xref: /freebsd/sys/dev/ice/ice_sched.c (revision 0c428864495af9dc7d2af4d0a5ae21732af9c739)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2022, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*$FreeBSD$*/
32 
33 #include "ice_sched.h"
34 
35 /**
36  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
37  * @pi: port information structure
38  * @info: Scheduler element information from firmware
39  *
40  * This function inserts the root node of the scheduling tree topology
41  * to the SW DB.
42  */
43 static enum ice_status
44 ice_sched_add_root_node(struct ice_port_info *pi,
45 			struct ice_aqc_txsched_elem_data *info)
46 {
47 	struct ice_sched_node *root;
48 	struct ice_hw *hw;
49 
50 	if (!pi)
51 		return ICE_ERR_PARAM;
52 
53 	hw = pi->hw;
54 
55 	root = (struct ice_sched_node *)ice_malloc(hw, sizeof(*root));
56 	if (!root)
57 		return ICE_ERR_NO_MEMORY;
58 
59 	/* coverity[suspicious_sizeof] */
60 	root->children = (struct ice_sched_node **)
61 		ice_calloc(hw, hw->max_children[0], sizeof(*root));
62 	if (!root->children) {
63 		ice_free(hw, root);
64 		return ICE_ERR_NO_MEMORY;
65 	}
66 
67 	ice_memcpy(&root->info, info, sizeof(*info), ICE_DMA_TO_NONDMA);
68 	pi->root = root;
69 	return ICE_SUCCESS;
70 }
71 
72 /**
73  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
74  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
75  * @teid: node TEID to search
76  *
77  * This function searches for a node matching the TEID in the scheduling tree
78  * from the SW DB. The search is recursive and is restricted by the number of
79  * layers it has searched through; stopping at the max supported layer.
80  *
81  * This function needs to be called when holding the port_info->sched_lock
82  */
83 struct ice_sched_node *
84 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
85 {
86 	u16 i;
87 
88 	/* The TEID is same as that of the start_node */
89 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
90 		return start_node;
91 
92 	/* The node has no children or is at the max layer */
93 	if (!start_node->num_children ||
94 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
95 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
96 		return NULL;
97 
98 	/* Check if TEID matches to any of the children nodes */
99 	for (i = 0; i < start_node->num_children; i++)
100 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
101 			return start_node->children[i];
102 
103 	/* Search within each child's sub-tree */
104 	for (i = 0; i < start_node->num_children; i++) {
105 		struct ice_sched_node *tmp;
106 
107 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
108 						  teid);
109 		if (tmp)
110 			return tmp;
111 	}
112 
113 	return NULL;
114 }
115 
116 /**
117  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
118  * @hw: pointer to the HW struct
119  * @cmd_opc: cmd opcode
120  * @elems_req: number of elements to request
121  * @buf: pointer to buffer
122  * @buf_size: buffer size in bytes
123  * @elems_resp: returns total number of elements response
124  * @cd: pointer to command details structure or NULL
125  *
126  * This function sends a scheduling elements cmd (cmd_opc)
127  */
128 static enum ice_status
129 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
130 			    u16 elems_req, void *buf, u16 buf_size,
131 			    u16 *elems_resp, struct ice_sq_cd *cd)
132 {
133 	struct ice_aqc_sched_elem_cmd *cmd;
134 	struct ice_aq_desc desc;
135 	enum ice_status status;
136 
137 	cmd = &desc.params.sched_elem_cmd;
138 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
139 	cmd->num_elem_req = CPU_TO_LE16(elems_req);
140 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
141 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
142 	if (!status && elems_resp)
143 		*elems_resp = LE16_TO_CPU(cmd->num_elem_resp);
144 
145 	return status;
146 }
147 
148 /**
149  * ice_aq_query_sched_elems - query scheduler elements
150  * @hw: pointer to the HW struct
151  * @elems_req: number of elements to query
152  * @buf: pointer to buffer
153  * @buf_size: buffer size in bytes
154  * @elems_ret: returns total number of elements returned
155  * @cd: pointer to command details structure or NULL
156  *
157  * Query scheduling elements (0x0404)
158  */
159 enum ice_status
160 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
161 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
162 			 u16 *elems_ret, struct ice_sq_cd *cd)
163 {
164 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
165 					   elems_req, (void *)buf, buf_size,
166 					   elems_ret, cd);
167 }
168 
169 /**
170  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
171  * @pi: port information structure
172  * @layer: Scheduler layer of the node
173  * @info: Scheduler element information from firmware
174  *
175  * This function inserts a scheduler node to the SW DB.
176  */
177 enum ice_status
178 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
179 		   struct ice_aqc_txsched_elem_data *info)
180 {
181 	struct ice_aqc_txsched_elem_data elem;
182 	struct ice_sched_node *parent;
183 	struct ice_sched_node *node;
184 	enum ice_status status;
185 	struct ice_hw *hw;
186 
187 	if (!pi)
188 		return ICE_ERR_PARAM;
189 
190 	hw = pi->hw;
191 
192 	/* A valid parent node should be there */
193 	parent = ice_sched_find_node_by_teid(pi->root,
194 					     LE32_TO_CPU(info->parent_teid));
195 	if (!parent) {
196 		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
197 			  LE32_TO_CPU(info->parent_teid));
198 		return ICE_ERR_PARAM;
199 	}
200 
201 	/* query the current node information from FW before adding it
202 	 * to the SW DB
203 	 */
204 	status = ice_sched_query_elem(hw, LE32_TO_CPU(info->node_teid), &elem);
205 	if (status)
206 		return status;
207 	node = (struct ice_sched_node *)ice_malloc(hw, sizeof(*node));
208 	if (!node)
209 		return ICE_ERR_NO_MEMORY;
210 	if (hw->max_children[layer]) {
211 		/* coverity[suspicious_sizeof] */
212 		node->children = (struct ice_sched_node **)
213 			ice_calloc(hw, hw->max_children[layer], sizeof(*node));
214 		if (!node->children) {
215 			ice_free(hw, node);
216 			return ICE_ERR_NO_MEMORY;
217 		}
218 	}
219 
220 	node->in_use = true;
221 	node->parent = parent;
222 	node->tx_sched_layer = layer;
223 	parent->children[parent->num_children++] = node;
224 	node->info = elem;
225 	return ICE_SUCCESS;
226 }
227 
228 /**
229  * ice_aq_delete_sched_elems - delete scheduler elements
230  * @hw: pointer to the HW struct
231  * @grps_req: number of groups to delete
232  * @buf: pointer to buffer
233  * @buf_size: buffer size in bytes
234  * @grps_del: returns total number of elements deleted
235  * @cd: pointer to command details structure or NULL
236  *
237  * Delete scheduling elements (0x040F)
238  */
239 static enum ice_status
240 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
241 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
242 			  u16 *grps_del, struct ice_sq_cd *cd)
243 {
244 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
245 					   grps_req, (void *)buf, buf_size,
246 					   grps_del, cd);
247 }
248 
249 /**
250  * ice_sched_remove_elems - remove nodes from HW
251  * @hw: pointer to the HW struct
252  * @parent: pointer to the parent node
253  * @num_nodes: number of nodes
254  * @node_teids: array of node teids to be deleted
255  *
256  * This function remove nodes from HW
257  */
258 static enum ice_status
259 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
260 		       u16 num_nodes, u32 *node_teids)
261 {
262 	struct ice_aqc_delete_elem *buf;
263 	u16 i, num_groups_removed = 0;
264 	enum ice_status status;
265 	u16 buf_size;
266 
267 	buf_size = ice_struct_size(buf, teid, num_nodes);
268 	buf = (struct ice_aqc_delete_elem *)ice_malloc(hw, buf_size);
269 	if (!buf)
270 		return ICE_ERR_NO_MEMORY;
271 
272 	buf->hdr.parent_teid = parent->info.node_teid;
273 	buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
274 	for (i = 0; i < num_nodes; i++)
275 		buf->teid[i] = CPU_TO_LE32(node_teids[i]);
276 
277 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
278 					   &num_groups_removed, NULL);
279 	if (status != ICE_SUCCESS || num_groups_removed != 1)
280 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
281 			  hw->adminq.sq_last_status);
282 
283 	ice_free(hw, buf);
284 	return status;
285 }
286 
287 /**
288  * ice_sched_get_first_node - get the first node of the given layer
289  * @pi: port information structure
290  * @parent: pointer the base node of the subtree
291  * @layer: layer number
292  *
293  * This function retrieves the first node of the given layer from the subtree
294  */
295 static struct ice_sched_node *
296 ice_sched_get_first_node(struct ice_port_info *pi,
297 			 struct ice_sched_node *parent, u8 layer)
298 {
299 	return pi->sib_head[parent->tc_num][layer];
300 }
301 
302 /**
303  * ice_sched_get_tc_node - get pointer to TC node
304  * @pi: port information structure
305  * @tc: TC number
306  *
307  * This function returns the TC node pointer
308  */
309 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
310 {
311 	u8 i;
312 
313 	if (!pi || !pi->root)
314 		return NULL;
315 	for (i = 0; i < pi->root->num_children; i++)
316 		if (pi->root->children[i]->tc_num == tc)
317 			return pi->root->children[i];
318 	return NULL;
319 }
320 
321 /**
322  * ice_free_sched_node - Free a Tx scheduler node from SW DB
323  * @pi: port information structure
324  * @node: pointer to the ice_sched_node struct
325  *
326  * This function frees up a node from SW DB as well as from HW
327  *
328  * This function needs to be called with the port_info->sched_lock held
329  */
330 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
331 {
332 	struct ice_sched_node *parent;
333 	struct ice_hw *hw = pi->hw;
334 	u8 i, j;
335 
336 	/* Free the children before freeing up the parent node
337 	 * The parent array is updated below and that shifts the nodes
338 	 * in the array. So always pick the first child if num children > 0
339 	 */
340 	while (node->num_children)
341 		ice_free_sched_node(pi, node->children[0]);
342 
343 	/* Leaf, TC and root nodes can't be deleted by SW */
344 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
345 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
346 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
347 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
348 		u32 teid = LE32_TO_CPU(node->info.node_teid);
349 
350 		ice_sched_remove_elems(hw, node->parent, 1, &teid);
351 	}
352 	parent = node->parent;
353 	/* root has no parent */
354 	if (parent) {
355 		struct ice_sched_node *p;
356 
357 		/* update the parent */
358 		for (i = 0; i < parent->num_children; i++)
359 			if (parent->children[i] == node) {
360 				for (j = i + 1; j < parent->num_children; j++)
361 					parent->children[j - 1] =
362 						parent->children[j];
363 				parent->num_children--;
364 				break;
365 			}
366 
367 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
368 		while (p) {
369 			if (p->sibling == node) {
370 				p->sibling = node->sibling;
371 				break;
372 			}
373 			p = p->sibling;
374 		}
375 
376 		/* update the sibling head if head is getting removed */
377 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
378 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
379 				node->sibling;
380 	}
381 
382 	/* leaf nodes have no children */
383 	if (node->children)
384 		ice_free(hw, node->children);
385 	ice_free(hw, node);
386 }
387 
388 /**
389  * ice_aq_get_dflt_topo - gets default scheduler topology
390  * @hw: pointer to the HW struct
391  * @lport: logical port number
392  * @buf: pointer to buffer
393  * @buf_size: buffer size in bytes
394  * @num_branches: returns total number of queue to port branches
395  * @cd: pointer to command details structure or NULL
396  *
397  * Get default scheduler topology (0x400)
398  */
399 static enum ice_status
400 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
401 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
402 		     u8 *num_branches, struct ice_sq_cd *cd)
403 {
404 	struct ice_aqc_get_topo *cmd;
405 	struct ice_aq_desc desc;
406 	enum ice_status status;
407 
408 	cmd = &desc.params.get_topo;
409 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
410 	cmd->port_num = lport;
411 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
412 	if (!status && num_branches)
413 		*num_branches = cmd->num_branches;
414 
415 	return status;
416 }
417 
418 /**
419  * ice_aq_add_sched_elems - adds scheduling element
420  * @hw: pointer to the HW struct
421  * @grps_req: the number of groups that are requested to be added
422  * @buf: pointer to buffer
423  * @buf_size: buffer size in bytes
424  * @grps_added: returns total number of groups added
425  * @cd: pointer to command details structure or NULL
426  *
427  * Add scheduling elements (0x0401)
428  */
429 static enum ice_status
430 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
431 		       struct ice_aqc_add_elem *buf, u16 buf_size,
432 		       u16 *grps_added, struct ice_sq_cd *cd)
433 {
434 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
435 					   grps_req, (void *)buf, buf_size,
436 					   grps_added, cd);
437 }
438 
439 /**
440  * ice_aq_cfg_sched_elems - configures scheduler elements
441  * @hw: pointer to the HW struct
442  * @elems_req: number of elements to configure
443  * @buf: pointer to buffer
444  * @buf_size: buffer size in bytes
445  * @elems_cfgd: returns total number of elements configured
446  * @cd: pointer to command details structure or NULL
447  *
448  * Configure scheduling elements (0x0403)
449  */
450 static enum ice_status
451 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
452 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
453 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
454 {
455 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
456 					   elems_req, (void *)buf, buf_size,
457 					   elems_cfgd, cd);
458 }
459 
460 /**
461  * ice_aq_move_sched_elems - move scheduler elements
462  * @hw: pointer to the HW struct
463  * @grps_req: number of groups to move
464  * @buf: pointer to buffer
465  * @buf_size: buffer size in bytes
466  * @grps_movd: returns total number of groups moved
467  * @cd: pointer to command details structure or NULL
468  *
469  * Move scheduling elements (0x0408)
470  */
471 enum ice_status
472 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
473 			struct ice_aqc_move_elem *buf, u16 buf_size,
474 			u16 *grps_movd, struct ice_sq_cd *cd)
475 {
476 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
477 					   grps_req, (void *)buf, buf_size,
478 					   grps_movd, cd);
479 }
480 
481 /**
482  * ice_aq_suspend_sched_elems - suspend scheduler elements
483  * @hw: pointer to the HW struct
484  * @elems_req: number of elements to suspend
485  * @buf: pointer to buffer
486  * @buf_size: buffer size in bytes
487  * @elems_ret: returns total number of elements suspended
488  * @cd: pointer to command details structure or NULL
489  *
490  * Suspend scheduling elements (0x0409)
491  */
492 static enum ice_status
493 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
494 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
495 {
496 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
497 					   elems_req, (void *)buf, buf_size,
498 					   elems_ret, cd);
499 }
500 
501 /**
502  * ice_aq_resume_sched_elems - resume scheduler elements
503  * @hw: pointer to the HW struct
504  * @elems_req: number of elements to resume
505  * @buf: pointer to buffer
506  * @buf_size: buffer size in bytes
507  * @elems_ret: returns total number of elements resumed
508  * @cd: pointer to command details structure or NULL
509  *
510  * resume scheduling elements (0x040A)
511  */
512 static enum ice_status
513 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
514 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
515 {
516 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
517 					   elems_req, (void *)buf, buf_size,
518 					   elems_ret, cd);
519 }
520 
521 /**
522  * ice_aq_query_sched_res - query scheduler resource
523  * @hw: pointer to the HW struct
524  * @buf_size: buffer size in bytes
525  * @buf: pointer to buffer
526  * @cd: pointer to command details structure or NULL
527  *
528  * Query scheduler resource allocation (0x0412)
529  */
530 static enum ice_status
531 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
532 		       struct ice_aqc_query_txsched_res_resp *buf,
533 		       struct ice_sq_cd *cd)
534 {
535 	struct ice_aq_desc desc;
536 
537 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
538 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
539 }
540 
541 /**
542  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
543  * @hw: pointer to the HW struct
544  * @num_nodes: number of nodes
545  * @node_teids: array of node teids to be suspended or resumed
546  * @suspend: true means suspend / false means resume
547  *
548  * This function suspends or resumes HW nodes
549  */
550 static enum ice_status
551 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
552 			       bool suspend)
553 {
554 	u16 i, buf_size, num_elem_ret = 0;
555 	enum ice_status status;
556 	__le32 *buf;
557 
558 	buf_size = sizeof(*buf) * num_nodes;
559 	buf = (__le32 *)ice_malloc(hw, buf_size);
560 	if (!buf)
561 		return ICE_ERR_NO_MEMORY;
562 
563 	for (i = 0; i < num_nodes; i++)
564 		buf[i] = CPU_TO_LE32(node_teids[i]);
565 
566 	if (suspend)
567 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
568 						    buf_size, &num_elem_ret,
569 						    NULL);
570 	else
571 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
572 						   buf_size, &num_elem_ret,
573 						   NULL);
574 	if (status != ICE_SUCCESS || num_elem_ret != num_nodes)
575 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
576 
577 	ice_free(hw, buf);
578 	return status;
579 }
580 
581 /**
582  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
583  * @hw: pointer to the HW struct
584  * @vsi_handle: VSI handle
585  * @tc: TC number
586  * @new_numqs: number of queues
587  */
588 static enum ice_status
589 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
590 {
591 	struct ice_vsi_ctx *vsi_ctx;
592 	struct ice_q_ctx *q_ctx;
593 
594 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
595 	if (!vsi_ctx)
596 		return ICE_ERR_PARAM;
597 	/* allocate LAN queue contexts */
598 	if (!vsi_ctx->lan_q_ctx[tc]) {
599 		vsi_ctx->lan_q_ctx[tc] = (struct ice_q_ctx *)
600 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
601 		if (!vsi_ctx->lan_q_ctx[tc])
602 			return ICE_ERR_NO_MEMORY;
603 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
604 		return ICE_SUCCESS;
605 	}
606 	/* num queues are increased, update the queue contexts */
607 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
608 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
609 
610 		q_ctx = (struct ice_q_ctx *)
611 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
612 		if (!q_ctx)
613 			return ICE_ERR_NO_MEMORY;
614 		ice_memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
615 			   prev_num * sizeof(*q_ctx), ICE_DMA_TO_NONDMA);
616 		ice_free(hw, vsi_ctx->lan_q_ctx[tc]);
617 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
618 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
619 	}
620 	return ICE_SUCCESS;
621 }
622 
623 /**
624  * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
625  * @hw: pointer to the HW struct
626  * @vsi_handle: VSI handle
627  * @tc: TC number
628  * @new_numqs: number of queues
629  */
630 static enum ice_status
631 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
632 {
633 	struct ice_vsi_ctx *vsi_ctx;
634 	struct ice_q_ctx *q_ctx;
635 
636 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
637 	if (!vsi_ctx)
638 		return ICE_ERR_PARAM;
639 	/* allocate RDMA queue contexts */
640 	if (!vsi_ctx->rdma_q_ctx[tc]) {
641 		vsi_ctx->rdma_q_ctx[tc] = (struct ice_q_ctx *)
642 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
643 		if (!vsi_ctx->rdma_q_ctx[tc])
644 			return ICE_ERR_NO_MEMORY;
645 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
646 		return ICE_SUCCESS;
647 	}
648 	/* num queues are increased, update the queue contexts */
649 	if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
650 		u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
651 
652 		q_ctx = (struct ice_q_ctx *)
653 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
654 		if (!q_ctx)
655 			return ICE_ERR_NO_MEMORY;
656 		ice_memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
657 			   prev_num * sizeof(*q_ctx), ICE_DMA_TO_NONDMA);
658 		ice_free(hw, vsi_ctx->rdma_q_ctx[tc]);
659 		vsi_ctx->rdma_q_ctx[tc] = q_ctx;
660 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
661 	}
662 	return ICE_SUCCESS;
663 }
664 
665 /**
666  * ice_aq_rl_profile - performs a rate limiting task
667  * @hw: pointer to the HW struct
668  * @opcode: opcode for add, query, or remove profile(s)
669  * @num_profiles: the number of profiles
670  * @buf: pointer to buffer
671  * @buf_size: buffer size in bytes
672  * @num_processed: number of processed add or remove profile(s) to return
673  * @cd: pointer to command details structure
674  *
675  * RL profile function to add, query, or remove profile(s)
676  */
677 static enum ice_status
678 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
679 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
680 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
681 {
682 	struct ice_aqc_rl_profile *cmd;
683 	struct ice_aq_desc desc;
684 	enum ice_status status;
685 
686 	cmd = &desc.params.rl_profile;
687 
688 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
689 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
690 	cmd->num_profiles = CPU_TO_LE16(num_profiles);
691 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
692 	if (!status && num_processed)
693 		*num_processed = LE16_TO_CPU(cmd->num_processed);
694 	return status;
695 }
696 
697 /**
698  * ice_aq_add_rl_profile - adds rate limiting profile(s)
699  * @hw: pointer to the HW struct
700  * @num_profiles: the number of profile(s) to be add
701  * @buf: pointer to buffer
702  * @buf_size: buffer size in bytes
703  * @num_profiles_added: total number of profiles added to return
704  * @cd: pointer to command details structure
705  *
706  * Add RL profile (0x0410)
707  */
708 static enum ice_status
709 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
710 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
711 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
712 {
713 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
714 				 buf, buf_size, num_profiles_added, cd);
715 }
716 
717 /**
718  * ice_aq_query_rl_profile - query rate limiting profile(s)
719  * @hw: pointer to the HW struct
720  * @num_profiles: the number of profile(s) to query
721  * @buf: pointer to buffer
722  * @buf_size: buffer size in bytes
723  * @cd: pointer to command details structure
724  *
725  * Query RL profile (0x0411)
726  */
727 enum ice_status
728 ice_aq_query_rl_profile(struct ice_hw *hw, u16 num_profiles,
729 			struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
730 			struct ice_sq_cd *cd)
731 {
732 	return ice_aq_rl_profile(hw, ice_aqc_opc_query_rl_profiles,
733 				 num_profiles, buf, buf_size, NULL, cd);
734 }
735 
736 /**
737  * ice_aq_remove_rl_profile - removes RL profile(s)
738  * @hw: pointer to the HW struct
739  * @num_profiles: the number of profile(s) to remove
740  * @buf: pointer to buffer
741  * @buf_size: buffer size in bytes
742  * @num_profiles_removed: total number of profiles removed to return
743  * @cd: pointer to command details structure or NULL
744  *
745  * Remove RL profile (0x0415)
746  */
747 static enum ice_status
748 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
749 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
750 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
751 {
752 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
753 				 num_profiles, buf, buf_size,
754 				 num_profiles_removed, cd);
755 }
756 
757 /**
758  * ice_sched_del_rl_profile - remove RL profile
759  * @hw: pointer to the HW struct
760  * @rl_info: rate limit profile information
761  *
762  * If the profile ID is not referenced anymore, it removes profile ID with
763  * its associated parameters from HW DB,and locally. The caller needs to
764  * hold scheduler lock.
765  */
766 static enum ice_status
767 ice_sched_del_rl_profile(struct ice_hw *hw,
768 			 struct ice_aqc_rl_profile_info *rl_info)
769 {
770 	struct ice_aqc_rl_profile_elem *buf;
771 	u16 num_profiles_removed;
772 	enum ice_status status;
773 	u16 num_profiles = 1;
774 
775 	if (rl_info->prof_id_ref != 0)
776 		return ICE_ERR_IN_USE;
777 
778 	/* Safe to remove profile ID */
779 	buf = &rl_info->profile;
780 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
781 					  &num_profiles_removed, NULL);
782 	if (status || num_profiles_removed != num_profiles)
783 		return ICE_ERR_CFG;
784 
785 	/* Delete stale entry now */
786 	LIST_DEL(&rl_info->list_entry);
787 	ice_free(hw, rl_info);
788 	return status;
789 }
790 
791 /**
792  * ice_sched_clear_rl_prof - clears RL prof entries
793  * @pi: port information structure
794  *
795  * This function removes all RL profile from HW as well as from SW DB.
796  */
797 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
798 {
799 	u16 ln;
800 	struct ice_hw *hw = pi->hw;
801 
802 	for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
803 		struct ice_aqc_rl_profile_info *rl_prof_elem;
804 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
805 
806 		LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
807 					 &hw->rl_prof_list[ln],
808 					 ice_aqc_rl_profile_info, list_entry) {
809 			enum ice_status status;
810 
811 			rl_prof_elem->prof_id_ref = 0;
812 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
813 			if (status) {
814 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
815 				/* On error, free mem required */
816 				LIST_DEL(&rl_prof_elem->list_entry);
817 				ice_free(hw, rl_prof_elem);
818 			}
819 		}
820 	}
821 }
822 
823 /**
824  * ice_sched_clear_agg - clears the aggregator related information
825  * @hw: pointer to the hardware structure
826  *
827  * This function removes aggregator list and free up aggregator related memory
828  * previously allocated.
