1 /* SPDX-License-Identifier: BSD-3-Clause */ 2 /* Copyright (c) 2022, Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * 3. Neither the name of the Intel Corporation nor the names of its 16 * contributors may be used to endorse or promote products derived from 17 * this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /*$FreeBSD$*/ 32 33 /** 34 * @file ice_osdep.h 35 * @brief OS compatibility layer 36 * 37 * Contains various definitions and functions which are part of an OS 38 * compatibility layer for sharing code with other operating systems. 39 */ 40 #ifndef _ICE_OSDEP_H_ 41 #define _ICE_OSDEP_H_ 42 43 #include <sys/endian.h> 44 #include <sys/param.h> 45 #include <sys/kernel.h> 46 #include <sys/malloc.h> 47 #include <sys/proc.h> 48 #include <sys/systm.h> 49 #include <sys/lock.h> 50 #include <sys/mutex.h> 51 #include <sys/bus.h> 52 #include <machine/bus.h> 53 #include <sys/bus_dma.h> 54 #include <netinet/in.h> 55 #include <sys/counter.h> 56 #include <sys/sbuf.h> 57 58 #include "ice_alloc.h" 59 60 #define ICE_INTEL_VENDOR_ID 0x8086 61 62 #define ICE_STR_BUF_LEN 32 63 64 struct ice_hw; 65 66 device_t ice_hw_to_dev(struct ice_hw *hw); 67 68 /* configure hw->debug_mask to enable debug prints */ 69 void ice_debug(struct ice_hw *hw, uint64_t mask, char *fmt, ...) __printflike(3, 4); 70 void ice_debug_array(struct ice_hw *hw, uint64_t mask, uint32_t rowsize, 71 uint32_t groupsize, uint8_t *buf, size_t len); 72 void ice_info_fwlog(struct ice_hw *hw, uint32_t rowsize, uint32_t groupsize, 73 uint8_t *buf, size_t len); 74 75 #define ice_info(_hw, _fmt, args...) \ 76 device_printf(ice_hw_to_dev(_hw), (_fmt), ##args) 77 78 #define ice_warn(_hw, _fmt, args...) \ 79 device_printf(ice_hw_to_dev(_hw), (_fmt), ##args) 80 81 #define DIVIDE_AND_ROUND_UP howmany 82 #define ROUND_UP roundup 83 84 uint32_t rd32(struct ice_hw *hw, uint32_t reg); 85 uint64_t rd64(struct ice_hw *hw, uint32_t reg); 86 void wr32(struct ice_hw *hw, uint32_t reg, uint32_t val); 87 void wr64(struct ice_hw *hw, uint32_t reg, uint64_t val); 88 89 #define ice_flush(_hw) rd32((_hw), GLGEN_STAT) 90 91 MALLOC_DECLARE(M_ICE_OSDEP); 92 93 /** 94 * ice_calloc - Allocate an array of elementes 95 * @hw: the hardware private structure 96 * @count: number of elements to allocate 97 * @size: the size of each element 98 * 99 * Allocate memory for an array of items equal to size. Note that the OS 100 * compatibility layer assumes all allocation functions will provide zero'd 101 * memory. 102 */ 103 static inline void * 104 ice_calloc(struct ice_hw __unused *hw, size_t count, size_t size) 105 { 106 return malloc(count * size, M_ICE_OSDEP, M_ZERO | M_NOWAIT); 107 } 108 109 /** 110 * ice_malloc - Allocate memory of a specified size 111 * @hw: the hardware private structure 112 * @size: the size to allocate 113 * 114 * Allocates memory of the specified size. Note that the OS compatibility 115 * layer assumes that all allocations will provide zero'd memory. 116 */ 117 static inline void * 118 ice_malloc(struct ice_hw __unused *hw, size_t size) 119 { 120 return malloc(size, M_ICE_OSDEP, M_ZERO | M_NOWAIT); 121 } 122 123 /** 124 * ice_memdup - Allocate a copy of some other memory 125 * @hw: private hardware structure 126 * @src: the source to copy from 127 * @size: allocation size 128 * @dir: the direction of copying 129 * 130 * Allocate memory of the specified size, and copy bytes from the src to fill 131 * it. We don't need to zero this memory as we immediately initialize it by 132 * copying from the src pointer. 