xref: /freebsd/sys/dev/ice/ice_sched.c (revision 2e4311906d8c8dc7a7c726345268253bca6d4acc)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2021, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*$FreeBSD$*/
32 
33 #include "ice_sched.h"
34 
35 /**
36  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
37  * @pi: port information structure
38  * @info: Scheduler element information from firmware
39  *
40  * This function inserts the root node of the scheduling tree topology
41  * to the SW DB.
42  */
43 static enum ice_status
44 ice_sched_add_root_node(struct ice_port_info *pi,
45 			struct ice_aqc_txsched_elem_data *info)
46 {
47 	struct ice_sched_node *root;
48 	struct ice_hw *hw;
49 
50 	if (!pi)
51 		return ICE_ERR_PARAM;
52 
53 	hw = pi->hw;
54 
55 	root = (struct ice_sched_node *)ice_malloc(hw, sizeof(*root));
56 	if (!root)
57 		return ICE_ERR_NO_MEMORY;
58 
59 	/* coverity[suspicious_sizeof] */
60 	root->children = (struct ice_sched_node **)
61 		ice_calloc(hw, hw->max_children[0], sizeof(*root));
62 	if (!root->children) {
63 		ice_free(hw, root);
64 		return ICE_ERR_NO_MEMORY;
65 	}
66 
67 	ice_memcpy(&root->info, info, sizeof(*info), ICE_DMA_TO_NONDMA);
68 	pi->root = root;
69 	return ICE_SUCCESS;
70 }
71 
72 /**
73  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
74  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
75  * @teid: node TEID to search
76  *
77  * This function searches for a node matching the TEID in the scheduling tree
78  * from the SW DB. The search is recursive and is restricted by the number of
79  * layers it has searched through; stopping at the max supported layer.
80  *
81  * This function needs to be called when holding the port_info->sched_lock
82  */
83 struct ice_sched_node *
84 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
85 {
86 	u16 i;
87 
88 	/* The TEID is same as that of the start_node */
89 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
90 		return start_node;
91 
92 	/* The node has no children or is at the max layer */
93 	if (!start_node->num_children ||
94 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
95 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
96 		return NULL;
97 
98 	/* Check if TEID matches to any of the children nodes */
99 	for (i = 0; i < start_node->num_children; i++)
100 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
101 			return start_node->children[i];
102 
103 	/* Search within each child's sub-tree */
104 	for (i = 0; i < start_node->num_children; i++) {
105 		struct ice_sched_node *tmp;
106 
107 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
108 						  teid);
109 		if (tmp)
110 			return tmp;
111 	}
112 
113 	return NULL;
114 }
115 
116 /**
117  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
118  * @hw: pointer to the HW struct
119  * @cmd_opc: cmd opcode
120  * @elems_req: number of elements to request
121  * @buf: pointer to buffer
122  * @buf_size: buffer size in bytes
123  * @elems_resp: returns total number of elements response
124  * @cd: pointer to command details structure or NULL
125  *
126  * This function sends a scheduling elements cmd (cmd_opc)
127  */
128 static enum ice_status
129 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
130 			    u16 elems_req, void *buf, u16 buf_size,
131 			    u16 *elems_resp, struct ice_sq_cd *cd)
132 {
133 	struct ice_aqc_sched_elem_cmd *cmd;
134 	struct ice_aq_desc desc;
135 	enum ice_status status;
136 
137 	cmd = &desc.params.sched_elem_cmd;
138 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
139 	cmd->num_elem_req = CPU_TO_LE16(elems_req);
140 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
141 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
142 	if (!status && elems_resp)
143 		*elems_resp = LE16_TO_CPU(cmd->num_elem_resp);
144 
145 	return status;
146 }
147 
148 /**
149  * ice_aq_query_sched_elems - query scheduler elements
150  * @hw: pointer to the HW struct
151  * @elems_req: number of elements to query
152  * @buf: pointer to buffer
153  * @buf_size: buffer size in bytes
154  * @elems_ret: returns total number of elements returned
155  * @cd: pointer to command details structure or NULL
156  *
157  * Query scheduling elements (0x0404)
158  */
159 enum ice_status
160 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
161 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
162 			 u16 *elems_ret, struct ice_sq_cd *cd)
163 {
164 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
165 					   elems_req, (void *)buf, buf_size,
166 					   elems_ret, cd);
167 }
168 
169 /**
170  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
171  * @pi: port information structure
172  * @layer: Scheduler layer of the node
173  * @info: Scheduler element information from firmware
174  *
175  * This function inserts a scheduler node to the SW DB.
176  */
177 enum ice_status
178 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
179 		   struct ice_aqc_txsched_elem_data *info)
180 {
181 	struct ice_aqc_txsched_elem_data elem;
182 	struct ice_sched_node *parent;
183 	struct ice_sched_node *node;
184 	enum ice_status status;
185 	struct ice_hw *hw;
186 
187 	if (!pi)
188 		return ICE_ERR_PARAM;
189 
190 	hw = pi->hw;
191 
192 	/* A valid parent node should be there */
193 	parent = ice_sched_find_node_by_teid(pi->root,
194 					     LE32_TO_CPU(info->parent_teid));
195 	if (!parent) {
196 		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
197 			  LE32_TO_CPU(info->parent_teid));
198 		return ICE_ERR_PARAM;
199 	}
200 
201 	/* query the current node information from FW before adding it
202 	 * to the SW DB
203 	 */
204 	status = ice_sched_query_elem(hw, LE32_TO_CPU(info->node_teid), &elem);
205 	if (status)
206 		return status;
207 	node = (struct ice_sched_node *)ice_malloc(hw, sizeof(*node));
208 	if (!node)
209 		return ICE_ERR_NO_MEMORY;
210 	if (hw->max_children[layer]) {
211 		/* coverity[suspicious_sizeof] */
212 		node->children = (struct ice_sched_node **)
213 			ice_calloc(hw, hw->max_children[layer], sizeof(*node));
214 		if (!node->children) {
215 			ice_free(hw, node);
216 			return ICE_ERR_NO_MEMORY;
217 		}
218 	}
219 
220 	node->in_use = true;
221 	node->parent = parent;
222 	node->tx_sched_layer = layer;
223 	parent->children[parent->num_children++] = node;
224 	node->info = elem;
225 	return ICE_SUCCESS;
226 }
227 
228 /**
229  * ice_aq_delete_sched_elems - delete scheduler elements
230  * @hw: pointer to the HW struct
231  * @grps_req: number of groups to delete
232  * @buf: pointer to buffer
233  * @buf_size: buffer size in bytes
234  * @grps_del: returns total number of elements deleted
235  * @cd: pointer to command details structure or NULL
236  *
237  * Delete scheduling elements (0x040F)
238  */
239 static enum ice_status
240 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
241 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
242 			  u16 *grps_del, struct ice_sq_cd *cd)
243 {
244 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
245 					   grps_req, (void *)buf, buf_size,
246 					   grps_del, cd);
247 }
248 
249 /**
250  * ice_sched_remove_elems - remove nodes from HW
251  * @hw: pointer to the HW struct
252  * @parent: pointer to the parent node
253  * @num_nodes: number of nodes
254  * @node_teids: array of node teids to be deleted
255  *
256  * This function remove nodes from HW
257  */
258 static enum ice_status
259 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
260 		       u16 num_nodes, u32 *node_teids)
261 {
262 	struct ice_aqc_delete_elem *buf;
263 	u16 i, num_groups_removed = 0;
264 	enum ice_status status;
265 	u16 buf_size;
266 
267 	buf_size = ice_struct_size(buf, teid, num_nodes);
268 	buf = (struct ice_aqc_delete_elem *)ice_malloc(hw, buf_size);
269 	if (!buf)
270 		return ICE_ERR_NO_MEMORY;
271 
272 	buf->hdr.parent_teid = parent->info.node_teid;
273 	buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
274 	for (i = 0; i < num_nodes; i++)
275 		buf->teid[i] = CPU_TO_LE32(node_teids[i]);
276 
277 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
278 					   &num_groups_removed, NULL);
279 	if (status != ICE_SUCCESS || num_groups_removed != 1)
280 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
281 			  hw->adminq.sq_last_status);
282 
283 	ice_free(hw, buf);
284 	return status;
285 }
286 
287 /**
288  * ice_sched_get_first_node - get the first node of the given layer
289  * @pi: port information structure
290  * @parent: pointer the base node of the subtree
291  * @layer: layer number
292  *
293  * This function retrieves the first node of the given layer from the subtree
294  */
295 static struct ice_sched_node *
296 ice_sched_get_first_node(struct ice_port_info *pi,
297 			 struct ice_sched_node *parent, u8 layer)
298 {
299 	return pi->sib_head[parent->tc_num][layer];
300 }
301 
302 /**
303  * ice_sched_get_tc_node - get pointer to TC node
304  * @pi: port information structure
305  * @tc: TC number
306  *
307  * This function returns the TC node pointer
308  */
309 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
310 {
311 	u8 i;
312 
313 	if (!pi || !pi->root)
314 		return NULL;
315 	for (i = 0; i < pi->root->num_children; i++)
316 		if (pi->root->children[i]->tc_num == tc)
317 			return pi->root->children[i];
318 	return NULL;
319 }
320 
321 /**
322  * ice_free_sched_node - Free a Tx scheduler node from SW DB
323  * @pi: port information structure
324  * @node: pointer to the ice_sched_node struct
325  *
326  * This function frees up a node from SW DB as well as from HW
327  *
328  * This function needs to be called with the port_info->sched_lock held
329  */
330 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
331 {
332 	struct ice_sched_node *parent;
333 	struct ice_hw *hw = pi->hw;
334 	u8 i, j;
335 
336 	/* Free the children before freeing up the parent node
337 	 * The parent array is updated below and that shifts the nodes
338 	 * in the array. So always pick the first child if num children > 0
339 	 */
340 	while (node->num_children)
341 		ice_free_sched_node(pi, node->children[0]);
342 
343 	/* Leaf, TC and root nodes can't be deleted by SW */
344 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
345 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
346 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
347 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
348 		u32 teid = LE32_TO_CPU(node->info.node_teid);
349 
350 		ice_sched_remove_elems(hw, node->parent, 1, &teid);
351 	}
352 	parent = node->parent;
353 	/* root has no parent */
354 	if (parent) {
355 		struct ice_sched_node *p;
356 
357 		/* update the parent */
358 		for (i = 0; i < parent->num_children; i++)
359 			if (parent->children[i] == node) {
360 				for (j = i + 1; j < parent->num_children; j++)
361 					parent->children[j - 1] =
362 						parent->children[j];
363 				parent->num_children--;
364 				break;
365 			}
366 
367 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
368 		while (p) {
369 			if (p->sibling == node) {
370 				p->sibling = node->sibling;
371 				break;
372 			}
373 			p = p->sibling;
374 		}
375 
376 		/* update the sibling head if head is getting removed */
377 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
378 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
379 				node->sibling;
380 	}
381 
382 	/* leaf nodes have no children */
383 	if (node->children)
384 		ice_free(hw, node->children);
385 	ice_free(hw, node);
386 }
387 
388 /**
389  * ice_aq_get_dflt_topo - gets default scheduler topology
390  * @hw: pointer to the HW struct
391  * @lport: logical port number
392  * @buf: pointer to buffer
393  * @buf_size: buffer size in bytes
394  * @num_branches: returns total number of queue to port branches
395  * @cd: pointer to command details structure or NULL
396  *
397  * Get default scheduler topology (0x400)
398  */
399 static enum ice_status
400 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
401 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
402 		     u8 *num_branches, struct ice_sq_cd *cd)
403 {
404 	struct ice_aqc_get_topo *cmd;
405 	struct ice_aq_desc desc;
406 	enum ice_status status;
407 
408 	cmd = &desc.params.get_topo;
409 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
410 	cmd->port_num = lport;
411 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
412 	if (!status && num_branches)
413 		*num_branches = cmd->num_branches;
414 
415 	return status;
416 }
417 
418 /**
419  * ice_aq_add_sched_elems - adds scheduling element
420  * @hw: pointer to the HW struct
421  * @grps_req: the number of groups that are requested to be added
422  * @buf: pointer to buffer
423  * @buf_size: buffer size in bytes
424  * @grps_added: returns total number of groups added
425  * @cd: pointer to command details structure or NULL
426  *
427  * Add scheduling elements (0x0401)
428  */
429 static enum ice_status
430 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
431 		       struct ice_aqc_add_elem *buf, u16 buf_size,
432 		       u16 *grps_added, struct ice_sq_cd *cd)
433 {
434 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
435 					   grps_req, (void *)buf, buf_size,
436 					   grps_added, cd);
437 }
438 
439 /**
440  * ice_aq_cfg_sched_elems - configures scheduler elements
441  * @hw: pointer to the HW struct
442  * @elems_req: number of elements to configure
443  * @buf: pointer to buffer
444  * @buf_size: buffer size in bytes
445  * @elems_cfgd: returns total number of elements configured
446  * @cd: pointer to command details structure or NULL
447  *
448  * Configure scheduling elements (0x0403)
449  */
450 static enum ice_status
451 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
452 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
453 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
454 {
455 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
456 					   elems_req, (void *)buf, buf_size,
457 					   elems_cfgd, cd);
458 }
459 
460 /**
461  * ice_aq_move_sched_elems - move scheduler elements
462  * @hw: pointer to the HW struct
463  * @grps_req: number of groups to move
464  * @buf: pointer to buffer
465  * @buf_size: buffer size in bytes
466  * @grps_movd: returns total number of groups moved
467  * @cd: pointer to command details structure or NULL
468  *
469  * Move scheduling elements (0x0408)
470  */
471 static enum ice_status
472 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
473 			struct ice_aqc_move_elem *buf, u16 buf_size,
474 			u16 *grps_movd, struct ice_sq_cd *cd)
475 {
476 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
477 					   grps_req, (void *)buf, buf_size,
478 					   grps_movd, cd);
479 }
480 
481 /**
482  * ice_aq_suspend_sched_elems - suspend scheduler elements
483  * @hw: pointer to the HW struct
484  * @elems_req: number of elements to suspend
485  * @buf: pointer to buffer
486  * @buf_size: buffer size in bytes
487  * @elems_ret: returns total number of elements suspended
488  * @cd: pointer to command details structure or NULL
489  *
490  * Suspend scheduling elements (0x0409)
491  */
492 static enum ice_status
493 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
494 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
495 {
496 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
497 					   elems_req, (void *)buf, buf_size,
498 					   elems_ret, cd);
499 }
500 
501 /**
502  * ice_aq_resume_sched_elems - resume scheduler elements
503  * @hw: pointer to the HW struct
504  * @elems_req: number of elements to resume
505  * @buf: pointer to buffer
506  * @buf_size: buffer size in bytes
507  * @elems_ret: returns total number of elements resumed
508  * @cd: pointer to command details structure or NULL
509  *
510  * resume scheduling elements (0x040A)
511  */
512 static enum ice_status
513 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
514 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
515 {
516 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
517 					   elems_req, (void *)buf, buf_size,
518 					   elems_ret, cd);
519 }
520 
521 /**
522  * ice_aq_query_sched_res - query scheduler resource
523  * @hw: pointer to the HW struct
524  * @buf_size: buffer size in bytes
525  * @buf: pointer to buffer
526  * @cd: pointer to command details structure or NULL
527  *
528  * Query scheduler resource allocation (0x0412)
529  */
530 static enum ice_status
531 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
532 		       struct ice_aqc_query_txsched_res_resp *buf,
533 		       struct ice_sq_cd *cd)
534 {
535 	struct ice_aq_desc desc;
536 
537 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
538 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
539 }
540 
541 /**
542  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
543  * @hw: pointer to the HW struct
544  * @num_nodes: number of nodes
545  * @node_teids: array of node teids to be suspended or resumed
546  * @suspend: true means suspend / false means resume
547  *
548  * This function suspends or resumes HW nodes
549  */
550 static enum ice_status
551 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
552 			       bool suspend)
553 {
554 	u16 i, buf_size, num_elem_ret = 0;
555 	enum ice_status status;
556 	__le32 *buf;
557 
558 	buf_size = sizeof(*buf) * num_nodes;
559 	buf = (__le32 *)ice_malloc(hw, buf_size);
560 	if (!buf)
561 		return ICE_ERR_NO_MEMORY;
562 
563 	for (i = 0; i < num_nodes; i++)
564 		buf[i] = CPU_TO_LE32(node_teids[i]);
565 
566 	if (suspend)
567 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
568 						    buf_size, &num_elem_ret,
569 						    NULL);
570 	else
571 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
572 						   buf_size, &num_elem_ret,
573 						   NULL);
574 	if (status != ICE_SUCCESS || num_elem_ret != num_nodes)
575 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
576 
577 	ice_free(hw, buf);
578 	return status;
579 }
580 
581 /**
582  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
583  * @hw: pointer to the HW struct
584  * @vsi_handle: VSI handle
585  * @tc: TC number
586  * @new_numqs: number of queues
587  */
588 static enum ice_status
589 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
590 {
591 	struct ice_vsi_ctx *vsi_ctx;
592 	struct ice_q_ctx *q_ctx;
593 
594 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
595 	if (!vsi_ctx)
596 		return ICE_ERR_PARAM;
597 	/* allocate LAN queue contexts */
598 	if (!vsi_ctx->lan_q_ctx[tc]) {
599 		vsi_ctx->lan_q_ctx[tc] = (struct ice_q_ctx *)
600 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
601 		if (!vsi_ctx->lan_q_ctx[tc])
602 			return ICE_ERR_NO_MEMORY;
603 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
604 		return ICE_SUCCESS;
605 	}
606 	/* num queues are increased, update the queue contexts */
607 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
608 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
609 
610 		q_ctx = (struct ice_q_ctx *)
611 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
612 		if (!q_ctx)
613 			return ICE_ERR_NO_MEMORY;
614 		ice_memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
615 			   prev_num * sizeof(*q_ctx), ICE_DMA_TO_NONDMA);
616 		ice_free(hw, vsi_ctx->lan_q_ctx[tc]);
617 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
618 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
619 	}
620 	return ICE_SUCCESS;
621 }
622 
623 /**
624  * ice_aq_rl_profile - performs a rate limiting task
625  * @hw: pointer to the HW struct
626  * @opcode: opcode for add, query, or remove profile(s)
627  * @num_profiles: the number of profiles
628  * @buf: pointer to buffer
629  * @buf_size: buffer size in bytes
630  * @num_processed: number of processed add or remove profile(s) to return
631  * @cd: pointer to command details structure
632  *
633  * RL profile function to add, query, or remove profile(s)
634  */
635 static enum ice_status
636 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
637 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
638 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
639 {
640 	struct ice_aqc_rl_profile *cmd;
641 	struct ice_aq_desc desc;
642 	enum ice_status status;
643 
644 	cmd = &desc.params.rl_profile;
645 
646 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
647 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
648 	cmd->num_profiles = CPU_TO_LE16(num_profiles);
649 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
650 	if (!status && num_processed)
651 		*num_processed = LE16_TO_CPU(cmd->num_processed);
652 	return status;
653 }
654 
655 /**
656  * ice_aq_add_rl_profile - adds rate limiting profile(s)
657  * @hw: pointer to the HW struct
658  * @num_profiles: the number of profile(s) to be add
659  * @buf: pointer to buffer
660  * @buf_size: buffer size in bytes
661  * @num_profiles_added: total number of profiles added to return
662  * @cd: pointer to command details structure
663  *
664  * Add RL profile (0x0410)
665  */
666 static enum ice_status
667 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
668 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
669 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
670 {
671 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
672 				 buf, buf_size, num_profiles_added, cd);
673 }
674 
675 /**
676  * ice_aq_query_rl_profile - query rate limiting profile(s)
677  * @hw: pointer to the HW struct
678  * @num_profiles: the number of profile(s) to query
679  * @buf: pointer to buffer
680  * @buf_size: buffer size in bytes
681  * @cd: pointer to command details structure
682  *
683  * Query RL profile (0x0411)
684  */
685 enum ice_status
686 ice_aq_query_rl_profile(struct ice_hw *hw, u16 num_profiles,
687 			struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
688 			struct ice_sq_cd *cd)
689 {
690 	return ice_aq_rl_profile(hw, ice_aqc_opc_query_rl_profiles,
691 				 num_profiles, buf, buf_size, NULL, cd);
692 }
693 
694 /**
695  * ice_aq_remove_rl_profile - removes RL profile(s)
696  * @hw: pointer to the HW struct
697  * @num_profiles: the number of profile(s) to remove
698  * @buf: pointer to buffer
699  * @buf_size: buffer size in bytes
700  * @num_profiles_removed: total number of profiles removed to return
701  * @cd: pointer to command details structure or NULL
702  *
703  * Remove RL profile (0x0415)
704  */
705 static enum ice_status
706 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
707 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
708 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
709 {
710 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
711 				 num_profiles, buf, buf_size,
712 				 num_profiles_removed, cd);
713 }
714 
715 /**
716  * ice_sched_del_rl_profile - remove RL profile
717  * @hw: pointer to the HW struct
718  * @rl_info: rate limit profile information
719  *
720  * If the profile ID is not referenced anymore, it removes profile ID with
721  * its associated parameters from HW DB,and locally. The caller needs to
722  * hold scheduler lock.
723  */
724 static enum ice_status
725 ice_sched_del_rl_profile(struct ice_hw *hw,
726 			 struct ice_aqc_rl_profile_info *rl_info)
727 {
728 	struct ice_aqc_rl_profile_elem *buf;
729 	u16 num_profiles_removed;
730 	enum ice_status status;
731 	u16 num_profiles = 1;
732 
733 	if (rl_info->prof_id_ref != 0)
734 		return ICE_ERR_IN_USE;
735 
736 	/* Safe to remove profile ID */
737 	buf = &rl_info->profile;
738 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
739 					  &num_profiles_removed, NULL);
740 	if (status || num_profiles_removed != num_profiles)
741 		return ICE_ERR_CFG;
742 
743 	/* Delete stale entry now */
744 	LIST_DEL(&rl_info->list_entry);
745 	ice_free(hw, rl_info);
746 	return status;
747 }
748 
749 /**
750  * ice_sched_clear_rl_prof - clears RL prof entries
751  * @pi: port information structure
752  *
753  * This function removes all RL profile from HW as well as from SW DB.
754  */
755 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
756 {
757 	u16 ln;
758 	struct ice_hw *hw = pi->hw;
759 
760 	for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
761 		struct ice_aqc_rl_profile_info *rl_prof_elem;
762 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
763 
764 		LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
765 					 &hw->rl_prof_list[ln],
766 					 ice_aqc_rl_profile_info, list_entry) {
767 			enum ice_status status;
768 
769 			rl_prof_elem->prof_id_ref = 0;
770 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
771 			if (status) {
772 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
773 				/* On error, free mem required */
774 				LIST_DEL(&rl_prof_elem->list_entry);
775 				ice_free(hw, rl_prof_elem);
776 			}
777 		}
778 	}
779 }
780 
781 /**
782  * ice_sched_clear_agg - clears the aggregator related information
783  * @hw: pointer to the hardware structure
784  *
785  * This function removes aggregator list and free up aggregator related memory
786  * previously allocated.
787  */
788 void ice_sched_clear_agg(struct ice_hw *hw)
789 {
790 	struct ice_sched_agg_info *agg_info;
791 	struct ice_sched_agg_info *atmp;
792 
793 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &hw->agg_list,
794 				 ice_sched_agg_info,
795 				 list_entry) {
796 		struct ice_sched_agg_vsi_info *agg_vsi_info;
797 		struct ice_sched_agg_vsi_info *vtmp;
798 
799 		LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
800 					 &agg_info->agg_vsi_list,
801 					 ice_sched_agg_vsi_info, list_entry) {
802 			LIST_DEL(&agg_vsi_info->list_entry);
803 			ice_free(hw, agg_vsi_info);
804 		}
805 		LIST_DEL(&agg_info->list_entry);
806 		ice_free(hw, agg_info);
807 	}
808 }
809 
810 /**
811  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
812  * @pi: port information structure
813  *
814  * This function removes all the nodes from HW as well as from SW DB.