829  */
830 void ice_sched_clear_agg(struct ice_hw *hw)
831 {
832 	struct ice_sched_agg_info *agg_info;
833 	struct ice_sched_agg_info *atmp;
834 
835 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &hw->agg_list,
836 				 ice_sched_agg_info,
837 				 list_entry) {
838 		struct ice_sched_agg_vsi_info *agg_vsi_info;
839 		struct ice_sched_agg_vsi_info *vtmp;
840 
841 		LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
842 					 &agg_info->agg_vsi_list,
843 					 ice_sched_agg_vsi_info, list_entry) {
844 			LIST_DEL(&agg_vsi_info->list_entry);
845 			ice_free(hw, agg_vsi_info);
846 		}
847 		LIST_DEL(&agg_info->list_entry);
848 		ice_free(hw, agg_info);
849 	}
850 }
851 
852 /**
853  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
854  * @pi: port information structure
855  *
856  * This function removes all the nodes from HW as well as from SW DB.
857  */
858 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
859 {
860 	if (!pi)
861 		return;
862 	/* remove RL profiles related lists */
863 	ice_sched_clear_rl_prof(pi);
864 	if (pi->root) {
865 		ice_free_sched_node(pi, pi->root);
866 		pi->root = NULL;
867 	}
868 }
869 
870 /**
871  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
872  * @pi: port information structure
873  *
874  * Cleanup scheduling elements from SW DB
875  */
876 void ice_sched_clear_port(struct ice_port_info *pi)
877 {
878 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
879 		return;
880 
881 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
882 	ice_acquire_lock(&pi->sched_lock);
883 	ice_sched_clear_tx_topo(pi);
884 	ice_release_lock(&pi->sched_lock);
885 	ice_destroy_lock(&pi->sched_lock);
886 }
887 
888 /**
889  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
890  * @hw: pointer to the HW struct
891  *
892  * Cleanup scheduling elements from SW DB for all the ports
893  */
894 void ice_sched_cleanup_all(struct ice_hw *hw)
895 {
896 	if (!hw)
897 		return;
898 
899 	if (hw->layer_info) {
900 		ice_free(hw, hw->layer_info);
901 		hw->layer_info = NULL;
902 	}
903 
904 	ice_sched_clear_port(hw->port_info);
905 
906 	hw->num_tx_sched_layers = 0;
907 	hw->num_tx_sched_phys_layers = 0;
908 	hw->flattened_layers = 0;
909 	hw->max_cgds = 0;
910 }
911 
912 /**
913  * ice_aq_cfg_node_attr - configure nodes' per-cone flattening attributes
914  * @hw: pointer to the HW struct
915  * @num_nodes: the number of nodes whose attributes to configure
916  * @buf: pointer to buffer
917  * @buf_size: buffer size in bytes
918  * @cd: pointer to command details structure or NULL
919  *
920  * Configure Node Attributes (0x0417)
921  */
922 enum ice_status
923 ice_aq_cfg_node_attr(struct ice_hw *hw, u16 num_nodes,
924 		     struct ice_aqc_node_attr_elem *buf, u16 buf_size,
925 		     struct ice_sq_cd *cd)
926 {
927 	struct ice_aqc_node_attr *cmd;
928 	struct ice_aq_desc desc;
929 
930 	cmd = &desc.params.node_attr;
931 	ice_fill_dflt_direct_cmd_desc(&desc,
932 				      ice_aqc_opc_cfg_node_attr);
933 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
934 
935 	cmd->num_entries = CPU_TO_LE16(num_nodes);
936 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
937 }
938 
939 /**
940  * ice_aq_cfg_l2_node_cgd - configures L2 node to CGD mapping
941  * @hw: pointer to the HW struct
942  * @num_l2_nodes: the number of L2 nodes whose CGDs to configure
943  * @buf: pointer to buffer
944  * @buf_size: buffer size in bytes
945  * @cd: pointer to command details structure or NULL
946  *
947  * Configure L2 Node CGD (0x0414)
948  */
949 enum ice_status
950 ice_aq_cfg_l2_node_cgd(struct ice_hw *hw, u16 num_l2_nodes,
951 		       struct ice_aqc_cfg_l2_node_cgd_elem *buf,
952 		       u16 buf_size, struct ice_sq_cd *cd)
953 {
954 	struct ice_aqc_cfg_l2_node_cgd *cmd;
955 	struct ice_aq_desc desc;
956 
957 	cmd = &desc.params.cfg_l2_node_cgd;
958 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_l2_node_cgd);
959 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
960 
961 	cmd->num_l2_nodes = CPU_TO_LE16(num_l2_nodes);
962 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
963 }
964 
965 /**
966  * ice_sched_add_elems - add nodes to HW and SW DB
967  * @pi: port information structure
968  * @tc_node: pointer to the branch node
969  * @parent: pointer to the parent node
970  * @layer: layer number to add nodes
971  * @num_nodes: number of nodes
972  * @num_nodes_added: pointer to num nodes added
973  * @first_node_teid: if new nodes are added then return the TEID of first node
974  *
975  * This function add nodes to HW as well as to SW DB for a given layer
976  */
977 static enum ice_status
978 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
979 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
980 		    u16 *num_nodes_added, u32 *first_node_teid)
981 {
982 	struct ice_sched_node *prev, *new_node;
983 	struct ice_aqc_add_elem *buf;
984 	u16 i, num_groups_added = 0;
985 	enum ice_status status = ICE_SUCCESS;
986 	struct ice_hw *hw = pi->hw;
987 	u16 buf_size;
988 	u32 teid;
989 
990 	buf_size = ice_struct_size(buf, generic, num_nodes);
991 	buf = (struct ice_aqc_add_elem *)ice_malloc(hw, buf_size);
992 	if (!buf)
993 		return ICE_ERR_NO_MEMORY;
994 
995 	buf->hdr.parent_teid = parent->info.node_teid;
996 	buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
997 	for (i = 0; i < num_nodes; i++) {
998 		buf->generic[i].parent_teid = parent->info.node_teid;
999 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
1000 		buf->generic[i].data.valid_sections =
1001 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
1002 			ICE_AQC_ELEM_VALID_EIR;
1003 		buf->generic[i].data.generic = 0;
1004 		buf->generic[i].data.cir_bw.bw_profile_idx =
1005 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
1006 		buf->generic[i].data.cir_bw.bw_alloc =
1007 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
1008 		buf->generic[i].data.eir_bw.bw_profile_idx =
1009 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
1010 		buf->generic[i].data.eir_bw.bw_alloc =
1011 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
1012 	}
1013 
1014 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
1015 					&num_groups_added, NULL);
1016 	if (status != ICE_SUCCESS || num_groups_added != 1) {
1017 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
1018 			  hw->adminq.sq_last_status);
1019 		ice_free(hw, buf);
1020 		return ICE_ERR_CFG;
1021 	}
1022 
1023 	*num_nodes_added = num_nodes;
1024 	/* add nodes to the SW DB */
1025 	for (i = 0; i < num_nodes; i++) {
1026 		status = ice_sched_add_node(pi, layer, &buf->generic[i]);
1027 		if (status != ICE_SUCCESS) {
1028 			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
1029 				  status);
1030 			break;
1031 		}
1032 
1033 		teid = LE32_TO_CPU(buf->generic[i].node_teid);
1034 		new_node = ice_sched_find_node_by_teid(parent, teid);
1035 		if (!new_node) {
1036 			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
1037 			break;
1038 		}
1039 
1040 		new_node->sibling = NULL;
1041 		new_node->tc_num = tc_node->tc_num;
1042 
1043 		/* add it to previous node sibling pointer */
1044 		/* Note: siblings are not linked across branches */
1045 		prev = ice_sched_get_first_node(pi, tc_node, layer);
1046 		if (prev && prev != new_node) {
1047 			while (prev->sibling)
1048 				prev = prev->sibling;
1049 			prev->sibling = new_node;
1050 		}
1051 
1052 		/* initialize the sibling head */
1053 		if (!pi->sib_head[tc_node->tc_num][layer])
1054 			pi->sib_head[tc_node->tc_num][layer] = new_node;
1055 
1056 		if (i == 0)
1057 			*first_node_teid = teid;
1058 	}
1059 
1060 	ice_free(hw, buf);
1061 	return status;
1062 }
1063 
1064 /**
1065  * ice_sched_add_nodes_to_hw_layer - Add nodes to hw layer
1066  * @pi: port information structure
1067  * @tc_node: pointer to TC node
1068  * @parent: pointer to parent node
1069  * @layer: layer number to add nodes
1070  * @num_nodes: number of nodes to be added
1071  * @first_node_teid: pointer to the first node TEID
1072  * @num_nodes_added: pointer to number of nodes added
1073  *
1074  * Add nodes into specific hw layer.
1075  */
1076 static enum ice_status
1077 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1078 				struct ice_sched_node *tc_node,
1079 				struct ice_sched_node *parent, u8 layer,
1080 				u16 num_nodes, u32 *first_node_teid,
1081 				u16 *num_nodes_added)
1082 {
1083 	u16 max_child_nodes;
1084 
1085 	*num_nodes_added = 0;
1086 
1087 	if (!num_nodes)
1088 		return ICE_SUCCESS;
1089 
1090 	if (!parent || layer < pi->hw->sw_entry_point_layer)
1091 		return ICE_ERR_PARAM;
1092 
1093 	/* max children per node per layer */
1094 	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1095 
1096 	/* current number of children + required nodes exceed max children */
1097 	if ((parent->num_children + num_nodes) > max_child_nodes) {
1098 		/* Fail if the parent is a TC node */
1099 		if (parent == tc_node)
1100 			return ICE_ERR_CFG;
1101 		return ICE_ERR_MAX_LIMIT;
1102 	}
1103 
1104 	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1105 				   num_nodes_added, first_node_teid);
1106 }
1107 
1108 /**
1109  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1110  * @pi: port information structure
1111  * @tc_node: pointer to TC node
1112  * @parent: pointer to parent node
1113  * @layer: layer number to add nodes
1114  * @num_nodes: number of nodes to be added
1115  * @first_node_teid: pointer to the first node TEID
1116  * @num_nodes_added: pointer to number of nodes added
1117  *
1118  * This function add nodes to a given layer.
1119  */
1120 static enum ice_status
1121 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1122 			     struct ice_sched_node *tc_node,
1123 			     struct ice_sched_node *parent, u8 layer,
1124 			     u16 num_nodes, u32 *first_node_teid,
1125 			     u16 *num_nodes_added)
1126 {
1127 	u32 *first_teid_ptr = first_node_teid;
1128 	u16 new_num_nodes = num_nodes;
1129 	enum ice_status status = ICE_SUCCESS;
1130 
1131 	*num_nodes_added = 0;
1132 	while (*num_nodes_added < num_nodes) {
1133 		u16 max_child_nodes, num_added = 0;
1134 		u32 temp;
1135 
1136 		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1137 							 layer,	new_num_nodes,
1138 							 first_teid_ptr,
1139 							 &num_added);
1140 		if (status == ICE_SUCCESS)
1141 			*num_nodes_added += num_added;
1142 		/* added more nodes than requested ? */
1143 		if (*num_nodes_added > num_nodes) {
1144 			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1145 				  *num_nodes_added);
1146 			status = ICE_ERR_CFG;
1147 			break;
1148 		}
1149 		/* break if all the nodes are added successfully */
1150 		if (status == ICE_SUCCESS && (*num_nodes_added == num_nodes))
1151 			break;
1152 		/* break if the error is not max limit */
1153 		if (status != ICE_SUCCESS && status != ICE_ERR_MAX_LIMIT)
1154 			break;
1155 		/* Exceeded the max children */
1156 		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1157 		/* utilize all the spaces if the parent is not full */
1158 		if (parent->num_children < max_child_nodes) {
1159 			new_num_nodes = max_child_nodes - parent->num_children;
1160 		} else {
1161 			/* This parent is full, try the next sibling */
1162 			parent = parent->sibling;
1163 			/* Don't modify the first node TEID memory if the
1164 			 * first node was added already in the above call.
1165 			 * Instead send some temp memory for all other
1166 			 * recursive calls.
1167 			 */
1168 			if (num_added)
1169 				first_teid_ptr = &temp;
1170 
1171 			new_num_nodes = num_nodes - *num_nodes_added;
1172 		}
1173 	}
1174 	return status;
1175 }
1176 
1177 /**
1178  * ice_sched_get_qgrp_layer - get the current queue group layer number
1179  * @hw: pointer to the HW struct
1180  *
1181  * This function returns the current queue group layer number
1182  */
1183 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1184 {
1185 	/* It's always total layers - 1, the array is 0 relative so -2 */
1186 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1187 }
1188 
1189 /**
1190  * ice_sched_get_vsi_layer - get the current VSI layer number
1191  * @hw: pointer to the HW struct
1192  *
1193  * This function returns the current VSI layer number
1194  */
1195 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1196 {
1197 	/* Num Layers       VSI layer
1198 	 *     9               6
1199 	 *     7               4
1200 	 *     5 or less       sw_entry_point_layer
1201 	 */
1202 	/* calculate the VSI layer based on number of layers. */
1203 	if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS)
1204 		return hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1205 	else if (hw->num_tx_sched_layers == ICE_SCHED_5_LAYERS)
1206 		/* qgroup and VSI layers are same */
1207 		return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1208 	return hw->sw_entry_point_layer;
1209 }
1210 
1211 /**
1212  * ice_sched_get_agg_layer - get the current aggregator layer number
1213  * @hw: pointer to the HW struct
1214  *
1215  * This function returns the current aggregator layer number
1216  */
1217 static u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1218 {
1219 	/* Num Layers       aggregator layer
1220 	 *     9               4
1221 	 *     7 or less       sw_entry_point_layer
1222 	 */
1223 	/* calculate the aggregator layer based on number of layers. */
1224 	if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS)
1225 		return hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1226 	return hw->sw_entry_point_layer;
1227 }
1228 
1229 /**
1230  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1231  * @pi: port information structure
1232  *
1233  * This function removes the leaf node that was created by the FW
1234  * during initialization
1235  */
1236 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1237 {
1238 	struct ice_sched_node *node;
1239 
1240 	node = pi->root;
1241 	while (node) {
1242 		if (!node->num_children)
1243 			break;
1244 		node = node->children[0];
1245 	}
1246 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1247 		u32 teid = LE32_TO_CPU(node->info.node_teid);
1248 		enum ice_status status;
1249 
1250 		/* remove the default leaf node */
1251 		status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1252 		if (!status)
1253 			ice_free_sched_node(pi, node);
1254 	}
1255 }
1256 
1257 /**
1258  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1259  * @pi: port information structure
1260  *
1261  * This function frees all the nodes except root and TC that were created by
1262  * the FW during initialization
1263  */
1264 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1265 {
1266 	struct ice_sched_node *node;
1267 
1268 	ice_rm_dflt_leaf_node(pi);
1269 
1270 	/* remove the default nodes except TC and root nodes */
1271 	node = pi->root;
1272 	while (node) {
1273 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1274 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1275 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1276 			ice_free_sched_node(pi, node);
1277 			break;
1278 		}
1279 
1280 		if (!node->num_children)
1281 			break;
1282 		node = node->children[0];
1283 	}
1284 }
1285 
1286 /**
1287  * ice_sched_init_port - Initialize scheduler by querying information from FW
1288  * @pi: port info structure for the tree to cleanup
1289  *
1290  * This function is the initial call to find the total number of Tx scheduler
1291  * resources, default topology created by firmware and storing the information
1292  * in SW DB.
1293  */
1294 enum ice_status ice_sched_init_port(struct ice_port_info *pi)
1295 {
1296 	struct ice_aqc_get_topo_elem *buf;
1297 	enum ice_status status;
1298 	struct ice_hw *hw;
1299 	u8 num_branches;
1300 	u16 num_elems;
1301 	u8 i, j;
1302 
1303 	if (!pi)
1304 		return ICE_ERR_PARAM;
1305 	hw = pi->hw;
1306 
1307 	/* Query the Default Topology from FW */
1308 	buf = (struct ice_aqc_get_topo_elem *)ice_malloc(hw,
1309 							 ICE_AQ_MAX_BUF_LEN);
1310 	if (!buf)
1311 		return ICE_ERR_NO_MEMORY;
1312 
1313 	/* Query default scheduling tree topology */
1314 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1315 				      &num_branches, NULL);
1316 	if (status)
1317 		goto err_init_port;
1318 
1319 	/* num_branches should be between 1-8 */
1320 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1321 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1322 			  num_branches);
1323 		status = ICE_ERR_PARAM;
1324 		goto err_init_port;
1325 	}
1326 
1327 	/* get the number of elements on the default/first branch */
1328 	num_elems = LE16_TO_CPU(buf[0].hdr.num_elems);
1329 
1330 	/* num_elems should always be between 1-9 */
1331 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1332 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1333 			  num_elems);
1334 		status = ICE_ERR_PARAM;
1335 		goto err_init_port;
1336 	}
1337 
1338 	/* If the last node is a leaf node then the index of the queue group
1339 	 * layer is two less than the number of elements.
1340 	 */
1341 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1342 	    ICE_AQC_ELEM_TYPE_LEAF)
1343 		pi->last_node_teid =
1344 			LE32_TO_CPU(buf[0].generic[num_elems - 2].node_teid);
1345 	else
1346 		pi->last_node_teid =
1347 			LE32_TO_CPU(buf[0].generic[num_elems - 1].node_teid);
1348 
1349 	/* Insert the Tx Sched root node */
1350 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1351 	if (status)
1352 		goto err_init_port;
1353 
1354 	/* Parse the default tree and cache the information */
1355 	for (i = 0; i < num_branches; i++) {
1356 		num_elems = LE16_TO_CPU(buf[i].hdr.num_elems);
1357 
1358 		/* Skip root element as already inserted */
1359 		for (j = 1; j < num_elems; j++) {
1360 			/* update the sw entry point */
1361 			if (buf[0].generic[j].data.elem_type ==
1362 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1363 				hw->sw_entry_point_layer = j;
1364 
1365 			status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
1366 			if (status)
1367 				goto err_init_port;
1368 		}
1369 	}
1370 
1371 	/* Remove the default nodes. */
1372 	if (pi->root)
1373 		ice_sched_rm_dflt_nodes(pi);
1374 
1375 	/* initialize the port for handling the scheduler tree */
1376 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1377 	ice_init_lock(&pi->sched_lock);
1378 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1379 		INIT_LIST_HEAD(&hw->rl_prof_list[i]);
1380 
1381 err_init_port:
1382 	if (status && pi->root) {
1383 		ice_free_sched_node(pi, pi->root);
1384 		pi->root = NULL;
1385 	}
1386 
1387 	ice_free(hw, buf);
1388 	return status;
1389 }
1390 
1391 /**
1392  * ice_sched_get_node - Get the struct ice_sched_node for given TEID
1393  * @pi: port information structure
1394  * @teid: Scheduler node TEID
1395  *
1396  * This function retrieves the ice_sched_node struct for given TEID from
1397  * the SW DB and returns it to the caller.
1398  */
1399 struct ice_sched_node *ice_sched_get_node(struct ice_port_info *pi, u32 teid)
1400 {
1401 	struct ice_sched_node *node;
1402 
1403 	if (!pi)
1404 		return NULL;
1405 
1406 	/* Find the node starting from root */
1407 	ice_acquire_lock(&pi->sched_lock);
1408 	node = ice_sched_find_node_by_teid(pi->root, teid);
1409 	ice_release_lock(&pi->sched_lock);
1410 
1411 	if (!node)
1412 		ice_debug(pi->hw, ICE_DBG_SCHED, "Node not found for teid=0x%x\n", teid);
1413 
1414 	return node;
1415 }
1416 
1417 /**
1418  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1419  * @hw: pointer to the HW struct
1420  *
1421  * query FW for allocated scheduler resources and store in HW struct
1422  */
1423 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
1424 {
1425 	struct ice_aqc_query_txsched_res_resp *buf;
1426 	enum ice_status status = ICE_SUCCESS;
1427 	__le16 max_sibl;
1428 	u8 i;
1429 
1430 	if (hw->layer_info)
1431 		return status;
1432 
1433 	buf = (struct ice_aqc_query_txsched_res_resp *)
1434 		ice_malloc(hw, sizeof(*buf));
1435 	if (!buf)
1436 		return ICE_ERR_NO_MEMORY;
1437 
1438 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1439 	if (status)
1440 		goto sched_query_out;
1441 
1442 	hw->num_tx_sched_layers =
1443 		(u8)LE16_TO_CPU(buf->sched_props.logical_levels);
1444 	hw->num_tx_sched_phys_layers =
1445 		(u8)LE16_TO_CPU(buf->sched_props.phys_levels);
1446 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1447 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1448 
1449 	/* max sibling group size of current layer refers to the max children
1450 	 * of the below layer node.
1451 	 * layer 1 node max children will be layer 2 max sibling group size
1452 	 * layer 2 node max children will be layer 3 max sibling group size
1453 	 * and so on. This array will be populated from root (index 0) to
1454 	 * qgroup layer 7. Leaf node has no children.
1455 	 */
1456 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1457 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1458 		hw->max_children[i] = LE16_TO_CPU(max_sibl);
1459 	}
1460 
1461 	hw->layer_info = (struct ice_aqc_layer_props *)
1462 			 ice_memdup(hw, buf->layer_props,
1463 				    (hw->num_tx_sched_layers *
1464 				     sizeof(*hw->layer_info)),
1465 				    ICE_NONDMA_TO_NONDMA);
1466 	if (!hw->layer_info) {
1467 		status = ICE_ERR_NO_MEMORY;
1468 		goto sched_query_out;
1469 	}
1470 
1471 sched_query_out:
1472 	ice_free(hw, buf);
1473 	return status;
1474 }
1475 
1476 /**
1477  * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1478  * @hw: pointer to the HW struct
1479  *
1480  * Determine the PSM clock frequency and store in HW struct
1481  */
1482 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1483 {
1484 	u32 val, clk_src;
1485 
1486 	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1487 	clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1488 		GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1489 
1490 #define PSM_CLK_SRC_367_MHZ 0x0
1491 #define PSM_CLK_SRC_416_MHZ 0x1
1492 #define PSM_CLK_SRC_446_MHZ 0x2
1493 #define PSM_CLK_SRC_390_MHZ 0x3
1494 
1495 	switch (clk_src) {
1496 	case PSM_CLK_SRC_367_MHZ:
1497 		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1498 		break;
1499 	case PSM_CLK_SRC_416_MHZ:
1500 		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1501 		break;
1502 	case PSM_CLK_SRC_446_MHZ:
1503 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1504 		break;
1505 	case PSM_CLK_SRC_390_MHZ:
1506 		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1507 		break;
1508 	default:
1509 		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1510 			  clk_src);
1511 		/* fall back to a safe default */
1512 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1513 	}
1514 }
1515 
1516 /**
1517  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1518  * @hw: pointer to the HW struct
1519  * @base: pointer to the base node
1520  * @node: pointer to the node to search
1521  *
1522  * This function checks whether a given node is part of the base node
1523  * subtree or not
1524  */
1525 bool
1526 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1527 			       struct ice_sched_node *node)
1528 {
1529 	u8 i;
1530 
1531 	for (i = 0; i < base->num_children; i++) {
1532 		struct ice_sched_node *child = base->children[i];
1533 
1534 		if (node == child)
1535 			return true;
1536 
1537 		if (child->tx_sched_layer > node->tx_sched_layer)
1538 			return false;
1539 
1540 		/* this recursion is intentional, and wouldn't
1541 		 * go more than 8 calls
1542 		 */
1543 		if (ice_sched_find_node_in_subtree(hw, child, node))
1544 			return true;
1545 	}
1546 	return false;
1547 }
1548 
1549 /**
1550  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1551  * @pi: port information structure
1552  * @vsi_node: software VSI handle
1553  * @qgrp_node: first queue group node identified for scanning
1554  * @owner: LAN or RDMA
1555  *
1556  * This function retrieves a free LAN or RDMA queue group node by scanning
1557  * qgrp_node and its siblings for the queue group with the fewest number
1558  * of queues currently assigned.
1559  */
1560 static struct ice_sched_node *
1561 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1562 			struct ice_sched_node *vsi_node,
1563 			struct ice_sched_node *qgrp_node, u8 owner)
1564 {
1565 	struct ice_sched_node *min_qgrp;
1566 	u8 min_children;
1567 
1568 	if (!qgrp_node)
1569 		return qgrp_node;
1570 	min_children = qgrp_node->num_children;
1571 	if (!min_children)
1572 		return qgrp_node;
1573 	min_qgrp = qgrp_node;
1574 	/* scan all queue groups until find a node which has less than the
1575 	 * minimum number of children. This way all queue group nodes get
1576 	 * equal number of shares and active. The bandwidth will be equally
1577 	 * distributed across all queues.
