status)
2747 			break;
2748 
2749 		/* Save aggregator node's TC information */
2750 		ice_set_bit(tc, agg_info->tc_bitmap);
2751 	}
2752 
2753 	return status;
2754 }
2755 
2756 /**
2757  * ice_cfg_agg - config aggregator node
2758  * @pi: port information structure
2759  * @agg_id: aggregator ID
2760  * @agg_type: aggregator type queue, VSI, or aggregator group
2761  * @tc_bitmap: bits TC bitmap
2762  *
2763  * This function configures aggregator node(s).
2764  */
2765 enum ice_status
2766 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2767 	    u8 tc_bitmap)
2768 {
2769 	ice_bitmap_t bitmap = tc_bitmap;
2770 	enum ice_status status;
2771 
2772 	ice_acquire_lock(&pi->sched_lock);
2773 	status = ice_sched_cfg_agg(pi, agg_id, agg_type,
2774 				   (ice_bitmap_t *)&bitmap);
2775 	if (!status)
2776 		status = ice_save_agg_tc_bitmap(pi, agg_id,
2777 						(ice_bitmap_t *)&bitmap);
2778 	ice_release_lock(&pi->sched_lock);
2779 	return status;
2780 }
2781 
2782 /**
2783  * ice_get_agg_vsi_info - get the aggregator ID
2784  * @agg_info: aggregator info
2785  * @vsi_handle: software VSI handle
2786  *
2787  * The function returns aggregator VSI info based on VSI handle. This function
2788  * needs to be called with scheduler lock held.
2789  */
2790 static struct ice_sched_agg_vsi_info *
2791 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2792 {
2793 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2794 
2795 	LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
2796 			    ice_sched_agg_vsi_info, list_entry)
2797 		if (agg_vsi_info->vsi_handle == vsi_handle)
2798 			return agg_vsi_info;
2799 
2800 	return NULL;
2801 }
2802 
2803 /**
2804  * ice_get_vsi_agg_info - get the aggregator info of VSI
2805  * @hw: pointer to the hardware structure
2806  * @vsi_handle: Sw VSI handle
2807  *
2808  * The function returns aggregator info of VSI represented via vsi_handle. The
2809  * VSI has in this case a different aggregator than the default one. This
2810  * function needs to be called with scheduler lock held.
2811  */
2812 static struct ice_sched_agg_info *
2813 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2814 {
2815 	struct ice_sched_agg_info *agg_info;
2816 
2817 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
2818 			    list_entry) {
2819 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2820 
2821 		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2822 		if (agg_vsi_info)
2823 			return agg_info;
2824 	}
2825 	return NULL;
2826 }
2827 
2828 /**
2829  * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2830  * @pi: port information structure
2831  * @agg_id: aggregator ID
2832  * @vsi_handle: software VSI handle
2833  * @tc_bitmap: TC bitmap of enabled TC(s)
2834  *
2835  * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2836  * lock held.
2837  */
2838 static enum ice_status
2839 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2840 			   ice_bitmap_t *tc_bitmap)
2841 {
2842 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2843 	struct ice_sched_agg_info *agg_info;
2844 
2845 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2846 	if (!agg_info)
2847 		return ICE_ERR_PARAM;
2848 	/* check if entry already exist */
2849 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2850 	if (!agg_vsi_info)
2851 		return ICE_ERR_PARAM;
2852 	ice_cp_bitmap(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2853 		      ICE_MAX_TRAFFIC_CLASS);
2854 	return ICE_SUCCESS;
2855 }
2856 
2857 /**
2858  * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2859  * @pi: port information structure
2860  * @agg_id: aggregator ID
2861  * @vsi_handle: software VSI handle
2862  * @tc_bitmap: TC bitmap of enabled TC(s)
2863  *
2864  * This function moves VSI to a new or default aggregator node. If VSI is
2865  * already associated to the aggregator node then no operation is performed on
2866  * the tree. This function needs to be called with scheduler lock held.
2867  */
2868 static enum ice_status
2869 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2870 			   u16 vsi_handle, ice_bitmap_t *tc_bitmap)
2871 {
2872 	struct ice_sched_agg_vsi_info *agg_vsi_info, *old_agg_vsi_info = NULL;
2873 	struct ice_sched_agg_info *agg_info, *old_agg_info;
2874 	enum ice_status status = ICE_SUCCESS;
2875 	struct ice_hw *hw = pi->hw;
2876 	u8 tc;
2877 
2878 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2879 		return ICE_ERR_PARAM;
2880 	agg_info = ice_get_agg_info(hw, agg_id);
2881 	if (!agg_info)
2882 		return ICE_ERR_PARAM;
2883 	/* If the vsi is already part of another aggregator then update
2884 	 * its vsi info list
2885 	 */
2886 	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2887 	if (old_agg_info && old_agg_info != agg_info) {
2888 		struct ice_sched_agg_vsi_info *vtmp;
2889 
2890 		LIST_FOR_EACH_ENTRY_SAFE(old_agg_vsi_info, vtmp,
2891 					 &old_agg_info->agg_vsi_list,
2892 					 ice_sched_agg_vsi_info, list_entry)
2893 			if (old_agg_vsi_info->vsi_handle == vsi_handle)
2894 				break;
2895 	}
2896 
2897 	/* check if entry already exist */
2898 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2899 	if (!agg_vsi_info) {
2900 		/* Create new entry for VSI under aggregator list */
2901 		agg_vsi_info = (struct ice_sched_agg_vsi_info *)
2902 			ice_malloc(hw, sizeof(*agg_vsi_info));
2903 		if (!agg_vsi_info)
2904 			return ICE_ERR_PARAM;
2905 
2906 		/* add VSI ID into the aggregator list */
2907 		agg_vsi_info->vsi_handle = vsi_handle;
2908 		LIST_ADD(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2909 	}
2910 	/* Move VSI node to new aggregator node for requested TC(s) */
2911 	ice_for_each_traffic_class(tc) {
2912 		if (!ice_is_tc_ena(*tc_bitmap, tc))
2913 			continue;
2914 
2915 		/* Move VSI to new aggregator */
2916 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2917 		if (status)
2918 			break;
2919 
2920 		ice_set_bit(tc, agg_vsi_info->tc_bitmap);
2921 		if (old_agg_vsi_info)
2922 			ice_clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2923 	}
2924 	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2925 		LIST_DEL(&old_agg_vsi_info->list_entry);
2926 		ice_free(pi->hw, old_agg_vsi_info);
2927 	}
2928 	return status;
2929 }
2930 
2931 /**
2932  * ice_sched_rm_unused_rl_prof - remove unused RL profile
2933  * @hw: pointer to the hardware structure
2934  *
2935  * This function removes unused rate limit profiles from the HW and
2936  * SW DB. The caller needs to hold scheduler lock.
2937  */
2938 static void ice_sched_rm_unused_rl_prof(struct ice_hw *hw)
2939 {
2940 	u16 ln;
2941 
2942 	for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
2943 		struct ice_aqc_rl_profile_info *rl_prof_elem;
2944 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
2945 
2946 		LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
2947 					 &hw->rl_prof_list[ln],
2948 					 ice_aqc_rl_profile_info, list_entry) {
2949 			if (!ice_sched_del_rl_profile(hw, rl_prof_elem))
2950 				ice_debug(hw, ICE_DBG_SCHED, "Removed rl profile\n");
2951 		}
2952 	}
2953 }
2954 
2955 /**
2956  * ice_sched_update_elem - update element
2957  * @hw: pointer to the HW struct
2958  * @node: pointer to node
2959  * @info: node info to update
2960  *
2961  * Update the HW DB, and local SW DB of node. Update the scheduling
2962  * parameters of node from argument info data buffer (Info->data buf) and
2963  * returns success or error on config sched element failure. The caller
2964  * needs to hold scheduler lock.
2965  */
2966 static enum ice_status
2967 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2968 		      struct ice_aqc_txsched_elem_data *info)
2969 {
2970 	struct ice_aqc_txsched_elem_data buf;
2971 	enum ice_status status;
2972 	u16 elem_cfgd = 0;
2973 	u16 num_elems = 1;
2974 
2975 	buf = *info;
2976 	/* For TC nodes, CIR config is not supported */
2977 	if (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_TC)
2978 		buf.data.valid_sections &= ~ICE_AQC_ELEM_VALID_CIR;
2979 	/* Parent TEID is reserved field in this aq call */
2980 	buf.parent_teid = 0;
2981 	/* Element type is reserved field in this aq call */
2982 	buf.data.elem_type = 0;
2983 	/* Flags is reserved field in this aq call */
2984 	buf.data.flags = 0;
2985 
2986 	/* Update HW DB */
2987 	/* Configure element node */
2988 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2989 					&elem_cfgd, NULL);
2990 	if (status || elem_cfgd != num_elems) {
2991 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2992 		return ICE_ERR_CFG;
2993 	}
2994 
2995 	/* Config success case */
2996 	/* Now update local SW DB */
2997 	/* Only copy the data portion of info buffer */
2998 	node->info.data = info->data;
2999 	return status;
3000 }
3001 
3002 /**
3003  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
3004  * @hw: pointer to the HW struct
3005  * @node: sched node to configure
3006  * @rl_type: rate limit type CIR, EIR, or shared
3007  * @bw_alloc: BW weight/allocation
3008  *
3009  * This function configures node element's BW allocation.
3010  */
3011 static enum ice_status
3012 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
3013 			    enum ice_rl_type rl_type, u16 bw_alloc)
3014 {
3015 	struct ice_aqc_txsched_elem_data buf;
3016 	struct ice_aqc_txsched_elem *data;
3017 	enum ice_status status;
3018 
3019 	buf = node->info;
3020 	data = &buf.data;
3021 	if (rl_type == ICE_MIN_BW) {
3022 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3023 		data->cir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
3024 	} else if (rl_type == ICE_MAX_BW) {
3025 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3026 		data->eir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
3027 	} else {
3028 		return ICE_ERR_PARAM;
3029 	}
3030 
3031 	/* Configure element */
3032 	status = ice_sched_update_elem(hw, node, &buf);
3033 	return status;
3034 }
3035 
3036 /**
3037  * ice_move_vsi_to_agg - moves VSI to new or default aggregator
3038  * @pi: port information structure
3039  * @agg_id: aggregator ID
3040  * @vsi_handle: software VSI handle
3041  * @tc_bitmap: TC bitmap of enabled TC(s)
3042  *
3043  * Move or associate VSI to a new or default aggregator node.
3044  */
3045 enum ice_status
3046 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
3047 		    u8 tc_bitmap)
3048 {
3049 	ice_bitmap_t bitmap = tc_bitmap;
3050 	enum ice_status status;
3051 
3052 	ice_acquire_lock(&pi->sched_lock);
3053 	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
3054 					    (ice_bitmap_t *)&bitmap);
3055 	if (!status)
3056 		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
3057 						    (ice_bitmap_t *)&bitmap);
3058 	ice_release_lock(&pi->sched_lock);
3059 	return status;
3060 }
3061 
3062 /**
3063  * ice_rm_agg_cfg - remove aggregator configuration
3064  * @pi: port information structure
3065  * @agg_id: aggregator ID
3066  *
3067  * This function removes aggregator reference to VSI and delete aggregator ID
3068  * info. It removes the aggregator configuration completely.
3069  */
3070 enum ice_status ice_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id)
3071 {
3072 	struct ice_sched_agg_info *agg_info;
3073 	enum ice_status status = ICE_SUCCESS;
3074 	u8 tc;
3075 
3076 	ice_acquire_lock(&pi->sched_lock);
3077 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3078 	if (!agg_info) {
3079 		status = ICE_ERR_DOES_NOT_EXIST;
3080 		goto exit_ice_rm_agg_cfg;
3081 	}
3082 
3083 	ice_for_each_traffic_class(tc) {
3084 		status = ice_rm_agg_cfg_tc(pi, agg_info, tc, true);
3085 		if (status)
3086 			goto exit_ice_rm_agg_cfg;
3087 	}
3088 
3089 	if (ice_is_any_bit_set(agg_info->tc_bitmap, ICE_MAX_TRAFFIC_CLASS)) {
3090 		status = ICE_ERR_IN_USE;
3091 		goto exit_ice_rm_agg_cfg;
3092 	}
3093 
3094 	/* Safe to delete entry now */
3095 	LIST_DEL(&agg_info->list_entry);
3096 	ice_free(pi->hw, agg_info);
3097 
3098 	/* Remove unused RL profile IDs from HW and SW DB */
3099 	ice_sched_rm_unused_rl_prof(pi->hw);
3100 
3101 exit_ice_rm_agg_cfg:
3102 	ice_release_lock(&pi->sched_lock);
3103 	return status;
3104 }
3105 
3106 /**
3107  * ice_set_clear_cir_bw_alloc - set or clear CIR BW alloc information
3108  * @bw_t_info: bandwidth type information structure
3109  * @bw_alloc: Bandwidth allocation information
3110  *
3111  * Save or clear CIR BW alloc information (bw_alloc) in the passed param
3112  * bw_t_info.
3113  */
3114 static void
3115 ice_set_clear_cir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
3116 {
3117 	bw_t_info->cir_bw.bw_alloc = bw_alloc;
3118 	if (bw_t_info->cir_bw.bw_alloc)
3119 		ice_set_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
3120 	else
3121 		ice_clear_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
3122 }
3123 
3124 /**
3125  * ice_set_clear_eir_bw_alloc - set or clear EIR BW alloc information
3126  * @bw_t_info: bandwidth type information structure
3127  * @bw_alloc: Bandwidth allocation information
3128  *
3129  * Save or clear EIR BW alloc information (bw_alloc) in the passed param
3130  * bw_t_info.