815  */
816 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
817 {
818 	if (!pi)
819 		return;
820 	/* remove RL profiles related lists */
821 	ice_sched_clear_rl_prof(pi);
822 	if (pi->root) {
823 		ice_free_sched_node(pi, pi->root);
824 		pi->root = NULL;
825 	}
826 }
827 
828 /**
829  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
830  * @pi: port information structure
831  *
832  * Cleanup scheduling elements from SW DB
833  */
834 void ice_sched_clear_port(struct ice_port_info *pi)
835 {
836 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
837 		return;
838 
839 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
840 	ice_acquire_lock(&pi->sched_lock);
841 	ice_sched_clear_tx_topo(pi);
842 	ice_release_lock(&pi->sched_lock);
843 	ice_destroy_lock(&pi->sched_lock);
844 }
845 
846 /**
847  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
848  * @hw: pointer to the HW struct
849  *
850  * Cleanup scheduling elements from SW DB for all the ports
851  */
852 void ice_sched_cleanup_all(struct ice_hw *hw)
853 {
854 	if (!hw)
855 		return;
856 
857 	if (hw->layer_info) {
858 		ice_free(hw, hw->layer_info);
859 		hw->layer_info = NULL;
860 	}
861 
862 	ice_sched_clear_port(hw->port_info);
863 
864 	hw->num_tx_sched_layers = 0;
865 	hw->num_tx_sched_phys_layers = 0;
866 	hw->flattened_layers = 0;
867 	hw->max_cgds = 0;
868 }
869 
870 /**
871  * ice_aq_cfg_l2_node_cgd - configures L2 node to CGD mapping
872  * @hw: pointer to the HW struct
873  * @num_l2_nodes: the number of L2 nodes whose CGDs to configure
874  * @buf: pointer to buffer
875  * @buf_size: buffer size in bytes
876  * @cd: pointer to command details structure or NULL
877  *
878  * Configure L2 Node CGD (0x0414)
879  */
880 enum ice_status
881 ice_aq_cfg_l2_node_cgd(struct ice_hw *hw, u16 num_l2_nodes,
882 		       struct ice_aqc_cfg_l2_node_cgd_elem *buf,
883 		       u16 buf_size, struct ice_sq_cd *cd)
884 {
885 	struct ice_aqc_cfg_l2_node_cgd *cmd;
886 	struct ice_aq_desc desc;
887 
888 	cmd = &desc.params.cfg_l2_node_cgd;
889 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_l2_node_cgd);
890 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
891 
892 	cmd->num_l2_nodes = CPU_TO_LE16(num_l2_nodes);
893 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
894 }
895 
896 /**
897  * ice_sched_add_elems - add nodes to HW and SW DB
898  * @pi: port information structure
899  * @tc_node: pointer to the branch node
900  * @parent: pointer to the parent node
901  * @layer: layer number to add nodes
902  * @num_nodes: number of nodes
903  * @num_nodes_added: pointer to num nodes added
904  * @first_node_teid: if new nodes are added then return the TEID of first node
905  *
906  * This function add nodes to HW as well as to SW DB for a given layer
907  */
908 static enum ice_status
909 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
910 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
911 		    u16 *num_nodes_added, u32 *first_node_teid)
912 {
913 	struct ice_sched_node *prev, *new_node;
914 	struct ice_aqc_add_elem *buf;
915 	u16 i, num_groups_added = 0;
916 	enum ice_status status = ICE_SUCCESS;
917 	struct ice_hw *hw = pi->hw;
918 	u16 buf_size;
919 	u32 teid;
920 
921 	buf_size = ice_struct_size(buf, generic, num_nodes);
922 	buf = (struct ice_aqc_add_elem *)ice_malloc(hw, buf_size);
923 	if (!buf)
924 		return ICE_ERR_NO_MEMORY;
925 
926 	buf->hdr.parent_teid = parent->info.node_teid;
927 	buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
928 	for (i = 0; i < num_nodes; i++) {
929 		buf->generic[i].parent_teid = parent->info.node_teid;
930 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
931 		buf->generic[i].data.valid_sections =
932 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
933 			ICE_AQC_ELEM_VALID_EIR;
934 		buf->generic[i].data.generic = 0;
935 		buf->generic[i].data.cir_bw.bw_profile_idx =
936 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
937 		buf->generic[i].data.cir_bw.bw_alloc =
938 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
939 		buf->generic[i].data.eir_bw.bw_profile_idx =
940 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
941 		buf->generic[i].data.eir_bw.bw_alloc =
942 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
943 	}
944 
945 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
946 					&num_groups_added, NULL);
947 	if (status != ICE_SUCCESS || num_groups_added != 1) {
948 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
949 			  hw->adminq.sq_last_status);
950 		ice_free(hw, buf);
951 		return ICE_ERR_CFG;
952 	}
953 
954 	*num_nodes_added = num_nodes;
955 	/* add nodes to the SW DB */
956 	for (i = 0; i < num_nodes; i++) {
957 		status = ice_sched_add_node(pi, layer, &buf->generic[i]);
958 		if (status != ICE_SUCCESS) {
959 			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
960 				  status);
961 			break;
962 		}
963 
964 		teid = LE32_TO_CPU(buf->generic[i].node_teid);
965 		new_node = ice_sched_find_node_by_teid(parent, teid);
966 		if (!new_node) {
967 			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
968 			break;
969 		}
970 
971 		new_node->sibling = NULL;
972 		new_node->tc_num = tc_node->tc_num;
973 
974 		/* add it to previous node sibling pointer */
975 		/* Note: siblings are not linked across branches */
976 		prev = ice_sched_get_first_node(pi, tc_node, layer);
977 		if (prev && prev != new_node) {
978 			while (prev->sibling)
979 				prev = prev->sibling;
980 			prev->sibling = new_node;
981 		}
982 
983 		/* initialize the sibling head */
984 		if (!pi->sib_head[tc_node->tc_num][layer])
985 			pi->sib_head[tc_node->tc_num][layer] = new_node;
986 
987 		if (i == 0)
988 			*first_node_teid = teid;
989 	}
990 
991 	ice_free(hw, buf);
992 	return status;
993 }
994 
995 /**
996  * ice_sched_add_nodes_to_hw_layer - Add nodes to hw layer
997  * @pi: port information structure
998  * @tc_node: pointer to TC node
999  * @parent: pointer to parent node
1000  * @layer: layer number to add nodes
1001  * @num_nodes: number of nodes to be added
1002  * @first_node_teid: pointer to the first node TEID
1003  * @num_nodes_added: pointer to number of nodes added
1004  *
1005  * Add nodes into specific hw layer.
1006  */
1007 static enum ice_status
1008 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1009 				struct ice_sched_node *tc_node,
1010 				struct ice_sched_node *parent, u8 layer,
1011 				u16 num_nodes, u32 *first_node_teid,
1012 				u16 *num_nodes_added)
1013 {
1014 	u16 max_child_nodes;
1015 
1016 	*num_nodes_added = 0;
1017 
1018 	if (!num_nodes)
1019 		return ICE_SUCCESS;
1020 
1021 	if (!parent || layer < pi->hw->sw_entry_point_layer)
1022 		return ICE_ERR_PARAM;
1023 
1024 	/* max children per node per layer */
1025 	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1026 
1027 	/* current number of children + required nodes exceed max children */
1028 	if ((parent->num_children + num_nodes) > max_child_nodes) {
1029 		/* Fail if the parent is a TC node */
1030 		if (parent == tc_node)
1031 			return ICE_ERR_CFG;
1032 		return ICE_ERR_MAX_LIMIT;
1033 	}
1034 
1035 	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1036 				   num_nodes_added, first_node_teid);
1037 }
1038 
1039 /**
1040  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1041  * @pi: port information structure
1042  * @tc_node: pointer to TC node
1043  * @parent: pointer to parent node
1044  * @layer: layer number to add nodes
1045  * @num_nodes: number of nodes to be added
1046  * @first_node_teid: pointer to the first node TEID
1047  * @num_nodes_added: pointer to number of nodes added
1048  *
1049  * This function add nodes to a given layer.
1050  */
1051 static enum ice_status
1052 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1053 			     struct ice_sched_node *tc_node,
1054 			     struct ice_sched_node *parent, u8 layer,
1055 			     u16 num_nodes, u32 *first_node_teid,
1056 			     u16 *num_nodes_added)
1057 {
1058 	u32 *first_teid_ptr = first_node_teid;
1059 	u16 new_num_nodes = num_nodes;
1060 	enum ice_status status = ICE_SUCCESS;
1061 
1062 	*num_nodes_added = 0;
1063 	while (*num_nodes_added < num_nodes) {
1064 		u16 max_child_nodes, num_added = 0;
1065 		/* cppcheck-suppress unusedVariable */
1066 		u32 temp;
1067 
1068 		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1069 							 layer,	new_num_nodes,
1070 							 first_teid_ptr,
1071 							 &num_added);
1072 		if (status == ICE_SUCCESS)
1073 			*num_nodes_added += num_added;
1074 		/* added more nodes than requested ? */
1075 		if (*num_nodes_added > num_nodes) {
1076 			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1077 				  *num_nodes_added);
1078 			status = ICE_ERR_CFG;
1079 			break;
1080 		}
1081 		/* break if all the nodes are added successfully */
1082 		if (status == ICE_SUCCESS && (*num_nodes_added == num_nodes))
1083 			break;
1084 		/* break if the error is not max limit */
1085 		if (status != ICE_SUCCESS && status != ICE_ERR_MAX_LIMIT)
1086 			break;
1087 		/* Exceeded the max children */
1088 		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1089 		/* utilize all the spaces if the parent is not full */
1090 		if (parent->num_children < max_child_nodes) {
1091 			new_num_nodes = max_child_nodes - parent->num_children;
1092 		} else {
1093 			/* This parent is full, try the next sibling */
1094 			parent = parent->sibling;
1095 			/* Don't modify the first node TEID memory if the
1096 			 * first node was added already in the above call.
1097 			 * Instead send some temp memory for all other
1098 			 * recursive calls.
1099 			 */
1100 			if (num_added)
1101 				first_teid_ptr = &temp;
1102 
1103 			new_num_nodes = num_nodes - *num_nodes_added;
1104 		}
1105 	}
1106 	return status;
1107 }
1108 
1109 /**
1110  * ice_sched_get_qgrp_layer - get the current queue group layer number
1111  * @hw: pointer to the HW struct
1112  *
1113  * This function returns the current queue group layer number
1114  */
1115 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1116 {
1117 	/* It's always total layers - 1, the array is 0 relative so -2 */
1118 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1119 }
1120 
1121 /**
1122  * ice_sched_get_vsi_layer - get the current VSI layer number
1123  * @hw: pointer to the HW struct
1124  *
1125  * This function returns the current VSI layer number
1126  */
1127 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1128 {
1129 	/* Num Layers       VSI layer
1130 	 *     9               6
1131 	 *     7               4
1132 	 *     5 or less       sw_entry_point_layer
1133 	 */
1134 	/* calculate the VSI layer based on number of layers. */
1135 	if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1136 		u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1137 
1138 		if (layer > hw->sw_entry_point_layer)
1139 			return layer;
1140 	}
1141 	return hw->sw_entry_point_layer;
1142 }
1143 
1144 /**
1145  * ice_sched_get_agg_layer - get the current aggregator layer number
1146  * @hw: pointer to the HW struct
1147  *
1148  * This function returns the current aggregator layer number
1149  */
1150 static u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1151 {
1152 	/* Num Layers       aggregator layer
1153 	 *     9               4
1154 	 *     7 or less       sw_entry_point_layer
1155 	 */
1156 	/* calculate the aggregator layer based on number of layers. */
1157 	if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1158 		u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1159 
1160 		if (layer > hw->sw_entry_point_layer)
1161 			return layer;
1162 	}
1163 	return hw->sw_entry_point_layer;
1164 }
1165 
1166 /**
1167  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1168  * @pi: port information structure
1169  *
1170  * This function removes the leaf node that was created by the FW
1171  * during initialization
1172  */
1173 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1174 {
1175 	struct ice_sched_node *node;
1176 
1177 	node = pi->root;
1178 	while (node) {
1179 		if (!node->num_children)
1180 			break;
1181 		node = node->children[0];
1182 	}
1183 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1184 		u32 teid = LE32_TO_CPU(node->info.node_teid);
1185 		enum ice_status status;
1186 
1187 		/* remove the default leaf node */
1188 		status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1189 		if (!status)
1190 			ice_free_sched_node(pi, node);
1191 	}
1192 }
1193 
1194 /**
1195  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1196  * @pi: port information structure
1197  *
1198  * This function frees all the nodes except root and TC that were created by
1199  * the FW during initialization
1200  */
1201 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1202 {
1203 	struct ice_sched_node *node;
1204 
1205 	ice_rm_dflt_leaf_node(pi);
1206 
1207 	/* remove the default nodes except TC and root nodes */
1208 	node = pi->root;
1209 	while (node) {
1210 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1211 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1212 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1213 			ice_free_sched_node(pi, node);
1214 			break;
1215 		}
1216 
1217 		if (!node->num_children)
1218 			break;
1219 		node = node->children[0];
1220 	}
1221 }
1222 
1223 /**
1224  * ice_sched_init_port - Initialize scheduler by querying information from FW
1225  * @pi: port info structure for the tree to cleanup
1226  *
1227  * This function is the initial call to find the total number of Tx scheduler
1228  * resources, default topology created by firmware and storing the information
1229  * in SW DB.
1230  */
1231 enum ice_status ice_sched_init_port(struct ice_port_info *pi)
1232 {
1233 	struct ice_aqc_get_topo_elem *buf;
1234 	enum ice_status status;
1235 	struct ice_hw *hw;
1236 	u8 num_branches;
1237 	u16 num_elems;
1238 	u8 i, j;
1239 
1240 	if (!pi)
1241 		return ICE_ERR_PARAM;
1242 	hw = pi->hw;
1243 
1244 	/* Query the Default Topology from FW */
1245 	buf = (struct ice_aqc_get_topo_elem *)ice_malloc(hw,
1246 							 ICE_AQ_MAX_BUF_LEN);
1247 	if (!buf)
1248 		return ICE_ERR_NO_MEMORY;
1249 
1250 	/* Query default scheduling tree topology */
1251 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1252 				      &num_branches, NULL);
1253 	if (status)
1254 		goto err_init_port;
1255 
1256 	/* num_branches should be between 1-8 */
1257 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1258 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1259 			  num_branches);
1260 		status = ICE_ERR_PARAM;
1261 		goto err_init_port;
1262 	}
1263 
1264 	/* get the number of elements on the default/first branch */
1265 	num_elems = LE16_TO_CPU(buf[0].hdr.num_elems);
1266 
1267 	/* num_elems should always be between 1-9 */
1268 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1269 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1270 			  num_elems);
1271 		status = ICE_ERR_PARAM;
1272 		goto err_init_port;
1273 	}
1274 
1275 	/* If the last node is a leaf node then the index of the queue group
1276 	 * layer is two less than the number of elements.
1277 	 */
1278 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1279 	    ICE_AQC_ELEM_TYPE_LEAF)
1280 		pi->last_node_teid =
1281 			LE32_TO_CPU(buf[0].generic[num_elems - 2].node_teid);
1282 	else
1283 		pi->last_node_teid =
1284 			LE32_TO_CPU(buf[0].generic[num_elems - 1].node_teid);
1285 
1286 	/* Insert the Tx Sched root node */
1287 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1288 	if (status)
1289 		goto err_init_port;
1290 
1291 	/* Parse the default tree and cache the information */
1292 	for (i = 0; i < num_branches; i++) {
1293 		num_elems = LE16_TO_CPU(buf[i].hdr.num_elems);
1294 
1295 		/* Skip root element as already inserted */
1296 		for (j = 1; j < num_elems; j++) {
1297 			/* update the sw entry point */
1298 			if (buf[0].generic[j].data.elem_type ==
1299 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1300 				hw->sw_entry_point_layer = j;
1301 
1302 			status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
1303 			if (status)
1304 				goto err_init_port;
1305 		}
1306 	}
1307 
1308 	/* Remove the default nodes. */
1309 	if (pi->root)
1310 		ice_sched_rm_dflt_nodes(pi);
1311 
1312 	/* initialize the port for handling the scheduler tree */
1313 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1314 	ice_init_lock(&pi->sched_lock);
1315 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1316 		INIT_LIST_HEAD(&hw->rl_prof_list[i]);
1317 
1318 err_init_port:
1319 	if (status && pi->root) {
1320 		ice_free_sched_node(pi, pi->root);
1321 		pi->root = NULL;
1322 	}
1323 
1324 	ice_free(hw, buf);
1325 	return status;
1326 }
1327 
1328 /**
1329  * ice_sched_get_node - Get the struct ice_sched_node for given TEID
1330  * @pi: port information structure
1331  * @teid: Scheduler node TEID
1332  *
1333  * This function retrieves the ice_sched_node struct for given TEID from
1334  * the SW DB and returns it to the caller.
1335  */
1336 struct ice_sched_node *ice_sched_get_node(struct ice_port_info *pi, u32 teid)
1337 {
1338 	struct ice_sched_node *node;
1339 
1340 	if (!pi)
1341 		return NULL;
1342 
1343 	/* Find the node starting from root */
1344 	ice_acquire_lock(&pi->sched_lock);
1345 	node = ice_sched_find_node_by_teid(pi->root, teid);
1346 	ice_release_lock(&pi->sched_lock);
1347 
1348 	if (!node)
1349 		ice_debug(pi->hw, ICE_DBG_SCHED, "Node not found for teid=0x%x\n", teid);
1350 
1351 	return node;
1352 }
1353 
1354 /**
1355  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1356  * @hw: pointer to the HW struct
1357  *
1358  * query FW for allocated scheduler resources and store in HW struct
1359  */
1360 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
1361 {
1362 	struct ice_aqc_query_txsched_res_resp *buf;
1363 	enum ice_status status = ICE_SUCCESS;
1364 	__le16 max_sibl;
1365 	u8 i;
1366 
1367 	if (hw->layer_info)
1368 		return status;
1369 
1370 	buf = (struct ice_aqc_query_txsched_res_resp *)
1371 		ice_malloc(hw, sizeof(*buf));
1372 	if (!buf)
1373 		return ICE_ERR_NO_MEMORY;
1374 
1375 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1376 	if (status)
1377 		goto sched_query_out;
1378 
1379 	hw->num_tx_sched_layers = LE16_TO_CPU(buf->sched_props.logical_levels);
1380 	hw->num_tx_sched_phys_layers =
1381 		LE16_TO_CPU(buf->sched_props.phys_levels);
1382 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1383 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1384 
1385 	/* max sibling group size of current layer refers to the max children
1386 	 * of the below layer node.
1387 	 * layer 1 node max children will be layer 2 max sibling group size
1388 	 * layer 2 node max children will be layer 3 max sibling group size
1389 	 * and so on. This array will be populated from root (index 0) to
1390 	 * qgroup layer 7. Leaf node has no children.
1391 	 */
1392 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1393 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1394 		hw->max_children[i] = LE16_TO_CPU(max_sibl);
1395 	}
1396 
1397 	hw->layer_info = (struct ice_aqc_layer_props *)
1398 			 ice_memdup(hw, buf->layer_props,
1399 				    (hw->num_tx_sched_layers *
1400 				     sizeof(*hw->layer_info)),
1401 				    ICE_NONDMA_TO_NONDMA);
1402 	if (!hw->layer_info) {
1403 		status = ICE_ERR_NO_MEMORY;
1404 		goto sched_query_out;
1405 	}
1406 
1407 sched_query_out:
1408 	ice_free(hw, buf);
1409 	return status;
1410 }
1411 
1412 /**
1413  * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1414  * @hw: pointer to the HW struct
1415  *
1416  * Determine the PSM clock frequency and store in HW struct
1417  */
1418 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1419 {
1420 	u32 val, clk_src;
1421 
1422 	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1423 	clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1424 		GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1425 
1426 #define PSM_CLK_SRC_367_MHZ 0x0
1427 #define PSM_CLK_SRC_416_MHZ 0x1
1428 #define PSM_CLK_SRC_446_MHZ 0x2
1429 #define PSM_CLK_SRC_390_MHZ 0x3
1430 
1431 	switch (clk_src) {
1432 	case PSM_CLK_SRC_367_MHZ:
1433 		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1434 		break;
1435 	case PSM_CLK_SRC_416_MHZ:
1436 		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1437 		break;
1438 	case PSM_CLK_SRC_446_MHZ:
1439 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1440 		break;
1441 	case PSM_CLK_SRC_390_MHZ:
1442 		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1443 		break;
1444 	default:
1445 		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1446 			  clk_src);
1447 		/* fall back to a safe default */
1448 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1449 	}
1450 }
1451 
1452 /**
1453  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1454  * @hw: pointer to the HW struct
1455  * @base: pointer to the base node
1456  * @node: pointer to the node to search
1457  *
1458  * This function checks whether a given node is part of the base node
1459  * subtree or not
1460  */
1461 bool
1462 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1463 			       struct ice_sched_node *node)
1464 {
1465 	u8 i;
1466 
1467 	for (i = 0; i < base->num_children; i++) {
1468 		struct ice_sched_node *child = base->children[i];
1469 
1470 		if (node == child)
1471 			return true;
1472 
1473 		if (child->tx_sched_layer > node->tx_sched_layer)
1474 			return false;
1475 
1476 		/* this recursion is intentional, and wouldn't
1477 		 * go more than 8 calls
1478 		 */
1479 		if (ice_sched_find_node_in_subtree(hw, child, node))
1480 			return true;
1481 	}
1482 	return false;
1483 }
1484 
1485 /**
1486  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1487  * @pi: port information structure
1488  * @vsi_node: software VSI handle
1489  * @qgrp_node: first queue group node identified for scanning
1490  * @owner: LAN or RDMA
1491  *
1492  * This function retrieves a free LAN or RDMA queue group node by scanning
1493  * qgrp_node and its siblings for the queue group with the fewest number
1494  * of queues currently assigned.
1495  */
1496 static struct ice_sched_node *
1497 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1498 			struct ice_sched_node *vsi_node,
1499 			struct ice_sched_node *qgrp_node, u8 owner)
1500 {
1501 	struct ice_sched_node *min_qgrp;
1502 	u8 min_children;
1503 
1504 	if (!qgrp_node)
1505 		return qgrp_node;
1506 	min_children = qgrp_node->num_children;
1507 	if (!min_children)
1508 		return qgrp_node;
1509 	min_qgrp = qgrp_node;
1510 	/* scan all queue groups until find a node which has less than the
1511 	 * minimum number of children. This way all queue group nodes get
1512 	 * equal number of shares and active. The bandwidth will be equally
1513 	 * distributed across all queues.
