1 /* SPDX-License-Identifier: BSD-3-Clause */ 2 /* Copyright (c) 2023, Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * 3. Neither the name of the Intel Corporation nor the names of its 16 * contributors may be used to endorse or promote products derived from 17 * this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /*$FreeBSD$*/ 32 33 #include "ice_common.h" 34 35 #define GL_MNG_DEF_DEVID 0x000B611C 36 37 /** 38 * ice_aq_read_nvm 39 * @hw: pointer to the HW struct 40 * @module_typeid: module pointer location in words from the NVM beginning 41 * @offset: byte offset from the module beginning 42 * @length: length of the section to be read (in bytes from the offset) 43 * @data: command buffer (size [bytes] = length) 44 * @last_command: tells if this is the last command in a series 45 * @read_shadow_ram: tell if this is a shadow RAM read 46 * @cd: pointer to command details structure or NULL 47 * 48 * Read the NVM using the admin queue commands (0x0701) 49 */ 50 enum ice_status 51 ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length, 52 void *data, bool last_command, bool read_shadow_ram, 53 struct ice_sq_cd *cd) 54 { 55 struct ice_aq_desc desc; 56 struct ice_aqc_nvm *cmd; 57 58 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 59 60 cmd = &desc.params.nvm; 61 62 if (offset > ICE_AQC_NVM_MAX_OFFSET) 63 return ICE_ERR_PARAM; 64 65 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read); 66 67 if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT) 68 cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY; 69 70 /* If this is the last command in a series, set the proper flag. */ 71 if (last_command) 72 cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD; 73 cmd->module_typeid = CPU_TO_LE16(module_typeid); 74 cmd->offset_low = CPU_TO_LE16(offset & 0xFFFF); 75 cmd->offset_high = (offset >> 16) & 0xFF; 76 cmd->length = CPU_TO_LE16(length); 77 78 return ice_aq_send_cmd(hw, &desc, data, length, cd); 79 } 80 81 /** 82 * ice_read_flat_nvm - Read portion of NVM by flat offset 83 * @hw: pointer to the HW struct 84 * @offset: offset from beginning of NVM 85 * @length: (in) number of bytes to read; (out) number of bytes actually read 86 * @data: buffer to return data in (sized to fit the specified length) 87 * @read_shadow_ram: if true, read from shadow RAM instead of NVM 88 * 89 * Reads a portion of the NVM, as a flat memory space. This function correctly 90 * breaks read requests across Shadow RAM sectors and ensures that no single 91 * read request exceeds the maximum 4KB read for a single AdminQ command. 92 * 93 * Returns a status code on failure. Note that the data pointer may be 94 * partially updated if some reads succeed before a failure. 95 */ 96 enum ice_status 97 ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data, 98 bool read_shadow_ram) 99 { 100 enum ice_status status; 101 u32 inlen = *length; 102 u32 bytes_read = 0; 103 bool last_cmd; 104 105 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 106 107 *length = 0; 108 109 /* Verify the length of the read if this is for the Shadow RAM */ 110 if (read_shadow_ram && ((offset + inlen) > (hw->flash.sr_words * 2u))) { 111 ice_debug(hw, ICE_DBG_NVM, "NVM error: requested data is beyond Shadow RAM limit\n"); 112 return ICE_ERR_PARAM; 113 } 114 115 do { 116 u32 read_size, sector_offset; 117 118 /* ice_aq_read_nvm cannot read more than 4KB at a time. 119 * Additionally, a read from the Shadow RAM may not cross over 120 * a sector boundary. Conveniently, the sector size is also 121 * 4KB. 122 */ 123 sector_offset = offset % ICE_AQ_MAX_BUF_LEN; 124 read_size = MIN_T(u32, ICE_AQ_MAX_BUF_LEN - sector_offset, 125 inlen - bytes_read); 126 127 last_cmd = !