1 /* SPDX-License-Identifier: BSD-3-Clause */ 2 /* Copyright (c) 2023, Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * 3. Neither the name of the Intel Corporation nor the names of its 16 * contributors may be used to endorse or promote products derived from 17 * this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /** 33 * @file ice_osdep.h 34 * @brief OS compatibility layer 35 * 36 * Contains various definitions and functions which are part of an OS 37 * compatibility layer for sharing code with other operating systems. 38 */ 39 #ifndef _ICE_OSDEP_H_ 40 #define _ICE_OSDEP_H_ 41 42 #include <sys/endian.h> 43 #include <sys/param.h> 44 #include <sys/kernel.h> 45 #include <sys/malloc.h> 46 #include <sys/proc.h> 47 #include <sys/systm.h> 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/bus.h> 51 #include <machine/bus.h> 52 #include <sys/bus_dma.h> 53 #include <netinet/in.h> 54 #include <sys/counter.h> 55 #include <sys/sbuf.h> 56 57 #include "ice_alloc.h" 58 59 #define ICE_INTEL_VENDOR_ID 0x8086 60 61 #define ICE_STR_BUF_LEN 32 62 63 struct ice_hw; 64 65 device_t ice_hw_to_dev(struct ice_hw *hw); 66 67 /* configure hw->debug_mask to enable debug prints */ 68 void ice_debug(struct ice_hw *hw, uint64_t mask, char *fmt, ...) __printflike(3, 4); 69 void ice_debug_array(struct ice_hw *hw, uint64_t mask, uint32_t rowsize, 70 uint32_t groupsize, uint8_t *buf, size_t len); 71 void ice_info_fwlog(struct ice_hw *hw, uint32_t rowsize, uint32_t groupsize, 72 uint8_t *buf, size_t len); 73 74 #define ice_fls(_n) flsl(_n) 75 76 #define ice_info(_hw, _fmt, args...) \ 77 device_printf(ice_hw_to_dev(_hw), (_fmt), ##args) 78 79 #define ice_warn(_hw, _fmt, args...) \ 80 device_printf(ice_hw_to_dev(_hw), (_fmt), ##args) 81 82 #define DIVIDE_AND_ROUND_UP howmany 83 #define ROUND_UP roundup 84 85 uint32_t rd32(struct ice_hw *hw, uint32_t reg); 86 uint64_t rd64(struct ice_hw *hw, uint32_t reg); 87 void wr32(struct ice_hw *hw, uint32_t reg, uint32_t val); 88 void wr64(struct ice_hw *hw, uint32_t reg, uint64_t val); 89 90 #define ice_flush(_hw) rd32((_hw), GLGEN_STAT) 91 92 MALLOC_DECLARE(M_ICE_OSDEP); 93 94 /** 95 * ice_calloc - Allocate an array of elementes 96 * @hw: the hardware private structure 97 * @count: number of elements to allocate 98 * @size: the size of each element 99 * 100 * Allocate memory for an array of items equal to size. Note that the OS 101 * compatibility layer assumes all allocation functions will provide zero'd 102 * memory. 103 */ 104 static inline void * 105 ice_calloc(struct ice_hw __unused *hw, size_t count, size_t size) 106 { 107 return malloc(count * size, M_ICE_OSDEP, M_ZERO | M_NOWAIT); 108 } 109 110 /** 111 * ice_malloc - Allocate memory of a specified size 112 * @hw: the hardware private structure 113 * @size: the size to allocate 114 * 115 * Allocates memory of the specified size. Note that the OS compatibility 116 * layer assumes that all allocations will provide zero'd memory. 117 */ 118 static inline void * 119 ice_malloc(struct ice_hw __unused *hw, size_t size) 120 { 121 return malloc(size, M_ICE_OSDEP, M_ZERO | M_NOWAIT); 122 } 123 124 /** 125 * ice_memdup - Allocate a copy of some other memory 126 * @hw: private hardware structure 127 * @src: the source to copy from 128 * @size: allocation size 129 * @dir: the direction of copying 130 * 131 * Allocate memory of the specified size, and copy bytes from the src to fill 132 * it. We don't need to zero this memory as we immediately initialize it by 133 * copying from the src pointer. 