1514 	 */
1515 	while (qgrp_node) {
1516 		/* make sure the qgroup node is part of the VSI subtree */
1517 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1518 			if (qgrp_node->num_children < min_children &&
1519 			    qgrp_node->owner == owner) {
1520 				/* replace the new min queue group node */
1521 				min_qgrp = qgrp_node;
1522 				min_children = min_qgrp->num_children;
1523 				/* break if it has no children, */
1524 				if (!min_children)
1525 					break;
1526 			}
1527 		qgrp_node = qgrp_node->sibling;
1528 	}
1529 	return min_qgrp;
1530 }
1531 
1532 /**
1533  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1534  * @pi: port information structure
1535  * @vsi_handle: software VSI handle
1536  * @tc: branch number
1537  * @owner: LAN or RDMA
1538  *
1539  * This function retrieves a free LAN or RDMA queue group node
1540  */
1541 struct ice_sched_node *
1542 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1543 			   u8 owner)
1544 {
1545 	struct ice_sched_node *vsi_node, *qgrp_node;
1546 	struct ice_vsi_ctx *vsi_ctx;
1547 	u16 max_children;
1548 	u8 qgrp_layer;
1549 
1550 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1551 	max_children = pi->hw->max_children[qgrp_layer];
1552 
1553 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1554 	if (!vsi_ctx)
1555 		return NULL;
1556 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1557 	/* validate invalid VSI ID */
1558 	if (!vsi_node)
1559 		return NULL;
1560 
1561 	/* get the first queue group node from VSI sub-tree */
1562 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1563 	while (qgrp_node) {
1564 		/* make sure the qgroup node is part of the VSI subtree */
1565 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1566 			if (qgrp_node->num_children < max_children &&
1567 			    qgrp_node->owner == owner)
1568 				break;
1569 		qgrp_node = qgrp_node->sibling;
1570 	}
1571 
1572 	/* Select the best queue group */
1573 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1574 }
1575 
1576 /**
1577  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1578  * @pi: pointer to the port information structure
1579  * @tc_node: pointer to the TC node
1580  * @vsi_handle: software VSI handle
1581  *
1582  * This function retrieves a VSI node for a given VSI ID from a given
1583  * TC branch
1584  */
1585 struct ice_sched_node *
1586 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1587 		       u16 vsi_handle)
1588 {
1589 	struct ice_sched_node *node;
1590 	u8 vsi_layer;
1591 
1592 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1593 	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1594 
1595 	/* Check whether it already exists */
1596 	while (node) {
1597 		if (node->vsi_handle == vsi_handle)
1598 			return node;
1599 		node = node->sibling;
1600 	}
1601 
1602 	return node;
1603 }
1604 
1605 /**
1606  * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1607  * @pi: pointer to the port information structure
1608  * @tc_node: pointer to the TC node
1609  * @agg_id: aggregator ID
1610  *
1611  * This function retrieves an aggregator node for a given aggregator ID from
1612  * a given TC branch
1613  */
1614 static struct ice_sched_node *
1615 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1616 		       u32 agg_id)
1617 {
1618 	struct ice_sched_node *node;
1619 	struct ice_hw *hw = pi->hw;
1620 	u8 agg_layer;
1621 
1622 	if (!hw)
1623 		return NULL;
1624 	agg_layer = ice_sched_get_agg_layer(hw);
1625 	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1626 
1627 	/* Check whether it already exists */
1628 	while (node) {
1629 		if (node->agg_id == agg_id)
1630 			return node;
1631 		node = node->sibling;
1632 	}
1633 
1634 	return node;
1635 }
1636 
1637 /**
1638  * ice_sched_check_node - Compare node parameters between SW DB and HW DB
1639  * @hw: pointer to the HW struct
1640  * @node: pointer to the ice_sched_node struct
1641  *
1642  * This function queries and compares the HW element with SW DB node parameters
1643  */
1644 static bool ice_sched_check_node(struct ice_hw *hw, struct ice_sched_node *node)
1645 {
1646 	struct ice_aqc_txsched_elem_data buf;
1647 	enum ice_status status;
1648 	u32 node_teid;
1649 
1650 	node_teid = LE32_TO_CPU(node->info.node_teid);
1651 	status = ice_sched_query_elem(hw, node_teid, &buf);
1652 	if (status != ICE_SUCCESS)
1653 		return false;
1654 
1655 	if (memcmp(&buf, &node->info, sizeof(buf))) {
1656 		ice_debug(hw, ICE_DBG_SCHED, "Node mismatch for teid=0x%x\n",
1657 			  node_teid);
1658 		return false;
1659 	}
1660 
1661 	return true;
1662 }
1663 
1664 /**
1665  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1666  * @hw: pointer to the HW struct
1667  * @num_qs: number of queues
1668  * @num_nodes: num nodes array
1669  *
1670  * This function calculates the number of VSI child nodes based on the
1671  * number of queues.
1672  */
1673 static void
1674 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1675 {
1676 	u16 num = num_qs;
1677 	u8 i, qgl, vsil;
1678 
1679 	qgl = ice_sched_get_qgrp_layer(hw);
1680 	vsil = ice_sched_get_vsi_layer(hw);
1681 
1682 	/* calculate num nodes from queue group to VSI layer */
1683 	for (i = qgl; i > vsil; i--) {
1684 		/* round to the next integer if there is a remainder */
1685 		num = DIVIDE_AND_ROUND_UP(num, hw->max_children[i]);
1686 
1687 		/* need at least one node */
1688 		num_nodes[i] = num ? num : 1;
1689 	}
1690 }
1691 
1692 /**
1693  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1694  * @pi: port information structure
1695  * @vsi_handle: software VSI handle
1696  * @tc_node: pointer to the TC node
1697  * @num_nodes: pointer to the num nodes that needs to be added per layer
1698  * @owner: node owner (LAN or RDMA)
1699  *
1700  * This function adds the VSI child nodes to tree. It gets called for
1701  * LAN and RDMA separately.
1702  */
1703 static enum ice_status
1704 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1705 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1706 			      u8 owner)
1707 {
1708 	struct ice_sched_node *parent, *node;
1709 	struct ice_hw *hw = pi->hw;
1710 	enum ice_status status;
1711 	u32 first_node_teid;
1712 	u16 num_added = 0;
1713 	u8 i, qgl, vsil;
1714 
1715 	qgl = ice_sched_get_qgrp_layer(hw);
1716 	vsil = ice_sched_get_vsi_layer(hw);
1717 	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1718 	for (i = vsil + 1; i <= qgl; i++) {
1719 		if (!parent)
1720 			return ICE_ERR_CFG;
1721 
1722 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1723 						      num_nodes[i],
1724 						      &first_node_teid,
1725 						      &num_added);
1726 		if (status != ICE_SUCCESS || num_nodes[i] != num_added)
1727 			return ICE_ERR_CFG;
1728 
1729 		/* The newly added node can be a new parent for the next
1730 		 * layer nodes
1731 		 */
1732 		if (num_added) {
1733 			parent = ice_sched_find_node_by_teid(tc_node,
1734 							     first_node_teid);
1735 			node = parent;
1736 			while (node) {
1737 				node->owner = owner;
1738 				node = node->sibling;
1739 			}
1740 		} else {
1741 			parent = parent->children[0];
1742 		}
1743 	}
1744 
1745 	return ICE_SUCCESS;
1746 }
1747 
1748 /**
1749  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1750  * @pi: pointer to the port info structure
1751  * @tc_node: pointer to TC node
1752  * @num_nodes: pointer to num nodes array
1753  *
1754  * This function calculates the number of supported nodes needed to add this
1755  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1756  * layers
1757  */
1758 static void
1759 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1760 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1761 {
1762 	struct ice_sched_node *node;
1763 	u8 vsil;
1764 	int i;
1765 
1766 	vsil = ice_sched_get_vsi_layer(pi->hw);
1767 	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1768 		/* Add intermediate nodes if TC has no children and
1769 		 * need at least one node for VSI
1770 		 */
1771 		if (!tc_node->num_children || i == vsil) {
1772 			num_nodes[i]++;
1773 		} else {
1774 			/* If intermediate nodes are reached max children
1775 			 * then add a new one.
1776 			 */
1777 			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1778 			/* scan all the siblings */
1779 			while (node) {
1780 				if (node->num_children <
1781 				    pi->hw->max_children[i])
1782 					break;
1783 				node = node->sibling;
1784 			}
1785 
1786 			/* tree has one intermediate node to add this new VSI.
1787 			 * So no need to calculate supported nodes for below
1788 			 * layers.
1789 			 */
1790 			if (node)
1791 				break;
1792 			/* all the nodes are full, allocate a new one */
1793 			num_nodes[i]++;
1794 		}
1795 }
1796 
1797 /**
1798  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1799  * @pi: port information structure
1800  * @vsi_handle: software VSI handle
1801  * @tc_node: pointer to TC node
1802  * @num_nodes: pointer to num nodes array
1803  *
1804  * This function adds the VSI supported nodes into Tx tree including the
1805  * VSI, its parent and intermediate nodes in below layers
1806  */
1807 static enum ice_status
1808 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1809 				struct ice_sched_node *tc_node, u16 *num_nodes)
1810 {
1811 	struct ice_sched_node *parent = tc_node;
1812 	enum ice_status status;
1813 	u32 first_node_teid;
1814 	u16 num_added = 0;
1815 	u8 i, vsil;
1816 
1817 	if (!pi)
1818 		return ICE_ERR_PARAM;
1819 
1820 	vsil = ice_sched_get_vsi_layer(pi->hw);
1821 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1822 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1823 						      i, num_nodes[i],
1824 						      &first_node_teid,
1825 						      &num_added);
1826 		if (status != ICE_SUCCESS || num_nodes[i] != num_added)
1827 			return ICE_ERR_CFG;
1828 
1829 		/* The newly added node can be a new parent for the next
1830 		 * layer nodes
1831 		 */
1832 		if (num_added)
1833 			parent = ice_sched_find_node_by_teid(tc_node,
1834 							     first_node_teid);
1835 		else
1836 			parent = parent->children[0];
1837 
1838 		if (!parent)
1839 			return ICE_ERR_CFG;
1840 
1841 		if (i == vsil)
1842 			parent->vsi_handle = vsi_handle;
1843 	}
1844 
1845 	return ICE_SUCCESS;
1846 }
1847 
1848 /**
1849  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1850  * @pi: port information structure
1851  * @vsi_handle: software VSI handle
1852  * @tc: TC number
1853  *
1854  * This function adds a new VSI into scheduler tree
1855  */
1856 static enum ice_status
1857 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1858 {
1859 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1860 	struct ice_sched_node *tc_node;
1861 
1862 	tc_node = ice_sched_get_tc_node(pi, tc);
1863 	if (!tc_node)
1864 		return ICE_ERR_PARAM;
1865 
1866 	/* calculate number of supported nodes needed for this VSI */
1867 	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1868 
1869 	/* add VSI supported nodes to TC subtree */
1870 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1871 					       num_nodes);
1872 }
1873 
1874 /**
1875  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1876  * @pi: port information structure
1877  * @vsi_handle: software VSI handle
1878  * @tc: TC number
1879  * @new_numqs: new number of max queues
1880  * @owner: owner of this subtree
1881  *
1882  * This function updates the VSI child nodes based on the number of queues
1883  */
1884 static enum ice_status
1885 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1886 				 u8 tc, u16 new_numqs, u8 owner)
1887 {
1888 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1889 	struct ice_sched_node *vsi_node;
1890 	struct ice_sched_node *tc_node;
1891 	struct ice_vsi_ctx *vsi_ctx;
1892 	enum ice_status status = ICE_SUCCESS;
1893 	struct ice_hw *hw = pi->hw;
1894 	u16 prev_numqs;
1895 
1896 	tc_node = ice_sched_get_tc_node(pi, tc);
1897 	if (!tc_node)
1898 		return ICE_ERR_CFG;
1899 
1900 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1901 	if (!vsi_node)
1902 		return ICE_ERR_CFG;
1903 
1904 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1905 	if (!vsi_ctx)
1906 		return ICE_ERR_PARAM;
1907 
1908 	prev_numqs = vsi_ctx->sched.max_lanq[tc];
1909 	/* num queues are not changed or less than the previous number */
1910 	if (new_numqs <= prev_numqs)
1911 		return status;
1912 	status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1913 	if (status)
1914 		return status;
1915 
1916 	if (new_numqs)
1917 		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1918 	/* Keep the max number of queue configuration all the time. Update the
1919 	 * tree only if number of queues > previous number of queues. This may
1920 	 * leave some extra nodes in the tree if number of queues < previous
1921 	 * number but that wouldn't harm anything. Removing those extra nodes
1922 	 * may complicate the code if those nodes are part of SRL or
1923 	 * individually rate limited.
1924 	 */
1925 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1926 					       new_num_nodes, owner);
1927 	if (status)
1928 		return status;
1929 	vsi_ctx->sched.max_lanq[tc] = new_numqs;
1930 
1931 	return ICE_SUCCESS;
1932 }
1933 
1934 /**
1935  * ice_sched_cfg_vsi - configure the new/existing VSI
1936  * @pi: port information structure
1937  * @vsi_handle: software VSI handle
1938  * @tc: TC number
1939  * @maxqs: max number of queues
1940  * @owner: LAN or RDMA
1941  * @enable: TC enabled or disabled
1942  *
1943  * This function adds/updates VSI nodes based on the number of queues. If TC is
1944  * enabled and VSI is in suspended state then resume the VSI back. If TC is
1945  * disabled then suspend the VSI if it is not already.
1946  */
1947 enum ice_status
1948 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1949 		  u8 owner, bool enable)
1950 {
1951 	struct ice_sched_node *vsi_node, *tc_node;
1952 	struct ice_vsi_ctx *vsi_ctx;
1953 	enum ice_status status = ICE_SUCCESS;
1954 	struct ice_hw *hw = pi->hw;
1955 
1956 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1957 	tc_node = ice_sched_get_tc_node(pi, tc);
1958 	if (!tc_node)
1959 		return ICE_ERR_PARAM;
1960 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1961 	if (!vsi_ctx)
1962 		return ICE_ERR_PARAM;
1963 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1964 
1965 	/* suspend the VSI if TC is not enabled */
1966 	if (!enable) {
1967 		if (vsi_node && vsi_node->in_use) {
1968 			u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
1969 
1970 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1971 								true);
1972 			if (!status)
1973 				vsi_node->in_use = false;
1974 		}
1975 		return status;
1976 	}
1977 
1978 	/* TC is enabled, if it is a new VSI then add it to the tree */
1979 	if (!vsi_node) {
1980 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1981 		if (status)
1982 			return status;
1983 
1984 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1985 		if (!vsi_node)
1986 			return ICE_ERR_CFG;
1987 
1988 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1989 		vsi_node->in_use = true;
1990 		/* invalidate the max queues whenever VSI gets added first time
1991 		 * into the scheduler tree (boot or after reset). We need to
1992 		 * recreate the child nodes all the time in these cases.
1993 		 */
1994 		vsi_ctx->sched.max_lanq[tc] = 0;
1995 	}
1996 
1997 	/* update the VSI child nodes */
1998 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1999 						  owner);
2000 	if (status)
2001 		return status;
2002 
2003 	/* TC is enabled, resume the VSI if it is in the suspend state */
2004 	if (!vsi_node->in_use) {
2005 		u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
2006 
2007 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
2008 		if (!status)
2009 			vsi_node->in_use = true;
2010 	}
2011 
2012 	return status;
2013 }
2014 
2015 /**
2016  * ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry
2017  * @pi: port information structure
2018  * @vsi_handle: software VSI handle
2019  *
2020  * This function removes single aggregator VSI info entry from
2021  * aggregator list.
2022  */
2023 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
2024 {
2025 	struct ice_sched_agg_info *agg_info;
2026 	struct ice_sched_agg_info *atmp;
2027 
2028 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &pi->hw->agg_list,
2029 				 ice_sched_agg_info,
2030 				 list_entry) {
2031 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2032 		struct ice_sched_agg_vsi_info *vtmp;
2033 
2034 		LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
2035 					 &agg_info->agg_vsi_list,
2036 					 ice_sched_agg_vsi_info, list_entry)
2037 			if (agg_vsi_info->vsi_handle == vsi_handle) {
2038 				LIST_DEL(&agg_vsi_info->list_entry);
2039 				ice_free(pi->hw, agg_vsi_info);
2040 				return;
2041 			}
2042 	}
2043 }
2044 
2045 /**
2046  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2047  * @node: pointer to the sub-tree node
2048  *
2049  * This function checks for a leaf node presence in a given sub-tree node.
2050  */
2051 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2052 {
2053 	u8 i;
2054 
2055 	for (i = 0; i < node->num_children; i++)
2056 		if (ice_sched_is_leaf_node_present(node->children[i]))
2057 			return true;
2058 	/* check for a leaf node */
2059 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2060 }
2061 
2062 /**
2063  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2064  * @pi: port information structure
2065  * @vsi_handle: software VSI handle
2066  * @owner: LAN or RDMA
2067  *
2068  * This function removes the VSI and its LAN or RDMA children nodes from the
2069  * scheduler tree.
2070  */
2071 static enum ice_status
2072 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2073 {
2074 	enum ice_status status = ICE_ERR_PARAM;
2075 	struct ice_vsi_ctx *vsi_ctx;
2076 	u8 i;
2077 
2078 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2079 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2080 		return status;
2081 	ice_acquire_lock(&pi->sched_lock);
2082 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2083 	if (!vsi_ctx)
2084 		goto exit_sched_rm_vsi_cfg;
2085 
2086 	ice_for_each_traffic_class(i) {
2087 		struct ice_sched_node *vsi_node, *tc_node;
2088 		u8 j = 0;
2089 
2090 		tc_node = ice_sched_get_tc_node(pi, i);
2091 		if (!tc_node)
2092 			continue;
2093 
2094 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2095 		if (!vsi_node)
2096 			continue;
2097 
2098 		if (ice_sched_is_leaf_node_present(vsi_node)) {
2099 			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2100 			status = ICE_ERR_IN_USE;
2101 			goto exit_sched_rm_vsi_cfg;
2102 		}
2103 		while (j < vsi_node->num_children) {
2104 			if (vsi_node->children[j]->owner == owner) {
2105 				ice_free_sched_node(pi, vsi_node->children[j]);
2106 
2107 				/* reset the counter again since the num
2108 				 * children will be updated after node removal
2109 				 */
2110 				j = 0;
2111 			} else {
2112 				j++;
2113 			}
2114 		}
2115 		/* remove the VSI if it has no children */
2116 		if (!vsi_node->num_children) {
2117 			ice_free_sched_node(pi, vsi_node);
2118 			vsi_ctx->sched.vsi_node[i] = NULL;
2119 
2120 			/* clean up aggregator related VSI info if any */
2121 			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2122 		}
2123 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2124 			vsi_ctx->sched.max_lanq[i] = 0;
2125 	}
2126 	status = ICE_SUCCESS;
2127 
2128 exit_sched_rm_vsi_cfg:
2129 	ice_release_lock(&pi->sched_lock);
2130 	return status;
2131 }
2132 
2133 /**
2134  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2135  * @pi: port information structure
2136  * @vsi_handle: software VSI handle
2137  *
2138  * This function clears the VSI and its LAN children nodes from scheduler tree
2139  * for all TCs.
2140  */
2141 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2142 {
2143 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2144 }
2145 
2146 /**
2147  * ice_sched_is_tree_balanced - Check tree nodes are identical or not
2148  * @hw: pointer to the HW struct
2149  * @node: pointer to the ice_sched_node struct
2150  *
2151  * This function compares all the nodes for a given tree against HW DB nodes
2152  * This function needs to be called with the port_info->sched_lock held
2153  */
2154 bool ice_sched_is_tree_balanced(struct ice_hw *hw, struct ice_sched_node *node)
2155 {
2156 	u8 i;
2157 
2158 	/* start from the leaf node */
2159 	for (i = 0; i < node->num_children; i++)
2160 		/* Fail if node doesn't match with the SW DB
2161 		 * this recursion is intentional, and wouldn't
2162 		 * go more than 9 calls
2163 		 */
2164 		if (!ice_sched_is_tree_balanced(hw, node->children[i]))
2165 			return false;
2166 
2167 	return ice_sched_check_node(hw, node);
2168 }
2169 
2170 /**
2171  * ice_aq_query_node_to_root - retrieve the tree topology for a given node TEID
2172  * @hw: pointer to the HW struct
2173  * @node_teid: node TEID
2174  * @buf: pointer to buffer
2175  * @buf_size: buffer size in bytes
2176  * @cd: pointer to command details structure or NULL
2177  *
2178  * This function retrieves the tree topology from the firmware for a given
2179  * node TEID to the root node.
2180  */
2181 enum ice_status
2182 ice_aq_query_node_to_root(struct ice_hw *hw, u32 node_teid,
2183 			  struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
2184 			  struct ice_sq_cd *cd)
2185 {
2186 	struct ice_aqc_query_node_to_root *cmd;
2187 	struct ice_aq_desc desc;
2188 
2189 	cmd = &desc.params.query_node_to_root;
2190 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_node_to_root);
2191 	cmd->teid = CPU_TO_LE32(node_teid);
2192 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2193 }
2194 
2195 /**
2196  * ice_get_agg_info - get the aggregator ID
2197  * @hw: pointer to the hardware structure
2198  * @agg_id: aggregator ID
2199  *
2200  * This function validates aggregator ID. The function returns info if
2201  * aggregator ID is present in list otherwise it returns null.
2202  */
2203 static struct ice_sched_agg_info *
2204 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2205 {
2206 	struct ice_sched_agg_info *agg_info;
2207 
2208 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
2209 			    list_entry)
2210 		if (agg_info->agg_id == agg_id)
2211 			return agg_info;
2212 
2213 	return NULL;
2214 }
2215 
2216 /**
2217  * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2218  * @hw: pointer to the HW struct
2219  * @node: pointer to a child node
2220  * @num_nodes: num nodes count array
2221  *
2222  * This function walks through the aggregator subtree to find a free parent
2223  * node
2224  */
2225 static struct ice_sched_node *
2226 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2227 			      u16 *num_nodes)
2228 {
2229 	u8 l = node->tx_sched_layer;
2230 	u8 vsil, i;
2231 
2232 	vsil = ice_sched_get_vsi_layer(hw);
2233 
2234 	/* Is it VSI parent layer ? */
2235 	if (l == vsil - 1)
2236 		return (node->num_children < hw->max_children[l]) ? node : NULL;
2237 
2238 	/* We have intermediate nodes. Let's walk through the subtree. If the
2239 	 * intermediate node has space to add a new node then clear the count
2240 	 */
2241 	if (node->num_children < hw->max_children[l])
2242 		num_nodes[l] = 0;
2243 	/* The below recursive call is intentional and wouldn't go more than
2244 	 * 2 or 3 iterations.
2245 	 */
2246 
2247 	for (i = 0; i < node->num_children; i++) {
2248 		struct ice_sched_node *parent;
2249 
2250 		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2251 						       num_nodes);
2252 		if (parent)
2253 			return parent;
2254 	}
2255 
2256 	return NULL;
2257 }
2258 
2259 /**
2260  * ice_sched_update_parent - update the new parent in SW DB
2261  * @new_parent: pointer to a new parent node
2262  * @node: pointer to a child node
2263  *
2264  * This function removes the child from the old parent and adds it to a new
2265  * parent
2266  */
2267 static void
2268 ice_sched_update_parent(struct ice_sched_node *new_parent,
2269 			struct ice_sched_node *node)
2270 {
2271 	struct ice_sched_node *old_parent;
2272 	u8 i, j;
2273 
2274 	old_parent = node->parent;
2275 
2276 	/* update the old parent children */
2277 	for (i = 0; i < old_parent->num_children; i++)
2278 		if (old_parent->children[i] == node) {
2279 			for (j = i + 1; j < old_parent->num_children; j++)
2280 				old_parent->children[j - 1] =
2281 					old_parent->children[j];
2282 			old_parent->num_children--;
2283 			break;
2284 		}
2285 
2286 	/* now move the node to a new parent */
2287 	new_parent->children[new_parent->num_children++] = node;
2288 	node->parent = new_parent;
2289 	node->info.parent_teid = new_parent->info.node_teid;
2290 }
2291 
2292 /**
2293  * ice_sched_move_nodes - move child nodes to a given parent
2294  * @pi: port information structure
2295  * @parent: pointer to parent node
2296  * @num_items: number of child nodes to be moved
2297  * @list: pointer to child node teids
2298  *
2299  * This function move the child nodes to a given parent.