3131  */
3132 static void
3133 ice_set_clear_eir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
3134 {
3135 	bw_t_info->eir_bw.bw_alloc = bw_alloc;
3136 	if (bw_t_info->eir_bw.bw_alloc)
3137 		ice_set_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
3138 	else
3139 		ice_clear_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
3140 }
3141 
3142 /**
3143  * ice_sched_save_vsi_bw_alloc - save VSI node's BW alloc information
3144  * @pi: port information structure
3145  * @vsi_handle: sw VSI handle
3146  * @tc: traffic class
3147  * @rl_type: rate limit type min or max
3148  * @bw_alloc: Bandwidth allocation information
3149  *
3150  * Save BW alloc information of VSI type node for post replay use.
3151  */
3152 static enum ice_status
3153 ice_sched_save_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3154 			    enum ice_rl_type rl_type, u16 bw_alloc)
3155 {
3156 	struct ice_vsi_ctx *vsi_ctx;
3157 
3158 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3159 		return ICE_ERR_PARAM;
3160 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3161 	if (!vsi_ctx)
3162 		return ICE_ERR_PARAM;
3163 	switch (rl_type) {
3164 	case ICE_MIN_BW:
3165 		ice_set_clear_cir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
3166 					   bw_alloc);
3167 		break;
3168 	case ICE_MAX_BW:
3169 		ice_set_clear_eir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
3170 					   bw_alloc);
3171 		break;
3172 	default:
3173 		return ICE_ERR_PARAM;
3174 	}
3175 	return ICE_SUCCESS;
3176 }
3177 
3178 /**
3179  * ice_set_clear_cir_bw - set or clear CIR BW
3180  * @bw_t_info: bandwidth type information structure
3181  * @bw: bandwidth in Kbps - Kilo bits per sec
3182  *
3183  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
3184  */
3185 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3186 {
3187 	if (bw == ICE_SCHED_DFLT_BW) {
3188 		ice_clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3189 		bw_t_info->cir_bw.bw = 0;
3190 	} else {
3191 		/* Save type of BW information */
3192 		ice_set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3193 		bw_t_info->cir_bw.bw = bw;
3194 	}
3195 }
3196 
3197 /**
3198  * ice_set_clear_eir_bw - set or clear EIR BW
3199  * @bw_t_info: bandwidth type information structure
3200  * @bw: bandwidth in Kbps - Kilo bits per sec
3201  *
3202  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
3203  */
3204 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3205 {
3206 	if (bw == ICE_SCHED_DFLT_BW) {
3207 		ice_clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3208 		bw_t_info->eir_bw.bw = 0;
3209 	} else {
3210 		/* save EIR BW information */
3211 		ice_set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3212 		bw_t_info->eir_bw.bw = bw;
3213 	}
3214 }
3215 
3216 /**
3217  * ice_set_clear_shared_bw - set or clear shared BW
3218  * @bw_t_info: bandwidth type information structure
3219  * @bw: bandwidth in Kbps - Kilo bits per sec
3220  *
3221  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3222  */
3223 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3224 {
3225 	if (bw == ICE_SCHED_DFLT_BW) {
3226 		ice_clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3227 		bw_t_info->shared_bw = 0;
3228 	} else {
3229 		/* save shared BW information */
3230 		ice_set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3231 		bw_t_info->shared_bw = bw;
3232 	}
3233 }
3234 
3235 /**
3236  * ice_sched_save_vsi_bw - save VSI node's BW information
3237  * @pi: port information structure
3238  * @vsi_handle: sw VSI handle
3239  * @tc: traffic class
3240  * @rl_type: rate limit type min, max, or shared
3241  * @bw: bandwidth in Kbps - Kilo bits per sec
3242  *
3243  * Save BW information of VSI type node for post replay use.
3244  */
3245 static enum ice_status
3246 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3247 		      enum ice_rl_type rl_type, u32 bw)
3248 {
3249 	struct ice_vsi_ctx *vsi_ctx;
3250 
3251 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3252 		return ICE_ERR_PARAM;
3253 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3254 	if (!vsi_ctx)
3255 		return ICE_ERR_PARAM;
3256 	switch (rl_type) {
3257 	case ICE_MIN_BW:
3258 		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3259 		break;
3260 	case ICE_MAX_BW:
3261 		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3262 		break;
3263 	case ICE_SHARED_BW:
3264 		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3265 		break;
3266 	default:
3267 		return ICE_ERR_PARAM;
3268 	}
3269 	return ICE_SUCCESS;
3270 }
3271 
3272 /**
3273  * ice_set_clear_prio - set or clear priority information
3274  * @bw_t_info: bandwidth type information structure
3275  * @prio: priority to save
3276  *
3277  * Save or clear priority (prio) in the passed param bw_t_info.
3278  */
3279 static void ice_set_clear_prio(struct ice_bw_type_info *bw_t_info, u8 prio)
3280 {
3281 	bw_t_info->generic = prio;
3282 	if (bw_t_info->generic)
3283 		ice_set_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
3284 	else
3285 		ice_clear_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
3286 }
3287 
3288 /**
3289  * ice_sched_save_vsi_prio - save VSI node's priority information
3290  * @pi: port information structure
3291  * @vsi_handle: Software VSI handle
3292  * @tc: traffic class
3293  * @prio: priority to save
3294  *
3295  * Save priority information of VSI type node for post replay use.
3296  */
3297 static enum ice_status
3298 ice_sched_save_vsi_prio(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3299 			u8 prio)
3300 {
3301 	struct ice_vsi_ctx *vsi_ctx;
3302 
3303 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3304 		return ICE_ERR_PARAM;
3305 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3306 	if (!vsi_ctx)
3307 		return ICE_ERR_PARAM;
3308 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
3309 		return ICE_ERR_PARAM;
3310 	ice_set_clear_prio(&vsi_ctx->sched.bw_t_info[tc], prio);
3311 	return ICE_SUCCESS;
3312 }
3313 
3314 /**
3315  * ice_sched_save_agg_bw_alloc - save aggregator node's BW alloc information
3316  * @pi: port information structure
3317  * @agg_id: node aggregator ID
3318  * @tc: traffic class
3319  * @rl_type: rate limit type min or max
3320  * @bw_alloc: bandwidth alloc information
3321  *
3322  * Save BW alloc information of AGG type node for post replay use.
3323  */
3324 static enum ice_status
3325 ice_sched_save_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3326 			    enum ice_rl_type rl_type, u16 bw_alloc)
3327 {
3328 	struct ice_sched_agg_info *agg_info;
3329 
3330 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3331 	if (!agg_info)
3332 		return ICE_ERR_PARAM;
3333 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
3334 		return ICE_ERR_PARAM;
3335 	switch (rl_type) {
3336 	case ICE_MIN_BW:
3337 		ice_set_clear_cir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
3338 		break;
3339 	case ICE_MAX_BW:
3340 		ice_set_clear_eir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
3341 		break;
3342 	default:
3343 		return ICE_ERR_PARAM;
3344 	}
3345 	return ICE_SUCCESS;
3346 }
3347 
3348 /**
3349  * ice_sched_save_agg_bw - save aggregator node's BW information
3350  * @pi: port information structure
3351  * @agg_id: node aggregator ID
3352  * @tc: traffic class
3353  * @rl_type: rate limit type min, max, or shared
3354  * @bw: bandwidth in Kbps - Kilo bits per sec
3355  *
3356  * Save BW information of AGG type node for post replay use.
3357  */
3358 static enum ice_status
3359 ice_sched_save_agg_bw(struct ice_port_info *pi, u32 agg_id, u8 tc,
3360 		      enum ice_rl_type rl_type, u32 bw)
3361 {
3362 	struct ice_sched_agg_info *agg_info;
3363 
3364 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3365 	if (!agg_info)
3366 		return ICE_ERR_PARAM;
3367 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
3368 		return ICE_ERR_PARAM;
3369 	switch (rl_type) {
3370 	case ICE_MIN_BW:
3371 		ice_set_clear_cir_bw(&agg_info->bw_t_info[tc], bw);
3372 		break;
3373 	case ICE_MAX_BW:
3374 		ice_set_clear_eir_bw(&agg_info->bw_t_info[tc], bw);
3375 		break;
3376 	case ICE_SHARED_BW:
3377 		ice_set_clear_shared_bw(&agg_info->bw_t_info[tc], bw);
3378 		break;
3379 	default:
3380 		return ICE_ERR_PARAM;
3381 	}
3382 	return ICE_SUCCESS;
3383 }
3384 
3385 /**
3386  * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3387  * @pi: port information structure
3388  * @vsi_handle: software VSI handle
3389  * @tc: traffic class
3390  * @rl_type: min or max
3391  * @bw: bandwidth in Kbps
3392  *
3393  * This function configures BW limit of VSI scheduling node based on TC
3394  * information.
3395  */
3396 enum ice_status
3397 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3398 			  enum ice_rl_type rl_type, u32 bw)
3399 {
3400 	enum ice_status status;
3401 
3402 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3403 						  ICE_AGG_TYPE_VSI,
3404 						  tc, rl_type, bw);
3405 	if (!status) {
3406 		ice_acquire_lock(&pi->sched_lock);
3407 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
3408 		ice_release_lock(&pi->sched_lock);
3409 	}
3410 	return status;
3411 }
3412 
3413 /**
3414  * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
3415  * @pi: port information structure
3416  * @vsi_handle: software VSI handle
3417  * @tc: traffic class
3418  * @rl_type: min or max
3419  *
3420  * This function configures default BW limit of VSI scheduling node based on TC
3421  * information.
3422  */
3423 enum ice_status
3424 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3425 			       enum ice_rl_type rl_type)
3426 {
3427 	enum ice_status status;
3428 
3429 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3430 						  ICE_AGG_TYPE_VSI,
3431 						  tc, rl_type,
3432 						  ICE_SCHED_DFLT_BW);
3433 	if (!status) {
3434 		ice_acquire_lock(&pi->sched_lock);
3435 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
3436 					       ICE_SCHED_DFLT_BW);
3437 		ice_release_lock(&pi->sched_lock);
3438 	}
3439 	return status;
3440 }
3441 
3442 /**
3443  * ice_cfg_agg_bw_lmt_per_tc - configure aggregator BW limit per TC
3444  * @pi: port information structure
3445  * @agg_id: aggregator ID
3446  * @tc: traffic class
3447  * @rl_type: min or max
3448  * @bw: bandwidth in Kbps
3449  *
3450  * This function applies BW limit to aggregator scheduling node based on TC
3451  * information.
3452  */
3453 enum ice_status
3454 ice_cfg_agg_bw_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3455 			  enum ice_rl_type rl_type, u32 bw)
3456 {
3457 	enum ice_status status;
3458 
3459 	status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
3460 						  tc, rl_type, bw);
3461 	if (!status) {
3462 		ice_acquire_lock(&pi->sched_lock);
3463 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
3464 		ice_release_lock(&pi->sched_lock);
3465 	}
3466 	return status;
3467 }
3468 
3469 /**
3470  * ice_cfg_agg_bw_dflt_lmt_per_tc - configure aggregator BW default limit per TC
3471  * @pi: port information structure
3472  * @agg_id: aggregator ID
3473  * @tc: traffic class
3474  * @rl_type: min or max
3475  *
3476  * This function applies default BW limit to aggregator scheduling node based
3477  * on TC information.
3478  */
3479 enum ice_status
3480 ice_cfg_agg_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3481 			       enum ice_rl_type rl_type)
3482 {
3483 	enum ice_status status;
3484 
3485 	status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
3486 						  tc, rl_type,
3487 						  ICE_SCHED_DFLT_BW);
3488 	if (!status) {
3489 		ice_acquire_lock(&pi->sched_lock);
3490 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type,
3491 					       ICE_SCHED_DFLT_BW);
3492 		ice_release_lock(&pi->sched_lock);
3493 	}
3494 	return status;
3495 }
3496 
3497 /**
3498  * ice_cfg_vsi_bw_shared_lmt - configure VSI BW shared limit
3499  * @pi: port information structure
3500  * @vsi_handle: software VSI handle
3501  * @min_bw: minimum bandwidth in Kbps
3502  * @max_bw: maximum bandwidth in Kbps
3503  * @shared_bw: shared bandwidth in Kbps
3504  *
3505  * Configure shared rate limiter(SRL) of all VSI type nodes across all traffic
3506  * classes for VSI matching handle.
3507  */
3508 enum ice_status
3509 ice_cfg_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle, u32 min_bw,
3510 			  u32 max_bw, u32 shared_bw)
3511 {
3512 	return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle, min_bw, max_bw,
3513 					       shared_bw);
3514 }
3515 
3516 /**
3517  * ice_cfg_vsi_bw_no_shared_lmt - configure VSI BW for no shared limiter
3518  * @pi: port information structure
3519  * @vsi_handle: software VSI handle
3520  *
3521  * This function removes the shared rate limiter(SRL) of all VSI type nodes
3522  * across all traffic classes for VSI matching handle.
3523  */
3524 enum ice_status
3525 ice_cfg_vsi_bw_no_shared_lmt(struct ice_port_info *pi, u16 vsi_handle)
3526 {
3527 	return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle,
3528 					       ICE_SCHED_DFLT_BW,
3529 					       ICE_SCHED_DFLT_BW,
3530 					       ICE_SCHED_DFLT_BW);
3531 }
3532 
3533 /**
3534  * ice_cfg_agg_bw_shared_lmt - configure aggregator BW shared limit
3535  * @pi: port information structure
3536  * @agg_id: aggregator ID
3537  * @min_bw: minimum bandwidth in Kbps
3538  * @max_bw: maximum bandwidth in Kbps
3539  * @shared_bw: shared bandwidth in Kbps
3540  *
3541  * This function configures the shared rate limiter(SRL) of all aggregator type
3542  * nodes across all traffic classes for aggregator matching agg_id.
