1 /* SPDX-License-Identifier: BSD-3-Clause */ 2 /* Copyright (c) 2020, Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * 3. Neither the name of the Intel Corporation nor the names of its 16 * contributors may be used to endorse or promote products derived from 17 * this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /*$FreeBSD$*/ 32 33 /** 34 * @file ice_osdep.h 35 * @brief OS compatibility layer 36 * 37 * Contains various definitions and functions which are part of an OS 38 * compatibility layer for sharing code with other operating systems. 39 */ 40 #ifndef _ICE_OSDEP_H_ 41 #define _ICE_OSDEP_H_ 42 43 #include <sys/endian.h> 44 #include <sys/param.h> 45 #include <sys/kernel.h> 46 #include <sys/malloc.h> 47 #include <sys/proc.h> 48 #include <sys/systm.h> 49 #include <sys/lock.h> 50 #include <sys/mutex.h> 51 #include <sys/bus.h> 52 #include <machine/bus.h> 53 #include <sys/bus_dma.h> 54 #include <netinet/in.h> 55 #include <sys/counter.h> 56 #include <sys/sbuf.h> 57 58 #include "ice_alloc.h" 59 60 #define ICE_INTEL_VENDOR_ID 0x8086 61 62 #define ICE_STR_BUF_LEN 32 63 64 struct ice_hw; 65 66 device_t ice_hw_to_dev(struct ice_hw *hw); 67 68 /* configure hw->debug_mask to enable debug prints */ 69 void ice_debug(struct ice_hw *hw, uint64_t mask, char *fmt, ...) __printflike(3, 4); 70 void ice_debug_array(struct ice_hw *hw, uint64_t mask, uint32_t rowsize, 71 uint32_t groupsize, uint8_t *buf, size_t len); 72 73 #define ice_info(_hw, _fmt, args...) \ 74 device_printf(ice_hw_to_dev(_hw), (_fmt), ##args) 75 76 #define ice_warn(_hw, _fmt, args...) \ 77 device_printf(ice_hw_to_dev(_hw), (_fmt), ##args) 78 79 #define DIVIDE_AND_ROUND_UP howmany 80 #define ROUND_UP roundup 81 82 uint32_t rd32(struct ice_hw *hw, uint32_t reg); 83 uint64_t rd64(struct ice_hw *hw, uint32_t reg); 84 void wr32(struct ice_hw *hw, uint32_t reg, uint32_t val); 85 void wr64(struct ice_hw *hw, uint32_t reg, uint64_t val); 86 87 #define ice_flush(_hw) rd32((_hw), GLGEN_STAT) 88 89 MALLOC_DECLARE(M_ICE_OSDEP); 90 91 /** 92 * ice_calloc - Allocate an array of elementes 93 * @hw: the hardware private structure 94 * @count: number of elements to allocate 95 * @size: the size of each element 96 * 97 * Allocate memory for an array of items equal to size. Note that the OS 98 * compatibility layer assumes all allocation functions will provide zero'd 99 * memory. 100 */ 101 static inline void * 102 ice_calloc(struct ice_hw __unused *hw, size_t count, size_t size) 103 { 104 return malloc(count * size, M_ICE_OSDEP, M_ZERO | M_NOWAIT); 105 } 106 107 /** 108 * ice_malloc - Allocate memory of a specified size 109 * @hw: the hardware private structure 110 * @size: the size to allocate 111 * 112 * Allocates memory of the specified size. Note that the OS compatibility 113 * layer assumes that all allocations will provide zero'd memory. 114 */ 115 static inline void * 116 ice_malloc(struct ice_hw __unused *hw, size_t size) 117 { 118 return malloc(size, M_ICE_OSDEP, M_ZERO | M_NOWAIT); 119 } 120 121 /** 122 * ice_memdup - Allocate a copy of some other memory 123 * @hw: private hardware structure 124 * @src: the source to copy from 125 * @size: allocation size 126 * @dir: the direction of copying 127 * 128 * Allocate memory of the specified size, and copy bytes from the src to fill 129 * it. We don't need to zero this memory as we immediately initialize it by 130 * copying from the src pointer. 131 */ 132 static inline void * 133 ice_memdup(struct ice_hw __unused *hw, const void *src, size_t size, 134 enum ice_memcpy_type __unused dir) 135 { 136 void *dst = malloc(size, M_ICE_OSDEP, M_NOWAIT); 137 138 if (dst != NULL) 139 memcpy(dst, src, size); 140 141 return dst; 142 } 143 144 /** 145 * ice_free - Free previously allocated memory 146 * @hw: the hardware private structure 147 * @mem: pointer to the memory to free 148 * 149 * Free memory that was previously allocated by ice_calloc, ice_malloc, or 150 * ice_memdup. 