2300  */
2301 static enum ice_status
2302 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2303 		     u16 num_items, u32 *list)
2304 {
2305 	struct ice_aqc_move_elem *buf;
2306 	struct ice_sched_node *node;
2307 	enum ice_status status = ICE_SUCCESS;
2308 	u16 i, grps_movd = 0;
2309 	struct ice_hw *hw;
2310 	u16 buf_len;
2311 
2312 	hw = pi->hw;
2313 
2314 	if (!parent || !num_items)
2315 		return ICE_ERR_PARAM;
2316 
2317 	/* Does parent have enough space */
2318 	if (parent->num_children + num_items >
2319 	    hw->max_children[parent->tx_sched_layer])
2320 		return ICE_ERR_AQ_FULL;
2321 
2322 	buf_len = ice_struct_size(buf, teid, 1);
2323 	buf = (struct ice_aqc_move_elem *)ice_malloc(hw, buf_len);
2324 	if (!buf)
2325 		return ICE_ERR_NO_MEMORY;
2326 
2327 	for (i = 0; i < num_items; i++) {
2328 		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2329 		if (!node) {
2330 			status = ICE_ERR_PARAM;
2331 			goto move_err_exit;
2332 		}
2333 
2334 		buf->hdr.src_parent_teid = node->info.parent_teid;
2335 		buf->hdr.dest_parent_teid = parent->info.node_teid;
2336 		buf->teid[0] = node->info.node_teid;
2337 		buf->hdr.num_elems = CPU_TO_LE16(1);
2338 		status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
2339 						 &grps_movd, NULL);
2340 		if (status && grps_movd != 1) {
2341 			status = ICE_ERR_CFG;
2342 			goto move_err_exit;
2343 		}
2344 
2345 		/* update the SW DB */
2346 		ice_sched_update_parent(parent, node);
2347 	}
2348 
2349 move_err_exit:
2350 	ice_free(hw, buf);
2351 	return status;
2352 }
2353 
2354 /**
2355  * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2356  * @pi: port information structure
2357  * @vsi_handle: software VSI handle
2358  * @agg_id: aggregator ID
2359  * @tc: TC number
2360  *
2361  * This function moves a VSI to an aggregator node or its subtree.
2362  * Intermediate nodes may be created if required.
2363  */
2364 static enum ice_status
2365 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2366 			  u8 tc)
2367 {
2368 	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2369 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2370 	u32 first_node_teid, vsi_teid;
2371 	enum ice_status status;
2372 	u16 num_nodes_added;
2373 	u8 aggl, vsil, i;
2374 
2375 	tc_node = ice_sched_get_tc_node(pi, tc);
2376 	if (!tc_node)
2377 		return ICE_ERR_CFG;
2378 
2379 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2380 	if (!agg_node)
2381 		return ICE_ERR_DOES_NOT_EXIST;
2382 
2383 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2384 	if (!vsi_node)
2385 		return ICE_ERR_DOES_NOT_EXIST;
2386 
2387 	/* Is this VSI already part of given aggregator? */
2388 	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2389 		return ICE_SUCCESS;
2390 
2391 	aggl = ice_sched_get_agg_layer(pi->hw);
2392 	vsil = ice_sched_get_vsi_layer(pi->hw);
2393 
2394 	/* set intermediate node count to 1 between aggregator and VSI layers */
2395 	for (i = aggl + 1; i < vsil; i++)
2396 		num_nodes[i] = 1;
2397 
2398 	/* Check if the aggregator subtree has any free node to add the VSI */
2399 	for (i = 0; i < agg_node->num_children; i++) {
2400 		parent = ice_sched_get_free_vsi_parent(pi->hw,
2401 						       agg_node->children[i],
2402 						       num_nodes);
2403 		if (parent)
2404 			goto move_nodes;
2405 	}
2406 
2407 	/* add new nodes */
2408 	parent = agg_node;
2409 	for (i = aggl + 1; i < vsil; i++) {
2410 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2411 						      num_nodes[i],
2412 						      &first_node_teid,
2413 						      &num_nodes_added);
2414 		if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
2415 			return ICE_ERR_CFG;
2416 
2417 		/* The newly added node can be a new parent for the next
2418 		 * layer nodes
2419 		 */
2420 		if (num_nodes_added)
2421 			parent = ice_sched_find_node_by_teid(tc_node,
2422 							     first_node_teid);
2423 		else
2424 			parent = parent->children[0];
2425 
2426 		if (!parent)
2427 			return ICE_ERR_CFG;
2428 	}
2429 
2430 move_nodes:
2431 	vsi_teid = LE32_TO_CPU(vsi_node->info.node_teid);
2432 	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2433 }
2434 
2435 /**
2436  * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2437  * @pi: port information structure
2438  * @agg_info: aggregator info
2439  * @tc: traffic class number
2440  * @rm_vsi_info: true or false
2441  *
2442  * This function move all the VSI(s) to the default aggregator and delete
2443  * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2444  * caller holds the scheduler lock.
2445  */
2446 static enum ice_status
2447 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2448 			     struct ice_sched_agg_info *agg_info, u8 tc,
2449 			     bool rm_vsi_info)
2450 {
2451 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2452 	struct ice_sched_agg_vsi_info *tmp;
2453 	enum ice_status status = ICE_SUCCESS;
2454 
2455 	LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2456 				 ice_sched_agg_vsi_info, list_entry) {
2457 		u16 vsi_handle = agg_vsi_info->vsi_handle;
2458 
2459 		/* Move VSI to default aggregator */
2460 		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2461 			continue;
2462 
2463 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2464 						   ICE_DFLT_AGG_ID, tc);
2465 		if (status)
2466 			break;
2467 
2468 		ice_clear_bit(tc, agg_vsi_info->tc_bitmap);
2469 		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2470 			LIST_DEL(&agg_vsi_info->list_entry);
2471 			ice_free(pi->hw, agg_vsi_info);
2472 		}
2473 	}
2474 
2475 	return status;
2476 }
2477 
2478 /**
2479  * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2480  * @pi: port information structure
2481  * @node: node pointer
2482  *
2483  * This function checks whether the aggregator is attached with any VSI or not.
2484  */
2485 static bool
2486 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2487 {
2488 	u8 vsil, i;
2489 
2490 	vsil = ice_sched_get_vsi_layer(pi->hw);
2491 	if (node->tx_sched_layer < vsil - 1) {
2492 		for (i = 0; i < node->num_children; i++)
2493 			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2494 				return true;
2495 		return false;
2496 	} else {
2497 		return node->num_children ? true : false;
2498 	}
2499 }
2500 
2501 /**
2502  * ice_sched_rm_agg_cfg - remove the aggregator node
2503  * @pi: port information structure
2504  * @agg_id: aggregator ID
2505  * @tc: TC number
2506  *
2507  * This function removes the aggregator node and intermediate nodes if any
2508  * from the given TC
2509  */
2510 static enum ice_status
2511 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2512 {
2513 	struct ice_sched_node *tc_node, *agg_node;
2514 	struct ice_hw *hw = pi->hw;
2515 
2516 	tc_node = ice_sched_get_tc_node(pi, tc);
2517 	if (!tc_node)
2518 		return ICE_ERR_CFG;
2519 
2520 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2521 	if (!agg_node)
2522 		return ICE_ERR_DOES_NOT_EXIST;
2523 
2524 	/* Can't remove the aggregator node if it has children */
2525 	if (ice_sched_is_agg_inuse(pi, agg_node))
2526 		return ICE_ERR_IN_USE;
2527 
2528 	/* need to remove the whole subtree if aggregator node is the
2529 	 * only child.
2530 	 */
2531 	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2532 		struct ice_sched_node *parent = agg_node->parent;
2533 
2534 		if (!parent)
2535 			return ICE_ERR_CFG;
2536 
2537 		if (parent->num_children > 1)
2538 			break;
2539 
2540 		agg_node = parent;
2541 	}
2542 
2543 	ice_free_sched_node(pi, agg_node);
2544 	return ICE_SUCCESS;
2545 }
2546 
2547 /**
2548  * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2549  * @pi: port information structure
2550  * @agg_info: aggregator ID
2551  * @tc: TC number
2552  * @rm_vsi_info: bool value true or false
2553  *
2554  * This function removes aggregator reference to VSI of given TC. It removes
2555  * the aggregator configuration completely for requested TC. The caller needs
2556  * to hold the scheduler lock.
2557  */
2558 static enum ice_status
2559 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2560 		  u8 tc, bool rm_vsi_info)
2561 {
2562 	enum ice_status status = ICE_SUCCESS;
2563 
2564 	/* If nothing to remove - return success */
2565 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2566 		goto exit_rm_agg_cfg_tc;
2567 
2568 	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2569 	if (status)
2570 		goto exit_rm_agg_cfg_tc;
2571 
2572 	/* Delete aggregator node(s) */
2573 	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2574 	if (status)
2575 		goto exit_rm_agg_cfg_tc;
2576 
2577 	ice_clear_bit(tc, agg_info->tc_bitmap);
2578 exit_rm_agg_cfg_tc:
2579 	return status;
2580 }
2581 
2582 /**
2583  * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2584  * @pi: port information structure
2585  * @agg_id: aggregator ID
2586  * @tc_bitmap: 8 bits TC bitmap
2587  *
2588  * Save aggregator TC bitmap. This function needs to be called with scheduler
2589  * lock held.
2590  */
2591 static enum ice_status
2592 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2593 		       ice_bitmap_t *tc_bitmap)
2594 {
2595 	struct ice_sched_agg_info *agg_info;
2596 
2597 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2598 	if (!agg_info)
2599 		return ICE_ERR_PARAM;
2600 	ice_cp_bitmap(agg_info->replay_tc_bitmap, tc_bitmap,
2601 		      ICE_MAX_TRAFFIC_CLASS);
2602 	return ICE_SUCCESS;
2603 }
2604 
2605 /**
2606  * ice_sched_add_agg_cfg - create an aggregator node
2607  * @pi: port information structure
2608  * @agg_id: aggregator ID
2609  * @tc: TC number
2610  *
2611  * This function creates an aggregator node and intermediate nodes if required
2612  * for the given TC
2613  */
2614 static enum ice_status
2615 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2616 {
2617 	struct ice_sched_node *parent, *agg_node, *tc_node;
2618 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2619 	enum ice_status status = ICE_SUCCESS;
2620 	struct ice_hw *hw = pi->hw;
2621 	u32 first_node_teid;
2622 	u16 num_nodes_added;
2623 	u8 i, aggl;
2624 
2625 	tc_node = ice_sched_get_tc_node(pi, tc);
2626 	if (!tc_node)
2627 		return ICE_ERR_CFG;
2628 
2629 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2630 	/* Does Agg node already exist ? */
2631 	if (agg_node)
2632 		return status;
2633 
2634 	aggl = ice_sched_get_agg_layer(hw);
2635 
2636 	/* need one node in Agg layer */
2637 	num_nodes[aggl] = 1;
2638 
2639 	/* Check whether the intermediate nodes have space to add the
2640 	 * new aggregator. If they are full, then SW needs to allocate a new
2641 	 * intermediate node on those layers
2642 	 */
2643 	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2644 		parent = ice_sched_get_first_node(pi, tc_node, i);
2645 
2646 		/* scan all the siblings */
2647 		while (parent) {
2648 			if (parent->num_children < hw->max_children[i])
2649 				break;
2650 			parent = parent->sibling;
2651 		}
2652 
2653 		/* all the nodes are full, reserve one for this layer */
2654 		if (!parent)
2655 			num_nodes[i]++;
2656 	}
2657 
2658 	/* add the aggregator node */
2659 	parent = tc_node;
2660 	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2661 		if (!parent)
2662 			return ICE_ERR_CFG;
2663 
2664 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2665 						      num_nodes[i],
2666 						      &first_node_teid,
2667 						      &num_nodes_added);
2668 		if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
2669 			return ICE_ERR_CFG;
2670 
2671 		/* The newly added node can be a new parent for the next
2672 		 * layer nodes
2673 		 */
2674 		if (num_nodes_added) {
2675 			parent = ice_sched_find_node_by_teid(tc_node,
2676 							     first_node_teid);
2677 			/* register aggregator ID with the aggregator node */
2678 			if (parent && i == aggl)
2679 				parent->agg_id = agg_id;
2680 		} else {
2681 			parent = parent->children[0];
2682 		}
2683 	}
2684 
2685 	return ICE_SUCCESS;
2686 }
2687 
2688 /**
2689  * ice_sched_cfg_agg - configure aggregator node
2690  * @pi: port information structure
2691  * @agg_id: aggregator ID
2692  * @agg_type: aggregator type queue, VSI, or aggregator group
2693  * @tc_bitmap: bits TC bitmap
2694  *
2695  * It registers a unique aggregator node into scheduler services. It
2696  * allows a user to register with a unique ID to track it's resources.
2697  * The aggregator type determines if this is a queue group, VSI group
2698  * or aggregator group. It then creates the aggregator node(s) for requested
2699  * TC(s) or removes an existing aggregator node including its configuration
2700  * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2701  * resources and remove aggregator ID.
2702  * This function needs to be called with scheduler lock held.
2703  */
2704 static enum ice_status
2705 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2706 		  enum ice_agg_type agg_type, ice_bitmap_t *tc_bitmap)
2707 {
2708 	struct ice_sched_agg_info *agg_info;
2709 	enum ice_status status = ICE_SUCCESS;
2710 	struct ice_hw *hw = pi->hw;
2711 	u8 tc;
2712 
2713 	agg_info = ice_get_agg_info(hw, agg_id);
2714 	if (!agg_info) {
2715 		/* Create new entry for new aggregator ID */
2716 		agg_info = (struct ice_sched_agg_info *)
2717 			ice_malloc(hw, sizeof(*agg_info));
2718 		if (!agg_info)
2719 			return ICE_ERR_NO_MEMORY;
2720 
2721 		agg_info->agg_id = agg_id;
2722 		agg_info->agg_type = agg_type;
2723 		agg_info->tc_bitmap[0] = 0;
2724 
2725 		/* Initialize the aggregator VSI list head */
2726 		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2727 
2728 		/* Add new entry in aggregator list */
2729 		LIST_ADD(&agg_info->list_entry, &hw->agg_list);
2730 	}
2731 	/* Create aggregator node(s) for requested TC(s) */
2732 	ice_for_each_traffic_class(tc) {
2733 		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2734 			/* Delete aggregator cfg TC if it exists previously */
2735 			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2736 			if (status)
2737 				break;
2738 			continue;
2739 		}
2740 
2741 		/* Check if aggregator node for TC already exists */
2742 		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2743 			continue;
2744 
2745 		/* Create new aggregator node for TC */
2746 		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2747 		if (status)
2748 			break;
2749 
2750 		/* Save aggregator node's TC information */
2751 		ice_set_bit(tc, agg_info->tc_bitmap);
2752 	}
2753 
2754 	return status;
2755 }
2756 
2757 /**
2758  * ice_cfg_agg - config aggregator node
2759  * @pi: port information structure
2760  * @agg_id: aggregator ID
2761  * @agg_type: aggregator type queue, VSI, or aggregator group
2762  * @tc_bitmap: bits TC bitmap
2763  *
2764  * This function configures aggregator node(s).
2765  */
2766 enum ice_status
2767 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2768 	    u8 tc_bitmap)
2769 {
2770 	ice_bitmap_t bitmap = tc_bitmap;
2771 	enum ice_status status;
2772 
2773 	ice_acquire_lock(&pi->sched_lock);
2774 	status = ice_sched_cfg_agg(pi, agg_id, agg_type,
2775 				   (ice_bitmap_t *)&bitmap);
2776 	if (!status)
2777 		status = ice_save_agg_tc_bitmap(pi, agg_id,
2778 						(ice_bitmap_t *)&bitmap);
2779 	ice_release_lock(&pi->sched_lock);
2780 	return status;
2781 }
2782 
2783 /**
2784  * ice_get_agg_vsi_info - get the aggregator ID
2785  * @agg_info: aggregator info
2786  * @vsi_handle: software VSI handle
2787  *
2788  * The function returns aggregator VSI info based on VSI handle. This function
2789  * needs to be called with scheduler lock held.
2790  */
2791 static struct ice_sched_agg_vsi_info *
2792 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2793 {
2794 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2795 
2796 	LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
2797 			    ice_sched_agg_vsi_info, list_entry)
2798 		if (agg_vsi_info->vsi_handle == vsi_handle)
2799 			return agg_vsi_info;
2800 
2801 	return NULL;
2802 }
2803 
2804 /**
2805  * ice_get_vsi_agg_info - get the aggregator info of VSI
2806  * @hw: pointer to the hardware structure
2807  * @vsi_handle: Sw VSI handle
2808  *
2809  * The function returns aggregator info of VSI represented via vsi_handle. The
2810  * VSI has in this case a different aggregator than the default one. This
2811  * function needs to be called with scheduler lock held.
2812  */
2813 static struct ice_sched_agg_info *
2814 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2815 {
2816 	struct ice_sched_agg_info *agg_info;
2817 
2818 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
2819 			    list_entry) {
2820 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2821 
2822 		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2823 		if (agg_vsi_info)
2824 			return agg_info;
2825 	}
2826 	return NULL;
2827 }
2828 
2829 /**
2830  * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2831  * @pi: port information structure
2832  * @agg_id: aggregator ID
2833  * @vsi_handle: software VSI handle
2834  * @tc_bitmap: TC bitmap of enabled TC(s)
2835  *
2836  * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2837  * lock held.
2838  */
2839 static enum ice_status
2840 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2841 			   ice_bitmap_t *tc_bitmap)
2842 {
2843 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2844 	struct ice_sched_agg_info *agg_info;
2845 
2846 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2847 	if (!agg_info)
2848 		return ICE_ERR_PARAM;
2849 	/* check if entry already exist */
2850 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2851 	if (!agg_vsi_info)
2852 		return ICE_ERR_PARAM;
2853 	ice_cp_bitmap(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2854 		      ICE_MAX_TRAFFIC_CLASS);
2855 	return ICE_SUCCESS;
2856 }
2857 
2858 /**
2859  * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2860  * @pi: port information structure
2861  * @agg_id: aggregator ID
2862  * @vsi_handle: software VSI handle
2863  * @tc_bitmap: TC bitmap of enabled TC(s)
2864  *
2865  * This function moves VSI to a new or default aggregator node. If VSI is
2866  * already associated to the aggregator node then no operation is performed on
2867  * the tree. This function needs to be called with scheduler lock held.
2868  */
2869 static enum ice_status
2870 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2871 			   u16 vsi_handle, ice_bitmap_t *tc_bitmap)
2872 {
2873 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2874 	struct ice_sched_agg_info *agg_info;
2875 	enum ice_status status = ICE_SUCCESS;
2876 	struct ice_hw *hw = pi->hw;
2877 	u8 tc;
2878 
2879 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2880 		return ICE_ERR_PARAM;
2881 	agg_info = ice_get_agg_info(hw, agg_id);
2882 	if (!agg_info)
2883 		return ICE_ERR_PARAM;
2884 	/* check if entry already exist */
2885 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2886 	if (!agg_vsi_info) {
2887 		/* Create new entry for VSI under aggregator list */
2888 		agg_vsi_info = (struct ice_sched_agg_vsi_info *)
2889 			ice_malloc(hw, sizeof(*agg_vsi_info));
2890 		if (!agg_vsi_info)
2891 			return ICE_ERR_PARAM;
2892 
2893 		/* add VSI ID into the aggregator list */
2894 		agg_vsi_info->vsi_handle = vsi_handle;
2895 		LIST_ADD(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2896 	}
2897 	/* Move VSI node to new aggregator node for requested TC(s) */
2898 	ice_for_each_traffic_class(tc) {
2899 		if (!ice_is_tc_ena(*tc_bitmap, tc))
2900 			continue;
2901 
2902 		/* Move VSI to new aggregator */
2903 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2904 		if (status)
2905 			break;
2906 
2907 		ice_set_bit(tc, agg_vsi_info->tc_bitmap);
2908 	}
2909 	return status;
2910 }
2911 
2912 /**
2913  * ice_sched_rm_unused_rl_prof - remove unused RL profile
2914  * @hw: pointer to the hardware structure
2915  *
2916  * This function removes unused rate limit profiles from the HW and
2917  * SW DB. The caller needs to hold scheduler lock.
2918  */
2919 static void ice_sched_rm_unused_rl_prof(struct ice_hw *hw)
2920 {
2921 	u16 ln;
2922 
2923 	for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
2924 		struct ice_aqc_rl_profile_info *rl_prof_elem;
2925 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
2926 
2927 		LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
2928 					 &hw->rl_prof_list[ln],
2929 					 ice_aqc_rl_profile_info, list_entry) {
2930 			if (!ice_sched_del_rl_profile(hw, rl_prof_elem))
2931 				ice_debug(hw, ICE_DBG_SCHED, "Removed rl profile\n");
2932 		}
2933 	}
2934 }
2935 
2936 /**
2937  * ice_sched_update_elem - update element
2938  * @hw: pointer to the HW struct
2939  * @node: pointer to node
2940  * @info: node info to update
2941  *
2942  * Update the HW DB, and local SW DB of node. Update the scheduling
2943  * parameters of node from argument info data buffer (Info->data buf) and
2944  * returns success or error on config sched element failure. The caller
2945  * needs to hold scheduler lock.
2946  */
2947 static enum ice_status
2948 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2949 		      struct ice_aqc_txsched_elem_data *info)
2950 {
2951 	struct ice_aqc_txsched_elem_data buf;
2952 	enum ice_status status;
2953 	u16 elem_cfgd = 0;
2954 	u16 num_elems = 1;
2955 
2956 	buf = *info;
2957 	/* Parent TEID is reserved field in this aq call */
2958 	buf.parent_teid = 0;
2959 	/* Element type is reserved field in this aq call */
2960 	buf.data.elem_type = 0;
2961 	/* Flags is reserved field in this aq call */
2962 	buf.data.flags = 0;
2963 
2964 	/* Update HW DB */
2965 	/* Configure element node */
2966 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2967 					&elem_cfgd, NULL);
2968 	if (status || elem_cfgd != num_elems) {
2969 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2970 		return ICE_ERR_CFG;
2971 	}
2972 
2973 	/* Config success case */
2974 	/* Now update local SW DB */
2975 	/* Only copy the data portion of info buffer */
2976 	node->info.data = info->data;
2977 	return status;
2978 }
2979 
2980 /**
2981  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2982  * @hw: pointer to the HW struct
2983  * @node: sched node to configure
2984  * @rl_type: rate limit type CIR, EIR, or shared
2985  * @bw_alloc: BW weight/allocation
2986  *
2987  * This function configures node element's BW allocation.
2988  */
2989 static enum ice_status
2990 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2991 			    enum ice_rl_type rl_type, u16 bw_alloc)
2992 {
2993 	struct ice_aqc_txsched_elem_data buf;
2994 	struct ice_aqc_txsched_elem *data;
2995 	enum ice_status status;
2996 
2997 	buf = node->info;
2998 	data = &buf.data;
2999 	if (rl_type == ICE_MIN_BW) {
3000 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3001 		data->cir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
3002 	} else if (rl_type == ICE_MAX_BW) {
3003 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3004 		data->eir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
3005 	} else {
3006 		return ICE_ERR_PARAM;
3007 	}
3008 
3009 	/* Configure element */
3010 	status = ice_sched_update_elem(hw, node, &buf);
3011 	return status;
3012 }
3013 
3014 /**
3015  * ice_move_vsi_to_agg - moves VSI to new or default aggregator
3016  * @pi: port information structure
3017  * @agg_id: aggregator ID
3018  * @vsi_handle: software VSI handle
3019  * @tc_bitmap: TC bitmap of enabled TC(s)
3020  *
3021  * Move or associate VSI to a new or default aggregator node.
3022  */
3023 enum ice_status
3024 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
3025 		    u8 tc_bitmap)
3026 {
3027 	ice_bitmap_t bitmap = tc_bitmap;
3028 	enum ice_status status;
3029 
3030 	ice_acquire_lock(&pi->sched_lock);
3031 	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
3032 					    (ice_bitmap_t *)&bitmap);
3033 	if (!status)
3034 		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
3035 						    (ice_bitmap_t *)&bitmap);
3036 	ice_release_lock(&pi->sched_lock);
3037 	return status;
3038 }
3039 
3040 /**
3041  * ice_rm_agg_cfg - remove aggregator configuration
3042  * @pi: port information structure
3043  * @agg_id: aggregator ID
3044  *
3045  * This function removes aggregator reference to VSI and delete aggregator ID
3046  * info. It removes the aggregator configuration completely.
