xref: /freebsd/sys/dev/ice/ice_osdep.h (revision 5956d97f4b3204318ceb6aa9c77bd0bc6ea87a41)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2021, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*$FreeBSD$*/
32 
33 /**
34  * @file ice_osdep.h
35  * @brief OS compatibility layer
36  *
37  * Contains various definitions and functions which are part of an OS
38  * compatibility layer for sharing code with other operating systems.
39  */
40 #ifndef _ICE_OSDEP_H_
41 #define _ICE_OSDEP_H_
42 
43 #include <sys/endian.h>
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/proc.h>
48 #include <sys/systm.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/bus.h>
52 #include <machine/bus.h>
53 #include <sys/bus_dma.h>
54 #include <netinet/in.h>
55 #include <sys/counter.h>
56 #include <sys/sbuf.h>
57 
58 #include "ice_alloc.h"
59 
60 #define ICE_INTEL_VENDOR_ID 0x8086
61 
62 #define ICE_STR_BUF_LEN 32
63 
64 struct ice_hw;
65 
66 device_t ice_hw_to_dev(struct ice_hw *hw);
67 
68 /* configure hw->debug_mask to enable debug prints */
69 void ice_debug(struct ice_hw *hw, uint64_t mask, char *fmt, ...) __printflike(3, 4);
70 void ice_debug_array(struct ice_hw *hw, uint64_t mask, uint32_t rowsize,
71 		     uint32_t groupsize, uint8_t *buf, size_t len);
72 void ice_info_fwlog(struct ice_hw *hw, uint32_t rowsize, uint32_t groupsize,
73 		    uint8_t *buf, size_t len);
74 
75 #define ice_info(_hw, _fmt, args...) \
76 	device_printf(ice_hw_to_dev(_hw), (_fmt), ##args)
77 
78 #define ice_warn(_hw, _fmt, args...) \
79 	device_printf(ice_hw_to_dev(_hw), (_fmt), ##args)
80 
81 #define DIVIDE_AND_ROUND_UP howmany
82 #define ROUND_UP roundup
83 
84 uint32_t rd32(struct ice_hw *hw, uint32_t reg);
85 uint64_t rd64(struct ice_hw *hw, uint32_t reg);
86 void wr32(struct ice_hw *hw, uint32_t reg, uint32_t val);
87 void wr64(struct ice_hw *hw, uint32_t reg, uint64_t val);
88 
89 #define ice_flush(_hw) rd32((_hw), GLGEN_STAT)
90 
91 MALLOC_DECLARE(M_ICE_OSDEP);
92 
93 /**
94  * ice_calloc - Allocate an array of elementes
95  * @hw: the hardware private structure
96  * @count: number of elements to allocate
97  * @size: the size of each element
98  *
99  * Allocate memory for an array of items equal to size. Note that the OS
100  * compatibility layer assumes all allocation functions will provide zero'd
101  * memory.
102  */
103 static inline void *
104 ice_calloc(struct ice_hw __unused *hw, size_t count, size_t size)
105 {
106 	return malloc(count * size, M_ICE_OSDEP, M_ZERO | M_NOWAIT);
107 }
108 
109 /**
110  * ice_malloc - Allocate memory of a specified size
111  * @hw: the hardware private structure
112  * @size: the size to allocate
113  *
114  * Allocates memory of the specified size. Note that the OS compatibility
115  * layer assumes that all allocations will provide zero'd memory.
116  */
117 static inline void *
118 ice_malloc(struct ice_hw __unused *hw, size_t size)
119 {
120 	return malloc(size, M_ICE_OSDEP, M_ZERO | M_NOWAIT);
121 }
122 
123 /**
124  * ice_memdup - Allocate a copy of some other memory
125  * @hw: private hardware structure
126  * @src: the source to copy from
127  * @size: allocation size
128  * @dir: the direction of copying
129  *
130  * Allocate memory of the specified size, and copy bytes from the src to fill
131  * it. We don't need to zero this memory as we immediately initialize it by
132  * copying from the src pointer.
133  */
134 static inline void *
135 ice_memdup(struct ice_hw __unused *hw, const void *src, size_t size,
136 	   enum ice_memcpy_type __unused dir)
137 {
138 	void *dst = malloc(size, M_ICE_OSDEP, M_NOWAIT);
139 
140 	if (dst != NULL)
141 		memcpy(dst, src, size);
142 
143 	return dst;
144 }
145 
146 /**
147  * ice_free - Free previously allocated memory
148  * @hw: the hardware private structure
149  * @mem: pointer to the memory to free
150  *
151  * Free memory that was previously allocated by ice_calloc, ice_malloc, or
152  * ice_memdup.
