xref: /freebsd/sys/dev/ice/ice_sched.c (revision 25ecdc7d52770caf1c9b44b5ec11f468f6b636f3)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2021, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*$FreeBSD$*/
32 
33 #include "ice_sched.h"
34 
35 /**
36  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
37  * @pi: port information structure
38  * @info: Scheduler element information from firmware
39  *
40  * This function inserts the root node of the scheduling tree topology
41  * to the SW DB.
42  */
43 static enum ice_status
44 ice_sched_add_root_node(struct ice_port_info *pi,
45 			struct ice_aqc_txsched_elem_data *info)
46 {
47 	struct ice_sched_node *root;
48 	struct ice_hw *hw;
49 
50 	if (!pi)
51 		return ICE_ERR_PARAM;
52 
53 	hw = pi->hw;
54 
55 	root = (struct ice_sched_node *)ice_malloc(hw, sizeof(*root));
56 	if (!root)
57 		return ICE_ERR_NO_MEMORY;
58 
59 	/* coverity[suspicious_sizeof] */
60 	root->children = (struct ice_sched_node **)
61 		ice_calloc(hw, hw->max_children[0], sizeof(*root));
62 	if (!root->children) {
63 		ice_free(hw, root);
64 		return ICE_ERR_NO_MEMORY;
65 	}
66 
67 	ice_memcpy(&root->info, info, sizeof(*info), ICE_DMA_TO_NONDMA);
68 	pi->root = root;
69 	return ICE_SUCCESS;
70 }
71 
72 /**
73  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
74  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
75  * @teid: node TEID to search
76  *
77  * This function searches for a node matching the TEID in the scheduling tree
78  * from the SW DB. The search is recursive and is restricted by the number of
79  * layers it has searched through; stopping at the max supported layer.
80  *
81  * This function needs to be called when holding the port_info->sched_lock
82  */
83 struct ice_sched_node *
84 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
85 {
86 	u16 i;
87 
88 	/* The TEID is same as that of the start_node */
89 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
90 		return start_node;
91 
92 	/* The node has no children or is at the max layer */
93 	if (!start_node->num_children ||
94 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
95 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
96 		return NULL;
97 
98 	/* Check if TEID matches to any of the children nodes */
99 	for (i = 0; i < start_node->num_children; i++)
100 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
101 			return start_node->children[i];
102 
103 	/* Search within each child's sub-tree */
104 	for (i = 0; i < start_node->num_children; i++) {
105 		struct ice_sched_node *tmp;
106 
107 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
108 						  teid);
109 		if (tmp)
110 			return tmp;
111 	}
112 
113 	return NULL;
114 }
115 
116 /**
117  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
118  * @hw: pointer to the HW struct
119  * @cmd_opc: cmd opcode
120  * @elems_req: number of elements to request
121  * @buf: pointer to buffer
122  * @buf_size: buffer size in bytes
123  * @elems_resp: returns total number of elements response
124  * @cd: pointer to command details structure or NULL
125  *
126  * This function sends a scheduling elements cmd (cmd_opc)
127  */
128 static enum ice_status
129 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
130 			    u16 elems_req, void *buf, u16 buf_size,
131 			    u16 *elems_resp, struct ice_sq_cd *cd)
132 {
133 	struct ice_aqc_sched_elem_cmd *cmd;
134 	struct ice_aq_desc desc;
135 	enum ice_status status;
136 
137 	cmd = &desc.params.sched_elem_cmd;
138 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
139 	cmd->num_elem_req = CPU_TO_LE16(elems_req);
140 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
141 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
142 	if (!status && elems_resp)
143 		*elems_resp = LE16_TO_CPU(cmd->num_elem_resp);
144 
145 	return status;
146 }
147 
148 /**
149  * ice_aq_query_sched_elems - query scheduler elements
150  * @hw: pointer to the HW struct
151  * @elems_req: number of elements to query
152  * @buf: pointer to buffer
153  * @buf_size: buffer size in bytes
154  * @elems_ret: returns total number of elements returned
155  * @cd: pointer to command details structure or NULL
156  *
157  * Query scheduling elements (0x0404)
158  */
159 enum ice_status
160 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
161 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
162 			 u16 *elems_ret, struct ice_sq_cd *cd)
163 {
164 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
165 					   elems_req, (void *)buf, buf_size,
166 					   elems_ret, cd);
167 }
168 
169 /**
170  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
171  * @pi: port information structure
172  * @layer: Scheduler layer of the node
173  * @info: Scheduler element information from firmware
174  *
175  * This function inserts a scheduler node to the SW DB.
176  */
177 enum ice_status
178 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
179 		   struct ice_aqc_txsched_elem_data *info)
180 {
181 	struct ice_aqc_txsched_elem_data elem;
182 	struct ice_sched_node *parent;
183 	struct ice_sched_node *node;
184 	enum ice_status status;
185 	struct ice_hw *hw;
186 
187 	if (!pi)
188 		return ICE_ERR_PARAM;
189 
190 	hw = pi->hw;
191 
192 	/* A valid parent node should be there */
193 	parent = ice_sched_find_node_by_teid(pi->root,
194 					     LE32_TO_CPU(info->parent_teid));
195 	if (!parent) {
196 		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
197 			  LE32_TO_CPU(info->parent_teid));
198 		return ICE_ERR_PARAM;
199 	}
200 
201 	/* query the current node information from FW before adding it
202 	 * to the SW DB
203 	 */
204 	status = ice_sched_query_elem(hw, LE32_TO_CPU(info->node_teid), &elem);
205 	if (status)
206 		return status;
207 	node = (struct ice_sched_node *)ice_malloc(hw, sizeof(*node));
208 	if (!node)
209 		return ICE_ERR_NO_MEMORY;
210 	if (hw->max_children[layer]) {
211 		/* coverity[suspicious_sizeof] */
212 		node->children = (struct ice_sched_node **)
213 			ice_calloc(hw, hw->max_children[layer], sizeof(*node));
214 		if (!node->children) {
215 			ice_free(hw, node);
216 			return ICE_ERR_NO_MEMORY;
217 		}
218 	}
219 
220 	node->in_use = true;
221 	node->parent = parent;
222 	node->tx_sched_layer = layer;
223 	parent->children[parent->num_children++] = node;
224 	node->info = elem;
225 	return ICE_SUCCESS;
226 }
227 
228 /**
229  * ice_aq_delete_sched_elems - delete scheduler elements
230  * @hw: pointer to the HW struct
231  * @grps_req: number of groups to delete
232  * @buf: pointer to buffer
233  * @buf_size: buffer size in bytes
234  * @grps_del: returns total number of elements deleted
235  * @cd: pointer to command details structure or NULL
236  *
237  * Delete scheduling elements (0x040F)
238  */
239 static enum ice_status
240 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
241 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
242 			  u16 *grps_del, struct ice_sq_cd *cd)
243 {
244 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
245 					   grps_req, (void *)buf, buf_size,
246 					   grps_del, cd);
247 }
248 
249 /**
250  * ice_sched_remove_elems - remove nodes from HW
251  * @hw: pointer to the HW struct
252  * @parent: pointer to the parent node
253  * @num_nodes: number of nodes
254  * @node_teids: array of node teids to be deleted
255  *
256  * This function remove nodes from HW
257  */
258 static enum ice_status
259 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
260 		       u16 num_nodes, u32 *node_teids)
261 {
262 	struct ice_aqc_delete_elem *buf;
263 	u16 i, num_groups_removed = 0;
264 	enum ice_status status;
265 	u16 buf_size;
266 
267 	buf_size = ice_struct_size(buf, teid, num_nodes);
268 	buf = (struct ice_aqc_delete_elem *)ice_malloc(hw, buf_size);
269 	if (!buf)
270 		return ICE_ERR_NO_MEMORY;
271 
272 	buf->hdr.parent_teid = parent->info.node_teid;
273 	buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
274 	for (i = 0; i < num_nodes; i++)
275 		buf->teid[i] = CPU_TO_LE32(node_teids[i]);
276 
277 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
278 					   &num_groups_removed, NULL);
279 	if (status != ICE_SUCCESS || num_groups_removed != 1)
280 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
281 			  hw->adminq.sq_last_status);
282 
283 	ice_free(hw, buf);
284 	return status;
285 }
286 
287 /**
288  * ice_sched_get_first_node - get the first node of the given layer
289  * @pi: port information structure
290  * @parent: pointer the base node of the subtree
291  * @layer: layer number
292  *
293  * This function retrieves the first node of the given layer from the subtree
294  */
295 static struct ice_sched_node *
296 ice_sched_get_first_node(struct ice_port_info *pi,
297 			 struct ice_sched_node *parent, u8 layer)
298 {
299 	return pi->sib_head[parent->tc_num][layer];
300 }
301 
302 /**
303  * ice_sched_get_tc_node - get pointer to TC node
304  * @pi: port information structure
305  * @tc: TC number
306  *
307  * This function returns the TC node pointer
308  */
309 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
310 {
311 	u8 i;
312 
313 	if (!pi || !pi->root)
314 		return NULL;
315 	for (i = 0; i < pi->root->num_children; i++)
316 		if (pi->root->children[i]->tc_num == tc)
317 			return pi->root->children[i];
318 	return NULL;
319 }
320 
321 /**
322  * ice_free_sched_node - Free a Tx scheduler node from SW DB
323  * @pi: port information structure
324  * @node: pointer to the ice_sched_node struct
325  *
326  * This function frees up a node from SW DB as well as from HW
327  *
328  * This function needs to be called with the port_info->sched_lock held
329  */
330 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
331 {
332 	struct ice_sched_node *parent;
333 	struct ice_hw *hw = pi->hw;
334 	u8 i, j;
335 
336 	/* Free the children before freeing up the parent node
337 	 * The parent array is updated below and that shifts the nodes
338 	 * in the array. So always pick the first child if num children > 0
339 	 */
340 	while (node->num_children)
341 		ice_free_sched_node(pi, node->children[0]);
342 
343 	/* Leaf, TC and root nodes can't be deleted by SW */
344 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
345 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
346 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
347 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
348 		u32 teid = LE32_TO_CPU(node->info.node_teid);
349 
350 		ice_sched_remove_elems(hw, node->parent, 1, &teid);
351 	}
352 	parent = node->parent;
353 	/* root has no parent */
354 	if (parent) {
355 		struct ice_sched_node *p;
356 
357 		/* update the parent */
358 		for (i = 0; i < parent->num_children; i++)
359 			if (parent->children[i] == node) {
360 				for (j = i + 1; j < parent->num_children; j++)
361 					parent->children[j - 1] =
362 						parent->children[j];
363 				parent->num_children--;
364 				break;
365 			}
366 
367 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
368 		while (p) {
369 			if (p->sibling == node) {
370 				p->sibling = node->sibling;
371 				break;
372 			}
373 			p = p->sibling;
374 		}
375 
376 		/* update the sibling head if head is getting removed */
377 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
378 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
379 				node->sibling;
380 	}
381 
382 	/* leaf nodes have no children */
383 	if (node->children)
384 		ice_free(hw, node->children);
385 	ice_free(hw, node);
386 }
387 
388 /**
389  * ice_aq_get_dflt_topo - gets default scheduler topology
390  * @hw: pointer to the HW struct
391  * @lport: logical port number
392  * @buf: pointer to buffer
393  * @buf_size: buffer size in bytes
394  * @num_branches: returns total number of queue to port branches
395  * @cd: pointer to command details structure or NULL
396  *
397  * Get default scheduler topology (0x400)
398  */
399 static enum ice_status
400 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
401 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
402 		     u8 *num_branches, struct ice_sq_cd *cd)
403 {
404 	struct ice_aqc_get_topo *cmd;
405 	struct ice_aq_desc desc;
406 	enum ice_status status;
407 
408 	cmd = &desc.params.get_topo;
409 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
410 	cmd->port_num = lport;
411 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
412 	if (!status && num_branches)
413 		*num_branches = cmd->num_branches;
414 
415 	return status;
416 }
417 
418 /**
419  * ice_aq_add_sched_elems - adds scheduling element
420  * @hw: pointer to the HW struct
421  * @grps_req: the number of groups that are requested to be added
422  * @buf: pointer to buffer
423  * @buf_size: buffer size in bytes
424  * @grps_added: returns total number of groups added
425  * @cd: pointer to command details structure or NULL
426  *
427  * Add scheduling elements (0x0401)
428  */
429 static enum ice_status
430 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
431 		       struct ice_aqc_add_elem *buf, u16 buf_size,
432 		       u16 *grps_added, struct ice_sq_cd *cd)
433 {
434 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
435 					   grps_req, (void *)buf, buf_size,
436 					   grps_added, cd);
437 }
438 
439 /**
440  * ice_aq_cfg_sched_elems - configures scheduler elements
441  * @hw: pointer to the HW struct
442  * @elems_req: number of elements to configure
443  * @buf: pointer to buffer
444  * @buf_size: buffer size in bytes
445  * @elems_cfgd: returns total number of elements configured
446  * @cd: pointer to command details structure or NULL
447  *
448  * Configure scheduling elements (0x0403)
449  */
450 static enum ice_status
451 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
452 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
453 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
454 {
455 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
456 					   elems_req, (void *)buf, buf_size,
457 					   elems_cfgd, cd);
458 }
459 
460 /**
461  * ice_aq_move_sched_elems - move scheduler elements
462  * @hw: pointer to the HW struct
463  * @grps_req: number of groups to move
464  * @buf: pointer to buffer
465  * @buf_size: buffer size in bytes
466  * @grps_movd: returns total number of groups moved
467  * @cd: pointer to command details structure or NULL
468  *
469  * Move scheduling elements (0x0408)
470  */
471 static enum ice_status
472 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
473 			struct ice_aqc_move_elem *buf, u16 buf_size,
474 			u16 *grps_movd, struct ice_sq_cd *cd)
475 {
476 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
477 					   grps_req, (void *)buf, buf_size,
478 					   grps_movd, cd);
479 }
480 
481 /**
482  * ice_aq_suspend_sched_elems - suspend scheduler elements
483  * @hw: pointer to the HW struct
484  * @elems_req: number of elements to suspend
485  * @buf: pointer to buffer
486  * @buf_size: buffer size in bytes
487  * @elems_ret: returns total number of elements suspended
488  * @cd: pointer to command details structure or NULL
489  *
490  * Suspend scheduling elements (0x0409)
491  */
492 static enum ice_status
493 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
494 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
495 {
496 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
497 					   elems_req, (void *)buf, buf_size,
498 					   elems_ret, cd);
499 }
500 
501 /**
502  * ice_aq_resume_sched_elems - resume scheduler elements
503  * @hw: pointer to the HW struct
504  * @elems_req: number of elements to resume
505  * @buf: pointer to buffer
506  * @buf_size: buffer size in bytes
507  * @elems_ret: returns total number of elements resumed
508  * @cd: pointer to command details structure or NULL
509  *
510  * resume scheduling elements (0x040A)
511  */
512 static enum ice_status
513 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
514 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
515 {
516 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
517 					   elems_req, (void *)buf, buf_size,
518 					   elems_ret, cd);
519 }
520 
521 /**
522  * ice_aq_query_sched_res - query scheduler resource
523  * @hw: pointer to the HW struct
524  * @buf_size: buffer size in bytes
525  * @buf: pointer to buffer
526  * @cd: pointer to command details structure or NULL
527  *
528  * Query scheduler resource allocation (0x0412)
529  */
530 static enum ice_status
531 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
532 		       struct ice_aqc_query_txsched_res_resp *buf,
533 		       struct ice_sq_cd *cd)
534 {
535 	struct ice_aq_desc desc;
536 
537 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
538 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
539 }
540 
541 /**
542  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
543  * @hw: pointer to the HW struct
544  * @num_nodes: number of nodes
545  * @node_teids: array of node teids to be suspended or resumed
546  * @suspend: true means suspend / false means resume
547  *
548  * This function suspends or resumes HW nodes
549  */
550 static enum ice_status
551 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
552 			       bool suspend)
553 {
554 	u16 i, buf_size, num_elem_ret = 0;
555 	enum ice_status status;
556 	__le32 *buf;
557 
558 	buf_size = sizeof(*buf) * num_nodes;
559 	buf = (__le32 *)ice_malloc(hw, buf_size);
560 	if (!buf)
561 		return ICE_ERR_NO_MEMORY;
562 
563 	for (i = 0; i < num_nodes; i++)
564 		buf[i] = CPU_TO_LE32(node_teids[i]);
565 
566 	if (suspend)
567 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
568 						    buf_size, &num_elem_ret,
569 						    NULL);
570 	else
571 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
572 						   buf_size, &num_elem_ret,
573 						   NULL);
574 	if (status != ICE_SUCCESS || num_elem_ret != num_nodes)
575 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
576 
577 	ice_free(hw, buf);
578 	return status;
579 }
580 
581 /**
582  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
583  * @hw: pointer to the HW struct
584  * @vsi_handle: VSI handle
585  * @tc: TC number
586  * @new_numqs: number of queues
587  */
588 static enum ice_status
589 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
590 {
591 	struct ice_vsi_ctx *vsi_ctx;
592 	struct ice_q_ctx *q_ctx;
593 
594 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
595 	if (!vsi_ctx)
596 		return ICE_ERR_PARAM;
597 	/* allocate LAN queue contexts */
598 	if (!vsi_ctx->lan_q_ctx[tc]) {
599 		vsi_ctx->lan_q_ctx[tc] = (struct ice_q_ctx *)
600 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
601 		if (!vsi_ctx->lan_q_ctx[tc])
602 			return ICE_ERR_NO_MEMORY;
603 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
604 		return ICE_SUCCESS;
605 	}
606 	/* num queues are increased, update the queue contexts */
607 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
608 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
609 
610 		q_ctx = (struct ice_q_ctx *)
611 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
612 		if (!q_ctx)
613 			return ICE_ERR_NO_MEMORY;
614 		ice_memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
615 			   prev_num * sizeof(*q_ctx), ICE_DMA_TO_NONDMA);
616 		ice_free(hw, vsi_ctx->lan_q_ctx[tc]);
617 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
618 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
619 	}
620 	return ICE_SUCCESS;
621 }
622 
623 /**
624  * ice_aq_rl_profile - performs a rate limiting task
625  * @hw: pointer to the HW struct
626  * @opcode: opcode for add, query, or remove profile(s)
627  * @num_profiles: the number of profiles
628  * @buf: pointer to buffer
629  * @buf_size: buffer size in bytes
630  * @num_processed: number of processed add or remove profile(s) to return
631  * @cd: pointer to command details structure
632  *
633  * RL profile function to add, query, or remove profile(s)
634  */
635 static enum ice_status
636 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
637 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
638 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
639 {
640 	struct ice_aqc_rl_profile *cmd;
641 	struct ice_aq_desc desc;
642 	enum ice_status status;
643 
644 	cmd = &desc.params.rl_profile;
645 
646 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
647 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
648 	cmd->num_profiles = CPU_TO_LE16(num_profiles);
649 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
650 	if (!status && num_processed)
651 		*num_processed = LE16_TO_CPU(cmd->num_processed);
652 	return status;
653 }
654 
655 /**
656  * ice_aq_add_rl_profile - adds rate limiting profile(s)
657  * @hw: pointer to the HW struct
658  * @num_profiles: the number of profile(s) to be add
659  * @buf: pointer to buffer
660  * @buf_size: buffer size in bytes
661  * @num_profiles_added: total number of profiles added to return
662  * @cd: pointer to command details structure
663  *
664  * Add RL profile (0x0410)
665  */
666 static enum ice_status
667 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
668 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
669 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
670 {
671 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
672 				 buf, buf_size, num_profiles_added, cd);
673 }
674 
675 /**
676  * ice_aq_query_rl_profile - query rate limiting profile(s)
677  * @hw: pointer to the HW struct
678  * @num_profiles: the number of profile(s) to query
679  * @buf: pointer to buffer
680  * @buf_size: buffer size in bytes
681  * @cd: pointer to command details structure
682  *
683  * Query RL profile (0x0411)
684  */
685 enum ice_status
686 ice_aq_query_rl_profile(struct ice_hw *hw, u16 num_profiles,
687 			struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
688 			struct ice_sq_cd *cd)
689 {
690 	return ice_aq_rl_profile(hw, ice_aqc_opc_query_rl_profiles,
691 				 num_profiles, buf, buf_size, NULL, cd);
692 }
693 
694 /**
695  * ice_aq_remove_rl_profile - removes RL profile(s)
696  * @hw: pointer to the HW struct
697  * @num_profiles: the number of profile(s) to remove
698  * @buf: pointer to buffer
699  * @buf_size: buffer size in bytes
700  * @num_profiles_removed: total number of profiles removed to return
701  * @cd: pointer to command details structure or NULL
702  *
703  * Remove RL profile (0x0415)
704  */
705 static enum ice_status
706 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
707 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
708 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
709 {
710 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
711 				 num_profiles, buf, buf_size,
712 				 num_profiles_removed, cd);
713 }
714 
715 /**
716  * ice_sched_del_rl_profile - remove RL profile
717  * @hw: pointer to the HW struct
718  * @rl_info: rate limit profile information
719  *
720  * If the profile ID is not referenced anymore, it removes profile ID with
721  * its associated parameters from HW DB,and locally. The caller needs to
722  * hold scheduler lock.
723  */
724 static enum ice_status
725 ice_sched_del_rl_profile(struct ice_hw *hw,
726 			 struct ice_aqc_rl_profile_info *rl_info)
727 {
728 	struct ice_aqc_rl_profile_elem *buf;
729 	u16 num_profiles_removed;
730 	enum ice_status status;
731 	u16 num_profiles = 1;
732 
733 	if (rl_info->prof_id_ref != 0)
734 		return ICE_ERR_IN_USE;
735 
736 	/* Safe to remove profile ID */
737 	buf = &rl_info->profile;
738 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
739 					  &num_profiles_removed, NULL);
740 	if (status || num_profiles_removed != num_profiles)
741 		return ICE_ERR_CFG;
742 
743 	/* Delete stale entry now */
744 	LIST_DEL(&rl_info->list_entry);
745 	ice_free(hw, rl_info);
746 	return status;
747 }
748 
749 /**
750  * ice_sched_clear_rl_prof - clears RL prof entries
751  * @pi: port information structure
752  *
753  * This function removes all RL profile from HW as well as from SW DB.
754  */
755 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
756 {
757 	u16 ln;
758 	struct ice_hw *hw = pi->hw;
759 
760 	for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
761 		struct ice_aqc_rl_profile_info *rl_prof_elem;
762 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
763 
764 		LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
765 					 &hw->rl_prof_list[ln],
766 					 ice_aqc_rl_profile_info, list_entry) {
767 			enum ice_status status;
768 
769 			rl_prof_elem->prof_id_ref = 0;
770 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
771 			if (status) {
772 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
773 				/* On error, free mem required */
774 				LIST_DEL(&rl_prof_elem->list_entry);
775 				ice_free(hw, rl_prof_elem);
776 			}
777 		}
778 	}
779 }
780 
781 /**
782  * ice_sched_clear_agg - clears the aggregator related information
783  * @hw: pointer to the hardware structure
784  *
785  * This function removes aggregator list and free up aggregator related memory
786  * previously allocated.
787  */
788 void ice_sched_clear_agg(struct ice_hw *hw)
789 {
790 	struct ice_sched_agg_info *agg_info;
791 	struct ice_sched_agg_info *atmp;
792 
793 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &hw->agg_list,
794 				 ice_sched_agg_info,
795 				 list_entry) {
796 		struct ice_sched_agg_vsi_info *agg_vsi_info;
797 		struct ice_sched_agg_vsi_info *vtmp;
798 
799 		LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
800 					 &agg_info->agg_vsi_list,
801 					 ice_sched_agg_vsi_info, list_entry) {
802 			LIST_DEL(&agg_vsi_info->list_entry);
803 			ice_free(hw, agg_vsi_info);
804 		}
805 		LIST_DEL(&agg_info->list_entry);
806 		ice_free(hw, agg_info);
807 	}
808 }
809 
810 /**
811  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
812  * @pi: port information structure
813  *
814  * This function removes all the nodes from HW as well as from SW DB.