1578 	 */
1579 	while (qgrp_node) {
1580 		/* make sure the qgroup node is part of the VSI subtree */
1581 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1582 			if (qgrp_node->num_children < min_children &&
1583 			    qgrp_node->owner == owner) {
1584 				/* replace the new min queue group node */
1585 				min_qgrp = qgrp_node;
1586 				min_children = min_qgrp->num_children;
1587 				/* break if it has no children, */
1588 				if (!min_children)
1589 					break;
1590 			}
1591 		qgrp_node = qgrp_node->sibling;
1592 	}
1593 	return min_qgrp;
1594 }
1595 
1596 /**
1597  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1598  * @pi: port information structure
1599  * @vsi_handle: software VSI handle
1600  * @tc: branch number
1601  * @owner: LAN or RDMA
1602  *
1603  * This function retrieves a free LAN or RDMA queue group node
1604  */
1605 struct ice_sched_node *
1606 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1607 			   u8 owner)
1608 {
1609 	struct ice_sched_node *vsi_node, *qgrp_node;
1610 	struct ice_vsi_ctx *vsi_ctx;
1611 	u8 qgrp_layer, vsi_layer;
1612 	u16 max_children;
1613 
1614 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1615 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1616 	max_children = pi->hw->max_children[qgrp_layer];
1617 
1618 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1619 	if (!vsi_ctx)
1620 		return NULL;
1621 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1622 	/* validate invalid VSI ID */
1623 	if (!vsi_node)
1624 		return NULL;
1625 
1626 	/* If the queue group and vsi layer are same then queues
1627 	 * are all attached directly to VSI
1628 	 */
1629 	if (qgrp_layer == vsi_layer)
1630 		return vsi_node;
1631 
1632 	/* get the first queue group node from VSI sub-tree */
1633 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1634 	while (qgrp_node) {
1635 		/* make sure the qgroup node is part of the VSI subtree */
1636 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1637 			if (qgrp_node->num_children < max_children &&
1638 			    qgrp_node->owner == owner)
1639 				break;
1640 		qgrp_node = qgrp_node->sibling;
1641 	}
1642 
1643 	/* Select the best queue group */
1644 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1645 }
1646 
1647 /**
1648  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1649  * @pi: pointer to the port information structure
1650  * @tc_node: pointer to the TC node
1651  * @vsi_handle: software VSI handle
1652  *
1653  * This function retrieves a VSI node for a given VSI ID from a given
1654  * TC branch
1655  */
1656 struct ice_sched_node *
1657 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1658 		       u16 vsi_handle)
1659 {
1660 	struct ice_sched_node *node;
1661 	u8 vsi_layer;
1662 
1663 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1664 	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1665 
1666 	/* Check whether it already exists */
1667 	while (node) {
1668 		if (node->vsi_handle == vsi_handle)
1669 			return node;
1670 		node = node->sibling;
1671 	}
1672 
1673 	return node;
1674 }
1675 
1676 /**
1677  * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1678  * @pi: pointer to the port information structure
1679  * @tc_node: pointer to the TC node
1680  * @agg_id: aggregator ID
1681  *
1682  * This function retrieves an aggregator node for a given aggregator ID from
1683  * a given TC branch
1684  */
1685 static struct ice_sched_node *
1686 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1687 		       u32 agg_id)
1688 {
1689 	struct ice_sched_node *node;
1690 	struct ice_hw *hw = pi->hw;
1691 	u8 agg_layer;
1692 
1693 	if (!hw)
1694 		return NULL;
1695 	agg_layer = ice_sched_get_agg_layer(hw);
1696 	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1697 
1698 	/* Check whether it already exists */
1699 	while (node) {
1700 		if (node->agg_id == agg_id)
1701 			return node;
1702 		node = node->sibling;
1703 	}
1704 
1705 	return node;
1706 }
1707 
1708 /**
1709  * ice_sched_check_node - Compare node parameters between SW DB and HW DB
1710  * @hw: pointer to the HW struct
1711  * @node: pointer to the ice_sched_node struct
1712  *
1713  * This function queries and compares the HW element with SW DB node parameters
1714  */
1715 static bool ice_sched_check_node(struct ice_hw *hw, struct ice_sched_node *node)
1716 {
1717 	struct ice_aqc_txsched_elem_data buf;
1718 	enum ice_status status;
1719 	u32 node_teid;
1720 
1721 	node_teid = LE32_TO_CPU(node->info.node_teid);
1722 	status = ice_sched_query_elem(hw, node_teid, &buf);
1723 	if (status != ICE_SUCCESS)
1724 		return false;
1725 
1726 	if (memcmp(&buf, &node->info, sizeof(buf))) {
1727 		ice_debug(hw, ICE_DBG_SCHED, "Node mismatch for teid=0x%x\n",
1728 			  node_teid);
1729 		return false;
1730 	}
1731 
1732 	return true;
1733 }
1734 
1735 /**
1736  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1737  * @hw: pointer to the HW struct
1738  * @num_qs: number of queues
1739  * @num_nodes: num nodes array
1740  *
1741  * This function calculates the number of VSI child nodes based on the
1742  * number of queues.
1743  */
1744 static void
1745 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1746 {
1747 	u16 num = num_qs;
1748 	u8 i, qgl, vsil;
1749 
1750 	qgl = ice_sched_get_qgrp_layer(hw);
1751 	vsil = ice_sched_get_vsi_layer(hw);
1752 
1753 	/* calculate num nodes from queue group to VSI layer */
1754 	for (i = qgl; i > vsil; i--) {
1755 		/* round to the next integer if there is a remainder */
1756 		num = DIVIDE_AND_ROUND_UP(num, hw->max_children[i]);
1757 
1758 		/* need at least one node */
1759 		num_nodes[i] = num ? num : 1;
1760 	}
1761 }
1762 
1763 /**
1764  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1765  * @pi: port information structure
1766  * @vsi_handle: software VSI handle
1767  * @tc_node: pointer to the TC node
1768  * @num_nodes: pointer to the num nodes that needs to be added per layer
1769  * @owner: node owner (LAN or RDMA)
1770  *
1771  * This function adds the VSI child nodes to tree. It gets called for
1772  * LAN and RDMA separately.
1773  */
1774 static enum ice_status
1775 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1776 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1777 			      u8 owner)
1778 {
1779 	struct ice_sched_node *parent, *node;
1780 	struct ice_hw *hw = pi->hw;
1781 	u32 first_node_teid;
1782 	u16 num_added = 0;
1783 	u8 i, qgl, vsil;
1784 
1785 	qgl = ice_sched_get_qgrp_layer(hw);
1786 	vsil = ice_sched_get_vsi_layer(hw);
1787 	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1788 	for (i = vsil + 1; i <= qgl; i++) {
1789 		enum ice_status status;
1790 
1791 		if (!parent)
1792 			return ICE_ERR_CFG;
1793 
1794 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1795 						      num_nodes[i],
1796 						      &first_node_teid,
1797 						      &num_added);
1798 		if (status != ICE_SUCCESS || num_nodes[i] != num_added)
1799 			return ICE_ERR_CFG;
1800 
1801 		/* The newly added node can be a new parent for the next
1802 		 * layer nodes
1803 		 */
1804 		if (num_added) {
1805 			parent = ice_sched_find_node_by_teid(tc_node,
1806 							     first_node_teid);
1807 			node = parent;
1808 			while (node) {
1809 				node->owner = owner;
1810 				node = node->sibling;
1811 			}
1812 		} else {
1813 			parent = parent->children[0];
1814 		}
1815 	}
1816 
1817 	return ICE_SUCCESS;
1818 }
1819 
1820 /**
1821  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1822  * @pi: pointer to the port info structure
1823  * @tc_node: pointer to TC node
1824  * @num_nodes: pointer to num nodes array
1825  *
1826  * This function calculates the number of supported nodes needed to add this
1827  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1828  * layers
1829  */
1830 static void
1831 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1832 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1833 {
1834 	struct ice_sched_node *node;
1835 	u8 vsil;
1836 	int i;
1837 
1838 	vsil = ice_sched_get_vsi_layer(pi->hw);
1839 	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1840 		/* Add intermediate nodes if TC has no children and
1841 		 * need at least one node for VSI
1842 		 */
1843 		if (!tc_node->num_children || i == vsil) {
1844 			num_nodes[i]++;
1845 		} else {
1846 			/* If intermediate nodes are reached max children
1847 			 * then add a new one.
1848 			 */
1849 			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1850 			/* scan all the siblings */
1851 			while (node) {
1852 				if (node->num_children <
1853 				    pi->hw->max_children[i])
1854 					break;
1855 				node = node->sibling;
1856 			}
1857 
1858 			/* tree has one intermediate node to add this new VSI.
1859 			 * So no need to calculate supported nodes for below
1860 			 * layers.
1861 			 */
1862 			if (node)
1863 				break;
1864 			/* all the nodes are full, allocate a new one */
1865 			num_nodes[i]++;
1866 		}
1867 }
1868 
1869 /**
1870  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1871  * @pi: port information structure
1872  * @vsi_handle: software VSI handle
1873  * @tc_node: pointer to TC node
1874  * @num_nodes: pointer to num nodes array
1875  *
1876  * This function adds the VSI supported nodes into Tx tree including the
1877  * VSI, its parent and intermediate nodes in below layers
1878  */
1879 static enum ice_status
1880 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1881 				struct ice_sched_node *tc_node, u16 *num_nodes)
1882 {
1883 	struct ice_sched_node *parent = tc_node;
1884 	u32 first_node_teid;
1885 	u16 num_added = 0;
1886 	u8 i, vsil;
1887 
1888 	if (!pi)
1889 		return ICE_ERR_PARAM;
1890 
1891 	vsil = ice_sched_get_vsi_layer(pi->hw);
1892 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1893 		enum ice_status status;
1894 
1895 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1896 						      i, num_nodes[i],
1897 						      &first_node_teid,
1898 						      &num_added);
1899 		if (status != ICE_SUCCESS || num_nodes[i] != num_added)
1900 			return ICE_ERR_CFG;
1901 
1902 		/* The newly added node can be a new parent for the next
1903 		 * layer nodes
1904 		 */
1905 		if (num_added)
1906 			parent = ice_sched_find_node_by_teid(tc_node,
1907 							     first_node_teid);
1908 		else
1909 			parent = parent->children[0];
1910 
1911 		if (!parent)
1912 			return ICE_ERR_CFG;
1913 
1914 		if (i == vsil)
1915 			parent->vsi_handle = vsi_handle;
1916 	}
1917 
1918 	return ICE_SUCCESS;
1919 }
1920 
1921 /**
1922  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1923  * @pi: port information structure
1924  * @vsi_handle: software VSI handle
1925  * @tc: TC number
1926  *
1927  * This function adds a new VSI into scheduler tree
1928  */
1929 static enum ice_status
1930 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1931 {
1932 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1933 	struct ice_sched_node *tc_node;
1934 
1935 	tc_node = ice_sched_get_tc_node(pi, tc);
1936 	if (!tc_node)
1937 		return ICE_ERR_PARAM;
1938 
1939 	/* calculate number of supported nodes needed for this VSI */
1940 	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1941 
1942 	/* add VSI supported nodes to TC subtree */
1943 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1944 					       num_nodes);
1945 }
1946 
1947 /**
1948  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1949  * @pi: port information structure
1950  * @vsi_handle: software VSI handle
1951  * @tc: TC number
1952  * @new_numqs: new number of max queues
1953  * @owner: owner of this subtree
1954  *
1955  * This function updates the VSI child nodes based on the number of queues
1956  */
1957 static enum ice_status
1958 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1959 				 u8 tc, u16 new_numqs, u8 owner)
1960 {
1961 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1962 	struct ice_sched_node *vsi_node;
1963 	struct ice_sched_node *tc_node;
1964 	struct ice_vsi_ctx *vsi_ctx;
1965 	enum ice_status status = ICE_SUCCESS;
1966 	struct ice_hw *hw = pi->hw;
1967 	u16 prev_numqs;
1968 
1969 	tc_node = ice_sched_get_tc_node(pi, tc);
1970 	if (!tc_node)
1971 		return ICE_ERR_CFG;
1972 
1973 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1974 	if (!vsi_node)
1975 		return ICE_ERR_CFG;
1976 
1977 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1978 	if (!vsi_ctx)
1979 		return ICE_ERR_PARAM;
1980 
1981 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1982 		prev_numqs = vsi_ctx->sched.max_lanq[tc];
1983 	else
1984 		prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1985 	/* num queues are not changed or less than the previous number */
1986 	if (new_numqs <= prev_numqs)
1987 		return status;
1988 	if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1989 		status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1990 		if (status)
1991 			return status;
1992 	} else {
1993 		status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1994 		if (status)
1995 			return status;
1996 	}
1997 
1998 	if (new_numqs)
1999 		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
2000 	/* Keep the max number of queue configuration all the time. Update the
2001 	 * tree only if number of queues > previous number of queues. This may
2002 	 * leave some extra nodes in the tree if number of queues < previous
2003 	 * number but that wouldn't harm anything. Removing those extra nodes
2004 	 * may complicate the code if those nodes are part of SRL or
2005 	 * individually rate limited.
2006 	 */
2007 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
2008 					       new_num_nodes, owner);
2009 	if (status)
2010 		return status;
2011 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
2012 		vsi_ctx->sched.max_lanq[tc] = new_numqs;
2013 	else
2014 		vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
2015 
2016 	return ICE_SUCCESS;
2017 }
2018 
2019 /**
2020  * ice_sched_cfg_vsi - configure the new/existing VSI
2021  * @pi: port information structure
2022  * @vsi_handle: software VSI handle
2023  * @tc: TC number
2024  * @maxqs: max number of queues
2025  * @owner: LAN or RDMA
2026  * @enable: TC enabled or disabled
2027  *
2028  * This function adds/updates VSI nodes based on the number of queues. If TC is
2029  * enabled and VSI is in suspended state then resume the VSI back. If TC is
2030  * disabled then suspend the VSI if it is not already.
2031  */
2032 enum ice_status
2033 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
2034 		  u8 owner, bool enable)
2035 {
2036 	struct ice_sched_node *vsi_node, *tc_node;
2037 	struct ice_vsi_ctx *vsi_ctx;
2038 	enum ice_status status = ICE_SUCCESS;
2039 	struct ice_hw *hw = pi->hw;
2040 
2041 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
2042 	tc_node = ice_sched_get_tc_node(pi, tc);
2043 	if (!tc_node)
2044 		return ICE_ERR_PARAM;
2045 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
2046 	if (!vsi_ctx)
2047 		return ICE_ERR_PARAM;
2048 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2049 
2050 	/* suspend the VSI if TC is not enabled */
2051 	if (!enable) {
2052 		if (vsi_node && vsi_node->in_use) {
2053 			u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
2054 
2055 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
2056 								true);
2057 			if (!status)
2058 				vsi_node->in_use = false;
2059 		}
2060 		return status;
2061 	}
2062 
2063 	/* TC is enabled, if it is a new VSI then add it to the tree */
2064 	if (!vsi_node) {
2065 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
2066 		if (status)
2067 			return status;
2068 
2069 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2070 		if (!vsi_node)
2071 			return ICE_ERR_CFG;
2072 
2073 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
2074 		vsi_node->in_use = true;
2075 		/* invalidate the max queues whenever VSI gets added first time
2076 		 * into the scheduler tree (boot or after reset). We need to
2077 		 * recreate the child nodes all the time in these cases.
2078 		 */
2079 		vsi_ctx->sched.max_lanq[tc] = 0;
2080 		vsi_ctx->sched.max_rdmaq[tc] = 0;
2081 	}
2082 
2083 	/* update the VSI child nodes */
2084 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
2085 						  owner);
2086 	if (status)
2087 		return status;
2088 
2089 	/* TC is enabled, resume the VSI if it is in the suspend state */
2090 	if (!vsi_node->in_use) {
2091 		u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
2092 
2093 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
2094 		if (!status)
2095 			vsi_node->in_use = true;
2096 	}
2097 
2098 	return status;
2099 }
2100 
2101 /**
2102  * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
2103  * @pi: port information structure
2104  * @vsi_handle: software VSI handle
2105  *
2106  * This function removes single aggregator VSI info entry from
2107  * aggregator list.
2108  */
2109 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
2110 {
2111 	struct ice_sched_agg_info *agg_info;
2112 	struct ice_sched_agg_info *atmp;
2113 
2114 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &pi->hw->agg_list,
2115 				 ice_sched_agg_info,
2116 				 list_entry) {
2117 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2118 		struct ice_sched_agg_vsi_info *vtmp;
2119 
2120 		LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
2121 					 &agg_info->agg_vsi_list,
2122 					 ice_sched_agg_vsi_info, list_entry)
2123 			if (agg_vsi_info->vsi_handle == vsi_handle) {
2124 				LIST_DEL(&agg_vsi_info->list_entry);
2125 				ice_free(pi->hw, agg_vsi_info);
2126 				return;
2127 			}
2128 	}
2129 }
2130 
2131 /**
2132  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2133  * @node: pointer to the sub-tree node
2134  *
2135  * This function checks for a leaf node presence in a given sub-tree node.
2136  */
2137 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2138 {
2139 	u8 i;
2140 
2141 	for (i = 0; i < node->num_children; i++)
2142 		if (ice_sched_is_leaf_node_present(node->children[i]))
2143 			return true;
2144 	/* check for a leaf node */
2145 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2146 }
2147 
2148 /**
2149  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2150  * @pi: port information structure
2151  * @vsi_handle: software VSI handle
2152  * @owner: LAN or RDMA
2153  *
2154  * This function removes the VSI and its LAN or RDMA children nodes from the
2155  * scheduler tree.
2156  */
2157 static enum ice_status
2158 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2159 {
2160 	enum ice_status status = ICE_ERR_PARAM;
2161 	struct ice_vsi_ctx *vsi_ctx;
2162 	u8 i;
2163 
2164 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2165 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2166 		return status;
2167 	ice_acquire_lock(&pi->sched_lock);
2168 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2169 	if (!vsi_ctx)
2170 		goto exit_sched_rm_vsi_cfg;
2171 
2172 	ice_for_each_traffic_class(i) {
2173 		struct ice_sched_node *vsi_node, *tc_node;
2174 		u8 j = 0;
2175 
2176 		tc_node = ice_sched_get_tc_node(pi, i);
2177 		if (!tc_node)
2178 			continue;
2179 
2180 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2181 		if (!vsi_node)
2182 			continue;
2183 
2184 		if (ice_sched_is_leaf_node_present(vsi_node)) {
2185 			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2186 			status = ICE_ERR_IN_USE;
2187 			goto exit_sched_rm_vsi_cfg;
2188 		}
2189 		while (j < vsi_node->num_children) {
2190 			if (vsi_node->children[j]->owner == owner) {
2191 				ice_free_sched_node(pi, vsi_node->children[j]);
2192 
2193 				/* reset the counter again since the num
2194 				 * children will be updated after node removal
2195 				 */
2196 				j = 0;
2197 			} else {
2198 				j++;
2199 			}
2200 		}
2201 		/* remove the VSI if it has no children */
2202 		if (!vsi_node->num_children) {
2203 			ice_free_sched_node(pi, vsi_node);
2204 			vsi_ctx->sched.vsi_node[i] = NULL;
2205 
2206 			/* clean up aggregator related VSI info if any */
2207 			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2208 		}
2209 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2210 			vsi_ctx->sched.max_lanq[i] = 0;
2211 		else
2212 			vsi_ctx->sched.max_rdmaq[i] = 0;
2213 	}
2214 	status = ICE_SUCCESS;
2215 
2216 exit_sched_rm_vsi_cfg:
2217 	ice_release_lock(&pi->sched_lock);
2218 	return status;
2219 }
2220 
2221 /**
2222  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2223  * @pi: port information structure
2224  * @vsi_handle: software VSI handle
2225  *
2226  * This function clears the VSI and its LAN children nodes from scheduler tree
2227  * for all TCs.
2228  */
2229 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2230 {
2231 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2232 }
2233 
2234 /**
2235  * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2236  * @pi: port information structure
2237  * @vsi_handle: software VSI handle
2238  *
2239  * This function clears the VSI and its RDMA children nodes from scheduler tree
2240  * for all TCs.
2241  */
2242 enum ice_status ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2243 {
2244 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2245 }
2246 
2247 /**
2248  * ice_sched_is_tree_balanced - Check tree nodes are identical or not
2249  * @hw: pointer to the HW struct
2250  * @node: pointer to the ice_sched_node struct
2251  *
2252  * This function compares all the nodes for a given tree against HW DB nodes
2253  * This function needs to be called with the port_info->sched_lock held
2254  */
2255 bool ice_sched_is_tree_balanced(struct ice_hw *hw, struct ice_sched_node *node)
2256 {
2257 	u8 i;
2258 
2259 	/* start from the leaf node */
2260 	for (i = 0; i < node->num_children; i++)
2261 		/* Fail if node doesn't match with the SW DB
2262 		 * this recursion is intentional, and wouldn't
2263 		 * go more than 9 calls
2264 		 */
2265 		if (!ice_sched_is_tree_balanced(hw, node->children[i]))
2266 			return false;
2267 
2268 	return ice_sched_check_node(hw, node);
2269 }
2270 
2271 /**
2272  * ice_aq_query_node_to_root - retrieve the tree topology for a given node TEID
2273  * @hw: pointer to the HW struct
2274  * @node_teid: node TEID
2275  * @buf: pointer to buffer
2276  * @buf_size: buffer size in bytes
2277  * @cd: pointer to command details structure or NULL
2278  *
2279  * This function retrieves the tree topology from the firmware for a given
2280  * node TEID to the root node.
2281  */
2282 enum ice_status
2283 ice_aq_query_node_to_root(struct ice_hw *hw, u32 node_teid,
2284 			  struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
2285 			  struct ice_sq_cd *cd)
2286 {
2287 	struct ice_aqc_query_node_to_root *cmd;
2288 	struct ice_aq_desc desc;
2289 
2290 	cmd = &desc.params.query_node_to_root;
2291 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_node_to_root);
2292 	cmd->teid = CPU_TO_LE32(node_teid);
2293 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2294 }
2295 
2296 /**
2297  * ice_get_agg_info - get the aggregator ID
2298  * @hw: pointer to the hardware structure
2299  * @agg_id: aggregator ID
2300  *
2301  * This function validates aggregator ID. The function returns info if
2302  * aggregator ID is present in list otherwise it returns null.
2303  */
2304 static struct ice_sched_agg_info *
2305 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2306 {
2307 	struct ice_sched_agg_info *agg_info;
2308 
2309 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
2310 			    list_entry)
2311 		if (agg_info->agg_id == agg_id)
2312 			return agg_info;
2313 
2314 	return NULL;
2315 }
2316 
2317 /**
2318  * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2319  * @hw: pointer to the HW struct
2320  * @node: pointer to a child node
2321  * @num_nodes: num nodes count array
2322  *
2323  * This function walks through the aggregator subtree to find a free parent
2324  * node
2325  */
2326 static struct ice_sched_node *
2327 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2328 			      u16 *num_nodes)
2329 {
2330 	u8 l = node->tx_sched_layer;
2331 	u8 vsil, i;
2332 
2333 	vsil = ice_sched_get_vsi_layer(hw);
2334 
2335 	/* Is it VSI parent layer ? */
2336 	if (l == vsil - 1)
2337 		return (node->num_children < hw->max_children[l]) ? node : NULL;
2338 
2339 	/* We have intermediate nodes. Let's walk through the subtree. If the
2340 	 * intermediate node has space to add a new node then clear the count
2341 	 */
2342 	if (node->num_children < hw->max_children[l])
2343 		num_nodes[l] = 0;
2344 	/* The below recursive call is intentional and wouldn't go more than
2345 	 * 2 or 3 iterations.