153  */
154 static inline void
155 ice_free(struct ice_hw __unused *hw, void *mem)
156 {
157 	free(mem, M_ICE_OSDEP);
158 }
159 
160 /* These are macros in order to drop the unused direction enumeration constant */
161 #define ice_memset(addr, c, len, unused) memset((addr), (c), (len))
162 #define ice_memcpy(dst, src, len, unused) memcpy((dst), (src), (len))
163 
164 void ice_usec_delay(uint32_t time, bool sleep);
165 void ice_msec_delay(uint32_t time, bool sleep);
166 void ice_msec_pause(uint32_t time);
167 void ice_msec_spin(uint32_t time);
168 
169 #define UNREFERENCED_PARAMETER(_p) _p = _p
170 #define UNREFERENCED_1PARAMETER(_p) do {			\
171 	UNREFERENCED_PARAMETER(_p);				\
172 } while (0)
173 #define UNREFERENCED_2PARAMETER(_p, _q) do {			\
174 	UNREFERENCED_PARAMETER(_p);				\
175 	UNREFERENCED_PARAMETER(_q);				\
176 } while (0)
177 #define UNREFERENCED_3PARAMETER(_p, _q, _r) do {		\
178 	UNREFERENCED_PARAMETER(_p);				\
179 	UNREFERENCED_PARAMETER(_q);				\
180 	UNREFERENCED_PARAMETER(_r);				\
181 } while (0)
182 #define UNREFERENCED_4PARAMETER(_p, _q, _r, _s) do {		\
183 	UNREFERENCED_PARAMETER(_p);				\
184 	UNREFERENCED_PARAMETER(_q);				\
185 	UNREFERENCED_PARAMETER(_r);				\
186 	UNREFERENCED_PARAMETER(_s);				\
187 } while (0)
188 #define UNREFERENCED_5PARAMETER(_p, _q, _r, _s, _t) do {	\
189 	UNREFERENCED_PARAMETER(_p);				\
190 	UNREFERENCED_PARAMETER(_q);				\
191 	UNREFERENCED_PARAMETER(_r);				\
192 	UNREFERENCED_PARAMETER(_s);				\
193 	UNREFERENCED_PARAMETER(_t);				\
194 } while (0)
195 
196 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
197 #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
198 #define MAKEMASK(_m, _s) ((_m) << (_s))
199 
200 #define LIST_HEAD_TYPE ice_list_head
201 #define LIST_ENTRY_TYPE ice_list_node
202 
203 /**
204  * @struct ice_list_node
205  * @brief simplified linked list node API
206  *
207  * Represents a node in a linked list, which can be embedded into a structure
208  * to allow that structure to be inserted into a linked list. Access to the
209  * contained structure is done via __containerof
210  */
211 struct ice_list_node {
212 	LIST_ENTRY(ice_list_node) entries;
213 };
214 
215 /**
216  * @struct ice_list_head
217  * @brief simplified linked list head API
218  *
219  * Represents the head of a linked list. The linked list should consist of
220  * a series of ice_list_node structures embedded into another structure
221  * accessed using __containerof. This way, the ice_list_head doesn't need to
222  * know the type of the structure it contains.
223  */
224 LIST_HEAD(ice_list_head, ice_list_node);
225 
226 #define INIT_LIST_HEAD LIST_INIT
227 /* LIST_EMPTY doesn't need to be changed */
228 #define LIST_ADD(entry, head) LIST_INSERT_HEAD(head, entry, entries)
229 #define LIST_ADD_AFTER(entry, elem) LIST_INSERT_AFTER(elem, entry, entries)
230 #define LIST_DEL(entry) LIST_REMOVE(entry, entries)
231 #define _osdep_LIST_ENTRY(ptr, type, member) \
232 	__containerof(ptr, type, member)
233 #define LIST_FIRST_ENTRY(head, type, member) \
234 	_osdep_LIST_ENTRY(LIST_FIRST(head), type, member)
235 #define LIST_NEXT_ENTRY(ptr, unused, member) \
236 	_osdep_LIST_ENTRY(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member)
237 #define LIST_REPLACE_INIT(old_head, new_head) do {			\
238 	__typeof(new_head) _new_head = (new_head);			\
239 	LIST_INIT(_new_head);						\
240 	LIST_SWAP(old_head, _new_head, ice_list_node, entries);		\
241 } while (0)
242 
243 #define LIST_ENTRY_SAFE(_ptr, _type, _member) \
244 ({ __typeof(_ptr) ____ptr = (_ptr); \
245    ____ptr ? _osdep_LIST_ENTRY(____ptr, _type, _member) : NULL; \
246 })
247 
248 /**
249  * ice_get_list_tail - Return the pointer to the last node in the list
250  * @head: the pointer to the head of the list
251  *
252  * A helper function for implementing LIST_ADD_TAIL and LIST_LAST_ENTRY.