3047  */
3048 enum ice_status ice_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id)
3049 {
3050 	struct ice_sched_agg_info *agg_info;
3051 	enum ice_status status = ICE_SUCCESS;
3052 	u8 tc;
3053 
3054 	ice_acquire_lock(&pi->sched_lock);
3055 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3056 	if (!agg_info) {
3057 		status = ICE_ERR_DOES_NOT_EXIST;
3058 		goto exit_ice_rm_agg_cfg;
3059 	}
3060 
3061 	ice_for_each_traffic_class(tc) {
3062 		status = ice_rm_agg_cfg_tc(pi, agg_info, tc, true);
3063 		if (status)
3064 			goto exit_ice_rm_agg_cfg;
3065 	}
3066 
3067 	if (ice_is_any_bit_set(agg_info->tc_bitmap, ICE_MAX_TRAFFIC_CLASS)) {
3068 		status = ICE_ERR_IN_USE;
3069 		goto exit_ice_rm_agg_cfg;
3070 	}
3071 
3072 	/* Safe to delete entry now */
3073 	LIST_DEL(&agg_info->list_entry);
3074 	ice_free(pi->hw, agg_info);
3075 
3076 	/* Remove unused RL profile IDs from HW and SW DB */
3077 	ice_sched_rm_unused_rl_prof(pi->hw);
3078 
3079 exit_ice_rm_agg_cfg:
3080 	ice_release_lock(&pi->sched_lock);
3081 	return status;
3082 }
3083 
3084 /**
3085  * ice_set_clear_cir_bw_alloc - set or clear CIR BW alloc information
3086  * @bw_t_info: bandwidth type information structure
3087  * @bw_alloc: Bandwidth allocation information
3088  *
3089  * Save or clear CIR BW alloc information (bw_alloc) in the passed param
3090  * bw_t_info.
3091  */
3092 static void
3093 ice_set_clear_cir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
3094 {
3095 	bw_t_info->cir_bw.bw_alloc = bw_alloc;
3096 	if (bw_t_info->cir_bw.bw_alloc)
3097 		ice_set_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
3098 	else
3099 		ice_clear_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
3100 }
3101 
3102 /**
3103  * ice_set_clear_eir_bw_alloc - set or clear EIR BW alloc information
3104  * @bw_t_info: bandwidth type information structure
3105  * @bw_alloc: Bandwidth allocation information
3106  *
3107  * Save or clear EIR BW alloc information (bw_alloc) in the passed param
3108  * bw_t_info.
3109  */
3110 static void
3111 ice_set_clear_eir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
3112 {
3113 	bw_t_info->eir_bw.bw_alloc = bw_alloc;
3114 	if (bw_t_info->eir_bw.bw_alloc)
3115 		ice_set_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
3116 	else
3117 		ice_clear_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
3118 }
3119 
3120 /**
3121  * ice_sched_save_vsi_bw_alloc - save VSI node's BW alloc information
3122  * @pi: port information structure
3123  * @vsi_handle: sw VSI handle
3124  * @tc: traffic class
3125  * @rl_type: rate limit type min or max
3126  * @bw_alloc: Bandwidth allocation information
3127  *
3128  * Save BW alloc information of VSI type node for post replay use.
3129  */
3130 static enum ice_status
3131 ice_sched_save_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3132 			    enum ice_rl_type rl_type, u16 bw_alloc)
3133 {
3134 	struct ice_vsi_ctx *vsi_ctx;
3135 
3136 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3137 		return ICE_ERR_PARAM;
3138 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3139 	if (!vsi_ctx)
3140 		return ICE_ERR_PARAM;
3141 	switch (rl_type) {
3142 	case ICE_MIN_BW:
3143 		ice_set_clear_cir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
3144 					   bw_alloc);
3145 		break;
3146 	case ICE_MAX_BW:
3147 		ice_set_clear_eir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
3148 					   bw_alloc);
3149 		break;
3150 	default:
3151 		return ICE_ERR_PARAM;
3152 	}
3153 	return ICE_SUCCESS;
3154 }
3155 
3156 /**
3157  * ice_set_clear_cir_bw - set or clear CIR BW
3158  * @bw_t_info: bandwidth type information structure
3159  * @bw: bandwidth in Kbps - Kilo bits per sec
3160  *
3161  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
3162  */
3163 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3164 {
3165 	if (bw == ICE_SCHED_DFLT_BW) {
3166 		ice_clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3167 		bw_t_info->cir_bw.bw = 0;
3168 	} else {
3169 		/* Save type of BW information */
3170 		ice_set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3171 		bw_t_info->cir_bw.bw = bw;
3172 	}
3173 }
3174 
3175 /**
3176  * ice_set_clear_eir_bw - set or clear EIR BW
3177  * @bw_t_info: bandwidth type information structure
3178  * @bw: bandwidth in Kbps - Kilo bits per sec
3179  *
3180  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
3181  */
3182 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3183 {
3184 	if (bw == ICE_SCHED_DFLT_BW) {
3185 		ice_clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3186 		bw_t_info->eir_bw.bw = 0;
3187 	} else {
3188 		/* save EIR BW information */
3189 		ice_set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3190 		bw_t_info->eir_bw.bw = bw;
3191 	}
3192 }
3193 
3194 /**
3195  * ice_set_clear_shared_bw - set or clear shared BW
3196  * @bw_t_info: bandwidth type information structure
3197  * @bw: bandwidth in Kbps - Kilo bits per sec
3198  *
3199  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3200  */
3201 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3202 {
3203 	if (bw == ICE_SCHED_DFLT_BW) {
3204 		ice_clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3205 		bw_t_info->shared_bw = 0;
3206 	} else {
3207 		/* save shared BW information */
3208 		ice_set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3209 		bw_t_info->shared_bw = bw;
3210 	}
3211 }
3212 
3213 /**
3214  * ice_sched_save_vsi_bw - save VSI node's BW information
3215  * @pi: port information structure
3216  * @vsi_handle: sw VSI handle
3217  * @tc: traffic class
3218  * @rl_type: rate limit type min, max, or shared
3219  * @bw: bandwidth in Kbps - Kilo bits per sec
3220  *
3221  * Save BW information of VSI type node for post replay use.
3222  */
3223 static enum ice_status
3224 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3225 		      enum ice_rl_type rl_type, u32 bw)
3226 {
3227 	struct ice_vsi_ctx *vsi_ctx;
3228 
3229 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3230 		return ICE_ERR_PARAM;
3231 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3232 	if (!vsi_ctx)
3233 		return ICE_ERR_PARAM;
3234 	switch (rl_type) {
3235 	case ICE_MIN_BW:
3236 		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3237 		break;
3238 	case ICE_MAX_BW:
3239 		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3240 		break;
3241 	case ICE_SHARED_BW:
3242 		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3243 		break;
3244 	default:
3245 		return ICE_ERR_PARAM;
3246 	}
3247 	return ICE_SUCCESS;
3248 }
3249 
3250 /**
3251  * ice_set_clear_prio - set or clear priority information
3252  * @bw_t_info: bandwidth type information structure
3253  * @prio: priority to save
3254  *
3255  * Save or clear priority (prio) in the passed param bw_t_info.
3256  */
3257 static void ice_set_clear_prio(struct ice_bw_type_info *bw_t_info, u8 prio)
3258 {
3259 	bw_t_info->generic = prio;
3260 	if (bw_t_info->generic)
3261 		ice_set_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
3262 	else
3263 		ice_clear_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
3264 }
3265 
3266 /**
3267  * ice_sched_save_vsi_prio - save VSI node's priority information
3268  * @pi: port information structure
3269  * @vsi_handle: Software VSI handle
3270  * @tc: traffic class
3271  * @prio: priority to save
3272  *
3273  * Save priority information of VSI type node for post replay use.
3274  */
3275 static enum ice_status
3276 ice_sched_save_vsi_prio(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3277 			u8 prio)
3278 {
3279 	struct ice_vsi_ctx *vsi_ctx;
3280 
3281 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3282 		return ICE_ERR_PARAM;
3283 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3284 	if (!vsi_ctx)
3285 		return ICE_ERR_PARAM;
3286 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
3287 		return ICE_ERR_PARAM;
3288 	ice_set_clear_prio(&vsi_ctx->sched.bw_t_info[tc], prio);
3289 	return ICE_SUCCESS;
3290 }
3291 
3292 /**
3293  * ice_sched_save_agg_bw_alloc - save aggregator node's BW alloc information
3294  * @pi: port information structure
3295  * @agg_id: node aggregator ID
3296  * @tc: traffic class
3297  * @rl_type: rate limit type min or max
3298  * @bw_alloc: bandwidth alloc information
3299  *
3300  * Save BW alloc information of AGG type node for post replay use.
3301  */
3302 static enum ice_status
3303 ice_sched_save_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3304 			    enum ice_rl_type rl_type, u16 bw_alloc)
3305 {
3306 	struct ice_sched_agg_info *agg_info;
3307 
3308 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3309 	if (!agg_info)
3310 		return ICE_ERR_PARAM;
3311 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
3312 		return ICE_ERR_PARAM;
3313 	switch (rl_type) {
3314 	case ICE_MIN_BW:
3315 		ice_set_clear_cir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
3316 		break;
3317 	case ICE_MAX_BW:
3318 		ice_set_clear_eir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
3319 		break;
3320 	default:
3321 		return ICE_ERR_PARAM;
3322 	}
3323 	return ICE_SUCCESS;
3324 }
3325 
3326 /**
3327  * ice_sched_save_agg_bw - save aggregator node's BW information
3328  * @pi: port information structure
3329  * @agg_id: node aggregator ID
3330  * @tc: traffic class
3331  * @rl_type: rate limit type min, max, or shared
3332  * @bw: bandwidth in Kbps - Kilo bits per sec
3333  *
3334  * Save BW information of AGG type node for post replay use.
3335  */
3336 static enum ice_status
3337 ice_sched_save_agg_bw(struct ice_port_info *pi, u32 agg_id, u8 tc,
3338 		      enum ice_rl_type rl_type, u32 bw)
3339 {
3340 	struct ice_sched_agg_info *agg_info;
3341 
3342 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3343 	if (!agg_info)
3344 		return ICE_ERR_PARAM;
3345 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
3346 		return ICE_ERR_PARAM;
3347 	switch (rl_type) {
3348 	case ICE_MIN_BW:
3349 		ice_set_clear_cir_bw(&agg_info->bw_t_info[tc], bw);
3350 		break;
3351 	case ICE_MAX_BW:
3352 		ice_set_clear_eir_bw(&agg_info->bw_t_info[tc], bw);
3353 		break;
3354 	case ICE_SHARED_BW:
3355 		ice_set_clear_shared_bw(&agg_info->bw_t_info[tc], bw);
3356 		break;
3357 	default:
3358 		return ICE_ERR_PARAM;
3359 	}
3360 	return ICE_SUCCESS;
3361 }
3362 
3363 /**
3364  * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3365  * @pi: port information structure
3366  * @vsi_handle: software VSI handle
3367  * @tc: traffic class
3368  * @rl_type: min or max
3369  * @bw: bandwidth in Kbps
3370  *
3371  * This function configures BW limit of VSI scheduling node based on TC
3372  * information.
3373  */
3374 enum ice_status
3375 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3376 			  enum ice_rl_type rl_type, u32 bw)
3377 {
3378 	enum ice_status status;
3379 
3380 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3381 						  ICE_AGG_TYPE_VSI,
3382 						  tc, rl_type, bw);
3383 	if (!status) {
3384 		ice_acquire_lock(&pi->sched_lock);
3385 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
3386 		ice_release_lock(&pi->sched_lock);
3387 	}
3388 	return status;
3389 }
3390 
3391 /**
3392  * ice_cfg_dflt_vsi_bw_lmt_per_tc - configure default VSI BW limit per TC
3393  * @pi: port information structure
3394  * @vsi_handle: software VSI handle
3395  * @tc: traffic class
3396  * @rl_type: min or max
3397  *
3398  * This function configures default BW limit of VSI scheduling node based on TC
3399  * information.
3400  */
3401 enum ice_status
3402 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3403 			       enum ice_rl_type rl_type)
3404 {
3405 	enum ice_status status;
3406 
3407 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3408 						  ICE_AGG_TYPE_VSI,
3409 						  tc, rl_type,
3410 						  ICE_SCHED_DFLT_BW);
3411 	if (!status) {
3412 		ice_acquire_lock(&pi->sched_lock);
3413 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
3414 					       ICE_SCHED_DFLT_BW);
3415 		ice_release_lock(&pi->sched_lock);
3416 	}
3417 	return status;
3418 }
3419 
3420 /**
3421  * ice_cfg_agg_bw_lmt_per_tc - configure aggregator BW limit per TC
3422  * @pi: port information structure
3423  * @agg_id: aggregator ID
3424  * @tc: traffic class
3425  * @rl_type: min or max
3426  * @bw: bandwidth in Kbps
3427  *
3428  * This function applies BW limit to aggregator scheduling node based on TC
3429  * information.
3430  */
3431 enum ice_status
3432 ice_cfg_agg_bw_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3433 			  enum ice_rl_type rl_type, u32 bw)
3434 {
3435 	enum ice_status status;
3436 
3437 	status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
3438 						  tc, rl_type, bw);
3439 	if (!status) {
3440 		ice_acquire_lock(&pi->sched_lock);
3441 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
3442 		ice_release_lock(&pi->sched_lock);
3443 	}
3444 	return status;
3445 }
3446 
3447 /**
3448  * ice_cfg_agg_bw_dflt_lmt_per_tc - configure aggregator BW default limit per TC
3449  * @pi: port information structure
3450  * @agg_id: aggregator ID
3451  * @tc: traffic class
3452  * @rl_type: min or max
3453  *
3454  * This function applies default BW limit to aggregator scheduling node based
3455  * on TC information.
3456  */
3457 enum ice_status
3458 ice_cfg_agg_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3459 			       enum ice_rl_type rl_type)
3460 {
3461 	enum ice_status status;
3462 
3463 	status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
3464 						  tc, rl_type,
3465 						  ICE_SCHED_DFLT_BW);
3466 	if (!status) {
3467 		ice_acquire_lock(&pi->sched_lock);
3468 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type,
3469 					       ICE_SCHED_DFLT_BW);
3470 		ice_release_lock(&pi->sched_lock);
3471 	}
3472 	return status;
3473 }
3474 
3475 /**
3476  * ice_cfg_vsi_bw_shared_lmt - configure VSI BW shared limit
3477  * @pi: port information structure
3478  * @vsi_handle: software VSI handle
3479  * @min_bw: minimum bandwidth in Kbps
3480  * @max_bw: maximum bandwidth in Kbps
3481  * @shared_bw: shared bandwidth in Kbps
3482  *
3483  * Configure shared rate limiter(SRL) of all VSI type nodes across all traffic
3484  * classes for VSI matching handle.
3485  */
3486 enum ice_status
3487 ice_cfg_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle, u32 min_bw,
3488 			  u32 max_bw, u32 shared_bw)
3489 {
3490 	return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle, min_bw, max_bw,
3491 					       shared_bw);
3492 }
3493 
3494 /**
3495  * ice_cfg_vsi_bw_no_shared_lmt - configure VSI BW for no shared limiter
3496  * @pi: port information structure
3497  * @vsi_handle: software VSI handle
3498  *
3499  * This function removes the shared rate limiter(SRL) of all VSI type nodes
3500  * across all traffic classes for VSI matching handle.
3501  */
3502 enum ice_status
3503 ice_cfg_vsi_bw_no_shared_lmt(struct ice_port_info *pi, u16 vsi_handle)
3504 {
3505 	return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle,
3506 					       ICE_SCHED_DFLT_BW,
3507 					       ICE_SCHED_DFLT_BW,
3508 					       ICE_SCHED_DFLT_BW);
3509 }
3510 
3511 /**
3512  * ice_cfg_agg_bw_shared_lmt - configure aggregator BW shared limit
3513  * @pi: port information structure
3514  * @agg_id: aggregator ID
3515  * @min_bw: minimum bandwidth in Kbps
3516  * @max_bw: maximum bandwidth in Kbps
3517  * @shared_bw: shared bandwidth in Kbps
3518  *
3519  * This function configures the shared rate limiter(SRL) of all aggregator type
3520  * nodes across all traffic classes for aggregator matching agg_id.
3521  */
3522 enum ice_status
3523 ice_cfg_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id, u32 min_bw,
3524 			  u32 max_bw, u32 shared_bw)
3525 {
3526 	return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, min_bw, max_bw,
3527 					       shared_bw);
3528 }
3529 
3530 /**
3531  * ice_cfg_agg_bw_no_shared_lmt - configure aggregator BW for no shared limiter
3532  * @pi: port information structure
3533  * @agg_id: aggregator ID
3534  *
3535  * This function removes the shared rate limiter(SRL) of all aggregator type
3536  * nodes across all traffic classes for aggregator matching agg_id.
3537  */
3538 enum ice_status
3539 ice_cfg_agg_bw_no_shared_lmt(struct ice_port_info *pi, u32 agg_id)
3540 {
3541 	return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, ICE_SCHED_DFLT_BW,
3542 					       ICE_SCHED_DFLT_BW,
3543 					       ICE_SCHED_DFLT_BW);
3544 }
3545 
3546 /**
3547  * ice_cfg_agg_bw_shared_lmt_per_tc - configure aggregator BW shared limit per tc
3548  * @pi: port information structure
3549  * @agg_id: aggregator ID
3550  * @tc: traffic class
3551  * @min_bw: minimum bandwidth in Kbps
3552  * @max_bw: maximum bandwidth in Kbps
3553  * @shared_bw: shared bandwidth in Kbps
3554  *
3555  * This function configures the shared rate limiter(SRL) of all aggregator type
3556  * nodes across all traffic classes for aggregator matching agg_id.
3557  */
3558 enum ice_status
3559 ice_cfg_agg_bw_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3560 				 u32 min_bw, u32 max_bw, u32 shared_bw)
3561 {
3562 	return ice_sched_set_agg_bw_shared_lmt_per_tc(pi, agg_id, tc, min_bw,
3563 						      max_bw, shared_bw);
3564 }
3565 
3566 /**
3567  * ice_cfg_agg_bw_shared_lmt_per_tc - configure aggregator BW shared limit per tc
3568  * @pi: port information structure
3569  * @agg_id: aggregator ID
3570  * @tc: traffic class
3571  *
3572  * This function configures the shared rate limiter(SRL) of all aggregator type
3573  * nodes across all traffic classes for aggregator matching agg_id.
3574  */
3575 enum ice_status
3576 ice_cfg_agg_bw_no_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc)
3577 {
3578 	return ice_sched_set_agg_bw_shared_lmt_per_tc(pi, agg_id, tc,
3579 						      ICE_SCHED_DFLT_BW,
3580 						      ICE_SCHED_DFLT_BW,
3581 						      ICE_SCHED_DFLT_BW);
3582 }
3583 
3584 /**
3585  * ice_config_vsi_queue_priority - config VSI queue priority of node
3586  * @pi: port information structure
3587  * @num_qs: number of VSI queues
3588  * @q_ids: queue IDs array
3589  * @q_prio: queue priority array
3590  *
3591  * This function configures the queue node priority (Sibling Priority) of the
3592  * passed in VSI's queue(s) for a given traffic class (TC).
3593  */
3594 enum ice_status
3595 ice_cfg_vsi_q_priority(struct ice_port_info *pi, u16 num_qs, u32 *q_ids,
3596 		       u8 *q_prio)
3597 {
3598 	enum ice_status status = ICE_ERR_PARAM;
3599 	u16 i;
3600 
3601 	ice_acquire_lock(&pi->sched_lock);
3602 
3603 	for (i = 0; i < num_qs; i++) {
3604 		struct ice_sched_node *node;
3605 
3606 		node = ice_sched_find_node_by_teid(pi->root, q_ids[i]);
3607 		if (!node || node->info.data.elem_type !=
3608 		    ICE_AQC_ELEM_TYPE_LEAF) {
3609 			status = ICE_ERR_PARAM;
3610 			break;
3611 		}
3612 		/* Configure Priority */
3613 		status = ice_sched_cfg_sibl_node_prio(pi, node, q_prio[i]);
3614 		if (status)
3615 			break;
3616 	}
3617 
3618 	ice_release_lock(&pi->sched_lock);
3619 	return status;
3620 }
3621 
3622 /**
3623  * ice_cfg_agg_vsi_priority_per_tc - config aggregator's VSI priority per TC
3624  * @pi: port information structure
3625  * @agg_id: Aggregator ID
3626  * @num_vsis: number of VSI(s)
3627  * @vsi_handle_arr: array of software VSI handles
3628  * @node_prio: pointer to node priority
3629  * @tc: traffic class
3630  *
3631  * This function configures the node priority (Sibling Priority) of the
3632  * passed in VSI's for a given traffic class (TC) of an Aggregator ID.
3633  */
3634 enum ice_status
3635 ice_cfg_agg_vsi_priority_per_tc(struct ice_port_info *pi, u32 agg_id,
3636 				u16 num_vsis, u16 *vsi_handle_arr,
3637 				u8 *node_prio, u8 tc)
3638 {
3639 	struct ice_sched_agg_vsi_info *agg_vsi_info;
3640 	struct ice_sched_node *tc_node, *agg_node;
3641 	enum ice_status status = ICE_ERR_PARAM;
3642 	struct ice_sched_agg_info *agg_info;
3643 	bool agg_id_present = false;
3644 	struct ice_hw *hw = pi->hw;
3645 	u16 i;
3646 
3647 	ice_acquire_lock(&pi->sched_lock);
3648 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
3649 			    list_entry)
3650 		if (agg_info->agg_id == agg_id) {
3651 			agg_id_present = true;
3652 			break;
3653 		}
3654 	if (!agg_id_present)
3655 		goto exit_agg_priority_per_tc;
3656 
3657 	tc_node = ice_sched_get_tc_node(pi, tc);
3658 	if (!tc_node)
3659 		goto exit_agg_priority_per_tc;
3660 
3661 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
3662 	if (!agg_node)
3663 		goto exit_agg_priority_per_tc;
3664 
3665 	if (num_vsis > hw->max_children[agg_node->tx_sched_layer])
3666 		goto exit_agg_priority_per_tc;
3667 
3668 	for (i = 0; i < num_vsis; i++) {
3669 		struct ice_sched_node *vsi_node;
3670 		bool vsi_handle_valid = false;
3671 		u16 vsi_handle;
3672 
3673 		status = ICE_ERR_PARAM;
3674 		vsi_handle = vsi_handle_arr[i];
3675 		if (!ice_is_vsi_valid(hw, vsi_handle))
3676 			goto exit_agg_priority_per_tc;
3677 		/* Verify child nodes before applying settings */
3678 		LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
3679 				    ice_sched_agg_vsi_info, list_entry)
3680 			if (agg_vsi_info->vsi_handle == vsi_handle) {
3681 				/* cppcheck-suppress unreadVariable */
3682 				vsi_handle_valid = true;
3683 				break;
3684 			}
3685 
3686 		if (!vsi_handle_valid)
3687 			goto exit_agg_priority_per_tc;
3688 
3689 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
3690 		if (!vsi_node)
3691 			goto exit_agg_priority_per_tc;
3692 
3693 		if (ice_sched_find_node_in_subtree(hw, agg_node, vsi_node)) {
3694 			/* Configure Priority */
3695 			status = ice_sched_cfg_sibl_node_prio(pi, vsi_node,
3696 							      node_prio[i]);
3697 			if (status)
3698 				break;
3699 			status = ice_sched_save_vsi_prio(pi, vsi_handle, tc,
3700 							 node_prio[i]);
3701 			if (status)
3702 				break;
3703 		}
3704 	}
3705 
3706 exit_agg_priority_per_tc:
3707 	ice_release_lock(&pi->sched_lock);
3708 	return status;
3709 }
3710 
3711 /**
3712  * ice_cfg_vsi_bw_alloc - config VSI BW alloc per TC
3713  * @pi: port information structure
3714  * @vsi_handle: software VSI handle
3715  * @ena_tcmap: enabled TC map
3716  * @rl_type: Rate limit type CIR/EIR
3717  * @bw_alloc: Array of BW alloc
3718  *
3719  * This function configures the BW allocation of the passed in VSI's
3720  * node(s) for enabled traffic class.