(bytes_read + read_size < inlen); 128 129 /* ice_aq_read_nvm takes the length as a u16. Our read_size is 130 * calculated using a u32, but the ICE_AQ_MAX_BUF_LEN maximum 131 * size guarantees that it will fit within the 2 bytes. 132 */ 133 status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, 134 offset, (u16)read_size, 135 data + bytes_read, last_cmd, 136 read_shadow_ram, NULL); 137 if (status) 138 break; 139 140 bytes_read += read_size; 141 offset += read_size; 142 } while (!last_cmd); 143 144 *length = bytes_read; 145 return status; 146 } 147 148 /** 149 * ice_aq_update_nvm 150 * @hw: pointer to the HW struct 151 * @module_typeid: module pointer location in words from the NVM beginning 152 * @offset: byte offset from the module beginning 153 * @length: length of the section to be written (in bytes from the offset) 154 * @data: command buffer (size [bytes] = length) 155 * @last_command: tells if this is the last command in a series 156 * @command_flags: command parameters 157 * @cd: pointer to command details structure or NULL 158 * 159 * Update the NVM using the admin queue commands (0x0703) 160 */ 161 enum ice_status 162 ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, 163 u16 length, void *data, bool last_command, u8 command_flags, 164 struct ice_sq_cd *cd) 165 { 166 struct ice_aq_desc desc; 167 struct ice_aqc_nvm *cmd; 168 169 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 170 171 cmd = &desc.params.nvm; 172 173 /* In offset the highest byte must be zeroed. */ 174 if (offset & 0xFF000000) 175 return ICE_ERR_PARAM; 176 177 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write); 178 179 cmd->cmd_flags |= command_flags; 180 181 /* If this is the last command in a series, set the proper flag. */ 182 if (last_command) 183 cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD; 184 cmd->module_typeid = CPU_TO_LE16(module_typeid); 185 cmd->offset_low = CPU_TO_LE16(offset & 0xFFFF); 186 cmd->offset_high = (offset >> 16) & 0xFF; 187 cmd->length = CPU_TO_LE16(length); 188 189 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 190 191 return ice_aq_send_cmd(hw, &desc, data, length, cd); 192 } 193 194 /** 195 * ice_aq_erase_nvm 196 * @hw: pointer to the HW struct 197 * @module_typeid: module pointer location in words from the NVM beginning 198 * @cd: pointer to command details structure or NULL 199 * 200 * Erase the NVM sector using the admin queue commands (0x0702) 201 */ 202 enum ice_status 203 ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd) 204 { 205 struct ice_aq_desc desc; 206 struct ice_aqc_nvm *cmd; 207 enum ice_status status; 208 __le16 len; 209 210 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 211 212 /* read a length value from SR, so module_typeid is equal to 0 */ 213 /* calculate offset where module size is placed from bytes to words */ 214 /* set last command and read from SR values to true */ 215 status = ice_aq_read_nvm(hw, 0, 2 * module_typeid + 2, 2, &len, true, 216 true, NULL); 217 if (status) 218 return status; 219 220 cmd = &desc.params.nvm; 221 222 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase); 223 224 cmd->module_typeid = CPU_TO_LE16(module_typeid); 225 cmd->length = len; 226 cmd->offset_low = 0; 227 cmd->offset_high = 0; 228 229 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 230 } 231 232 /** 233 * ice_aq_read_nvm_cfg - read an NVM config block 234 * @hw: pointer to the HW struct 235 * @cmd_flags: NVM access admin command bits 236 * @field_id: field or feature ID 237 * @data: buffer for result 238 * @buf_size: buffer size 239 * @elem_count: pointer to count of elements read by FW 240 * @cd: pointer to command details