815  */
816 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
817 {
818 	if (!pi)
819 		return;
820 	/* remove RL profiles related lists */
821 	ice_sched_clear_rl_prof(pi);
822 	if (pi->root) {
823 		ice_free_sched_node(pi, pi->root);
824 		pi->root = NULL;
825 	}
826 }
827 
828 /**
829  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
830  * @pi: port information structure
831  *
832  * Cleanup scheduling elements from SW DB
833  */
834 void ice_sched_clear_port(struct ice_port_info *pi)
835 {
836 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
837 		return;
838 
839 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
840 	ice_acquire_lock(&pi->sched_lock);
841 	ice_sched_clear_tx_topo(pi);
842 	ice_release_lock(&pi->sched_lock);
843 	ice_destroy_lock(&pi->sched_lock);
844 }
845 
846 /**
847  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
848  * @hw: pointer to the HW struct
849  *
850  * Cleanup scheduling elements from SW DB for all the ports
851  */
852 void ice_sched_cleanup_all(struct ice_hw *hw)
853 {
854 	if (!hw)
855 		return;
856 
857 	if (hw->layer_info) {
858 		ice_free(hw, hw->layer_info);
859 		hw->layer_info = NULL;
860 	}
861 
862 	ice_sched_clear_port(hw->port_info);
863 
864 	hw->num_tx_sched_layers = 0;
865 	hw->num_tx_sched_phys_layers = 0;
866 	hw->flattened_layers = 0;
867 	hw->max_cgds = 0;
868 }
869 
870 /**
871  * ice_aq_cfg_l2_node_cgd - configures L2 node to CGD mapping
872  * @hw: pointer to the HW struct
873  * @num_l2_nodes: the number of L2 nodes whose CGDs to configure
874  * @buf: pointer to buffer
875  * @buf_size: buffer size in bytes
876  * @cd: pointer to command details structure or NULL
877  *
878  * Configure L2 Node CGD (0x0414)
879  */
880 enum ice_status
881 ice_aq_cfg_l2_node_cgd(struct ice_hw *hw, u16 num_l2_nodes,
882 		       struct ice_aqc_cfg_l2_node_cgd_elem *buf,
883 		       u16 buf_size, struct ice_sq_cd *cd)
884 {
885 	struct ice_aqc_cfg_l2_node_cgd *cmd;
886 	struct ice_aq_desc desc;
887 
888 	cmd = &desc.params.cfg_l2_node_cgd;
889 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_l2_node_cgd);
890 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
891 
892 	cmd->num_l2_nodes = CPU_TO_LE16(num_l2_nodes);
893 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
894 }
895 
896 /**
897  * ice_sched_add_elems - add nodes to HW and SW DB
898  * @pi: port information structure
899  * @tc_node: pointer to the branch node
900  * @parent: pointer to the parent node
901  * @layer: layer number to add nodes
902  * @num_nodes: number of nodes
903  * @num_nodes_added: pointer to num nodes added
904  * @first_node_teid: if new nodes are added then return the TEID of first node
905  *
906  * This function add nodes to HW as well as to SW DB for a given layer
907  */
908 static enum ice_status
909 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
910 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
911 		    u16 *num_nodes_added, u32 *first_node_teid)
912 {
913 	struct ice_sched_node *prev, *new_node;
914 	struct ice_aqc_add_elem *buf;
915 	u16 i, num_groups_added = 0;
916 	enum ice_status status = ICE_SUCCESS;
917 	struct ice_hw *hw = pi->hw;
918 	u16 buf_size;
919 	u32 teid;
920 
921 	buf_size = ice_struct_size(buf, generic, num_nodes);
922 	buf = (struct ice_aqc_add_elem *)ice_malloc(hw, buf_size);
923 	if (!buf)
924 		return ICE_ERR_NO_MEMORY;
925 
926 	buf->hdr.parent_teid = parent->info.node_teid;
927 	buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
928 	for (i = 0; i < num_nodes; i++) {
929 		buf->generic[i].parent_teid = parent->info.node_teid;
930 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
931 		buf->generic[i].data.valid_sections =
932 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
933 			ICE_AQC_ELEM_VALID_EIR;
934 		buf->generic[i].data.generic = 0;
935 		buf->generic[i].data.cir_bw.bw_profile_idx =
936 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
937 		buf->generic[i].data.cir_bw.bw_alloc =
938 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
939 		buf->generic[i].data.eir_bw.bw_profile_idx =
940 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
941 		buf->generic[i].data.eir_bw.bw_alloc =
942 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
943 	}
944 
945 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
946 					&num_groups_added, NULL);
947 	if (status != ICE_SUCCESS || num_groups_added != 1) {
948 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
949 			  hw->adminq.sq_last_status);
950 		ice_free(hw, buf);
951 		return ICE_ERR_CFG;
952 	}
953 
954 	*num_nodes_added = num_nodes;
955 	/* add nodes to the SW DB */
956 	for (i = 0; i < num_nodes; i++) {
957 		status = ice_sched_add_node(pi, layer, &buf->generic[i]);
958 		if (status != ICE_SUCCESS) {
959 			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
960 				  status);
961 			break;
962 		}
963 
964 		teid = LE32_TO_CPU(buf->generic[i].node_teid);
965 		new_node = ice_sched_find_node_by_teid(parent, teid);
966 		if (!new_node) {
967 			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
968 			break;
969 		}
970 
971 		new_node->sibling = NULL;
972 		new_node->tc_num = tc_node->tc_num;
973 
974 		/* add it to previous node sibling pointer */
975 		/* Note: siblings are not linked across branches */
976 		prev = ice_sched_get_first_node(pi, tc_node, layer);
977 		if (prev && prev != new_node) {
978 			while (prev->sibling)
979 				prev = prev->sibling;
980 			prev->sibling = new_node;
981 		}
982 
983 		/* initialize the sibling head */
984 		if (!pi->sib_head[tc_node->tc_num][layer])
985 			pi->sib_head[tc_node->tc_num][layer] = new_node;
986 
987 		if (i == 0)
988 			*first_node_teid = teid;
989 	}
990 
991 	ice_free(hw, buf);
992 	return status;
993 }
994 
995 /**
996  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
997  * @pi: port information structure
998  * @tc_node: pointer to TC node
999  * @parent: pointer to parent node
1000  * @layer: layer number to add nodes
1001  * @num_nodes: number of nodes to be added
1002  * @first_node_teid: pointer to the first node TEID
1003  * @num_nodes_added: pointer to number of nodes added
1004  *
1005  * This function add nodes to a given layer.
1006  */
1007 static enum ice_status
1008 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1009 			     struct ice_sched_node *tc_node,
1010 			     struct ice_sched_node *parent, u8 layer,
1011 			     u16 num_nodes, u32 *first_node_teid,
1012 			     u16 *num_nodes_added)
1013 {
1014 	u32 *first_teid_ptr = first_node_teid;
1015 	u16 new_num_nodes, max_child_nodes;
1016 	enum ice_status status = ICE_SUCCESS;
1017 	struct ice_hw *hw = pi->hw;
1018 	u16 num_added = 0;
1019 	u32 temp;
1020 
1021 	*num_nodes_added = 0;
1022 
1023 	if (!num_nodes)
1024 		return status;
1025 
1026 	if (!parent || layer < hw->sw_entry_point_layer)
1027 		return ICE_ERR_PARAM;
1028 
1029 	/* max children per node per layer */
1030 	max_child_nodes = hw->max_children[parent->tx_sched_layer];
1031 
1032 	/* current number of children + required nodes exceed max children ? */
1033 	if ((parent->num_children + num_nodes) > max_child_nodes) {
1034 		/* Fail if the parent is a TC node */
1035 		if (parent == tc_node)
1036 			return ICE_ERR_CFG;
1037 
1038 		/* utilize all the spaces if the parent is not full */
1039 		if (parent->num_children < max_child_nodes) {
1040 			new_num_nodes = max_child_nodes - parent->num_children;
1041 			/* this recursion is intentional, and wouldn't
1042 			 * go more than 2 calls
1043 			 */
1044 			status = ice_sched_add_nodes_to_layer(pi, tc_node,
1045 							      parent, layer,
1046 							      new_num_nodes,
1047 							      first_node_teid,
1048 							      &num_added);
1049 			if (status != ICE_SUCCESS)
1050 				return status;
1051 
1052 			*num_nodes_added += num_added;
1053 		}
1054 		/* Don't modify the first node TEID memory if the first node was
1055 		 * added already in the above call. Instead send some temp
1056 		 * memory for all other recursive calls.
1057 		 */
1058 		if (num_added)
1059 			first_teid_ptr = &temp;
1060 
1061 		new_num_nodes = num_nodes - num_added;
1062 
1063 		/* This parent is full, try the next sibling */
1064 		parent = parent->sibling;
1065 
1066 		/* this recursion is intentional, for 1024 queues
1067 		 * per VSI, it goes max of 16 iterations.
1068 		 * 1024 / 8 = 128 layer 8 nodes
1069 		 * 128 /8 = 16 (add 8 nodes per iteration)
1070 		 */
1071 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1072 						      layer, new_num_nodes,
1073 						      first_teid_ptr,
1074 						      &num_added);
1075 		*num_nodes_added += num_added;
1076 		return status;
1077 	}
1078 
1079 	status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1080 				     num_nodes_added, first_node_teid);
1081 	return status;
1082 }
1083 
1084 /**
1085  * ice_sched_get_qgrp_layer - get the current queue group layer number
1086  * @hw: pointer to the HW struct
1087  *
1088  * This function returns the current queue group layer number
1089  */
1090 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1091 {
1092 	/* It's always total layers - 1, the array is 0 relative so -2 */
1093 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1094 }
1095 
1096 /**
1097  * ice_sched_get_vsi_layer - get the current VSI layer number
1098  * @hw: pointer to the HW struct
1099  *
1100  * This function returns the current VSI layer number
1101  */
1102 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1103 {
1104 	/* Num Layers       VSI layer
1105 	 *     9               6
1106 	 *     7               4
1107 	 *     5 or less       sw_entry_point_layer
1108 	 */
1109 	/* calculate the VSI layer based on number of layers. */
1110 	if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1111 		u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1112 
1113 		if (layer > hw->sw_entry_point_layer)
1114 			return layer;
1115 	}
1116 	return hw->sw_entry_point_layer;
1117 }
1118 
1119 /**
1120  * ice_sched_get_agg_layer - get the current aggregator layer number
1121  * @hw: pointer to the HW struct
1122  *
1123  * This function returns the current aggregator layer number
1124  */
1125 static u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1126 {
1127 	/* Num Layers       aggregator layer
1128 	 *     9               4
1129 	 *     7 or less       sw_entry_point_layer
1130 	 */
1131 	/* calculate the aggregator layer based on number of layers. */
1132 	if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1133 		u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1134 
1135 		if (layer > hw->sw_entry_point_layer)
1136 			return layer;
1137 	}
1138 	return hw->sw_entry_point_layer;
1139 }
1140 
1141 /**
1142  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1143  * @pi: port information structure
1144  *
1145  * This function removes the leaf node that was created by the FW
1146  * during initialization
1147  */
1148 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1149 {
1150 	struct ice_sched_node *node;
1151 
1152 	node = pi->root;
1153 	while (node) {
1154 		if (!node->num_children)
1155 			break;
1156 		node = node->children[0];
1157 	}
1158 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1159 		u32 teid = LE32_TO_CPU(node->info.node_teid);
1160 		enum ice_status status;
1161 
1162 		/* remove the default leaf node */
1163 		status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1164 		if (!status)
1165 			ice_free_sched_node(pi, node);
1166 	}
1167 }
1168 
1169 /**
1170  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1171  * @pi: port information structure
1172  *
1173  * This function frees all the nodes except root and TC that were created by
1174  * the FW during initialization
1175  */
1176 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1177 {
1178 	struct ice_sched_node *node;
1179 
1180 	ice_rm_dflt_leaf_node(pi);
1181 
1182 	/* remove the default nodes except TC and root nodes */
1183 	node = pi->root;
1184 	while (node) {
1185 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1186 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1187 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1188 			ice_free_sched_node(pi, node);
1189 			break;
1190 		}
1191 
1192 		if (!node->num_children)
1193 			break;
1194 		node = node->children[0];
1195 	}
1196 }
1197 
1198 /**
1199  * ice_sched_init_port - Initialize scheduler by querying information from FW
1200  * @pi: port info structure for the tree to cleanup
1201  *
1202  * This function is the initial call to find the total number of Tx scheduler
1203  * resources, default topology created by firmware and storing the information
1204  * in SW DB.
1205  */
1206 enum ice_status ice_sched_init_port(struct ice_port_info *pi)
1207 {
1208 	struct ice_aqc_get_topo_elem *buf;
1209 	enum ice_status status;
1210 	struct ice_hw *hw;
1211 	u8 num_branches;
1212 	u16 num_elems;
1213 	u8 i, j;
1214 
1215 	if (!pi)
1216 		return ICE_ERR_PARAM;
1217 	hw = pi->hw;
1218 
1219 	/* Query the Default Topology from FW */
1220 	buf = (struct ice_aqc_get_topo_elem *)ice_malloc(hw,
1221 							 ICE_AQ_MAX_BUF_LEN);
1222 	if (!buf)
1223 		return ICE_ERR_NO_MEMORY;
1224 
1225 	/* Query default scheduling tree topology */
1226 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1227 				      &num_branches, NULL);
1228 	if (status)
1229 		goto err_init_port;
1230 
1231 	/* num_branches should be between 1-8 */
1232 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1233 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1234 			  num_branches);
1235 		status = ICE_ERR_PARAM;
1236 		goto err_init_port;
1237 	}
1238 
1239 	/* get the number of elements on the default/first branch */
1240 	num_elems = LE16_TO_CPU(buf[0].hdr.num_elems);
1241 
1242 	/* num_elems should always be between 1-9 */
1243 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1244 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1245 			  num_elems);
1246 		status = ICE_ERR_PARAM;
1247 		goto err_init_port;
1248 	}
1249 
1250 	/* If the last node is a leaf node then the index of the queue group
1251 	 * layer is two less than the number of elements.
1252 	 */
1253 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1254 	    ICE_AQC_ELEM_TYPE_LEAF)
1255 		pi->last_node_teid =
1256 			LE32_TO_CPU(buf[0].generic[num_elems - 2].node_teid);
1257 	else
1258 		pi->last_node_teid =
1259 			LE32_TO_CPU(buf[0].generic[num_elems - 1].node_teid);
1260 
1261 	/* Insert the Tx Sched root node */
1262 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1263 	if (status)
1264 		goto err_init_port;
1265 
1266 	/* Parse the default tree and cache the information */
1267 	for (i = 0; i < num_branches; i++) {
1268 		num_elems = LE16_TO_CPU(buf[i].hdr.num_elems);
1269 
1270 		/* Skip root element as already inserted */
1271 		for (j = 1; j < num_elems; j++) {
1272 			/* update the sw entry point */
1273 			if (buf[0].generic[j].data.elem_type ==
1274 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1275 				hw->sw_entry_point_layer = j;
1276 
1277 			status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
1278 			if (status)
1279 				goto err_init_port;
1280 		}
1281 	}
1282 
1283 	/* Remove the default nodes. */
1284 	if (pi->root)
1285 		ice_sched_rm_dflt_nodes(pi);
1286 
1287 	/* initialize the port for handling the scheduler tree */
1288 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1289 	ice_init_lock(&pi->sched_lock);
1290 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1291 		INIT_LIST_HEAD(&hw->rl_prof_list[i]);
1292 
1293 err_init_port:
1294 	if (status && pi->root) {
1295 		ice_free_sched_node(pi, pi->root);
1296 		pi->root = NULL;
1297 	}
1298 
1299 	ice_free(hw, buf);
1300 	return status;
1301 }
1302 
1303 /**
1304  * ice_sched_get_node - Get the struct ice_sched_node for given TEID
1305  * @pi: port information structure
1306  * @teid: Scheduler node TEID
1307  *
1308  * This function retrieves the ice_sched_node struct for given TEID from
1309  * the SW DB and returns it to the caller.
1310  */
1311 struct ice_sched_node *ice_sched_get_node(struct ice_port_info *pi, u32 teid)
1312 {
1313 	struct ice_sched_node *node;
1314 
1315 	if (!pi)
1316 		return NULL;
1317 
1318 	/* Find the node starting from root */
1319 	ice_acquire_lock(&pi->sched_lock);
1320 	node = ice_sched_find_node_by_teid(pi->root, teid);
1321 	ice_release_lock(&pi->sched_lock);
1322 
1323 	if (!node)
1324 		ice_debug(pi->hw, ICE_DBG_SCHED, "Node not found for teid=0x%x\n", teid);
1325 
1326 	return node;
1327 }
1328 
1329 /**
1330  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1331  * @hw: pointer to the HW struct
1332  *
1333  * query FW for allocated scheduler resources and store in HW struct
1334  */
1335 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
1336 {
1337 	struct ice_aqc_query_txsched_res_resp *buf;
1338 	enum ice_status status = ICE_SUCCESS;
1339 	__le16 max_sibl;
1340 	u8 i;
1341 
1342 	if (hw->layer_info)
1343 		return status;
1344 
1345 	buf = (struct ice_aqc_query_txsched_res_resp *)
1346 		ice_malloc(hw, sizeof(*buf));
1347 	if (!buf)
1348 		return ICE_ERR_NO_MEMORY;
1349 
1350 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1351 	if (status)
1352 		goto sched_query_out;
1353 
1354 	hw->num_tx_sched_layers = LE16_TO_CPU(buf->sched_props.logical_levels);
1355 	hw->num_tx_sched_phys_layers =
1356 		LE16_TO_CPU(buf->sched_props.phys_levels);
1357 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1358 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1359 
1360 	/* max sibling group size of current layer refers to the max children
1361 	 * of the below layer node.
1362 	 * layer 1 node max children will be layer 2 max sibling group size
1363 	 * layer 2 node max children will be layer 3 max sibling group size
1364 	 * and so on. This array will be populated from root (index 0) to
1365 	 * qgroup layer 7. Leaf node has no children.
1366 	 */
1367 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1368 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1369 		hw->max_children[i] = LE16_TO_CPU(max_sibl);
1370 	}
1371 
1372 	hw->layer_info = (struct ice_aqc_layer_props *)
1373 			 ice_memdup(hw, buf->layer_props,
1374 				    (hw->num_tx_sched_layers *
1375 				     sizeof(*hw->layer_info)),
1376 				    ICE_DMA_TO_DMA);
1377 	if (!hw->layer_info) {
1378 		status = ICE_ERR_NO_MEMORY;
1379 		goto sched_query_out;
1380 	}
1381 
1382 sched_query_out:
1383 	ice_free(hw, buf);
1384 	return status;
1385 }
1386 
1387 /**
1388  * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1389  * @hw: pointer to the HW struct
1390  *
1391  * Determine the PSM clock frequency and store in HW struct
1392  */
1393 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1394 {
1395 	u32 val, clk_src;
1396 
1397 	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1398 	clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1399 		GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1400 
1401 #define PSM_CLK_SRC_367_MHZ 0x0
1402 #define PSM_CLK_SRC_416_MHZ 0x1
1403 #define PSM_CLK_SRC_446_MHZ 0x2
1404 #define PSM_CLK_SRC_390_MHZ 0x3
1405 
1406 	switch (clk_src) {
1407 	case PSM_CLK_SRC_367_MHZ:
1408 		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1409 		break;
1410 	case PSM_CLK_SRC_416_MHZ:
1411 		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1412 		break;
1413 	case PSM_CLK_SRC_446_MHZ:
1414 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1415 		break;
1416 	case PSM_CLK_SRC_390_MHZ:
1417 		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1418 		break;
1419 	default:
1420 		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1421 			  clk_src);
1422 		/* fall back to a safe default */
1423 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1424 	}
1425 }
1426 
1427 /**
1428  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1429  * @hw: pointer to the HW struct
1430  * @base: pointer to the base node
1431  * @node: pointer to the node to search
1432  *
1433  * This function checks whether a given node is part of the base node
1434  * subtree or not
1435  */
1436 bool
1437 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1438 			       struct ice_sched_node *node)
1439 {
1440 	u8 i;
1441 
1442 	for (i = 0; i < base->num_children; i++) {
1443 		struct ice_sched_node *child = base->children[i];
1444 
1445 		if (node == child)
1446 			return true;
1447 
1448 		if (child->tx_sched_layer > node->tx_sched_layer)
1449 			return false;
1450 
1451 		/* this recursion is intentional, and wouldn't
1452 		 * go more than 8 calls
1453 		 */
1454 		if (ice_sched_find_node_in_subtree(hw, child, node))
1455 			return true;
1456 	}
1457 	return false;
1458 }
1459 
1460 /**
1461  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1462  * @pi: port information structure
1463  * @vsi_node: software VSI handle
1464  * @qgrp_node: first queue group node identified for scanning
1465  * @owner: LAN or RDMA
1466  *
1467  * This function retrieves a free LAN or RDMA queue group node by scanning
1468  * qgrp_node and its siblings for the queue group with the fewest number
1469  * of queues currently assigned.
1470  */
1471 static struct ice_sched_node *
1472 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1473 			struct ice_sched_node *vsi_node,
1474 			struct ice_sched_node *qgrp_node, u8 owner)
1475 {
1476 	struct ice_sched_node *min_qgrp;
1477 	u8 min_children;
1478 
1479 	if (!qgrp_node)
1480 		return qgrp_node;
1481 	min_children = qgrp_node->num_children;
1482 	if (!min_children)
1483 		return qgrp_node;
1484 	min_qgrp = qgrp_node;
1485 	/* scan all queue groups until find a node which has less than the
1486 	 * minimum number of children. This way all queue group nodes get
1487 	 * equal number of shares and active. The bandwidth will be equally
1488 	 * distributed across all queues.