3721  */
3722 enum ice_status
3723 ice_cfg_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 ena_tcmap,
3724 		     enum ice_rl_type rl_type, u8 *bw_alloc)
3725 {
3726 	enum ice_status status = ICE_SUCCESS;
3727 	u8 tc;
3728 
3729 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3730 		return ICE_ERR_PARAM;
3731 
3732 	ice_acquire_lock(&pi->sched_lock);
3733 
3734 	/* Return success if no nodes are present across TC */
3735 	ice_for_each_traffic_class(tc) {
3736 		struct ice_sched_node *tc_node, *vsi_node;
3737 
3738 		if (!ice_is_tc_ena(ena_tcmap, tc))
3739 			continue;
3740 
3741 		tc_node = ice_sched_get_tc_node(pi, tc);
3742 		if (!tc_node)
3743 			continue;
3744 
3745 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
3746 		if (!vsi_node)
3747 			continue;
3748 
3749 		status = ice_sched_cfg_node_bw_alloc(pi->hw, vsi_node, rl_type,
3750 						     bw_alloc[tc]);
3751 		if (status)
3752 			break;
3753 		status = ice_sched_save_vsi_bw_alloc(pi, vsi_handle, tc,
3754 						     rl_type, bw_alloc[tc]);
3755 		if (status)
3756 			break;
3757 	}
3758 
3759 	ice_release_lock(&pi->sched_lock);
3760 	return status;
3761 }
3762 
3763 /**
3764  * ice_cfg_agg_bw_alloc - config aggregator BW alloc
3765  * @pi: port information structure
3766  * @agg_id: aggregator ID
3767  * @ena_tcmap: enabled TC map
3768  * @rl_type: rate limit type CIR/EIR
3769  * @bw_alloc: array of BW alloc
3770  *
3771  * This function configures the BW allocation of passed in aggregator for
3772  * enabled traffic class(s).
3773  */
3774 enum ice_status
3775 ice_cfg_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 ena_tcmap,
3776 		     enum ice_rl_type rl_type, u8 *bw_alloc)
3777 {
3778 	struct ice_sched_agg_info *agg_info;
3779 	bool agg_id_present = false;
3780 	enum ice_status status = ICE_SUCCESS;
3781 	struct ice_hw *hw = pi->hw;
3782 	u8 tc;
3783 
3784 	ice_acquire_lock(&pi->sched_lock);
3785 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
3786 			    list_entry)
3787 		if (agg_info->agg_id == agg_id) {
3788 			agg_id_present = true;
3789 			break;
3790 		}
3791 	if (!agg_id_present) {
3792 		status = ICE_ERR_PARAM;
3793 		goto exit_cfg_agg_bw_alloc;
3794 	}
3795 
3796 	/* Return success if no nodes are present across TC */
3797 	ice_for_each_traffic_class(tc) {
3798 		struct ice_sched_node *tc_node, *agg_node;
3799 
3800 		if (!ice_is_tc_ena(ena_tcmap, tc))
3801 			continue;
3802 
3803 		tc_node = ice_sched_get_tc_node(pi, tc);
3804 		if (!tc_node)
3805 			continue;
3806 
3807 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
3808 		if (!agg_node)
3809 			continue;
3810 
3811 		status = ice_sched_cfg_node_bw_alloc(hw, agg_node, rl_type,
3812 						     bw_alloc[tc]);
3813 		if (status)
3814 			break;
3815 		status = ice_sched_save_agg_bw_alloc(pi, agg_id, tc, rl_type,
3816 						     bw_alloc[tc]);
3817 		if (status)
3818 			break;
3819 	}
3820 
3821 exit_cfg_agg_bw_alloc:
3822 	ice_release_lock(&pi->sched_lock);
3823 	return status;
3824 }
3825 
3826 /**
3827  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3828  * @hw: pointer to the HW struct
3829  * @bw: bandwidth in Kbps
3830  *
3831  * This function calculates the wakeup parameter of RL profile.
3832  */
3833 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3834 {
3835 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3836 	s32 wakeup_f_int;
3837 	u16 wakeup = 0;
3838 
3839 	/* Get the wakeup integer value */
3840 	bytes_per_sec = DIV_64BIT(((s64)bw * 1000), BITS_PER_BYTE);
3841 	wakeup_int = DIV_64BIT(hw->psm_clk_freq, bytes_per_sec);
3842 	if (wakeup_int > 63) {
3843 		wakeup = (u16)((1 << 15) | wakeup_int);
3844 	} else {
3845 		/* Calculate fraction value up to 4 decimals
3846 		 * Convert Integer value to a constant multiplier
3847 		 */
3848 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3849 		wakeup_a = DIV_64BIT((s64)ICE_RL_PROF_MULTIPLIER *
3850 				     hw->psm_clk_freq, bytes_per_sec);
3851 
3852 		/* Get Fraction value */
3853 		wakeup_f = wakeup_a - wakeup_b;
3854 
3855 		/* Round up the Fractional value via Ceil(Fractional value) */
3856 		if (wakeup_f > DIV_64BIT(ICE_RL_PROF_MULTIPLIER, 2))
3857 			wakeup_f += 1;
3858 
3859 		wakeup_f_int = (s32)DIV_64BIT(wakeup_f * ICE_RL_PROF_FRACTION,
3860 					      ICE_RL_PROF_MULTIPLIER);
3861 		wakeup |= (u16)(wakeup_int << 9);
3862 		wakeup |= (u16)(0x1ff & wakeup_f_int);
3863 	}
3864 
3865 	return wakeup;
3866 }
3867 
3868 /**
3869  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3870  * @hw: pointer to the HW struct
3871  * @bw: bandwidth in Kbps
3872  * @profile: profile parameters to return
3873  *
3874  * This function converts the BW to profile structure format.
3875  */
3876 static enum ice_status
3877 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3878 			   struct ice_aqc_rl_profile_elem *profile)
3879 {
3880 	enum ice_status status = ICE_ERR_PARAM;
3881 	s64 bytes_per_sec, ts_rate, mv_tmp;
3882 	bool found = false;
3883 	s32 encode = 0;
3884 	s64 mv = 0;
3885 	s32 i;
3886 
3887 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3888 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3889 		return status;
3890 
3891 	/* Bytes per second from Kbps */
3892 	bytes_per_sec = DIV_64BIT(((s64)bw * 1000), BITS_PER_BYTE);
3893 
3894 	/* encode is 6 bits but really useful are 5 bits */
3895 	for (i = 0; i < 64; i++) {
3896 		u64 pow_result = BIT_ULL(i);
3897 
3898 		ts_rate = DIV_64BIT((s64)hw->psm_clk_freq,
3899 				    pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3900 		if (ts_rate <= 0)
3901 			continue;
3902 
3903 		/* Multiplier value */
3904 		mv_tmp = DIV_64BIT(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3905 				   ts_rate);
3906 
3907 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3908 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3909 
3910 		/* First multiplier value greater than the given
3911 		 * accuracy bytes
3912 		 */
3913 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3914 			encode = i;
3915 			found = true;
3916 			break;
3917 		}
3918 	}
3919 	if (found) {
3920 		u16 wm;
3921 
3922 		wm = ice_sched_calc_wakeup(hw, bw);
3923 		profile->rl_multiply = CPU_TO_LE16(mv);
3924 		profile->wake_up_calc = CPU_TO_LE16(wm);
3925 		profile->rl_encode = CPU_TO_LE16(encode);
3926 		status = ICE_SUCCESS;
3927 	} else {
3928 		status = ICE_ERR_DOES_NOT_EXIST;
3929 	}
3930 
3931 	return status;
3932 }
3933 
3934 /**
3935  * ice_sched_add_rl_profile - add RL profile
3936  * @hw: pointer to the hardware structure
3937  * @rl_type: type of rate limit BW - min, max, or shared
3938  * @bw: bandwidth in Kbps - Kilo bits per sec
3939  * @layer_num: specifies in which layer to create profile
3940  *
3941  * This function first checks the existing list for corresponding BW
3942  * parameter. If it exists, it returns the associated profile otherwise
3943  * it creates a new rate limit profile for requested BW, and adds it to
3944  * the HW DB and local list. It returns the new profile or null on error.
3945  * The caller needs to hold the scheduler lock.
3946  */
3947 static struct ice_aqc_rl_profile_info *
3948 ice_sched_add_rl_profile(struct ice_hw *hw, enum ice_rl_type rl_type,
3949 			 u32 bw, u8 layer_num)
3950 {
3951 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3952 	u16 profiles_added = 0, num_profiles = 1;
3953 	struct ice_aqc_rl_profile_elem *buf;
3954 	enum ice_status status;
3955 	u8 profile_type;
3956 
3957 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3958 		return NULL;
3959 	switch (rl_type) {
3960 	case ICE_MIN_BW:
3961 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3962 		break;
3963 	case ICE_MAX_BW:
3964 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3965 		break;
3966 	case ICE_SHARED_BW:
3967 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3968 		break;
3969 	default:
3970 		return NULL;
3971 	}
3972 
3973 	if (!hw)
3974 		return NULL;
3975 	LIST_FOR_EACH_ENTRY(rl_prof_elem, &hw->rl_prof_list[layer_num],
3976 			    ice_aqc_rl_profile_info, list_entry)
3977 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3978 		    profile_type && rl_prof_elem->bw == bw)
3979 			/* Return existing profile ID info */
3980 			return rl_prof_elem;
3981 
3982 	/* Create new profile ID */
3983 	rl_prof_elem = (struct ice_aqc_rl_profile_info *)
3984 		ice_malloc(hw, sizeof(*rl_prof_elem));
3985 
3986 	if (!rl_prof_elem)
3987 		return NULL;
3988 
3989 	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3990 	if (status != ICE_SUCCESS)
3991 		goto exit_add_rl_prof;
3992 
3993 	rl_prof_elem->bw = bw;
3994 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
3995 	rl_prof_elem->profile.level = layer_num + 1;
3996 	rl_prof_elem->profile.flags = profile_type;
3997 	rl_prof_elem->profile.max_burst_size = CPU_TO_LE16(hw->max_burst_size);
3998 
3999 	/* Create new entry in HW DB */
4000 	buf = &rl_prof_elem->profile;
4001 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
4002 				       &profiles_added, NULL);
4003 	if (status || profiles_added != num_profiles)
4004 		goto exit_add_rl_prof;
4005 
4006 	/* Good entry - add in the list */
4007 	rl_prof_elem->prof_id_ref = 0;
4008 	LIST_ADD(&rl_prof_elem->list_entry, &hw->rl_prof_list[layer_num]);
4009 	return rl_prof_elem;
4010 
4011 exit_add_rl_prof:
4012 	ice_free(hw, rl_prof_elem);
4013 	return NULL;
4014 }
4015 
4016 /**
4017  * ice_sched_cfg_node_bw_lmt - configure node sched params
4018  * @hw: pointer to the HW struct
4019  * @node: sched node to configure
4020  * @rl_type: rate limit type CIR, EIR, or shared
4021  * @rl_prof_id: rate limit profile ID
4022  *
4023  * This function configures node element's BW limit.
4024  */
4025 static enum ice_status
4026 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
4027 			  enum ice_rl_type rl_type, u16 rl_prof_id)
4028 {
4029 	struct ice_aqc_txsched_elem_data buf;
4030 	struct ice_aqc_txsched_elem *data;
4031 
4032 	buf = node->info;
4033 	data = &buf.data;
4034 	switch (rl_type) {
4035 	case ICE_MIN_BW:
4036 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
4037 		data->cir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
4038 		break;
4039 	case ICE_MAX_BW:
4040 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
4041 		data->eir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
4042 		break;
4043 	case ICE_SHARED_BW:
4044 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
4045 		data->srl_id = CPU_TO_LE16(rl_prof_id);
4046 		break;
4047 	default:
4048 		/* Unknown rate limit type */
4049 		return ICE_ERR_PARAM;
4050 	}
4051 
4052 	/* Configure element */
4053 	return ice_sched_update_elem(hw, node, &buf);
4054 }
4055 
4056 /**
4057  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
4058  * @node: sched node
4059  * @rl_type: rate limit type
4060  *
4061  * If existing profile matches, it returns the corresponding rate
4062  * limit profile ID, otherwise it returns an invalid ID as error.
4063  */
4064 static u16
4065 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
4066 			      enum ice_rl_type rl_type)
4067 {
4068 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
4069 	struct ice_aqc_txsched_elem *data;
4070 
4071 	data = &node->info.data;
4072 	switch (rl_type) {
4073 	case ICE_MIN_BW:
4074 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
4075 			rl_prof_id = LE16_TO_CPU(data->cir_bw.bw_profile_idx);
4076 		break;
4077 	case ICE_MAX_BW:
4078 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
4079 			rl_prof_id = LE16_TO_CPU(data->eir_bw.bw_profile_idx);
4080 		break;
4081 	case ICE_SHARED_BW:
4082 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
4083 			rl_prof_id = LE16_TO_CPU(data->srl_id);
4084 		break;
4085 	default:
4086 		break;
4087 	}
4088 
4089 	return rl_prof_id;
4090 }
4091 
4092 /**
4093  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
4094  * @pi: port information structure
4095  * @rl_type: type of rate limit BW - min, max, or shared
4096  * @layer_index: layer index
4097  *
4098  * This function returns requested profile creation layer.
4099  */
4100 static u8
4101 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
4102 			    u8 layer_index)
4103 {
4104 	struct ice_hw *hw = pi->hw;
4105 
4106 	if (layer_index >= hw->num_tx_sched_layers)
4107 		return ICE_SCHED_INVAL_LAYER_NUM;
4108 	switch (rl_type) {
4109 	case ICE_MIN_BW:
4110 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
4111 			return layer_index;
4112 		break;
4113 	case ICE_MAX_BW:
4114 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
4115 			return layer_index;
4116 		break;
4117 	case ICE_SHARED_BW:
4118 		/* if current layer doesn't support SRL profile creation
4119 		 * then try a layer up or down.
4120 		 */
4121 		if (hw->layer_info[layer_index].max_srl_profiles)
4122 			return layer_index;
4123 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
4124 			 hw->layer_info[layer_index + 1].max_srl_profiles)
4125 			return layer_index + 1;
4126 		else if (layer_index > 0 &&
4127 			 hw->layer_info[layer_index - 1].max_srl_profiles)
4128 			return layer_index - 1;
4129 		break;
4130 	default:
4131 		break;
4132 	}
4133 	return ICE_SCHED_INVAL_LAYER_NUM;
4134 }
4135 
4136 /**
4137  * ice_sched_get_srl_node - get shared rate limit node
4138  * @node: tree node
4139  * @srl_layer: shared rate limit layer
4140  *
4141  * This function returns SRL node to be used for shared rate limit purpose.
4142  * The caller needs to hold scheduler lock.
4143  */
4144 static struct ice_sched_node *
4145 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
4146 {
4147 	if (srl_layer > node->tx_sched_layer)
4148 		return node->children[0];
4149 	else if (srl_layer < node->tx_sched_layer)
4150 		/* Node can't be created without a parent. It will always
4151 		 * have a valid parent except root node.
4152 		 */
4153 		return node->parent;
4154 	else
4155 		return node;
4156 }
4157 
4158 /**
4159  * ice_sched_rm_rl_profile - remove RL profile ID
4160  * @hw: pointer to the hardware structure
4161  * @layer_num: layer number where profiles are saved
4162  * @profile_type: profile type like EIR, CIR, or SRL
4163  * @profile_id: profile ID to remove
4164  *
4165  * This function removes rate limit profile from layer 'layer_num' of type
4166  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
4167  * scheduler lock.
4168  */
4169 static enum ice_status
4170 ice_sched_rm_rl_profile(struct ice_hw *hw, u8 layer_num, u8 profile_type,
4171 			u16 profile_id)
4172 {
4173 	struct ice_aqc_rl_profile_info *rl_prof_elem;
4174 	enum ice_status status = ICE_SUCCESS;
4175 
4176 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
4177 		return ICE_ERR_PARAM;
4178 	/* Check the existing list for RL profile */
4179 	LIST_FOR_EACH_ENTRY(rl_prof_elem, &hw->rl_prof_list[layer_num],
4180 			    ice_aqc_rl_profile_info, list_entry)
4181 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
4182 		    profile_type &&
4183 		    LE16_TO_CPU(rl_prof_elem->profile.profile_id) ==
4184 		    profile_id) {
4185 			if (rl_prof_elem->prof_id_ref)
4186 				rl_prof_elem->prof_id_ref--;
4187 
4188 			/* Remove old profile ID from database */
4189 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
4190 			if (status && status != ICE_ERR_IN_USE)
4191 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
4192 			break;
4193 		}
4194 	if (status == ICE_ERR_IN_USE)
4195 		status = ICE_SUCCESS;
4196 	return status;
4197 }
4198 
4199 /**
4200  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
4201  * @pi: port information structure
4202  * @node: pointer to node structure
4203  * @rl_type: rate limit type min, max, or shared
4204  * @layer_num: layer number where RL profiles are saved
4205  *
4206  * This function configures node element's BW rate limit profile ID of
4207  * type CIR, EIR, or SRL to default. This function needs to be called
4208  * with the scheduler lock held.
4209  */
4210 static enum ice_status
4211 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
4212 			   struct ice_sched_node *node,
4213 			   enum ice_rl_type rl_type, u8 layer_num)
4214 {
4215 	enum ice_status status;
4216 	struct ice_hw *hw;
4217 	u8 profile_type;
4218 	u16 rl_prof_id;
4219 	u16 old_id;
4220 
4221 	hw = pi->hw;
4222 	switch (rl_type) {
4223 	case ICE_MIN_BW:
4224 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
4225 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
4226 		break;
4227 	case ICE_MAX_BW:
4228 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
4229 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
4230 		break;
4231 	case ICE_SHARED_BW:
4232 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
4233 		/* No SRL is configured for default case */
4234 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
4235 		break;
4236 	default:
4237 		return ICE_ERR_PARAM;
4238 	}
4239 	/* Save existing RL prof ID for later clean up */
4240 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
4241 	/* Configure BW scheduling parameters */
4242 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
4243 	if (status)
4244 		return status;
4245 
4246 	/* Remove stale RL profile ID */
4247 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
4248 	    old_id == ICE_SCHED_INVAL_PROF_ID)
4249 		return ICE_SUCCESS;
4250 
4251 	return ice_sched_rm_rl_profile(hw, layer_num, profile_type, old_id);
4252 }
4253 
4254 /**
4255  * ice_sched_set_node_bw - set node's bandwidth
4256  * @pi: port information structure
4257  * @node: tree node
4258  * @rl_type: rate limit type min, max, or shared
4259  * @bw: bandwidth in Kbps - Kilo bits per sec
4260  * @layer_num: layer number
4261  *
4262  * This function adds new profile corresponding to requested BW, configures
4263  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
4264  * ID from local database. The caller needs to hold scheduler lock.
4265  */
4266 static enum ice_status
4267 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
4268 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
4269 {
4270 	struct ice_aqc_rl_profile_info *rl_prof_info;
4271 	enum ice_status status = ICE_ERR_PARAM;
4272 	struct ice_hw *hw = pi->hw;
4273 	u16 old_id, rl_prof_id;
4274 
4275 	rl_prof_info = ice_sched_add_rl_profile(hw, rl_type, bw, layer_num);
4276 	if (!rl_prof_info)
4277 		return status;
4278 
4279 	rl_prof_id = LE16_TO_CPU(rl_prof_info->profile.profile_id);
4280 
4281 	/* Save existing RL prof ID for later clean up */
4282 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
4283 	/* Configure BW scheduling parameters */
4284 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
4285 	if (status)
4286 		return status;
4287 
4288 	/* New changes has been applied */
4289 	/* Increment the profile ID reference count */
4290 	rl_prof_info->prof_id_ref++;
4291 
4292 	/* Check for old ID removal */
4293 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
4294 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
4295 		return ICE_SUCCESS;
4296 
4297 	return ice_sched_rm_rl_profile(hw, layer_num,
4298 				       rl_prof_info->profile.flags &
4299 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
4300 }
4301 
4302 /**
4303  * ice_sched_set_node_bw_lmt - set node's BW limit
4304  * @pi: port information structure
4305  * @node: tree node
4306  * @rl_type: rate limit type min, max, or shared
4307  * @bw: bandwidth in Kbps - Kilo bits per sec
4308  *
4309  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
4310  * EIR, or SRL. The caller needs to hold scheduler lock.
4311  *
4312  * NOTE: Caller provides the correct SRL node in case of shared profile
4313  * settings.
4314  */
4315 static enum ice_status
4316 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
4317 			  enum ice_rl_type rl_type, u32 bw)
4318 {
4319 	struct ice_hw *hw;
4320 	u8 layer_num;
4321 
4322 	if (!pi)
4323 		return ICE_ERR_PARAM;
4324 	hw = pi->hw;
4325 	/* Remove unused RL profile IDs from HW and SW DB */
4326 	ice_sched_rm_unused_rl_prof(hw);
4327 
4328 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
4329 						node->tx_sched_layer);
4330 	if (layer_num >= hw->num_tx_sched_layers)
4331 		return ICE_ERR_PARAM;
4332 
4333 	if (bw == ICE_SCHED_DFLT_BW)
4334 		return ice_sched_set_node_bw_dflt(pi, node, rl_type, layer_num);
4335 	return ice_sched_set_node_bw(pi, node, rl_type, bw, layer_num);
4336 }
4337 
4338 /**
4339  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
4340  * @pi: port information structure
4341  * @node: pointer to node structure
4342  * @rl_type: rate limit type min, max, or shared
4343  *
4344  * This function configures node element's BW rate limit profile ID of
4345  * type CIR, EIR, or SRL to default. This function needs to be called
4346  * with the scheduler lock held.
4347  */
4348 static enum ice_status
4349 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
4350 			       struct ice_sched_node *node,
4351 			       enum ice_rl_type rl_type)
4352 {
4353 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
4354 					 ICE_SCHED_DFLT_BW);
4355 }
4356 
4357 /**
4358  * ice_sched_validate_srl_node - Check node for SRL applicability
4359  * @node: sched node to configure
4360  * @sel_layer: selected SRL layer
4361  *
4362  * This function checks if the SRL can be applied to a selceted layer node on
4363  * behalf of the requested node (first argument). This function needs to be
4364  * called with scheduler lock held.
4365  */
4366 static enum ice_status
4367 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
4368 {
4369 	/* SRL profiles are not available on all layers. Check if the
4370 	 * SRL profile can be applied to a node above or below the
4371 	 * requested node. SRL configuration is possible only if the
4372 	 * selected layer's node has single child.
4373 	 */
4374 	if (sel_layer == node->tx_sched_layer ||
4375 	    ((sel_layer == node->tx_sched_layer + 1) &&
4376 	    node->num_children == 1) ||
4377 	    ((sel_layer == node->tx_sched_layer - 1) &&
4378 	    (node->parent && node->parent->num_children == 1)))
4379 		return ICE_SUCCESS;
4380 
4381 	return ICE_ERR_CFG;
4382 }
4383 
4384 /**
4385  * ice_sched_save_q_bw - save queue node's BW information
4386  * @q_ctx: queue context structure
4387  * @rl_type: rate limit type min, max, or shared
4388  * @bw: bandwidth in Kbps - Kilo bits per sec
4389  *
4390  * Save BW information of queue type node for post replay use.
4391  */
4392 static enum ice_status
4393 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
4394 {
4395 	switch (rl_type) {
4396 	case ICE_MIN_BW:
4397 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
4398 		break;
4399 	case ICE_MAX_BW:
4400 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
4401 		break;
4402 	case ICE_SHARED_BW:
4403 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
4404 		break;
4405 	default:
4406 		return ICE_ERR_PARAM;
4407 	}
4408 	return ICE_SUCCESS;
4409 }
4410 
4411 /**
4412  * ice_sched_set_q_bw_lmt - sets queue BW limit
4413  * @pi: port information structure
4414  * @vsi_handle: sw VSI handle
4415  * @tc: traffic class
4416  * @q_handle: software queue handle
4417  * @rl_type: min, max, or shared
4418  * @bw: bandwidth in Kbps
4419  *
4420  * This function sets BW limit of queue scheduling node.