3543  */
3544 enum ice_status
3545 ice_cfg_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id, u32 min_bw,
3546 			  u32 max_bw, u32 shared_bw)
3547 {
3548 	return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, min_bw, max_bw,
3549 					       shared_bw);
3550 }
3551 
3552 /**
3553  * ice_cfg_agg_bw_no_shared_lmt - configure aggregator BW for no shared limiter
3554  * @pi: port information structure
3555  * @agg_id: aggregator ID
3556  *
3557  * This function removes the shared rate limiter(SRL) of all aggregator type
3558  * nodes across all traffic classes for aggregator matching agg_id.
3559  */
3560 enum ice_status
3561 ice_cfg_agg_bw_no_shared_lmt(struct ice_port_info *pi, u32 agg_id)
3562 {
3563 	return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, ICE_SCHED_DFLT_BW,
3564 					       ICE_SCHED_DFLT_BW,
3565 					       ICE_SCHED_DFLT_BW);
3566 }
3567 
3568 /**
3569  * ice_cfg_agg_bw_shared_lmt_per_tc - config aggregator BW shared limit per tc
3570  * @pi: port information structure
3571  * @agg_id: aggregator ID
3572  * @tc: traffic class
3573  * @min_bw: minimum bandwidth in Kbps
3574  * @max_bw: maximum bandwidth in Kbps
3575  * @shared_bw: shared bandwidth in Kbps
3576  *
3577  * This function configures the shared rate limiter(SRL) of all aggregator type
3578  * nodes across all traffic classes for aggregator matching agg_id.
3579  */
3580 enum ice_status
3581 ice_cfg_agg_bw_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3582 				 u32 min_bw, u32 max_bw, u32 shared_bw)
3583 {
3584 	return ice_sched_set_agg_bw_shared_lmt_per_tc(pi, agg_id, tc, min_bw,
3585 						      max_bw, shared_bw);
3586 }
3587 
3588 /**
3589  * ice_cfg_agg_bw_no_shared_lmt_per_tc - cfg aggregator BW shared limit per tc
3590  * @pi: port information structure
3591  * @agg_id: aggregator ID
3592  * @tc: traffic class
3593  *
3594  * This function configures the shared rate limiter(SRL) of all aggregator type
3595  * nodes across all traffic classes for aggregator matching agg_id.
3596  */
3597 enum ice_status
3598 ice_cfg_agg_bw_no_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc)
3599 {
3600 	return ice_sched_set_agg_bw_shared_lmt_per_tc(pi, agg_id, tc,
3601 						      ICE_SCHED_DFLT_BW,
3602 						      ICE_SCHED_DFLT_BW,
3603 						      ICE_SCHED_DFLT_BW);
3604 }
3605 
3606 /**
3607  * ice_cfg_vsi_q_priority - config VSI queue priority of node
3608  * @pi: port information structure
3609  * @num_qs: number of VSI queues
3610  * @q_ids: queue IDs array
3611  * @q_prio: queue priority array
3612  *
3613  * This function configures the queue node priority (Sibling Priority) of the
3614  * passed in VSI's queue(s) for a given traffic class (TC).
3615  */
3616 enum ice_status
3617 ice_cfg_vsi_q_priority(struct ice_port_info *pi, u16 num_qs, u32 *q_ids,
3618 		       u8 *q_prio)
3619 {
3620 	enum ice_status status = ICE_ERR_PARAM;
3621 	u16 i;
3622 
3623 	ice_acquire_lock(&pi->sched_lock);
3624 
3625 	for (i = 0; i < num_qs; i++) {
3626 		struct ice_sched_node *node;
3627 
3628 		node = ice_sched_find_node_by_teid(pi->root, q_ids[i]);
3629 		if (!node || node->info.data.elem_type !=
3630 		    ICE_AQC_ELEM_TYPE_LEAF) {
3631 			status = ICE_ERR_PARAM;
3632 			break;
3633 		}
3634 		/* Configure Priority */
3635 		status = ice_sched_cfg_sibl_node_prio(pi, node, q_prio[i]);
3636 		if (status)
3637 			break;
3638 	}
3639 
3640 	ice_release_lock(&pi->sched_lock);
3641 	return status;
3642 }
3643 
3644 /**
3645  * ice_cfg_agg_vsi_priority_per_tc - config aggregator's VSI priority per TC
3646  * @pi: port information structure
3647  * @agg_id: Aggregator ID
3648  * @num_vsis: number of VSI(s)
3649  * @vsi_handle_arr: array of software VSI handles
3650  * @node_prio: pointer to node priority
3651  * @tc: traffic class
3652  *
3653  * This function configures the node priority (Sibling Priority) of the
3654  * passed in VSI's for a given traffic class (TC) of an Aggregator ID.
3655  */
3656 enum ice_status
3657 ice_cfg_agg_vsi_priority_per_tc(struct ice_port_info *pi, u32 agg_id,
3658 				u16 num_vsis, u16 *vsi_handle_arr,
3659 				u8 *node_prio, u8 tc)
3660 {
3661 	struct ice_sched_agg_vsi_info *agg_vsi_info;
3662 	struct ice_sched_node *tc_node, *agg_node;
3663 	enum ice_status status = ICE_ERR_PARAM;
3664 	struct ice_sched_agg_info *agg_info;
3665 	bool agg_id_present = false;
3666 	struct ice_hw *hw = pi->hw;
3667 	u16 i;
3668 
3669 	ice_acquire_lock(&pi->sched_lock);
3670 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
3671 			    list_entry)
3672 		if (agg_info->agg_id == agg_id) {
3673 			agg_id_present = true;
3674 			break;
3675 		}
3676 	if (!agg_id_present)
3677 		goto exit_agg_priority_per_tc;
3678 
3679 	tc_node = ice_sched_get_tc_node(pi, tc);
3680 	if (!tc_node)
3681 		goto exit_agg_priority_per_tc;
3682 
3683 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
3684 	if (!agg_node)
3685 		goto exit_agg_priority_per_tc;
3686 
3687 	if (num_vsis > hw->max_children[agg_node->tx_sched_layer])
3688 		goto exit_agg_priority_per_tc;
3689 
3690 	for (i = 0; i < num_vsis; i++) {
3691 		struct ice_sched_node *vsi_node;
3692 		bool vsi_handle_valid = false;
3693 		u16 vsi_handle;
3694 
3695 		status = ICE_ERR_PARAM;
3696 		vsi_handle = vsi_handle_arr[i];
3697 		if (!ice_is_vsi_valid(hw, vsi_handle))
3698 			goto exit_agg_priority_per_tc;
3699 		/* Verify child nodes before applying settings */
3700 		LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
3701 				    ice_sched_agg_vsi_info, list_entry)
3702 			if (agg_vsi_info->vsi_handle == vsi_handle) {
3703 				vsi_handle_valid = true;
3704 				break;
3705 			}
3706 
3707 		if (!vsi_handle_valid)
3708 			goto exit_agg_priority_per_tc;
3709 
3710 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
3711 		if (!vsi_node)
3712 			goto exit_agg_priority_per_tc;
3713 
3714 		if (ice_sched_find_node_in_subtree(hw, agg_node, vsi_node)) {
3715 			/* Configure Priority */
3716 			status = ice_sched_cfg_sibl_node_prio(pi, vsi_node,
3717 							      node_prio[i]);
3718 			if (status)
3719 				break;
3720 			status = ice_sched_save_vsi_prio(pi, vsi_handle, tc,
3721 							 node_prio[i]);
3722 			if (status)
3723 				break;
3724 		}
3725 	}
3726 
3727 exit_agg_priority_per_tc:
3728 	ice_release_lock(&pi->sched_lock);
3729 	return status;
3730 }
3731 
3732 /**
3733  * ice_cfg_vsi_bw_alloc - config VSI BW alloc per TC
3734  * @pi: port information structure
3735  * @vsi_handle: software VSI handle
3736  * @ena_tcmap: enabled TC map
3737  * @rl_type: Rate limit type CIR/EIR
3738  * @bw_alloc: Array of BW alloc
3739  *
3740  * This function configures the BW allocation of the passed in VSI's
3741  * node(s) for enabled traffic class.
3742  */
3743 enum ice_status
3744 ice_cfg_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 ena_tcmap,
3745 		     enum ice_rl_type rl_type, u8 *bw_alloc)
3746 {
3747 	enum ice_status status = ICE_SUCCESS;
3748 	u8 tc;
3749 
3750 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3751 		return ICE_ERR_PARAM;
3752 
3753 	ice_acquire_lock(&pi->sched_lock);
3754 
3755 	/* Return success if no nodes are present across TC */
3756 	ice_for_each_traffic_class(tc) {
3757 		struct ice_sched_node *tc_node, *vsi_node;
3758 
3759 		if (!ice_is_tc_ena(ena_tcmap, tc))
3760 			continue;
3761 
3762 		tc_node = ice_sched_get_tc_node(pi, tc);
3763 		if (!tc_node)
3764 			continue;
3765 
3766 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
3767 		if (!vsi_node)
3768 			continue;
3769 
3770 		status = ice_sched_cfg_node_bw_alloc(pi->hw, vsi_node, rl_type,
3771 						     bw_alloc[tc]);
3772 		if (status)
3773 			break;
3774 		status = ice_sched_save_vsi_bw_alloc(pi, vsi_handle, tc,
3775 						     rl_type, bw_alloc[tc]);
3776 		if (status)
3777 			break;
3778 	}
3779 
3780 	ice_release_lock(&pi->sched_lock);
3781 	return status;
3782 }
3783 
3784 /**
3785  * ice_cfg_agg_bw_alloc - config aggregator BW alloc
3786  * @pi: port information structure
3787  * @agg_id: aggregator ID
3788  * @ena_tcmap: enabled TC map
3789  * @rl_type: rate limit type CIR/EIR
3790  * @bw_alloc: array of BW alloc
3791  *
3792  * This function configures the BW allocation of passed in aggregator for
3793  * enabled traffic class(s).
3794  */
3795 enum ice_status
3796 ice_cfg_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 ena_tcmap,
3797 		     enum ice_rl_type rl_type, u8 *bw_alloc)
3798 {
3799 	struct ice_sched_agg_info *agg_info;
3800 	bool agg_id_present = false;
3801 	enum ice_status status = ICE_SUCCESS;
3802 	struct ice_hw *hw = pi->hw;
3803 	u8 tc;
3804 
3805 	ice_acquire_lock(&pi->sched_lock);
3806 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
3807 			    list_entry)
3808 		if (agg_info->agg_id == agg_id) {
3809 			agg_id_present = true;
3810 			break;
3811 		}
3812 	if (!agg_id_present) {
3813 		status = ICE_ERR_PARAM;
3814 		goto exit_cfg_agg_bw_alloc;
3815 	}
3816 
3817 	/* Return success if no nodes are present across TC */
3818 	ice_for_each_traffic_class(tc) {
3819 		struct ice_sched_node *tc_node, *agg_node;
3820 
3821 		if (!ice_is_tc_ena(ena_tcmap, tc))
3822 			continue;
3823 
3824 		tc_node = ice_sched_get_tc_node(pi, tc);
3825 		if (!tc_node)
3826 			continue;
3827 
3828 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
3829 		if (!agg_node)
3830 			continue;
3831 
3832 		status = ice_sched_cfg_node_bw_alloc(hw, agg_node, rl_type,
3833 						     bw_alloc[tc]);
3834 		if (status)
3835 			break;
3836 		status = ice_sched_save_agg_bw_alloc(pi, agg_id, tc, rl_type,
3837 						     bw_alloc[tc]);
3838 		if (status)
3839 			break;
3840 	}
3841 
3842 exit_cfg_agg_bw_alloc:
3843 	ice_release_lock(&pi->sched_lock);
3844 	return status;
3845 }
3846 
3847 /**
3848  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3849  * @hw: pointer to the HW struct
3850  * @bw: bandwidth in Kbps
3851  *
3852  * This function calculates the wakeup parameter of RL profile.
3853  */
3854 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3855 {
3856 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3857 	s32 wakeup_f_int;
3858 	u16 wakeup = 0;
3859 
3860 	/* Get the wakeup integer value */
3861 	bytes_per_sec = DIV_S64(bw * 1000, BITS_PER_BYTE);
3862 	wakeup_int = DIV_S64(hw->psm_clk_freq, bytes_per_sec);
3863 	if (wakeup_int > 63) {
3864 		wakeup = (u16)((1 << 15) | wakeup_int);
3865 	} else {
3866 		/* Calculate fraction value up to 4 decimals
3867 		 * Convert Integer value to a constant multiplier
3868 		 */
3869 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3870 		wakeup_a = DIV_S64(ICE_RL_PROF_MULTIPLIER *
3871 				   hw->psm_clk_freq, bytes_per_sec);
3872 
3873 		/* Get Fraction value */
3874 		wakeup_f = wakeup_a - wakeup_b;
3875 
3876 		/* Round up the Fractional value via Ceil(Fractional value) */
3877 		if (wakeup_f > DIV_S64(ICE_RL_PROF_MULTIPLIER, 2))
3878 			wakeup_f += 1;
3879 
3880 		wakeup_f_int = (s32)DIV_S64(wakeup_f * ICE_RL_PROF_FRACTION,
3881 					    ICE_RL_PROF_MULTIPLIER);
3882 		wakeup |= (u16)(wakeup_int << 9);
3883 		wakeup |= (u16)(0x1ff & wakeup_f_int);
3884 	}
3885 
3886 	return wakeup;
3887 }
3888 
3889 /**
3890  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3891  * @hw: pointer to the HW struct
3892  * @bw: bandwidth in Kbps
3893  * @profile: profile parameters to return
3894  *
3895  * This function converts the BW to profile structure format.