253  * Returns the pointer to the last node in the list, or NULL of the list is
254  * empty.
255  *
256  * Note: due to the list implementation this is O(N), where N is the size of
257  * the list. An O(1) implementation requires replacing the underlying list
258  * datastructure with one that has a tail pointer. This is problematic,
259  * because using a simple TAILQ would require that the addition and deletion
260  * be given the head of the list.
261  */
262 static inline struct ice_list_node *
263 ice_get_list_tail(struct ice_list_head *head)
264 {
265 	struct ice_list_node *node = LIST_FIRST(head);
266 
267 	if (node == NULL)
268 		return NULL;
269 	while (LIST_NEXT(node, entries) != NULL)
270 		node = LIST_NEXT(node, entries);
271 
272 	return node;
273 }
274 
275 /* TODO: This is O(N). An O(1) implementation would require a different
276  * underlying list structure, such as a circularly linked list. */
277 #define LIST_ADD_TAIL(entry, head) do {					\
278 	struct ice_list_node *node = ice_get_list_tail(head);		\
279 									\
280 	if (node == NULL) {						\
281 		LIST_ADD(entry, head);					\
282 	} else {							\
283 		LIST_INSERT_AFTER(node, entry, entries);		\
284 	}								\
285 } while (0)
286 
287 #define LIST_LAST_ENTRY(head, type, member) \
288 	LIST_ENTRY_SAFE(ice_get_list_tail(head), type, member)
289 
290 #define LIST_FIRST_ENTRY_SAFE(head, type, member) \
291 	LIST_ENTRY_SAFE(LIST_FIRST(head), type, member)
292 
293 #define LIST_NEXT_ENTRY_SAFE(ptr, member) \
294 	LIST_ENTRY_SAFE(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member)
295 
296 #define LIST_FOR_EACH_ENTRY(pos, head, unused, member) \
297 	for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member);		\
298 	    pos;								\
299 	    pos = LIST_NEXT_ENTRY_SAFE(pos, member))
300 
301 #define LIST_FOR_EACH_ENTRY_SAFE(pos, n, head, unused, member) \
302 	for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member);		\
303 	     pos && ({ n = LIST_NEXT_ENTRY_SAFE(pos, member); 1; });		\
304 	     pos = n)
305 
306 #define STATIC static
307 
308 #define NTOHS ntohs
309 #define NTOHL ntohl
310 #define HTONS htons
311 #define HTONL htonl
312 #define LE16_TO_CPU le16toh
313 #define LE32_TO_CPU le32toh
314 #define LE64_TO_CPU le64toh
315 #define CPU_TO_LE16 htole16
316 #define CPU_TO_LE32 htole32
317 #define CPU_TO_LE64 htole64
318 #define CPU_TO_BE16 htobe16
319 #define CPU_TO_BE32 htobe32
320 
321 #define SNPRINTF snprintf
322 
323 /**
324  * @typedef u8
325  * @brief compatibility typedef for uint8_t
326  */
327 typedef uint8_t  u8;
328 
329 /**
330  * @typedef u16
331  * @brief compatibility typedef for uint16_t
332  */
333 typedef uint16_t u16;
334 
335 /**
336  * @typedef u32
337  * @brief compatibility typedef for uint32_t
338  */
339 typedef uint32_t u32;
340 
341 /**
342  * @typedef u64
343  * @brief compatibility typedef for uint64_t
344  */
345 typedef uint64_t u64;
346 
347 /**
348  * @typedef s8
349  * @brief compatibility typedef for int8_t
350  */
351 typedef int8_t  s8;
352 
353 /**
354  * @typedef s16
355  * @brief compatibility typedef for int16_t
356  */
357 typedef int16_t s16;
358 
359 /**
360  * @typedef s32
361  * @brief compatibility typedef for int32_t
362  */
363 typedef int32_t s32;
364 
365 /**
366  * @typedef s64
367  * @brief compatibility typedef for int64_t
368  */
369 typedef int64_t s64;
370 
371 #define __le16 u16
372 #define __le32 u32
373 #define __le64 u64
374 #define __be16 u16
375 #define __be32 u32
376 #define __be64 u64
377 
378 #define ice_hweight8(x) bitcount16((u8)x)
379 #define ice_hweight16(x) bitcount16(x)
380 #define ice_hweight32(x) bitcount32(x)
381 #define ice_hweight64(x) bitcount64(x)
382 
383 /**
384  * @struct ice_dma_mem
385  * @brief DMA memory allocation
386  *
387  * Contains DMA allocation bits, used to simplify DMA allocations.