4421  */
4422 static enum ice_status
4423 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4424 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
4425 {
4426 	enum ice_status status = ICE_ERR_PARAM;
4427 	struct ice_sched_node *node;
4428 	struct ice_q_ctx *q_ctx;
4429 
4430 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4431 		return ICE_ERR_PARAM;
4432 	ice_acquire_lock(&pi->sched_lock);
4433 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
4434 	if (!q_ctx)
4435 		goto exit_q_bw_lmt;
4436 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4437 	if (!node) {
4438 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
4439 		goto exit_q_bw_lmt;
4440 	}
4441 
4442 	/* Return error if it is not a leaf node */
4443 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
4444 		goto exit_q_bw_lmt;
4445 
4446 	/* SRL bandwidth layer selection */
4447 	if (rl_type == ICE_SHARED_BW) {
4448 		u8 sel_layer; /* selected layer */
4449 
4450 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
4451 							node->tx_sched_layer);
4452 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
4453 			status = ICE_ERR_PARAM;
4454 			goto exit_q_bw_lmt;
4455 		}
4456 		status = ice_sched_validate_srl_node(node, sel_layer);
4457 		if (status)
4458 			goto exit_q_bw_lmt;
4459 	}
4460 
4461 	if (bw == ICE_SCHED_DFLT_BW)
4462 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
4463 	else
4464 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
4465 
4466 	if (!status)
4467 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
4468 
4469 exit_q_bw_lmt:
4470 	ice_release_lock(&pi->sched_lock);
4471 	return status;
4472 }
4473 
4474 /**
4475  * ice_cfg_q_bw_lmt - configure queue BW limit
4476  * @pi: port information structure
4477  * @vsi_handle: sw VSI handle
4478  * @tc: traffic class
4479  * @q_handle: software queue handle
4480  * @rl_type: min, max, or shared
4481  * @bw: bandwidth in Kbps
4482  *
4483  * This function configures BW limit of queue scheduling node.
4484  */
4485 enum ice_status
4486 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4487 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
4488 {
4489 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4490 				      bw);
4491 }
4492 
4493 /**
4494  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
4495  * @pi: port information structure
4496  * @vsi_handle: sw VSI handle
4497  * @tc: traffic class
4498  * @q_handle: software queue handle
4499  * @rl_type: min, max, or shared
4500  *
4501  * This function configures BW default limit of queue scheduling node.
4502  */
4503 enum ice_status
4504 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4505 		      u16 q_handle, enum ice_rl_type rl_type)
4506 {
4507 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4508 				      ICE_SCHED_DFLT_BW);
4509 }
4510 
4511 /**
4512  * ice_sched_save_tc_node_bw - save TC node BW limit
4513  * @pi: port information structure
4514  * @tc: TC number
4515  * @rl_type: min or max
4516  * @bw: bandwidth in Kbps
4517  *
4518  * This function saves the modified values of bandwidth settings for later
4519  * replay purpose (restore) after reset.
4520  */
4521 static enum ice_status
4522 ice_sched_save_tc_node_bw(struct ice_port_info *pi, u8 tc,
4523 			  enum ice_rl_type rl_type, u32 bw)
4524 {
4525 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4526 		return ICE_ERR_PARAM;
4527 	switch (rl_type) {
4528 	case ICE_MIN_BW:
4529 		ice_set_clear_cir_bw(&pi->tc_node_bw_t_info[tc], bw);
4530 		break;
4531 	case ICE_MAX_BW:
4532 		ice_set_clear_eir_bw(&pi->tc_node_bw_t_info[tc], bw);
4533 		break;
4534 	case ICE_SHARED_BW:
4535 		ice_set_clear_shared_bw(&pi->tc_node_bw_t_info[tc], bw);
4536 		break;
4537 	default:
4538 		return ICE_ERR_PARAM;
4539 	}
4540 	return ICE_SUCCESS;
4541 }
4542 
4543 /**
4544  * ice_sched_set_tc_node_bw_lmt - sets TC node BW limit
4545  * @pi: port information structure
4546  * @tc: TC number
4547  * @rl_type: min or max
4548  * @bw: bandwidth in Kbps
4549  *
4550  * This function configures bandwidth limit of TC node.
4551  */
4552 static enum ice_status
4553 ice_sched_set_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
4554 			     enum ice_rl_type rl_type, u32 bw)
4555 {
4556 	enum ice_status status = ICE_ERR_PARAM;
4557 	struct ice_sched_node *tc_node;
4558 
4559 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4560 		return status;
4561 	ice_acquire_lock(&pi->sched_lock);
4562 	tc_node = ice_sched_get_tc_node(pi, tc);
4563 	if (!tc_node)
4564 		goto exit_set_tc_node_bw;
4565 	if (bw == ICE_SCHED_DFLT_BW)
4566 		status = ice_sched_set_node_bw_dflt_lmt(pi, tc_node, rl_type);
4567 	else
4568 		status = ice_sched_set_node_bw_lmt(pi, tc_node, rl_type, bw);
4569 	if (!status)
4570 		status = ice_sched_save_tc_node_bw(pi, tc, rl_type, bw);
4571 
4572 exit_set_tc_node_bw:
4573 	ice_release_lock(&pi->sched_lock);
4574 	return status;
4575 }
4576 
4577 /**
4578  * ice_cfg_tc_node_bw_lmt - configure TC node BW limit
4579  * @pi: port information structure
4580  * @tc: TC number
4581  * @rl_type: min or max
4582  * @bw: bandwidth in Kbps
4583  *
4584  * This function configures BW limit of TC node.
4585  * Note: The minimum guaranteed reservation is done via DCBX.
4586  */
4587 enum ice_status
4588 ice_cfg_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
4589 		       enum ice_rl_type rl_type, u32 bw)
4590 {
4591 	return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, bw);
4592 }
4593 
4594 /**
4595  * ice_cfg_tc_node_bw_dflt_lmt - configure TC node BW default limit
4596  * @pi: port information structure
4597  * @tc: TC number
4598  * @rl_type: min or max
4599  *
4600  * This function configures BW default limit of TC node.
4601  */
4602 enum ice_status
4603 ice_cfg_tc_node_bw_dflt_lmt(struct ice_port_info *pi, u8 tc,
4604 			    enum ice_rl_type rl_type)
4605 {
4606 	return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, ICE_SCHED_DFLT_BW);
4607 }
4608 
4609 /**
4610  * ice_sched_save_tc_node_bw_alloc - save TC node's BW alloc information
4611  * @pi: port information structure
4612  * @tc: traffic class
4613  * @rl_type: rate limit type min or max
4614  * @bw_alloc: Bandwidth allocation information
4615  *
4616  * Save BW alloc information of VSI type node for post replay use.
4617  */
4618 static enum ice_status
4619 ice_sched_save_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4620 				enum ice_rl_type rl_type, u16 bw_alloc)
4621 {
4622 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4623 		return ICE_ERR_PARAM;
4624 	switch (rl_type) {
4625 	case ICE_MIN_BW:
4626 		ice_set_clear_cir_bw_alloc(&pi->tc_node_bw_t_info[tc],
4627 					   bw_alloc);
4628 		break;
4629 	case ICE_MAX_BW:
4630 		ice_set_clear_eir_bw_alloc(&pi->tc_node_bw_t_info[tc],
4631 					   bw_alloc);
4632 		break;
4633 	default:
4634 		return ICE_ERR_PARAM;
4635 	}
4636 	return ICE_SUCCESS;
4637 }
4638 
4639 /**
4640  * ice_sched_set_tc_node_bw_alloc - set TC node BW alloc
4641  * @pi: port information structure
4642  * @tc: TC number
4643  * @rl_type: min or max
4644  * @bw_alloc: bandwidth alloc
4645  *
4646  * This function configures bandwidth alloc of TC node, also saves the
4647  * changed settings for replay purpose, and return success if it succeeds
4648  * in modifying bandwidth alloc setting.
4649  */
4650 static enum ice_status
4651 ice_sched_set_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4652 			       enum ice_rl_type rl_type, u8 bw_alloc)
4653 {
4654 	enum ice_status status = ICE_ERR_PARAM;
4655 	struct ice_sched_node *tc_node;
4656 
4657 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4658 		return status;
4659 	ice_acquire_lock(&pi->sched_lock);
4660 	tc_node = ice_sched_get_tc_node(pi, tc);
4661 	if (!tc_node)
4662 		goto exit_set_tc_node_bw_alloc;
4663 	status = ice_sched_cfg_node_bw_alloc(pi->hw, tc_node, rl_type,
4664 					     bw_alloc);
4665 	if (status)
4666 		goto exit_set_tc_node_bw_alloc;
4667 	status = ice_sched_save_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
4668 
4669 exit_set_tc_node_bw_alloc:
4670 	ice_release_lock(&pi->sched_lock);
4671 	return status;
4672 }
4673 
4674 /**
4675  * ice_cfg_tc_node_bw_alloc - configure TC node BW alloc
4676  * @pi: port information structure
4677  * @tc: TC number
4678  * @rl_type: min or max
4679  * @bw_alloc: bandwidth alloc
4680  *
4681  * This function configures BW limit of TC node.
4682  * Note: The minimum guaranteed reservation is done via DCBX.
4683  */
4684 enum ice_status
4685 ice_cfg_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4686 			 enum ice_rl_type rl_type, u8 bw_alloc)
4687 {
4688 	return ice_sched_set_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
4689 }
4690 
4691 /**
4692  * ice_sched_set_agg_bw_dflt_lmt - set aggregator node's BW limit to default
4693  * @pi: port information structure
4694  * @vsi_handle: software VSI handle
4695  *
4696  * This function retrieves the aggregator ID based on VSI ID and TC,
4697  * and sets node's BW limit to default. This function needs to be
4698  * called with the scheduler lock held.
4699  */
4700 enum ice_status
4701 ice_sched_set_agg_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle)
4702 {
4703 	struct ice_vsi_ctx *vsi_ctx;
4704 	enum ice_status status = ICE_SUCCESS;
4705 	u8 tc;
4706 
4707 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4708 		return ICE_ERR_PARAM;
4709 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4710 	if (!vsi_ctx)
4711 		return ICE_ERR_PARAM;
4712 
4713 	ice_for_each_traffic_class(tc) {
4714 		struct ice_sched_node *node;
4715 
4716 		node = vsi_ctx->sched.ag_node[tc];
4717 		if (!node)
4718 			continue;
4719 
4720 		/* Set min profile to default */
4721 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MIN_BW);
4722 		if (status)
4723 			break;
4724 
4725 		/* Set max profile to default */
4726 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MAX_BW);
4727 		if (status)
4728 			break;
4729 
4730 		/* Remove shared profile, if there is one */
4731 		status = ice_sched_set_node_bw_dflt_lmt(pi, node,
4732 							ICE_SHARED_BW);
4733 		if (status)
4734 			break;
4735 	}
4736 
4737 	return status;
4738 }
4739 
4740 /**
4741  * ice_sched_get_node_by_id_type - get node from ID type
4742  * @pi: port information structure
4743  * @id: identifier
4744  * @agg_type: type of aggregator
4745  * @tc: traffic class
4746  *
4747  * This function returns node identified by ID of type aggregator, and
4748  * based on traffic class (TC). This function needs to be called with
4749  * the scheduler lock held.
4750  */
4751 static struct ice_sched_node *
4752 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
4753 			      enum ice_agg_type agg_type, u8 tc)
4754 {
4755 	struct ice_sched_node *node = NULL;
4756 	struct ice_sched_node *child_node;
4757 
4758 	switch (agg_type) {
4759 	case ICE_AGG_TYPE_VSI: {
4760 		struct ice_vsi_ctx *vsi_ctx;
4761 		u16 vsi_handle = (u16)id;
4762 
4763 		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4764 			break;
4765 		/* Get sched_vsi_info */
4766 		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4767 		if (!vsi_ctx)
4768 			break;
4769 		node = vsi_ctx->sched.vsi_node[tc];
4770 		break;
4771 	}
4772 
4773 	case ICE_AGG_TYPE_AGG: {
4774 		struct ice_sched_node *tc_node;
4775 
4776 		tc_node = ice_sched_get_tc_node(pi, tc);
4777 		if (tc_node)
4778 			node = ice_sched_get_agg_node(pi, tc_node, id);
4779 		break;
4780 	}
4781 
4782 	case ICE_AGG_TYPE_Q:
4783 		/* The current implementation allows single queue to modify */
4784 		node = ice_sched_get_node(pi, id);
4785 		break;
4786 
4787 	case ICE_AGG_TYPE_QG:
4788 		/* The current implementation allows single qg to modify */
4789 		child_node = ice_sched_get_node(pi, id);
4790 		if (!child_node)
4791 			break;
4792 		node = child_node->parent;
4793 		break;
4794 
4795 	default:
4796 		break;
4797 	}
4798 
4799 	return node;
4800 }
4801 
4802 /**
4803  * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
4804  * @pi: port information structure
4805  * @id: ID (software VSI handle or AGG ID)
4806  * @agg_type: aggregator type (VSI or AGG type node)
4807  * @tc: traffic class
4808  * @rl_type: min or max
4809  * @bw: bandwidth in Kbps
4810  *
4811  * This function sets BW limit of VSI or Aggregator scheduling node
4812  * based on TC information from passed in argument BW.
4813  */
4814 enum ice_status
4815 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
4816 				 enum ice_agg_type agg_type, u8 tc,
4817 				 enum ice_rl_type rl_type, u32 bw)
4818 {
4819 	enum ice_status status = ICE_ERR_PARAM;
4820 	struct ice_sched_node *node;
4821 
4822 	if (!pi)
4823 		return status;
4824 
4825 	if (rl_type == ICE_UNKNOWN_BW)
4826 		return status;
4827 
4828 	ice_acquire_lock(&pi->sched_lock);
4829 	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
4830 	if (!node) {
4831 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
4832 		goto exit_set_node_bw_lmt_per_tc;
4833 	}
4834 	if (bw == ICE_SCHED_DFLT_BW)
4835 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
4836 	else
4837 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
4838 
4839 exit_set_node_bw_lmt_per_tc:
4840 	ice_release_lock(&pi->sched_lock);
4841 	return status;
4842 }
4843 
4844 /**
4845  * ice_sched_validate_vsi_srl_node - validate VSI SRL node
4846  * @pi: port information structure
4847  * @vsi_handle: software VSI handle
4848  *
4849  * This function validates SRL node of the VSI node if available SRL layer is
4850  * different than the VSI node layer on all TC(s).This function needs to be
4851  * called with scheduler lock held.
4852  */
4853 static enum ice_status
4854 ice_sched_validate_vsi_srl_node(struct ice_port_info *pi, u16 vsi_handle)
4855 {
4856 	u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
4857 	u8 tc;
4858 
4859 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4860 		return ICE_ERR_PARAM;
4861 
4862 	/* Return success if no nodes are present across TC */
4863 	ice_for_each_traffic_class(tc) {
4864 		struct ice_sched_node *tc_node, *vsi_node;
4865 		enum ice_rl_type rl_type = ICE_SHARED_BW;
4866 		enum ice_status status;
4867 
4868 		tc_node = ice_sched_get_tc_node(pi, tc);
4869 		if (!tc_node)
4870 			continue;
4871 
4872 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
4873 		if (!vsi_node)
4874 			continue;
4875 
4876 		/* SRL bandwidth layer selection */
4877 		if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
4878 			u8 node_layer = vsi_node->tx_sched_layer;
4879 			u8 layer_num;
4880 
4881 			layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
4882 								node_layer);
4883 			if (layer_num >= pi->hw->num_tx_sched_layers)
4884 				return ICE_ERR_PARAM;
4885 			sel_layer = layer_num;
4886 		}
4887 
4888 		status = ice_sched_validate_srl_node(vsi_node, sel_layer);
4889 		if (status)
4890 			return status;
4891 	}
4892 	return ICE_SUCCESS;
4893 }
4894 
4895 /**
4896  * ice_sched_set_save_vsi_srl_node_bw - set VSI shared limit values
4897  * @pi: port information structure
4898  * @vsi_handle: software VSI handle
4899  * @tc: traffic class
4900  * @srl_node: sched node to configure
4901  * @rl_type: rate limit type minimum, maximum, or shared
4902  * @bw: minimum, maximum, or shared bandwidth in Kbps
4903  *
4904  * Configure shared rate limiter(SRL) of VSI type nodes across given traffic
4905  * class, and saves those value for later use for replaying purposes. The
4906  * caller holds the scheduler lock.
4907  */
4908 static enum ice_status
4909 ice_sched_set_save_vsi_srl_node_bw(struct ice_port_info *pi, u16 vsi_handle,
4910 				   u8 tc, struct ice_sched_node *srl_node,
4911 				   enum ice_rl_type rl_type, u32 bw)
4912 {
4913 	enum ice_status status;
4914 
4915 	if (bw == ICE_SCHED_DFLT_BW) {
4916 		status = ice_sched_set_node_bw_dflt_lmt(pi, srl_node, rl_type);
4917 	} else {
4918 		status = ice_sched_set_node_bw_lmt(pi, srl_node, rl_type, bw);
4919 		if (status)
4920 			return status;
4921 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4922 	}
4923 	return status;
4924 }
4925 
4926 /**
4927  * ice_sched_set_vsi_node_srl_per_tc - set VSI node BW shared limit for tc
4928  * @pi: port information structure
4929  * @vsi_handle: software VSI handle
4930  * @tc: traffic class
4931  * @min_bw: minimum bandwidth in Kbps
4932  * @max_bw: maximum bandwidth in Kbps
4933  * @shared_bw: shared bandwidth in Kbps
4934  *
4935  * Configure shared rate limiter(SRL) of  VSI type nodes across requested
4936  * traffic class for VSI matching handle. When BW value of ICE_SCHED_DFLT_BW
4937  * is passed, it removes the corresponding bw from the node. The caller
4938  * holds scheduler lock.
4939  */
4940 static enum ice_status
4941 ice_sched_set_vsi_node_srl_per_tc(struct ice_port_info *pi, u16 vsi_handle,
4942 				  u8 tc, u32 min_bw, u32 max_bw, u32 shared_bw)
4943 {
4944 	struct ice_sched_node *tc_node, *vsi_node, *cfg_node;
4945 	enum ice_status status;
4946 	u8 layer_num;
4947 
4948 	tc_node = ice_sched_get_tc_node(pi, tc);
4949 	if (!tc_node)
4950 		return ICE_ERR_CFG;
4951 
4952 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
4953 	if (!vsi_node)
4954 		return ICE_ERR_CFG;
4955 
4956 	layer_num = ice_sched_get_rl_prof_layer(pi, ICE_SHARED_BW,
4957 						vsi_node->tx_sched_layer);
4958 	if (layer_num >= pi->hw->num_tx_sched_layers)
4959 		return ICE_ERR_PARAM;
4960 
4961 	/* SRL node may be different */
4962 	cfg_node = ice_sched_get_srl_node(vsi_node, layer_num);
4963 	if (!cfg_node)
4964 		return ICE_ERR_CFG;
4965 
4966 	status = ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc,
4967 						    cfg_node, ICE_MIN_BW,
4968 						    min_bw);
4969 	if (status)
4970 		return status;
4971 
4972 	status = ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc,
4973 						    cfg_node, ICE_MAX_BW,
4974 						    max_bw);
4975 	if (status)
4976 		return status;
4977 
4978 	return ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc, cfg_node,
4979 						  ICE_SHARED_BW, shared_bw);
4980 }
4981 
4982 /**
4983  * ice_sched_set_vsi_bw_shared_lmt - set VSI BW shared limit
4984  * @pi: port information structure
4985  * @vsi_handle: software VSI handle
4986  * @min_bw: minimum bandwidth in Kbps
4987  * @max_bw: maximum bandwidth in Kbps
4988  * @shared_bw: shared bandwidth in Kbps
4989  *
4990  * Configure shared rate limiter(SRL) of all VSI type nodes across all traffic
4991  * classes for VSI matching handle. When BW value of ICE_SCHED_DFLT_BW is
4992  * passed, it removes those value(s) from the node.
4993  */
4994 enum ice_status
4995 ice_sched_set_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle,
4996 				u32 min_bw, u32 max_bw, u32 shared_bw)
4997 {
4998 	enum ice_status status = ICE_SUCCESS;
4999 	u8 tc;
5000 
5001 	if (!pi)
5002 		return ICE_ERR_PARAM;
5003 
5004 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5005 		return ICE_ERR_PARAM;
5006 
5007 	ice_acquire_lock(&pi->sched_lock);
5008 	status = ice_sched_validate_vsi_srl_node(pi, vsi_handle);
5009 	if (status)
5010 		goto exit_set_vsi_bw_shared_lmt;
5011 	/* Return success if no nodes are present across TC */
5012 	ice_for_each_traffic_class(tc) {
5013 		struct ice_sched_node *tc_node, *vsi_node;
5014 
5015 		tc_node = ice_sched_get_tc_node(pi, tc);
5016 		if (!tc_node)
5017 			continue;
5018 
5019 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5020 		if (!vsi_node)
5021 			continue;
5022 
5023 		status = ice_sched_set_vsi_node_srl_per_tc(pi, vsi_handle, tc,
5024 							   min_bw, max_bw,
5025 							   shared_bw);
5026 		if (status)
5027 			break;
5028 	}
5029 
5030 exit_set_vsi_bw_shared_lmt:
5031 	ice_release_lock(&pi->sched_lock);
5032 	return status;
5033 }
5034 
5035 /**
5036  * ice_sched_validate_agg_srl_node - validate AGG SRL node
5037  * @pi: port information structure
5038  * @agg_id: aggregator ID
5039  *
5040  * This function validates SRL node of the AGG node if available SRL layer is
5041  * different than the AGG node layer on all TC(s).This function needs to be
5042  * called with scheduler lock held.
5043  */
5044 static enum ice_status
5045 ice_sched_validate_agg_srl_node(struct ice_port_info *pi, u32 agg_id)
5046 {
5047 	u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
5048 	struct ice_sched_agg_info *agg_info;
5049 	bool agg_id_present = false;
5050 	enum ice_status status = ICE_SUCCESS;
5051 	u8 tc;
5052 
5053 	LIST_FOR_EACH_ENTRY(agg_info, &pi->hw->agg_list, ice_sched_agg_info,
5054 			    list_entry)
5055 		if (agg_info->agg_id == agg_id) {
5056 			agg_id_present = true;
5057 			break;
5058 		}
5059 	if (!agg_id_present)
5060 		return ICE_ERR_PARAM;
5061 	/* Return success if no nodes are present across TC */
5062 	ice_for_each_traffic_class(tc) {
5063 		struct ice_sched_node *tc_node, *agg_node;
5064 		enum ice_rl_type rl_type = ICE_SHARED_BW;
5065 
5066 		tc_node = ice_sched_get_tc_node(pi, tc);
5067 		if (!tc_node)
5068 			continue;
5069 
5070 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5071 		if (!agg_node)
5072 			continue;
5073 		/* SRL bandwidth layer selection */
5074 		if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
5075 			u8 node_layer = agg_node->tx_sched_layer;
5076 			u8 layer_num;
5077 
5078 			layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5079 								node_layer);
5080 			if (layer_num >= pi->hw->num_tx_sched_layers)
5081 				return ICE_ERR_PARAM;
5082 			sel_layer = layer_num;
5083 		}
5084 
5085 		status = ice_sched_validate_srl_node(agg_node, sel_layer);
5086 		if (status)
5087 			break;
5088 	}
5089 	return status;
5090 }
5091 
5092 /**
5093  * ice_sched_validate_agg_id - Validate aggregator id
5094  * @pi: port information structure
5095  * @agg_id: aggregator ID
5096  *
5097  * This function validates aggregator id. Caller holds the scheduler lock.