2346 	 */
2347 
2348 	for (i = 0; i < node->num_children; i++) {
2349 		struct ice_sched_node *parent;
2350 
2351 		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2352 						       num_nodes);
2353 		if (parent)
2354 			return parent;
2355 	}
2356 
2357 	return NULL;
2358 }
2359 
2360 /**
2361  * ice_sched_update_parent - update the new parent in SW DB
2362  * @new_parent: pointer to a new parent node
2363  * @node: pointer to a child node
2364  *
2365  * This function removes the child from the old parent and adds it to a new
2366  * parent
2367  */
2368 static void
2369 ice_sched_update_parent(struct ice_sched_node *new_parent,
2370 			struct ice_sched_node *node)
2371 {
2372 	struct ice_sched_node *old_parent;
2373 	u8 i, j;
2374 
2375 	old_parent = node->parent;
2376 
2377 	/* update the old parent children */
2378 	for (i = 0; i < old_parent->num_children; i++)
2379 		if (old_parent->children[i] == node) {
2380 			for (j = i + 1; j < old_parent->num_children; j++)
2381 				old_parent->children[j - 1] =
2382 					old_parent->children[j];
2383 			old_parent->num_children--;
2384 			break;
2385 		}
2386 
2387 	/* now move the node to a new parent */
2388 	new_parent->children[new_parent->num_children++] = node;
2389 	node->parent = new_parent;
2390 	node->info.parent_teid = new_parent->info.node_teid;
2391 }
2392 
2393 /**
2394  * ice_sched_move_nodes - move child nodes to a given parent
2395  * @pi: port information structure
2396  * @parent: pointer to parent node
2397  * @num_items: number of child nodes to be moved
2398  * @list: pointer to child node teids
2399  *
2400  * This function move the child nodes to a given parent.
2401  */
2402 static enum ice_status
2403 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2404 		     u16 num_items, u32 *list)
2405 {
2406 	struct ice_aqc_move_elem *buf;
2407 	struct ice_sched_node *node;
2408 	enum ice_status status = ICE_SUCCESS;
2409 	u16 i, grps_movd = 0;
2410 	struct ice_hw *hw;
2411 	u16 buf_len;
2412 
2413 	hw = pi->hw;
2414 
2415 	if (!parent || !num_items)
2416 		return ICE_ERR_PARAM;
2417 
2418 	/* Does parent have enough space */
2419 	if (parent->num_children + num_items >
2420 	    hw->max_children[parent->tx_sched_layer])
2421 		return ICE_ERR_AQ_FULL;
2422 
2423 	buf_len = ice_struct_size(buf, teid, 1);
2424 	buf = (struct ice_aqc_move_elem *)ice_malloc(hw, buf_len);
2425 	if (!buf)
2426 		return ICE_ERR_NO_MEMORY;
2427 
2428 	for (i = 0; i < num_items; i++) {
2429 		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2430 		if (!node) {
2431 			status = ICE_ERR_PARAM;
2432 			goto move_err_exit;
2433 		}
2434 
2435 		buf->hdr.src_parent_teid = node->info.parent_teid;
2436 		buf->hdr.dest_parent_teid = parent->info.node_teid;
2437 		buf->teid[0] = node->info.node_teid;
2438 		buf->hdr.num_elems = CPU_TO_LE16(1);
2439 		status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
2440 						 &grps_movd, NULL);
2441 		if (status && grps_movd != 1) {
2442 			status = ICE_ERR_CFG;
2443 			goto move_err_exit;
2444 		}
2445 
2446 		/* update the SW DB */
2447 		ice_sched_update_parent(parent, node);
2448 	}
2449 
2450 move_err_exit:
2451 	ice_free(hw, buf);
2452 	return status;
2453 }
2454 
2455 /**
2456  * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2457  * @pi: port information structure
2458  * @vsi_handle: software VSI handle
2459  * @agg_id: aggregator ID
2460  * @tc: TC number
2461  *
2462  * This function moves a VSI to an aggregator node or its subtree.
2463  * Intermediate nodes may be created if required.
2464  */
2465 static enum ice_status
2466 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2467 			  u8 tc)
2468 {
2469 	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2470 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2471 	u32 first_node_teid, vsi_teid;
2472 	enum ice_status status;
2473 	u16 num_nodes_added;
2474 	u8 aggl, vsil, i;
2475 
2476 	tc_node = ice_sched_get_tc_node(pi, tc);
2477 	if (!tc_node)
2478 		return ICE_ERR_CFG;
2479 
2480 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2481 	if (!agg_node)
2482 		return ICE_ERR_DOES_NOT_EXIST;
2483 
2484 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2485 	if (!vsi_node)
2486 		return ICE_ERR_DOES_NOT_EXIST;
2487 
2488 	/* Is this VSI already part of given aggregator? */
2489 	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2490 		return ICE_SUCCESS;
2491 
2492 	aggl = ice_sched_get_agg_layer(pi->hw);
2493 	vsil = ice_sched_get_vsi_layer(pi->hw);
2494 
2495 	/* set intermediate node count to 1 between aggregator and VSI layers */
2496 	for (i = aggl + 1; i < vsil; i++)
2497 		num_nodes[i] = 1;
2498 
2499 	/* Check if the aggregator subtree has any free node to add the VSI */
2500 	for (i = 0; i < agg_node->num_children; i++) {
2501 		parent = ice_sched_get_free_vsi_parent(pi->hw,
2502 						       agg_node->children[i],
2503 						       num_nodes);
2504 		if (parent)
2505 			goto move_nodes;
2506 	}
2507 
2508 	/* add new nodes */
2509 	parent = agg_node;
2510 	for (i = aggl + 1; i < vsil; i++) {
2511 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2512 						      num_nodes[i],
2513 						      &first_node_teid,
2514 						      &num_nodes_added);
2515 		if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
2516 			return ICE_ERR_CFG;
2517 
2518 		/* The newly added node can be a new parent for the next
2519 		 * layer nodes
2520 		 */
2521 		if (num_nodes_added)
2522 			parent = ice_sched_find_node_by_teid(tc_node,
2523 							     first_node_teid);
2524 		else
2525 			parent = parent->children[0];
2526 
2527 		if (!parent)
2528 			return ICE_ERR_CFG;
2529 	}
2530 
2531 move_nodes:
2532 	vsi_teid = LE32_TO_CPU(vsi_node->info.node_teid);
2533 	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2534 }
2535 
2536 /**
2537  * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2538  * @pi: port information structure
2539  * @agg_info: aggregator info
2540  * @tc: traffic class number
2541  * @rm_vsi_info: true or false
2542  *
2543  * This function move all the VSI(s) to the default aggregator and delete
2544  * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2545  * caller holds the scheduler lock.
2546  */
2547 static enum ice_status
2548 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2549 			     struct ice_sched_agg_info *agg_info, u8 tc,
2550 			     bool rm_vsi_info)
2551 {
2552 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2553 	struct ice_sched_agg_vsi_info *tmp;
2554 	enum ice_status status = ICE_SUCCESS;
2555 
2556 	LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2557 				 ice_sched_agg_vsi_info, list_entry) {
2558 		u16 vsi_handle = agg_vsi_info->vsi_handle;
2559 
2560 		/* Move VSI to default aggregator */
2561 		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2562 			continue;
2563 
2564 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2565 						   ICE_DFLT_AGG_ID, tc);
2566 		if (status)
2567 			break;
2568 
2569 		ice_clear_bit(tc, agg_vsi_info->tc_bitmap);
2570 		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2571 			LIST_DEL(&agg_vsi_info->list_entry);
2572 			ice_free(pi->hw, agg_vsi_info);
2573 		}
2574 	}
2575 
2576 	return status;
2577 }
2578 
2579 /**
2580  * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2581  * @pi: port information structure
2582  * @node: node pointer
2583  *
2584  * This function checks whether the aggregator is attached with any VSI or not.
2585  */
2586 static bool
2587 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2588 {
2589 	u8 vsil, i;
2590 
2591 	vsil = ice_sched_get_vsi_layer(pi->hw);
2592 	if (node->tx_sched_layer < vsil - 1) {
2593 		for (i = 0; i < node->num_children; i++)
2594 			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2595 				return true;
2596 		return false;
2597 	} else {
2598 		return node->num_children ? true : false;
2599 	}
2600 }
2601 
2602 /**
2603  * ice_sched_rm_agg_cfg - remove the aggregator node
2604  * @pi: port information structure
2605  * @agg_id: aggregator ID
2606  * @tc: TC number
2607  *
2608  * This function removes the aggregator node and intermediate nodes if any
2609  * from the given TC
2610  */
2611 static enum ice_status
2612 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2613 {
2614 	struct ice_sched_node *tc_node, *agg_node;
2615 	struct ice_hw *hw = pi->hw;
2616 
2617 	tc_node = ice_sched_get_tc_node(pi, tc);
2618 	if (!tc_node)
2619 		return ICE_ERR_CFG;
2620 
2621 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2622 	if (!agg_node)
2623 		return ICE_ERR_DOES_NOT_EXIST;
2624 
2625 	/* Can't remove the aggregator node if it has children */
2626 	if (ice_sched_is_agg_inuse(pi, agg_node))
2627 		return ICE_ERR_IN_USE;
2628 
2629 	/* need to remove the whole subtree if aggregator node is the
2630 	 * only child.
2631 	 */
2632 	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2633 		struct ice_sched_node *parent = agg_node->parent;
2634 
2635 		if (!parent)
2636 			return ICE_ERR_CFG;
2637 
2638 		if (parent->num_children > 1)
2639 			break;
2640 
2641 		agg_node = parent;
2642 	}
2643 
2644 	ice_free_sched_node(pi, agg_node);
2645 	return ICE_SUCCESS;
2646 }
2647 
2648 /**
2649  * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2650  * @pi: port information structure
2651  * @agg_info: aggregator ID
2652  * @tc: TC number
2653  * @rm_vsi_info: bool value true or false
2654  *
2655  * This function removes aggregator reference to VSI of given TC. It removes
2656  * the aggregator configuration completely for requested TC. The caller needs
2657  * to hold the scheduler lock.
2658  */
2659 static enum ice_status
2660 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2661 		  u8 tc, bool rm_vsi_info)
2662 {
2663 	enum ice_status status = ICE_SUCCESS;
2664 
2665 	/* If nothing to remove - return success */
2666 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2667 		goto exit_rm_agg_cfg_tc;
2668 
2669 	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2670 	if (status)
2671 		goto exit_rm_agg_cfg_tc;
2672 
2673 	/* Delete aggregator node(s) */
2674 	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2675 	if (status)
2676 		goto exit_rm_agg_cfg_tc;
2677 
2678 	ice_clear_bit(tc, agg_info->tc_bitmap);
2679 exit_rm_agg_cfg_tc:
2680 	return status;
2681 }
2682 
2683 /**
2684  * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2685  * @pi: port information structure
2686  * @agg_id: aggregator ID
2687  * @tc_bitmap: 8 bits TC bitmap
2688  *
2689  * Save aggregator TC bitmap. This function needs to be called with scheduler
2690  * lock held.
2691  */
2692 static enum ice_status
2693 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2694 		       ice_bitmap_t *tc_bitmap)
2695 {
2696 	struct ice_sched_agg_info *agg_info;
2697 
2698 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2699 	if (!agg_info)
2700 		return ICE_ERR_PARAM;
2701 	ice_cp_bitmap(agg_info->replay_tc_bitmap, tc_bitmap,
2702 		      ICE_MAX_TRAFFIC_CLASS);
2703 	return ICE_SUCCESS;
2704 }
2705 
2706 /**
2707  * ice_sched_add_agg_cfg - create an aggregator node
2708  * @pi: port information structure
2709  * @agg_id: aggregator ID
2710  * @tc: TC number
2711  *
2712  * This function creates an aggregator node and intermediate nodes if required
2713  * for the given TC
2714  */
2715 static enum ice_status
2716 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2717 {
2718 	struct ice_sched_node *parent, *agg_node, *tc_node;
2719 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2720 	enum ice_status status = ICE_SUCCESS;
2721 	struct ice_hw *hw = pi->hw;
2722 	u32 first_node_teid;
2723 	u16 num_nodes_added;
2724 	u8 i, aggl;
2725 
2726 	tc_node = ice_sched_get_tc_node(pi, tc);
2727 	if (!tc_node)
2728 		return ICE_ERR_CFG;
2729 
2730 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2731 	/* Does Agg node already exist ? */
2732 	if (agg_node)
2733 		return status;
2734 
2735 	aggl = ice_sched_get_agg_layer(hw);
2736 
2737 	/* need one node in Agg layer */
2738 	num_nodes[aggl] = 1;
2739 
2740 	/* Check whether the intermediate nodes have space to add the
2741 	 * new aggregator. If they are full, then SW needs to allocate a new
2742 	 * intermediate node on those layers
2743 	 */
2744 	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2745 		parent = ice_sched_get_first_node(pi, tc_node, i);
2746 
2747 		/* scan all the siblings */
2748 		while (parent) {
2749 			if (parent->num_children < hw->max_children[i])
2750 				break;
2751 			parent = parent->sibling;
2752 		}
2753 
2754 		/* all the nodes are full, reserve one for this layer */
2755 		if (!parent)
2756 			num_nodes[i]++;
2757 	}
2758 
2759 	/* add the aggregator node */
2760 	parent = tc_node;
2761 	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2762 		if (!parent)
2763 			return ICE_ERR_CFG;
2764 
2765 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2766 						      num_nodes[i],
2767 						      &first_node_teid,
2768 						      &num_nodes_added);
2769 		if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
2770 			return ICE_ERR_CFG;
2771 
2772 		/* The newly added node can be a new parent for the next
2773 		 * layer nodes
2774 		 */
2775 		if (num_nodes_added) {
2776 			parent = ice_sched_find_node_by_teid(tc_node,
2777 							     first_node_teid);
2778 			/* register aggregator ID with the aggregator node */
2779 			if (parent && i == aggl)
2780 				parent->agg_id = agg_id;
2781 		} else {
2782 			parent = parent->children[0];
2783 		}
2784 	}
2785 
2786 	return ICE_SUCCESS;
2787 }
2788 
2789 /**
2790  * ice_sched_cfg_agg - configure aggregator node
2791  * @pi: port information structure
2792  * @agg_id: aggregator ID
2793  * @agg_type: aggregator type queue, VSI, or aggregator group
2794  * @tc_bitmap: bits TC bitmap
2795  *
2796  * It registers a unique aggregator node into scheduler services. It
2797  * allows a user to register with a unique ID to track it's resources.
2798  * The aggregator type determines if this is a queue group, VSI group
2799  * or aggregator group. It then creates the aggregator node(s) for requested
2800  * TC(s) or removes an existing aggregator node including its configuration
2801  * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2802  * resources and remove aggregator ID.
2803  * This function needs to be called with scheduler lock held.
2804  */
2805 static enum ice_status
2806 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2807 		  enum ice_agg_type agg_type, ice_bitmap_t *tc_bitmap)
2808 {
2809 	struct ice_sched_agg_info *agg_info;
2810 	enum ice_status status = ICE_SUCCESS;
2811 	struct ice_hw *hw = pi->hw;
2812 	u8 tc;
2813 
2814 	agg_info = ice_get_agg_info(hw, agg_id);
2815 	if (!agg_info) {
2816 		/* Create new entry for new aggregator ID */
2817 		agg_info = (struct ice_sched_agg_info *)
2818 			ice_malloc(hw, sizeof(*agg_info));
2819 		if (!agg_info)
2820 			return ICE_ERR_NO_MEMORY;
2821 
2822 		agg_info->agg_id = agg_id;
2823 		agg_info->agg_type = agg_type;
2824 		agg_info->tc_bitmap[0] = 0;
2825 
2826 		/* Initialize the aggregator VSI list head */
2827 		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2828 
2829 		/* Add new entry in aggregator list */
2830 		LIST_ADD(&agg_info->list_entry, &hw->agg_list);
2831 	}
2832 	/* Create aggregator node(s) for requested TC(s) */
2833 	ice_for_each_traffic_class(tc) {
2834 		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2835 			/* Delete aggregator cfg TC if it exists previously */
2836 			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2837 			if (status)
2838 				break;
2839 			continue;
2840 		}
2841 
2842 		/* Check if aggregator node for TC already exists */
2843 		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2844 			continue;
2845 
2846 		/* Create new aggregator node for TC */
2847 		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2848 		if (status)
2849 			break;
2850 
2851 		/* Save aggregator node's TC information */
2852 		ice_set_bit(tc, agg_info->tc_bitmap);
2853 	}
2854 
2855 	return status;
2856 }
2857 
2858 /**
2859  * ice_cfg_agg - config aggregator node
2860  * @pi: port information structure
2861  * @agg_id: aggregator ID
2862  * @agg_type: aggregator type queue, VSI, or aggregator group
2863  * @tc_bitmap: bits TC bitmap
2864  *
2865  * This function configures aggregator node(s).
2866  */
2867 enum ice_status
2868 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2869 	    u8 tc_bitmap)
2870 {
2871 	ice_bitmap_t bitmap = tc_bitmap;
2872 	enum ice_status status;
2873 
2874 	ice_acquire_lock(&pi->sched_lock);
2875 	status = ice_sched_cfg_agg(pi, agg_id, agg_type,
2876 				   (ice_bitmap_t *)&bitmap);
2877 	if (!status)
2878 		status = ice_save_agg_tc_bitmap(pi, agg_id,
2879 						(ice_bitmap_t *)&bitmap);
2880 	ice_release_lock(&pi->sched_lock);
2881 	return status;
2882 }
2883 
2884 /**
2885  * ice_get_agg_vsi_info - get the aggregator ID
2886  * @agg_info: aggregator info
2887  * @vsi_handle: software VSI handle
2888  *
2889  * The function returns aggregator VSI info based on VSI handle. This function
2890  * needs to be called with scheduler lock held.
2891  */
2892 static struct ice_sched_agg_vsi_info *
2893 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2894 {
2895 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2896 
2897 	LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
2898 			    ice_sched_agg_vsi_info, list_entry)
2899 		if (agg_vsi_info->vsi_handle == vsi_handle)
2900 			return agg_vsi_info;
2901 
2902 	return NULL;
2903 }
2904 
2905 /**
2906  * ice_get_vsi_agg_info - get the aggregator info of VSI
2907  * @hw: pointer to the hardware structure
2908  * @vsi_handle: Sw VSI handle
2909  *
2910  * The function returns aggregator info of VSI represented via vsi_handle. The
2911  * VSI has in this case a different aggregator than the default one. This
2912  * function needs to be called with scheduler lock held.
2913  */
2914 static struct ice_sched_agg_info *
2915 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2916 {
2917 	struct ice_sched_agg_info *agg_info;
2918 
2919 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
2920 			    list_entry) {
2921 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2922 
2923 		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2924 		if (agg_vsi_info)
2925 			return agg_info;
2926 	}
2927 	return NULL;
2928 }
2929 
2930 /**
2931  * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2932  * @pi: port information structure
2933  * @agg_id: aggregator ID
2934  * @vsi_handle: software VSI handle
2935  * @tc_bitmap: TC bitmap of enabled TC(s)
2936  *
2937  * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2938  * lock held.
2939  */
2940 static enum ice_status
2941 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2942 			   ice_bitmap_t *tc_bitmap)
2943 {
2944 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2945 	struct ice_sched_agg_info *agg_info;
2946 
2947 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2948 	if (!agg_info)
2949 		return ICE_ERR_PARAM;
2950 	/* check if entry already exist */
2951 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2952 	if (!agg_vsi_info)
2953 		return ICE_ERR_PARAM;
2954 	ice_cp_bitmap(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2955 		      ICE_MAX_TRAFFIC_CLASS);
2956 	return ICE_SUCCESS;
2957 }
2958 
2959 /**
2960  * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2961  * @pi: port information structure
2962  * @agg_id: aggregator ID
2963  * @vsi_handle: software VSI handle
2964  * @tc_bitmap: TC bitmap of enabled TC(s)
2965  *
2966  * This function moves VSI to a new or default aggregator node. If VSI is
2967  * already associated to the aggregator node then no operation is performed on
2968  * the tree. This function needs to be called with scheduler lock held.
2969  */
2970 static enum ice_status
2971 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2972 			   u16 vsi_handle, ice_bitmap_t *tc_bitmap)
2973 {
2974 	struct ice_sched_agg_vsi_info *agg_vsi_info, *old_agg_vsi_info = NULL;
2975 	struct ice_sched_agg_info *agg_info, *old_agg_info;
2976 	enum ice_status status = ICE_SUCCESS;
2977 	struct ice_hw *hw = pi->hw;
2978 	u8 tc;
2979 
2980 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2981 		return ICE_ERR_PARAM;
2982 	agg_info = ice_get_agg_info(hw, agg_id);
2983 	if (!agg_info)
2984 		return ICE_ERR_PARAM;
2985 	/* If the vsi is already part of another aggregator then update
2986 	 * its vsi info list
2987 	 */
2988 	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2989 	if (old_agg_info && old_agg_info != agg_info) {
2990 		struct ice_sched_agg_vsi_info *vtmp;
2991 
2992 		LIST_FOR_EACH_ENTRY_SAFE(old_agg_vsi_info, vtmp,
2993 					 &old_agg_info->agg_vsi_list,
2994 					 ice_sched_agg_vsi_info, list_entry)
2995 			if (old_agg_vsi_info->vsi_handle == vsi_handle)
2996 				break;
2997 	}
2998 
2999 	/* check if entry already exist */
3000 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
3001 	if (!agg_vsi_info) {
3002 		/* Create new entry for VSI under aggregator list */
3003 		agg_vsi_info = (struct ice_sched_agg_vsi_info *)
3004 			ice_malloc(hw, sizeof(*agg_vsi_info));
3005 		if (!agg_vsi_info)
3006 			return ICE_ERR_PARAM;
3007 
3008 		/* add VSI ID into the aggregator list */
3009 		agg_vsi_info->vsi_handle = vsi_handle;
3010 		LIST_ADD(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
3011 	}
3012 	/* Move VSI node to new aggregator node for requested TC(s) */
3013 	ice_for_each_traffic_class(tc) {
3014 		if (!ice_is_tc_ena(*tc_bitmap, tc))
3015 			continue;
3016 
3017 		/* Move VSI to new aggregator */
3018 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
3019 		if (status)
3020 			break;
3021 
3022 		ice_set_bit(tc, agg_vsi_info->tc_bitmap);
3023 		if (old_agg_vsi_info)
3024 			ice_clear_bit(tc, old_agg_vsi_info->tc_bitmap);
3025 	}
3026 	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
3027 		LIST_DEL(&old_agg_vsi_info->list_entry);
3028 		ice_free(pi->hw, old_agg_vsi_info);
3029 	}
3030 	return status;
3031 }
3032 
3033 /**
3034  * ice_sched_rm_unused_rl_prof - remove unused RL profile
3035  * @hw: pointer to the hardware structure
3036  *
3037  * This function removes unused rate limit profiles from the HW and
3038  * SW DB. The caller needs to hold scheduler lock.
3039  */
3040 static void ice_sched_rm_unused_rl_prof(struct ice_hw *hw)
3041 {
3042 	u16 ln;
3043 
3044 	for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
3045 		struct ice_aqc_rl_profile_info *rl_prof_elem;
3046 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
3047 
3048 		LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
3049 					 &hw->rl_prof_list[ln],
3050 					 ice_aqc_rl_profile_info, list_entry) {
3051 			if (!ice_sched_del_rl_profile(hw, rl_prof_elem))
3052 				ice_debug(hw, ICE_DBG_SCHED, "Removed rl profile\n");
3053 		}
3054 	}
3055 }
3056 
3057 /**
3058  * ice_sched_update_elem - update element
3059  * @hw: pointer to the HW struct
3060  * @node: pointer to node
3061  * @info: node info to update
3062  *
3063  * Update the HW DB, and local SW DB of node. Update the scheduling
3064  * parameters of node from argument info data buffer (Info->data buf) and
3065  * returns success or error on config sched element failure. The caller
3066  * needs to hold scheduler lock.
3067  */
3068 static enum ice_status
3069 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
3070 		      struct ice_aqc_txsched_elem_data *info)
3071 {
3072 	struct ice_aqc_txsched_elem_data buf;
3073 	enum ice_status status;
3074 	u16 elem_cfgd = 0;
3075 	u16 num_elems = 1;
3076 
3077 	buf = *info;
3078 	/* For TC nodes, CIR config is not supported */
3079 	if (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_TC)
3080 		buf.data.valid_sections &= ~ICE_AQC_ELEM_VALID_CIR;
3081 	/* Parent TEID is reserved field in this aq call */
3082 	buf.parent_teid = 0;
3083 	/* Element type is reserved field in this aq call */
3084 	buf.data.elem_type = 0;
3085 	/* Flags is reserved field in this aq call */
3086 	buf.data.flags = 0;
3087 
3088 	/* Update HW DB */
3089 	/* Configure element node */
3090 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
3091 					&elem_cfgd, NULL);
3092 	if (status || elem_cfgd != num_elems) {
3093 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
3094 		return ICE_ERR_CFG;
3095 	}
3096 
3097 	/* Config success case */
3098 	/* Now update local SW DB */
3099 	/* Only copy the data portion of info buffer */
3100 	node->info.data = info->data;
3101 	return status;
3102 }
3103 
3104 /**
3105  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
3106  * @hw: pointer to the HW struct
3107  * @node: sched node to configure
3108  * @rl_type: rate limit type CIR, EIR, or shared
3109  * @bw_alloc: BW weight/allocation
3110  *
3111  * This function configures node element's BW allocation.