134 */ 135 static inline void * 136 ice_memdup(struct ice_hw __unused *hw, const void *src, size_t size, 137 enum ice_memcpy_type __unused dir) 138 { 139 void *dst = malloc(size, M_ICE_OSDEP, M_NOWAIT); 140 141 if (dst != NULL) 142 memcpy(dst, src, size); 143 144 return dst; 145 } 146 147 /** 148 * ice_free - Free previously allocated memory 149 * @hw: the hardware private structure 150 * @mem: pointer to the memory to free 151 * 152 * Free memory that was previously allocated by ice_calloc, ice_malloc, or 153 * ice_memdup. 154 */ 155 static inline void 156 ice_free(struct ice_hw __unused *hw, void *mem) 157 { 158 free(mem, M_ICE_OSDEP); 159 } 160 161 /* These are macros in order to drop the unused direction enumeration constant */ 162 #define ice_memset(addr, c, len, unused) memset((addr), (c), (len)) 163 #define ice_memcpy(dst, src, len, unused) memcpy((dst), (src), (len)) 164 165 void ice_usec_delay(uint32_t time, bool sleep); 166 void ice_msec_delay(uint32_t time, bool sleep); 167 void ice_msec_pause(uint32_t time); 168 void ice_msec_spin(uint32_t time); 169 170 #define UNREFERENCED_PARAMETER(_p) _p = _p 171 #define UNREFERENCED_1PARAMETER(_p) do { \ 172 UNREFERENCED_PARAMETER(_p); \ 173 } while (0) 174 #define UNREFERENCED_2PARAMETER(_p, _q) do { \ 175 UNREFERENCED_PARAMETER(_p); \ 176 UNREFERENCED_PARAMETER(_q); \ 177 } while (0) 178 #define UNREFERENCED_3PARAMETER(_p, _q, _r) do { \ 179 UNREFERENCED_PARAMETER(_p); \ 180 UNREFERENCED_PARAMETER(_q); \ 181 UNREFERENCED_PARAMETER(_r); \ 182 } while (0) 183 #define UNREFERENCED_4PARAMETER(_p, _q, _r, _s) do { \ 184 UNREFERENCED_PARAMETER(_p); \ 185 UNREFERENCED_PARAMETER(_q); \ 186 UNREFERENCED_PARAMETER(_r); \ 187 UNREFERENCED_PARAMETER(_s); \ 188 } while (0) 189 #define UNREFERENCED_5PARAMETER(_p, _q, _r, _s, _t) do { \ 190 UNREFERENCED_PARAMETER(_p); \ 191 UNREFERENCED_PARAMETER(_q); \ 192 UNREFERENCED_PARAMETER(_r); \ 193 UNREFERENCED_PARAMETER(_s); \ 194 UNREFERENCED_PARAMETER(_t); \ 195 } while (0) 196 197 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 198 #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0])) 199 #define MAKEMASK(_m, _s) ((_m) << (_s)) 200 201 #define LIST_HEAD_TYPE ice_list_head 202 #define LIST_ENTRY_TYPE ice_list_node 203 204 /** 205 * @struct ice_list_node 206 * @brief simplified linked list node API 207 * 208 * Represents a node in a linked list, which can be embedded into a structure 209 * to allow that structure to be inserted into a linked list. Access to the 210 * contained structure is done via __containerof 211 */ 212 struct ice_list_node { 213 LIST_ENTRY(ice_list_node) entries; 214 }; 215 216 /** 217 * @struct ice_list_head 218 * @brief simplified linked list head API 219 * 220 * Represents the head of a linked list. The linked list should consist of 221 * a series of ice_list_node structures embedded into another structure 222 * accessed using __containerof. This way, the ice_list_head doesn't need to 223 * know the type of the structure it contains. 224 */ 225 LIST_HEAD(ice_list_head, ice_list_node); 226 227 #define INIT_LIST_HEAD LIST_INIT 228 /* LIST_EMPTY doesn't need to be changed */ 229 #define LIST_ADD(entry, head) LIST_INSERT_HEAD(head, entry, entries) 230 #define LIST_ADD_AFTER(entry, elem) LIST_INSERT_AFTER(elem, entry, entries) 231 #define LIST_DEL(entry) LIST_REMOVE(entry, entries) 232 #define _osdep_LIST_ENTRY(ptr, type, member) \ 233 __containerof(ptr, type, member) 234 #define LIST_FIRST_ENTRY(head, type, member) \ 235 _osdep_LIST_ENTRY(LIST_FIRST(head), type, member) 236 #define LIST_NEXT_ENTRY(ptr, unused, member) \ 237 _osdep_LIST_ENTRY(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member) 238 #define LIST_REPLACE_INIT(old_head, new_head) do { \ 239 __typeof(new_head) _new_head = (new_head); \ 240 LIST_INIT(_new_head); \ 241 LIST_SWAP(old_head, _new_head, ice_list_node, entries); \ 242 } while (0) 243 244 #define LIST_ENTRY_SAFE(_ptr, _type, _member) \ 245 ({ __typeof(_ptr) ____ptr = (_ptr); \ 246 ____ptr ? _osdep_LIST_ENTRY(____ptr, _type, _member) : NULL; \ 247 }) 248 249 /** 250 * ice_get_list_tail - Return the pointer to the last node in the list 251 * @head: the pointer to the head of the list 252 * 253 * A helper function for implementing LIST_ADD_TAIL and LIST_LAST_ENTRY. 