5098  */
5099 static enum ice_status
5100 ice_sched_validate_agg_id(struct ice_port_info *pi, u32 agg_id)
5101 {
5102 	struct ice_sched_agg_info *agg_info;
5103 	struct ice_sched_agg_info *tmp;
5104 	bool agg_id_present = false;
5105 	enum ice_status status;
5106 
5107 	status = ice_sched_validate_agg_srl_node(pi, agg_id);
5108 	if (status)
5109 		return status;
5110 
5111 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, tmp, &pi->hw->agg_list,
5112 				 ice_sched_agg_info, list_entry)
5113 		if (agg_info->agg_id == agg_id) {
5114 			agg_id_present = true;
5115 			break;
5116 		}
5117 
5118 	if (!agg_id_present)
5119 		return ICE_ERR_PARAM;
5120 
5121 	return ICE_SUCCESS;
5122 }
5123 
5124 /**
5125  * ice_sched_set_save_agg_srl_node_bw - set aggregator shared limit values
5126  * @pi: port information structure
5127  * @agg_id: aggregator ID
5128  * @tc: traffic class
5129  * @srl_node: sched node to configure
5130  * @rl_type: rate limit type minimum, maximum, or shared
5131  * @bw: minimum, maximum, or shared bandwidth in Kbps
5132  *
5133  * Configure shared rate limiter(SRL) of aggregator type nodes across
5134  * requested traffic class, and saves those value for later use for
5135  * replaying purposes. The caller holds the scheduler lock.
5136  */
5137 static enum ice_status
5138 ice_sched_set_save_agg_srl_node_bw(struct ice_port_info *pi, u32 agg_id, u8 tc,
5139 				   struct ice_sched_node *srl_node,
5140 				   enum ice_rl_type rl_type, u32 bw)
5141 {
5142 	enum ice_status status;
5143 
5144 	if (bw == ICE_SCHED_DFLT_BW) {
5145 		status = ice_sched_set_node_bw_dflt_lmt(pi, srl_node, rl_type);
5146 	} else {
5147 		status = ice_sched_set_node_bw_lmt(pi, srl_node, rl_type, bw);
5148 		if (status)
5149 			return status;
5150 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
5151 	}
5152 	return status;
5153 }
5154 
5155 /**
5156  * ice_sched_set_agg_node_srl_per_tc - set aggregator SRL per tc
5157  * @pi: port information structure
5158  * @agg_id: aggregator ID
5159  * @tc: traffic class
5160  * @min_bw: minimum bandwidth in Kbps
5161  * @max_bw: maximum bandwidth in Kbps
5162  * @shared_bw: shared bandwidth in Kbps
5163  *
5164  * This function configures the shared rate limiter(SRL) of aggregator type
5165  * node for a given traffic class for aggregator matching agg_id. When BW
5166  * value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the node. Caller
5167  * holds the scheduler lock.
5168  */
5169 static enum ice_status
5170 ice_sched_set_agg_node_srl_per_tc(struct ice_port_info *pi, u32 agg_id,
5171 				  u8 tc, u32 min_bw, u32 max_bw, u32 shared_bw)
5172 {
5173 	struct ice_sched_node *tc_node, *agg_node, *cfg_node;
5174 	enum ice_rl_type rl_type = ICE_SHARED_BW;
5175 	enum ice_status status = ICE_ERR_CFG;
5176 	u8 layer_num;
5177 
5178 	tc_node = ice_sched_get_tc_node(pi, tc);
5179 	if (!tc_node)
5180 		return ICE_ERR_CFG;
5181 
5182 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5183 	if (!agg_node)
5184 		return ICE_ERR_CFG;
5185 
5186 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5187 						agg_node->tx_sched_layer);
5188 	if (layer_num >= pi->hw->num_tx_sched_layers)
5189 		return ICE_ERR_PARAM;
5190 
5191 	/* SRL node may be different */
5192 	cfg_node = ice_sched_get_srl_node(agg_node, layer_num);
5193 	if (!cfg_node)
5194 		return ICE_ERR_CFG;
5195 
5196 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5197 						    ICE_MIN_BW, min_bw);
5198 	if (status)
5199 		return status;
5200 
5201 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5202 						    ICE_MAX_BW, max_bw);
5203 	if (status)
5204 		return status;
5205 
5206 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5207 						    ICE_SHARED_BW, shared_bw);
5208 	return status;
5209 }
5210 
5211 /**
5212  * ice_sched_set_agg_bw_shared_lmt - set aggregator BW shared limit
5213  * @pi: port information structure
5214  * @agg_id: aggregator ID
5215  * @min_bw: minimum bandwidth in Kbps
5216  * @max_bw: maximum bandwidth in Kbps
5217  * @shared_bw: shared bandwidth in Kbps
5218  *
5219  * This function configures the shared rate limiter(SRL) of all aggregator type
5220  * nodes across all traffic classes for aggregator matching agg_id. When
5221  * BW value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the
5222  * node(s).
5223  */
5224 enum ice_status
5225 ice_sched_set_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id,
5226 				u32 min_bw, u32 max_bw, u32 shared_bw)
5227 {
5228 	enum ice_status status;
5229 	u8 tc;
5230 
5231 	if (!pi)
5232 		return ICE_ERR_PARAM;
5233 
5234 	ice_acquire_lock(&pi->sched_lock);
5235 	status = ice_sched_validate_agg_id(pi, agg_id);
5236 	if (status)
5237 		goto exit_agg_bw_shared_lmt;
5238 
5239 	/* Return success if no nodes are present across TC */
5240 	ice_for_each_traffic_class(tc) {
5241 		struct ice_sched_node *tc_node, *agg_node;
5242 
5243 		tc_node = ice_sched_get_tc_node(pi, tc);
5244 		if (!tc_node)
5245 			continue;
5246 
5247 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5248 		if (!agg_node)
5249 			continue;
5250 
5251 		status = ice_sched_set_agg_node_srl_per_tc(pi, agg_id, tc,
5252 							   min_bw, max_bw,
5253 							   shared_bw);
5254 		if (status)
5255 			break;
5256 	}
5257 
5258 exit_agg_bw_shared_lmt:
5259 	ice_release_lock(&pi->sched_lock);
5260 	return status;
5261 }
5262 
5263 /**
5264  * ice_sched_set_agg_bw_shared_lmt_per_tc - set aggregator BW shared lmt per tc
5265  * @pi: port information structure
5266  * @agg_id: aggregator ID
5267  * @tc: traffic class
5268  * @min_bw: minimum bandwidth in Kbps
5269  * @max_bw: maximum bandwidth in Kbps
5270  * @shared_bw: shared bandwidth in Kbps
5271  *
5272  * This function configures the shared rate limiter(SRL) of aggregator type
5273  * node for a given traffic class for aggregator matching agg_id. When BW
5274  * value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the node.
5275  */
5276 enum ice_status
5277 ice_sched_set_agg_bw_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id,
5278 				       u8 tc, u32 min_bw, u32 max_bw,
5279 				       u32 shared_bw)
5280 {
5281 	enum ice_status status;
5282 
5283 	if (!pi)
5284 		return ICE_ERR_PARAM;
5285 	ice_acquire_lock(&pi->sched_lock);
5286 	status = ice_sched_validate_agg_id(pi, agg_id);
5287 	if (status)
5288 		goto exit_agg_bw_shared_lmt_per_tc;
5289 
5290 	status = ice_sched_set_agg_node_srl_per_tc(pi, agg_id, tc, min_bw,
5291 						   max_bw, shared_bw);
5292 
5293 exit_agg_bw_shared_lmt_per_tc:
5294 	ice_release_lock(&pi->sched_lock);
5295 	return status;
5296 }
5297 
5298 /**
5299  * ice_sched_cfg_sibl_node_prio - configure node sibling priority
5300  * @pi: port information structure
5301  * @node: sched node to configure
5302  * @priority: sibling priority
5303  *
5304  * This function configures node element's sibling priority only. This
5305  * function needs to be called with scheduler lock held.
5306  */
5307 enum ice_status
5308 ice_sched_cfg_sibl_node_prio(struct ice_port_info *pi,
5309 			     struct ice_sched_node *node, u8 priority)
5310 {
5311 	struct ice_aqc_txsched_elem_data buf;
5312 	struct ice_aqc_txsched_elem *data;
5313 	struct ice_hw *hw = pi->hw;
5314 	enum ice_status status;
5315 
5316 	if (!hw)
5317 		return ICE_ERR_PARAM;
5318 	buf = node->info;
5319 	data = &buf.data;
5320 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
5321 	priority = (priority << ICE_AQC_ELEM_GENERIC_PRIO_S) &
5322 		   ICE_AQC_ELEM_GENERIC_PRIO_M;
5323 	data->generic &= ~ICE_AQC_ELEM_GENERIC_PRIO_M;
5324 	data->generic |= priority;
5325 
5326 	/* Configure element */
5327 	status = ice_sched_update_elem(hw, node, &buf);
5328 	return status;
5329 }
5330 
5331 /**
5332  * ice_cfg_rl_burst_size - Set burst size value
5333  * @hw: pointer to the HW struct
5334  * @bytes: burst size in bytes
5335  *
5336  * This function configures/set the burst size to requested new value. The new
5337  * burst size value is used for future rate limit calls. It doesn't change the
5338  * existing or previously created RL profiles.
5339  */
5340 enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
5341 {
5342 	u16 burst_size_to_prog;
5343 
5344 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
5345 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
5346 		return ICE_ERR_PARAM;
5347 	if (ice_round_to_num(bytes, 64) <=
5348 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
5349 		/* 64 byte granularity case */
5350 		/* Disable MSB granularity bit */
5351 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
5352 		/* round number to nearest 64 byte granularity */
5353 		bytes = ice_round_to_num(bytes, 64);
5354 		/* The value is in 64 byte chunks */
5355 		burst_size_to_prog |= (u16)(bytes / 64);
5356 	} else {
5357 		/* k bytes granularity case */
5358 		/* Enable MSB granularity bit */
5359 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
5360 		/* round number to nearest 1024 granularity */
5361 		bytes = ice_round_to_num(bytes, 1024);
5362 		/* check rounding doesn't go beyond allowed */
5363 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
5364 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
5365 		/* The value is in k bytes */
5366 		burst_size_to_prog |= (u16)(bytes / 1024);
5367 	}
5368 	hw->max_burst_size = burst_size_to_prog;
5369 	return ICE_SUCCESS;
5370 }
5371 
5372 /**
5373  * ice_sched_replay_node_prio - re-configure node priority
5374  * @hw: pointer to the HW struct
5375  * @node: sched node to configure
5376  * @priority: priority value
5377  *
5378  * This function configures node element's priority value. It
5379  * needs to be called with scheduler lock held.
5380  */
5381 static enum ice_status
5382 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
5383 			   u8 priority)
5384 {
5385 	struct ice_aqc_txsched_elem_data buf;
5386 	struct ice_aqc_txsched_elem *data;
5387 	enum ice_status status;
5388 
5389 	buf = node->info;
5390 	data = &buf.data;
5391 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
5392 	data->generic = priority;
5393 
5394 	/* Configure element */
5395 	status = ice_sched_update_elem(hw, node, &buf);
5396 	return status;
5397 }
5398 
5399 /**
5400  * ice_sched_replay_node_bw - replay node(s) BW
5401  * @hw: pointer to the HW struct
5402  * @node: sched node to configure
5403  * @bw_t_info: BW type information
5404  *
5405  * This function restores node's BW from bw_t_info. The caller needs
5406  * to hold the scheduler lock.
5407  */
5408 static enum ice_status
5409 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
5410 			 struct ice_bw_type_info *bw_t_info)
5411 {
5412 	struct ice_port_info *pi = hw->port_info;
5413 	enum ice_status status = ICE_ERR_PARAM;
5414 	u16 bw_alloc;
5415 
5416 	if (!node)
5417 		return status;
5418 	if (!ice_is_any_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
5419 		return ICE_SUCCESS;
5420 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_PRIO)) {
5421 		status = ice_sched_replay_node_prio(hw, node,
5422 						    bw_t_info->generic);
5423 		if (status)
5424 			return status;
5425 	}
5426 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR)) {
5427 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
5428 						   bw_t_info->cir_bw.bw);
5429 		if (status)
5430 			return status;
5431 	}
5432 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR_WT)) {
5433 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
5434 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
5435 						     bw_alloc);
5436 		if (status)
5437 			return status;
5438 	}
5439 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR)) {
5440 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
5441 						   bw_t_info->eir_bw.bw);
5442 		if (status)
5443 			return status;
5444 	}
5445 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR_WT)) {
5446 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
5447 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
5448 						     bw_alloc);
5449 		if (status)
5450 			return status;
5451 	}
5452 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_SHARED))
5453 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
5454 						   bw_t_info->shared_bw);
5455 	return status;
5456 }
5457 
5458 /**
5459  * ice_sched_replay_agg_bw - replay aggregator node(s) BW
5460  * @hw: pointer to the HW struct
5461  * @agg_info: aggregator data structure
5462  *
5463  * This function re-creates aggregator type nodes. The caller needs to hold
5464  * the scheduler lock.
5465  */
5466 static enum ice_status
5467 ice_sched_replay_agg_bw(struct ice_hw *hw, struct ice_sched_agg_info *agg_info)
5468 {
5469 	struct ice_sched_node *tc_node, *agg_node;
5470 	enum ice_status status = ICE_SUCCESS;
5471 	u8 tc;
5472 
5473 	if (!agg_info)
5474 		return ICE_ERR_PARAM;
5475 	ice_for_each_traffic_class(tc) {
5476 		if (!ice_is_any_bit_set(agg_info->bw_t_info[tc].bw_t_bitmap,
5477 					ICE_BW_TYPE_CNT))
5478 			continue;
5479 		tc_node = ice_sched_get_tc_node(hw->port_info, tc);
5480 		if (!tc_node) {
5481 			status = ICE_ERR_PARAM;
5482 			break;
5483 		}
5484 		agg_node = ice_sched_get_agg_node(hw->port_info, tc_node,
5485 						  agg_info->agg_id);
5486 		if (!agg_node) {
5487 			status = ICE_ERR_PARAM;
5488 			break;
5489 		}
5490 		status = ice_sched_replay_node_bw(hw, agg_node,
5491 						  &agg_info->bw_t_info[tc]);
5492 		if (status)
5493 			break;
5494 	}
5495 	return status;
5496 }
5497 
5498 /**
5499  * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
5500  * @pi: port info struct
5501  * @tc_bitmap: 8 bits TC bitmap to check
5502  * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
5503  *
5504  * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
5505  * may be missing, it returns enabled TCs. This function needs to be called with
5506  * scheduler lock held.
5507  */
5508 static void
5509 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, ice_bitmap_t *tc_bitmap,
5510 			    ice_bitmap_t *ena_tc_bitmap)
5511 {
5512 	u8 tc;
5513 
5514 	/* Some TC(s) may be missing after reset, adjust for replay */
5515 	ice_for_each_traffic_class(tc)
5516 		if (ice_is_tc_ena(*tc_bitmap, tc) &&
5517 		    (ice_sched_get_tc_node(pi, tc)))
5518 			ice_set_bit(tc, ena_tc_bitmap);
5519 }
5520 
5521 /**
5522  * ice_sched_replay_agg - recreate aggregator node(s)
5523  * @hw: pointer to the HW struct
5524  *
5525  * This function recreate aggregator type nodes which are not replayed earlier.
5526  * It also replay aggregator BW information. These aggregator nodes are not
5527  * associated with VSI type node yet.
5528  */
5529 void ice_sched_replay_agg(struct ice_hw *hw)
5530 {
5531 	struct ice_port_info *pi = hw->port_info;
5532 	struct ice_sched_agg_info *agg_info;
5533 
5534 	ice_acquire_lock(&pi->sched_lock);
5535 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
5536 			    list_entry)
5537 		/* replay aggregator (re-create aggregator node) */
5538 		if (!ice_cmp_bitmap(agg_info->tc_bitmap,
5539 				    agg_info->replay_tc_bitmap,
5540 				    ICE_MAX_TRAFFIC_CLASS)) {
5541 			ice_declare_bitmap(replay_bitmap,
5542 					   ICE_MAX_TRAFFIC_CLASS);
5543 			enum ice_status status;
5544 
5545 			ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5546 			ice_sched_get_ena_tc_bitmap(pi,
5547 						    agg_info->replay_tc_bitmap,
5548 						    replay_bitmap);
5549 			status = ice_sched_cfg_agg(hw->port_info,
5550 						   agg_info->agg_id,
5551 						   ICE_AGG_TYPE_AGG,
5552 						   replay_bitmap);
5553 			if (status) {
5554 				ice_info(hw, "Replay agg id[%d] failed\n",
5555 					 agg_info->agg_id);
5556 				/* Move on to next one */
5557 				continue;
5558 			}
5559 			/* Replay aggregator node BW (restore aggregator BW) */
5560 			status = ice_sched_replay_agg_bw(hw, agg_info);
5561 			if (status)
5562 				ice_info(hw, "Replay agg bw [id=%d] failed\n",
5563 					 agg_info->agg_id);
5564 		}
5565 	ice_release_lock(&pi->sched_lock);
5566 }
5567 
5568 /**
5569  * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
5570  * @hw: pointer to the HW struct
5571  *
5572  * This function initialize aggregator(s) TC bitmap to zero. A required
5573  * preinit step for replaying aggregators.
5574  */
5575 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
5576 {
5577 	struct ice_port_info *pi = hw->port_info;
5578 	struct ice_sched_agg_info *agg_info;
5579 
5580 	ice_acquire_lock(&pi->sched_lock);
5581 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
5582 			    list_entry) {
5583 		struct ice_sched_agg_vsi_info *agg_vsi_info;
5584 
5585 		agg_info->tc_bitmap[0] = 0;
5586 		LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
5587 				    ice_sched_agg_vsi_info, list_entry)
5588 			agg_vsi_info->tc_bitmap[0] = 0;
5589 	}
5590 	ice_release_lock(&pi->sched_lock);
5591 }
5592 
5593 /**
5594  * ice_sched_replay_root_node_bw - replay root node BW
5595  * @pi: port information structure
5596  *
5597  * Replay root node BW settings.
5598  */
5599 enum ice_status ice_sched_replay_root_node_bw(struct ice_port_info *pi)
5600 {
5601 	enum ice_status status = ICE_SUCCESS;
5602 
5603 	if (!pi->hw)
5604 		return ICE_ERR_PARAM;
5605 	ice_acquire_lock(&pi->sched_lock);
5606 
5607 	status = ice_sched_replay_node_bw(pi->hw, pi->root,
5608 					  &pi->root_node_bw_t_info);
5609 	ice_release_lock(&pi->sched_lock);
5610 	return status;
5611 }
5612 
5613 /**
5614  * ice_sched_replay_tc_node_bw - replay TC node(s) BW
5615  * @pi: port information structure
5616  *
5617  * This function replay TC nodes.
5618  */
5619 enum ice_status ice_sched_replay_tc_node_bw(struct ice_port_info *pi)
5620 {
5621 	enum ice_status status = ICE_SUCCESS;
5622 	u8 tc;
5623 
5624 	if (!pi->hw)
5625 		return ICE_ERR_PARAM;
5626 	ice_acquire_lock(&pi->sched_lock);
5627 	ice_for_each_traffic_class(tc) {
5628 		struct ice_sched_node *tc_node;
5629 
5630 		tc_node = ice_sched_get_tc_node(pi, tc);
5631 		if (!tc_node)
5632 			continue; /* TC not present */
5633 		status = ice_sched_replay_node_bw(pi->hw, tc_node,
5634 						  &pi->tc_node_bw_t_info[tc]);
5635 		if (status)
5636 			break;
5637 	}
5638 	ice_release_lock(&pi->sched_lock);
5639 	return status;
5640 }
5641 
5642 /**
5643  * ice_sched_replay_vsi_bw - replay VSI type node(s) BW
5644  * @hw: pointer to the HW struct
5645  * @vsi_handle: software VSI handle
5646  * @tc_bitmap: 8 bits TC bitmap
5647  *
5648  * This function replays VSI type nodes bandwidth. This function needs to be
5649  * called with scheduler lock held.
5650  */
5651 static enum ice_status
5652 ice_sched_replay_vsi_bw(struct ice_hw *hw, u16 vsi_handle,
5653 			ice_bitmap_t *tc_bitmap)
5654 {
5655 	struct ice_sched_node *vsi_node, *tc_node;
5656 	struct ice_port_info *pi = hw->port_info;
5657 	struct ice_bw_type_info *bw_t_info;
5658 	struct ice_vsi_ctx *vsi_ctx;
5659 	enum ice_status status = ICE_SUCCESS;
5660 	u8 tc;
5661 
5662 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
5663 	if (!vsi_ctx)
5664 		return ICE_ERR_PARAM;
5665 	ice_for_each_traffic_class(tc) {
5666 		if (!ice_is_tc_ena(*tc_bitmap, tc))
5667 			continue;
5668 		tc_node = ice_sched_get_tc_node(pi, tc);
5669 		if (!tc_node)
5670 			continue;
5671 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5672 		if (!vsi_node)
5673 			continue;
5674 		bw_t_info = &vsi_ctx->sched.bw_t_info[tc];
5675 		status = ice_sched_replay_node_bw(hw, vsi_node, bw_t_info);
5676 		if (status)
5677 			break;
5678 	}
5679 	return status;
5680 }
5681 
5682 /**
5683  * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
5684  * @hw: pointer to the HW struct
5685  * @vsi_handle: software VSI handle
5686  *
5687  * This function replays aggregator node, VSI to aggregator type nodes, and
5688  * their node bandwidth information. This function needs to be called with
5689  * scheduler lock held.
5690  */
5691 static enum ice_status
5692 ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
5693 {
5694 	ice_declare_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5695 	struct ice_sched_agg_vsi_info *agg_vsi_info;
5696 	struct ice_port_info *pi = hw->port_info;
5697 	struct ice_sched_agg_info *agg_info;
5698 	enum ice_status status;
5699 
5700 	ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5701 	if (!ice_is_vsi_valid(hw, vsi_handle))
5702 		return ICE_ERR_PARAM;
5703 	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
5704 	if (!agg_info)
5705 		return ICE_SUCCESS; /* Not present in list - default Agg case */
5706 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
5707 	if (!agg_vsi_info)
5708 		return ICE_SUCCESS; /* Not present in list - default Agg case */
5709 	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
5710 				    replay_bitmap);
5711 	/* Replay aggregator node associated to vsi_handle */
5712 	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
5713 				   ICE_AGG_TYPE_AGG, replay_bitmap);
5714 	if (status)
5715 		return status;
5716 	/* Replay aggregator node BW (restore aggregator BW) */
5717 	status = ice_sched_replay_agg_bw(hw, agg_info);
5718 	if (status)
5719 		return status;
5720 
5721 	ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5722 	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
5723 				    replay_bitmap);
5724 	/* Move this VSI (vsi_handle) to above aggregator */
5725 	status = ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
5726 					    replay_bitmap);
5727 	if (status)
5728 		return status;
5729 	/* Replay VSI BW (restore VSI BW) */
5730 	return ice_sched_replay_vsi_bw(hw, vsi_handle,
5731 				       agg_vsi_info->tc_bitmap);
5732 }
5733 
5734 /**
5735  * ice_replay_vsi_agg - replay VSI to aggregator node
5736  * @hw: pointer to the HW struct
5737  * @vsi_handle: software VSI handle
5738  *
5739  * This function replays association of VSI to aggregator type nodes, and
5740  * node bandwidth information.
5741  */
5742 enum ice_status ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
5743 {
5744 	struct ice_port_info *pi = hw->port_info;
5745 	enum ice_status status;
5746 
5747 	ice_acquire_lock(&pi->sched_lock);
5748 	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
5749 	ice_release_lock(&pi->sched_lock);
5750 	return status;
5751 }
5752 
5753 /**
5754  * ice_sched_replay_q_bw - replay queue type node BW
5755  * @pi: port information structure
5756  * @q_ctx: queue context structure
5757  *
5758  * This function replays queue type node bandwidth. This function needs to be
5759  * called with scheduler lock held.
5760  */
5761 enum ice_status
5762 ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
5763 {
5764 	struct ice_sched_node *q_node;
5765 
5766 	/* Following also checks the presence of node in tree */
5767 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
5768 	if (!q_node)
5769 		return ICE_ERR_PARAM;
5770 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
5771 }
5772