3896  */
3897 static enum ice_status
3898 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3899 			   struct ice_aqc_rl_profile_elem *profile)
3900 {
3901 	enum ice_status status = ICE_ERR_PARAM;
3902 	s64 bytes_per_sec, ts_rate, mv_tmp;
3903 	bool found = false;
3904 	s32 encode = 0;
3905 	s64 mv = 0;
3906 	s32 i;
3907 
3908 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3909 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3910 		return status;
3911 
3912 	/* Bytes per second from Kbps */
3913 	bytes_per_sec = DIV_S64(bw * 1000, BITS_PER_BYTE);
3914 
3915 	/* encode is 6 bits but really useful are 5 bits */
3916 	for (i = 0; i < 64; i++) {
3917 		u64 pow_result = BIT_ULL(i);
3918 
3919 		ts_rate = DIV_S64(hw->psm_clk_freq,
3920 				  pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3921 		if (ts_rate <= 0)
3922 			continue;
3923 
3924 		/* Multiplier value */
3925 		mv_tmp = DIV_S64(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3926 				 ts_rate);
3927 
3928 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3929 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3930 
3931 		/* First multiplier value greater than the given
3932 		 * accuracy bytes
3933 		 */
3934 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3935 			encode = i;
3936 			found = true;
3937 			break;
3938 		}
3939 	}
3940 	if (found) {
3941 		u16 wm;
3942 
3943 		wm = ice_sched_calc_wakeup(hw, bw);
3944 		profile->rl_multiply = CPU_TO_LE16(mv);
3945 		profile->wake_up_calc = CPU_TO_LE16(wm);
3946 		profile->rl_encode = CPU_TO_LE16(encode);
3947 		status = ICE_SUCCESS;
3948 	} else {
3949 		status = ICE_ERR_DOES_NOT_EXIST;
3950 	}
3951 
3952 	return status;
3953 }
3954 
3955 /**
3956  * ice_sched_add_rl_profile - add RL profile
3957  * @hw: pointer to the hardware structure
3958  * @rl_type: type of rate limit BW - min, max, or shared
3959  * @bw: bandwidth in Kbps - Kilo bits per sec
3960  * @layer_num: specifies in which layer to create profile
3961  *
3962  * This function first checks the existing list for corresponding BW
3963  * parameter. If it exists, it returns the associated profile otherwise
3964  * it creates a new rate limit profile for requested BW, and adds it to
3965  * the HW DB and local list. It returns the new profile or null on error.
3966  * The caller needs to hold the scheduler lock.
3967  */
3968 static struct ice_aqc_rl_profile_info *
3969 ice_sched_add_rl_profile(struct ice_hw *hw, enum ice_rl_type rl_type,
3970 			 u32 bw, u8 layer_num)
3971 {
3972 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3973 	u16 profiles_added = 0, num_profiles = 1;
3974 	struct ice_aqc_rl_profile_elem *buf;
3975 	enum ice_status status;
3976 	u8 profile_type;
3977 
3978 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3979 		return NULL;
3980 	switch (rl_type) {
3981 	case ICE_MIN_BW:
3982 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3983 		break;
3984 	case ICE_MAX_BW:
3985 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3986 		break;
3987 	case ICE_SHARED_BW:
3988 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3989 		break;
3990 	default:
3991 		return NULL;
3992 	}
3993 
3994 	if (!hw)
3995 		return NULL;
3996 	LIST_FOR_EACH_ENTRY(rl_prof_elem, &hw->rl_prof_list[layer_num],
3997 			    ice_aqc_rl_profile_info, list_entry)
3998 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3999 		    profile_type && rl_prof_elem->bw == bw)
4000 			/* Return existing profile ID info */
4001 			return rl_prof_elem;
4002 
4003 	/* Create new profile ID */
4004 	rl_prof_elem = (struct ice_aqc_rl_profile_info *)
4005 		ice_malloc(hw, sizeof(*rl_prof_elem));
4006 
4007 	if (!rl_prof_elem)
4008 		return NULL;
4009 
4010 	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
4011 	if (status != ICE_SUCCESS)
4012 		goto exit_add_rl_prof;
4013 
4014 	rl_prof_elem->bw = bw;
4015 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
4016 	rl_prof_elem->profile.level = layer_num + 1;
4017 	rl_prof_elem->profile.flags = profile_type;
4018 	rl_prof_elem->profile.max_burst_size = CPU_TO_LE16(hw->max_burst_size);
4019 
4020 	/* Create new entry in HW DB */
4021 	buf = &rl_prof_elem->profile;
4022 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
4023 				       &profiles_added, NULL);
4024 	if (status || profiles_added != num_profiles)
4025 		goto exit_add_rl_prof;
4026 
4027 	/* Good entry - add in the list */
4028 	rl_prof_elem->prof_id_ref = 0;
4029 	LIST_ADD(&rl_prof_elem->list_entry, &hw->rl_prof_list[layer_num]);
4030 	return rl_prof_elem;
4031 
4032 exit_add_rl_prof:
4033 	ice_free(hw, rl_prof_elem);
4034 	return NULL;
4035 }
4036 
4037 /**
4038  * ice_sched_cfg_node_bw_lmt - configure node sched params
4039  * @hw: pointer to the HW struct
4040  * @node: sched node to configure
4041  * @rl_type: rate limit type CIR, EIR, or shared
4042  * @rl_prof_id: rate limit profile ID
4043  *
4044  * This function configures node element's BW limit.
4045  */
4046 static enum ice_status
4047 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
4048 			  enum ice_rl_type rl_type, u16 rl_prof_id)
4049 {
4050 	struct ice_aqc_txsched_elem_data buf;
4051 	struct ice_aqc_txsched_elem *data;
4052 
4053 	buf = node->info;
4054 	data = &buf.data;
4055 	switch (rl_type) {
4056 	case ICE_MIN_BW:
4057 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
4058 		data->cir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
4059 		break;
4060 	case ICE_MAX_BW:
4061 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
4062 		data->eir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
4063 		break;
4064 	case ICE_SHARED_BW:
4065 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
4066 		data->srl_id = CPU_TO_LE16(rl_prof_id);
4067 		break;
4068 	default:
4069 		/* Unknown rate limit type */
4070 		return ICE_ERR_PARAM;
4071 	}
4072 
4073 	/* Configure element */
4074 	return ice_sched_update_elem(hw, node, &buf);
4075 }
4076 
4077 /**
4078  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
4079  * @node: sched node
4080  * @rl_type: rate limit type
4081  *
4082  * If existing profile matches, it returns the corresponding rate
4083  * limit profile ID, otherwise it returns an invalid ID as error.
4084  */
4085 static u16
4086 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
4087 			      enum ice_rl_type rl_type)
4088 {
4089 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
4090 	struct ice_aqc_txsched_elem *data;
4091 
4092 	data = &node->info.data;
4093 	switch (rl_type) {
4094 	case ICE_MIN_BW:
4095 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
4096 			rl_prof_id = LE16_TO_CPU(data->cir_bw.bw_profile_idx);
4097 		break;
4098 	case ICE_MAX_BW:
4099 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
4100 			rl_prof_id = LE16_TO_CPU(data->eir_bw.bw_profile_idx);
4101 		break;
4102 	case ICE_SHARED_BW:
4103 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
4104 			rl_prof_id = LE16_TO_CPU(data->srl_id);
4105 		break;
4106 	default:
4107 		break;
4108 	}
4109 
4110 	return rl_prof_id;
4111 }
4112 
4113 /**
4114  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
4115  * @pi: port information structure
4116  * @rl_type: type of rate limit BW - min, max, or shared
4117  * @layer_index: layer index
4118  *
4119  * This function returns requested profile creation layer.
4120  */
4121 static u8
4122 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
4123 			    u8 layer_index)
4124 {
4125 	struct ice_hw *hw = pi->hw;
4126 
4127 	if (layer_index >= hw->num_tx_sched_layers)
4128 		return ICE_SCHED_INVAL_LAYER_NUM;
4129 	switch (rl_type) {
4130 	case ICE_MIN_BW:
4131 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
4132 			return layer_index;
4133 		break;
4134 	case ICE_MAX_BW:
4135 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
4136 			return layer_index;
4137 		break;
4138 	case ICE_SHARED_BW:
4139 		/* if current layer doesn't support SRL profile creation
4140 		 * then try a layer up or down.
4141 		 */
4142 		if (hw->layer_info[layer_index].max_srl_profiles)
4143 			return layer_index;
4144 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
4145 			 hw->layer_info[layer_index + 1].max_srl_profiles)
4146 			return layer_index + 1;
4147 		else if (layer_index > 0 &&
4148 			 hw->layer_info[layer_index - 1].max_srl_profiles)
4149 			return layer_index - 1;
4150 		break;
4151 	default:
4152 		break;
4153 	}
4154 	return ICE_SCHED_INVAL_LAYER_NUM;
4155 }
4156 
4157 /**
4158  * ice_sched_get_srl_node - get shared rate limit node
4159  * @node: tree node
4160  * @srl_layer: shared rate limit layer
4161  *
4162  * This function returns SRL node to be used for shared rate limit purpose.
4163  * The caller needs to hold scheduler lock.
4164  */
4165 static struct ice_sched_node *
4166 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
4167 {
4168 	if (srl_layer > node->tx_sched_layer)
4169 		return node->children[0];
4170 	else if (srl_layer < node->tx_sched_layer)
4171 		/* Node can't be created without a parent. It will always
4172 		 * have a valid parent except root node.
4173 		 */
4174 		return node->parent;
4175 	else
4176 		return node;
4177 }
4178 
4179 /**
4180  * ice_sched_rm_rl_profile - remove RL profile ID
4181  * @hw: pointer to the hardware structure
4182  * @layer_num: layer number where profiles are saved
4183  * @profile_type: profile type like EIR, CIR, or SRL
4184  * @profile_id: profile ID to remove
4185  *
4186  * This function removes rate limit profile from layer 'layer_num' of type
4187  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
4188  * scheduler lock.
4189  */
4190 static enum ice_status
4191 ice_sched_rm_rl_profile(struct ice_hw *hw, u8 layer_num, u8 profile_type,
4192 			u16 profile_id)
4193 {
4194 	struct ice_aqc_rl_profile_info *rl_prof_elem;
4195 	enum ice_status status = ICE_SUCCESS;
4196 
4197 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
4198 		return ICE_ERR_PARAM;
4199 	/* Check the existing list for RL profile */
4200 	LIST_FOR_EACH_ENTRY(rl_prof_elem, &hw->rl_prof_list[layer_num],
4201 			    ice_aqc_rl_profile_info, list_entry)
4202 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
4203 		    profile_type &&
4204 		    LE16_TO_CPU(rl_prof_elem->profile.profile_id) ==
4205 		    profile_id) {
4206 			if (rl_prof_elem->prof_id_ref)
4207 				rl_prof_elem->prof_id_ref--;
4208 
4209 			/* Remove old profile ID from database */
4210 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
4211 			if (status && status != ICE_ERR_IN_USE)
4212 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
4213 			break;
4214 		}
4215 	if (status == ICE_ERR_IN_USE)
4216 		status = ICE_SUCCESS;
4217 	return status;
4218 }
4219 
4220 /**
4221  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
4222  * @pi: port information structure
4223  * @node: pointer to node structure
4224  * @rl_type: rate limit type min, max, or shared
4225  * @layer_num: layer number where RL profiles are saved
4226  *
4227  * This function configures node element's BW rate limit profile ID of
4228  * type CIR, EIR, or SRL to default. This function needs to be called
4229  * with the scheduler lock held.
4230  */
4231 static enum ice_status
4232 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
4233 			   struct ice_sched_node *node,
4234 			   enum ice_rl_type rl_type, u8 layer_num)
4235 {
4236 	enum ice_status status;
4237 	struct ice_hw *hw;
4238 	u8 profile_type;
4239 	u16 rl_prof_id;
4240 	u16 old_id;
4241 
4242 	hw = pi->hw;
4243 	switch (rl_type) {
4244 	case ICE_MIN_BW:
4245 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
4246 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
4247 		break;
4248 	case ICE_MAX_BW:
4249 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
4250 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
4251 		break;
4252 	case ICE_SHARED_BW:
4253 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
4254 		/* No SRL is configured for default case */
4255 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
4256 		break;
4257 	default:
4258 		return ICE_ERR_PARAM;
4259 	}
4260 	/* Save existing RL prof ID for later clean up */
4261 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
4262 	/* Configure BW scheduling parameters */
4263 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
4264 	if (status)
4265 		return status;
4266 
4267 	/* Remove stale RL profile ID */
4268 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
4269 	    old_id == ICE_SCHED_INVAL_PROF_ID)
4270 		return ICE_SUCCESS;
4271 
4272 	return ice_sched_rm_rl_profile(hw, layer_num, profile_type, old_id);
4273 }
4274 
4275 /**
4276  * ice_sched_set_node_bw - set node's bandwidth
4277  * @pi: port information structure
4278  * @node: tree node
4279  * @rl_type: rate limit type min, max, or shared
4280  * @bw: bandwidth in Kbps - Kilo bits per sec
4281  * @layer_num: layer number
4282  *
4283  * This function adds new profile corresponding to requested BW, configures
4284  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
4285  * ID from local database. The caller needs to hold scheduler lock.