254 * Returns the pointer to the last node in the list, or NULL of the list is 255 * empty. 256 * 257 * Note: due to the list implementation this is O(N), where N is the size of 258 * the list. An O(1) implementation requires replacing the underlying list 259 * datastructure with one that has a tail pointer. This is problematic, 260 * because using a simple TAILQ would require that the addition and deletion 261 * be given the head of the list. 262 */ 263 static inline struct ice_list_node * 264 ice_get_list_tail(struct ice_list_head *head) 265 { 266 struct ice_list_node *node = LIST_FIRST(head); 267 268 if (node == NULL) 269 return NULL; 270 while (LIST_NEXT(node, entries) != NULL) 271 node = LIST_NEXT(node, entries); 272 273 return node; 274 } 275 276 /* TODO: This is O(N). An O(1) implementation would require a different 277 * underlying list structure, such as a circularly linked list. */ 278 #define LIST_ADD_TAIL(entry, head) do { \ 279 struct ice_list_node *node = ice_get_list_tail(head); \ 280 \ 281 if (node == NULL) { \ 282 LIST_ADD(entry, head); \ 283 } else { \ 284 LIST_INSERT_AFTER(node, entry, entries); \ 285 } \ 286 } while (0) 287 288 #define LIST_LAST_ENTRY(head, type, member) \ 289 LIST_ENTRY_SAFE(ice_get_list_tail(head), type, member) 290 291 #define LIST_FIRST_ENTRY_SAFE(head, type, member) \ 292 LIST_ENTRY_SAFE(LIST_FIRST(head), type, member) 293 294 #define LIST_NEXT_ENTRY_SAFE(ptr, member) \ 295 LIST_ENTRY_SAFE(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member) 296 297 #define LIST_FOR_EACH_ENTRY(pos, head, unused, member) \ 298 for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member); \ 299 pos; \ 300 pos = LIST_NEXT_ENTRY_SAFE(pos, member)) 301 302 #define LIST_FOR_EACH_ENTRY_SAFE(pos, n, head, unused, member) \ 303 for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member); \ 304 pos && ({ n = LIST_NEXT_ENTRY_SAFE(pos, member); 1; }); \ 305 pos = n) 306 307 #define STATIC static 308 309 #define NTOHS ntohs 310 #define NTOHL ntohl 311 #define HTONS htons 312 #define HTONL htonl 313 #define LE16_TO_CPU le16toh 314 #define LE32_TO_CPU le32toh 315 #define LE64_TO_CPU le64toh 316 #define CPU_TO_LE16 htole16 317 #define CPU_TO_LE32 htole32 318 #define CPU_TO_LE64 htole64 319 #define CPU_TO_BE16 htobe16 320 #define CPU_TO_BE32 htobe32 321 322 #define SNPRINTF snprintf 323 324 /** 325 * @typedef u8 326 * @brief compatibility typedef for uint8_t 327 */ 328 typedef uint8_t u8; 329 330 /** 331 * @typedef u16 332 * @brief compatibility typedef for uint16_t 333 */ 334 typedef uint16_t u16; 335 336 /** 337 * @typedef u32 338 * @brief compatibility typedef for uint32_t 339 */ 340 typedef uint32_t u32; 341 342 /** 343 * @typedef u64 344 * @brief compatibility typedef for uint64_t 345 */ 346 typedef uint64_t u64; 347 348 /** 349 * @typedef s8 350 * @brief compatibility typedef for int8_t 351 */ 352 typedef int8_t s8; 353 354 /** 355 * @typedef s16 356 * @brief compatibility typedef for int16_t 357 */ 358 typedef int16_t s16; 359 360 /** 361 * @typedef s32 362 * @brief compatibility typedef for int32_t 363 */ 364 typedef int32_t s32; 365 366 /** 367 * @typedef s64 368 * @brief compatibility typedef for int64_t 369 */ 370 typedef int64_t s64; 371 372 #define __le16 u16 373 #define __le32 u32 374 #define __le64 u64 375 #define __be16 u16 376 #define __be32 u32 377 #define __be64 u64 378 379 #define ice_hweight8(x) bitcount16((u8)x) 380 #define ice_hweight16(x) bitcount16(x) 381 #define ice_hweight32(x) bitcount32(x) 382 #define ice_hweight64(x) bitcount64(x) 383 384 /** 385 * @struct ice_dma_mem 386 * @brief DMA memory allocation 387 * 388 * Contains DMA allocation bits, used to simplify DMA allocations. 