1489 	 */
1490 	while (qgrp_node) {
1491 		/* make sure the qgroup node is part of the VSI subtree */
1492 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1493 			if (qgrp_node->num_children < min_children &&
1494 			    qgrp_node->owner == owner) {
1495 				/* replace the new min queue group node */
1496 				min_qgrp = qgrp_node;
1497 				min_children = min_qgrp->num_children;
1498 				/* break if it has no children, */
1499 				if (!min_children)
1500 					break;
1501 			}
1502 		qgrp_node = qgrp_node->sibling;
1503 	}
1504 	return min_qgrp;
1505 }
1506 
1507 /**
1508  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1509  * @pi: port information structure
1510  * @vsi_handle: software VSI handle
1511  * @tc: branch number
1512  * @owner: LAN or RDMA
1513  *
1514  * This function retrieves a free LAN or RDMA queue group node
1515  */
1516 struct ice_sched_node *
1517 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1518 			   u8 owner)
1519 {
1520 	struct ice_sched_node *vsi_node, *qgrp_node;
1521 	struct ice_vsi_ctx *vsi_ctx;
1522 	u16 max_children;
1523 	u8 qgrp_layer;
1524 
1525 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1526 	max_children = pi->hw->max_children[qgrp_layer];
1527 
1528 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1529 	if (!vsi_ctx)
1530 		return NULL;
1531 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1532 	/* validate invalid VSI ID */
1533 	if (!vsi_node)
1534 		return NULL;
1535 
1536 	/* get the first queue group node from VSI sub-tree */
1537 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1538 	while (qgrp_node) {
1539 		/* make sure the qgroup node is part of the VSI subtree */
1540 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1541 			if (qgrp_node->num_children < max_children &&
1542 			    qgrp_node->owner == owner)
1543 				break;
1544 		qgrp_node = qgrp_node->sibling;
1545 	}
1546 
1547 	/* Select the best queue group */
1548 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1549 }
1550 
1551 /**
1552  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1553  * @pi: pointer to the port information structure
1554  * @tc_node: pointer to the TC node
1555  * @vsi_handle: software VSI handle
1556  *
1557  * This function retrieves a VSI node for a given VSI ID from a given
1558  * TC branch
1559  */
1560 struct ice_sched_node *
1561 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1562 		       u16 vsi_handle)
1563 {
1564 	struct ice_sched_node *node;
1565 	u8 vsi_layer;
1566 
1567 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1568 	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1569 
1570 	/* Check whether it already exists */
1571 	while (node) {
1572 		if (node->vsi_handle == vsi_handle)
1573 			return node;
1574 		node = node->sibling;
1575 	}
1576 
1577 	return node;
1578 }
1579 
1580 /**
1581  * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1582  * @pi: pointer to the port information structure
1583  * @tc_node: pointer to the TC node
1584  * @agg_id: aggregator ID
1585  *
1586  * This function retrieves an aggregator node for a given aggregator ID from
1587  * a given TC branch
1588  */
1589 static struct ice_sched_node *
1590 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1591 		       u32 agg_id)
1592 {
1593 	struct ice_sched_node *node;
1594 	struct ice_hw *hw = pi->hw;
1595 	u8 agg_layer;
1596 
1597 	if (!hw)
1598 		return NULL;
1599 	agg_layer = ice_sched_get_agg_layer(hw);
1600 	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1601 
1602 	/* Check whether it already exists */
1603 	while (node) {
1604 		if (node->agg_id == agg_id)
1605 			return node;
1606 		node = node->sibling;
1607 	}
1608 
1609 	return node;
1610 }
1611 
1612 /**
1613  * ice_sched_check_node - Compare node parameters between SW DB and HW DB
1614  * @hw: pointer to the HW struct
1615  * @node: pointer to the ice_sched_node struct
1616  *
1617  * This function queries and compares the HW element with SW DB node parameters
1618  */
1619 static bool ice_sched_check_node(struct ice_hw *hw, struct ice_sched_node *node)
1620 {
1621 	struct ice_aqc_txsched_elem_data buf;
1622 	enum ice_status status;
1623 	u32 node_teid;
1624 
1625 	node_teid = LE32_TO_CPU(node->info.node_teid);
1626 	status = ice_sched_query_elem(hw, node_teid, &buf);
1627 	if (status != ICE_SUCCESS)
1628 		return false;
1629 
1630 	if (memcmp(&buf, &node->info, sizeof(buf))) {
1631 		ice_debug(hw, ICE_DBG_SCHED, "Node mismatch for teid=0x%x\n",
1632 			  node_teid);
1633 		return false;
1634 	}
1635 
1636 	return true;
1637 }
1638 
1639 /**
1640  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1641  * @hw: pointer to the HW struct
1642  * @num_qs: number of queues
1643  * @num_nodes: num nodes array
1644  *
1645  * This function calculates the number of VSI child nodes based on the
1646  * number of queues.
1647  */
1648 static void
1649 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1650 {
1651 	u16 num = num_qs;
1652 	u8 i, qgl, vsil;
1653 
1654 	qgl = ice_sched_get_qgrp_layer(hw);
1655 	vsil = ice_sched_get_vsi_layer(hw);
1656 
1657 	/* calculate num nodes from queue group to VSI layer */
1658 	for (i = qgl; i > vsil; i--) {
1659 		/* round to the next integer if there is a remainder */
1660 		num = DIVIDE_AND_ROUND_UP(num, hw->max_children[i]);
1661 
1662 		/* need at least one node */
1663 		num_nodes[i] = num ? num : 1;
1664 	}
1665 }
1666 
1667 /**
1668  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1669  * @pi: port information structure
1670  * @vsi_handle: software VSI handle
1671  * @tc_node: pointer to the TC node
1672  * @num_nodes: pointer to the num nodes that needs to be added per layer
1673  * @owner: node owner (LAN or RDMA)
1674  *
1675  * This function adds the VSI child nodes to tree. It gets called for
1676  * LAN and RDMA separately.
1677  */
1678 static enum ice_status
1679 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1680 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1681 			      u8 owner)
1682 {
1683 	struct ice_sched_node *parent, *node;
1684 	struct ice_hw *hw = pi->hw;
1685 	enum ice_status status;
1686 	u32 first_node_teid;
1687 	u16 num_added = 0;
1688 	u8 i, qgl, vsil;
1689 
1690 	qgl = ice_sched_get_qgrp_layer(hw);
1691 	vsil = ice_sched_get_vsi_layer(hw);
1692 	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1693 	for (i = vsil + 1; i <= qgl; i++) {
1694 		if (!parent)
1695 			return ICE_ERR_CFG;
1696 
1697 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1698 						      num_nodes[i],
1699 						      &first_node_teid,
1700 						      &num_added);
1701 		if (status != ICE_SUCCESS || num_nodes[i] != num_added)
1702 			return ICE_ERR_CFG;
1703 
1704 		/* The newly added node can be a new parent for the next
1705 		 * layer nodes
1706 		 */
1707 		if (num_added) {
1708 			parent = ice_sched_find_node_by_teid(tc_node,
1709 							     first_node_teid);
1710 			node = parent;
1711 			while (node) {
1712 				node->owner = owner;
1713 				node = node->sibling;
1714 			}
1715 		} else {
1716 			parent = parent->children[0];
1717 		}
1718 	}
1719 
1720 	return ICE_SUCCESS;
1721 }
1722 
1723 /**
1724  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1725  * @pi: pointer to the port info structure
1726  * @tc_node: pointer to TC node
1727  * @num_nodes: pointer to num nodes array
1728  *
1729  * This function calculates the number of supported nodes needed to add this
1730  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1731  * layers
1732  */
1733 static void
1734 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1735 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1736 {
1737 	struct ice_sched_node *node;
1738 	u8 vsil;
1739 	int i;
1740 
1741 	vsil = ice_sched_get_vsi_layer(pi->hw);
1742 	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1743 		/* Add intermediate nodes if TC has no children and
1744 		 * need at least one node for VSI
1745 		 */
1746 		if (!tc_node->num_children || i == vsil) {
1747 			num_nodes[i]++;
1748 		} else {
1749 			/* If intermediate nodes are reached max children
1750 			 * then add a new one.
1751 			 */
1752 			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1753 			/* scan all the siblings */
1754 			while (node) {
1755 				if (node->num_children <
1756 				    pi->hw->max_children[i])
1757 					break;
1758 				node = node->sibling;
1759 			}
1760 
1761 			/* tree has one intermediate node to add this new VSI.
1762 			 * So no need to calculate supported nodes for below
1763 			 * layers.
1764 			 */
1765 			if (node)
1766 				break;
1767 			/* all the nodes are full, allocate a new one */
1768 			num_nodes[i]++;
1769 		}
1770 }
1771 
1772 /**
1773  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1774  * @pi: port information structure
1775  * @vsi_handle: software VSI handle
1776  * @tc_node: pointer to TC node
1777  * @num_nodes: pointer to num nodes array
1778  *
1779  * This function adds the VSI supported nodes into Tx tree including the
1780  * VSI, its parent and intermediate nodes in below layers
1781  */
1782 static enum ice_status
1783 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1784 				struct ice_sched_node *tc_node, u16 *num_nodes)
1785 {
1786 	struct ice_sched_node *parent = tc_node;
1787 	enum ice_status status;
1788 	u32 first_node_teid;
1789 	u16 num_added = 0;
1790 	u8 i, vsil;
1791 
1792 	if (!pi)
1793 		return ICE_ERR_PARAM;
1794 
1795 	vsil = ice_sched_get_vsi_layer(pi->hw);
1796 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1797 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1798 						      i, num_nodes[i],
1799 						      &first_node_teid,
1800 						      &num_added);
1801 		if (status != ICE_SUCCESS || num_nodes[i] != num_added)
1802 			return ICE_ERR_CFG;
1803 
1804 		/* The newly added node can be a new parent for the next
1805 		 * layer nodes
1806 		 */
1807 		if (num_added)
1808 			parent = ice_sched_find_node_by_teid(tc_node,
1809 							     first_node_teid);
1810 		else
1811 			parent = parent->children[0];
1812 
1813 		if (!parent)
1814 			return ICE_ERR_CFG;
1815 
1816 		if (i == vsil)
1817 			parent->vsi_handle = vsi_handle;
1818 	}
1819 
1820 	return ICE_SUCCESS;
1821 }
1822 
1823 /**
1824  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1825  * @pi: port information structure
1826  * @vsi_handle: software VSI handle
1827  * @tc: TC number
1828  *
1829  * This function adds a new VSI into scheduler tree
1830  */
1831 static enum ice_status
1832 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1833 {
1834 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1835 	struct ice_sched_node *tc_node;
1836 
1837 	tc_node = ice_sched_get_tc_node(pi, tc);
1838 	if (!tc_node)
1839 		return ICE_ERR_PARAM;
1840 
1841 	/* calculate number of supported nodes needed for this VSI */
1842 	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1843 
1844 	/* add VSI supported nodes to TC subtree */
1845 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1846 					       num_nodes);
1847 }
1848 
1849 /**
1850  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1851  * @pi: port information structure
1852  * @vsi_handle: software VSI handle
1853  * @tc: TC number
1854  * @new_numqs: new number of max queues
1855  * @owner: owner of this subtree
1856  *
1857  * This function updates the VSI child nodes based on the number of queues
1858  */
1859 static enum ice_status
1860 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1861 				 u8 tc, u16 new_numqs, u8 owner)
1862 {
1863 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1864 	struct ice_sched_node *vsi_node;
1865 	struct ice_sched_node *tc_node;
1866 	struct ice_vsi_ctx *vsi_ctx;
1867 	enum ice_status status = ICE_SUCCESS;
1868 	struct ice_hw *hw = pi->hw;
1869 	u16 prev_numqs;
1870 
1871 	tc_node = ice_sched_get_tc_node(pi, tc);
1872 	if (!tc_node)
1873 		return ICE_ERR_CFG;
1874 
1875 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1876 	if (!vsi_node)
1877 		return ICE_ERR_CFG;
1878 
1879 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1880 	if (!vsi_ctx)
1881 		return ICE_ERR_PARAM;
1882 
1883 	prev_numqs = vsi_ctx->sched.max_lanq[tc];
1884 	/* num queues are not changed or less than the previous number */
1885 	if (new_numqs <= prev_numqs)
1886 		return status;
1887 	status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1888 	if (status)
1889 		return status;
1890 
1891 	if (new_numqs)
1892 		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1893 	/* Keep the max number of queue configuration all the time. Update the
1894 	 * tree only if number of queues > previous number of queues. This may
1895 	 * leave some extra nodes in the tree if number of queues < previous
1896 	 * number but that wouldn't harm anything. Removing those extra nodes
1897 	 * may complicate the code if those nodes are part of SRL or
1898 	 * individually rate limited.
1899 	 */
1900 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1901 					       new_num_nodes, owner);
1902 	if (status)
1903 		return status;
1904 	vsi_ctx->sched.max_lanq[tc] = new_numqs;
1905 
1906 	return ICE_SUCCESS;
1907 }
1908 
1909 /**
1910  * ice_sched_cfg_vsi - configure the new/existing VSI
1911  * @pi: port information structure
1912  * @vsi_handle: software VSI handle
1913  * @tc: TC number
1914  * @maxqs: max number of queues
1915  * @owner: LAN or RDMA
1916  * @enable: TC enabled or disabled
1917  *
1918  * This function adds/updates VSI nodes based on the number of queues. If TC is
1919  * enabled and VSI is in suspended state then resume the VSI back. If TC is
1920  * disabled then suspend the VSI if it is not already.
1921  */
1922 enum ice_status
1923 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1924 		  u8 owner, bool enable)
1925 {
1926 	struct ice_sched_node *vsi_node, *tc_node;
1927 	struct ice_vsi_ctx *vsi_ctx;
1928 	enum ice_status status = ICE_SUCCESS;
1929 	struct ice_hw *hw = pi->hw;
1930 
1931 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1932 	tc_node = ice_sched_get_tc_node(pi, tc);
1933 	if (!tc_node)
1934 		return ICE_ERR_PARAM;
1935 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1936 	if (!vsi_ctx)
1937 		return ICE_ERR_PARAM;
1938 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1939 
1940 	/* suspend the VSI if TC is not enabled */
1941 	if (!enable) {
1942 		if (vsi_node && vsi_node->in_use) {
1943 			u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
1944 
1945 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1946 								true);
1947 			if (!status)
1948 				vsi_node->in_use = false;
1949 		}
1950 		return status;
1951 	}
1952 
1953 	/* TC is enabled, if it is a new VSI then add it to the tree */
1954 	if (!vsi_node) {
1955 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1956 		if (status)
1957 			return status;
1958 
1959 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1960 		if (!vsi_node)
1961 			return ICE_ERR_CFG;
1962 
1963 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1964 		vsi_node->in_use = true;
1965 		/* invalidate the max queues whenever VSI gets added first time
1966 		 * into the scheduler tree (boot or after reset). We need to
1967 		 * recreate the child nodes all the time in these cases.
1968 		 */
1969 		vsi_ctx->sched.max_lanq[tc] = 0;
1970 	}
1971 
1972 	/* update the VSI child nodes */
1973 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1974 						  owner);
1975 	if (status)
1976 		return status;
1977 
1978 	/* TC is enabled, resume the VSI if it is in the suspend state */
1979 	if (!vsi_node->in_use) {
1980 		u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
1981 
1982 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1983 		if (!status)
1984 			vsi_node->in_use = true;
1985 	}
1986 
1987 	return status;
1988 }
1989 
1990 /**
1991  * ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry
1992  * @pi: port information structure
1993  * @vsi_handle: software VSI handle
1994  *
1995  * This function removes single aggregator VSI info entry from
1996  * aggregator list.
1997  */
1998 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1999 {
2000 	struct ice_sched_agg_info *agg_info;
2001 	struct ice_sched_agg_info *atmp;
2002 
2003 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &pi->hw->agg_list,
2004 				 ice_sched_agg_info,
2005 				 list_entry) {
2006 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2007 		struct ice_sched_agg_vsi_info *vtmp;
2008 
2009 		LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
2010 					 &agg_info->agg_vsi_list,
2011 					 ice_sched_agg_vsi_info, list_entry)
2012 			if (agg_vsi_info->vsi_handle == vsi_handle) {
2013 				LIST_DEL(&agg_vsi_info->list_entry);
2014 				ice_free(pi->hw, agg_vsi_info);
2015 				return;
2016 			}
2017 	}
2018 }
2019 
2020 /**
2021  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2022  * @node: pointer to the sub-tree node
2023  *
2024  * This function checks for a leaf node presence in a given sub-tree node.
2025  */
2026 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2027 {
2028 	u8 i;
2029 
2030 	for (i = 0; i < node->num_children; i++)
2031 		if (ice_sched_is_leaf_node_present(node->children[i]))
2032 			return true;
2033 	/* check for a leaf node */
2034 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2035 }
2036 
2037 /**
2038  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2039  * @pi: port information structure
2040  * @vsi_handle: software VSI handle
2041  * @owner: LAN or RDMA
2042  *
2043  * This function removes the VSI and its LAN or RDMA children nodes from the
2044  * scheduler tree.
2045  */
2046 static enum ice_status
2047 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2048 {
2049 	enum ice_status status = ICE_ERR_PARAM;
2050 	struct ice_vsi_ctx *vsi_ctx;
2051 	u8 i;
2052 
2053 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2054 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2055 		return status;
2056 	ice_acquire_lock(&pi->sched_lock);
2057 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2058 	if (!vsi_ctx)
2059 		goto exit_sched_rm_vsi_cfg;
2060 
2061 	ice_for_each_traffic_class(i) {
2062 		struct ice_sched_node *vsi_node, *tc_node;
2063 		u8 j = 0;
2064 
2065 		tc_node = ice_sched_get_tc_node(pi, i);
2066 		if (!tc_node)
2067 			continue;
2068 
2069 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2070 		if (!vsi_node)
2071 			continue;
2072 
2073 		if (ice_sched_is_leaf_node_present(vsi_node)) {
2074 			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2075 			status = ICE_ERR_IN_USE;
2076 			goto exit_sched_rm_vsi_cfg;
2077 		}
2078 		while (j < vsi_node->num_children) {
2079 			if (vsi_node->children[j]->owner == owner) {
2080 				ice_free_sched_node(pi, vsi_node->children[j]);
2081 
2082 				/* reset the counter again since the num
2083 				 * children will be updated after node removal
2084 				 */
2085 				j = 0;
2086 			} else {
2087 				j++;
2088 			}
2089 		}
2090 		/* remove the VSI if it has no children */
2091 		if (!vsi_node->num_children) {
2092 			ice_free_sched_node(pi, vsi_node);
2093 			vsi_ctx->sched.vsi_node[i] = NULL;
2094 
2095 			/* clean up aggregator related VSI info if any */
2096 			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2097 		}
2098 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2099 			vsi_ctx->sched.max_lanq[i] = 0;
2100 	}
2101 	status = ICE_SUCCESS;
2102 
2103 exit_sched_rm_vsi_cfg:
2104 	ice_release_lock(&pi->sched_lock);
2105 	return status;
2106 }
2107 
2108 /**
2109  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2110  * @pi: port information structure
2111  * @vsi_handle: software VSI handle
2112  *
2113  * This function clears the VSI and its LAN children nodes from scheduler tree
2114  * for all TCs.
2115  */
2116 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2117 {
2118 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2119 }
2120 
2121 /**
2122  * ice_sched_is_tree_balanced - Check tree nodes are identical or not
2123  * @hw: pointer to the HW struct
2124  * @node: pointer to the ice_sched_node struct
2125  *
2126  * This function compares all the nodes for a given tree against HW DB nodes
2127  * This function needs to be called with the port_info->sched_lock held
2128  */
2129 bool ice_sched_is_tree_balanced(struct ice_hw *hw, struct ice_sched_node *node)
2130 {
2131 	u8 i;
2132 
2133 	/* start from the leaf node */
2134 	for (i = 0; i < node->num_children; i++)
2135 		/* Fail if node doesn't match with the SW DB
2136 		 * this recursion is intentional, and wouldn't
2137 		 * go more than 9 calls
2138 		 */
2139 		if (!ice_sched_is_tree_balanced(hw, node->children[i]))
2140 			return false;
2141 
2142 	return ice_sched_check_node(hw, node);
2143 }
2144 
2145 /**
2146  * ice_aq_query_node_to_root - retrieve the tree topology for a given node TEID
2147  * @hw: pointer to the HW struct
2148  * @node_teid: node TEID
2149  * @buf: pointer to buffer
2150  * @buf_size: buffer size in bytes
2151  * @cd: pointer to command details structure or NULL
2152  *
2153  * This function retrieves the tree topology from the firmware for a given
2154  * node TEID to the root node.
2155  */
2156 enum ice_status
2157 ice_aq_query_node_to_root(struct ice_hw *hw, u32 node_teid,
2158 			  struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
2159 			  struct ice_sq_cd *cd)
2160 {
2161 	struct ice_aqc_query_node_to_root *cmd;
2162 	struct ice_aq_desc desc;
2163 
2164 	cmd = &desc.params.query_node_to_root;
2165 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_node_to_root);
2166 	cmd->teid = CPU_TO_LE32(node_teid);
2167 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2168 }
2169 
2170 /**
2171  * ice_get_agg_info - get the aggregator ID
2172  * @hw: pointer to the hardware structure
2173  * @agg_id: aggregator ID
2174  *
2175  * This function validates aggregator ID. The function returns info if
2176  * aggregator ID is present in list otherwise it returns null.
2177  */
2178 static struct ice_sched_agg_info *
2179 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2180 {
2181 	struct ice_sched_agg_info *agg_info;
2182 
2183 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
2184 			    list_entry)
2185 		if (agg_info->agg_id == agg_id)
2186 			return agg_info;
2187 
2188 	return NULL;
2189 }
2190 
2191 /**
2192  * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2193  * @hw: pointer to the HW struct
2194  * @node: pointer to a child node
2195  * @num_nodes: num nodes count array
2196  *
2197  * This function walks through the aggregator subtree to find a free parent
2198  * node
2199  */
2200 static struct ice_sched_node *
2201 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2202 			      u16 *num_nodes)
2203 {
2204 	u8 l = node->tx_sched_layer;
2205 	u8 vsil, i;
2206 
2207 	vsil = ice_sched_get_vsi_layer(hw);
2208 
2209 	/* Is it VSI parent layer ? */
2210 	if (l == vsil - 1)
2211 		return (node->num_children < hw->max_children[l]) ? node : NULL;
2212 
2213 	/* We have intermediate nodes. Let's walk through the subtree. If the
2214 	 * intermediate node has space to add a new node then clear the count
2215 	 */
2216 	if (node->num_children < hw->max_children[l])
2217 		num_nodes[l] = 0;
2218 	/* The below recursive call is intentional and wouldn't go more than
2219 	 * 2 or 3 iterations.
2220 	 */
2221 
2222 	for (i = 0; i < node->num_children; i++) {
2223 		struct ice_sched_node *parent;
2224 
2225 		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2226 						       num_nodes);
2227 		if (parent)
2228 			return parent;
2229 	}
2230 
2231 	return NULL;
2232 }
2233 
2234 /**
2235  * ice_sched_update_parent - update the new parent in SW DB
2236  * @new_parent: pointer to a new parent node
2237  * @node: pointer to a child node
2238  *
2239  * This function removes the child from the old parent and adds it to a new
2240  * parent
2241  */
2242 static void
2243 ice_sched_update_parent(struct ice_sched_node *new_parent,
2244 			struct ice_sched_node *node)
2245 {
2246 	struct ice_sched_node *old_parent;
2247 	u8 i, j;
2248 
2249 	old_parent = node->parent;
2250 
2251 	/* update the old parent children */
2252 	for (i = 0; i < old_parent->num_children; i++)
2253 		if (old_parent->children[i] == node) {
2254 			for (j = i + 1; j < old_parent->num_children; j++)
2255 				old_parent->children[j - 1] =
2256 					old_parent->children[j];
2257 			old_parent->num_children--;
2258 			break;
2259 		}
2260 
2261 	/* now move the node to a new parent */
2262 	new_parent->children[new_parent->num_children++] = node;
2263 	node->parent = new_parent;
2264 	node->info.parent_teid = new_parent->info.node_teid;
2265 }
2266 
2267 /**
2268  * ice_sched_move_nodes - move child nodes to a given parent
2269  * @pi: port information structure
2270  * @parent: pointer to parent node
2271  * @num_items: number of child nodes to be moved
2272  * @list: pointer to child node teids
2273  *
2274  * This function move the child nodes to a given parent.
2275  */
2276 static enum ice_status
2277 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2278 		     u16 num_items, u32 *list)
2279 {
2280 	struct ice_aqc_move_elem *buf;
2281 	struct ice_sched_node *node;
2282 	enum ice_status status = ICE_SUCCESS;
2283 	u16 i, grps_movd = 0;
2284 	struct ice_hw *hw;
2285 	u16 buf_len;
2286 
2287 	hw = pi->hw;
2288 
2289 	if (!parent || !num_items)
2290 		return ICE_ERR_PARAM;
2291 
2292 	/* Does parent have enough space */
2293 	if (parent->num_children + num_items >
2294 	    hw->max_children[parent->tx_sched_layer])
2295 		return ICE_ERR_AQ_FULL;
2296 
2297 	buf_len = ice_struct_size(buf, teid, 1);
2298 	buf = (struct ice_aqc_move_elem *)ice_malloc(hw, buf_len);
2299 	if (!buf)
2300 		return ICE_ERR_NO_MEMORY;
2301 
2302 	for (i = 0; i < num_items; i++) {
2303 		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2304 		if (!node) {
2305 			status = ICE_ERR_PARAM;
2306 			goto move_err_exit;
2307 		}
2308 
2309 		buf->hdr.src_parent_teid = node->info.parent_teid;
2310 		buf->hdr.dest_parent_teid = parent->info.node_teid;
2311 		buf->teid[0] = node->info.node_teid;
2312 		buf->hdr.num_elems = CPU_TO_LE16(1);
2313 		status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
2314 						 &grps_movd, NULL);
2315 		if (status && grps_movd != 1) {
2316 			status = ICE_ERR_CFG;
2317 			goto move_err_exit;
2318 		}
2319 
2320 		/* update the SW DB */
2321 		ice_sched_update_parent(parent, node);
2322 	}
2323 
2324 move_err_exit:
2325 	ice_free(hw, buf);
2326 	return status;
2327 }
2328 
2329 /**
2330  * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2331  * @pi: port information structure
2332  * @vsi_handle: software VSI handle
2333  * @agg_id: aggregator ID
2334  * @tc: TC number
2335  *
2336  * This function moves a VSI to an aggregator node or its subtree.