4286  */
4287 static enum ice_status
4288 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
4289 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
4290 {
4291 	struct ice_aqc_rl_profile_info *rl_prof_info;
4292 	enum ice_status status = ICE_ERR_PARAM;
4293 	struct ice_hw *hw = pi->hw;
4294 	u16 old_id, rl_prof_id;
4295 
4296 	rl_prof_info = ice_sched_add_rl_profile(hw, rl_type, bw, layer_num);
4297 	if (!rl_prof_info)
4298 		return status;
4299 
4300 	rl_prof_id = LE16_TO_CPU(rl_prof_info->profile.profile_id);
4301 
4302 	/* Save existing RL prof ID for later clean up */
4303 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
4304 	/* Configure BW scheduling parameters */
4305 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
4306 	if (status)
4307 		return status;
4308 
4309 	/* New changes has been applied */
4310 	/* Increment the profile ID reference count */
4311 	rl_prof_info->prof_id_ref++;
4312 
4313 	/* Check for old ID removal */
4314 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
4315 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
4316 		return ICE_SUCCESS;
4317 
4318 	return ice_sched_rm_rl_profile(hw, layer_num,
4319 				       rl_prof_info->profile.flags &
4320 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
4321 }
4322 
4323 /**
4324  * ice_sched_set_node_bw_lmt - set node's BW limit
4325  * @pi: port information structure
4326  * @node: tree node
4327  * @rl_type: rate limit type min, max, or shared
4328  * @bw: bandwidth in Kbps - Kilo bits per sec
4329  *
4330  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
4331  * EIR, or SRL. The caller needs to hold scheduler lock.
4332  *
4333  * NOTE: Caller provides the correct SRL node in case of shared profile
4334  * settings.
4335  */
4336 static enum ice_status
4337 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
4338 			  enum ice_rl_type rl_type, u32 bw)
4339 {
4340 	struct ice_hw *hw;
4341 	u8 layer_num;
4342 
4343 	if (!pi)
4344 		return ICE_ERR_PARAM;
4345 	hw = pi->hw;
4346 	/* Remove unused RL profile IDs from HW and SW DB */
4347 	ice_sched_rm_unused_rl_prof(hw);
4348 
4349 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
4350 						node->tx_sched_layer);
4351 	if (layer_num >= hw->num_tx_sched_layers)
4352 		return ICE_ERR_PARAM;
4353 
4354 	if (bw == ICE_SCHED_DFLT_BW)
4355 		return ice_sched_set_node_bw_dflt(pi, node, rl_type, layer_num);
4356 	return ice_sched_set_node_bw(pi, node, rl_type, bw, layer_num);
4357 }
4358 
4359 /**
4360  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
4361  * @pi: port information structure
4362  * @node: pointer to node structure
4363  * @rl_type: rate limit type min, max, or shared
4364  *
4365  * This function configures node element's BW rate limit profile ID of
4366  * type CIR, EIR, or SRL to default. This function needs to be called
4367  * with the scheduler lock held.
4368  */
4369 static enum ice_status
4370 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
4371 			       struct ice_sched_node *node,
4372 			       enum ice_rl_type rl_type)
4373 {
4374 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
4375 					 ICE_SCHED_DFLT_BW);
4376 }
4377 
4378 /**
4379  * ice_sched_validate_srl_node - Check node for SRL applicability
4380  * @node: sched node to configure
4381  * @sel_layer: selected SRL layer
4382  *
4383  * This function checks if the SRL can be applied to a selceted layer node on
4384  * behalf of the requested node (first argument). This function needs to be
4385  * called with scheduler lock held.
4386  */
4387 static enum ice_status
4388 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
4389 {
4390 	/* SRL profiles are not available on all layers. Check if the
4391 	 * SRL profile can be applied to a node above or below the
4392 	 * requested node. SRL configuration is possible only if the
4393 	 * selected layer's node has single child.
4394 	 */
4395 	if (sel_layer == node->tx_sched_layer ||
4396 	    ((sel_layer == node->tx_sched_layer + 1) &&
4397 	    node->num_children == 1) ||
4398 	    ((sel_layer == node->tx_sched_layer - 1) &&
4399 	    (node->parent && node->parent->num_children == 1)))
4400 		return ICE_SUCCESS;
4401 
4402 	return ICE_ERR_CFG;
4403 }
4404 
4405 /**
4406  * ice_sched_save_q_bw - save queue node's BW information
4407  * @q_ctx: queue context structure
4408  * @rl_type: rate limit type min, max, or shared
4409  * @bw: bandwidth in Kbps - Kilo bits per sec
4410  *
4411  * Save BW information of queue type node for post replay use.
4412  */
4413 static enum ice_status
4414 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
4415 {
4416 	switch (rl_type) {
4417 	case ICE_MIN_BW:
4418 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
4419 		break;
4420 	case ICE_MAX_BW:
4421 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
4422 		break;
4423 	case ICE_SHARED_BW:
4424 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
4425 		break;
4426 	default:
4427 		return ICE_ERR_PARAM;
4428 	}
4429 	return ICE_SUCCESS;
4430 }
4431 
4432 /**
4433  * ice_sched_set_q_bw_lmt - sets queue BW limit
4434  * @pi: port information structure
4435  * @vsi_handle: sw VSI handle
4436  * @tc: traffic class
4437  * @q_handle: software queue handle
4438  * @rl_type: min, max, or shared
4439  * @bw: bandwidth in Kbps
4440  *
4441  * This function sets BW limit of queue scheduling node.
4442  */
4443 static enum ice_status
4444 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4445 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
4446 {
4447 	enum ice_status status = ICE_ERR_PARAM;
4448 	struct ice_sched_node *node;
4449 	struct ice_q_ctx *q_ctx;
4450 
4451 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4452 		return ICE_ERR_PARAM;
4453 	ice_acquire_lock(&pi->sched_lock);
4454 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
4455 	if (!q_ctx)
4456 		goto exit_q_bw_lmt;
4457 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4458 	if (!node) {
4459 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
4460 		goto exit_q_bw_lmt;
4461 	}
4462 
4463 	/* Return error if it is not a leaf node */
4464 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
4465 		goto exit_q_bw_lmt;
4466 
4467 	/* SRL bandwidth layer selection */
4468 	if (rl_type == ICE_SHARED_BW) {
4469 		u8 sel_layer; /* selected layer */
4470 
4471 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
4472 							node->tx_sched_layer);
4473 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
4474 			status = ICE_ERR_PARAM;
4475 			goto exit_q_bw_lmt;
4476 		}
4477 		status = ice_sched_validate_srl_node(node, sel_layer);
4478 		if (status)
4479 			goto exit_q_bw_lmt;
4480 	}
4481 
4482 	if (bw == ICE_SCHED_DFLT_BW)
4483 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
4484 	else
4485 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
4486 
4487 	if (!status)
4488 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
4489 
4490 exit_q_bw_lmt:
4491 	ice_release_lock(&pi->sched_lock);
4492 	return status;
4493 }
4494 
4495 /**
4496  * ice_cfg_q_bw_lmt - configure queue BW limit
4497  * @pi: port information structure
4498  * @vsi_handle: sw VSI handle
4499  * @tc: traffic class
4500  * @q_handle: software queue handle
4501  * @rl_type: min, max, or shared
4502  * @bw: bandwidth in Kbps
4503  *
4504  * This function configures BW limit of queue scheduling node.
4505  */
4506 enum ice_status
4507 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4508 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
4509 {
4510 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4511 				      bw);
4512 }
4513 
4514 /**
4515  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
4516  * @pi: port information structure
4517  * @vsi_handle: sw VSI handle
4518  * @tc: traffic class
4519  * @q_handle: software queue handle
4520  * @rl_type: min, max, or shared
4521  *
4522  * This function configures BW default limit of queue scheduling node.
4523  */
4524 enum ice_status
4525 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4526 		      u16 q_handle, enum ice_rl_type rl_type)
4527 {
4528 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4529 				      ICE_SCHED_DFLT_BW);
4530 }
4531 
4532 /**
4533  * ice_sched_save_tc_node_bw - save TC node BW limit
4534  * @pi: port information structure
4535  * @tc: TC number
4536  * @rl_type: min or max
4537  * @bw: bandwidth in Kbps
4538  *
4539  * This function saves the modified values of bandwidth settings for later
4540  * replay purpose (restore) after reset.
4541  */
4542 static enum ice_status
4543 ice_sched_save_tc_node_bw(struct ice_port_info *pi, u8 tc,
4544 			  enum ice_rl_type rl_type, u32 bw)
4545 {
4546 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4547 		return ICE_ERR_PARAM;
4548 	switch (rl_type) {
4549 	case ICE_MIN_BW:
4550 		ice_set_clear_cir_bw(&pi->tc_node_bw_t_info[tc], bw);
4551 		break;
4552 	case ICE_MAX_BW:
4553 		ice_set_clear_eir_bw(&pi->tc_node_bw_t_info[tc], bw);
4554 		break;
4555 	case ICE_SHARED_BW:
4556 		ice_set_clear_shared_bw(&pi->tc_node_bw_t_info[tc], bw);
4557 		break;
4558 	default:
4559 		return ICE_ERR_PARAM;
4560 	}
4561 	return ICE_SUCCESS;
4562 }
4563 
4564 /**
4565  * ice_sched_set_tc_node_bw_lmt - sets TC node BW limit
4566  * @pi: port information structure
4567  * @tc: TC number
4568  * @rl_type: min or max
4569  * @bw: bandwidth in Kbps
4570  *
4571  * This function configures bandwidth limit of TC node.
4572  */
4573 static enum ice_status
4574 ice_sched_set_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
4575 			     enum ice_rl_type rl_type, u32 bw)
4576 {
4577 	enum ice_status status = ICE_ERR_PARAM;
4578 	struct ice_sched_node *tc_node;
4579 
4580 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4581 		return status;
4582 	ice_acquire_lock(&pi->sched_lock);
4583 	tc_node = ice_sched_get_tc_node(pi, tc);
4584 	if (!tc_node)
4585 		goto exit_set_tc_node_bw;
4586 	if (bw == ICE_SCHED_DFLT_BW)
4587 		status = ice_sched_set_node_bw_dflt_lmt(pi, tc_node, rl_type);
4588 	else
4589 		status = ice_sched_set_node_bw_lmt(pi, tc_node, rl_type, bw);
4590 	if (!status)
4591 		status = ice_sched_save_tc_node_bw(pi, tc, rl_type, bw);
4592 
4593 exit_set_tc_node_bw:
4594 	ice_release_lock(&pi->sched_lock);
4595 	return status;
4596 }
4597 
4598 /**
4599  * ice_cfg_tc_node_bw_lmt - configure TC node BW limit
4600  * @pi: port information structure
4601  * @tc: TC number
4602  * @rl_type: min or max
4603  * @bw: bandwidth in Kbps
4604  *
4605  * This function configures BW limit of TC node.
4606  * Note: The minimum guaranteed reservation is done via DCBX.
4607  */
4608 enum ice_status
4609 ice_cfg_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
4610 		       enum ice_rl_type rl_type, u32 bw)
4611 {
4612 	return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, bw);
4613 }
4614 
4615 /**
4616  * ice_cfg_tc_node_bw_dflt_lmt - configure TC node BW default limit
4617  * @pi: port information structure
4618  * @tc: TC number
4619  * @rl_type: min or max
4620  *
4621  * This function configures BW default limit of TC node.
4622  */
4623 enum ice_status
4624 ice_cfg_tc_node_bw_dflt_lmt(struct ice_port_info *pi, u8 tc,
4625 			    enum ice_rl_type rl_type)
4626 {
4627 	return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, ICE_SCHED_DFLT_BW);
4628 }
4629 
4630 /**
4631  * ice_sched_save_tc_node_bw_alloc - save TC node's BW alloc information
4632  * @pi: port information structure
4633  * @tc: traffic class
4634  * @rl_type: rate limit type min or max
4635  * @bw_alloc: Bandwidth allocation information
4636  *
4637  * Save BW alloc information of VSI type node for post replay use.
4638  */
4639 static enum ice_status
4640 ice_sched_save_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4641 				enum ice_rl_type rl_type, u16 bw_alloc)
4642 {
4643 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4644 		return ICE_ERR_PARAM;
4645 	switch (rl_type) {
4646 	case ICE_MIN_BW:
4647 		ice_set_clear_cir_bw_alloc(&pi->tc_node_bw_t_info[tc],
4648 					   bw_alloc);
4649 		break;
4650 	case ICE_MAX_BW:
4651 		ice_set_clear_eir_bw_alloc(&pi->tc_node_bw_t_info[tc],
4652 					   bw_alloc);
4653 		break;
4654 	default:
4655 		return ICE_ERR_PARAM;
4656 	}
4657 	return ICE_SUCCESS;
4658 }
4659 
4660 /**
4661  * ice_sched_set_tc_node_bw_alloc - set TC node BW alloc
4662  * @pi: port information structure
4663  * @tc: TC number
4664  * @rl_type: min or max
4665  * @bw_alloc: bandwidth alloc
4666  *
4667  * This function configures bandwidth alloc of TC node, also saves the
4668  * changed settings for replay purpose, and return success if it succeeds
4669  * in modifying bandwidth alloc setting.