133 */ 134 static inline void * 135 ice_memdup(struct ice_hw __unused *hw, const void *src, size_t size, 136 enum ice_memcpy_type __unused dir) 137 { 138 void *dst = malloc(size, M_ICE_OSDEP, M_NOWAIT); 139 140 if (dst != NULL) 141 memcpy(dst, src, size); 142 143 return dst; 144 } 145 146 /** 147 * ice_free - Free previously allocated memory 148 * @hw: the hardware private structure 149 * @mem: pointer to the memory to free 150 * 151 * Free memory that was previously allocated by ice_calloc, ice_malloc, or 152 * ice_memdup. 153 */ 154 static inline void 155 ice_free(struct ice_hw __unused *hw, void *mem) 156 { 157 free(mem, M_ICE_OSDEP); 158 } 159 160 /* These are macros in order to drop the unused direction enumeration constant */ 161 #define ice_memset(addr, c, len, unused) memset((addr), (c), (len)) 162 #define ice_memcpy(dst, src, len, unused) memcpy((dst), (src), (len)) 163 164 void ice_usec_delay(uint32_t time, bool sleep); 165 void ice_msec_delay(uint32_t time, bool sleep); 166 void ice_msec_pause(uint32_t time); 167 void ice_msec_spin(uint32_t time); 168 169 #define UNREFERENCED_PARAMETER(_p) _p = _p 170 #define UNREFERENCED_1PARAMETER(_p) do { \ 171 UNREFERENCED_PARAMETER(_p); \ 172 } while (0) 173 #define UNREFERENCED_2PARAMETER(_p, _q) do { \ 174 UNREFERENCED_PARAMETER(_p); \ 175 UNREFERENCED_PARAMETER(_q); \ 176 } while (0) 177 #define UNREFERENCED_3PARAMETER(_p, _q, _r) do { \ 178 UNREFERENCED_PARAMETER(_p); \ 179 UNREFERENCED_PARAMETER(_q); \ 180 UNREFERENCED_PARAMETER(_r); \ 181 } while (0) 182 #define UNREFERENCED_4PARAMETER(_p, _q, _r, _s) do { \ 183 UNREFERENCED_PARAMETER(_p); \ 184 UNREFERENCED_PARAMETER(_q); \ 185 UNREFERENCED_PARAMETER(_r); \ 186 UNREFERENCED_PARAMETER(_s); \ 187 } while (0) 188 #define UNREFERENCED_5PARAMETER(_p, _q, _r, _s, _t) do { \ 189 UNREFERENCED_PARAMETER(_p); \ 190 UNREFERENCED_PARAMETER(_q); \ 191 UNREFERENCED_PARAMETER(_r); \ 192 UNREFERENCED_PARAMETER(_s); \ 193 UNREFERENCED_PARAMETER(_t); \ 194 } while (0) 195 196 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 197 #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0])) 198 #define MAKEMASK(_m, _s) ((_m) << (_s)) 199 200 #define LIST_HEAD_TYPE ice_list_head 201 #define LIST_ENTRY_TYPE ice_list_node 202 203 /** 204 * @struct ice_list_node 205 * @brief simplified linked list node API 206 * 207 * Represents a node in a linked list, which can be embedded into a structure 208 * to allow that structure to be inserted into a linked list. Access to the 209 * contained structure is done via __containerof 210 */ 211 struct ice_list_node { 212 LIST_ENTRY(ice_list_node) entries; 213 }; 214 215 /** 216 * @struct ice_list_head 217 * @brief simplified linked list head API 218 * 219 * Represents the head of a linked list. The linked list should consist of 220 * a series of ice_list_node structures embedded into another structure 221 * accessed using __containerof. This way, the ice_list_head doesn't need to 222 * know the type of the structure it contains. 223 */ 224 LIST_HEAD(ice_list_head, ice_list_node); 225 226 #define INIT_LIST_HEAD LIST_INIT 227 /* LIST_EMPTY doesn't need to be changed */ 228 #define LIST_ADD(entry, head) LIST_INSERT_HEAD(head, entry, entries) 229 #define LIST_ADD_AFTER(entry, elem) LIST_INSERT_AFTER(elem, entry, entries) 230 #define LIST_DEL(entry) LIST_REMOVE(entry, entries) 231 #define _osdep_LIST_ENTRY(ptr, type, member) \ 232 __containerof(ptr, type, member) 233 #define LIST_FIRST_ENTRY(head, type, member) \ 234 _osdep_LIST_ENTRY(LIST_FIRST(head), type, member) 235 #define LIST_NEXT_ENTRY(ptr, unused, member) \ 236 _osdep_LIST_ENTRY(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member) 237 #define LIST_REPLACE_INIT(old_head, new_head) do { \ 238 __typeof(new_head) _new_head = (new_head); \ 239 LIST_INIT(_new_head); \ 240 LIST_SWAP(old_head, _new_head, ice_list_node, entries); \ 241 } while (0) 242 243 #define LIST_ENTRY_SAFE(_ptr, _type, _member) \ 244 ({ __typeof(_ptr) ____ptr = (_ptr); \ 245 ____ptr ? _osdep_LIST_ENTRY(____ptr, _type, _member) : NULL; \ 246 }) 247 248 /** 249 * ice_get_list_tail - Return the pointer to the last node in the list 250 * @head: the pointer to the head of the list 251 * 252 * A helper function for implementing LIST_ADD_TAIL and LIST_LAST_ENTRY. 