2337  * Intermediate nodes may be created if required.
2338  */
2339 static enum ice_status
2340 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2341 			  u8 tc)
2342 {
2343 	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2344 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2345 	u32 first_node_teid, vsi_teid;
2346 	enum ice_status status;
2347 	u16 num_nodes_added;
2348 	u8 aggl, vsil, i;
2349 
2350 	tc_node = ice_sched_get_tc_node(pi, tc);
2351 	if (!tc_node)
2352 		return ICE_ERR_CFG;
2353 
2354 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2355 	if (!agg_node)
2356 		return ICE_ERR_DOES_NOT_EXIST;
2357 
2358 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2359 	if (!vsi_node)
2360 		return ICE_ERR_DOES_NOT_EXIST;
2361 
2362 	/* Is this VSI already part of given aggregator? */
2363 	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2364 		return ICE_SUCCESS;
2365 
2366 	aggl = ice_sched_get_agg_layer(pi->hw);
2367 	vsil = ice_sched_get_vsi_layer(pi->hw);
2368 
2369 	/* set intermediate node count to 1 between aggregator and VSI layers */
2370 	for (i = aggl + 1; i < vsil; i++)
2371 		num_nodes[i] = 1;
2372 
2373 	/* Check if the aggregator subtree has any free node to add the VSI */
2374 	for (i = 0; i < agg_node->num_children; i++) {
2375 		parent = ice_sched_get_free_vsi_parent(pi->hw,
2376 						       agg_node->children[i],
2377 						       num_nodes);
2378 		if (parent)
2379 			goto move_nodes;
2380 	}
2381 
2382 	/* add new nodes */
2383 	parent = agg_node;
2384 	for (i = aggl + 1; i < vsil; i++) {
2385 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2386 						      num_nodes[i],
2387 						      &first_node_teid,
2388 						      &num_nodes_added);
2389 		if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
2390 			return ICE_ERR_CFG;
2391 
2392 		/* The newly added node can be a new parent for the next
2393 		 * layer nodes
2394 		 */
2395 		if (num_nodes_added)
2396 			parent = ice_sched_find_node_by_teid(tc_node,
2397 							     first_node_teid);
2398 		else
2399 			parent = parent->children[0];
2400 
2401 		if (!parent)
2402 			return ICE_ERR_CFG;
2403 	}
2404 
2405 move_nodes:
2406 	vsi_teid = LE32_TO_CPU(vsi_node->info.node_teid);
2407 	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2408 }
2409 
2410 /**
2411  * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2412  * @pi: port information structure
2413  * @agg_info: aggregator info
2414  * @tc: traffic class number
2415  * @rm_vsi_info: true or false
2416  *
2417  * This function move all the VSI(s) to the default aggregator and delete
2418  * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2419  * caller holds the scheduler lock.
2420  */
2421 static enum ice_status
2422 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2423 			     struct ice_sched_agg_info *agg_info, u8 tc,
2424 			     bool rm_vsi_info)
2425 {
2426 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2427 	struct ice_sched_agg_vsi_info *tmp;
2428 	enum ice_status status = ICE_SUCCESS;
2429 
2430 	LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2431 				 ice_sched_agg_vsi_info, list_entry) {
2432 		u16 vsi_handle = agg_vsi_info->vsi_handle;
2433 
2434 		/* Move VSI to default aggregator */
2435 		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2436 			continue;
2437 
2438 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2439 						   ICE_DFLT_AGG_ID, tc);
2440 		if (status)
2441 			break;
2442 
2443 		ice_clear_bit(tc, agg_vsi_info->tc_bitmap);
2444 		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2445 			LIST_DEL(&agg_vsi_info->list_entry);
2446 			ice_free(pi->hw, agg_vsi_info);
2447 		}
2448 	}
2449 
2450 	return status;
2451 }
2452 
2453 /**
2454  * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2455  * @pi: port information structure
2456  * @node: node pointer
2457  *
2458  * This function checks whether the aggregator is attached with any VSI or not.
2459  */
2460 static bool
2461 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2462 {
2463 	u8 vsil, i;
2464 
2465 	vsil = ice_sched_get_vsi_layer(pi->hw);
2466 	if (node->tx_sched_layer < vsil - 1) {
2467 		for (i = 0; i < node->num_children; i++)
2468 			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2469 				return true;
2470 		return false;
2471 	} else {
2472 		return node->num_children ? true : false;
2473 	}
2474 }
2475 
2476 /**
2477  * ice_sched_rm_agg_cfg - remove the aggregator node
2478  * @pi: port information structure
2479  * @agg_id: aggregator ID
2480  * @tc: TC number
2481  *
2482  * This function removes the aggregator node and intermediate nodes if any
2483  * from the given TC
2484  */
2485 static enum ice_status
2486 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2487 {
2488 	struct ice_sched_node *tc_node, *agg_node;
2489 	struct ice_hw *hw = pi->hw;
2490 
2491 	tc_node = ice_sched_get_tc_node(pi, tc);
2492 	if (!tc_node)
2493 		return ICE_ERR_CFG;
2494 
2495 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2496 	if (!agg_node)
2497 		return ICE_ERR_DOES_NOT_EXIST;
2498 
2499 	/* Can't remove the aggregator node if it has children */
2500 	if (ice_sched_is_agg_inuse(pi, agg_node))
2501 		return ICE_ERR_IN_USE;
2502 
2503 	/* need to remove the whole subtree if aggregator node is the
2504 	 * only child.
2505 	 */
2506 	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2507 		struct ice_sched_node *parent = agg_node->parent;
2508 
2509 		if (!parent)
2510 			return ICE_ERR_CFG;
2511 
2512 		if (parent->num_children > 1)
2513 			break;
2514 
2515 		agg_node = parent;
2516 	}
2517 
2518 	ice_free_sched_node(pi, agg_node);
2519 	return ICE_SUCCESS;
2520 }
2521 
2522 /**
2523  * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2524  * @pi: port information structure
2525  * @agg_info: aggregator ID
2526  * @tc: TC number
2527  * @rm_vsi_info: bool value true or false
2528  *
2529  * This function removes aggregator reference to VSI of given TC. It removes
2530  * the aggregator configuration completely for requested TC. The caller needs
2531  * to hold the scheduler lock.
2532  */
2533 static enum ice_status
2534 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2535 		  u8 tc, bool rm_vsi_info)
2536 {
2537 	enum ice_status status = ICE_SUCCESS;
2538 
2539 	/* If nothing to remove - return success */
2540 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2541 		goto exit_rm_agg_cfg_tc;
2542 
2543 	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2544 	if (status)
2545 		goto exit_rm_agg_cfg_tc;
2546 
2547 	/* Delete aggregator node(s) */
2548 	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2549 	if (status)
2550 		goto exit_rm_agg_cfg_tc;
2551 
2552 	ice_clear_bit(tc, agg_info->tc_bitmap);
2553 exit_rm_agg_cfg_tc:
2554 	return status;
2555 }
2556 
2557 /**
2558  * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2559  * @pi: port information structure
2560  * @agg_id: aggregator ID
2561  * @tc_bitmap: 8 bits TC bitmap
2562  *
2563  * Save aggregator TC bitmap. This function needs to be called with scheduler
2564  * lock held.
2565  */
2566 static enum ice_status
2567 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2568 		       ice_bitmap_t *tc_bitmap)
2569 {
2570 	struct ice_sched_agg_info *agg_info;
2571 
2572 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2573 	if (!agg_info)
2574 		return ICE_ERR_PARAM;
2575 	ice_cp_bitmap(agg_info->replay_tc_bitmap, tc_bitmap,
2576 		      ICE_MAX_TRAFFIC_CLASS);
2577 	return ICE_SUCCESS;
2578 }
2579 
2580 /**
2581  * ice_sched_add_agg_cfg - create an aggregator node
2582  * @pi: port information structure
2583  * @agg_id: aggregator ID
2584  * @tc: TC number
2585  *
2586  * This function creates an aggregator node and intermediate nodes if required
2587  * for the given TC
2588  */
2589 static enum ice_status
2590 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2591 {
2592 	struct ice_sched_node *parent, *agg_node, *tc_node;
2593 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2594 	enum ice_status status = ICE_SUCCESS;
2595 	struct ice_hw *hw = pi->hw;
2596 	u32 first_node_teid;
2597 	u16 num_nodes_added;
2598 	u8 i, aggl;
2599 
2600 	tc_node = ice_sched_get_tc_node(pi, tc);
2601 	if (!tc_node)
2602 		return ICE_ERR_CFG;
2603 
2604 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2605 	/* Does Agg node already exist ? */
2606 	if (agg_node)
2607 		return status;
2608 
2609 	aggl = ice_sched_get_agg_layer(hw);
2610 
2611 	/* need one node in Agg layer */
2612 	num_nodes[aggl] = 1;
2613 
2614 	/* Check whether the intermediate nodes have space to add the
2615 	 * new aggregator. If they are full, then SW needs to allocate a new
2616 	 * intermediate node on those layers
2617 	 */
2618 	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2619 		parent = ice_sched_get_first_node(pi, tc_node, i);
2620 
2621 		/* scan all the siblings */
2622 		while (parent) {
2623 			if (parent->num_children < hw->max_children[i])
2624 				break;
2625 			parent = parent->sibling;
2626 		}
2627 
2628 		/* all the nodes are full, reserve one for this layer */
2629 		if (!parent)
2630 			num_nodes[i]++;
2631 	}
2632 
2633 	/* add the aggregator node */
2634 	parent = tc_node;
2635 	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2636 		if (!parent)
2637 			return ICE_ERR_CFG;
2638 
2639 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2640 						      num_nodes[i],
2641 						      &first_node_teid,
2642 						      &num_nodes_added);
2643 		if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
2644 			return ICE_ERR_CFG;
2645 
2646 		/* The newly added node can be a new parent for the next
2647 		 * layer nodes
2648 		 */
2649 		if (num_nodes_added) {
2650 			parent = ice_sched_find_node_by_teid(tc_node,
2651 							     first_node_teid);
2652 			/* register aggregator ID with the aggregator node */
2653 			if (parent && i == aggl)
2654 				parent->agg_id = agg_id;
2655 		} else {
2656 			parent = parent->children[0];
2657 		}
2658 	}
2659 
2660 	return ICE_SUCCESS;
2661 }
2662 
2663 /**
2664  * ice_sched_cfg_agg - configure aggregator node
2665  * @pi: port information structure
2666  * @agg_id: aggregator ID
2667  * @agg_type: aggregator type queue, VSI, or aggregator group
2668  * @tc_bitmap: bits TC bitmap
2669  *
2670  * It registers a unique aggregator node into scheduler services. It
2671  * allows a user to register with a unique ID to track it's resources.
2672  * The aggregator type determines if this is a queue group, VSI group
2673  * or aggregator group. It then creates the aggregator node(s) for requested
2674  * TC(s) or removes an existing aggregator node including its configuration
2675  * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2676  * resources and remove aggregator ID.
2677  * This function needs to be called with scheduler lock held.
2678  */
2679 static enum ice_status
2680 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2681 		  enum ice_agg_type agg_type, ice_bitmap_t *tc_bitmap)
2682 {
2683 	struct ice_sched_agg_info *agg_info;
2684 	enum ice_status status = ICE_SUCCESS;
2685 	struct ice_hw *hw = pi->hw;
2686 	u8 tc;
2687 
2688 	agg_info = ice_get_agg_info(hw, agg_id);
2689 	if (!agg_info) {
2690 		/* Create new entry for new aggregator ID */
2691 		agg_info = (struct ice_sched_agg_info *)
2692 			ice_malloc(hw, sizeof(*agg_info));
2693 		if (!agg_info)
2694 			return ICE_ERR_NO_MEMORY;
2695 
2696 		agg_info->agg_id = agg_id;
2697 		agg_info->agg_type = agg_type;
2698 		agg_info->tc_bitmap[0] = 0;
2699 
2700 		/* Initialize the aggregator VSI list head */
2701 		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2702 
2703 		/* Add new entry in aggregator list */
2704 		LIST_ADD(&agg_info->list_entry, &hw->agg_list);
2705 	}
2706 	/* Create aggregator node(s) for requested TC(s) */
2707 	ice_for_each_traffic_class(tc) {
2708 		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2709 			/* Delete aggregator cfg TC if it exists previously */
2710 			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2711 			if (status)
2712 				break;
2713 			continue;
2714 		}
2715 
2716 		/* Check if aggregator node for TC already exists */
2717 		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2718 			continue;
2719 
2720 		/* Create new aggregator node for TC */
2721 		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2722 		if (status)
2723 			break;
2724 
2725 		/* Save aggregator node's TC information */
2726 		ice_set_bit(tc, agg_info->tc_bitmap);
2727 	}
2728 
2729 	return status;
2730 }
2731 
2732 /**
2733  * ice_cfg_agg - config aggregator node
2734  * @pi: port information structure
2735  * @agg_id: aggregator ID
2736  * @agg_type: aggregator type queue, VSI, or aggregator group
2737  * @tc_bitmap: bits TC bitmap
2738  *
2739  * This function configures aggregator node(s).
2740  */
2741 enum ice_status
2742 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2743 	    u8 tc_bitmap)
2744 {
2745 	ice_bitmap_t bitmap = tc_bitmap;
2746 	enum ice_status status;
2747 
2748 	ice_acquire_lock(&pi->sched_lock);
2749 	status = ice_sched_cfg_agg(pi, agg_id, agg_type,
2750 				   (ice_bitmap_t *)&bitmap);
2751 	if (!status)
2752 		status = ice_save_agg_tc_bitmap(pi, agg_id,
2753 						(ice_bitmap_t *)&bitmap);
2754 	ice_release_lock(&pi->sched_lock);
2755 	return status;
2756 }
2757 
2758 /**
2759  * ice_get_agg_vsi_info - get the aggregator ID
2760  * @agg_info: aggregator info
2761  * @vsi_handle: software VSI handle
2762  *
2763  * The function returns aggregator VSI info based on VSI handle. This function
2764  * needs to be called with scheduler lock held.
2765  */
2766 static struct ice_sched_agg_vsi_info *
2767 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2768 {
2769 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2770 
2771 	LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
2772 			    ice_sched_agg_vsi_info, list_entry)
2773 		if (agg_vsi_info->vsi_handle == vsi_handle)
2774 			return agg_vsi_info;
2775 
2776 	return NULL;
2777 }
2778 
2779 /**
2780  * ice_get_vsi_agg_info - get the aggregator info of VSI
2781  * @hw: pointer to the hardware structure
2782  * @vsi_handle: Sw VSI handle
2783  *
2784  * The function returns aggregator info of VSI represented via vsi_handle. The
2785  * VSI has in this case a different aggregator than the default one. This
2786  * function needs to be called with scheduler lock held.
2787  */
2788 static struct ice_sched_agg_info *
2789 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2790 {
2791 	struct ice_sched_agg_info *agg_info;
2792 
2793 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
2794 			    list_entry) {
2795 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2796 
2797 		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2798 		if (agg_vsi_info)
2799 			return agg_info;
2800 	}
2801 	return NULL;
2802 }
2803 
2804 /**
2805  * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2806  * @pi: port information structure
2807  * @agg_id: aggregator ID
2808  * @vsi_handle: software VSI handle
2809  * @tc_bitmap: TC bitmap of enabled TC(s)
2810  *
2811  * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2812  * lock held.
2813  */
2814 static enum ice_status
2815 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2816 			   ice_bitmap_t *tc_bitmap)
2817 {
2818 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2819 	struct ice_sched_agg_info *agg_info;
2820 
2821 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2822 	if (!agg_info)
2823 		return ICE_ERR_PARAM;
2824 	/* check if entry already exist */
2825 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2826 	if (!agg_vsi_info)
2827 		return ICE_ERR_PARAM;
2828 	ice_cp_bitmap(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2829 		      ICE_MAX_TRAFFIC_CLASS);
2830 	return ICE_SUCCESS;
2831 }
2832 
2833 /**
2834  * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2835  * @pi: port information structure
2836  * @agg_id: aggregator ID
2837  * @vsi_handle: software VSI handle
2838  * @tc_bitmap: TC bitmap of enabled TC(s)
2839  *
2840  * This function moves VSI to a new or default aggregator node. If VSI is
2841  * already associated to the aggregator node then no operation is performed on
2842  * the tree. This function needs to be called with scheduler lock held.
2843  */
2844 static enum ice_status
2845 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2846 			   u16 vsi_handle, ice_bitmap_t *tc_bitmap)
2847 {
2848 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2849 	struct ice_sched_agg_info *agg_info;
2850 	enum ice_status status = ICE_SUCCESS;
2851 	struct ice_hw *hw = pi->hw;
2852 	u8 tc;
2853 
2854 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2855 		return ICE_ERR_PARAM;
2856 	agg_info = ice_get_agg_info(hw, agg_id);
2857 	if (!agg_info)
2858 		return ICE_ERR_PARAM;
2859 	/* check if entry already exist */
2860 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2861 	if (!agg_vsi_info) {
2862 		/* Create new entry for VSI under aggregator list */
2863 		agg_vsi_info = (struct ice_sched_agg_vsi_info *)
2864 			ice_malloc(hw, sizeof(*agg_vsi_info));
2865 		if (!agg_vsi_info)
2866 			return ICE_ERR_PARAM;
2867 
2868 		/* add VSI ID into the aggregator list */
2869 		agg_vsi_info->vsi_handle = vsi_handle;
2870 		LIST_ADD(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2871 	}
2872 	/* Move VSI node to new aggregator node for requested TC(s) */
2873 	ice_for_each_traffic_class(tc) {
2874 		if (!ice_is_tc_ena(*tc_bitmap, tc))
2875 			continue;
2876 
2877 		/* Move VSI to new aggregator */
2878 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2879 		if (status)
2880 			break;
2881 
2882 		ice_set_bit(tc, agg_vsi_info->tc_bitmap);
2883 	}
2884 	return status;
2885 }
2886 
2887 /**
2888  * ice_sched_rm_unused_rl_prof - remove unused RL profile
2889  * @hw: pointer to the hardware structure
2890  *
2891  * This function removes unused rate limit profiles from the HW and
2892  * SW DB. The caller needs to hold scheduler lock.
2893  */
2894 static void ice_sched_rm_unused_rl_prof(struct ice_hw *hw)
2895 {
2896 	u16 ln;
2897 
2898 	for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
2899 		struct ice_aqc_rl_profile_info *rl_prof_elem;
2900 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
2901 
2902 		LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
2903 					 &hw->rl_prof_list[ln],
2904 					 ice_aqc_rl_profile_info, list_entry) {
2905 			if (!ice_sched_del_rl_profile(hw, rl_prof_elem))
2906 				ice_debug(hw, ICE_DBG_SCHED, "Removed rl profile\n");
2907 		}
2908 	}
2909 }
2910 
2911 /**
2912  * ice_sched_update_elem - update element
2913  * @hw: pointer to the HW struct
2914  * @node: pointer to node
2915  * @info: node info to update
2916  *
2917  * Update the HW DB, and local SW DB of node. Update the scheduling
2918  * parameters of node from argument info data buffer (Info->data buf) and
2919  * returns success or error on config sched element failure. The caller
2920  * needs to hold scheduler lock.
2921  */
2922 static enum ice_status
2923 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2924 		      struct ice_aqc_txsched_elem_data *info)
2925 {
2926 	struct ice_aqc_txsched_elem_data buf;
2927 	enum ice_status status;
2928 	u16 elem_cfgd = 0;
2929 	u16 num_elems = 1;
2930 
2931 	buf = *info;
2932 	/* Parent TEID is reserved field in this aq call */
2933 	buf.parent_teid = 0;
2934 	/* Element type is reserved field in this aq call */
2935 	buf.data.elem_type = 0;
2936 	/* Flags is reserved field in this aq call */
2937 	buf.data.flags = 0;
2938 
2939 	/* Update HW DB */
2940 	/* Configure element node */
2941 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2942 					&elem_cfgd, NULL);
2943 	if (status || elem_cfgd != num_elems) {
2944 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2945 		return ICE_ERR_CFG;
2946 	}
2947 
2948 	/* Config success case */
2949 	/* Now update local SW DB */
2950 	/* Only copy the data portion of info buffer */
2951 	node->info.data = info->data;
2952 	return status;
2953 }
2954 
2955 /**
2956  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2957  * @hw: pointer to the HW struct
2958  * @node: sched node to configure
2959  * @rl_type: rate limit type CIR, EIR, or shared
2960  * @bw_alloc: BW weight/allocation
2961  *
2962  * This function configures node element's BW allocation.
2963  */
2964 static enum ice_status
2965 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2966 			    enum ice_rl_type rl_type, u16 bw_alloc)
2967 {
2968 	struct ice_aqc_txsched_elem_data buf;
2969 	struct ice_aqc_txsched_elem *data;
2970 	enum ice_status status;
2971 
2972 	buf = node->info;
2973 	data = &buf.data;
2974 	if (rl_type == ICE_MIN_BW) {
2975 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2976 		data->cir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
2977 	} else if (rl_type == ICE_MAX_BW) {
2978 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2979 		data->eir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
2980 	} else {
2981 		return ICE_ERR_PARAM;
2982 	}
2983 
2984 	/* Configure element */
2985 	status = ice_sched_update_elem(hw, node, &buf);
2986 	return status;
2987 }
2988 
2989 /**
2990  * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2991  * @pi: port information structure
2992  * @agg_id: aggregator ID
2993  * @vsi_handle: software VSI handle
2994  * @tc_bitmap: TC bitmap of enabled TC(s)
2995  *
2996  * Move or associate VSI to a new or default aggregator node.
2997  */
2998 enum ice_status
2999 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
3000 		    u8 tc_bitmap)
3001 {
3002 	ice_bitmap_t bitmap = tc_bitmap;
3003 	enum ice_status status;
3004 
3005 	ice_acquire_lock(&pi->sched_lock);
3006 	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
3007 					    (ice_bitmap_t *)&bitmap);
3008 	if (!status)
3009 		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
3010 						    (ice_bitmap_t *)&bitmap);
3011 	ice_release_lock(&pi->sched_lock);
3012 	return status;
3013 }
3014 
3015 /**
3016  * ice_rm_agg_cfg - remove aggregator configuration
3017  * @pi: port information structure
3018  * @agg_id: aggregator ID
3019  *
3020  * This function removes aggregator reference to VSI and delete aggregator ID
3021  * info. It removes the aggregator configuration completely.