151 */ 152 static inline void 153 ice_free(struct ice_hw __unused *hw, void *mem) 154 { 155 free(mem, M_ICE_OSDEP); 156 } 157 158 /* These are macros in order to drop the unused direction enumeration constant */ 159 #define ice_memset(addr, c, len, unused) memset((addr), (c), (len)) 160 #define ice_memcpy(dst, src, len, unused) memcpy((dst), (src), (len)) 161 162 void ice_usec_delay(uint32_t time, bool sleep); 163 void ice_msec_delay(uint32_t time, bool sleep); 164 void ice_msec_pause(uint32_t time); 165 void ice_msec_spin(uint32_t time); 166 167 #define UNREFERENCED_PARAMETER(_p) _p = _p 168 #define UNREFERENCED_1PARAMETER(_p) do { \ 169 UNREFERENCED_PARAMETER(_p); \ 170 } while (0) 171 #define UNREFERENCED_2PARAMETER(_p, _q) do { \ 172 UNREFERENCED_PARAMETER(_p); \ 173 UNREFERENCED_PARAMETER(_q); \ 174 } while (0) 175 #define UNREFERENCED_3PARAMETER(_p, _q, _r) do { \ 176 UNREFERENCED_PARAMETER(_p); \ 177 UNREFERENCED_PARAMETER(_q); \ 178 UNREFERENCED_PARAMETER(_r); \ 179 } while (0) 180 #define UNREFERENCED_4PARAMETER(_p, _q, _r, _s) do { \ 181 UNREFERENCED_PARAMETER(_p); \ 182 UNREFERENCED_PARAMETER(_q); \ 183 UNREFERENCED_PARAMETER(_r); \ 184 UNREFERENCED_PARAMETER(_s); \ 185 } while (0) 186 #define UNREFERENCED_5PARAMETER(_p, _q, _r, _s, _t) do { \ 187 UNREFERENCED_PARAMETER(_p); \ 188 UNREFERENCED_PARAMETER(_q); \ 189 UNREFERENCED_PARAMETER(_r); \ 190 UNREFERENCED_PARAMETER(_s); \ 191 UNREFERENCED_PARAMETER(_t); \ 192 } while (0) 193 194 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 195 #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0])) 196 #define MAKEMASK(_m, _s) ((_m) << (_s)) 197 198 #define LIST_HEAD_TYPE ice_list_head 199 #define LIST_ENTRY_TYPE ice_list_node 200 201 /** 202 * @struct ice_list_node 203 * @brief simplified linked list node API 204 * 205 * Represents a node in a linked list, which can be embedded into a structure 206 * to allow that structure to be inserted into a linked list. Access to the 207 * contained structure is done via __containerof 208 */ 209 struct ice_list_node { 210 LIST_ENTRY(ice_list_node) entries; 211 }; 212 213 /** 214 * @struct ice_list_head 215 * @brief simplified linked list head API 216 * 217 * Represents the head of a linked list. The linked list should consist of 218 * a series of ice_list_node structures embedded into another structure 219 * accessed using __containerof. This way, the ice_list_head doesn't need to 220 * know the type of the structure it contains. 221 */ 222 LIST_HEAD(ice_list_head, ice_list_node); 223 224 #define INIT_LIST_HEAD LIST_INIT 225 /* LIST_EMPTY doesn't need to be changed */ 226 #define LIST_ADD(entry, head) LIST_INSERT_HEAD(head, entry, entries) 227 #define LIST_ADD_AFTER(entry, elem) LIST_INSERT_AFTER(elem, entry, entries) 228 #define LIST_DEL(entry) LIST_REMOVE(entry, entries) 229 #define _osdep_LIST_ENTRY(ptr, type, member) \ 230 __containerof(ptr, type, member) 231 #define LIST_FIRST_ENTRY(head, type, member) \ 232 _osdep_LIST_ENTRY(LIST_FIRST(head), type, member) 233 #define LIST_NEXT_ENTRY(ptr, unused, member) \ 234 _osdep_LIST_ENTRY(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member) 235 #define LIST_REPLACE_INIT(old_head, new_head) do { \ 236 __typeof(new_head) _new_head = (new_head); \ 237 LIST_INIT(_new_head); \ 238 LIST_SWAP(old_head, _new_head, ice_list_node, entries); \ 239 } while (0) 240 241 #define LIST_ENTRY_SAFE(_ptr, _type, _member) \ 242 ({ __typeof(_ptr) ____ptr = (_ptr); \ 243 ____ptr ? _osdep_LIST_ENTRY(____ptr, _type, _member) : NULL; \ 244 }) 245 246 /** 247 * ice_get_list_tail - Return the pointer to the last node in the list 248 * @head: the pointer to the head of the list 249 * 250 * A helper function for implementing LIST_ADD_TAIL and LIST_LAST_ENTRY. 