4670  */
4671 static enum ice_status
4672 ice_sched_set_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4673 			       enum ice_rl_type rl_type, u8 bw_alloc)
4674 {
4675 	enum ice_status status = ICE_ERR_PARAM;
4676 	struct ice_sched_node *tc_node;
4677 
4678 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4679 		return status;
4680 	ice_acquire_lock(&pi->sched_lock);
4681 	tc_node = ice_sched_get_tc_node(pi, tc);
4682 	if (!tc_node)
4683 		goto exit_set_tc_node_bw_alloc;
4684 	status = ice_sched_cfg_node_bw_alloc(pi->hw, tc_node, rl_type,
4685 					     bw_alloc);
4686 	if (status)
4687 		goto exit_set_tc_node_bw_alloc;
4688 	status = ice_sched_save_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
4689 
4690 exit_set_tc_node_bw_alloc:
4691 	ice_release_lock(&pi->sched_lock);
4692 	return status;
4693 }
4694 
4695 /**
4696  * ice_cfg_tc_node_bw_alloc - configure TC node BW alloc
4697  * @pi: port information structure
4698  * @tc: TC number
4699  * @rl_type: min or max
4700  * @bw_alloc: bandwidth alloc
4701  *
4702  * This function configures BW limit of TC node.
4703  * Note: The minimum guaranteed reservation is done via DCBX.
4704  */
4705 enum ice_status
4706 ice_cfg_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4707 			 enum ice_rl_type rl_type, u8 bw_alloc)
4708 {
4709 	return ice_sched_set_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
4710 }
4711 
4712 /**
4713  * ice_sched_set_agg_bw_dflt_lmt - set aggregator node's BW limit to default
4714  * @pi: port information structure
4715  * @vsi_handle: software VSI handle
4716  *
4717  * This function retrieves the aggregator ID based on VSI ID and TC,
4718  * and sets node's BW limit to default. This function needs to be
4719  * called with the scheduler lock held.
4720  */
4721 enum ice_status
4722 ice_sched_set_agg_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle)
4723 {
4724 	struct ice_vsi_ctx *vsi_ctx;
4725 	enum ice_status status = ICE_SUCCESS;
4726 	u8 tc;
4727 
4728 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4729 		return ICE_ERR_PARAM;
4730 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4731 	if (!vsi_ctx)
4732 		return ICE_ERR_PARAM;
4733 
4734 	ice_for_each_traffic_class(tc) {
4735 		struct ice_sched_node *node;
4736 
4737 		node = vsi_ctx->sched.ag_node[tc];
4738 		if (!node)
4739 			continue;
4740 
4741 		/* Set min profile to default */
4742 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MIN_BW);
4743 		if (status)
4744 			break;
4745 
4746 		/* Set max profile to default */
4747 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MAX_BW);
4748 		if (status)
4749 			break;
4750 
4751 		/* Remove shared profile, if there is one */
4752 		status = ice_sched_set_node_bw_dflt_lmt(pi, node,
4753 							ICE_SHARED_BW);
4754 		if (status)
4755 			break;
4756 	}
4757 
4758 	return status;
4759 }
4760 
4761 /**
4762  * ice_sched_get_node_by_id_type - get node from ID type
4763  * @pi: port information structure
4764  * @id: identifier
4765  * @agg_type: type of aggregator
4766  * @tc: traffic class
4767  *
4768  * This function returns node identified by ID of type aggregator, and
4769  * based on traffic class (TC). This function needs to be called with
4770  * the scheduler lock held.
4771  */
4772 static struct ice_sched_node *
4773 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
4774 			      enum ice_agg_type agg_type, u8 tc)
4775 {
4776 	struct ice_sched_node *node = NULL;
4777 	struct ice_sched_node *child_node;
4778 
4779 	switch (agg_type) {
4780 	case ICE_AGG_TYPE_VSI: {
4781 		struct ice_vsi_ctx *vsi_ctx;
4782 		u16 vsi_handle = (u16)id;
4783 
4784 		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4785 			break;
4786 		/* Get sched_vsi_info */
4787 		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4788 		if (!vsi_ctx)
4789 			break;
4790 		node = vsi_ctx->sched.vsi_node[tc];
4791 		break;
4792 	}
4793 
4794 	case ICE_AGG_TYPE_AGG: {
4795 		struct ice_sched_node *tc_node;
4796 
4797 		tc_node = ice_sched_get_tc_node(pi, tc);
4798 		if (tc_node)
4799 			node = ice_sched_get_agg_node(pi, tc_node, id);
4800 		break;
4801 	}
4802 
4803 	case ICE_AGG_TYPE_Q:
4804 		/* The current implementation allows single queue to modify */
4805 		node = ice_sched_get_node(pi, id);
4806 		break;
4807 
4808 	case ICE_AGG_TYPE_QG:
4809 		/* The current implementation allows single qg to modify */
4810 		child_node = ice_sched_get_node(pi, id);
4811 		if (!child_node)
4812 			break;
4813 		node = child_node->parent;
4814 		break;
4815 
4816 	default:
4817 		break;
4818 	}
4819 
4820 	return node;
4821 }
4822 
4823 /**
4824  * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
4825  * @pi: port information structure
4826  * @id: ID (software VSI handle or AGG ID)
4827  * @agg_type: aggregator type (VSI or AGG type node)
4828  * @tc: traffic class
4829  * @rl_type: min or max
4830  * @bw: bandwidth in Kbps
4831  *
4832  * This function sets BW limit of VSI or Aggregator scheduling node
4833  * based on TC information from passed in argument BW.
4834  */
4835 enum ice_status
4836 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
4837 				 enum ice_agg_type agg_type, u8 tc,
4838 				 enum ice_rl_type rl_type, u32 bw)
4839 {
4840 	enum ice_status status = ICE_ERR_PARAM;
4841 	struct ice_sched_node *node;
4842 
4843 	if (!pi)
4844 		return status;
4845 
4846 	if (rl_type == ICE_UNKNOWN_BW)
4847 		return status;
4848 
4849 	ice_acquire_lock(&pi->sched_lock);
4850 	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
4851 	if (!node) {
4852 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
4853 		goto exit_set_node_bw_lmt_per_tc;
4854 	}
4855 	if (bw == ICE_SCHED_DFLT_BW)
4856 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
4857 	else
4858 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
4859 
4860 exit_set_node_bw_lmt_per_tc:
4861 	ice_release_lock(&pi->sched_lock);
4862 	return status;
4863 }
4864 
4865 /**
4866  * ice_sched_validate_vsi_srl_node - validate VSI SRL node
4867  * @pi: port information structure
4868  * @vsi_handle: software VSI handle
4869  *
4870  * This function validates SRL node of the VSI node if available SRL layer is
4871  * different than the VSI node layer on all TC(s).This function needs to be
4872  * called with scheduler lock held.
4873  */
4874 static enum ice_status
4875 ice_sched_validate_vsi_srl_node(struct ice_port_info *pi, u16 vsi_handle)
4876 {
4877 	u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
4878 	u8 tc;
4879 
4880 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4881 		return ICE_ERR_PARAM;
4882 
4883 	/* Return success if no nodes are present across TC */
4884 	ice_for_each_traffic_class(tc) {
4885 		struct ice_sched_node *tc_node, *vsi_node;
4886 		enum ice_rl_type rl_type = ICE_SHARED_BW;
4887 		enum ice_status status;
4888 
4889 		tc_node = ice_sched_get_tc_node(pi, tc);
4890 		if (!tc_node)
4891 			continue;
4892 
4893 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
4894 		if (!vsi_node)
4895 			continue;
4896 
4897 		/* SRL bandwidth layer selection */
4898 		if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
4899 			u8 node_layer = vsi_node->tx_sched_layer;
4900 			u8 layer_num;
4901 
4902 			layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
4903 								node_layer);
4904 			if (layer_num >= pi->hw->num_tx_sched_layers)
4905 				return ICE_ERR_PARAM;
4906 			sel_layer = layer_num;
4907 		}
4908 
4909 		status = ice_sched_validate_srl_node(vsi_node, sel_layer);
4910 		if (status)
4911 			return status;
4912 	}
4913 	return ICE_SUCCESS;
4914 }
4915 
4916 /**
4917  * ice_sched_set_save_vsi_srl_node_bw - set VSI shared limit values
4918  * @pi: port information structure
4919  * @vsi_handle: software VSI handle
4920  * @tc: traffic class
4921  * @srl_node: sched node to configure
4922  * @rl_type: rate limit type minimum, maximum, or shared
4923  * @bw: minimum, maximum, or shared bandwidth in Kbps
4924  *
4925  * Configure shared rate limiter(SRL) of VSI type nodes across given traffic
4926  * class, and saves those value for later use for replaying purposes. The
4927  * caller holds the scheduler lock.
4928  */
4929 static enum ice_status
4930 ice_sched_set_save_vsi_srl_node_bw(struct ice_port_info *pi, u16 vsi_handle,
4931 				   u8 tc, struct ice_sched_node *srl_node,
4932 				   enum ice_rl_type rl_type, u32 bw)
4933 {
4934 	enum ice_status status;
4935 
4936 	if (bw == ICE_SCHED_DFLT_BW) {
4937 		status = ice_sched_set_node_bw_dflt_lmt(pi, srl_node, rl_type);
4938 	} else {
4939 		status = ice_sched_set_node_bw_lmt(pi, srl_node, rl_type, bw);
4940 		if (status)
4941 			return status;
4942 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4943 	}
4944 	return status;
4945 }
4946 
4947 /**
4948  * ice_sched_set_vsi_node_srl_per_tc - set VSI node BW shared limit for tc
4949  * @pi: port information structure
4950  * @vsi_handle: software VSI handle
4951  * @tc: traffic class
4952  * @min_bw: minimum bandwidth in Kbps
4953  * @max_bw: maximum bandwidth in Kbps
4954  * @shared_bw: shared bandwidth in Kbps
4955  *
4956  * Configure shared rate limiter(SRL) of  VSI type nodes across requested
4957  * traffic class for VSI matching handle. When BW value of ICE_SCHED_DFLT_BW
4958  * is passed, it removes the corresponding bw from the node. The caller
4959  * holds scheduler lock.
4960  */
4961 static enum ice_status
4962 ice_sched_set_vsi_node_srl_per_tc(struct ice_port_info *pi, u16 vsi_handle,
4963 				  u8 tc, u32 min_bw, u32 max_bw, u32 shared_bw)
4964 {
4965 	struct ice_sched_node *tc_node, *vsi_node, *cfg_node;
4966 	enum ice_status status;
4967 	u8 layer_num;
4968 
4969 	tc_node = ice_sched_get_tc_node(pi, tc);
4970 	if (!tc_node)
4971 		return ICE_ERR_CFG;
4972 
4973 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
4974 	if (!vsi_node)
4975 		return ICE_ERR_CFG;
4976 
4977 	layer_num = ice_sched_get_rl_prof_layer(pi, ICE_SHARED_BW,
4978 						vsi_node->tx_sched_layer);
4979 	if (layer_num >= pi->hw->num_tx_sched_layers)
4980 		return ICE_ERR_PARAM;
4981 
4982 	/* SRL node may be different */
4983 	cfg_node = ice_sched_get_srl_node(vsi_node, layer_num);
4984 	if (!cfg_node)
4985 		return ICE_ERR_CFG;
4986 
4987 	status = ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc,
4988 						    cfg_node, ICE_MIN_BW,
4989 						    min_bw);
4990 	if (status)
4991 		return status;
4992 
4993 	status = ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc,
4994 						    cfg_node, ICE_MAX_BW,
4995 						    max_bw);
4996 	if (status)
4997 		return status;
4998 
4999 	return ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc, cfg_node,
5000 						  ICE_SHARED_BW, shared_bw);
5001 }
5002 
5003 /**
5004  * ice_sched_set_vsi_bw_shared_lmt - set VSI BW shared limit
5005  * @pi: port information structure
5006  * @vsi_handle: software VSI handle
5007  * @min_bw: minimum bandwidth in Kbps
5008  * @max_bw: maximum bandwidth in Kbps
5009  * @shared_bw: shared bandwidth in Kbps
5010  *
5011  * Configure shared rate limiter(SRL) of all VSI type nodes across all traffic
5012  * classes for VSI matching handle. When BW value of ICE_SCHED_DFLT_BW is
5013  * passed, it removes those value(s) from the node.
5014  */
5015 enum ice_status
5016 ice_sched_set_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle,
5017 				u32 min_bw, u32 max_bw, u32 shared_bw)
5018 {
5019 	enum ice_status status = ICE_SUCCESS;
5020 	u8 tc;
5021 
5022 	if (!pi)
5023 		return ICE_ERR_PARAM;
5024 
5025 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5026 		return ICE_ERR_PARAM;
5027 
5028 	ice_acquire_lock(&pi->sched_lock);
5029 	status = ice_sched_validate_vsi_srl_node(pi, vsi_handle);
5030 	if (status)
5031 		goto exit_set_vsi_bw_shared_lmt;
5032 	/* Return success if no nodes are present across TC */
5033 	ice_for_each_traffic_class(tc) {
5034 		struct ice_sched_node *tc_node, *vsi_node;
5035 
5036 		tc_node = ice_sched_get_tc_node(pi, tc);
5037 		if (!tc_node)
5038 			continue;
5039 
5040 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5041 		if (!vsi_node)
5042 			continue;
5043 
5044 		status = ice_sched_set_vsi_node_srl_per_tc(pi, vsi_handle, tc,
5045 							   min_bw, max_bw,
5046 							   shared_bw);
5047 		if (status)
5048 			break;
5049 	}
5050 
5051 exit_set_vsi_bw_shared_lmt:
5052 	ice_release_lock(&pi->sched_lock);
5053 	return status;
5054 }
5055 
5056 /**
5057  * ice_sched_validate_agg_srl_node - validate AGG SRL node
5058  * @pi: port information structure
5059  * @agg_id: aggregator ID
5060  *
5061  * This function validates SRL node of the AGG node if available SRL layer is
5062  * different than the AGG node layer on all TC(s).This function needs to be
5063  * called with scheduler lock held.