3022  */
3023 enum ice_status ice_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id)
3024 {
3025 	struct ice_sched_agg_info *agg_info;
3026 	enum ice_status status = ICE_SUCCESS;
3027 	u8 tc;
3028 
3029 	ice_acquire_lock(&pi->sched_lock);
3030 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3031 	if (!agg_info) {
3032 		status = ICE_ERR_DOES_NOT_EXIST;
3033 		goto exit_ice_rm_agg_cfg;
3034 	}
3035 
3036 	ice_for_each_traffic_class(tc) {
3037 		status = ice_rm_agg_cfg_tc(pi, agg_info, tc, true);
3038 		if (status)
3039 			goto exit_ice_rm_agg_cfg;
3040 	}
3041 
3042 	if (ice_is_any_bit_set(agg_info->tc_bitmap, ICE_MAX_TRAFFIC_CLASS)) {
3043 		status = ICE_ERR_IN_USE;
3044 		goto exit_ice_rm_agg_cfg;
3045 	}
3046 
3047 	/* Safe to delete entry now */
3048 	LIST_DEL(&agg_info->list_entry);
3049 	ice_free(pi->hw, agg_info);
3050 
3051 	/* Remove unused RL profile IDs from HW and SW DB */
3052 	ice_sched_rm_unused_rl_prof(pi->hw);
3053 
3054 exit_ice_rm_agg_cfg:
3055 	ice_release_lock(&pi->sched_lock);
3056 	return status;
3057 }
3058 
3059 /**
3060  * ice_set_clear_cir_bw_alloc - set or clear CIR BW alloc information
3061  * @bw_t_info: bandwidth type information structure
3062  * @bw_alloc: Bandwidth allocation information
3063  *
3064  * Save or clear CIR BW alloc information (bw_alloc) in the passed param
3065  * bw_t_info.
3066  */
3067 static void
3068 ice_set_clear_cir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
3069 {
3070 	bw_t_info->cir_bw.bw_alloc = bw_alloc;
3071 	if (bw_t_info->cir_bw.bw_alloc)
3072 		ice_set_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
3073 	else
3074 		ice_clear_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
3075 }
3076 
3077 /**
3078  * ice_set_clear_eir_bw_alloc - set or clear EIR BW alloc information
3079  * @bw_t_info: bandwidth type information structure
3080  * @bw_alloc: Bandwidth allocation information
3081  *
3082  * Save or clear EIR BW alloc information (bw_alloc) in the passed param
3083  * bw_t_info.
3084  */
3085 static void
3086 ice_set_clear_eir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
3087 {
3088 	bw_t_info->eir_bw.bw_alloc = bw_alloc;
3089 	if (bw_t_info->eir_bw.bw_alloc)
3090 		ice_set_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
3091 	else
3092 		ice_clear_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
3093 }
3094 
3095 /**
3096  * ice_sched_save_vsi_bw_alloc - save VSI node's BW alloc information
3097  * @pi: port information structure
3098  * @vsi_handle: sw VSI handle
3099  * @tc: traffic class
3100  * @rl_type: rate limit type min or max
3101  * @bw_alloc: Bandwidth allocation information
3102  *
3103  * Save BW alloc information of VSI type node for post replay use.
3104  */
3105 static enum ice_status
3106 ice_sched_save_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3107 			    enum ice_rl_type rl_type, u16 bw_alloc)
3108 {
3109 	struct ice_vsi_ctx *vsi_ctx;
3110 
3111 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3112 		return ICE_ERR_PARAM;
3113 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3114 	if (!vsi_ctx)
3115 		return ICE_ERR_PARAM;
3116 	switch (rl_type) {
3117 	case ICE_MIN_BW:
3118 		ice_set_clear_cir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
3119 					   bw_alloc);
3120 		break;
3121 	case ICE_MAX_BW:
3122 		ice_set_clear_eir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
3123 					   bw_alloc);
3124 		break;
3125 	default:
3126 		return ICE_ERR_PARAM;
3127 	}
3128 	return ICE_SUCCESS;
3129 }
3130 
3131 /**
3132  * ice_set_clear_cir_bw - set or clear CIR BW
3133  * @bw_t_info: bandwidth type information structure
3134  * @bw: bandwidth in Kbps - Kilo bits per sec
3135  *
3136  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
3137  */
3138 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3139 {
3140 	if (bw == ICE_SCHED_DFLT_BW) {
3141 		ice_clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3142 		bw_t_info->cir_bw.bw = 0;
3143 	} else {
3144 		/* Save type of BW information */
3145 		ice_set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3146 		bw_t_info->cir_bw.bw = bw;
3147 	}
3148 }
3149 
3150 /**
3151  * ice_set_clear_eir_bw - set or clear EIR BW
3152  * @bw_t_info: bandwidth type information structure
3153  * @bw: bandwidth in Kbps - Kilo bits per sec
3154  *
3155  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
3156  */
3157 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3158 {
3159 	if (bw == ICE_SCHED_DFLT_BW) {
3160 		ice_clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3161 		bw_t_info->eir_bw.bw = 0;
3162 	} else {
3163 		/* save EIR BW information */
3164 		ice_set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3165 		bw_t_info->eir_bw.bw = bw;
3166 	}
3167 }
3168 
3169 /**
3170  * ice_set_clear_shared_bw - set or clear shared BW
3171  * @bw_t_info: bandwidth type information structure
3172  * @bw: bandwidth in Kbps - Kilo bits per sec
3173  *
3174  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3175  */
3176 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3177 {
3178 	if (bw == ICE_SCHED_DFLT_BW) {
3179 		ice_clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3180 		bw_t_info->shared_bw = 0;
3181 	} else {
3182 		/* save shared BW information */
3183 		ice_set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3184 		bw_t_info->shared_bw = bw;
3185 	}
3186 }
3187 
3188 /**
3189  * ice_sched_save_vsi_bw - save VSI node's BW information
3190  * @pi: port information structure
3191  * @vsi_handle: sw VSI handle
3192  * @tc: traffic class
3193  * @rl_type: rate limit type min, max, or shared
3194  * @bw: bandwidth in Kbps - Kilo bits per sec
3195  *
3196  * Save BW information of VSI type node for post replay use.
3197  */
3198 static enum ice_status
3199 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3200 		      enum ice_rl_type rl_type, u32 bw)
3201 {
3202 	struct ice_vsi_ctx *vsi_ctx;
3203 
3204 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3205 		return ICE_ERR_PARAM;
3206 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3207 	if (!vsi_ctx)
3208 		return ICE_ERR_PARAM;
3209 	switch (rl_type) {
3210 	case ICE_MIN_BW:
3211 		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3212 		break;
3213 	case ICE_MAX_BW:
3214 		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3215 		break;
3216 	case ICE_SHARED_BW:
3217 		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3218 		break;
3219 	default:
3220 		return ICE_ERR_PARAM;
3221 	}
3222 	return ICE_SUCCESS;
3223 }
3224 
3225 /**
3226  * ice_set_clear_prio - set or clear priority information
3227  * @bw_t_info: bandwidth type information structure
3228  * @prio: priority to save
3229  *
3230  * Save or clear priority (prio) in the passed param bw_t_info.
3231  */
3232 static void ice_set_clear_prio(struct ice_bw_type_info *bw_t_info, u8 prio)
3233 {
3234 	bw_t_info->generic = prio;
3235 	if (bw_t_info->generic)
3236 		ice_set_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
3237 	else
3238 		ice_clear_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
3239 }
3240 
3241 /**
3242  * ice_sched_save_vsi_prio - save VSI node's priority information
3243  * @pi: port information structure
3244  * @vsi_handle: Software VSI handle
3245  * @tc: traffic class
3246  * @prio: priority to save
3247  *
3248  * Save priority information of VSI type node for post replay use.
3249  */
3250 static enum ice_status
3251 ice_sched_save_vsi_prio(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3252 			u8 prio)
3253 {
3254 	struct ice_vsi_ctx *vsi_ctx;
3255 
3256 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3257 		return ICE_ERR_PARAM;
3258 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3259 	if (!vsi_ctx)
3260 		return ICE_ERR_PARAM;
3261 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
3262 		return ICE_ERR_PARAM;
3263 	ice_set_clear_prio(&vsi_ctx->sched.bw_t_info[tc], prio);
3264 	return ICE_SUCCESS;
3265 }
3266 
3267 /**
3268  * ice_sched_save_agg_bw_alloc - save aggregator node's BW alloc information
3269  * @pi: port information structure
3270  * @agg_id: node aggregator ID
3271  * @tc: traffic class
3272  * @rl_type: rate limit type min or max
3273  * @bw_alloc: bandwidth alloc information
3274  *
3275  * Save BW alloc information of AGG type node for post replay use.
3276  */
3277 static enum ice_status
3278 ice_sched_save_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3279 			    enum ice_rl_type rl_type, u16 bw_alloc)
3280 {
3281 	struct ice_sched_agg_info *agg_info;
3282 
3283 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3284 	if (!agg_info)
3285 		return ICE_ERR_PARAM;
3286 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
3287 		return ICE_ERR_PARAM;
3288 	switch (rl_type) {
3289 	case ICE_MIN_BW:
3290 		ice_set_clear_cir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
3291 		break;
3292 	case ICE_MAX_BW:
3293 		ice_set_clear_eir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
3294 		break;
3295 	default:
3296 		return ICE_ERR_PARAM;
3297 	}
3298 	return ICE_SUCCESS;
3299 }
3300 
3301 /**
3302  * ice_sched_save_agg_bw - save aggregator node's BW information
3303  * @pi: port information structure
3304  * @agg_id: node aggregator ID
3305  * @tc: traffic class
3306  * @rl_type: rate limit type min, max, or shared
3307  * @bw: bandwidth in Kbps - Kilo bits per sec
3308  *
3309  * Save BW information of AGG type node for post replay use.
3310  */
3311 static enum ice_status
3312 ice_sched_save_agg_bw(struct ice_port_info *pi, u32 agg_id, u8 tc,
3313 		      enum ice_rl_type rl_type, u32 bw)
3314 {
3315 	struct ice_sched_agg_info *agg_info;
3316 
3317 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3318 	if (!agg_info)
3319 		return ICE_ERR_PARAM;
3320 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
3321 		return ICE_ERR_PARAM;
3322 	switch (rl_type) {
3323 	case ICE_MIN_BW:
3324 		ice_set_clear_cir_bw(&agg_info->bw_t_info[tc], bw);
3325 		break;
3326 	case ICE_MAX_BW:
3327 		ice_set_clear_eir_bw(&agg_info->bw_t_info[tc], bw);
3328 		break;
3329 	case ICE_SHARED_BW:
3330 		ice_set_clear_shared_bw(&agg_info->bw_t_info[tc], bw);
3331 		break;
3332 	default:
3333 		return ICE_ERR_PARAM;
3334 	}
3335 	return ICE_SUCCESS;
3336 }
3337 
3338 /**
3339  * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3340  * @pi: port information structure
3341  * @vsi_handle: software VSI handle
3342  * @tc: traffic class
3343  * @rl_type: min or max
3344  * @bw: bandwidth in Kbps
3345  *
3346  * This function configures BW limit of VSI scheduling node based on TC
3347  * information.
3348  */
3349 enum ice_status
3350 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3351 			  enum ice_rl_type rl_type, u32 bw)
3352 {
3353 	enum ice_status status;
3354 
3355 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3356 						  ICE_AGG_TYPE_VSI,
3357 						  tc, rl_type, bw);
3358 	if (!status) {
3359 		ice_acquire_lock(&pi->sched_lock);
3360 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
3361 		ice_release_lock(&pi->sched_lock);
3362 	}
3363 	return status;
3364 }
3365 
3366 /**
3367  * ice_cfg_dflt_vsi_bw_lmt_per_tc - configure default VSI BW limit per TC
3368  * @pi: port information structure
3369  * @vsi_handle: software VSI handle
3370  * @tc: traffic class
3371  * @rl_type: min or max
3372  *
3373  * This function configures default BW limit of VSI scheduling node based on TC
3374  * information.
3375  */
3376 enum ice_status
3377 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3378 			       enum ice_rl_type rl_type)
3379 {
3380 	enum ice_status status;
3381 
3382 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3383 						  ICE_AGG_TYPE_VSI,
3384 						  tc, rl_type,
3385 						  ICE_SCHED_DFLT_BW);
3386 	if (!status) {
3387 		ice_acquire_lock(&pi->sched_lock);
3388 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
3389 					       ICE_SCHED_DFLT_BW);
3390 		ice_release_lock(&pi->sched_lock);
3391 	}
3392 	return status;
3393 }
3394 
3395 /**
3396  * ice_cfg_agg_bw_lmt_per_tc - configure aggregator BW limit per TC
3397  * @pi: port information structure
3398  * @agg_id: aggregator ID
3399  * @tc: traffic class
3400  * @rl_type: min or max
3401  * @bw: bandwidth in Kbps
3402  *
3403  * This function applies BW limit to aggregator scheduling node based on TC
3404  * information.
3405  */
3406 enum ice_status
3407 ice_cfg_agg_bw_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3408 			  enum ice_rl_type rl_type, u32 bw)
3409 {
3410 	enum ice_status status;
3411 
3412 	status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
3413 						  tc, rl_type, bw);
3414 	if (!status) {
3415 		ice_acquire_lock(&pi->sched_lock);
3416 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
3417 		ice_release_lock(&pi->sched_lock);
3418 	}
3419 	return status;
3420 }
3421 
3422 /**
3423  * ice_cfg_agg_bw_dflt_lmt_per_tc - configure aggregator BW default limit per TC
3424  * @pi: port information structure
3425  * @agg_id: aggregator ID
3426  * @tc: traffic class
3427  * @rl_type: min or max
3428  *
3429  * This function applies default BW limit to aggregator scheduling node based
3430  * on TC information.
3431  */
3432 enum ice_status
3433 ice_cfg_agg_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3434 			       enum ice_rl_type rl_type)
3435 {
3436 	enum ice_status status;
3437 
3438 	status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
3439 						  tc, rl_type,
3440 						  ICE_SCHED_DFLT_BW);
3441 	if (!status) {
3442 		ice_acquire_lock(&pi->sched_lock);
3443 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type,
3444 					       ICE_SCHED_DFLT_BW);
3445 		ice_release_lock(&pi->sched_lock);
3446 	}
3447 	return status;
3448 }
3449 
3450 /**
3451  * ice_cfg_vsi_bw_shared_lmt - configure VSI BW shared limit
3452  * @pi: port information structure
3453  * @vsi_handle: software VSI handle
3454  * @min_bw: minimum bandwidth in Kbps
3455  * @max_bw: maximum bandwidth in Kbps
3456  * @shared_bw: shared bandwidth in Kbps
3457  *
3458  * Configure shared rate limiter(SRL) of all VSI type nodes across all traffic
3459  * classes for VSI matching handle.
3460  */
3461 enum ice_status
3462 ice_cfg_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle, u32 min_bw,
3463 			  u32 max_bw, u32 shared_bw)
3464 {
3465 	return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle, min_bw, max_bw,
3466 					       shared_bw);
3467 }
3468 
3469 /**
3470  * ice_cfg_vsi_bw_no_shared_lmt - configure VSI BW for no shared limiter
3471  * @pi: port information structure
3472  * @vsi_handle: software VSI handle
3473  *
3474  * This function removes the shared rate limiter(SRL) of all VSI type nodes
3475  * across all traffic classes for VSI matching handle.
3476  */
3477 enum ice_status
3478 ice_cfg_vsi_bw_no_shared_lmt(struct ice_port_info *pi, u16 vsi_handle)
3479 {
3480 	return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle,
3481 					       ICE_SCHED_DFLT_BW,
3482 					       ICE_SCHED_DFLT_BW,
3483 					       ICE_SCHED_DFLT_BW);
3484 }
3485 
3486 /**
3487  * ice_cfg_agg_bw_shared_lmt - configure aggregator BW shared limit
3488  * @pi: port information structure
3489  * @agg_id: aggregator ID
3490  * @min_bw: minimum bandwidth in Kbps
3491  * @max_bw: maximum bandwidth in Kbps
3492  * @shared_bw: shared bandwidth in Kbps
3493  *
3494  * This function configures the shared rate limiter(SRL) of all aggregator type
3495  * nodes across all traffic classes for aggregator matching agg_id.
3496  */
3497 enum ice_status
3498 ice_cfg_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id, u32 min_bw,
3499 			  u32 max_bw, u32 shared_bw)
3500 {
3501 	return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, min_bw, max_bw,
3502 					       shared_bw);
3503 }
3504 
3505 /**
3506  * ice_cfg_agg_bw_no_shared_lmt - configure aggregator BW for no shared limiter
3507  * @pi: port information structure
3508  * @agg_id: aggregator ID
3509  *
3510  * This function removes the shared rate limiter(SRL) of all aggregator type
3511  * nodes across all traffic classes for aggregator matching agg_id.
3512  */
3513 enum ice_status
3514 ice_cfg_agg_bw_no_shared_lmt(struct ice_port_info *pi, u32 agg_id)
3515 {
3516 	return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, ICE_SCHED_DFLT_BW,
3517 					       ICE_SCHED_DFLT_BW,
3518 					       ICE_SCHED_DFLT_BW);
3519 }
3520 
3521 /**
3522  * ice_cfg_agg_bw_shared_lmt_per_tc - configure aggregator BW shared limit per tc
3523  * @pi: port information structure
3524  * @agg_id: aggregator ID
3525  * @tc: traffic class
3526  * @min_bw: minimum bandwidth in Kbps
3527  * @max_bw: maximum bandwidth in Kbps
3528  * @shared_bw: shared bandwidth in Kbps
3529  *
3530  * This function configures the shared rate limiter(SRL) of all aggregator type
3531  * nodes across all traffic classes for aggregator matching agg_id.
3532  */
3533 enum ice_status
3534 ice_cfg_agg_bw_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3535 				 u32 min_bw, u32 max_bw, u32 shared_bw)
3536 {
3537 	return ice_sched_set_agg_bw_shared_lmt_per_tc(pi, agg_id, tc, min_bw,
3538 						      max_bw, shared_bw);
3539 }
3540 
3541 /**
3542  * ice_cfg_agg_bw_shared_lmt_per_tc - configure aggregator BW shared limit per tc
3543  * @pi: port information structure
3544  * @agg_id: aggregator ID
3545  * @tc: traffic class
3546  *
3547  * This function configures the shared rate limiter(SRL) of all aggregator type
3548  * nodes across all traffic classes for aggregator matching agg_id.
3549  */
3550 enum ice_status
3551 ice_cfg_agg_bw_no_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc)
3552 {
3553 	return ice_sched_set_agg_bw_shared_lmt_per_tc(pi, agg_id, tc,
3554 						      ICE_SCHED_DFLT_BW,
3555 						      ICE_SCHED_DFLT_BW,
3556 						      ICE_SCHED_DFLT_BW);
3557 }
3558 
3559 /**
3560  * ice_config_vsi_queue_priority - config VSI queue priority of node
3561  * @pi: port information structure
3562  * @num_qs: number of VSI queues
3563  * @q_ids: queue IDs array
3564  * @q_prio: queue priority array
3565  *
3566  * This function configures the queue node priority (Sibling Priority) of the
3567  * passed in VSI's queue(s) for a given traffic class (TC).
3568  */
3569 enum ice_status
3570 ice_cfg_vsi_q_priority(struct ice_port_info *pi, u16 num_qs, u32 *q_ids,
3571 		       u8 *q_prio)
3572 {
3573 	enum ice_status status = ICE_ERR_PARAM;
3574 	u16 i;
3575 
3576 	ice_acquire_lock(&pi->sched_lock);
3577 
3578 	for (i = 0; i < num_qs; i++) {
3579 		struct ice_sched_node *node;
3580 
3581 		node = ice_sched_find_node_by_teid(pi->root, q_ids[i]);
3582 		if (!node || node->info.data.elem_type !=
3583 		    ICE_AQC_ELEM_TYPE_LEAF) {
3584 			status = ICE_ERR_PARAM;
3585 			break;
3586 		}
3587 		/* Configure Priority */
3588 		status = ice_sched_cfg_sibl_node_prio(pi, node, q_prio[i]);
3589 		if (status)
3590 			break;
3591 	}
3592 
3593 	ice_release_lock(&pi->sched_lock);
3594 	return status;
3595 }
3596 
3597 /**
3598  * ice_cfg_agg_vsi_priority_per_tc - config aggregator's VSI priority per TC
3599  * @pi: port information structure
3600  * @agg_id: Aggregator ID
3601  * @num_vsis: number of VSI(s)
3602  * @vsi_handle_arr: array of software VSI handles
3603  * @node_prio: pointer to node priority
3604  * @tc: traffic class
3605  *
3606  * This function configures the node priority (Sibling Priority) of the
3607  * passed in VSI's for a given traffic class (TC) of an Aggregator ID.
3608  */
3609 enum ice_status
3610 ice_cfg_agg_vsi_priority_per_tc(struct ice_port_info *pi, u32 agg_id,
3611 				u16 num_vsis, u16 *vsi_handle_arr,
3612 				u8 *node_prio, u8 tc)
3613 {
3614 	struct ice_sched_agg_vsi_info *agg_vsi_info;
3615 	struct ice_sched_node *tc_node, *agg_node;
3616 	enum ice_status status = ICE_ERR_PARAM;
3617 	struct ice_sched_agg_info *agg_info;
3618 	bool agg_id_present = false;
3619 	struct ice_hw *hw = pi->hw;
3620 	u16 i;
3621 
3622 	ice_acquire_lock(&pi->sched_lock);
3623 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
3624 			    list_entry)
3625 		if (agg_info->agg_id == agg_id) {
3626 			agg_id_present = true;
3627 			break;
3628 		}
3629 	if (!agg_id_present)
3630 		goto exit_agg_priority_per_tc;
3631 
3632 	tc_node = ice_sched_get_tc_node(pi, tc);
3633 	if (!tc_node)
3634 		goto exit_agg_priority_per_tc;
3635 
3636 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
3637 	if (!agg_node)
3638 		goto exit_agg_priority_per_tc;
3639 
3640 	if (num_vsis > hw->max_children[agg_node->tx_sched_layer])
3641 		goto exit_agg_priority_per_tc;
3642 
3643 	for (i = 0; i < num_vsis; i++) {
3644 		struct ice_sched_node *vsi_node;
3645 		bool vsi_handle_valid = false;
3646 		u16 vsi_handle;
3647 
3648 		status = ICE_ERR_PARAM;
3649 		vsi_handle = vsi_handle_arr[i];
3650 		if (!ice_is_vsi_valid(hw, vsi_handle))
3651 			goto exit_agg_priority_per_tc;
3652 		/* Verify child nodes before applying settings */
3653 		LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
3654 				    ice_sched_agg_vsi_info, list_entry)
3655 			if (agg_vsi_info->vsi_handle == vsi_handle) {
3656 				/* cppcheck-suppress unreadVariable */
3657 				vsi_handle_valid = true;
3658 				break;
3659 			}
3660 
3661 		if (!vsi_handle_valid)
3662 			goto exit_agg_priority_per_tc;
3663 
3664 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
3665 		if (!vsi_node)
3666 			goto exit_agg_priority_per_tc;
3667 
3668 		if (ice_sched_find_node_in_subtree(hw, agg_node, vsi_node)) {
3669 			/* Configure Priority */
3670 			status = ice_sched_cfg_sibl_node_prio(pi, vsi_node,
3671 							      node_prio[i]);
3672 			if (status)
3673 				break;
3674 			status = ice_sched_save_vsi_prio(pi, vsi_handle, tc,
3675 							 node_prio[i]);
3676 			if (status)
3677 				break;
3678 		}
3679 	}
3680 
3681 exit_agg_priority_per_tc:
3682 	ice_release_lock(&pi->sched_lock);
3683 	return status;
3684 }
3685 
3686 /**
3687  * ice_cfg_vsi_bw_alloc - config VSI BW alloc per TC
3688  * @pi: port information structure
3689  * @vsi_handle: software VSI handle
3690  * @ena_tcmap: enabled TC map
3691  * @rl_type: Rate limit type CIR/EIR
3692  * @bw_alloc: Array of BW alloc
3693  *
3694  * This function configures the BW allocation of the passed in VSI's
3695  * node(s) for enabled traffic class.