251 * Returns the pointer to the last node in the list, or NULL of the list is 252 * empty. 253 * 254 * Note: due to the list implementation this is O(N), where N is the size of 255 * the list. An O(1) implementation requires replacing the underlying list 256 * datastructure with one that has a tail pointer. This is problematic, 257 * because using a simple TAILQ would require that the addition and deletion 258 * be given the head of the list. 259 */ 260 static inline struct ice_list_node * 261 ice_get_list_tail(struct ice_list_head *head) 262 { 263 struct ice_list_node *node = LIST_FIRST(head); 264 265 if (node == NULL) 266 return NULL; 267 while (LIST_NEXT(node, entries) != NULL) 268 node = LIST_NEXT(node, entries); 269 270 return node; 271 } 272 273 /* TODO: This is O(N). An O(1) implementation would require a different 274 * underlying list structure, such as a circularly linked list. */ 275 #define LIST_ADD_TAIL(entry, head) do { \ 276 struct ice_list_node *node = ice_get_list_tail(head); \ 277 \ 278 if (node == NULL) { \ 279 LIST_ADD(entry, head); \ 280 } else { \ 281 LIST_INSERT_AFTER(node, entry, entries); \ 282 } \ 283 } while (0) 284 285 #define LIST_LAST_ENTRY(head, type, member) \ 286 LIST_ENTRY_SAFE(ice_get_list_tail(head), type, member) 287 288 #define LIST_FIRST_ENTRY_SAFE(head, type, member) \ 289 LIST_ENTRY_SAFE(LIST_FIRST(head), type, member) 290 291 #define LIST_NEXT_ENTRY_SAFE(ptr, member) \ 292 LIST_ENTRY_SAFE(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member) 293 294 #define LIST_FOR_EACH_ENTRY(pos, head, unused, member) \ 295 for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member); \ 296 pos; \ 297 pos = LIST_NEXT_ENTRY_SAFE(pos, member)) 298 299 #define LIST_FOR_EACH_ENTRY_SAFE(pos, n, head, unused, member) \ 300 for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member); \ 301 pos && ({ n = LIST_NEXT_ENTRY_SAFE(pos, member); 1; }); \ 302 pos = n) 303 304 #define STATIC static 305 306 #define NTOHS ntohs 307 #define NTOHL ntohl 308 #define HTONS htons 309 #define HTONL htonl 310 #define LE16_TO_CPU le16toh 311 #define LE32_TO_CPU le32toh 312 #define LE64_TO_CPU le64toh 313 #define CPU_TO_LE16 htole16 314 #define CPU_TO_LE32 htole32 315 #define CPU_TO_LE64 htole64 316 #define CPU_TO_BE16 htobe16 317 #define CPU_TO_BE32 htobe32 318 319 #define SNPRINTF snprintf 320 321 /** 322 * @typedef u8 323 * @brief compatibility typedef for uint8_t 324 */ 325 typedef uint8_t u8; 326 327 /** 328 * @typedef u16 329 * @brief compatibility typedef for uint16_t 330 */ 331 typedef uint16_t u16; 332 333 /** 334 * @typedef u32 335 * @brief compatibility typedef for uint32_t 336 */ 337 typedef uint32_t u32; 338 339 /** 340 * @typedef u64 341 * @brief compatibility typedef for uint64_t 342 */ 343 typedef uint64_t u64; 344 345 /** 346 * @typedef s8 347 * @brief compatibility typedef for int8_t 348 */ 349 typedef int8_t s8; 350 351 /** 352 * @typedef s16 353 * @brief compatibility typedef for int16_t 354 */ 355 typedef int16_t s16; 356 357 /** 358 * @typedef s32 359 * @brief compatibility typedef for int32_t 360 */ 361 typedef int32_t s32; 362 363 /** 364 * @typedef s64 365 * @brief compatibility typedef for int64_t 366 */ 367 typedef int64_t s64; 368 369 #define __le16 u16 370 #define __le32 u32 371 #define __le64 u64 372 #define __be16 u16 373 #define __be32 u32 374 #define __be64 u64 375 376 #define ice_hweight8(x) bitcount16((u8)x) 377 #define ice_hweight16(x) bitcount16(x) 378 #define ice_hweight32(x) bitcount32(x) 379 #define ice_hweight64(x) bitcount64(x) 380 381 /** 382 * @struct ice_dma_mem 383 * @brief DMA memory allocation 384 * 385 * Contains DMA allocation bits, used to simplify DMA allocations. 