3112  */
3113 static enum ice_status
3114 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
3115 			    enum ice_rl_type rl_type, u16 bw_alloc)
3116 {
3117 	struct ice_aqc_txsched_elem_data buf;
3118 	struct ice_aqc_txsched_elem *data;
3119 	enum ice_status status;
3120 
3121 	buf = node->info;
3122 	data = &buf.data;
3123 	if (rl_type == ICE_MIN_BW) {
3124 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3125 		data->cir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
3126 	} else if (rl_type == ICE_MAX_BW) {
3127 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3128 		data->eir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
3129 	} else {
3130 		return ICE_ERR_PARAM;
3131 	}
3132 
3133 	/* Configure element */
3134 	status = ice_sched_update_elem(hw, node, &buf);
3135 	return status;
3136 }
3137 
3138 /**
3139  * ice_move_vsi_to_agg - moves VSI to new or default aggregator
3140  * @pi: port information structure
3141  * @agg_id: aggregator ID
3142  * @vsi_handle: software VSI handle
3143  * @tc_bitmap: TC bitmap of enabled TC(s)
3144  *
3145  * Move or associate VSI to a new or default aggregator node.
3146  */
3147 enum ice_status
3148 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
3149 		    u8 tc_bitmap)
3150 {
3151 	ice_bitmap_t bitmap = tc_bitmap;
3152 	enum ice_status status;
3153 
3154 	ice_acquire_lock(&pi->sched_lock);
3155 	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
3156 					    (ice_bitmap_t *)&bitmap);
3157 	if (!status)
3158 		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
3159 						    (ice_bitmap_t *)&bitmap);
3160 	ice_release_lock(&pi->sched_lock);
3161 	return status;
3162 }
3163 
3164 /**
3165  * ice_rm_agg_cfg - remove aggregator configuration
3166  * @pi: port information structure
3167  * @agg_id: aggregator ID
3168  *
3169  * This function removes aggregator reference to VSI and delete aggregator ID
3170  * info. It removes the aggregator configuration completely.
3171  */
3172 enum ice_status ice_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id)
3173 {
3174 	struct ice_sched_agg_info *agg_info;
3175 	enum ice_status status = ICE_SUCCESS;
3176 	u8 tc;
3177 
3178 	ice_acquire_lock(&pi->sched_lock);
3179 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3180 	if (!agg_info) {
3181 		status = ICE_ERR_DOES_NOT_EXIST;
3182 		goto exit_ice_rm_agg_cfg;
3183 	}
3184 
3185 	ice_for_each_traffic_class(tc) {
3186 		status = ice_rm_agg_cfg_tc(pi, agg_info, tc, true);
3187 		if (status)
3188 			goto exit_ice_rm_agg_cfg;
3189 	}
3190 
3191 	if (ice_is_any_bit_set(agg_info->tc_bitmap, ICE_MAX_TRAFFIC_CLASS)) {
3192 		status = ICE_ERR_IN_USE;
3193 		goto exit_ice_rm_agg_cfg;
3194 	}
3195 
3196 	/* Safe to delete entry now */
3197 	LIST_DEL(&agg_info->list_entry);
3198 	ice_free(pi->hw, agg_info);
3199 
3200 	/* Remove unused RL profile IDs from HW and SW DB */
3201 	ice_sched_rm_unused_rl_prof(pi->hw);
3202 
3203 exit_ice_rm_agg_cfg:
3204 	ice_release_lock(&pi->sched_lock);
3205 	return status;
3206 }
3207 
3208 /**
3209  * ice_set_clear_cir_bw_alloc - set or clear CIR BW alloc information
3210  * @bw_t_info: bandwidth type information structure
3211  * @bw_alloc: Bandwidth allocation information
3212  *
3213  * Save or clear CIR BW alloc information (bw_alloc) in the passed param
3214  * bw_t_info.
3215  */
3216 static void
3217 ice_set_clear_cir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
3218 {
3219 	bw_t_info->cir_bw.bw_alloc = bw_alloc;
3220 	if (bw_t_info->cir_bw.bw_alloc)
3221 		ice_set_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
3222 	else
3223 		ice_clear_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
3224 }
3225 
3226 /**
3227  * ice_set_clear_eir_bw_alloc - set or clear EIR BW alloc information
3228  * @bw_t_info: bandwidth type information structure
3229  * @bw_alloc: Bandwidth allocation information
3230  *
3231  * Save or clear EIR BW alloc information (bw_alloc) in the passed param
3232  * bw_t_info.
3233  */
3234 static void
3235 ice_set_clear_eir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
3236 {
3237 	bw_t_info->eir_bw.bw_alloc = bw_alloc;
3238 	if (bw_t_info->eir_bw.bw_alloc)
3239 		ice_set_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
3240 	else
3241 		ice_clear_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
3242 }
3243 
3244 /**
3245  * ice_sched_save_vsi_bw_alloc - save VSI node's BW alloc information
3246  * @pi: port information structure
3247  * @vsi_handle: sw VSI handle
3248  * @tc: traffic class
3249  * @rl_type: rate limit type min or max
3250  * @bw_alloc: Bandwidth allocation information
3251  *
3252  * Save BW alloc information of VSI type node for post replay use.
3253  */
3254 static enum ice_status
3255 ice_sched_save_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3256 			    enum ice_rl_type rl_type, u16 bw_alloc)
3257 {
3258 	struct ice_vsi_ctx *vsi_ctx;
3259 
3260 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3261 		return ICE_ERR_PARAM;
3262 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3263 	if (!vsi_ctx)
3264 		return ICE_ERR_PARAM;
3265 	switch (rl_type) {
3266 	case ICE_MIN_BW:
3267 		ice_set_clear_cir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
3268 					   bw_alloc);
3269 		break;
3270 	case ICE_MAX_BW:
3271 		ice_set_clear_eir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
3272 					   bw_alloc);
3273 		break;
3274 	default:
3275 		return ICE_ERR_PARAM;
3276 	}
3277 	return ICE_SUCCESS;
3278 }
3279 
3280 /**
3281  * ice_set_clear_cir_bw - set or clear CIR BW
3282  * @bw_t_info: bandwidth type information structure
3283  * @bw: bandwidth in Kbps - Kilo bits per sec
3284  *
3285  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
3286  */
3287 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3288 {
3289 	if (bw == ICE_SCHED_DFLT_BW) {
3290 		ice_clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3291 		bw_t_info->cir_bw.bw = 0;
3292 	} else {
3293 		/* Save type of BW information */
3294 		ice_set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3295 		bw_t_info->cir_bw.bw = bw;
3296 	}
3297 }
3298 
3299 /**
3300  * ice_set_clear_eir_bw - set or clear EIR BW
3301  * @bw_t_info: bandwidth type information structure
3302  * @bw: bandwidth in Kbps - Kilo bits per sec
3303  *
3304  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
3305  */
3306 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3307 {
3308 	if (bw == ICE_SCHED_DFLT_BW) {
3309 		ice_clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3310 		bw_t_info->eir_bw.bw = 0;
3311 	} else {
3312 		/* save EIR BW information */
3313 		ice_set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3314 		bw_t_info->eir_bw.bw = bw;
3315 	}
3316 }
3317 
3318 /**
3319  * ice_set_clear_shared_bw - set or clear shared BW
3320  * @bw_t_info: bandwidth type information structure
3321  * @bw: bandwidth in Kbps - Kilo bits per sec
3322  *
3323  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3324  */
3325 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3326 {
3327 	if (bw == ICE_SCHED_DFLT_BW) {
3328 		ice_clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3329 		bw_t_info->shared_bw = 0;
3330 	} else {
3331 		/* save shared BW information */
3332 		ice_set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3333 		bw_t_info->shared_bw = bw;
3334 	}
3335 }
3336 
3337 /**
3338  * ice_sched_save_vsi_bw - save VSI node's BW information
3339  * @pi: port information structure
3340  * @vsi_handle: sw VSI handle
3341  * @tc: traffic class
3342  * @rl_type: rate limit type min, max, or shared
3343  * @bw: bandwidth in Kbps - Kilo bits per sec
3344  *
3345  * Save BW information of VSI type node for post replay use.
3346  */
3347 static enum ice_status
3348 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3349 		      enum ice_rl_type rl_type, u32 bw)
3350 {
3351 	struct ice_vsi_ctx *vsi_ctx;
3352 
3353 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3354 		return ICE_ERR_PARAM;
3355 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3356 	if (!vsi_ctx)
3357 		return ICE_ERR_PARAM;
3358 	switch (rl_type) {
3359 	case ICE_MIN_BW:
3360 		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3361 		break;
3362 	case ICE_MAX_BW:
3363 		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3364 		break;
3365 	case ICE_SHARED_BW:
3366 		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3367 		break;
3368 	default:
3369 		return ICE_ERR_PARAM;
3370 	}
3371 	return ICE_SUCCESS;
3372 }
3373 
3374 /**
3375  * ice_set_clear_prio - set or clear priority information
3376  * @bw_t_info: bandwidth type information structure
3377  * @prio: priority to save
3378  *
3379  * Save or clear priority (prio) in the passed param bw_t_info.
3380  */
3381 static void ice_set_clear_prio(struct ice_bw_type_info *bw_t_info, u8 prio)
3382 {
3383 	bw_t_info->generic = prio;
3384 	if (bw_t_info->generic)
3385 		ice_set_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
3386 	else
3387 		ice_clear_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
3388 }
3389 
3390 /**
3391  * ice_sched_save_vsi_prio - save VSI node's priority information
3392  * @pi: port information structure
3393  * @vsi_handle: Software VSI handle
3394  * @tc: traffic class
3395  * @prio: priority to save
3396  *
3397  * Save priority information of VSI type node for post replay use.
3398  */
3399 static enum ice_status
3400 ice_sched_save_vsi_prio(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3401 			u8 prio)
3402 {
3403 	struct ice_vsi_ctx *vsi_ctx;
3404 
3405 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3406 		return ICE_ERR_PARAM;
3407 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3408 	if (!vsi_ctx)
3409 		return ICE_ERR_PARAM;
3410 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
3411 		return ICE_ERR_PARAM;
3412 	ice_set_clear_prio(&vsi_ctx->sched.bw_t_info[tc], prio);
3413 	return ICE_SUCCESS;
3414 }
3415 
3416 /**
3417  * ice_sched_save_agg_bw_alloc - save aggregator node's BW alloc information
3418  * @pi: port information structure
3419  * @agg_id: node aggregator ID
3420  * @tc: traffic class
3421  * @rl_type: rate limit type min or max
3422  * @bw_alloc: bandwidth alloc information
3423  *
3424  * Save BW alloc information of AGG type node for post replay use.
3425  */
3426 static enum ice_status
3427 ice_sched_save_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3428 			    enum ice_rl_type rl_type, u16 bw_alloc)
3429 {
3430 	struct ice_sched_agg_info *agg_info;
3431 
3432 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3433 	if (!agg_info)
3434 		return ICE_ERR_PARAM;
3435 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
3436 		return ICE_ERR_PARAM;
3437 	switch (rl_type) {
3438 	case ICE_MIN_BW:
3439 		ice_set_clear_cir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
3440 		break;
3441 	case ICE_MAX_BW:
3442 		ice_set_clear_eir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
3443 		break;
3444 	default:
3445 		return ICE_ERR_PARAM;
3446 	}
3447 	return ICE_SUCCESS;
3448 }
3449 
3450 /**
3451  * ice_sched_save_agg_bw - save aggregator node's BW information
3452  * @pi: port information structure
3453  * @agg_id: node aggregator ID
3454  * @tc: traffic class
3455  * @rl_type: rate limit type min, max, or shared
3456  * @bw: bandwidth in Kbps - Kilo bits per sec
3457  *
3458  * Save BW information of AGG type node for post replay use.
3459  */
3460 static enum ice_status
3461 ice_sched_save_agg_bw(struct ice_port_info *pi, u32 agg_id, u8 tc,
3462 		      enum ice_rl_type rl_type, u32 bw)
3463 {
3464 	struct ice_sched_agg_info *agg_info;
3465 
3466 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3467 	if (!agg_info)
3468 		return ICE_ERR_PARAM;
3469 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
3470 		return ICE_ERR_PARAM;
3471 	switch (rl_type) {
3472 	case ICE_MIN_BW:
3473 		ice_set_clear_cir_bw(&agg_info->bw_t_info[tc], bw);
3474 		break;
3475 	case ICE_MAX_BW:
3476 		ice_set_clear_eir_bw(&agg_info->bw_t_info[tc], bw);
3477 		break;
3478 	case ICE_SHARED_BW:
3479 		ice_set_clear_shared_bw(&agg_info->bw_t_info[tc], bw);
3480 		break;
3481 	default:
3482 		return ICE_ERR_PARAM;
3483 	}
3484 	return ICE_SUCCESS;
3485 }
3486 
3487 /**
3488  * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3489  * @pi: port information structure
3490  * @vsi_handle: software VSI handle
3491  * @tc: traffic class
3492  * @rl_type: min or max
3493  * @bw: bandwidth in Kbps
3494  *
3495  * This function configures BW limit of VSI scheduling node based on TC
3496  * information.
3497  */
3498 enum ice_status
3499 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3500 			  enum ice_rl_type rl_type, u32 bw)
3501 {
3502 	enum ice_status status;
3503 
3504 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3505 						  ICE_AGG_TYPE_VSI,
3506 						  tc, rl_type, bw);
3507 	if (!status) {
3508 		ice_acquire_lock(&pi->sched_lock);
3509 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
3510 		ice_release_lock(&pi->sched_lock);
3511 	}
3512 	return status;
3513 }
3514 
3515 /**
3516  * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
3517  * @pi: port information structure
3518  * @vsi_handle: software VSI handle
3519  * @tc: traffic class
3520  * @rl_type: min or max
3521  *
3522  * This function configures default BW limit of VSI scheduling node based on TC
3523  * information.
3524  */
3525 enum ice_status
3526 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3527 			       enum ice_rl_type rl_type)
3528 {
3529 	enum ice_status status;
3530 
3531 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3532 						  ICE_AGG_TYPE_VSI,
3533 						  tc, rl_type,
3534 						  ICE_SCHED_DFLT_BW);
3535 	if (!status) {
3536 		ice_acquire_lock(&pi->sched_lock);
3537 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
3538 					       ICE_SCHED_DFLT_BW);
3539 		ice_release_lock(&pi->sched_lock);
3540 	}
3541 	return status;
3542 }
3543 
3544 /**
3545  * ice_cfg_agg_bw_lmt_per_tc - configure aggregator BW limit per TC
3546  * @pi: port information structure
3547  * @agg_id: aggregator ID
3548  * @tc: traffic class
3549  * @rl_type: min or max
3550  * @bw: bandwidth in Kbps
3551  *
3552  * This function applies BW limit to aggregator scheduling node based on TC
3553  * information.
3554  */
3555 enum ice_status
3556 ice_cfg_agg_bw_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3557 			  enum ice_rl_type rl_type, u32 bw)
3558 {
3559 	enum ice_status status;
3560 
3561 	status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
3562 						  tc, rl_type, bw);
3563 	if (!status) {
3564 		ice_acquire_lock(&pi->sched_lock);
3565 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
3566 		ice_release_lock(&pi->sched_lock);
3567 	}
3568 	return status;
3569 }
3570 
3571 /**
3572  * ice_cfg_agg_bw_dflt_lmt_per_tc - configure aggregator BW default limit per TC
3573  * @pi: port information structure
3574  * @agg_id: aggregator ID
3575  * @tc: traffic class
3576  * @rl_type: min or max
3577  *
3578  * This function applies default BW limit to aggregator scheduling node based
3579  * on TC information.
3580  */
3581 enum ice_status
3582 ice_cfg_agg_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3583 			       enum ice_rl_type rl_type)
3584 {
3585 	enum ice_status status;
3586 
3587 	status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
3588 						  tc, rl_type,
3589 						  ICE_SCHED_DFLT_BW);
3590 	if (!status) {
3591 		ice_acquire_lock(&pi->sched_lock);
3592 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type,
3593 					       ICE_SCHED_DFLT_BW);
3594 		ice_release_lock(&pi->sched_lock);
3595 	}
3596 	return status;
3597 }
3598 
3599 /**
3600  * ice_cfg_vsi_bw_shared_lmt - configure VSI BW shared limit
3601  * @pi: port information structure
3602  * @vsi_handle: software VSI handle
3603  * @min_bw: minimum bandwidth in Kbps
3604  * @max_bw: maximum bandwidth in Kbps
3605  * @shared_bw: shared bandwidth in Kbps
3606  *
3607  * Configure shared rate limiter(SRL) of all VSI type nodes across all traffic
3608  * classes for VSI matching handle.
3609  */
3610 enum ice_status
3611 ice_cfg_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle, u32 min_bw,
3612 			  u32 max_bw, u32 shared_bw)
3613 {
3614 	return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle, min_bw, max_bw,
3615 					       shared_bw);
3616 }
3617 
3618 /**
3619  * ice_cfg_vsi_bw_no_shared_lmt - configure VSI BW for no shared limiter
3620  * @pi: port information structure
3621  * @vsi_handle: software VSI handle
3622  *
3623  * This function removes the shared rate limiter(SRL) of all VSI type nodes
3624  * across all traffic classes for VSI matching handle.
3625  */
3626 enum ice_status
3627 ice_cfg_vsi_bw_no_shared_lmt(struct ice_port_info *pi, u16 vsi_handle)
3628 {
3629 	return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle,
3630 					       ICE_SCHED_DFLT_BW,
3631 					       ICE_SCHED_DFLT_BW,
3632 					       ICE_SCHED_DFLT_BW);
3633 }
3634 
3635 /**
3636  * ice_cfg_agg_bw_shared_lmt - configure aggregator BW shared limit
3637  * @pi: port information structure
3638  * @agg_id: aggregator ID
3639  * @min_bw: minimum bandwidth in Kbps
3640  * @max_bw: maximum bandwidth in Kbps
3641  * @shared_bw: shared bandwidth in Kbps
3642  *
3643  * This function configures the shared rate limiter(SRL) of all aggregator type
3644  * nodes across all traffic classes for aggregator matching agg_id.
3645  */
3646 enum ice_status
3647 ice_cfg_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id, u32 min_bw,
3648 			  u32 max_bw, u32 shared_bw)
3649 {
3650 	return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, min_bw, max_bw,
3651 					       shared_bw);
3652 }
3653 
3654 /**
3655  * ice_cfg_agg_bw_no_shared_lmt - configure aggregator BW for no shared limiter
3656  * @pi: port information structure
3657  * @agg_id: aggregator ID
3658  *
3659  * This function removes the shared rate limiter(SRL) of all aggregator type
3660  * nodes across all traffic classes for aggregator matching agg_id.
3661  */
3662 enum ice_status
3663 ice_cfg_agg_bw_no_shared_lmt(struct ice_port_info *pi, u32 agg_id)
3664 {
3665 	return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, ICE_SCHED_DFLT_BW,
3666 					       ICE_SCHED_DFLT_BW,
3667 					       ICE_SCHED_DFLT_BW);
3668 }
3669 
3670 /**
3671  * ice_cfg_agg_bw_shared_lmt_per_tc - config aggregator BW shared limit per tc
3672  * @pi: port information structure
3673  * @agg_id: aggregator ID
3674  * @tc: traffic class
3675  * @min_bw: minimum bandwidth in Kbps
3676  * @max_bw: maximum bandwidth in Kbps
3677  * @shared_bw: shared bandwidth in Kbps
3678  *
3679  * This function configures the shared rate limiter(SRL) of all aggregator type
3680  * nodes across all traffic classes for aggregator matching agg_id.
3681  */
3682 enum ice_status
3683 ice_cfg_agg_bw_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3684 				 u32 min_bw, u32 max_bw, u32 shared_bw)
3685 {
3686 	return ice_sched_set_agg_bw_shared_lmt_per_tc(pi, agg_id, tc, min_bw,
3687 						      max_bw, shared_bw);
3688 }
3689 
3690 /**
3691  * ice_cfg_agg_bw_no_shared_lmt_per_tc - cfg aggregator BW shared limit per tc
3692  * @pi: port information structure
3693  * @agg_id: aggregator ID
3694  * @tc: traffic class
3695  *
3696  * This function configures the shared rate limiter(SRL) of all aggregator type
3697  * nodes across all traffic classes for aggregator matching agg_id.
3698  */
3699 enum ice_status
3700 ice_cfg_agg_bw_no_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc)
3701 {
3702 	return ice_sched_set_agg_bw_shared_lmt_per_tc(pi, agg_id, tc,
3703 						      ICE_SCHED_DFLT_BW,
3704 						      ICE_SCHED_DFLT_BW,
3705 						      ICE_SCHED_DFLT_BW);
3706 }
3707 
3708 /**
3709  * ice_cfg_vsi_q_priority - config VSI queue priority of node
3710  * @pi: port information structure
3711  * @num_qs: number of VSI queues
3712  * @q_ids: queue IDs array
3713  * @q_prio: queue priority array
3714  *
3715  * This function configures the queue node priority (Sibling Priority) of the
3716  * passed in VSI's queue(s) for a given traffic class (TC).
3717  */
3718 enum ice_status
3719 ice_cfg_vsi_q_priority(struct ice_port_info *pi, u16 num_qs, u32 *q_ids,
3720 		       u8 *q_prio)
3721 {
3722 	enum ice_status status = ICE_ERR_PARAM;
3723 	u16 i;
3724 
3725 	ice_acquire_lock(&pi->sched_lock);
3726 
3727 	for (i = 0; i < num_qs; i++) {
3728 		struct ice_sched_node *node;
3729 
3730 		node = ice_sched_find_node_by_teid(pi->root, q_ids[i]);
3731 		if (!node || node->info.data.elem_type !=
3732 		    ICE_AQC_ELEM_TYPE_LEAF) {
3733 			status = ICE_ERR_PARAM;
3734 			break;
3735 		}
3736 		/* Configure Priority */
3737 		status = ice_sched_cfg_sibl_node_prio(pi, node, q_prio[i]);
3738 		if (status)
3739 			break;
3740 	}
3741 
3742 	ice_release_lock(&pi->sched_lock);
3743 	return status;
3744 }
3745 
3746 /**
3747  * ice_cfg_agg_vsi_priority_per_tc - config aggregator's VSI priority per TC
3748  * @pi: port information structure
3749  * @agg_id: Aggregator ID
3750  * @num_vsis: number of VSI(s)
3751  * @vsi_handle_arr: array of software VSI handles
3752  * @node_prio: pointer to node priority
3753  * @tc: traffic class
3754  *
3755  * This function configures the node priority (Sibling Priority) of the
3756  * passed in VSI's for a given traffic class (TC) of an Aggregator ID.
3757  */
3758 enum ice_status
3759 ice_cfg_agg_vsi_priority_per_tc(struct ice_port_info *pi, u32 agg_id,
3760 				u16 num_vsis, u16 *vsi_handle_arr,
3761 				u8 *node_prio, u8 tc)
3762 {
3763 	struct ice_sched_agg_vsi_info *agg_vsi_info;
3764 	struct ice_sched_node *tc_node, *agg_node;
3765 	enum ice_status status = ICE_ERR_PARAM;
3766 	struct ice_sched_agg_info *agg_info;
3767 	bool agg_id_present = false;
3768 	struct ice_hw *hw = pi->hw;
3769 	u16 i;
3770 
3771 	ice_acquire_lock(&pi->sched_lock);
3772 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
3773 			    list_entry)
3774 		if (agg_info->agg_id == agg_id) {
3775 			agg_id_present = true;
3776 			break;
3777 		}
3778 	if (!agg_id_present)
3779 		goto exit_agg_priority_per_tc;
3780 
3781 	tc_node = ice_sched_get_tc_node(pi, tc);
3782 	if (!tc_node)
3783 		goto exit_agg_priority_per_tc;
3784 
3785 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
3786 	if (!agg_node)
3787 		goto exit_agg_priority_per_tc;
3788 
3789 	if (num_vsis > hw->max_children[agg_node->tx_sched_layer])
3790 		goto exit_agg_priority_per_tc;
3791 
3792 	for (i = 0; i < num_vsis; i++) {
3793 		struct ice_sched_node *vsi_node;
3794 		bool vsi_handle_valid = false;
3795 		u16 vsi_handle;
3796 
3797 		status = ICE_ERR_PARAM;
3798 		vsi_handle = vsi_handle_arr[i];
3799 		if (!ice_is_vsi_valid(hw, vsi_handle))
3800 			goto exit_agg_priority_per_tc;
3801 		/* Verify child nodes before applying settings */
3802 		LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
3803 				    ice_sched_agg_vsi_info, list_entry)
3804 			if (agg_vsi_info->vsi_handle == vsi_handle) {
3805 				vsi_handle_valid = true;
3806 				break;
3807 			}
3808 
3809 		if (!vsi_handle_valid)
3810 			goto exit_agg_priority_per_tc;
3811 
3812 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
3813 		if (!vsi_node)
3814 			goto exit_agg_priority_per_tc;
3815 
3816 		if (ice_sched_find_node_in_subtree(hw, agg_node, vsi_node)) {
3817 			/* Configure Priority */
3818 			status = ice_sched_cfg_sibl_node_prio(pi, vsi_node,
3819 							      node_prio[i]);
3820 			if (status)
3821 				break;
3822 			status = ice_sched_save_vsi_prio(pi, vsi_handle, tc,
3823 							 node_prio[i]);
3824 			if (status)
3825 				break;
3826 		}
3827 	}
3828 
3829 exit_agg_priority_per_tc:
3830 	ice_release_lock(&pi->sched_lock);
3831 	return status;
3832 }
3833 
3834 /**
3835  * ice_cfg_vsi_bw_alloc - config VSI BW alloc per TC
3836  * @pi: port information structure
3837  * @vsi_handle: software VSI handle
3838  * @ena_tcmap: enabled TC map
3839  * @rl_type: Rate limit type CIR/EIR
3840  * @bw_alloc: Array of BW alloc
3841  *
3842  * This function configures the BW allocation of the passed in VSI's
3843  * node(s) for enabled traffic class.