3696  */
3697 enum ice_status
3698 ice_cfg_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 ena_tcmap,
3699 		     enum ice_rl_type rl_type, u8 *bw_alloc)
3700 {
3701 	enum ice_status status = ICE_SUCCESS;
3702 	u8 tc;
3703 
3704 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3705 		return ICE_ERR_PARAM;
3706 
3707 	ice_acquire_lock(&pi->sched_lock);
3708 
3709 	/* Return success if no nodes are present across TC */
3710 	ice_for_each_traffic_class(tc) {
3711 		struct ice_sched_node *tc_node, *vsi_node;
3712 
3713 		if (!ice_is_tc_ena(ena_tcmap, tc))
3714 			continue;
3715 
3716 		tc_node = ice_sched_get_tc_node(pi, tc);
3717 		if (!tc_node)
3718 			continue;
3719 
3720 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
3721 		if (!vsi_node)
3722 			continue;
3723 
3724 		status = ice_sched_cfg_node_bw_alloc(pi->hw, vsi_node, rl_type,
3725 						     bw_alloc[tc]);
3726 		if (status)
3727 			break;
3728 		status = ice_sched_save_vsi_bw_alloc(pi, vsi_handle, tc,
3729 						     rl_type, bw_alloc[tc]);
3730 		if (status)
3731 			break;
3732 	}
3733 
3734 	ice_release_lock(&pi->sched_lock);
3735 	return status;
3736 }
3737 
3738 /**
3739  * ice_cfg_agg_bw_alloc - config aggregator BW alloc
3740  * @pi: port information structure
3741  * @agg_id: aggregator ID
3742  * @ena_tcmap: enabled TC map
3743  * @rl_type: rate limit type CIR/EIR
3744  * @bw_alloc: array of BW alloc
3745  *
3746  * This function configures the BW allocation of passed in aggregator for
3747  * enabled traffic class(s).
3748  */
3749 enum ice_status
3750 ice_cfg_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 ena_tcmap,
3751 		     enum ice_rl_type rl_type, u8 *bw_alloc)
3752 {
3753 	struct ice_sched_agg_info *agg_info;
3754 	bool agg_id_present = false;
3755 	enum ice_status status = ICE_SUCCESS;
3756 	struct ice_hw *hw = pi->hw;
3757 	u8 tc;
3758 
3759 	ice_acquire_lock(&pi->sched_lock);
3760 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
3761 			    list_entry)
3762 		if (agg_info->agg_id == agg_id) {
3763 			agg_id_present = true;
3764 			break;
3765 		}
3766 	if (!agg_id_present) {
3767 		status = ICE_ERR_PARAM;
3768 		goto exit_cfg_agg_bw_alloc;
3769 	}
3770 
3771 	/* Return success if no nodes are present across TC */
3772 	ice_for_each_traffic_class(tc) {
3773 		struct ice_sched_node *tc_node, *agg_node;
3774 
3775 		if (!ice_is_tc_ena(ena_tcmap, tc))
3776 			continue;
3777 
3778 		tc_node = ice_sched_get_tc_node(pi, tc);
3779 		if (!tc_node)
3780 			continue;
3781 
3782 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
3783 		if (!agg_node)
3784 			continue;
3785 
3786 		status = ice_sched_cfg_node_bw_alloc(hw, agg_node, rl_type,
3787 						     bw_alloc[tc]);
3788 		if (status)
3789 			break;
3790 		status = ice_sched_save_agg_bw_alloc(pi, agg_id, tc, rl_type,
3791 						     bw_alloc[tc]);
3792 		if (status)
3793 			break;
3794 	}
3795 
3796 exit_cfg_agg_bw_alloc:
3797 	ice_release_lock(&pi->sched_lock);
3798 	return status;
3799 }
3800 
3801 /**
3802  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3803  * @hw: pointer to the HW struct
3804  * @bw: bandwidth in Kbps
3805  *
3806  * This function calculates the wakeup parameter of RL profile.
3807  */
3808 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3809 {
3810 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3811 	s32 wakeup_f_int;
3812 	u16 wakeup = 0;
3813 
3814 	/* Get the wakeup integer value */
3815 	bytes_per_sec = DIV_64BIT(((s64)bw * 1000), BITS_PER_BYTE);
3816 	wakeup_int = DIV_64BIT(hw->psm_clk_freq, bytes_per_sec);
3817 	if (wakeup_int > 63) {
3818 		wakeup = (u16)((1 << 15) | wakeup_int);
3819 	} else {
3820 		/* Calculate fraction value up to 4 decimals
3821 		 * Convert Integer value to a constant multiplier
3822 		 */
3823 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3824 		wakeup_a = DIV_64BIT((s64)ICE_RL_PROF_MULTIPLIER *
3825 				     hw->psm_clk_freq, bytes_per_sec);
3826 
3827 		/* Get Fraction value */
3828 		wakeup_f = wakeup_a - wakeup_b;
3829 
3830 		/* Round up the Fractional value via Ceil(Fractional value) */
3831 		if (wakeup_f > DIV_64BIT(ICE_RL_PROF_MULTIPLIER, 2))
3832 			wakeup_f += 1;
3833 
3834 		wakeup_f_int = (s32)DIV_64BIT(wakeup_f * ICE_RL_PROF_FRACTION,
3835 					      ICE_RL_PROF_MULTIPLIER);
3836 		wakeup |= (u16)(wakeup_int << 9);
3837 		wakeup |= (u16)(0x1ff & wakeup_f_int);
3838 	}
3839 
3840 	return wakeup;
3841 }
3842 
3843 /**
3844  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3845  * @hw: pointer to the HW struct
3846  * @bw: bandwidth in Kbps
3847  * @profile: profile parameters to return
3848  *
3849  * This function converts the BW to profile structure format.
3850  */
3851 static enum ice_status
3852 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3853 			   struct ice_aqc_rl_profile_elem *profile)
3854 {
3855 	enum ice_status status = ICE_ERR_PARAM;
3856 	s64 bytes_per_sec, ts_rate, mv_tmp;
3857 	bool found = false;
3858 	s32 encode = 0;
3859 	s64 mv = 0;
3860 	s32 i;
3861 
3862 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3863 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3864 		return status;
3865 
3866 	/* Bytes per second from Kbps */
3867 	bytes_per_sec = DIV_64BIT(((s64)bw * 1000), BITS_PER_BYTE);
3868 
3869 	/* encode is 6 bits but really useful are 5 bits */
3870 	for (i = 0; i < 64; i++) {
3871 		u64 pow_result = BIT_ULL(i);
3872 
3873 		ts_rate = DIV_64BIT((s64)hw->psm_clk_freq,
3874 				    pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3875 		if (ts_rate <= 0)
3876 			continue;
3877 
3878 		/* Multiplier value */
3879 		mv_tmp = DIV_64BIT(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3880 				   ts_rate);
3881 
3882 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3883 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3884 
3885 		/* First multiplier value greater than the given
3886 		 * accuracy bytes
3887 		 */
3888 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3889 			encode = i;
3890 			found = true;
3891 			break;
3892 		}
3893 	}
3894 	if (found) {
3895 		u16 wm;
3896 
3897 		wm = ice_sched_calc_wakeup(hw, bw);
3898 		profile->rl_multiply = CPU_TO_LE16(mv);
3899 		profile->wake_up_calc = CPU_TO_LE16(wm);
3900 		profile->rl_encode = CPU_TO_LE16(encode);
3901 		status = ICE_SUCCESS;
3902 	} else {
3903 		status = ICE_ERR_DOES_NOT_EXIST;
3904 	}
3905 
3906 	return status;
3907 }
3908 
3909 /**
3910  * ice_sched_add_rl_profile - add RL profile
3911  * @hw: pointer to the hardware structure
3912  * @rl_type: type of rate limit BW - min, max, or shared
3913  * @bw: bandwidth in Kbps - Kilo bits per sec
3914  * @layer_num: specifies in which layer to create profile
3915  *
3916  * This function first checks the existing list for corresponding BW
3917  * parameter. If it exists, it returns the associated profile otherwise
3918  * it creates a new rate limit profile for requested BW, and adds it to
3919  * the HW DB and local list. It returns the new profile or null on error.
3920  * The caller needs to hold the scheduler lock.
3921  */
3922 static struct ice_aqc_rl_profile_info *
3923 ice_sched_add_rl_profile(struct ice_hw *hw, enum ice_rl_type rl_type,
3924 			 u32 bw, u8 layer_num)
3925 {
3926 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3927 	u16 profiles_added = 0, num_profiles = 1;
3928 	struct ice_aqc_rl_profile_elem *buf;
3929 	enum ice_status status;
3930 	u8 profile_type;
3931 
3932 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3933 		return NULL;
3934 	switch (rl_type) {
3935 	case ICE_MIN_BW:
3936 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3937 		break;
3938 	case ICE_MAX_BW:
3939 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3940 		break;
3941 	case ICE_SHARED_BW:
3942 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3943 		break;
3944 	default:
3945 		return NULL;
3946 	}
3947 
3948 	if (!hw)
3949 		return NULL;
3950 	LIST_FOR_EACH_ENTRY(rl_prof_elem, &hw->rl_prof_list[layer_num],
3951 			    ice_aqc_rl_profile_info, list_entry)
3952 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3953 		    profile_type && rl_prof_elem->bw == bw)
3954 			/* Return existing profile ID info */
3955 			return rl_prof_elem;
3956 
3957 	/* Create new profile ID */
3958 	rl_prof_elem = (struct ice_aqc_rl_profile_info *)
3959 		ice_malloc(hw, sizeof(*rl_prof_elem));
3960 
3961 	if (!rl_prof_elem)
3962 		return NULL;
3963 
3964 	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3965 	if (status != ICE_SUCCESS)
3966 		goto exit_add_rl_prof;
3967 
3968 	rl_prof_elem->bw = bw;
3969 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
3970 	rl_prof_elem->profile.level = layer_num + 1;
3971 	rl_prof_elem->profile.flags = profile_type;
3972 	rl_prof_elem->profile.max_burst_size = CPU_TO_LE16(hw->max_burst_size);
3973 
3974 	/* Create new entry in HW DB */
3975 	buf = &rl_prof_elem->profile;
3976 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3977 				       &profiles_added, NULL);
3978 	if (status || profiles_added != num_profiles)
3979 		goto exit_add_rl_prof;
3980 
3981 	/* Good entry - add in the list */
3982 	rl_prof_elem->prof_id_ref = 0;
3983 	LIST_ADD(&rl_prof_elem->list_entry, &hw->rl_prof_list[layer_num]);
3984 	return rl_prof_elem;
3985 
3986 exit_add_rl_prof:
3987 	ice_free(hw, rl_prof_elem);
3988 	return NULL;
3989 }
3990 
3991 /**
3992  * ice_sched_cfg_node_bw_lmt - configure node sched params
3993  * @hw: pointer to the HW struct
3994  * @node: sched node to configure
3995  * @rl_type: rate limit type CIR, EIR, or shared
3996  * @rl_prof_id: rate limit profile ID
3997  *
3998  * This function configures node element's BW limit.
3999  */
4000 static enum ice_status
4001 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
4002 			  enum ice_rl_type rl_type, u16 rl_prof_id)
4003 {
4004 	struct ice_aqc_txsched_elem_data buf;
4005 	struct ice_aqc_txsched_elem *data;
4006 
4007 	buf = node->info;
4008 	data = &buf.data;
4009 	switch (rl_type) {
4010 	case ICE_MIN_BW:
4011 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
4012 		data->cir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
4013 		break;
4014 	case ICE_MAX_BW:
4015 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
4016 		data->eir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
4017 		break;
4018 	case ICE_SHARED_BW:
4019 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
4020 		data->srl_id = CPU_TO_LE16(rl_prof_id);
4021 		break;
4022 	default:
4023 		/* Unknown rate limit type */
4024 		return ICE_ERR_PARAM;
4025 	}
4026 
4027 	/* Configure element */
4028 	return ice_sched_update_elem(hw, node, &buf);
4029 }
4030 
4031 /**
4032  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
4033  * @node: sched node
4034  * @rl_type: rate limit type
4035  *
4036  * If existing profile matches, it returns the corresponding rate
4037  * limit profile ID, otherwise it returns an invalid ID as error.
4038  */
4039 static u16
4040 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
4041 			      enum ice_rl_type rl_type)
4042 {
4043 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
4044 	struct ice_aqc_txsched_elem *data;
4045 
4046 	data = &node->info.data;
4047 	switch (rl_type) {
4048 	case ICE_MIN_BW:
4049 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
4050 			rl_prof_id = LE16_TO_CPU(data->cir_bw.bw_profile_idx);
4051 		break;
4052 	case ICE_MAX_BW:
4053 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
4054 			rl_prof_id = LE16_TO_CPU(data->eir_bw.bw_profile_idx);
4055 		break;
4056 	case ICE_SHARED_BW:
4057 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
4058 			rl_prof_id = LE16_TO_CPU(data->srl_id);
4059 		break;
4060 	default:
4061 		break;
4062 	}
4063 
4064 	return rl_prof_id;
4065 }
4066 
4067 /**
4068  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
4069  * @pi: port information structure
4070  * @rl_type: type of rate limit BW - min, max, or shared
4071  * @layer_index: layer index
4072  *
4073  * This function returns requested profile creation layer.
4074  */
4075 static u8
4076 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
4077 			    u8 layer_index)
4078 {
4079 	struct ice_hw *hw = pi->hw;
4080 
4081 	if (layer_index >= hw->num_tx_sched_layers)
4082 		return ICE_SCHED_INVAL_LAYER_NUM;
4083 	switch (rl_type) {
4084 	case ICE_MIN_BW:
4085 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
4086 			return layer_index;
4087 		break;
4088 	case ICE_MAX_BW:
4089 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
4090 			return layer_index;
4091 		break;
4092 	case ICE_SHARED_BW:
4093 		/* if current layer doesn't support SRL profile creation
4094 		 * then try a layer up or down.
4095 		 */
4096 		if (hw->layer_info[layer_index].max_srl_profiles)
4097 			return layer_index;
4098 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
4099 			 hw->layer_info[layer_index + 1].max_srl_profiles)
4100 			return layer_index + 1;
4101 		else if (layer_index > 0 &&
4102 			 hw->layer_info[layer_index - 1].max_srl_profiles)
4103 			return layer_index - 1;
4104 		break;
4105 	default:
4106 		break;
4107 	}
4108 	return ICE_SCHED_INVAL_LAYER_NUM;
4109 }
4110 
4111 /**
4112  * ice_sched_get_srl_node - get shared rate limit node
4113  * @node: tree node
4114  * @srl_layer: shared rate limit layer
4115  *
4116  * This function returns SRL node to be used for shared rate limit purpose.
4117  * The caller needs to hold scheduler lock.
4118  */
4119 static struct ice_sched_node *
4120 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
4121 {
4122 	if (srl_layer > node->tx_sched_layer)
4123 		return node->children[0];
4124 	else if (srl_layer < node->tx_sched_layer)
4125 		/* Node can't be created without a parent. It will always
4126 		 * have a valid parent except root node.
4127 		 */
4128 		return node->parent;
4129 	else
4130 		return node;
4131 }
4132 
4133 /**
4134  * ice_sched_rm_rl_profile - remove RL profile ID
4135  * @hw: pointer to the hardware structure
4136  * @layer_num: layer number where profiles are saved
4137  * @profile_type: profile type like EIR, CIR, or SRL
4138  * @profile_id: profile ID to remove
4139  *
4140  * This function removes rate limit profile from layer 'layer_num' of type
4141  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
4142  * scheduler lock.
4143  */
4144 static enum ice_status
4145 ice_sched_rm_rl_profile(struct ice_hw *hw, u8 layer_num, u8 profile_type,
4146 			u16 profile_id)
4147 {
4148 	struct ice_aqc_rl_profile_info *rl_prof_elem;
4149 	enum ice_status status = ICE_SUCCESS;
4150 
4151 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
4152 		return ICE_ERR_PARAM;
4153 	/* Check the existing list for RL profile */
4154 	LIST_FOR_EACH_ENTRY(rl_prof_elem, &hw->rl_prof_list[layer_num],
4155 			    ice_aqc_rl_profile_info, list_entry)
4156 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
4157 		    profile_type &&
4158 		    LE16_TO_CPU(rl_prof_elem->profile.profile_id) ==
4159 		    profile_id) {
4160 			if (rl_prof_elem->prof_id_ref)
4161 				rl_prof_elem->prof_id_ref--;
4162 
4163 			/* Remove old profile ID from database */
4164 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
4165 			if (status && status != ICE_ERR_IN_USE)
4166 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
4167 			break;
4168 		}
4169 	if (status == ICE_ERR_IN_USE)
4170 		status = ICE_SUCCESS;
4171 	return status;
4172 }
4173 
4174 /**
4175  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
4176  * @pi: port information structure
4177  * @node: pointer to node structure
4178  * @rl_type: rate limit type min, max, or shared
4179  * @layer_num: layer number where RL profiles are saved
4180  *
4181  * This function configures node element's BW rate limit profile ID of
4182  * type CIR, EIR, or SRL to default. This function needs to be called
4183  * with the scheduler lock held.
4184  */
4185 static enum ice_status
4186 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
4187 			   struct ice_sched_node *node,
4188 			   enum ice_rl_type rl_type, u8 layer_num)
4189 {
4190 	enum ice_status status;
4191 	struct ice_hw *hw;
4192 	u8 profile_type;
4193 	u16 rl_prof_id;
4194 	u16 old_id;
4195 
4196 	hw = pi->hw;
4197 	switch (rl_type) {
4198 	case ICE_MIN_BW:
4199 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
4200 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
4201 		break;
4202 	case ICE_MAX_BW:
4203 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
4204 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
4205 		break;
4206 	case ICE_SHARED_BW:
4207 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
4208 		/* No SRL is configured for default case */
4209 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
4210 		break;
4211 	default:
4212 		return ICE_ERR_PARAM;
4213 	}
4214 	/* Save existing RL prof ID for later clean up */
4215 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
4216 	/* Configure BW scheduling parameters */
4217 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
4218 	if (status)
4219 		return status;
4220 
4221 	/* Remove stale RL profile ID */
4222 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
4223 	    old_id == ICE_SCHED_INVAL_PROF_ID)
4224 		return ICE_SUCCESS;
4225 
4226 	return ice_sched_rm_rl_profile(hw, layer_num, profile_type, old_id);
4227 }
4228 
4229 /**
4230  * ice_sched_set_node_bw - set node's bandwidth
4231  * @pi: port information structure
4232  * @node: tree node
4233  * @rl_type: rate limit type min, max, or shared
4234  * @bw: bandwidth in Kbps - Kilo bits per sec
4235  * @layer_num: layer number
4236  *
4237  * This function adds new profile corresponding to requested BW, configures
4238  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
4239  * ID from local database. The caller needs to hold scheduler lock.
4240  */
4241 static enum ice_status
4242 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
4243 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
4244 {
4245 	struct ice_aqc_rl_profile_info *rl_prof_info;
4246 	enum ice_status status = ICE_ERR_PARAM;
4247 	struct ice_hw *hw = pi->hw;
4248 	u16 old_id, rl_prof_id;
4249 
4250 	rl_prof_info = ice_sched_add_rl_profile(hw, rl_type, bw, layer_num);
4251 	if (!rl_prof_info)
4252 		return status;
4253 
4254 	rl_prof_id = LE16_TO_CPU(rl_prof_info->profile.profile_id);
4255 
4256 	/* Save existing RL prof ID for later clean up */
4257 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
4258 	/* Configure BW scheduling parameters */
4259 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
4260 	if (status)
4261 		return status;
4262 
4263 	/* New changes has been applied */
4264 	/* Increment the profile ID reference count */
4265 	rl_prof_info->prof_id_ref++;
4266 
4267 	/* Check for old ID removal */
4268 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
4269 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
4270 		return ICE_SUCCESS;
4271 
4272 	return ice_sched_rm_rl_profile(hw, layer_num,
4273 				       rl_prof_info->profile.flags &
4274 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
4275 }
4276 
4277 /**
4278  * ice_sched_set_node_bw_lmt - set node's BW limit
4279  * @pi: port information structure
4280  * @node: tree node
4281  * @rl_type: rate limit type min, max, or shared
4282  * @bw: bandwidth in Kbps - Kilo bits per sec
4283  *
4284  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
4285  * EIR, or SRL. The caller needs to hold scheduler lock.
4286  *
4287  * NOTE: Caller provides the correct SRL node in case of shared profile
4288  * settings.
4289  */
4290 static enum ice_status
4291 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
4292 			  enum ice_rl_type rl_type, u32 bw)
4293 {
4294 	struct ice_hw *hw;
4295 	u8 layer_num;
4296 
4297 	if (!pi)
4298 		return ICE_ERR_PARAM;
4299 	hw = pi->hw;
4300 	/* Remove unused RL profile IDs from HW and SW DB */
4301 	ice_sched_rm_unused_rl_prof(hw);
4302 
4303 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
4304 		node->tx_sched_layer);
4305 	if (layer_num >= hw->num_tx_sched_layers)
4306 		return ICE_ERR_PARAM;
4307 
4308 	if (bw == ICE_SCHED_DFLT_BW)
4309 		return ice_sched_set_node_bw_dflt(pi, node, rl_type, layer_num);
4310 	return ice_sched_set_node_bw(pi, node, rl_type, bw, layer_num);
4311 }
4312 
4313 /**
4314  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
4315  * @pi: port information structure
4316  * @node: pointer to node structure
4317  * @rl_type: rate limit type min, max, or shared
4318  *
4319  * This function configures node element's BW rate limit profile ID of
4320  * type CIR, EIR, or SRL to default. This function needs to be called
4321  * with the scheduler lock held.
4322  */
4323 static enum ice_status
4324 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
4325 			       struct ice_sched_node *node,
4326 			       enum ice_rl_type rl_type)
4327 {
4328 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
4329 					 ICE_SCHED_DFLT_BW);
4330 }
4331 
4332 /**
4333  * ice_sched_validate_srl_node - Check node for SRL applicability
4334  * @node: sched node to configure
4335  * @sel_layer: selected SRL layer
4336  *
4337  * This function checks if the SRL can be applied to a selceted layer node on
4338  * behalf of the requested node (first argument). This function needs to be
4339  * called with scheduler lock held.
4340  */
4341 static enum ice_status
4342 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
4343 {
4344 	/* SRL profiles are not available on all layers. Check if the
4345 	 * SRL profile can be applied to a node above or below the
4346 	 * requested node. SRL configuration is possible only if the
4347 	 * selected layer's node has single child.
4348 	 */
4349 	if (sel_layer == node->tx_sched_layer ||
4350 	    ((sel_layer == node->tx_sched_layer + 1) &&
4351 	    node->num_children == 1) ||
4352 	    ((sel_layer == node->tx_sched_layer - 1) &&
4353 	    (node->parent && node->parent->num_children == 1)))
4354 		return ICE_SUCCESS;
4355 
4356 	return ICE_ERR_CFG;
4357 }
4358 
4359 /**
4360  * ice_sched_save_q_bw - save queue node's BW information
4361  * @q_ctx: queue context structure
4362  * @rl_type: rate limit type min, max, or shared
4363  * @bw: bandwidth in Kbps - Kilo bits per sec
4364  *
4365  * Save BW information of queue type node for post replay use.
4366  */
4367 static enum ice_status
4368 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
4369 {
4370 	switch (rl_type) {
4371 	case ICE_MIN_BW:
4372 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
4373 		break;
4374 	case ICE_MAX_BW:
4375 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
4376 		break;
4377 	case ICE_SHARED_BW:
4378 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
4379 		break;
4380 	default:
4381 		return ICE_ERR_PARAM;
4382 	}
4383 	return ICE_SUCCESS;
4384 }
4385 
4386 /**
4387  * ice_sched_set_q_bw_lmt - sets queue BW limit
4388  * @pi: port information structure
4389  * @vsi_handle: sw VSI handle
4390  * @tc: traffic class
4391  * @q_handle: software queue handle
4392  * @rl_type: min, max, or shared
4393  * @bw: bandwidth in Kbps
4394  *
4395  * This function sets BW limit of queue scheduling node.