253 * Returns the pointer to the last node in the list, or NULL of the list is 254 * empty. 255 * 256 * Note: due to the list implementation this is O(N), where N is the size of 257 * the list. An O(1) implementation requires replacing the underlying list 258 * datastructure with one that has a tail pointer. This is problematic, 259 * because using a simple TAILQ would require that the addition and deletion 260 * be given the head of the list. 261 */ 262 static inline struct ice_list_node * 263 ice_get_list_tail(struct ice_list_head *head) 264 { 265 struct ice_list_node *node = LIST_FIRST(head); 266 267 if (node == NULL) 268 return NULL; 269 while (LIST_NEXT(node, entries) != NULL) 270 node = LIST_NEXT(node, entries); 271 272 return node; 273 } 274 275 /* TODO: This is O(N). An O(1) implementation would require a different 276 * underlying list structure, such as a circularly linked list. */ 277 #define LIST_ADD_TAIL(entry, head) do { \ 278 struct ice_list_node *node = ice_get_list_tail(head); \ 279 \ 280 if (node == NULL) { \ 281 LIST_ADD(entry, head); \ 282 } else { \ 283 LIST_INSERT_AFTER(node, entry, entries); \ 284 } \ 285 } while (0) 286 287 #define LIST_LAST_ENTRY(head, type, member) \ 288 LIST_ENTRY_SAFE(ice_get_list_tail(head), type, member) 289 290 #define LIST_FIRST_ENTRY_SAFE(head, type, member) \ 291 LIST_ENTRY_SAFE(LIST_FIRST(head), type, member) 292 293 #define LIST_NEXT_ENTRY_SAFE(ptr, member) \ 294 LIST_ENTRY_SAFE(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member) 295 296 #define LIST_FOR_EACH_ENTRY(pos, head, unused, member) \ 297 for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member); \ 298 pos; \ 299 pos = LIST_NEXT_ENTRY_SAFE(pos, member)) 300 301 #define LIST_FOR_EACH_ENTRY_SAFE(pos, n, head, unused, member) \ 302 for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member); \ 303 pos && ({ n = LIST_NEXT_ENTRY_SAFE(pos, member); 1; }); \ 304 pos = n) 305 306 #define STATIC static 307 308 #define NTOHS ntohs 309 #define NTOHL ntohl 310 #define HTONS htons 311 #define HTONL htonl 312 #define LE16_TO_CPU le16toh 313 #define LE32_TO_CPU le32toh 314 #define LE64_TO_CPU le64toh 315 #define CPU_TO_LE16 htole16 316 #define CPU_TO_LE32 htole32 317 #define CPU_TO_LE64 htole64 318 #define CPU_TO_BE16 htobe16 319 #define CPU_TO_BE32 htobe32 320 321 #define SNPRINTF snprintf 322 323 /** 324 * @typedef u8 325 * @brief compatibility typedef for uint8_t 326 */ 327 typedef uint8_t u8; 328 329 /** 330 * @typedef u16 331 * @brief compatibility typedef for uint16_t 332 */ 333 typedef uint16_t u16; 334 335 /** 336 * @typedef u32 337 * @brief compatibility typedef for uint32_t 338 */ 339 typedef uint32_t u32; 340 341 /** 342 * @typedef u64 343 * @brief compatibility typedef for uint64_t 344 */ 345 typedef uint64_t u64; 346 347 /** 348 * @typedef s8 349 * @brief compatibility typedef for int8_t 350 */ 351 typedef int8_t s8; 352 353 /** 354 * @typedef s16 355 * @brief compatibility typedef for int16_t 356 */ 357 typedef int16_t s16; 358 359 /** 360 * @typedef s32 361 * @brief compatibility typedef for int32_t 362 */ 363 typedef int32_t s32; 364 365 /** 366 * @typedef s64 367 * @brief compatibility typedef for int64_t 368 */ 369 typedef int64_t s64; 370 371 #define __le16 u16 372 #define __le32 u32 373 #define __le64 u64 374 #define __be16 u16 375 #define __be32 u32 376 #define __be64 u64 377 378 #define ice_hweight8(x) bitcount16((u8)x) 379 #define ice_hweight16(x) bitcount16(x) 380 #define ice_hweight32(x) bitcount32(x) 381 #define ice_hweight64(x) bitcount64(x) 382 383 /** 384 * @struct ice_dma_mem 385 * @brief DMA memory allocation 386 * 387 * Contains DMA allocation bits, used to simplify DMA allocations. 