3844  */
3845 enum ice_status
3846 ice_cfg_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 ena_tcmap,
3847 		     enum ice_rl_type rl_type, u8 *bw_alloc)
3848 {
3849 	enum ice_status status = ICE_SUCCESS;
3850 	u8 tc;
3851 
3852 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3853 		return ICE_ERR_PARAM;
3854 
3855 	ice_acquire_lock(&pi->sched_lock);
3856 
3857 	/* Return success if no nodes are present across TC */
3858 	ice_for_each_traffic_class(tc) {
3859 		struct ice_sched_node *tc_node, *vsi_node;
3860 
3861 		if (!ice_is_tc_ena(ena_tcmap, tc))
3862 			continue;
3863 
3864 		tc_node = ice_sched_get_tc_node(pi, tc);
3865 		if (!tc_node)
3866 			continue;
3867 
3868 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
3869 		if (!vsi_node)
3870 			continue;
3871 
3872 		status = ice_sched_cfg_node_bw_alloc(pi->hw, vsi_node, rl_type,
3873 						     bw_alloc[tc]);
3874 		if (status)
3875 			break;
3876 		status = ice_sched_save_vsi_bw_alloc(pi, vsi_handle, tc,
3877 						     rl_type, bw_alloc[tc]);
3878 		if (status)
3879 			break;
3880 	}
3881 
3882 	ice_release_lock(&pi->sched_lock);
3883 	return status;
3884 }
3885 
3886 /**
3887  * ice_cfg_agg_bw_alloc - config aggregator BW alloc
3888  * @pi: port information structure
3889  * @agg_id: aggregator ID
3890  * @ena_tcmap: enabled TC map
3891  * @rl_type: rate limit type CIR/EIR
3892  * @bw_alloc: array of BW alloc
3893  *
3894  * This function configures the BW allocation of passed in aggregator for
3895  * enabled traffic class(s).
3896  */
3897 enum ice_status
3898 ice_cfg_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 ena_tcmap,
3899 		     enum ice_rl_type rl_type, u8 *bw_alloc)
3900 {
3901 	struct ice_sched_agg_info *agg_info;
3902 	bool agg_id_present = false;
3903 	enum ice_status status = ICE_SUCCESS;
3904 	struct ice_hw *hw = pi->hw;
3905 	u8 tc;
3906 
3907 	ice_acquire_lock(&pi->sched_lock);
3908 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
3909 			    list_entry)
3910 		if (agg_info->agg_id == agg_id) {
3911 			agg_id_present = true;
3912 			break;
3913 		}
3914 	if (!agg_id_present) {
3915 		status = ICE_ERR_PARAM;
3916 		goto exit_cfg_agg_bw_alloc;
3917 	}
3918 
3919 	/* Return success if no nodes are present across TC */
3920 	ice_for_each_traffic_class(tc) {
3921 		struct ice_sched_node *tc_node, *agg_node;
3922 
3923 		if (!ice_is_tc_ena(ena_tcmap, tc))
3924 			continue;
3925 
3926 		tc_node = ice_sched_get_tc_node(pi, tc);
3927 		if (!tc_node)
3928 			continue;
3929 
3930 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
3931 		if (!agg_node)
3932 			continue;
3933 
3934 		status = ice_sched_cfg_node_bw_alloc(hw, agg_node, rl_type,
3935 						     bw_alloc[tc]);
3936 		if (status)
3937 			break;
3938 		status = ice_sched_save_agg_bw_alloc(pi, agg_id, tc, rl_type,
3939 						     bw_alloc[tc]);
3940 		if (status)
3941 			break;
3942 	}
3943 
3944 exit_cfg_agg_bw_alloc:
3945 	ice_release_lock(&pi->sched_lock);
3946 	return status;
3947 }
3948 
3949 /**
3950  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3951  * @hw: pointer to the HW struct
3952  * @bw: bandwidth in Kbps
3953  *
3954  * This function calculates the wakeup parameter of RL profile.
3955  */
3956 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3957 {
3958 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3959 	s32 wakeup_f_int;
3960 	u16 wakeup = 0;
3961 
3962 	/* Get the wakeup integer value */
3963 	bytes_per_sec = DIV_S64((s64)bw * 1000, BITS_PER_BYTE);
3964 	wakeup_int = DIV_S64(hw->psm_clk_freq, bytes_per_sec);
3965 	if (wakeup_int > 63) {
3966 		wakeup = (u16)((1 << 15) | wakeup_int);
3967 	} else {
3968 		/* Calculate fraction value up to 4 decimals
3969 		 * Convert Integer value to a constant multiplier
3970 		 */
3971 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3972 		wakeup_a = DIV_S64((s64)ICE_RL_PROF_MULTIPLIER *
3973 				   hw->psm_clk_freq, bytes_per_sec);
3974 
3975 		/* Get Fraction value */
3976 		wakeup_f = wakeup_a - wakeup_b;
3977 
3978 		/* Round up the Fractional value via Ceil(Fractional value) */
3979 		if (wakeup_f > DIV_S64(ICE_RL_PROF_MULTIPLIER, 2))
3980 			wakeup_f += 1;
3981 
3982 		wakeup_f_int = (s32)DIV_S64(wakeup_f * ICE_RL_PROF_FRACTION,
3983 					    ICE_RL_PROF_MULTIPLIER);
3984 		wakeup |= (u16)(wakeup_int << 9);
3985 		wakeup |= (u16)(0x1ff & wakeup_f_int);
3986 	}
3987 
3988 	return wakeup;
3989 }
3990 
3991 /**
3992  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3993  * @hw: pointer to the HW struct
3994  * @bw: bandwidth in Kbps
3995  * @profile: profile parameters to return
3996  *
3997  * This function converts the BW to profile structure format.
3998  */
3999 static enum ice_status
4000 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
4001 			   struct ice_aqc_rl_profile_elem *profile)
4002 {
4003 	enum ice_status status = ICE_ERR_PARAM;
4004 	s64 bytes_per_sec, ts_rate, mv_tmp;
4005 	bool found = false;
4006 	s32 encode = 0;
4007 	s64 mv = 0;
4008 	s32 i;
4009 
4010 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
4011 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
4012 		return status;
4013 
4014 	/* Bytes per second from Kbps */
4015 	bytes_per_sec = DIV_S64((s64)bw * 1000, BITS_PER_BYTE);
4016 
4017 	/* encode is 6 bits but really useful are 5 bits */
4018 	for (i = 0; i < 64; i++) {
4019 		u64 pow_result = BIT_ULL(i);
4020 
4021 		ts_rate = DIV_S64((s64)hw->psm_clk_freq,
4022 				  pow_result * ICE_RL_PROF_TS_MULTIPLIER);
4023 		if (ts_rate <= 0)
4024 			continue;
4025 
4026 		/* Multiplier value */
4027 		mv_tmp = DIV_S64(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
4028 				 ts_rate);
4029 
4030 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
4031 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
4032 
4033 		/* First multiplier value greater than the given
4034 		 * accuracy bytes
4035 		 */
4036 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
4037 			encode = i;
4038 			found = true;
4039 			break;
4040 		}
4041 	}
4042 	if (found) {
4043 		u16 wm;
4044 
4045 		wm = ice_sched_calc_wakeup(hw, bw);
4046 		profile->rl_multiply = CPU_TO_LE16(mv);
4047 		profile->wake_up_calc = CPU_TO_LE16(wm);
4048 		profile->rl_encode = CPU_TO_LE16(encode);
4049 		status = ICE_SUCCESS;
4050 	} else {
4051 		status = ICE_ERR_DOES_NOT_EXIST;
4052 	}
4053 
4054 	return status;
4055 }
4056 
4057 /**
4058  * ice_sched_add_rl_profile - add RL profile
4059  * @hw: pointer to the hardware structure
4060  * @rl_type: type of rate limit BW - min, max, or shared
4061  * @bw: bandwidth in Kbps - Kilo bits per sec
4062  * @layer_num: specifies in which layer to create profile
4063  *
4064  * This function first checks the existing list for corresponding BW
4065  * parameter. If it exists, it returns the associated profile otherwise
4066  * it creates a new rate limit profile for requested BW, and adds it to
4067  * the HW DB and local list. It returns the new profile or null on error.
4068  * The caller needs to hold the scheduler lock.
4069  */
4070 static struct ice_aqc_rl_profile_info *
4071 ice_sched_add_rl_profile(struct ice_hw *hw, enum ice_rl_type rl_type,
4072 			 u32 bw, u8 layer_num)
4073 {
4074 	struct ice_aqc_rl_profile_info *rl_prof_elem;
4075 	u16 profiles_added = 0, num_profiles = 1;
4076 	struct ice_aqc_rl_profile_elem *buf;
4077 	enum ice_status status;
4078 	u8 profile_type;
4079 
4080 	if (!hw || layer_num >= hw->num_tx_sched_layers)
4081 		return NULL;
4082 	switch (rl_type) {
4083 	case ICE_MIN_BW:
4084 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
4085 		break;
4086 	case ICE_MAX_BW:
4087 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
4088 		break;
4089 	case ICE_SHARED_BW:
4090 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
4091 		break;
4092 	default:
4093 		return NULL;
4094 	}
4095 
4096 	LIST_FOR_EACH_ENTRY(rl_prof_elem, &hw->rl_prof_list[layer_num],
4097 			    ice_aqc_rl_profile_info, list_entry)
4098 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
4099 		    profile_type && rl_prof_elem->bw == bw)
4100 			/* Return existing profile ID info */
4101 			return rl_prof_elem;
4102 
4103 	/* Create new profile ID */
4104 	rl_prof_elem = (struct ice_aqc_rl_profile_info *)
4105 		ice_malloc(hw, sizeof(*rl_prof_elem));
4106 
4107 	if (!rl_prof_elem)
4108 		return NULL;
4109 
4110 	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
4111 	if (status != ICE_SUCCESS)
4112 		goto exit_add_rl_prof;
4113 
4114 	rl_prof_elem->bw = bw;
4115 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
4116 	rl_prof_elem->profile.level = layer_num + 1;
4117 	rl_prof_elem->profile.flags = profile_type;
4118 	rl_prof_elem->profile.max_burst_size = CPU_TO_LE16(hw->max_burst_size);
4119 
4120 	/* Create new entry in HW DB */
4121 	buf = &rl_prof_elem->profile;
4122 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
4123 				       &profiles_added, NULL);
4124 	if (status || profiles_added != num_profiles)
4125 		goto exit_add_rl_prof;
4126 
4127 	/* Good entry - add in the list */
4128 	rl_prof_elem->prof_id_ref = 0;
4129 	LIST_ADD(&rl_prof_elem->list_entry, &hw->rl_prof_list[layer_num]);
4130 	return rl_prof_elem;
4131 
4132 exit_add_rl_prof:
4133 	ice_free(hw, rl_prof_elem);
4134 	return NULL;
4135 }
4136 
4137 /**
4138  * ice_sched_cfg_node_bw_lmt - configure node sched params
4139  * @hw: pointer to the HW struct
4140  * @node: sched node to configure
4141  * @rl_type: rate limit type CIR, EIR, or shared
4142  * @rl_prof_id: rate limit profile ID
4143  *
4144  * This function configures node element's BW limit.
4145  */
4146 static enum ice_status
4147 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
4148 			  enum ice_rl_type rl_type, u16 rl_prof_id)
4149 {
4150 	struct ice_aqc_txsched_elem_data buf;
4151 	struct ice_aqc_txsched_elem *data;
4152 
4153 	buf = node->info;
4154 	data = &buf.data;
4155 	switch (rl_type) {
4156 	case ICE_MIN_BW:
4157 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
4158 		data->cir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
4159 		break;
4160 	case ICE_MAX_BW:
4161 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
4162 		data->eir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
4163 		break;
4164 	case ICE_SHARED_BW:
4165 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
4166 		data->srl_id = CPU_TO_LE16(rl_prof_id);
4167 		break;
4168 	default:
4169 		/* Unknown rate limit type */
4170 		return ICE_ERR_PARAM;
4171 	}
4172 
4173 	/* Configure element */
4174 	return ice_sched_update_elem(hw, node, &buf);
4175 }
4176 
4177 /**
4178  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
4179  * @node: sched node
4180  * @rl_type: rate limit type
4181  *
4182  * If existing profile matches, it returns the corresponding rate
4183  * limit profile ID, otherwise it returns an invalid ID as error.
4184  */
4185 static u16
4186 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
4187 			      enum ice_rl_type rl_type)
4188 {
4189 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
4190 	struct ice_aqc_txsched_elem *data;
4191 
4192 	data = &node->info.data;
4193 	switch (rl_type) {
4194 	case ICE_MIN_BW:
4195 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
4196 			rl_prof_id = LE16_TO_CPU(data->cir_bw.bw_profile_idx);
4197 		break;
4198 	case ICE_MAX_BW:
4199 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
4200 			rl_prof_id = LE16_TO_CPU(data->eir_bw.bw_profile_idx);
4201 		break;
4202 	case ICE_SHARED_BW:
4203 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
4204 			rl_prof_id = LE16_TO_CPU(data->srl_id);
4205 		break;
4206 	default:
4207 		break;
4208 	}
4209 
4210 	return rl_prof_id;
4211 }
4212 
4213 /**
4214  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
4215  * @pi: port information structure
4216  * @rl_type: type of rate limit BW - min, max, or shared
4217  * @layer_index: layer index
4218  *
4219  * This function returns requested profile creation layer.
4220  */
4221 static u8
4222 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
4223 			    u8 layer_index)
4224 {
4225 	struct ice_hw *hw = pi->hw;
4226 
4227 	if (layer_index >= hw->num_tx_sched_layers)
4228 		return ICE_SCHED_INVAL_LAYER_NUM;
4229 	switch (rl_type) {
4230 	case ICE_MIN_BW:
4231 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
4232 			return layer_index;
4233 		break;
4234 	case ICE_MAX_BW:
4235 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
4236 			return layer_index;
4237 		break;
4238 	case ICE_SHARED_BW:
4239 		/* if current layer doesn't support SRL profile creation
4240 		 * then try a layer up or down.
4241 		 */
4242 		if (hw->layer_info[layer_index].max_srl_profiles)
4243 			return layer_index;
4244 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
4245 			 hw->layer_info[layer_index + 1].max_srl_profiles)
4246 			return layer_index + 1;
4247 		else if (layer_index > 0 &&
4248 			 hw->layer_info[layer_index - 1].max_srl_profiles)
4249 			return layer_index - 1;
4250 		break;
4251 	default:
4252 		break;
4253 	}
4254 	return ICE_SCHED_INVAL_LAYER_NUM;
4255 }
4256 
4257 /**
4258  * ice_sched_get_srl_node - get shared rate limit node
4259  * @node: tree node
4260  * @srl_layer: shared rate limit layer
4261  *
4262  * This function returns SRL node to be used for shared rate limit purpose.
4263  * The caller needs to hold scheduler lock.
4264  */
4265 static struct ice_sched_node *
4266 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
4267 {
4268 	if (srl_layer > node->tx_sched_layer)
4269 		return node->children[0];
4270 	else if (srl_layer < node->tx_sched_layer)
4271 		/* Node can't be created without a parent. It will always
4272 		 * have a valid parent except root node.
4273 		 */
4274 		return node->parent;
4275 	else
4276 		return node;
4277 }
4278 
4279 /**
4280  * ice_sched_rm_rl_profile - remove RL profile ID
4281  * @hw: pointer to the hardware structure
4282  * @layer_num: layer number where profiles are saved
4283  * @profile_type: profile type like EIR, CIR, or SRL
4284  * @profile_id: profile ID to remove
4285  *
4286  * This function removes rate limit profile from layer 'layer_num' of type
4287  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
4288  * scheduler lock.
4289  */
4290 static enum ice_status
4291 ice_sched_rm_rl_profile(struct ice_hw *hw, u8 layer_num, u8 profile_type,
4292 			u16 profile_id)
4293 {
4294 	struct ice_aqc_rl_profile_info *rl_prof_elem;
4295 	enum ice_status status = ICE_SUCCESS;
4296 
4297 	if (!hw || layer_num >= hw->num_tx_sched_layers)
4298 		return ICE_ERR_PARAM;
4299 	/* Check the existing list for RL profile */
4300 	LIST_FOR_EACH_ENTRY(rl_prof_elem, &hw->rl_prof_list[layer_num],
4301 			    ice_aqc_rl_profile_info, list_entry)
4302 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
4303 		    profile_type &&
4304 		    LE16_TO_CPU(rl_prof_elem->profile.profile_id) ==
4305 		    profile_id) {
4306 			if (rl_prof_elem->prof_id_ref)
4307 				rl_prof_elem->prof_id_ref--;
4308 
4309 			/* Remove old profile ID from database */
4310 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
4311 			if (status && status != ICE_ERR_IN_USE)
4312 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
4313 			break;
4314 		}
4315 	if (status == ICE_ERR_IN_USE)
4316 		status = ICE_SUCCESS;
4317 	return status;
4318 }
4319 
4320 /**
4321  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
4322  * @pi: port information structure
4323  * @node: pointer to node structure
4324  * @rl_type: rate limit type min, max, or shared
4325  * @layer_num: layer number where RL profiles are saved
4326  *
4327  * This function configures node element's BW rate limit profile ID of
4328  * type CIR, EIR, or SRL to default. This function needs to be called
4329  * with the scheduler lock held.
4330  */
4331 static enum ice_status
4332 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
4333 			   struct ice_sched_node *node,
4334 			   enum ice_rl_type rl_type, u8 layer_num)
4335 {
4336 	enum ice_status status;
4337 	struct ice_hw *hw;
4338 	u8 profile_type;
4339 	u16 rl_prof_id;
4340 	u16 old_id;
4341 
4342 	hw = pi->hw;
4343 	switch (rl_type) {
4344 	case ICE_MIN_BW:
4345 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
4346 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
4347 		break;
4348 	case ICE_MAX_BW:
4349 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
4350 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
4351 		break;
4352 	case ICE_SHARED_BW:
4353 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
4354 		/* No SRL is configured for default case */
4355 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
4356 		break;
4357 	default:
4358 		return ICE_ERR_PARAM;
4359 	}
4360 	/* Save existing RL prof ID for later clean up */
4361 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
4362 	/* Configure BW scheduling parameters */
4363 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
4364 	if (status)
4365 		return status;
4366 
4367 	/* Remove stale RL profile ID */
4368 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
4369 	    old_id == ICE_SCHED_INVAL_PROF_ID)
4370 		return ICE_SUCCESS;
4371 
4372 	return ice_sched_rm_rl_profile(hw, layer_num, profile_type, old_id);
4373 }
4374 
4375 /**
4376  * ice_sched_set_node_bw - set node's bandwidth
4377  * @pi: port information structure
4378  * @node: tree node
4379  * @rl_type: rate limit type min, max, or shared
4380  * @bw: bandwidth in Kbps - Kilo bits per sec
4381  * @layer_num: layer number
4382  *
4383  * This function adds new profile corresponding to requested BW, configures
4384  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
4385  * ID from local database. The caller needs to hold scheduler lock.
4386  */
4387 static enum ice_status
4388 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
4389 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
4390 {
4391 	struct ice_aqc_rl_profile_info *rl_prof_info;
4392 	enum ice_status status = ICE_ERR_PARAM;
4393 	struct ice_hw *hw = pi->hw;
4394 	u16 old_id, rl_prof_id;
4395 
4396 	rl_prof_info = ice_sched_add_rl_profile(hw, rl_type, bw, layer_num);
4397 	if (!rl_prof_info)
4398 		return status;
4399 
4400 	rl_prof_id = LE16_TO_CPU(rl_prof_info->profile.profile_id);
4401 
4402 	/* Save existing RL prof ID for later clean up */
4403 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
4404 	/* Configure BW scheduling parameters */
4405 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
4406 	if (status)
4407 		return status;
4408 
4409 	/* New changes has been applied */
4410 	/* Increment the profile ID reference count */
4411 	rl_prof_info->prof_id_ref++;
4412 
4413 	/* Check for old ID removal */
4414 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
4415 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
4416 		return ICE_SUCCESS;
4417 
4418 	return ice_sched_rm_rl_profile(hw, layer_num,
4419 				       rl_prof_info->profile.flags &
4420 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
4421 }
4422 
4423 /**
4424  * ice_sched_set_node_bw_lmt - set node's BW limit
4425  * @pi: port information structure
4426  * @node: tree node
4427  * @rl_type: rate limit type min, max, or shared
4428  * @bw: bandwidth in Kbps - Kilo bits per sec
4429  *
4430  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
4431  * EIR, or SRL. The caller needs to hold scheduler lock.
4432  *
4433  * NOTE: Caller provides the correct SRL node in case of shared profile
4434  * settings.
4435  */
4436 static enum ice_status
4437 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
4438 			  enum ice_rl_type rl_type, u32 bw)
4439 {
4440 	struct ice_hw *hw;
4441 	u8 layer_num;
4442 
4443 	if (!pi)
4444 		return ICE_ERR_PARAM;
4445 	hw = pi->hw;
4446 	/* Remove unused RL profile IDs from HW and SW DB */
4447 	ice_sched_rm_unused_rl_prof(hw);
4448 
4449 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
4450 						node->tx_sched_layer);
4451 	if (layer_num >= hw->num_tx_sched_layers)
4452 		return ICE_ERR_PARAM;
4453 
4454 	if (bw == ICE_SCHED_DFLT_BW)
4455 		return ice_sched_set_node_bw_dflt(pi, node, rl_type, layer_num);
4456 	return ice_sched_set_node_bw(pi, node, rl_type, bw, layer_num);
4457 }
4458 
4459 /**
4460  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
4461  * @pi: port information structure
4462  * @node: pointer to node structure
4463  * @rl_type: rate limit type min, max, or shared
4464  *
4465  * This function configures node element's BW rate limit profile ID of
4466  * type CIR, EIR, or SRL to default. This function needs to be called
4467  * with the scheduler lock held.
4468  */
4469 static enum ice_status
4470 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
4471 			       struct ice_sched_node *node,
4472 			       enum ice_rl_type rl_type)
4473 {
4474 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
4475 					 ICE_SCHED_DFLT_BW);
4476 }
4477 
4478 /**
4479  * ice_sched_validate_srl_node - Check node for SRL applicability
4480  * @node: sched node to configure
4481  * @sel_layer: selected SRL layer
4482  *
4483  * This function checks if the SRL can be applied to a selceted layer node on
4484  * behalf of the requested node (first argument). This function needs to be
4485  * called with scheduler lock held.
4486  */
4487 static enum ice_status
4488 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
4489 {
4490 	/* SRL profiles are not available on all layers. Check if the
4491 	 * SRL profile can be applied to a node above or below the
4492 	 * requested node. SRL configuration is possible only if the
4493 	 * selected layer's node has single child.
4494 	 */
4495 	if (sel_layer == node->tx_sched_layer ||
4496 	    ((sel_layer == node->tx_sched_layer + 1) &&
4497 	    node->num_children == 1) ||
4498 	    ((sel_layer == node->tx_sched_layer - 1) &&
4499 	    (node->parent && node->parent->num_children == 1)))
4500 		return ICE_SUCCESS;
4501 
4502 	return ICE_ERR_CFG;
4503 }
4504 
4505 /**
4506  * ice_sched_save_q_bw - save queue node's BW information
4507  * @q_ctx: queue context structure
4508  * @rl_type: rate limit type min, max, or shared
4509  * @bw: bandwidth in Kbps - Kilo bits per sec
4510  *
4511  * Save BW information of queue type node for post replay use.