5064  */
5065 static enum ice_status
5066 ice_sched_validate_agg_srl_node(struct ice_port_info *pi, u32 agg_id)
5067 {
5068 	u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
5069 	struct ice_sched_agg_info *agg_info;
5070 	bool agg_id_present = false;
5071 	enum ice_status status = ICE_SUCCESS;
5072 	u8 tc;
5073 
5074 	LIST_FOR_EACH_ENTRY(agg_info, &pi->hw->agg_list, ice_sched_agg_info,
5075 			    list_entry)
5076 		if (agg_info->agg_id == agg_id) {
5077 			agg_id_present = true;
5078 			break;
5079 		}
5080 	if (!agg_id_present)
5081 		return ICE_ERR_PARAM;
5082 	/* Return success if no nodes are present across TC */
5083 	ice_for_each_traffic_class(tc) {
5084 		struct ice_sched_node *tc_node, *agg_node;
5085 		enum ice_rl_type rl_type = ICE_SHARED_BW;
5086 
5087 		tc_node = ice_sched_get_tc_node(pi, tc);
5088 		if (!tc_node)
5089 			continue;
5090 
5091 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5092 		if (!agg_node)
5093 			continue;
5094 		/* SRL bandwidth layer selection */
5095 		if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
5096 			u8 node_layer = agg_node->tx_sched_layer;
5097 			u8 layer_num;
5098 
5099 			layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5100 								node_layer);
5101 			if (layer_num >= pi->hw->num_tx_sched_layers)
5102 				return ICE_ERR_PARAM;
5103 			sel_layer = layer_num;
5104 		}
5105 
5106 		status = ice_sched_validate_srl_node(agg_node, sel_layer);
5107 		if (status)
5108 			break;
5109 	}
5110 	return status;
5111 }
5112 
5113 /**
5114  * ice_sched_validate_agg_id - Validate aggregator id
5115  * @pi: port information structure
5116  * @agg_id: aggregator ID
5117  *
5118  * This function validates aggregator id. Caller holds the scheduler lock.
5119  */
5120 static enum ice_status
5121 ice_sched_validate_agg_id(struct ice_port_info *pi, u32 agg_id)
5122 {
5123 	struct ice_sched_agg_info *agg_info;
5124 	struct ice_sched_agg_info *tmp;
5125 	bool agg_id_present = false;
5126 	enum ice_status status;
5127 
5128 	status = ice_sched_validate_agg_srl_node(pi, agg_id);
5129 	if (status)
5130 		return status;
5131 
5132 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, tmp, &pi->hw->agg_list,
5133 				 ice_sched_agg_info, list_entry)
5134 		if (agg_info->agg_id == agg_id) {
5135 			agg_id_present = true;
5136 			break;
5137 		}
5138 
5139 	if (!agg_id_present)
5140 		return ICE_ERR_PARAM;
5141 
5142 	return ICE_SUCCESS;
5143 }
5144 
5145 /**
5146  * ice_sched_set_save_agg_srl_node_bw - set aggregator shared limit values
5147  * @pi: port information structure
5148  * @agg_id: aggregator ID
5149  * @tc: traffic class
5150  * @srl_node: sched node to configure
5151  * @rl_type: rate limit type minimum, maximum, or shared
5152  * @bw: minimum, maximum, or shared bandwidth in Kbps
5153  *
5154  * Configure shared rate limiter(SRL) of aggregator type nodes across
5155  * requested traffic class, and saves those value for later use for
5156  * replaying purposes. The caller holds the scheduler lock.
5157  */
5158 static enum ice_status
5159 ice_sched_set_save_agg_srl_node_bw(struct ice_port_info *pi, u32 agg_id, u8 tc,
5160 				   struct ice_sched_node *srl_node,
5161 				   enum ice_rl_type rl_type, u32 bw)
5162 {
5163 	enum ice_status status;
5164 
5165 	if (bw == ICE_SCHED_DFLT_BW) {
5166 		status = ice_sched_set_node_bw_dflt_lmt(pi, srl_node, rl_type);
5167 	} else {
5168 		status = ice_sched_set_node_bw_lmt(pi, srl_node, rl_type, bw);
5169 		if (status)
5170 			return status;
5171 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
5172 	}
5173 	return status;
5174 }
5175 
5176 /**
5177  * ice_sched_set_agg_node_srl_per_tc - set aggregator SRL per tc
5178  * @pi: port information structure
5179  * @agg_id: aggregator ID
5180  * @tc: traffic class
5181  * @min_bw: minimum bandwidth in Kbps
5182  * @max_bw: maximum bandwidth in Kbps
5183  * @shared_bw: shared bandwidth in Kbps
5184  *
5185  * This function configures the shared rate limiter(SRL) of aggregator type
5186  * node for a given traffic class for aggregator matching agg_id. When BW
5187  * value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the node. Caller
5188  * holds the scheduler lock.
5189  */
5190 static enum ice_status
5191 ice_sched_set_agg_node_srl_per_tc(struct ice_port_info *pi, u32 agg_id,
5192 				  u8 tc, u32 min_bw, u32 max_bw, u32 shared_bw)
5193 {
5194 	struct ice_sched_node *tc_node, *agg_node, *cfg_node;
5195 	enum ice_rl_type rl_type = ICE_SHARED_BW;
5196 	enum ice_status status = ICE_ERR_CFG;
5197 	u8 layer_num;
5198 
5199 	tc_node = ice_sched_get_tc_node(pi, tc);
5200 	if (!tc_node)
5201 		return ICE_ERR_CFG;
5202 
5203 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5204 	if (!agg_node)
5205 		return ICE_ERR_CFG;
5206 
5207 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5208 						agg_node->tx_sched_layer);
5209 	if (layer_num >= pi->hw->num_tx_sched_layers)
5210 		return ICE_ERR_PARAM;
5211 
5212 	/* SRL node may be different */
5213 	cfg_node = ice_sched_get_srl_node(agg_node, layer_num);
5214 	if (!cfg_node)
5215 		return ICE_ERR_CFG;
5216 
5217 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5218 						    ICE_MIN_BW, min_bw);
5219 	if (status)
5220 		return status;
5221 
5222 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5223 						    ICE_MAX_BW, max_bw);
5224 	if (status)
5225 		return status;
5226 
5227 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5228 						    ICE_SHARED_BW, shared_bw);
5229 	return status;
5230 }
5231 
5232 /**
5233  * ice_sched_set_agg_bw_shared_lmt - set aggregator BW shared limit
5234  * @pi: port information structure
5235  * @agg_id: aggregator ID
5236  * @min_bw: minimum bandwidth in Kbps
5237  * @max_bw: maximum bandwidth in Kbps
5238  * @shared_bw: shared bandwidth in Kbps
5239  *
5240  * This function configures the shared rate limiter(SRL) of all aggregator type
5241  * nodes across all traffic classes for aggregator matching agg_id. When
5242  * BW value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the
5243  * node(s).
5244  */
5245 enum ice_status
5246 ice_sched_set_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id,
5247 				u32 min_bw, u32 max_bw, u32 shared_bw)
5248 {
5249 	enum ice_status status;
5250 	u8 tc;
5251 
5252 	if (!pi)
5253 		return ICE_ERR_PARAM;
5254 
5255 	ice_acquire_lock(&pi->sched_lock);
5256 	status = ice_sched_validate_agg_id(pi, agg_id);
5257 	if (status)
5258 		goto exit_agg_bw_shared_lmt;
5259 
5260 	/* Return success if no nodes are present across TC */
5261 	ice_for_each_traffic_class(tc) {
5262 		struct ice_sched_node *tc_node, *agg_node;
5263 
5264 		tc_node = ice_sched_get_tc_node(pi, tc);
5265 		if (!tc_node)
5266 			continue;
5267 
5268 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5269 		if (!agg_node)
5270 			continue;
5271 
5272 		status = ice_sched_set_agg_node_srl_per_tc(pi, agg_id, tc,
5273 							   min_bw, max_bw,
5274 							   shared_bw);
5275 		if (status)
5276 			break;
5277 	}
5278 
5279 exit_agg_bw_shared_lmt:
5280 	ice_release_lock(&pi->sched_lock);
5281 	return status;
5282 }
5283 
5284 /**
5285  * ice_sched_set_agg_bw_shared_lmt_per_tc - set aggregator BW shared lmt per tc
5286  * @pi: port information structure
5287  * @agg_id: aggregator ID
5288  * @tc: traffic class
5289  * @min_bw: minimum bandwidth in Kbps
5290  * @max_bw: maximum bandwidth in Kbps
5291  * @shared_bw: shared bandwidth in Kbps
5292  *
5293  * This function configures the shared rate limiter(SRL) of aggregator type
5294  * node for a given traffic class for aggregator matching agg_id. When BW
5295  * value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the node.
5296  */
5297 enum ice_status
5298 ice_sched_set_agg_bw_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id,
5299 				       u8 tc, u32 min_bw, u32 max_bw,
5300 				       u32 shared_bw)
5301 {
5302 	enum ice_status status;
5303 
5304 	if (!pi)
5305 		return ICE_ERR_PARAM;
5306 	ice_acquire_lock(&pi->sched_lock);
5307 	status = ice_sched_validate_agg_id(pi, agg_id);
5308 	if (status)
5309 		goto exit_agg_bw_shared_lmt_per_tc;
5310 
5311 	status = ice_sched_set_agg_node_srl_per_tc(pi, agg_id, tc, min_bw,
5312 						   max_bw, shared_bw);
5313 
5314 exit_agg_bw_shared_lmt_per_tc:
5315 	ice_release_lock(&pi->sched_lock);
5316 	return status;
5317 }
5318 
5319 /**
5320  * ice_sched_cfg_sibl_node_prio - configure node sibling priority
5321  * @pi: port information structure
5322  * @node: sched node to configure
5323  * @priority: sibling priority
5324  *
5325  * This function configures node element's sibling priority only. This
5326  * function needs to be called with scheduler lock held.
5327  */
5328 enum ice_status
5329 ice_sched_cfg_sibl_node_prio(struct ice_port_info *pi,
5330 			     struct ice_sched_node *node, u8 priority)
5331 {
5332 	struct ice_aqc_txsched_elem_data buf;
5333 	struct ice_aqc_txsched_elem *data;
5334 	struct ice_hw *hw = pi->hw;
5335 	enum ice_status status;
5336 
5337 	if (!hw)
5338 		return ICE_ERR_PARAM;
5339 	buf = node->info;
5340 	data = &buf.data;
5341 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
5342 	priority = (priority << ICE_AQC_ELEM_GENERIC_PRIO_S) &
5343 		   ICE_AQC_ELEM_GENERIC_PRIO_M;
5344 	data->generic &= ~ICE_AQC_ELEM_GENERIC_PRIO_M;
5345 	data->generic |= priority;
5346 
5347 	/* Configure element */
5348 	status = ice_sched_update_elem(hw, node, &buf);
5349 	return status;
5350 }
5351 
5352 /**
5353  * ice_cfg_rl_burst_size - Set burst size value
5354  * @hw: pointer to the HW struct
5355  * @bytes: burst size in bytes
5356  *
5357  * This function configures/set the burst size to requested new value. The new
5358  * burst size value is used for future rate limit calls. It doesn't change the
5359  * existing or previously created RL profiles.
5360  */
5361 enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
5362 {
5363 	u16 burst_size_to_prog;
5364 
5365 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
5366 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
5367 		return ICE_ERR_PARAM;
5368 	if (ice_round_to_num(bytes, 64) <=
5369 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
5370 		/* 64 byte granularity case */
5371 		/* Disable MSB granularity bit */
5372 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
5373 		/* round number to nearest 64 byte granularity */
5374 		bytes = ice_round_to_num(bytes, 64);
5375 		/* The value is in 64 byte chunks */
5376 		burst_size_to_prog |= (u16)(bytes / 64);
5377 	} else {
5378 		/* k bytes granularity case */
5379 		/* Enable MSB granularity bit */
5380 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
5381 		/* round number to nearest 1024 granularity */
5382 		bytes = ice_round_to_num(bytes, 1024);
5383 		/* check rounding doesn't go beyond allowed */
5384 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
5385 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
5386 		/* The value is in k bytes */
5387 		burst_size_to_prog |= (u16)(bytes / 1024);
5388 	}
5389 	hw->max_burst_size = burst_size_to_prog;
5390 	return ICE_SUCCESS;
5391 }
5392 
5393 /**
5394  * ice_sched_replay_node_prio - re-configure node priority
5395  * @hw: pointer to the HW struct
5396  * @node: sched node to configure
5397  * @priority: priority value
5398  *
5399  * This function configures node element's priority value. It
5400  * needs to be called with scheduler lock held.