4396  */
4397 static enum ice_status
4398 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4399 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
4400 {
4401 	enum ice_status status = ICE_ERR_PARAM;
4402 	struct ice_sched_node *node;
4403 	struct ice_q_ctx *q_ctx;
4404 
4405 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4406 		return ICE_ERR_PARAM;
4407 	ice_acquire_lock(&pi->sched_lock);
4408 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
4409 	if (!q_ctx)
4410 		goto exit_q_bw_lmt;
4411 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4412 	if (!node) {
4413 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
4414 		goto exit_q_bw_lmt;
4415 	}
4416 
4417 	/* Return error if it is not a leaf node */
4418 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
4419 		goto exit_q_bw_lmt;
4420 
4421 	/* SRL bandwidth layer selection */
4422 	if (rl_type == ICE_SHARED_BW) {
4423 		u8 sel_layer; /* selected layer */
4424 
4425 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
4426 							node->tx_sched_layer);
4427 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
4428 			status = ICE_ERR_PARAM;
4429 			goto exit_q_bw_lmt;
4430 		}
4431 		status = ice_sched_validate_srl_node(node, sel_layer);
4432 		if (status)
4433 			goto exit_q_bw_lmt;
4434 	}
4435 
4436 	if (bw == ICE_SCHED_DFLT_BW)
4437 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
4438 	else
4439 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
4440 
4441 	if (!status)
4442 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
4443 
4444 exit_q_bw_lmt:
4445 	ice_release_lock(&pi->sched_lock);
4446 	return status;
4447 }
4448 
4449 /**
4450  * ice_cfg_q_bw_lmt - configure queue BW limit
4451  * @pi: port information structure
4452  * @vsi_handle: sw VSI handle
4453  * @tc: traffic class
4454  * @q_handle: software queue handle
4455  * @rl_type: min, max, or shared
4456  * @bw: bandwidth in Kbps
4457  *
4458  * This function configures BW limit of queue scheduling node.
4459  */
4460 enum ice_status
4461 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4462 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
4463 {
4464 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4465 				      bw);
4466 }
4467 
4468 /**
4469  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
4470  * @pi: port information structure
4471  * @vsi_handle: sw VSI handle
4472  * @tc: traffic class
4473  * @q_handle: software queue handle
4474  * @rl_type: min, max, or shared
4475  *
4476  * This function configures BW default limit of queue scheduling node.
4477  */
4478 enum ice_status
4479 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4480 		      u16 q_handle, enum ice_rl_type rl_type)
4481 {
4482 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4483 				      ICE_SCHED_DFLT_BW);
4484 }
4485 
4486 /**
4487  * ice_sched_save_tc_node_bw - save TC node BW limit
4488  * @pi: port information structure
4489  * @tc: TC number
4490  * @rl_type: min or max
4491  * @bw: bandwidth in Kbps
4492  *
4493  * This function saves the modified values of bandwidth settings for later
4494  * replay purpose (restore) after reset.
4495  */
4496 static enum ice_status
4497 ice_sched_save_tc_node_bw(struct ice_port_info *pi, u8 tc,
4498 			  enum ice_rl_type rl_type, u32 bw)
4499 {
4500 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4501 		return ICE_ERR_PARAM;
4502 	switch (rl_type) {
4503 	case ICE_MIN_BW:
4504 		ice_set_clear_cir_bw(&pi->tc_node_bw_t_info[tc], bw);
4505 		break;
4506 	case ICE_MAX_BW:
4507 		ice_set_clear_eir_bw(&pi->tc_node_bw_t_info[tc], bw);
4508 		break;
4509 	case ICE_SHARED_BW:
4510 		ice_set_clear_shared_bw(&pi->tc_node_bw_t_info[tc], bw);
4511 		break;
4512 	default:
4513 		return ICE_ERR_PARAM;
4514 	}
4515 	return ICE_SUCCESS;
4516 }
4517 
4518 /**
4519  * ice_sched_set_tc_node_bw_lmt - sets TC node BW limit
4520  * @pi: port information structure
4521  * @tc: TC number
4522  * @rl_type: min or max
4523  * @bw: bandwidth in Kbps
4524  *
4525  * This function configures bandwidth limit of TC node.
4526  */
4527 static enum ice_status
4528 ice_sched_set_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
4529 			     enum ice_rl_type rl_type, u32 bw)
4530 {
4531 	enum ice_status status = ICE_ERR_PARAM;
4532 	struct ice_sched_node *tc_node;
4533 
4534 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4535 		return status;
4536 	ice_acquire_lock(&pi->sched_lock);
4537 	tc_node = ice_sched_get_tc_node(pi, tc);
4538 	if (!tc_node)
4539 		goto exit_set_tc_node_bw;
4540 	if (bw == ICE_SCHED_DFLT_BW)
4541 		status = ice_sched_set_node_bw_dflt_lmt(pi, tc_node, rl_type);
4542 	else
4543 		status = ice_sched_set_node_bw_lmt(pi, tc_node, rl_type, bw);
4544 	if (!status)
4545 		status = ice_sched_save_tc_node_bw(pi, tc, rl_type, bw);
4546 
4547 exit_set_tc_node_bw:
4548 	ice_release_lock(&pi->sched_lock);
4549 	return status;
4550 }
4551 
4552 /**
4553  * ice_cfg_tc_node_bw_lmt - configure TC node BW limit
4554  * @pi: port information structure
4555  * @tc: TC number
4556  * @rl_type: min or max
4557  * @bw: bandwidth in Kbps
4558  *
4559  * This function configures BW limit of TC node.
4560  * Note: The minimum guaranteed reservation is done via DCBX.
4561  */
4562 enum ice_status
4563 ice_cfg_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
4564 		       enum ice_rl_type rl_type, u32 bw)
4565 {
4566 	return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, bw);
4567 }
4568 
4569 /**
4570  * ice_cfg_tc_node_bw_dflt_lmt - configure TC node BW default limit
4571  * @pi: port information structure
4572  * @tc: TC number
4573  * @rl_type: min or max
4574  *
4575  * This function configures BW default limit of TC node.
4576  */
4577 enum ice_status
4578 ice_cfg_tc_node_bw_dflt_lmt(struct ice_port_info *pi, u8 tc,
4579 			    enum ice_rl_type rl_type)
4580 {
4581 	return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, ICE_SCHED_DFLT_BW);
4582 }
4583 
4584 /**
4585  * ice_sched_save_tc_node_bw_alloc - save TC node's BW alloc information
4586  * @pi: port information structure
4587  * @tc: traffic class
4588  * @rl_type: rate limit type min or max
4589  * @bw_alloc: Bandwidth allocation information
4590  *
4591  * Save BW alloc information of VSI type node for post replay use.
4592  */
4593 static enum ice_status
4594 ice_sched_save_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4595 				enum ice_rl_type rl_type, u16 bw_alloc)
4596 {
4597 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4598 		return ICE_ERR_PARAM;
4599 	switch (rl_type) {
4600 	case ICE_MIN_BW:
4601 		ice_set_clear_cir_bw_alloc(&pi->tc_node_bw_t_info[tc],
4602 					   bw_alloc);
4603 		break;
4604 	case ICE_MAX_BW:
4605 		ice_set_clear_eir_bw_alloc(&pi->tc_node_bw_t_info[tc],
4606 					   bw_alloc);
4607 		break;
4608 	default:
4609 		return ICE_ERR_PARAM;
4610 	}
4611 	return ICE_SUCCESS;
4612 }
4613 
4614 /**
4615  * ice_sched_set_tc_node_bw_alloc - set TC node BW alloc
4616  * @pi: port information structure
4617  * @tc: TC number
4618  * @rl_type: min or max
4619  * @bw_alloc: bandwidth alloc
4620  *
4621  * This function configures bandwidth alloc of TC node, also saves the
4622  * changed settings for replay purpose, and return success if it succeeds
4623  * in modifying bandwidth alloc setting.
4624  */
4625 static enum ice_status
4626 ice_sched_set_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4627 			       enum ice_rl_type rl_type, u8 bw_alloc)
4628 {
4629 	enum ice_status status = ICE_ERR_PARAM;
4630 	struct ice_sched_node *tc_node;
4631 
4632 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4633 		return status;
4634 	ice_acquire_lock(&pi->sched_lock);
4635 	tc_node = ice_sched_get_tc_node(pi, tc);
4636 	if (!tc_node)
4637 		goto exit_set_tc_node_bw_alloc;
4638 	status = ice_sched_cfg_node_bw_alloc(pi->hw, tc_node, rl_type,
4639 					     bw_alloc);
4640 	if (status)
4641 		goto exit_set_tc_node_bw_alloc;
4642 	status = ice_sched_save_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
4643 
4644 exit_set_tc_node_bw_alloc:
4645 	ice_release_lock(&pi->sched_lock);
4646 	return status;
4647 }
4648 
4649 /**
4650  * ice_cfg_tc_node_bw_alloc - configure TC node BW alloc
4651  * @pi: port information structure
4652  * @tc: TC number
4653  * @rl_type: min or max
4654  * @bw_alloc: bandwidth alloc
4655  *
4656  * This function configures BW limit of TC node.
4657  * Note: The minimum guaranteed reservation is done via DCBX.
4658  */
4659 enum ice_status
4660 ice_cfg_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4661 			 enum ice_rl_type rl_type, u8 bw_alloc)
4662 {
4663 	return ice_sched_set_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
4664 }
4665 
4666 /**
4667  * ice_sched_set_agg_bw_dflt_lmt - set aggregator node's BW limit to default
4668  * @pi: port information structure
4669  * @vsi_handle: software VSI handle
4670  *
4671  * This function retrieves the aggregator ID based on VSI ID and TC,
4672  * and sets node's BW limit to default. This function needs to be
4673  * called with the scheduler lock held.
4674  */
4675 enum ice_status
4676 ice_sched_set_agg_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle)
4677 {
4678 	struct ice_vsi_ctx *vsi_ctx;
4679 	enum ice_status status = ICE_SUCCESS;
4680 	u8 tc;
4681 
4682 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4683 		return ICE_ERR_PARAM;
4684 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4685 	if (!vsi_ctx)
4686 		return ICE_ERR_PARAM;
4687 
4688 	ice_for_each_traffic_class(tc) {
4689 		struct ice_sched_node *node;
4690 
4691 		node = vsi_ctx->sched.ag_node[tc];
4692 		if (!node)
4693 			continue;
4694 
4695 		/* Set min profile to default */
4696 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MIN_BW);
4697 		if (status)
4698 			break;
4699 
4700 		/* Set max profile to default */
4701 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MAX_BW);
4702 		if (status)
4703 			break;
4704 
4705 		/* Remove shared profile, if there is one */
4706 		status = ice_sched_set_node_bw_dflt_lmt(pi, node,
4707 							ICE_SHARED_BW);
4708 		if (status)
4709 			break;
4710 	}
4711 
4712 	return status;
4713 }
4714 
4715 /**
4716  * ice_sched_get_node_by_id_type - get node from ID type
4717  * @pi: port information structure
4718  * @id: identifier
4719  * @agg_type: type of aggregator
4720  * @tc: traffic class
4721  *
4722  * This function returns node identified by ID of type aggregator, and
4723  * based on traffic class (TC). This function needs to be called with
4724  * the scheduler lock held.
4725  */
4726 static struct ice_sched_node *
4727 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
4728 			      enum ice_agg_type agg_type, u8 tc)
4729 {
4730 	struct ice_sched_node *node = NULL;
4731 	struct ice_sched_node *child_node;
4732 
4733 	switch (agg_type) {
4734 	case ICE_AGG_TYPE_VSI: {
4735 		struct ice_vsi_ctx *vsi_ctx;
4736 		u16 vsi_handle = (u16)id;
4737 
4738 		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4739 			break;
4740 		/* Get sched_vsi_info */
4741 		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4742 		if (!vsi_ctx)
4743 			break;
4744 		node = vsi_ctx->sched.vsi_node[tc];
4745 		break;
4746 	}
4747 
4748 	case ICE_AGG_TYPE_AGG: {
4749 		struct ice_sched_node *tc_node;
4750 
4751 		tc_node = ice_sched_get_tc_node(pi, tc);
4752 		if (tc_node)
4753 			node = ice_sched_get_agg_node(pi, tc_node, id);
4754 		break;
4755 	}
4756 
4757 	case ICE_AGG_TYPE_Q:
4758 		/* The current implementation allows single queue to modify */
4759 		node = ice_sched_get_node(pi, id);
4760 		break;
4761 
4762 	case ICE_AGG_TYPE_QG:
4763 		/* The current implementation allows single qg to modify */
4764 		child_node = ice_sched_get_node(pi, id);
4765 		if (!child_node)
4766 			break;
4767 		node = child_node->parent;
4768 		break;
4769 
4770 	default:
4771 		break;
4772 	}
4773 
4774 	return node;
4775 }
4776 
4777 /**
4778  * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
4779  * @pi: port information structure
4780  * @id: ID (software VSI handle or AGG ID)
4781  * @agg_type: aggregator type (VSI or AGG type node)
4782  * @tc: traffic class
4783  * @rl_type: min or max
4784  * @bw: bandwidth in Kbps
4785  *
4786  * This function sets BW limit of VSI or Aggregator scheduling node
4787  * based on TC information from passed in argument BW.
4788  */
4789 enum ice_status
4790 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
4791 				 enum ice_agg_type agg_type, u8 tc,
4792 				 enum ice_rl_type rl_type, u32 bw)
4793 {
4794 	enum ice_status status = ICE_ERR_PARAM;
4795 	struct ice_sched_node *node;
4796 
4797 	if (!pi)
4798 		return status;
4799 
4800 	if (rl_type == ICE_UNKNOWN_BW)
4801 		return status;
4802 
4803 	ice_acquire_lock(&pi->sched_lock);
4804 	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
4805 	if (!node) {
4806 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
4807 		goto exit_set_node_bw_lmt_per_tc;
4808 	}
4809 	if (bw == ICE_SCHED_DFLT_BW)
4810 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
4811 	else
4812 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
4813 
4814 exit_set_node_bw_lmt_per_tc:
4815 	ice_release_lock(&pi->sched_lock);
4816 	return status;
4817 }
4818 
4819 /**
4820  * ice_sched_validate_vsi_srl_node - validate VSI SRL node
4821  * @pi: port information structure
4822  * @vsi_handle: software VSI handle
4823  *
4824  * This function validates SRL node of the VSI node if available SRL layer is
4825  * different than the VSI node layer on all TC(s).This function needs to be
4826  * called with scheduler lock held.
4827  */
4828 static enum ice_status
4829 ice_sched_validate_vsi_srl_node(struct ice_port_info *pi, u16 vsi_handle)
4830 {
4831 	u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
4832 	u8 tc;
4833 
4834 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4835 		return ICE_ERR_PARAM;
4836 
4837 	/* Return success if no nodes are present across TC */
4838 	ice_for_each_traffic_class(tc) {
4839 		struct ice_sched_node *tc_node, *vsi_node;
4840 		enum ice_rl_type rl_type = ICE_SHARED_BW;
4841 		enum ice_status status;
4842 
4843 		tc_node = ice_sched_get_tc_node(pi, tc);
4844 		if (!tc_node)
4845 			continue;
4846 
4847 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
4848 		if (!vsi_node)
4849 			continue;
4850 
4851 		/* SRL bandwidth layer selection */
4852 		if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
4853 			u8 node_layer = vsi_node->tx_sched_layer;
4854 			u8 layer_num;
4855 
4856 			layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
4857 								node_layer);
4858 			if (layer_num >= pi->hw->num_tx_sched_layers)
4859 				return ICE_ERR_PARAM;
4860 			sel_layer = layer_num;
4861 		}
4862 
4863 		status = ice_sched_validate_srl_node(vsi_node, sel_layer);
4864 		if (status)
4865 			return status;
4866 	}
4867 	return ICE_SUCCESS;
4868 }
4869 
4870 /**
4871  * ice_sched_set_save_vsi_srl_node_bw - set VSI shared limit values
4872  * @pi: port information structure
4873  * @vsi_handle: software VSI handle
4874  * @tc: traffic class
4875  * @srl_node: sched node to configure
4876  * @rl_type: rate limit type minimum, maximum, or shared
4877  * @bw: minimum, maximum, or shared bandwidth in Kbps
4878  *
4879  * Configure shared rate limiter(SRL) of VSI type nodes across given traffic
4880  * class, and saves those value for later use for replaying purposes. The
4881  * caller holds the scheduler lock.
4882  */
4883 static enum ice_status
4884 ice_sched_set_save_vsi_srl_node_bw(struct ice_port_info *pi, u16 vsi_handle,
4885 				   u8 tc, struct ice_sched_node *srl_node,
4886 				   enum ice_rl_type rl_type, u32 bw)
4887 {
4888 	enum ice_status status;
4889 
4890 	if (bw == ICE_SCHED_DFLT_BW) {
4891 		status = ice_sched_set_node_bw_dflt_lmt(pi, srl_node, rl_type);
4892 	} else {
4893 		status = ice_sched_set_node_bw_lmt(pi, srl_node, rl_type, bw);
4894 		if (status)
4895 			return status;
4896 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4897 	}
4898 	return status;
4899 }
4900 
4901 /**
4902  * ice_sched_set_vsi_node_srl_per_tc - set VSI node BW shared limit for tc
4903  * @pi: port information structure
4904  * @vsi_handle: software VSI handle
4905  * @tc: traffic class
4906  * @min_bw: minimum bandwidth in Kbps
4907  * @max_bw: maximum bandwidth in Kbps
4908  * @shared_bw: shared bandwidth in Kbps
4909  *
4910  * Configure shared rate limiter(SRL) of  VSI type nodes across requested
4911  * traffic class for VSI matching handle. When BW value of ICE_SCHED_DFLT_BW
4912  * is passed, it removes the corresponding bw from the node. The caller
4913  * holds scheduler lock.
4914  */
4915 static enum ice_status
4916 ice_sched_set_vsi_node_srl_per_tc(struct ice_port_info *pi, u16 vsi_handle,
4917 				  u8 tc, u32 min_bw, u32 max_bw, u32 shared_bw)
4918 {
4919 	struct ice_sched_node *tc_node, *vsi_node, *cfg_node;
4920 	enum ice_status status;
4921 	u8 layer_num;
4922 
4923 	tc_node = ice_sched_get_tc_node(pi, tc);
4924 	if (!tc_node)
4925 		return ICE_ERR_CFG;
4926 
4927 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
4928 	if (!vsi_node)
4929 		return ICE_ERR_CFG;
4930 
4931 	layer_num = ice_sched_get_rl_prof_layer(pi, ICE_SHARED_BW,
4932 						vsi_node->tx_sched_layer);
4933 	if (layer_num >= pi->hw->num_tx_sched_layers)
4934 		return ICE_ERR_PARAM;
4935 
4936 	/* SRL node may be different */
4937 	cfg_node = ice_sched_get_srl_node(vsi_node, layer_num);
4938 	if (!cfg_node)
4939 		return ICE_ERR_CFG;
4940 
4941 	status = ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc,
4942 						    cfg_node, ICE_MIN_BW,
4943 						    min_bw);
4944 	if (status)
4945 		return status;
4946 
4947 	status = ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc,
4948 						    cfg_node, ICE_MAX_BW,
4949 						    max_bw);
4950 	if (status)
4951 		return status;
4952 
4953 	return ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc, cfg_node,
4954 						  ICE_SHARED_BW, shared_bw);
4955 }
4956 
4957 /**
4958  * ice_sched_set_vsi_bw_shared_lmt - set VSI BW shared limit
4959  * @pi: port information structure
4960  * @vsi_handle: software VSI handle
4961  * @min_bw: minimum bandwidth in Kbps
4962  * @max_bw: maximum bandwidth in Kbps
4963  * @shared_bw: shared bandwidth in Kbps
4964  *
4965  * Configure shared rate limiter(SRL) of all VSI type nodes across all traffic
4966  * classes for VSI matching handle. When BW value of ICE_SCHED_DFLT_BW is
4967  * passed, it removes those value(s) from the node.
4968  */
4969 enum ice_status
4970 ice_sched_set_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle,
4971 				u32 min_bw, u32 max_bw, u32 shared_bw)
4972 {
4973 	enum ice_status status = ICE_SUCCESS;
4974 	u8 tc;
4975 
4976 	if (!pi)
4977 		return ICE_ERR_PARAM;
4978 
4979 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4980 		return ICE_ERR_PARAM;
4981 
4982 	ice_acquire_lock(&pi->sched_lock);
4983 	status = ice_sched_validate_vsi_srl_node(pi, vsi_handle);
4984 	if (status)
4985 		goto exit_set_vsi_bw_shared_lmt;
4986 	/* Return success if no nodes are present across TC */
4987 	ice_for_each_traffic_class(tc) {
4988 		struct ice_sched_node *tc_node, *vsi_node;
4989 
4990 		tc_node = ice_sched_get_tc_node(pi, tc);
4991 		if (!tc_node)
4992 			continue;
4993 
4994 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
4995 		if (!vsi_node)
4996 			continue;
4997 
4998 		status = ice_sched_set_vsi_node_srl_per_tc(pi, vsi_handle, tc,
4999 							   min_bw, max_bw,
5000 							   shared_bw);
5001 		if (status)
5002 			break;
5003 	}
5004 
5005 exit_set_vsi_bw_shared_lmt:
5006 	ice_release_lock(&pi->sched_lock);
5007 	return status;
5008 }
5009 
5010 /**
5011  * ice_sched_validate_agg_srl_node - validate AGG SRL node
5012  * @pi: port information structure
5013  * @agg_id: aggregator ID
5014  *
5015  * This function validates SRL node of the AGG node if available SRL layer is
5016  * different than the AGG node layer on all TC(s).This function needs to be
5017  * called with scheduler lock held.
5018  */
5019 static enum ice_status
5020 ice_sched_validate_agg_srl_node(struct ice_port_info *pi, u32 agg_id)
5021 {
5022 	u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
5023 	struct ice_sched_agg_info *agg_info;
5024 	bool agg_id_present = false;
5025 	enum ice_status status = ICE_SUCCESS;
5026 	u8 tc;
5027 
5028 	LIST_FOR_EACH_ENTRY(agg_info, &pi->hw->agg_list, ice_sched_agg_info,
5029 			    list_entry)
5030 		if (agg_info->agg_id == agg_id) {
5031 			agg_id_present = true;
5032 			break;
5033 		}
5034 	if (!agg_id_present)
5035 		return ICE_ERR_PARAM;
5036 	/* Return success if no nodes are present across TC */
5037 	ice_for_each_traffic_class(tc) {
5038 		struct ice_sched_node *tc_node, *agg_node;
5039 		enum ice_rl_type rl_type = ICE_SHARED_BW;
5040 
5041 		tc_node = ice_sched_get_tc_node(pi, tc);
5042 		if (!tc_node)
5043 			continue;
5044 
5045 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5046 		if (!agg_node)
5047 			continue;
5048 		/* SRL bandwidth layer selection */
5049 		if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
5050 			u8 node_layer = agg_node->tx_sched_layer;
5051 			u8 layer_num;
5052 
5053 			layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5054 								node_layer);
5055 			if (layer_num >= pi->hw->num_tx_sched_layers)
5056 				return ICE_ERR_PARAM;
5057 			sel_layer = layer_num;
5058 		}
5059 
5060 		status = ice_sched_validate_srl_node(agg_node, sel_layer);
5061 		if (status)
5062 			break;
5063 	}
5064 	return status;
5065 }
5066 
5067 /**
5068  * ice_sched_validate_agg_id - Validate aggregator id
5069  * @pi: port information structure
5070  * @agg_id: aggregator ID
5071  *
5072  * This function validates aggregator id. Caller holds the scheduler lock.