388  */
389 struct ice_dma_mem {
390 	void *va;
391 	uint64_t pa;
392 	size_t size;
393 
394 	bus_dma_tag_t		tag;
395 	bus_dmamap_t		map;
396 	bus_dma_segment_t	seg;
397 };
398 
399 
400 void * ice_alloc_dma_mem(struct ice_hw *hw, struct ice_dma_mem *mem, u64 size);
401 void ice_free_dma_mem(struct ice_hw __unused *hw, struct ice_dma_mem *mem);
402 
403 /**
404  * @struct ice_lock
405  * @brief simplified lock API
406  *
407  * Contains a simple lock implementation used to lock various resources.
408  */
409 struct ice_lock {
410 	struct mtx mutex;
411 	char name[ICE_STR_BUF_LEN];
412 };
413 
414 extern u16 ice_lock_count;
415 
416 /**
417  * ice_init_lock - Initialize a lock for use
418  * @lock: the lock memory to initialize
419  *
420  * OS compatibility layer to provide a simple locking mechanism. We use
421  * a mutex for this purpose.
422  */
423 static inline void
424 ice_init_lock(struct ice_lock *lock)
425 {
426 	/*
427 	 * Make each lock unique by incrementing a counter each time this
428 	 * function is called. Use of a u16 allows 65535 possible locks before
429 	 * we'd hit a duplicate.
430 	 */
431 	memset(lock->name, 0, sizeof(lock->name));
432 	snprintf(lock->name, ICE_STR_BUF_LEN, "ice_lock_%u", ice_lock_count++);
433 	mtx_init(&lock->mutex, lock->name, NULL, MTX_DEF);
434 }
435 
436 /**
437  * ice_acquire_lock - Acquire the lock
438  * @lock: the lock to acquire
439  *
440  * Acquires the mutex specified by the lock pointer.
441  */
442 static inline void
443 ice_acquire_lock(struct ice_lock *lock)
444 {
445 	mtx_lock(&lock->mutex);
446 }
447 
448 /**
449  * ice_release_lock - Release the lock
450  * @lock: the lock to release
451  *
452  * Releases the mutex specified by the lock pointer.
453  */
454 static inline void
455 ice_release_lock(struct ice_lock *lock)
456 {
457 	mtx_unlock(&lock->mutex);
458 }
459 
460 /**
461  * ice_destroy_lock - Destroy the lock to de-allocate it
462  * @lock: the lock to destroy
463  *
464  * Destroys a previously initialized lock. We only do this if the mutex was
465  * previously initialized.
466  */
467 static inline void
468 ice_destroy_lock(struct ice_lock *lock)
469 {
470 	if (mtx_initialized(&lock->mutex))
471 		mtx_destroy(&lock->mutex);
472 	memset(lock->name, 0, sizeof(lock->name));
473 }
474 
475 /* Some function parameters are unused outside of MPASS/KASSERT macros. Rather
476  * than marking these as __unused all the time, mark them as __invariant_only,
477  * and define this to __unused when INVARIANTS is disabled. Otherwise, define
478  * it empty so that __invariant_only parameters are caught as unused by the
479  * INVARIANTS build.
480  */
481 #ifndef INVARIANTS
482 #define __invariant_only __unused
483 #else
484 #define __invariant_only
485 #endif
486 
487 #define __ALWAYS_UNUSED __unused
488 
489 /**
490  * ice_ilog2 - Calculate the integer log base 2 of a 64bit value
491  * @n: 64bit number
492  *
493  * Calculates the integer log base 2 of a 64bit value, rounded down.
494  *
495  * @remark The integer log base 2 of zero is technically undefined, but this
496  * function will return 0 in that case.
497  *
498  */
499 static inline int
500 ice_ilog2(u64 n) {
501 	if (n == 0)
502 		return 0;
503 	return flsll(n) - 1;
504 }
505 
506 /**
507  * ice_is_pow2 - Check if the value is a power of 2
508  * @n: 64bit number
509  *
510  * Check if the given value is a power of 2.
511  *
512  * @remark FreeBSD's powerof2 function treats zero as a power of 2, while this
513  * function does not.
514  *
515  * @returns true or false
516  */
517 static inline bool
518 ice_is_pow2(u64 n) {
519 	if (n == 0)
520 		return false;
521 	return powerof2(n);
522 }
523 #endif /* _ICE_OSDEP_H_ */
524