structure or NULL 241 * 242 * Reads single or multiple feature/field ID and data (0x0704) 243 */ 244 enum ice_status 245 ice_aq_read_nvm_cfg(struct ice_hw *hw, u8 cmd_flags, u16 field_id, void *data, 246 u16 buf_size, u16 *elem_count, struct ice_sq_cd *cd) 247 { 248 struct ice_aqc_nvm_cfg *cmd; 249 struct ice_aq_desc desc; 250 enum ice_status status; 251 252 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 253 254 cmd = &desc.params.nvm_cfg; 255 256 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_cfg_read); 257 258 cmd->cmd_flags = cmd_flags; 259 cmd->id = CPU_TO_LE16(field_id); 260 261 status = ice_aq_send_cmd(hw, &desc, data, buf_size, cd); 262 if (!status && elem_count) 263 *elem_count = LE16_TO_CPU(cmd->count); 264 265 return status; 266 } 267 268 /** 269 * ice_aq_write_nvm_cfg - write an NVM config block 270 * @hw: pointer to the HW struct 271 * @cmd_flags: NVM access admin command bits 272 * @data: buffer for result 273 * @buf_size: buffer size 274 * @elem_count: count of elements to be written 275 * @cd: pointer to command details structure or NULL 276 * 277 * Writes single or multiple feature/field ID and data (0x0705) 278 */ 279 enum ice_status 280 ice_aq_write_nvm_cfg(struct ice_hw *hw, u8 cmd_flags, void *data, u16 buf_size, 281 u16 elem_count, struct ice_sq_cd *cd) 282 { 283 struct ice_aqc_nvm_cfg *cmd; 284 struct ice_aq_desc desc; 285 286 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 287 288 cmd = &desc.params.nvm_cfg; 289 290 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_cfg_write); 291 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 292 293 cmd->count = CPU_TO_LE16(elem_count); 294 cmd->cmd_flags = cmd_flags; 295 296 return ice_aq_send_cmd(hw, &desc, data, buf_size, cd); 297 } 298 299 /** 300 * ice_check_sr_access_params - verify params for Shadow RAM R/W operations. 301 * @hw: pointer to the HW structure 302 * @offset: offset in words from module start 303 * @words: number of words to access 304 */ 305 static enum ice_status 306 ice_check_sr_access_params(struct ice_hw *hw, u32 offset, u16 words) 307 { 308 if ((offset + words) > hw->flash.sr_words) { 309 ice_debug(hw, ICE_DBG_NVM, "NVM error: offset beyond SR lmt.\n"); 310 return ICE_ERR_PARAM; 311 } 312 313 if (words > ICE_SR_SECTOR_SIZE_IN_WORDS) { 314 /* We can access only up to 4KB (one sector), in one AQ write */ 315 ice_debug(hw, ICE_DBG_NVM, "NVM error: tried to access %d words, limit is %d.\n", 316 words, ICE_SR_SECTOR_SIZE_IN_WORDS); 317 return ICE_ERR_PARAM; 318 } 319 320 if (((offset + (words - 1)) / ICE_SR_SECTOR_SIZE_IN_WORDS) != 321 (offset / ICE_SR_SECTOR_SIZE_IN_WORDS)) { 322 /* A single access cannot spread over two sectors */ 323 ice_debug(hw, ICE_DBG_NVM, "NVM error: cannot spread over two sectors.\n"); 324 return ICE_ERR_PARAM; 325 } 326 327 return ICE_SUCCESS; 328 } 329 330 /** 331 * ice_read_sr_word_aq - Reads Shadow RAM via AQ 332 * @hw: pointer to the HW structure 333 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 334 * @data: word read from the Shadow RAM 335 * 336 * Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm. 337 */ 338 enum ice_status ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data) 339 { 340 u32 bytes = sizeof(u16); 341 enum ice_status status; 342 __le16 data_local; 343 344 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 345 346 /* Note that ice_read_flat_nvm checks if the read is past the Shadow 347 * RAM size, and ensures we don't read across a Shadow RAM sector 348 * boundary 349 */ 350 status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes, 351 (_FORCE_ u8 *)&data_local, true); 352 if (status) 353 return status; 354 355 *data = LE16_TO_CPU(data_local); 356 return ICE_SUCCESS; 357 } 358 359 /** 360 * ice_write_sr_aq - Writes Shadow RAM. 361 * @hw: pointer to the HW structure 362 * @offset: offset in words from module start 363 * @words: number of words to write 364 * @data: buffer with words to write to the Shadow RAM 365 * @last_command: tells the AdminQ that this is the last command 366 * 367 * Writes a 16 bit words buffer to the Shadow RAM using the admin command. 