5073  */
5074 static enum ice_status
5075 ice_sched_validate_agg_id(struct ice_port_info *pi, u32 agg_id)
5076 {
5077 	struct ice_sched_agg_info *agg_info;
5078 	struct ice_sched_agg_info *tmp;
5079 	bool agg_id_present = false;
5080 	enum ice_status status;
5081 
5082 	status = ice_sched_validate_agg_srl_node(pi, agg_id);
5083 	if (status)
5084 		return status;
5085 
5086 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, tmp, &pi->hw->agg_list,
5087 				 ice_sched_agg_info, list_entry)
5088 		if (agg_info->agg_id == agg_id) {
5089 			agg_id_present = true;
5090 			break;
5091 		}
5092 
5093 	if (!agg_id_present)
5094 		return ICE_ERR_PARAM;
5095 
5096 	return ICE_SUCCESS;
5097 }
5098 
5099 /**
5100  * ice_sched_set_save_agg_srl_node_bw - set aggregator shared limit values
5101  * @pi: port information structure
5102  * @agg_id: aggregator ID
5103  * @tc: traffic class
5104  * @srl_node: sched node to configure
5105  * @rl_type: rate limit type minimum, maximum, or shared
5106  * @bw: minimum, maximum, or shared bandwidth in Kbps
5107  *
5108  * Configure shared rate limiter(SRL) of aggregator type nodes across
5109  * requested traffic class, and saves those value for later use for
5110  * replaying purposes. The caller holds the scheduler lock.
5111  */
5112 static enum ice_status
5113 ice_sched_set_save_agg_srl_node_bw(struct ice_port_info *pi, u32 agg_id, u8 tc,
5114 				   struct ice_sched_node *srl_node,
5115 				   enum ice_rl_type rl_type, u32 bw)
5116 {
5117 	enum ice_status status;
5118 
5119 	if (bw == ICE_SCHED_DFLT_BW) {
5120 		status = ice_sched_set_node_bw_dflt_lmt(pi, srl_node, rl_type);
5121 	} else {
5122 		status = ice_sched_set_node_bw_lmt(pi, srl_node, rl_type, bw);
5123 		if (status)
5124 			return status;
5125 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
5126 	}
5127 	return status;
5128 }
5129 
5130 /**
5131  * ice_sched_set_agg_node_srl_per_tc - set aggregator SRL per tc
5132  * @pi: port information structure
5133  * @agg_id: aggregator ID
5134  * @tc: traffic class
5135  * @min_bw: minimum bandwidth in Kbps
5136  * @max_bw: maximum bandwidth in Kbps
5137  * @shared_bw: shared bandwidth in Kbps
5138  *
5139  * This function configures the shared rate limiter(SRL) of aggregator type
5140  * node for a given traffic class for aggregator matching agg_id. When BW
5141  * value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the node. Caller
5142  * holds the scheduler lock.
5143  */
5144 static enum ice_status
5145 ice_sched_set_agg_node_srl_per_tc(struct ice_port_info *pi, u32 agg_id,
5146 				  u8 tc, u32 min_bw, u32 max_bw, u32 shared_bw)
5147 {
5148 	struct ice_sched_node *tc_node, *agg_node, *cfg_node;
5149 	enum ice_rl_type rl_type = ICE_SHARED_BW;
5150 	enum ice_status status = ICE_ERR_CFG;
5151 	u8 layer_num;
5152 
5153 	tc_node = ice_sched_get_tc_node(pi, tc);
5154 	if (!tc_node)
5155 		return ICE_ERR_CFG;
5156 
5157 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5158 	if (!agg_node)
5159 		return ICE_ERR_CFG;
5160 
5161 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5162 						agg_node->tx_sched_layer);
5163 	if (layer_num >= pi->hw->num_tx_sched_layers)
5164 		return ICE_ERR_PARAM;
5165 
5166 	/* SRL node may be different */
5167 	cfg_node = ice_sched_get_srl_node(agg_node, layer_num);
5168 	if (!cfg_node)
5169 		return ICE_ERR_CFG;
5170 
5171 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5172 						    ICE_MIN_BW, min_bw);
5173 	if (status)
5174 		return status;
5175 
5176 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5177 						    ICE_MAX_BW, max_bw);
5178 	if (status)
5179 		return status;
5180 
5181 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5182 						    ICE_SHARED_BW, shared_bw);
5183 	return status;
5184 }
5185 
5186 /**
5187  * ice_sched_set_agg_bw_shared_lmt - set aggregator BW shared limit
5188  * @pi: port information structure
5189  * @agg_id: aggregator ID
5190  * @min_bw: minimum bandwidth in Kbps
5191  * @max_bw: maximum bandwidth in Kbps
5192  * @shared_bw: shared bandwidth in Kbps
5193  *
5194  * This function configures the shared rate limiter(SRL) of all aggregator type
5195  * nodes across all traffic classes for aggregator matching agg_id. When
5196  * BW value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the
5197  * node(s).
5198  */
5199 enum ice_status
5200 ice_sched_set_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id,
5201 				u32 min_bw, u32 max_bw, u32 shared_bw)
5202 {
5203 	enum ice_status status;
5204 	u8 tc;
5205 
5206 	if (!pi)
5207 		return ICE_ERR_PARAM;
5208 
5209 	ice_acquire_lock(&pi->sched_lock);
5210 	status = ice_sched_validate_agg_id(pi, agg_id);
5211 	if (status)
5212 		goto exit_agg_bw_shared_lmt;
5213 
5214 	/* Return success if no nodes are present across TC */
5215 	ice_for_each_traffic_class(tc) {
5216 		struct ice_sched_node *tc_node, *agg_node;
5217 
5218 		tc_node = ice_sched_get_tc_node(pi, tc);
5219 		if (!tc_node)
5220 			continue;
5221 
5222 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5223 		if (!agg_node)
5224 			continue;
5225 
5226 		status = ice_sched_set_agg_node_srl_per_tc(pi, agg_id, tc,
5227 							   min_bw, max_bw,
5228 							   shared_bw);
5229 		if (status)
5230 			break;
5231 	}
5232 
5233 exit_agg_bw_shared_lmt:
5234 	ice_release_lock(&pi->sched_lock);
5235 	return status;
5236 }
5237 
5238 /**
5239  * ice_sched_set_agg_bw_shared_lmt_per_tc - set aggregator BW shared lmt per tc
5240  * @pi: port information structure
5241  * @agg_id: aggregator ID
5242  * @tc: traffic class
5243  * @min_bw: minimum bandwidth in Kbps
5244  * @max_bw: maximum bandwidth in Kbps
5245  * @shared_bw: shared bandwidth in Kbps
5246  *
5247  * This function configures the shared rate limiter(SRL) of aggregator type
5248  * node for a given traffic class for aggregator matching agg_id. When BW
5249  * value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the node.
5250  */
5251 enum ice_status
5252 ice_sched_set_agg_bw_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id,
5253 				       u8 tc, u32 min_bw, u32 max_bw,
5254 				       u32 shared_bw)
5255 {
5256 	enum ice_status status;
5257 
5258 	if (!pi)
5259 		return ICE_ERR_PARAM;
5260 	ice_acquire_lock(&pi->sched_lock);
5261 	status = ice_sched_validate_agg_id(pi, agg_id);
5262 	if (status)
5263 		goto exit_agg_bw_shared_lmt_per_tc;
5264 
5265 	status = ice_sched_set_agg_node_srl_per_tc(pi, agg_id, tc, min_bw,
5266 						   max_bw, shared_bw);
5267 
5268 exit_agg_bw_shared_lmt_per_tc:
5269 	ice_release_lock(&pi->sched_lock);
5270 	return status;
5271 }
5272 
5273 /**
5274  * ice_sched_cfg_sibl_node_prio - configure node sibling priority
5275  * @pi: port information structure
5276  * @node: sched node to configure
5277  * @priority: sibling priority
5278  *
5279  * This function configures node element's sibling priority only. This
5280  * function needs to be called with scheduler lock held.
5281  */
5282 enum ice_status
5283 ice_sched_cfg_sibl_node_prio(struct ice_port_info *pi,
5284 			     struct ice_sched_node *node, u8 priority)
5285 {
5286 	struct ice_aqc_txsched_elem_data buf;
5287 	struct ice_aqc_txsched_elem *data;
5288 	struct ice_hw *hw = pi->hw;
5289 	enum ice_status status;
5290 
5291 	if (!hw)
5292 		return ICE_ERR_PARAM;
5293 	buf = node->info;
5294 	data = &buf.data;
5295 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
5296 	priority = (priority << ICE_AQC_ELEM_GENERIC_PRIO_S) &
5297 		   ICE_AQC_ELEM_GENERIC_PRIO_M;
5298 	data->generic &= ~ICE_AQC_ELEM_GENERIC_PRIO_M;
5299 	data->generic |= priority;
5300 
5301 	/* Configure element */
5302 	status = ice_sched_update_elem(hw, node, &buf);
5303 	return status;
5304 }
5305 
5306 /**
5307  * ice_cfg_rl_burst_size - Set burst size value
5308  * @hw: pointer to the HW struct
5309  * @bytes: burst size in bytes
5310  *
5311  * This function configures/set the burst size to requested new value. The new
5312  * burst size value is used for future rate limit calls. It doesn't change the
5313  * existing or previously created RL profiles.
5314  */
5315 enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
5316 {
5317 	u16 burst_size_to_prog;
5318 
5319 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
5320 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
5321 		return ICE_ERR_PARAM;
5322 	if (ice_round_to_num(bytes, 64) <=
5323 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
5324 		/* 64 byte granularity case */
5325 		/* Disable MSB granularity bit */
5326 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
5327 		/* round number to nearest 64 byte granularity */
5328 		bytes = ice_round_to_num(bytes, 64);
5329 		/* The value is in 64 byte chunks */
5330 		burst_size_to_prog |= (u16)(bytes / 64);
5331 	} else {
5332 		/* k bytes granularity case */
5333 		/* Enable MSB granularity bit */
5334 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
5335 		/* round number to nearest 1024 granularity */
5336 		bytes = ice_round_to_num(bytes, 1024);
5337 		/* check rounding doesn't go beyond allowed */
5338 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
5339 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
5340 		/* The value is in k bytes */
5341 		burst_size_to_prog |= (u16)(bytes / 1024);
5342 	}
5343 	hw->max_burst_size = burst_size_to_prog;
5344 	return ICE_SUCCESS;
5345 }
5346 
5347 /**
5348  * ice_sched_replay_node_prio - re-configure node priority
5349  * @hw: pointer to the HW struct
5350  * @node: sched node to configure
5351  * @priority: priority value
5352  *
5353  * This function configures node element's priority value. It
5354  * needs to be called with scheduler lock held.
5355  */
5356 static enum ice_status
5357 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
5358 			   u8 priority)
5359 {
5360 	struct ice_aqc_txsched_elem_data buf;
5361 	struct ice_aqc_txsched_elem *data;
5362 	enum ice_status status;
5363 
5364 	buf = node->info;
5365 	data = &buf.data;
5366 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
5367 	data->generic = priority;
5368 
5369 	/* Configure element */
5370 	status = ice_sched_update_elem(hw, node, &buf);
5371 	return status;
5372 }
5373 
5374 /**
5375  * ice_sched_replay_node_bw - replay node(s) BW
5376  * @hw: pointer to the HW struct
5377  * @node: sched node to configure
5378  * @bw_t_info: BW type information
5379  *
5380  * This function restores node's BW from bw_t_info. The caller needs
5381  * to hold the scheduler lock.
5382  */
5383 static enum ice_status
5384 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
5385 			 struct ice_bw_type_info *bw_t_info)
5386 {
5387 	struct ice_port_info *pi = hw->port_info;
5388 	enum ice_status status = ICE_ERR_PARAM;
5389 	u16 bw_alloc;
5390 
5391 	if (!node)
5392 		return status;
5393 	if (!ice_is_any_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
5394 		return ICE_SUCCESS;
5395 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_PRIO)) {
5396 		status = ice_sched_replay_node_prio(hw, node,
5397 						    bw_t_info->generic);
5398 		if (status)
5399 			return status;
5400 	}
5401 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR)) {
5402 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
5403 						   bw_t_info->cir_bw.bw);
5404 		if (status)
5405 			return status;
5406 	}
5407 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR_WT)) {
5408 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
5409 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
5410 						     bw_alloc);
5411 		if (status)
5412 			return status;
5413 	}
5414 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR)) {
5415 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
5416 						   bw_t_info->eir_bw.bw);
5417 		if (status)
5418 			return status;
5419 	}
5420 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR_WT)) {
5421 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
5422 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
5423 						     bw_alloc);
5424 		if (status)
5425 			return status;
5426 	}
5427 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_SHARED))
5428 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
5429 						   bw_t_info->shared_bw);
5430 	return status;
5431 }
5432 
5433 /**
5434  * ice_sched_replay_agg_bw - replay aggregator node(s) BW
5435  * @hw: pointer to the HW struct
5436  * @agg_info: aggregator data structure
5437  *
5438  * This function re-creates aggregator type nodes. The caller needs to hold
5439  * the scheduler lock.
5440  */
5441 static enum ice_status
5442 ice_sched_replay_agg_bw(struct ice_hw *hw, struct ice_sched_agg_info *agg_info)
5443 {
5444 	struct ice_sched_node *tc_node, *agg_node;
5445 	enum ice_status status = ICE_SUCCESS;
5446 	u8 tc;
5447 
5448 	if (!agg_info)
5449 		return ICE_ERR_PARAM;
5450 	ice_for_each_traffic_class(tc) {
5451 		if (!ice_is_any_bit_set(agg_info->bw_t_info[tc].bw_t_bitmap,
5452 					ICE_BW_TYPE_CNT))
5453 			continue;
5454 		tc_node = ice_sched_get_tc_node(hw->port_info, tc);
5455 		if (!tc_node) {
5456 			status = ICE_ERR_PARAM;
5457 			break;
5458 		}
5459 		agg_node = ice_sched_get_agg_node(hw->port_info, tc_node,
5460 						  agg_info->agg_id);
5461 		if (!agg_node) {
5462 			status = ICE_ERR_PARAM;
5463 			break;
5464 		}
5465 		status = ice_sched_replay_node_bw(hw, agg_node,
5466 						  &agg_info->bw_t_info[tc]);
5467 		if (status)
5468 			break;
5469 	}
5470 	return status;
5471 }
5472 
5473 /**
5474  * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
5475  * @pi: port info struct
5476  * @tc_bitmap: 8 bits TC bitmap to check
5477  * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
5478  *
5479  * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
5480  * may be missing, it returns enabled TCs. This function needs to be called with
5481  * scheduler lock held.
5482  */
5483 static void
5484 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, ice_bitmap_t *tc_bitmap,
5485 			    ice_bitmap_t *ena_tc_bitmap)
5486 {
5487 	u8 tc;
5488 
5489 	/* Some TC(s) may be missing after reset, adjust for replay */
5490 	ice_for_each_traffic_class(tc)
5491 		if (ice_is_tc_ena(*tc_bitmap, tc) &&
5492 		    (ice_sched_get_tc_node(pi, tc)))
5493 			ice_set_bit(tc, ena_tc_bitmap);
5494 }
5495 
5496 /**
5497  * ice_sched_replay_agg - recreate aggregator node(s)
5498  * @hw: pointer to the HW struct
5499  *
5500  * This function recreate aggregator type nodes which are not replayed earlier.
5501  * It also replay aggregator BW information. These aggregator nodes are not
5502  * associated with VSI type node yet.
5503  */
5504 void ice_sched_replay_agg(struct ice_hw *hw)
5505 {
5506 	struct ice_port_info *pi = hw->port_info;
5507 	struct ice_sched_agg_info *agg_info;
5508 
5509 	ice_acquire_lock(&pi->sched_lock);
5510 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
5511 			    list_entry)
5512 		/* replay aggregator (re-create aggregator node) */
5513 		if (!ice_cmp_bitmap(agg_info->tc_bitmap,
5514 				    agg_info->replay_tc_bitmap,
5515 				    ICE_MAX_TRAFFIC_CLASS)) {
5516 			ice_declare_bitmap(replay_bitmap,
5517 					   ICE_MAX_TRAFFIC_CLASS);
5518 			enum ice_status status;
5519 
5520 			ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5521 			ice_sched_get_ena_tc_bitmap(pi,
5522 						    agg_info->replay_tc_bitmap,
5523 						    replay_bitmap);
5524 			status = ice_sched_cfg_agg(hw->port_info,
5525 						   agg_info->agg_id,
5526 						   ICE_AGG_TYPE_AGG,
5527 						   replay_bitmap);
5528 			if (status) {
5529 				ice_info(hw, "Replay agg id[%d] failed\n",
5530 					 agg_info->agg_id);
5531 				/* Move on to next one */
5532 				continue;
5533 			}
5534 			/* Replay aggregator node BW (restore aggregator BW) */
5535 			status = ice_sched_replay_agg_bw(hw, agg_info);
5536 			if (status)
5537 				ice_info(hw, "Replay agg bw [id=%d] failed\n",
5538 					 agg_info->agg_id);
5539 		}
5540 	ice_release_lock(&pi->sched_lock);
5541 }
5542 
5543 /**
5544  * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
5545  * @hw: pointer to the HW struct
5546  *
5547  * This function initialize aggregator(s) TC bitmap to zero. A required
5548  * preinit step for replaying aggregators.
5549  */
5550 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
5551 {
5552 	struct ice_port_info *pi = hw->port_info;
5553 	struct ice_sched_agg_info *agg_info;
5554 
5555 	ice_acquire_lock(&pi->sched_lock);
5556 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
5557 			    list_entry) {
5558 		struct ice_sched_agg_vsi_info *agg_vsi_info;
5559 
5560 		agg_info->tc_bitmap[0] = 0;
5561 		LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
5562 				    ice_sched_agg_vsi_info, list_entry)
5563 			agg_vsi_info->tc_bitmap[0] = 0;
5564 	}
5565 	ice_release_lock(&pi->sched_lock);
5566 }
5567 
5568 /**
5569  * ice_sched_replay_root_node_bw - replay root node BW
5570  * @pi: port information structure
5571  *
5572  * Replay root node BW settings.
5573  */
5574 enum ice_status ice_sched_replay_root_node_bw(struct ice_port_info *pi)
5575 {
5576 	enum ice_status status = ICE_SUCCESS;
5577 
5578 	if (!pi->hw)
5579 		return ICE_ERR_PARAM;
5580 	ice_acquire_lock(&pi->sched_lock);
5581 
5582 	status = ice_sched_replay_node_bw(pi->hw, pi->root,
5583 					  &pi->root_node_bw_t_info);
5584 	ice_release_lock(&pi->sched_lock);
5585 	return status;
5586 }
5587 
5588 /**
5589  * ice_sched_replay_tc_node_bw - replay TC node(s) BW
5590  * @pi: port information structure
5591  *
5592  * This function replay TC nodes.
5593  */
5594 enum ice_status ice_sched_replay_tc_node_bw(struct ice_port_info *pi)
5595 {
5596 	enum ice_status status = ICE_SUCCESS;
5597 	u8 tc;
5598 
5599 	if (!pi->hw)
5600 		return ICE_ERR_PARAM;
5601 	ice_acquire_lock(&pi->sched_lock);
5602 	ice_for_each_traffic_class(tc) {
5603 		struct ice_sched_node *tc_node;
5604 
5605 		tc_node = ice_sched_get_tc_node(pi, tc);
5606 		if (!tc_node)
5607 			continue; /* TC not present */
5608 		status = ice_sched_replay_node_bw(pi->hw, tc_node,
5609 						  &pi->tc_node_bw_t_info[tc]);
5610 		if (status)
5611 			break;
5612 	}
5613 	ice_release_lock(&pi->sched_lock);
5614 	return status;
5615 }
5616 
5617 /**
5618  * ice_sched_replay_vsi_bw - replay VSI type node(s) BW
5619  * @hw: pointer to the HW struct
5620  * @vsi_handle: software VSI handle
5621  * @tc_bitmap: 8 bits TC bitmap
5622  *
5623  * This function replays VSI type nodes bandwidth. This function needs to be
5624  * called with scheduler lock held.
5625  */
5626 static enum ice_status
5627 ice_sched_replay_vsi_bw(struct ice_hw *hw, u16 vsi_handle,
5628 			ice_bitmap_t *tc_bitmap)
5629 {
5630 	struct ice_sched_node *vsi_node, *tc_node;
5631 	struct ice_port_info *pi = hw->port_info;
5632 	struct ice_bw_type_info *bw_t_info;
5633 	struct ice_vsi_ctx *vsi_ctx;
5634 	enum ice_status status = ICE_SUCCESS;
5635 	u8 tc;
5636 
5637 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
5638 	if (!vsi_ctx)
5639 		return ICE_ERR_PARAM;
5640 	ice_for_each_traffic_class(tc) {
5641 		if (!ice_is_tc_ena(*tc_bitmap, tc))
5642 			continue;
5643 		tc_node = ice_sched_get_tc_node(pi, tc);
5644 		if (!tc_node)
5645 			continue;
5646 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5647 		if (!vsi_node)
5648 			continue;
5649 		bw_t_info = &vsi_ctx->sched.bw_t_info[tc];
5650 		status = ice_sched_replay_node_bw(hw, vsi_node, bw_t_info);
5651 		if (status)
5652 			break;
5653 	}
5654 	return status;
5655 }
5656 
5657 /**
5658  * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
5659  * @hw: pointer to the HW struct
5660  * @vsi_handle: software VSI handle
5661  *
5662  * This function replays aggregator node, VSI to aggregator type nodes, and
5663  * their node bandwidth information. This function needs to be called with
5664  * scheduler lock held.
5665  */
5666 static enum ice_status
5667 ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
5668 {
5669 	ice_declare_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5670 	struct ice_sched_agg_vsi_info *agg_vsi_info;
5671 	struct ice_port_info *pi = hw->port_info;
5672 	struct ice_sched_agg_info *agg_info;
5673 	enum ice_status status;
5674 
5675 	ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5676 	if (!ice_is_vsi_valid(hw, vsi_handle))
5677 		return ICE_ERR_PARAM;
5678 	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
5679 	if (!agg_info)
5680 		return ICE_SUCCESS; /* Not present in list - default Agg case */
5681 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
5682 	if (!agg_vsi_info)
5683 		return ICE_SUCCESS; /* Not present in list - default Agg case */
5684 	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
5685 				    replay_bitmap);
5686 	/* Replay aggregator node associated to vsi_handle */
5687 	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
5688 				   ICE_AGG_TYPE_AGG, replay_bitmap);
5689 	if (status)
5690 		return status;
5691 	/* Replay aggregator node BW (restore aggregator BW) */
5692 	status = ice_sched_replay_agg_bw(hw, agg_info);
5693 	if (status)
5694 		return status;
5695 
5696 	ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5697 	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
5698 				    replay_bitmap);
5699 	/* Move this VSI (vsi_handle) to above aggregator */
5700 	status = ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
5701 					    replay_bitmap);
5702 	if (status)
5703 		return status;
5704 	/* Replay VSI BW (restore VSI BW) */
5705 	return ice_sched_replay_vsi_bw(hw, vsi_handle,
5706 				       agg_vsi_info->tc_bitmap);
5707 }
5708 
5709 /**
5710  * ice_replay_vsi_agg - replay VSI to aggregator node
5711  * @hw: pointer to the HW struct
5712  * @vsi_handle: software VSI handle
5713  *
5714  * This function replays association of VSI to aggregator type nodes, and
5715  * node bandwidth information.
5716  */
5717 enum ice_status ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
5718 {
5719 	struct ice_port_info *pi = hw->port_info;
5720 	enum ice_status status;
5721 
5722 	ice_acquire_lock(&pi->sched_lock);
5723 	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
5724 	ice_release_lock(&pi->sched_lock);
5725 	return status;
5726 }
5727 
5728 /**
5729  * ice_sched_replay_q_bw - replay queue type node BW
5730  * @pi: port information structure
5731  * @q_ctx: queue context structure
5732  *
5733  * This function replays queue type node bandwidth. This function needs to be
5734  * called with scheduler lock held.
5735  */
5736 enum ice_status
5737 ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
5738 {
5739 	struct ice_sched_node *q_node;
5740 
5741 	/* Following also checks the presence of node in tree */
5742 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
5743 	if (!q_node)
5744 		return ICE_ERR_PARAM;
5745 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
5746 }
5747