5401  */
5402 static enum ice_status
5403 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
5404 			   u8 priority)
5405 {
5406 	struct ice_aqc_txsched_elem_data buf;
5407 	struct ice_aqc_txsched_elem *data;
5408 	enum ice_status status;
5409 
5410 	buf = node->info;
5411 	data = &buf.data;
5412 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
5413 	data->generic = priority;
5414 
5415 	/* Configure element */
5416 	status = ice_sched_update_elem(hw, node, &buf);
5417 	return status;
5418 }
5419 
5420 /**
5421  * ice_sched_replay_node_bw - replay node(s) BW
5422  * @hw: pointer to the HW struct
5423  * @node: sched node to configure
5424  * @bw_t_info: BW type information
5425  *
5426  * This function restores node's BW from bw_t_info. The caller needs
5427  * to hold the scheduler lock.
5428  */
5429 static enum ice_status
5430 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
5431 			 struct ice_bw_type_info *bw_t_info)
5432 {
5433 	struct ice_port_info *pi = hw->port_info;
5434 	enum ice_status status = ICE_ERR_PARAM;
5435 	u16 bw_alloc;
5436 
5437 	if (!node)
5438 		return status;
5439 	if (!ice_is_any_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
5440 		return ICE_SUCCESS;
5441 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_PRIO)) {
5442 		status = ice_sched_replay_node_prio(hw, node,
5443 						    bw_t_info->generic);
5444 		if (status)
5445 			return status;
5446 	}
5447 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR)) {
5448 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
5449 						   bw_t_info->cir_bw.bw);
5450 		if (status)
5451 			return status;
5452 	}
5453 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR_WT)) {
5454 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
5455 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
5456 						     bw_alloc);
5457 		if (status)
5458 			return status;
5459 	}
5460 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR)) {
5461 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
5462 						   bw_t_info->eir_bw.bw);
5463 		if (status)
5464 			return status;
5465 	}
5466 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR_WT)) {
5467 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
5468 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
5469 						     bw_alloc);
5470 		if (status)
5471 			return status;
5472 	}
5473 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_SHARED))
5474 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
5475 						   bw_t_info->shared_bw);
5476 	return status;
5477 }
5478 
5479 /**
5480  * ice_sched_replay_agg_bw - replay aggregator node(s) BW
5481  * @hw: pointer to the HW struct
5482  * @agg_info: aggregator data structure
5483  *
5484  * This function re-creates aggregator type nodes. The caller needs to hold
5485  * the scheduler lock.
5486  */
5487 static enum ice_status
5488 ice_sched_replay_agg_bw(struct ice_hw *hw, struct ice_sched_agg_info *agg_info)
5489 {
5490 	struct ice_sched_node *tc_node, *agg_node;
5491 	enum ice_status status = ICE_SUCCESS;
5492 	u8 tc;
5493 
5494 	if (!agg_info)
5495 		return ICE_ERR_PARAM;
5496 	ice_for_each_traffic_class(tc) {
5497 		if (!ice_is_any_bit_set(agg_info->bw_t_info[tc].bw_t_bitmap,
5498 					ICE_BW_TYPE_CNT))
5499 			continue;
5500 		tc_node = ice_sched_get_tc_node(hw->port_info, tc);
5501 		if (!tc_node) {
5502 			status = ICE_ERR_PARAM;
5503 			break;
5504 		}
5505 		agg_node = ice_sched_get_agg_node(hw->port_info, tc_node,
5506 						  agg_info->agg_id);
5507 		if (!agg_node) {
5508 			status = ICE_ERR_PARAM;
5509 			break;
5510 		}
5511 		status = ice_sched_replay_node_bw(hw, agg_node,
5512 						  &agg_info->bw_t_info[tc]);
5513 		if (status)
5514 			break;
5515 	}
5516 	return status;
5517 }
5518 
5519 /**
5520  * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
5521  * @pi: port info struct
5522  * @tc_bitmap: 8 bits TC bitmap to check
5523  * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
5524  *
5525  * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
5526  * may be missing, it returns enabled TCs. This function needs to be called with
5527  * scheduler lock held.
5528  */
5529 static void
5530 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, ice_bitmap_t *tc_bitmap,
5531 			    ice_bitmap_t *ena_tc_bitmap)
5532 {
5533 	u8 tc;
5534 
5535 	/* Some TC(s) may be missing after reset, adjust for replay */
5536 	ice_for_each_traffic_class(tc)
5537 		if (ice_is_tc_ena(*tc_bitmap, tc) &&
5538 		    (ice_sched_get_tc_node(pi, tc)))
5539 			ice_set_bit(tc, ena_tc_bitmap);
5540 }
5541 
5542 /**
5543  * ice_sched_replay_agg - recreate aggregator node(s)
5544  * @hw: pointer to the HW struct
5545  *
5546  * This function recreate aggregator type nodes which are not replayed earlier.
5547  * It also replay aggregator BW information. These aggregator nodes are not
5548  * associated with VSI type node yet.
5549  */
5550 void ice_sched_replay_agg(struct ice_hw *hw)
5551 {
5552 	struct ice_port_info *pi = hw->port_info;
5553 	struct ice_sched_agg_info *agg_info;
5554 
5555 	ice_acquire_lock(&pi->sched_lock);
5556 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
5557 			    list_entry)
5558 		/* replay aggregator (re-create aggregator node) */
5559 		if (!ice_cmp_bitmap(agg_info->tc_bitmap,
5560 				    agg_info->replay_tc_bitmap,
5561 				    ICE_MAX_TRAFFIC_CLASS)) {
5562 			ice_declare_bitmap(replay_bitmap,
5563 					   ICE_MAX_TRAFFIC_CLASS);
5564 			enum ice_status status;
5565 
5566 			ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5567 			ice_sched_get_ena_tc_bitmap(pi,
5568 						    agg_info->replay_tc_bitmap,
5569 						    replay_bitmap);
5570 			status = ice_sched_cfg_agg(hw->port_info,
5571 						   agg_info->agg_id,
5572 						   ICE_AGG_TYPE_AGG,
5573 						   replay_bitmap);
5574 			if (status) {
5575 				ice_info(hw, "Replay agg id[%d] failed\n",
5576 					 agg_info->agg_id);
5577 				/* Move on to next one */
5578 				continue;
5579 			}
5580 			/* Replay aggregator node BW (restore aggregator BW) */
5581 			status = ice_sched_replay_agg_bw(hw, agg_info);
5582 			if (status)
5583 				ice_info(hw, "Replay agg bw [id=%d] failed\n",
5584 					 agg_info->agg_id);
5585 		}
5586 	ice_release_lock(&pi->sched_lock);
5587 }
5588 
5589 /**
5590  * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
5591  * @hw: pointer to the HW struct
5592  *
5593  * This function initialize aggregator(s) TC bitmap to zero. A required
5594  * preinit step for replaying aggregators.
5595  */
5596 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
5597 {
5598 	struct ice_port_info *pi = hw->port_info;
5599 	struct ice_sched_agg_info *agg_info;
5600 
5601 	ice_acquire_lock(&pi->sched_lock);
5602 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
5603 			    list_entry) {
5604 		struct ice_sched_agg_vsi_info *agg_vsi_info;
5605 
5606 		agg_info->tc_bitmap[0] = 0;
5607 		LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
5608 				    ice_sched_agg_vsi_info, list_entry)
5609 			agg_vsi_info->tc_bitmap[0] = 0;
5610 	}
5611 	ice_release_lock(&pi->sched_lock);
5612 }
5613 
5614 /**
5615  * ice_sched_replay_root_node_bw - replay root node BW
5616  * @pi: port information structure
5617  *
5618  * Replay root node BW settings.
5619  */
5620 enum ice_status ice_sched_replay_root_node_bw(struct ice_port_info *pi)
5621 {
5622 	enum ice_status status = ICE_SUCCESS;
5623 
5624 	if (!pi->hw)
5625 		return ICE_ERR_PARAM;
5626 	ice_acquire_lock(&pi->sched_lock);
5627 
5628 	status = ice_sched_replay_node_bw(pi->hw, pi->root,
5629 					  &pi->root_node_bw_t_info);
5630 	ice_release_lock(&pi->sched_lock);
5631 	return status;
5632 }
5633 
5634 /**
5635  * ice_sched_replay_tc_node_bw - replay TC node(s) BW
5636  * @pi: port information structure
5637  *
5638  * This function replay TC nodes.
5639  */
5640 enum ice_status ice_sched_replay_tc_node_bw(struct ice_port_info *pi)
5641 {
5642 	enum ice_status status = ICE_SUCCESS;
5643 	u8 tc;
5644 
5645 	if (!pi->hw)
5646 		return ICE_ERR_PARAM;
5647 	ice_acquire_lock(&pi->sched_lock);
5648 	ice_for_each_traffic_class(tc) {
5649 		struct ice_sched_node *tc_node;
5650 
5651 		tc_node = ice_sched_get_tc_node(pi, tc);
5652 		if (!tc_node)
5653 			continue; /* TC not present */
5654 		status = ice_sched_replay_node_bw(pi->hw, tc_node,
5655 						  &pi->tc_node_bw_t_info[tc]);
5656 		if (status)
5657 			break;
5658 	}
5659 	ice_release_lock(&pi->sched_lock);
5660 	return status;
5661 }
5662 
5663 /**
5664  * ice_sched_replay_vsi_bw - replay VSI type node(s) BW
5665  * @hw: pointer to the HW struct
5666  * @vsi_handle: software VSI handle
5667  * @tc_bitmap: 8 bits TC bitmap
5668  *
5669  * This function replays VSI type nodes bandwidth. This function needs to be
5670  * called with scheduler lock held.
5671  */
5672 static enum ice_status
5673 ice_sched_replay_vsi_bw(struct ice_hw *hw, u16 vsi_handle,
5674 			ice_bitmap_t *tc_bitmap)
5675 {
5676 	struct ice_sched_node *vsi_node, *tc_node;
5677 	struct ice_port_info *pi = hw->port_info;
5678 	struct ice_bw_type_info *bw_t_info;
5679 	struct ice_vsi_ctx *vsi_ctx;
5680 	enum ice_status status = ICE_SUCCESS;
5681 	u8 tc;
5682 
5683 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
5684 	if (!vsi_ctx)
5685 		return ICE_ERR_PARAM;
5686 	ice_for_each_traffic_class(tc) {
5687 		if (!ice_is_tc_ena(*tc_bitmap, tc))
5688 			continue;
5689 		tc_node = ice_sched_get_tc_node(pi, tc);
5690 		if (!tc_node)
5691 			continue;
5692 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5693 		if (!vsi_node)
5694 			continue;
5695 		bw_t_info = &vsi_ctx->sched.bw_t_info[tc];
5696 		status = ice_sched_replay_node_bw(hw, vsi_node, bw_t_info);
5697 		if (status)
5698 			break;
5699 	}
5700 	return status;
5701 }
5702 
5703 /**
5704  * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
5705  * @hw: pointer to the HW struct
5706  * @vsi_handle: software VSI handle
5707  *
5708  * This function replays aggregator node, VSI to aggregator type nodes, and
5709  * their node bandwidth information. This function needs to be called with
5710  * scheduler lock held.
5711  */
5712 static enum ice_status
5713 ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
5714 {
5715 	ice_declare_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5716 	struct ice_sched_agg_vsi_info *agg_vsi_info;
5717 	struct ice_port_info *pi = hw->port_info;
5718 	struct ice_sched_agg_info *agg_info;
5719 	enum ice_status status;
5720 
5721 	ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5722 	if (!ice_is_vsi_valid(hw, vsi_handle))
5723 		return ICE_ERR_PARAM;
5724 	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
5725 	if (!agg_info)
5726 		return ICE_SUCCESS; /* Not present in list - default Agg case */
5727 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
5728 	if (!agg_vsi_info)
5729 		return ICE_SUCCESS; /* Not present in list - default Agg case */
5730 	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
5731 				    replay_bitmap);
5732 	/* Replay aggregator node associated to vsi_handle */
5733 	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
5734 				   ICE_AGG_TYPE_AGG, replay_bitmap);
5735 	if (status)
5736 		return status;
5737 	/* Replay aggregator node BW (restore aggregator BW) */
5738 	status = ice_sched_replay_agg_bw(hw, agg_info);
5739 	if (status)
5740 		return status;
5741 
5742 	ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5743 	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
5744 				    replay_bitmap);
5745 	/* Move this VSI (vsi_handle) to above aggregator */
5746 	status = ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
5747 					    replay_bitmap);
5748 	if (status)
5749 		return status;
5750 	/* Replay VSI BW (restore VSI BW) */
5751 	return ice_sched_replay_vsi_bw(hw, vsi_handle,
5752 				       agg_vsi_info->tc_bitmap);
5753 }
5754 
5755 /**
5756  * ice_replay_vsi_agg - replay VSI to aggregator node
5757  * @hw: pointer to the HW struct
5758  * @vsi_handle: software VSI handle
5759  *
5760  * This function replays association of VSI to aggregator type nodes, and
5761  * node bandwidth information.
5762  */
5763 enum ice_status ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
5764 {
5765 	struct ice_port_info *pi = hw->port_info;
5766 	enum ice_status status;
5767 
5768 	ice_acquire_lock(&pi->sched_lock);
5769 	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
5770 	ice_release_lock(&pi->sched_lock);
5771 	return status;
5772 }
5773 
5774 /**
5775  * ice_sched_replay_q_bw - replay queue type node BW
5776  * @pi: port information structure
5777  * @q_ctx: queue context structure
5778  *
5779  * This function replays queue type node bandwidth. This function needs to be
5780  * called with scheduler lock held.
5781  */
5782 enum ice_status
5783 ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
5784 {
5785 	struct ice_sched_node *q_node;
5786 
5787 	/* Following also checks the presence of node in tree */
5788 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
5789 	if (!q_node)
5790 		return ICE_ERR_PARAM;
5791 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
5792 }
5793