4512  */
4513 static enum ice_status
4514 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
4515 {
4516 	switch (rl_type) {
4517 	case ICE_MIN_BW:
4518 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
4519 		break;
4520 	case ICE_MAX_BW:
4521 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
4522 		break;
4523 	case ICE_SHARED_BW:
4524 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
4525 		break;
4526 	default:
4527 		return ICE_ERR_PARAM;
4528 	}
4529 	return ICE_SUCCESS;
4530 }
4531 
4532 /**
4533  * ice_sched_set_q_bw_lmt - sets queue BW limit
4534  * @pi: port information structure
4535  * @vsi_handle: sw VSI handle
4536  * @tc: traffic class
4537  * @q_handle: software queue handle
4538  * @rl_type: min, max, or shared
4539  * @bw: bandwidth in Kbps
4540  *
4541  * This function sets BW limit of queue scheduling node.
4542  */
4543 static enum ice_status
4544 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4545 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
4546 {
4547 	enum ice_status status = ICE_ERR_PARAM;
4548 	struct ice_sched_node *node;
4549 	struct ice_q_ctx *q_ctx;
4550 
4551 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4552 		return ICE_ERR_PARAM;
4553 	ice_acquire_lock(&pi->sched_lock);
4554 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
4555 	if (!q_ctx)
4556 		goto exit_q_bw_lmt;
4557 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4558 	if (!node) {
4559 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
4560 		goto exit_q_bw_lmt;
4561 	}
4562 
4563 	/* Return error if it is not a leaf node */
4564 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
4565 		goto exit_q_bw_lmt;
4566 
4567 	/* SRL bandwidth layer selection */
4568 	if (rl_type == ICE_SHARED_BW) {
4569 		u8 sel_layer; /* selected layer */
4570 
4571 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
4572 							node->tx_sched_layer);
4573 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
4574 			status = ICE_ERR_PARAM;
4575 			goto exit_q_bw_lmt;
4576 		}
4577 		status = ice_sched_validate_srl_node(node, sel_layer);
4578 		if (status)
4579 			goto exit_q_bw_lmt;
4580 	}
4581 
4582 	if (bw == ICE_SCHED_DFLT_BW)
4583 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
4584 	else
4585 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
4586 
4587 	if (!status)
4588 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
4589 
4590 exit_q_bw_lmt:
4591 	ice_release_lock(&pi->sched_lock);
4592 	return status;
4593 }
4594 
4595 /**
4596  * ice_cfg_q_bw_lmt - configure queue BW limit
4597  * @pi: port information structure
4598  * @vsi_handle: sw VSI handle
4599  * @tc: traffic class
4600  * @q_handle: software queue handle
4601  * @rl_type: min, max, or shared
4602  * @bw: bandwidth in Kbps
4603  *
4604  * This function configures BW limit of queue scheduling node.
4605  */
4606 enum ice_status
4607 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4608 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
4609 {
4610 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4611 				      bw);
4612 }
4613 
4614 /**
4615  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
4616  * @pi: port information structure
4617  * @vsi_handle: sw VSI handle
4618  * @tc: traffic class
4619  * @q_handle: software queue handle
4620  * @rl_type: min, max, or shared
4621  *
4622  * This function configures BW default limit of queue scheduling node.
4623  */
4624 enum ice_status
4625 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4626 		      u16 q_handle, enum ice_rl_type rl_type)
4627 {
4628 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4629 				      ICE_SCHED_DFLT_BW);
4630 }
4631 
4632 /**
4633  * ice_sched_save_tc_node_bw - save TC node BW limit
4634  * @pi: port information structure
4635  * @tc: TC number
4636  * @rl_type: min or max
4637  * @bw: bandwidth in Kbps
4638  *
4639  * This function saves the modified values of bandwidth settings for later
4640  * replay purpose (restore) after reset.
4641  */
4642 static enum ice_status
4643 ice_sched_save_tc_node_bw(struct ice_port_info *pi, u8 tc,
4644 			  enum ice_rl_type rl_type, u32 bw)
4645 {
4646 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4647 		return ICE_ERR_PARAM;
4648 	switch (rl_type) {
4649 	case ICE_MIN_BW:
4650 		ice_set_clear_cir_bw(&pi->tc_node_bw_t_info[tc], bw);
4651 		break;
4652 	case ICE_MAX_BW:
4653 		ice_set_clear_eir_bw(&pi->tc_node_bw_t_info[tc], bw);
4654 		break;
4655 	case ICE_SHARED_BW:
4656 		ice_set_clear_shared_bw(&pi->tc_node_bw_t_info[tc], bw);
4657 		break;
4658 	default:
4659 		return ICE_ERR_PARAM;
4660 	}
4661 	return ICE_SUCCESS;
4662 }
4663 
4664 /**
4665  * ice_sched_set_tc_node_bw_lmt - sets TC node BW limit
4666  * @pi: port information structure
4667  * @tc: TC number
4668  * @rl_type: min or max
4669  * @bw: bandwidth in Kbps
4670  *
4671  * This function configures bandwidth limit of TC node.
4672  */
4673 static enum ice_status
4674 ice_sched_set_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
4675 			     enum ice_rl_type rl_type, u32 bw)
4676 {
4677 	enum ice_status status = ICE_ERR_PARAM;
4678 	struct ice_sched_node *tc_node;
4679 
4680 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4681 		return status;
4682 	ice_acquire_lock(&pi->sched_lock);
4683 	tc_node = ice_sched_get_tc_node(pi, tc);
4684 	if (!tc_node)
4685 		goto exit_set_tc_node_bw;
4686 	if (bw == ICE_SCHED_DFLT_BW)
4687 		status = ice_sched_set_node_bw_dflt_lmt(pi, tc_node, rl_type);
4688 	else
4689 		status = ice_sched_set_node_bw_lmt(pi, tc_node, rl_type, bw);
4690 	if (!status)
4691 		status = ice_sched_save_tc_node_bw(pi, tc, rl_type, bw);
4692 
4693 exit_set_tc_node_bw:
4694 	ice_release_lock(&pi->sched_lock);
4695 	return status;
4696 }
4697 
4698 /**
4699  * ice_cfg_tc_node_bw_lmt - configure TC node BW limit
4700  * @pi: port information structure
4701  * @tc: TC number
4702  * @rl_type: min or max
4703  * @bw: bandwidth in Kbps
4704  *
4705  * This function configures BW limit of TC node.
4706  * Note: The minimum guaranteed reservation is done via DCBX.
4707  */
4708 enum ice_status
4709 ice_cfg_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
4710 		       enum ice_rl_type rl_type, u32 bw)
4711 {
4712 	return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, bw);
4713 }
4714 
4715 /**
4716  * ice_cfg_tc_node_bw_dflt_lmt - configure TC node BW default limit
4717  * @pi: port information structure
4718  * @tc: TC number
4719  * @rl_type: min or max
4720  *
4721  * This function configures BW default limit of TC node.
4722  */
4723 enum ice_status
4724 ice_cfg_tc_node_bw_dflt_lmt(struct ice_port_info *pi, u8 tc,
4725 			    enum ice_rl_type rl_type)
4726 {
4727 	return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, ICE_SCHED_DFLT_BW);
4728 }
4729 
4730 /**
4731  * ice_sched_save_tc_node_bw_alloc - save TC node's BW alloc information
4732  * @pi: port information structure
4733  * @tc: traffic class
4734  * @rl_type: rate limit type min or max
4735  * @bw_alloc: Bandwidth allocation information
4736  *
4737  * Save BW alloc information of VSI type node for post replay use.
4738  */
4739 static enum ice_status
4740 ice_sched_save_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4741 				enum ice_rl_type rl_type, u16 bw_alloc)
4742 {
4743 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4744 		return ICE_ERR_PARAM;
4745 	switch (rl_type) {
4746 	case ICE_MIN_BW:
4747 		ice_set_clear_cir_bw_alloc(&pi->tc_node_bw_t_info[tc],
4748 					   bw_alloc);
4749 		break;
4750 	case ICE_MAX_BW:
4751 		ice_set_clear_eir_bw_alloc(&pi->tc_node_bw_t_info[tc],
4752 					   bw_alloc);
4753 		break;
4754 	default:
4755 		return ICE_ERR_PARAM;
4756 	}
4757 	return ICE_SUCCESS;
4758 }
4759 
4760 /**
4761  * ice_sched_set_tc_node_bw_alloc - set TC node BW alloc
4762  * @pi: port information structure
4763  * @tc: TC number
4764  * @rl_type: min or max
4765  * @bw_alloc: bandwidth alloc
4766  *
4767  * This function configures bandwidth alloc of TC node, also saves the
4768  * changed settings for replay purpose, and return success if it succeeds
4769  * in modifying bandwidth alloc setting.
4770  */
4771 static enum ice_status
4772 ice_sched_set_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4773 			       enum ice_rl_type rl_type, u8 bw_alloc)
4774 {
4775 	enum ice_status status = ICE_ERR_PARAM;
4776 	struct ice_sched_node *tc_node;
4777 
4778 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4779 		return status;
4780 	ice_acquire_lock(&pi->sched_lock);
4781 	tc_node = ice_sched_get_tc_node(pi, tc);
4782 	if (!tc_node)
4783 		goto exit_set_tc_node_bw_alloc;
4784 	status = ice_sched_cfg_node_bw_alloc(pi->hw, tc_node, rl_type,
4785 					     bw_alloc);
4786 	if (status)
4787 		goto exit_set_tc_node_bw_alloc;
4788 	status = ice_sched_save_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
4789 
4790 exit_set_tc_node_bw_alloc:
4791 	ice_release_lock(&pi->sched_lock);
4792 	return status;
4793 }
4794 
4795 /**
4796  * ice_cfg_tc_node_bw_alloc - configure TC node BW alloc
4797  * @pi: port information structure
4798  * @tc: TC number
4799  * @rl_type: min or max
4800  * @bw_alloc: bandwidth alloc
4801  *
4802  * This function configures BW limit of TC node.
4803  * Note: The minimum guaranteed reservation is done via DCBX.
4804  */
4805 enum ice_status
4806 ice_cfg_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4807 			 enum ice_rl_type rl_type, u8 bw_alloc)
4808 {
4809 	return ice_sched_set_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
4810 }
4811 
4812 /**
4813  * ice_sched_set_agg_bw_dflt_lmt - set aggregator node's BW limit to default
4814  * @pi: port information structure
4815  * @vsi_handle: software VSI handle
4816  *
4817  * This function retrieves the aggregator ID based on VSI ID and TC,
4818  * and sets node's BW limit to default. This function needs to be
4819  * called with the scheduler lock held.
4820  */
4821 enum ice_status
4822 ice_sched_set_agg_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle)
4823 {
4824 	struct ice_vsi_ctx *vsi_ctx;
4825 	enum ice_status status = ICE_SUCCESS;
4826 	u8 tc;
4827 
4828 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4829 		return ICE_ERR_PARAM;
4830 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4831 	if (!vsi_ctx)
4832 		return ICE_ERR_PARAM;
4833 
4834 	ice_for_each_traffic_class(tc) {
4835 		struct ice_sched_node *node;
4836 
4837 		node = vsi_ctx->sched.ag_node[tc];
4838 		if (!node)
4839 			continue;
4840 
4841 		/* Set min profile to default */
4842 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MIN_BW);
4843 		if (status)
4844 			break;
4845 
4846 		/* Set max profile to default */
4847 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MAX_BW);
4848 		if (status)
4849 			break;
4850 
4851 		/* Remove shared profile, if there is one */
4852 		status = ice_sched_set_node_bw_dflt_lmt(pi, node,
4853 							ICE_SHARED_BW);
4854 		if (status)
4855 			break;
4856 	}
4857 
4858 	return status;
4859 }
4860 
4861 /**
4862  * ice_sched_get_node_by_id_type - get node from ID type
4863  * @pi: port information structure
4864  * @id: identifier
4865  * @agg_type: type of aggregator
4866  * @tc: traffic class
4867  *
4868  * This function returns node identified by ID of type aggregator, and
4869  * based on traffic class (TC). This function needs to be called with
4870  * the scheduler lock held.
4871  */
4872 static struct ice_sched_node *
4873 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
4874 			      enum ice_agg_type agg_type, u8 tc)
4875 {
4876 	struct ice_sched_node *node = NULL;
4877 
4878 	switch (agg_type) {
4879 	case ICE_AGG_TYPE_VSI: {
4880 		struct ice_vsi_ctx *vsi_ctx;
4881 		u16 vsi_handle = (u16)id;
4882 
4883 		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4884 			break;
4885 		/* Get sched_vsi_info */
4886 		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4887 		if (!vsi_ctx)
4888 			break;
4889 		node = vsi_ctx->sched.vsi_node[tc];
4890 		break;
4891 	}
4892 
4893 	case ICE_AGG_TYPE_AGG: {
4894 		struct ice_sched_node *tc_node;
4895 
4896 		tc_node = ice_sched_get_tc_node(pi, tc);
4897 		if (tc_node)
4898 			node = ice_sched_get_agg_node(pi, tc_node, id);
4899 		break;
4900 	}
4901 
4902 	case ICE_AGG_TYPE_Q:
4903 		/* The current implementation allows single queue to modify */
4904 		node = ice_sched_find_node_by_teid(pi->root, id);
4905 		break;
4906 
4907 	case ICE_AGG_TYPE_QG: {
4908 		struct ice_sched_node *child_node;
4909 
4910 		/* The current implementation allows single qg to modify */
4911 		child_node = ice_sched_find_node_by_teid(pi->root, id);
4912 		if (!child_node)
4913 			break;
4914 		node = child_node->parent;
4915 		break;
4916 	}
4917 
4918 	default:
4919 		break;
4920 	}
4921 
4922 	return node;
4923 }
4924 
4925 /**
4926  * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
4927  * @pi: port information structure
4928  * @id: ID (software VSI handle or AGG ID)
4929  * @agg_type: aggregator type (VSI or AGG type node)
4930  * @tc: traffic class
4931  * @rl_type: min or max
4932  * @bw: bandwidth in Kbps
4933  *
4934  * This function sets BW limit of VSI or Aggregator scheduling node
4935  * based on TC information from passed in argument BW.
4936  */
4937 enum ice_status
4938 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
4939 				 enum ice_agg_type agg_type, u8 tc,
4940 				 enum ice_rl_type rl_type, u32 bw)
4941 {
4942 	enum ice_status status = ICE_ERR_PARAM;
4943 	struct ice_sched_node *node;
4944 
4945 	if (!pi)
4946 		return status;
4947 
4948 	if (rl_type == ICE_UNKNOWN_BW)
4949 		return status;
4950 
4951 	ice_acquire_lock(&pi->sched_lock);
4952 	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
4953 	if (!node) {
4954 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
4955 		goto exit_set_node_bw_lmt_per_tc;
4956 	}
4957 	if (bw == ICE_SCHED_DFLT_BW)
4958 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
4959 	else
4960 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
4961 
4962 exit_set_node_bw_lmt_per_tc:
4963 	ice_release_lock(&pi->sched_lock);
4964 	return status;
4965 }
4966 
4967 /**
4968  * ice_sched_validate_vsi_srl_node - validate VSI SRL node
4969  * @pi: port information structure
4970  * @vsi_handle: software VSI handle
4971  *
4972  * This function validates SRL node of the VSI node if available SRL layer is
4973  * different than the VSI node layer on all TC(s).This function needs to be
4974  * called with scheduler lock held.
4975  */
4976 static enum ice_status
4977 ice_sched_validate_vsi_srl_node(struct ice_port_info *pi, u16 vsi_handle)
4978 {
4979 	u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
4980 	u8 tc;
4981 
4982 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4983 		return ICE_ERR_PARAM;
4984 
4985 	/* Return success if no nodes are present across TC */
4986 	ice_for_each_traffic_class(tc) {
4987 		struct ice_sched_node *tc_node, *vsi_node;
4988 		enum ice_rl_type rl_type = ICE_SHARED_BW;
4989 		enum ice_status status;
4990 
4991 		tc_node = ice_sched_get_tc_node(pi, tc);
4992 		if (!tc_node)
4993 			continue;
4994 
4995 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
4996 		if (!vsi_node)
4997 			continue;
4998 
4999 		/* SRL bandwidth layer selection */
5000 		if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
5001 			u8 node_layer = vsi_node->tx_sched_layer;
5002 			u8 layer_num;
5003 
5004 			layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5005 								node_layer);
5006 			if (layer_num >= pi->hw->num_tx_sched_layers)
5007 				return ICE_ERR_PARAM;
5008 			sel_layer = layer_num;
5009 		}
5010 
5011 		status = ice_sched_validate_srl_node(vsi_node, sel_layer);
5012 		if (status)
5013 			return status;
5014 	}
5015 	return ICE_SUCCESS;
5016 }
5017 
5018 /**
5019  * ice_sched_set_save_vsi_srl_node_bw - set VSI shared limit values
5020  * @pi: port information structure
5021  * @vsi_handle: software VSI handle
5022  * @tc: traffic class
5023  * @srl_node: sched node to configure
5024  * @rl_type: rate limit type minimum, maximum, or shared
5025  * @bw: minimum, maximum, or shared bandwidth in Kbps
5026  *
5027  * Configure shared rate limiter(SRL) of VSI type nodes across given traffic
5028  * class, and saves those value for later use for replaying purposes. The
5029  * caller holds the scheduler lock.
5030  */
5031 static enum ice_status
5032 ice_sched_set_save_vsi_srl_node_bw(struct ice_port_info *pi, u16 vsi_handle,
5033 				   u8 tc, struct ice_sched_node *srl_node,
5034 				   enum ice_rl_type rl_type, u32 bw)
5035 {
5036 	enum ice_status status;
5037 
5038 	if (bw == ICE_SCHED_DFLT_BW) {
5039 		status = ice_sched_set_node_bw_dflt_lmt(pi, srl_node, rl_type);
5040 	} else {
5041 		status = ice_sched_set_node_bw_lmt(pi, srl_node, rl_type, bw);
5042 		if (status)
5043 			return status;
5044 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
5045 	}
5046 	return status;
5047 }
5048 
5049 /**
5050  * ice_sched_set_vsi_node_srl_per_tc - set VSI node BW shared limit for tc
5051  * @pi: port information structure
5052  * @vsi_handle: software VSI handle
5053  * @tc: traffic class
5054  * @min_bw: minimum bandwidth in Kbps
5055  * @max_bw: maximum bandwidth in Kbps
5056  * @shared_bw: shared bandwidth in Kbps
5057  *
5058  * Configure shared rate limiter(SRL) of  VSI type nodes across requested
5059  * traffic class for VSI matching handle. When BW value of ICE_SCHED_DFLT_BW
5060  * is passed, it removes the corresponding bw from the node. The caller
5061  * holds scheduler lock.
5062  */
5063 static enum ice_status
5064 ice_sched_set_vsi_node_srl_per_tc(struct ice_port_info *pi, u16 vsi_handle,
5065 				  u8 tc, u32 min_bw, u32 max_bw, u32 shared_bw)
5066 {
5067 	struct ice_sched_node *tc_node, *vsi_node, *cfg_node;
5068 	enum ice_status status;
5069 	u8 layer_num;
5070 
5071 	tc_node = ice_sched_get_tc_node(pi, tc);
5072 	if (!tc_node)
5073 		return ICE_ERR_CFG;
5074 
5075 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5076 	if (!vsi_node)
5077 		return ICE_ERR_CFG;
5078 
5079 	layer_num = ice_sched_get_rl_prof_layer(pi, ICE_SHARED_BW,
5080 						vsi_node->tx_sched_layer);
5081 	if (layer_num >= pi->hw->num_tx_sched_layers)
5082 		return ICE_ERR_PARAM;
5083 
5084 	/* SRL node may be different */
5085 	cfg_node = ice_sched_get_srl_node(vsi_node, layer_num);
5086 	if (!cfg_node)
5087 		return ICE_ERR_CFG;
5088 
5089 	status = ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc,
5090 						    cfg_node, ICE_MIN_BW,
5091 						    min_bw);
5092 	if (status)
5093 		return status;
5094 
5095 	status = ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc,
5096 						    cfg_node, ICE_MAX_BW,
5097 						    max_bw);
5098 	if (status)
5099 		return status;
5100 
5101 	return ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc, cfg_node,
5102 						  ICE_SHARED_BW, shared_bw);
5103 }
5104 
5105 /**
5106  * ice_sched_set_vsi_bw_shared_lmt - set VSI BW shared limit
5107  * @pi: port information structure
5108  * @vsi_handle: software VSI handle
5109  * @min_bw: minimum bandwidth in Kbps
5110  * @max_bw: maximum bandwidth in Kbps
5111  * @shared_bw: shared bandwidth in Kbps
5112  *
5113  * Configure shared rate limiter(SRL) of all VSI type nodes across all traffic
5114  * classes for VSI matching handle. When BW value of ICE_SCHED_DFLT_BW is
5115  * passed, it removes those value(s) from the node.
5116  */
5117 enum ice_status
5118 ice_sched_set_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle,
5119 				u32 min_bw, u32 max_bw, u32 shared_bw)
5120 {
5121 	enum ice_status status = ICE_SUCCESS;
5122 	u8 tc;
5123 
5124 	if (!pi)
5125 		return ICE_ERR_PARAM;
5126 
5127 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5128 		return ICE_ERR_PARAM;
5129 
5130 	ice_acquire_lock(&pi->sched_lock);
5131 	status = ice_sched_validate_vsi_srl_node(pi, vsi_handle);
5132 	if (status)
5133 		goto exit_set_vsi_bw_shared_lmt;
5134 	/* Return success if no nodes are present across TC */
5135 	ice_for_each_traffic_class(tc) {
5136 		struct ice_sched_node *tc_node, *vsi_node;
5137 
5138 		tc_node = ice_sched_get_tc_node(pi, tc);
5139 		if (!tc_node)
5140 			continue;
5141 
5142 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5143 		if (!vsi_node)
5144 			continue;
5145 
5146 		status = ice_sched_set_vsi_node_srl_per_tc(pi, vsi_handle, tc,
5147 							   min_bw, max_bw,
5148 							   shared_bw);
5149 		if (status)
5150 			break;
5151 	}
5152 
5153 exit_set_vsi_bw_shared_lmt:
5154 	ice_release_lock(&pi->sched_lock);
5155 	return status;
5156 }
5157 
5158 /**
5159  * ice_sched_validate_agg_srl_node - validate AGG SRL node
5160  * @pi: port information structure
5161  * @agg_id: aggregator ID
5162  *
5163  * This function validates SRL node of the AGG node if available SRL layer is
5164  * different than the AGG node layer on all TC(s).This function needs to be
5165  * called with scheduler lock held.
5166  */
5167 static enum ice_status
5168 ice_sched_validate_agg_srl_node(struct ice_port_info *pi, u32 agg_id)
5169 {
5170 	u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
5171 	struct ice_sched_agg_info *agg_info;
5172 	bool agg_id_present = false;
5173 	enum ice_status status = ICE_SUCCESS;
5174 	u8 tc;
5175 
5176 	LIST_FOR_EACH_ENTRY(agg_info, &pi->hw->agg_list, ice_sched_agg_info,
5177 			    list_entry)
5178 		if (agg_info->agg_id == agg_id) {
5179 			agg_id_present = true;
5180 			break;
5181 		}
5182 	if (!agg_id_present)
5183 		return ICE_ERR_PARAM;
5184 	/* Return success if no nodes are present across TC */
5185 	ice_for_each_traffic_class(tc) {
5186 		struct ice_sched_node *tc_node, *agg_node;
5187 		enum ice_rl_type rl_type = ICE_SHARED_BW;
5188 
5189 		tc_node = ice_sched_get_tc_node(pi, tc);
5190 		if (!tc_node)
5191 			continue;
5192 
5193 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5194 		if (!agg_node)
5195 			continue;
5196 		/* SRL bandwidth layer selection */
5197 		if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
5198 			u8 node_layer = agg_node->tx_sched_layer;
5199 			u8 layer_num;
5200 
5201 			layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5202 								node_layer);
5203 			if (layer_num >= pi->hw->num_tx_sched_layers)
5204 				return ICE_ERR_PARAM;
5205 			sel_layer = layer_num;
5206 		}
5207 
5208 		status = ice_sched_validate_srl_node(agg_node, sel_layer);
5209 		if (status)
5210 			break;
5211 	}
5212 	return status;
5213 }
5214 
5215 /**
5216  * ice_sched_validate_agg_id - Validate aggregator id
5217  * @pi: port information structure
5218  * @agg_id: aggregator ID
5219  *
5220  * This function validates aggregator id. Caller holds the scheduler lock.