388 */ 389 struct ice_dma_mem { 390 void *va; 391 uint64_t pa; 392 size_t size; 393 394 bus_dma_tag_t tag; 395 bus_dmamap_t map; 396 bus_dma_segment_t seg; 397 }; 398 399 400 void * ice_alloc_dma_mem(struct ice_hw *hw, struct ice_dma_mem *mem, u64 size); 401 void ice_free_dma_mem(struct ice_hw __unused *hw, struct ice_dma_mem *mem); 402 403 /** 404 * @struct ice_lock 405 * @brief simplified lock API 406 * 407 * Contains a simple lock implementation used to lock various resources. 408 */ 409 struct ice_lock { 410 struct mtx mutex; 411 char name[ICE_STR_BUF_LEN]; 412 }; 413 414 extern u16 ice_lock_count; 415 416 /** 417 * ice_init_lock - Initialize a lock for use 418 * @lock: the lock memory to initialize 419 * 420 * OS compatibility layer to provide a simple locking mechanism. We use 421 * a mutex for this purpose. 422 */ 423 static inline void 424 ice_init_lock(struct ice_lock *lock) 425 { 426 /* 427 * Make each lock unique by incrementing a counter each time this 428 * function is called. Use of a u16 allows 65535 possible locks before 429 * we'd hit a duplicate. 430 */ 431 memset(lock->name, 0, sizeof(lock->name)); 432 snprintf(lock->name, ICE_STR_BUF_LEN, "ice_lock_%u", ice_lock_count++); 433 mtx_init(&lock->mutex, lock->name, NULL, MTX_DEF); 434 } 435 436 /** 437 * ice_acquire_lock - Acquire the lock 438 * @lock: the lock to acquire 439 * 440 * Acquires the mutex specified by the lock pointer. 441 */ 442 static inline void 443 ice_acquire_lock(struct ice_lock *lock) 444 { 445 mtx_lock(&lock->mutex); 446 } 447 448 /** 449 * ice_release_lock - Release the lock 450 * @lock: the lock to release 451 * 452 * Releases the mutex specified by the lock pointer. 453 */ 454 static inline void 455 ice_release_lock(struct ice_lock *lock) 456 { 457 mtx_unlock(&lock->mutex); 458 } 459 460 /** 461 * ice_destroy_lock - Destroy the lock to de-allocate it 462 * @lock: the lock to destroy 463 * 464 * Destroys a previously initialized lock. We only do this if the mutex was 465 * previously initialized. 466 */ 467 static inline void 468 ice_destroy_lock(struct ice_lock *lock) 469 { 470 if (mtx_initialized(&lock->mutex)) 471 mtx_destroy(&lock->mutex); 472 memset(lock->name, 0, sizeof(lock->name)); 473 } 474 475 /* Some function parameters are unused outside of MPASS/KASSERT macros. Rather 476 * than marking these as __unused all the time, mark them as __invariant_only, 477 * and define this to __unused when INVARIANTS is disabled. Otherwise, define 478 * it empty so that __invariant_only parameters are caught as unused by the 479 * INVARIANTS build. 480 */ 481 #ifndef INVARIANTS 482 #define __invariant_only __unused 483 #else 484 #define __invariant_only 485 #endif 486 487 #define __ALWAYS_UNUSED __unused 488 489 /** 490 * ice_ilog2 - Calculate the integer log base 2 of a 64bit value 491 * @n: 64bit number 492 * 493 * Calculates the integer log base 2 of a 64bit value, rounded down. 494 * 495 * @remark The integer log base 2 of zero is technically undefined, but this 496 * function will return 0 in that case. 497 * 498 */ 499 static inline int 500 ice_ilog2(u64 n) { 501 if (n == 0) 502 return 0; 503 return flsll(n) - 1; 504 } 505 506 /** 507 * ice_is_pow2 - Check if the value is a power of 2 508 * @n: 64bit number 509 * 510 * Check if the given value is a power of 2. 511 * 512 * @remark FreeBSD's powerof2 function treats zero as a power of 2, while this 513 * function does not. 514 * 515 * @returns true or false 516 */ 517 static inline bool 518 ice_is_pow2(u64 n) { 519 if (n == 0) 520 return false; 521 return powerof2(n); 522 } 523 #endif /* _ICE_OSDEP_H_ */ 524