389 */ 390 struct ice_dma_mem { 391 void *va; 392 uint64_t pa; 393 size_t size; 394 395 bus_dma_tag_t tag; 396 bus_dmamap_t map; 397 bus_dma_segment_t seg; 398 }; 399 400 401 void * ice_alloc_dma_mem(struct ice_hw *hw, struct ice_dma_mem *mem, u64 size); 402 void ice_free_dma_mem(struct ice_hw __unused *hw, struct ice_dma_mem *mem); 403 404 /** 405 * @struct ice_lock 406 * @brief simplified lock API 407 * 408 * Contains a simple lock implementation used to lock various resources. 409 */ 410 struct ice_lock { 411 struct mtx mutex; 412 char name[ICE_STR_BUF_LEN]; 413 }; 414 415 extern u16 ice_lock_count; 416 417 /** 418 * ice_init_lock - Initialize a lock for use 419 * @lock: the lock memory to initialize 420 * 421 * OS compatibility layer to provide a simple locking mechanism. We use 422 * a mutex for this purpose. 423 */ 424 static inline void 425 ice_init_lock(struct ice_lock *lock) 426 { 427 /* 428 * Make each lock unique by incrementing a counter each time this 429 * function is called. Use of a u16 allows 65535 possible locks before 430 * we'd hit a duplicate. 431 */ 432 memset(lock->name, 0, sizeof(lock->name)); 433 snprintf(lock->name, ICE_STR_BUF_LEN, "ice_lock_%u", ice_lock_count++); 434 mtx_init(&lock->mutex, lock->name, NULL, MTX_DEF); 435 } 436 437 /** 438 * ice_acquire_lock - Acquire the lock 439 * @lock: the lock to acquire 440 * 441 * Acquires the mutex specified by the lock pointer. 442 */ 443 static inline void 444 ice_acquire_lock(struct ice_lock *lock) 445 { 446 mtx_lock(&lock->mutex); 447 } 448 449 /** 450 * ice_release_lock - Release the lock 451 * @lock: the lock to release 452 * 453 * Releases the mutex specified by the lock pointer. 454 */ 455 static inline void 456 ice_release_lock(struct ice_lock *lock) 457 { 458 mtx_unlock(&lock->mutex); 459 } 460 461 /** 462 * ice_destroy_lock - Destroy the lock to de-allocate it 463 * @lock: the lock to destroy 464 * 465 * Destroys a previously initialized lock. We only do this if the mutex was 466 * previously initialized. 467 */ 468 static inline void 469 ice_destroy_lock(struct ice_lock *lock) 470 { 471 if (mtx_initialized(&lock->mutex)) 472 mtx_destroy(&lock->mutex); 473 memset(lock->name, 0, sizeof(lock->name)); 474 } 475 476 /* Some function parameters are unused outside of MPASS/KASSERT macros. Rather 477 * than marking these as __unused all the time, mark them as __invariant_only, 478 * and define this to __unused when INVARIANTS is disabled. Otherwise, define 479 * it empty so that __invariant_only parameters are caught as unused by the 480 * INVARIANTS build. 481 */ 482 #ifndef INVARIANTS 483 #define __invariant_only __unused 484 #else 485 #define __invariant_only 486 #endif 487 488 #define __ALWAYS_UNUSED __unused 489 490 /** 491 * ice_ilog2 - Calculate the integer log base 2 of a 64bit value 492 * @n: 64bit number 493 * 494 * Calculates the integer log base 2 of a 64bit value, rounded down. 495 * 496 * @remark The integer log base 2 of zero is technically undefined, but this 497 * function will return 0 in that case. 498 * 499 */ 500 static inline int 501 ice_ilog2(u64 n) { 502 if (n == 0) 503 return 0; 504 return flsll(n) - 1; 505 } 506 507 /** 508 * ice_is_pow2 - Check if the value is a power of 2 509 * @n: 64bit number 510 * 511 * Check if the given value is a power of 2. 512 * 513 * @remark FreeBSD's powerof2 function treats zero as a power of 2, while this 514 * function does not. 515 * 516 * @returns true or false 517 */ 518 static inline bool 519 ice_is_pow2(u64 n) { 520 if (n == 0) 521 return false; 522 return powerof2(n); 523 } 524 #endif /* _ICE_OSDEP_H_ */ 525