5221  */
5222 static enum ice_status
5223 ice_sched_validate_agg_id(struct ice_port_info *pi, u32 agg_id)
5224 {
5225 	struct ice_sched_agg_info *agg_info;
5226 	struct ice_sched_agg_info *tmp;
5227 	bool agg_id_present = false;
5228 	enum ice_status status;
5229 
5230 	status = ice_sched_validate_agg_srl_node(pi, agg_id);
5231 	if (status)
5232 		return status;
5233 
5234 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, tmp, &pi->hw->agg_list,
5235 				 ice_sched_agg_info, list_entry)
5236 		if (agg_info->agg_id == agg_id) {
5237 			agg_id_present = true;
5238 			break;
5239 		}
5240 
5241 	if (!agg_id_present)
5242 		return ICE_ERR_PARAM;
5243 
5244 	return ICE_SUCCESS;
5245 }
5246 
5247 /**
5248  * ice_sched_set_save_agg_srl_node_bw - set aggregator shared limit values
5249  * @pi: port information structure
5250  * @agg_id: aggregator ID
5251  * @tc: traffic class
5252  * @srl_node: sched node to configure
5253  * @rl_type: rate limit type minimum, maximum, or shared
5254  * @bw: minimum, maximum, or shared bandwidth in Kbps
5255  *
5256  * Configure shared rate limiter(SRL) of aggregator type nodes across
5257  * requested traffic class, and saves those value for later use for
5258  * replaying purposes. The caller holds the scheduler lock.
5259  */
5260 static enum ice_status
5261 ice_sched_set_save_agg_srl_node_bw(struct ice_port_info *pi, u32 agg_id, u8 tc,
5262 				   struct ice_sched_node *srl_node,
5263 				   enum ice_rl_type rl_type, u32 bw)
5264 {
5265 	enum ice_status status;
5266 
5267 	if (bw == ICE_SCHED_DFLT_BW) {
5268 		status = ice_sched_set_node_bw_dflt_lmt(pi, srl_node, rl_type);
5269 	} else {
5270 		status = ice_sched_set_node_bw_lmt(pi, srl_node, rl_type, bw);
5271 		if (status)
5272 			return status;
5273 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
5274 	}
5275 	return status;
5276 }
5277 
5278 /**
5279  * ice_sched_set_agg_node_srl_per_tc - set aggregator SRL per tc
5280  * @pi: port information structure
5281  * @agg_id: aggregator ID
5282  * @tc: traffic class
5283  * @min_bw: minimum bandwidth in Kbps
5284  * @max_bw: maximum bandwidth in Kbps
5285  * @shared_bw: shared bandwidth in Kbps
5286  *
5287  * This function configures the shared rate limiter(SRL) of aggregator type
5288  * node for a given traffic class for aggregator matching agg_id. When BW
5289  * value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the node. Caller
5290  * holds the scheduler lock.
5291  */
5292 static enum ice_status
5293 ice_sched_set_agg_node_srl_per_tc(struct ice_port_info *pi, u32 agg_id,
5294 				  u8 tc, u32 min_bw, u32 max_bw, u32 shared_bw)
5295 {
5296 	struct ice_sched_node *tc_node, *agg_node, *cfg_node;
5297 	enum ice_rl_type rl_type = ICE_SHARED_BW;
5298 	enum ice_status status = ICE_ERR_CFG;
5299 	u8 layer_num;
5300 
5301 	tc_node = ice_sched_get_tc_node(pi, tc);
5302 	if (!tc_node)
5303 		return ICE_ERR_CFG;
5304 
5305 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5306 	if (!agg_node)
5307 		return ICE_ERR_CFG;
5308 
5309 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5310 						agg_node->tx_sched_layer);
5311 	if (layer_num >= pi->hw->num_tx_sched_layers)
5312 		return ICE_ERR_PARAM;
5313 
5314 	/* SRL node may be different */
5315 	cfg_node = ice_sched_get_srl_node(agg_node, layer_num);
5316 	if (!cfg_node)
5317 		return ICE_ERR_CFG;
5318 
5319 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5320 						    ICE_MIN_BW, min_bw);
5321 	if (status)
5322 		return status;
5323 
5324 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5325 						    ICE_MAX_BW, max_bw);
5326 	if (status)
5327 		return status;
5328 
5329 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5330 						    ICE_SHARED_BW, shared_bw);
5331 	return status;
5332 }
5333 
5334 /**
5335  * ice_sched_set_agg_bw_shared_lmt - set aggregator BW shared limit
5336  * @pi: port information structure
5337  * @agg_id: aggregator ID
5338  * @min_bw: minimum bandwidth in Kbps
5339  * @max_bw: maximum bandwidth in Kbps
5340  * @shared_bw: shared bandwidth in Kbps
5341  *
5342  * This function configures the shared rate limiter(SRL) of all aggregator type
5343  * nodes across all traffic classes for aggregator matching agg_id. When
5344  * BW value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the
5345  * node(s).
5346  */
5347 enum ice_status
5348 ice_sched_set_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id,
5349 				u32 min_bw, u32 max_bw, u32 shared_bw)
5350 {
5351 	enum ice_status status;
5352 	u8 tc;
5353 
5354 	if (!pi)
5355 		return ICE_ERR_PARAM;
5356 
5357 	ice_acquire_lock(&pi->sched_lock);
5358 	status = ice_sched_validate_agg_id(pi, agg_id);
5359 	if (status)
5360 		goto exit_agg_bw_shared_lmt;
5361 
5362 	/* Return success if no nodes are present across TC */
5363 	ice_for_each_traffic_class(tc) {
5364 		struct ice_sched_node *tc_node, *agg_node;
5365 
5366 		tc_node = ice_sched_get_tc_node(pi, tc);
5367 		if (!tc_node)
5368 			continue;
5369 
5370 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5371 		if (!agg_node)
5372 			continue;
5373 
5374 		status = ice_sched_set_agg_node_srl_per_tc(pi, agg_id, tc,
5375 							   min_bw, max_bw,
5376 							   shared_bw);
5377 		if (status)
5378 			break;
5379 	}
5380 
5381 exit_agg_bw_shared_lmt:
5382 	ice_release_lock(&pi->sched_lock);
5383 	return status;
5384 }
5385 
5386 /**
5387  * ice_sched_set_agg_bw_shared_lmt_per_tc - set aggregator BW shared lmt per tc
5388  * @pi: port information structure
5389  * @agg_id: aggregator ID
5390  * @tc: traffic class
5391  * @min_bw: minimum bandwidth in Kbps
5392  * @max_bw: maximum bandwidth in Kbps
5393  * @shared_bw: shared bandwidth in Kbps
5394  *
5395  * This function configures the shared rate limiter(SRL) of aggregator type
5396  * node for a given traffic class for aggregator matching agg_id. When BW
5397  * value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the node.
5398  */
5399 enum ice_status
5400 ice_sched_set_agg_bw_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id,
5401 				       u8 tc, u32 min_bw, u32 max_bw,
5402 				       u32 shared_bw)
5403 {
5404 	enum ice_status status;
5405 
5406 	if (!pi)
5407 		return ICE_ERR_PARAM;
5408 	ice_acquire_lock(&pi->sched_lock);
5409 	status = ice_sched_validate_agg_id(pi, agg_id);
5410 	if (status)
5411 		goto exit_agg_bw_shared_lmt_per_tc;
5412 
5413 	status = ice_sched_set_agg_node_srl_per_tc(pi, agg_id, tc, min_bw,
5414 						   max_bw, shared_bw);
5415 
5416 exit_agg_bw_shared_lmt_per_tc:
5417 	ice_release_lock(&pi->sched_lock);
5418 	return status;
5419 }
5420 
5421 /**
5422  * ice_sched_cfg_sibl_node_prio - configure node sibling priority
5423  * @pi: port information structure
5424  * @node: sched node to configure
5425  * @priority: sibling priority
5426  *
5427  * This function configures node element's sibling priority only. This
5428  * function needs to be called with scheduler lock held.
5429  */
5430 enum ice_status
5431 ice_sched_cfg_sibl_node_prio(struct ice_port_info *pi,
5432 			     struct ice_sched_node *node, u8 priority)
5433 {
5434 	struct ice_aqc_txsched_elem_data buf;
5435 	struct ice_aqc_txsched_elem *data;
5436 	struct ice_hw *hw = pi->hw;
5437 	enum ice_status status;
5438 
5439 	if (!hw)
5440 		return ICE_ERR_PARAM;
5441 	buf = node->info;
5442 	data = &buf.data;
5443 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
5444 	priority = (priority << ICE_AQC_ELEM_GENERIC_PRIO_S) &
5445 		   ICE_AQC_ELEM_GENERIC_PRIO_M;
5446 	data->generic &= ~ICE_AQC_ELEM_GENERIC_PRIO_M;
5447 	data->generic |= priority;
5448 
5449 	/* Configure element */
5450 	status = ice_sched_update_elem(hw, node, &buf);
5451 	return status;
5452 }
5453 
5454 /**
5455  * ice_cfg_rl_burst_size - Set burst size value
5456  * @hw: pointer to the HW struct
5457  * @bytes: burst size in bytes
5458  *
5459  * This function configures/set the burst size to requested new value. The new
5460  * burst size value is used for future rate limit calls. It doesn't change the
5461  * existing or previously created RL profiles.
5462  */
5463 enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
5464 {
5465 	u16 burst_size_to_prog;
5466 
5467 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
5468 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
5469 		return ICE_ERR_PARAM;
5470 	if (ice_round_to_num(bytes, 64) <=
5471 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
5472 		/* 64 byte granularity case */
5473 		/* Disable MSB granularity bit */
5474 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
5475 		/* round number to nearest 64 byte granularity */
5476 		bytes = ice_round_to_num(bytes, 64);
5477 		/* The value is in 64 byte chunks */
5478 		burst_size_to_prog |= (u16)(bytes / 64);
5479 	} else {
5480 		/* k bytes granularity case */
5481 		/* Enable MSB granularity bit */
5482 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
5483 		/* round number to nearest 1024 granularity */
5484 		bytes = ice_round_to_num(bytes, 1024);
5485 		/* check rounding doesn't go beyond allowed */
5486 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
5487 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
5488 		/* The value is in k bytes */
5489 		burst_size_to_prog |= (u16)(bytes / 1024);
5490 	}
5491 	hw->max_burst_size = burst_size_to_prog;
5492 	return ICE_SUCCESS;
5493 }
5494 
5495 /**
5496  * ice_sched_replay_node_prio - re-configure node priority
5497  * @hw: pointer to the HW struct
5498  * @node: sched node to configure
5499  * @priority: priority value
5500  *
5501  * This function configures node element's priority value. It
5502  * needs to be called with scheduler lock held.
5503  */
5504 static enum ice_status
5505 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
5506 			   u8 priority)
5507 {
5508 	struct ice_aqc_txsched_elem_data buf;
5509 	struct ice_aqc_txsched_elem *data;
5510 	enum ice_status status;
5511 
5512 	buf = node->info;
5513 	data = &buf.data;
5514 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
5515 	data->generic = priority;
5516 
5517 	/* Configure element */
5518 	status = ice_sched_update_elem(hw, node, &buf);
5519 	return status;
5520 }
5521 
5522 /**
5523  * ice_sched_replay_node_bw - replay node(s) BW
5524  * @hw: pointer to the HW struct
5525  * @node: sched node to configure
5526  * @bw_t_info: BW type information
5527  *
5528  * This function restores node's BW from bw_t_info. The caller needs
5529  * to hold the scheduler lock.
5530  */
5531 static enum ice_status
5532 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
5533 			 struct ice_bw_type_info *bw_t_info)
5534 {
5535 	struct ice_port_info *pi = hw->port_info;
5536 	enum ice_status status = ICE_ERR_PARAM;
5537 	u16 bw_alloc;
5538 
5539 	if (!node)
5540 		return status;
5541 	if (!ice_is_any_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
5542 		return ICE_SUCCESS;
5543 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_PRIO)) {
5544 		status = ice_sched_replay_node_prio(hw, node,
5545 						    bw_t_info->generic);
5546 		if (status)
5547 			return status;
5548 	}
5549 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR)) {
5550 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
5551 						   bw_t_info->cir_bw.bw);
5552 		if (status)
5553 			return status;
5554 	}
5555 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR_WT)) {
5556 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
5557 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
5558 						     bw_alloc);
5559 		if (status)
5560 			return status;
5561 	}
5562 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR)) {
5563 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
5564 						   bw_t_info->eir_bw.bw);
5565 		if (status)
5566 			return status;
5567 	}
5568 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR_WT)) {
5569 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
5570 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
5571 						     bw_alloc);
5572 		if (status)
5573 			return status;
5574 	}
5575 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_SHARED))
5576 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
5577 						   bw_t_info->shared_bw);
5578 	return status;
5579 }
5580 
5581 /**
5582  * ice_sched_replay_agg_bw - replay aggregator node(s) BW
5583  * @hw: pointer to the HW struct
5584  * @agg_info: aggregator data structure
5585  *
5586  * This function re-creates aggregator type nodes. The caller needs to hold
5587  * the scheduler lock.
5588  */
5589 static enum ice_status
5590 ice_sched_replay_agg_bw(struct ice_hw *hw, struct ice_sched_agg_info *agg_info)
5591 {
5592 	struct ice_sched_node *tc_node, *agg_node;
5593 	enum ice_status status = ICE_SUCCESS;
5594 	u8 tc;
5595 
5596 	if (!agg_info)
5597 		return ICE_ERR_PARAM;
5598 	ice_for_each_traffic_class(tc) {
5599 		if (!ice_is_any_bit_set(agg_info->bw_t_info[tc].bw_t_bitmap,
5600 					ICE_BW_TYPE_CNT))
5601 			continue;
5602 		tc_node = ice_sched_get_tc_node(hw->port_info, tc);
5603 		if (!tc_node) {
5604 			status = ICE_ERR_PARAM;
5605 			break;
5606 		}
5607 		agg_node = ice_sched_get_agg_node(hw->port_info, tc_node,
5608 						  agg_info->agg_id);
5609 		if (!agg_node) {
5610 			status = ICE_ERR_PARAM;
5611 			break;
5612 		}
5613 		status = ice_sched_replay_node_bw(hw, agg_node,
5614 						  &agg_info->bw_t_info[tc]);
5615 		if (status)
5616 			break;
5617 	}
5618 	return status;
5619 }
5620 
5621 /**
5622  * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
5623  * @pi: port info struct
5624  * @tc_bitmap: 8 bits TC bitmap to check
5625  * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
5626  *
5627  * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
5628  * may be missing, it returns enabled TCs. This function needs to be called with
5629  * scheduler lock held.
5630  */
5631 static void
5632 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, ice_bitmap_t *tc_bitmap,
5633 			    ice_bitmap_t *ena_tc_bitmap)
5634 {
5635 	u8 tc;
5636 
5637 	/* Some TC(s) may be missing after reset, adjust for replay */
5638 	ice_for_each_traffic_class(tc)
5639 		if (ice_is_tc_ena(*tc_bitmap, tc) &&
5640 		    (ice_sched_get_tc_node(pi, tc)))
5641 			ice_set_bit(tc, ena_tc_bitmap);
5642 }
5643 
5644 /**
5645  * ice_sched_replay_agg - recreate aggregator node(s)
5646  * @hw: pointer to the HW struct
5647  *
5648  * This function recreate aggregator type nodes which are not replayed earlier.
5649  * It also replay aggregator BW information. These aggregator nodes are not
5650  * associated with VSI type node yet.
5651  */
5652 void ice_sched_replay_agg(struct ice_hw *hw)
5653 {
5654 	struct ice_port_info *pi = hw->port_info;
5655 	struct ice_sched_agg_info *agg_info;
5656 
5657 	ice_acquire_lock(&pi->sched_lock);
5658 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
5659 			    list_entry)
5660 		/* replay aggregator (re-create aggregator node) */
5661 		if (!ice_cmp_bitmap(agg_info->tc_bitmap,
5662 				    agg_info->replay_tc_bitmap,
5663 				    ICE_MAX_TRAFFIC_CLASS)) {
5664 			ice_declare_bitmap(replay_bitmap,
5665 					   ICE_MAX_TRAFFIC_CLASS);
5666 			enum ice_status status;
5667 
5668 			ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5669 			ice_sched_get_ena_tc_bitmap(pi,
5670 						    agg_info->replay_tc_bitmap,
5671 						    replay_bitmap);
5672 			status = ice_sched_cfg_agg(hw->port_info,
5673 						   agg_info->agg_id,
5674 						   ICE_AGG_TYPE_AGG,
5675 						   replay_bitmap);
5676 			if (status) {
5677 				ice_info(hw, "Replay agg id[%d] failed\n",
5678 					 agg_info->agg_id);
5679 				/* Move on to next one */
5680 				continue;
5681 			}
5682 			/* Replay aggregator node BW (restore aggregator BW) */
5683 			status = ice_sched_replay_agg_bw(hw, agg_info);
5684 			if (status)
5685 				ice_info(hw, "Replay agg bw [id=%d] failed\n",
5686 					 agg_info->agg_id);
5687 		}
5688 	ice_release_lock(&pi->sched_lock);
5689 }
5690 
5691 /**
5692  * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
5693  * @hw: pointer to the HW struct
5694  *
5695  * This function initialize aggregator(s) TC bitmap to zero. A required
5696  * preinit step for replaying aggregators.
5697  */
5698 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
5699 {
5700 	struct ice_port_info *pi = hw->port_info;
5701 	struct ice_sched_agg_info *agg_info;
5702 
5703 	ice_acquire_lock(&pi->sched_lock);
5704 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
5705 			    list_entry) {
5706 		struct ice_sched_agg_vsi_info *agg_vsi_info;
5707 
5708 		agg_info->tc_bitmap[0] = 0;
5709 		LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
5710 				    ice_sched_agg_vsi_info, list_entry)
5711 			agg_vsi_info->tc_bitmap[0] = 0;
5712 	}
5713 	ice_release_lock(&pi->sched_lock);
5714 }
5715 
5716 /**
5717  * ice_sched_replay_root_node_bw - replay root node BW
5718  * @pi: port information structure
5719  *
5720  * Replay root node BW settings.
5721  */
5722 enum ice_status ice_sched_replay_root_node_bw(struct ice_port_info *pi)
5723 {
5724 	enum ice_status status = ICE_SUCCESS;
5725 
5726 	if (!pi->hw)
5727 		return ICE_ERR_PARAM;
5728 	ice_acquire_lock(&pi->sched_lock);
5729 
5730 	status = ice_sched_replay_node_bw(pi->hw, pi->root,
5731 					  &pi->root_node_bw_t_info);
5732 	ice_release_lock(&pi->sched_lock);
5733 	return status;
5734 }
5735 
5736 /**
5737  * ice_sched_replay_tc_node_bw - replay TC node(s) BW
5738  * @pi: port information structure
5739  *
5740  * This function replay TC nodes.
5741  */
5742 enum ice_status ice_sched_replay_tc_node_bw(struct ice_port_info *pi)
5743 {
5744 	enum ice_status status = ICE_SUCCESS;
5745 	u8 tc;
5746 
5747 	if (!pi->hw)
5748 		return ICE_ERR_PARAM;
5749 	ice_acquire_lock(&pi->sched_lock);
5750 	ice_for_each_traffic_class(tc) {
5751 		struct ice_sched_node *tc_node;
5752 
5753 		tc_node = ice_sched_get_tc_node(pi, tc);
5754 		if (!tc_node)
5755 			continue; /* TC not present */
5756 		status = ice_sched_replay_node_bw(pi->hw, tc_node,
5757 						  &pi->tc_node_bw_t_info[tc]);
5758 		if (status)
5759 			break;
5760 	}
5761 	ice_release_lock(&pi->sched_lock);
5762 	return status;
5763 }
5764 
5765 /**
5766  * ice_sched_replay_vsi_bw - replay VSI type node(s) BW
5767  * @hw: pointer to the HW struct
5768  * @vsi_handle: software VSI handle
5769  * @tc_bitmap: 8 bits TC bitmap
5770  *
5771  * This function replays VSI type nodes bandwidth. This function needs to be
5772  * called with scheduler lock held.
5773  */
5774 static enum ice_status
5775 ice_sched_replay_vsi_bw(struct ice_hw *hw, u16 vsi_handle,
5776 			ice_bitmap_t *tc_bitmap)
5777 {
5778 	struct ice_sched_node *vsi_node, *tc_node;
5779 	struct ice_port_info *pi = hw->port_info;
5780 	struct ice_bw_type_info *bw_t_info;
5781 	struct ice_vsi_ctx *vsi_ctx;
5782 	enum ice_status status = ICE_SUCCESS;
5783 	u8 tc;
5784 
5785 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
5786 	if (!vsi_ctx)
5787 		return ICE_ERR_PARAM;
5788 	ice_for_each_traffic_class(tc) {
5789 		if (!ice_is_tc_ena(*tc_bitmap, tc))
5790 			continue;
5791 		tc_node = ice_sched_get_tc_node(pi, tc);
5792 		if (!tc_node)
5793 			continue;
5794 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5795 		if (!vsi_node)
5796 			continue;
5797 		bw_t_info = &vsi_ctx->sched.bw_t_info[tc];
5798 		status = ice_sched_replay_node_bw(hw, vsi_node, bw_t_info);
5799 		if (status)
5800 			break;
5801 	}
5802 	return status;
5803 }
5804 
5805 /**
5806  * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
5807  * @hw: pointer to the HW struct
5808  * @vsi_handle: software VSI handle
5809  *
5810  * This function replays aggregator node, VSI to aggregator type nodes, and
5811  * their node bandwidth information. This function needs to be called with
5812  * scheduler lock held.
5813  */
5814 static enum ice_status
5815 ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
5816 {
5817 	ice_declare_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5818 	struct ice_sched_agg_vsi_info *agg_vsi_info;
5819 	struct ice_port_info *pi = hw->port_info;
5820 	struct ice_sched_agg_info *agg_info;
5821 	enum ice_status status;
5822 
5823 	ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5824 	if (!ice_is_vsi_valid(hw, vsi_handle))
5825 		return ICE_ERR_PARAM;
5826 	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
5827 	if (!agg_info)
5828 		return ICE_SUCCESS; /* Not present in list - default Agg case */
5829 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
5830 	if (!agg_vsi_info)
5831 		return ICE_SUCCESS; /* Not present in list - default Agg case */
5832 	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
5833 				    replay_bitmap);
5834 	/* Replay aggregator node associated to vsi_handle */
5835 	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
5836 				   ICE_AGG_TYPE_AGG, replay_bitmap);
5837 	if (status)
5838 		return status;
5839 	/* Replay aggregator node BW (restore aggregator BW) */
5840 	status = ice_sched_replay_agg_bw(hw, agg_info);
5841 	if (status)
5842 		return status;
5843 
5844 	ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5845 	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
5846 				    replay_bitmap);
5847 	/* Move this VSI (vsi_handle) to above aggregator */
5848 	status = ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
5849 					    replay_bitmap);
5850 	if (status)
5851 		return status;
5852 	/* Replay VSI BW (restore VSI BW) */
5853 	return ice_sched_replay_vsi_bw(hw, vsi_handle,
5854 				       agg_vsi_info->tc_bitmap);
5855 }
5856 
5857 /**
5858  * ice_replay_vsi_agg - replay VSI to aggregator node
5859  * @hw: pointer to the HW struct
5860  * @vsi_handle: software VSI handle
5861  *
5862  * This function replays association of VSI to aggregator type nodes, and
5863  * node bandwidth information.
5864  */
5865 enum ice_status ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
5866 {
5867 	struct ice_port_info *pi = hw->port_info;
5868 	enum ice_status status;
5869 
5870 	ice_acquire_lock(&pi->sched_lock);
5871 	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
5872 	ice_release_lock(&pi->sched_lock);
5873 	return status;
5874 }
5875 
5876 /**
5877  * ice_sched_replay_q_bw - replay queue type node BW
5878  * @pi: port information structure
5879  * @q_ctx: queue context structure
5880  *
5881  * This function replays queue type node bandwidth. This function needs to be
5882  * called with scheduler lock held.
5883  */
5884 enum ice_status
5885 ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
5886 {
5887 	struct ice_sched_node *q_node;
5888 
5889 	/* Following also checks the presence of node in tree */
5890 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
5891 	if (!q_node)
5892 		return ICE_ERR_PARAM;
5893 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
5894 }
5895