386 */ 387 struct ice_dma_mem { 388 void *va; 389 uint64_t pa; 390 size_t size; 391 392 bus_dma_tag_t tag; 393 bus_dmamap_t map; 394 bus_dma_segment_t seg; 395 }; 396 397 398 void * ice_alloc_dma_mem(struct ice_hw *hw, struct ice_dma_mem *mem, u64 size); 399 void ice_free_dma_mem(struct ice_hw __unused *hw, struct ice_dma_mem *mem); 400 401 /** 402 * @struct ice_lock 403 * @brief simplified lock API 404 * 405 * Contains a simple lock implementation used to lock various resources. 406 */ 407 struct ice_lock { 408 struct mtx mutex; 409 char name[ICE_STR_BUF_LEN]; 410 }; 411 412 extern u16 ice_lock_count; 413 414 /** 415 * ice_init_lock - Initialize a lock for use 416 * @lock: the lock memory to initialize 417 * 418 * OS compatibility layer to provide a simple locking mechanism. We use 419 * a mutex for this purpose. 420 */ 421 static inline void 422 ice_init_lock(struct ice_lock *lock) 423 { 424 /* 425 * Make each lock unique by incrementing a counter each time this 426 * function is called. Use of a u16 allows 65535 possible locks before 427 * we'd hit a duplicate. 428 */ 429 memset(lock->name, 0, sizeof(lock->name)); 430 snprintf(lock->name, ICE_STR_BUF_LEN, "ice_lock_%u", ice_lock_count++); 431 mtx_init(&lock->mutex, lock->name, NULL, MTX_DEF); 432 } 433 434 /** 435 * ice_acquire_lock - Acquire the lock 436 * @lock: the lock to acquire 437 * 438 * Acquires the mutex specified by the lock pointer. 439 */ 440 static inline void 441 ice_acquire_lock(struct ice_lock *lock) 442 { 443 mtx_lock(&lock->mutex); 444 } 445 446 /** 447 * ice_release_lock - Release the lock 448 * @lock: the lock to release 449 * 450 * Releases the mutex specified by the lock pointer. 451 */ 452 static inline void 453 ice_release_lock(struct ice_lock *lock) 454 { 455 mtx_unlock(&lock->mutex); 456 } 457 458 /** 459 * ice_destroy_lock - Destroy the lock to de-allocate it 460 * @lock: the lock to destroy 461 * 462 * Destroys a previously initialized lock. We only do this if the mutex was 463 * previously initialized. 464 */ 465 static inline void 466 ice_destroy_lock(struct ice_lock *lock) 467 { 468 if (mtx_initialized(&lock->mutex)) 469 mtx_destroy(&lock->mutex); 470 memset(lock->name, 0, sizeof(lock->name)); 471 } 472 473 /* Some function parameters are unused outside of MPASS/KASSERT macros. Rather 474 * than marking these as __unused all the time, mark them as __invariant_only, 475 * and define this to __unused when INVARIANTS is disabled. Otherwise, define 476 * it empty so that __invariant_only parameters are caught as unused by the 477 * INVARIANTS build. 478 */ 479 #ifndef INVARIANTS 480 #define __invariant_only __unused 481 #else 482 #define __invariant_only 483 #endif 484 485 #define __ALWAYS_UNUSED __unused 486 487 /** 488 * ice_ilog2 - Calculate the integer log base 2 of a 64bit value 489 * @n: 64bit number 490 * 491 * Calculates the integer log base 2 of a 64bit value, rounded down. 492 * 493 * @remark The integer log base 2 of zero is technically undefined, but this 494 * function will return 0 in that case. 495 * 496 */ 497 static inline int 498 ice_ilog2(u64 n) { 499 if (n == 0) 500 return 0; 501 return flsll(n) - 1; 502 } 503 504 /** 505 * ice_is_pow2 - Check if the value is a power of 2 506 * @n: 64bit number 507 * 508 * Check if the given value is a power of 2. 509 * 510 * @remark FreeBSD's powerof2 function treats zero as a power of 2, while this 511 * function does not. 512 * 513 * @returns true or false 514 */ 515 static inline bool 516 ice_is_pow2(u64 n) { 517 if (n == 0) 518 return false; 519 return powerof2(n); 520 } 521 #endif /* _ICE_OSDEP_H_ */ 522