368 */ 369 static enum ice_status 370 ice_write_sr_aq(struct ice_hw *hw, u32 offset, u16 words, __le16 *data, 371 bool last_command) 372 { 373 enum ice_status status; 374 375 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 376 377 status = ice_check_sr_access_params(hw, offset, words); 378 if (!status) 379 status = ice_aq_update_nvm(hw, 0, 2 * offset, 2 * words, data, 380 last_command, 0, NULL); 381 382 return status; 383 } 384 385 /** 386 * ice_read_sr_buf_aq - Reads Shadow RAM buf via AQ 387 * @hw: pointer to the HW structure 388 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 389 * @words: (in) number of words to read; (out) number of words actually read 390 * @data: words read from the Shadow RAM 391 * 392 * Reads 16 bit words (data buf) from the Shadow RAM. Ownership of the NVM is 393 * taken before reading the buffer and later released. 394 */ 395 static enum ice_status 396 ice_read_sr_buf_aq(struct ice_hw *hw, u16 offset, u16 *words, u16 *data) 397 { 398 u32 bytes = *words * 2, i; 399 enum ice_status status; 400 401 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 402 403 /* ice_read_flat_nvm takes into account the 4KB AdminQ and Shadow RAM 404 * sector restrictions necessary when reading from the NVM. 405 */ 406 status = ice_read_flat_nvm(hw, offset * 2, &bytes, (u8 *)data, true); 407 408 /* Report the number of words successfully read */ 409 *words = (u16)(bytes / 2); 410 411 /* Byte swap the words up to the amount we actually read */ 412 for (i = 0; i < *words; i++) 413 data[i] = LE16_TO_CPU(((_FORCE_ __le16 *)data)[i]); 414 415 return status; 416 } 417 418 /** 419 * ice_acquire_nvm - Generic request for acquiring the NVM ownership 420 * @hw: pointer to the HW structure 421 * @access: NVM access type (read or write) 422 * 423 * This function will request NVM ownership. 424 */ 425 enum ice_status 426 ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access) 427 { 428 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 429 430 if (hw->flash.blank_nvm_mode) 431 return ICE_SUCCESS; 432 433 return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT); 434 } 435 436 /** 437 * ice_release_nvm - Generic request for releasing the NVM ownership 438 * @hw: pointer to the HW structure 439 * 440 * This function will release NVM ownership. 441 */ 442 void ice_release_nvm(struct ice_hw *hw) 443 { 444 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 445 446 if (hw->flash.blank_nvm_mode) 447 return; 448 449 ice_release_res(hw, ICE_NVM_RES_ID); 450 } 451 452 /** 453 * ice_get_flash_bank_offset - Get offset into requested flash bank 454 * @hw: pointer to the HW structure 455 * @bank: whether to read from the active or inactive flash bank 456 * @module: the module to read from 457 * 458 * Based on the module, lookup the module offset from the beginning of the 459 * flash. 460 * 461 * Returns the flash offset. Note that a value of zero is invalid and must be 462 * treated as an error. 463 */ 464 static u32 ice_get_flash_bank_offset(struct ice_hw *hw, enum ice_bank_select bank, u16 module) 465 { 466 struct ice_bank_info *banks = &hw->flash.banks; 467 enum ice_flash_bank active_bank; 468 bool second_bank_active; 469 u32 offset, size; 470 471 switch (module) { 472 case ICE_SR_1ST_NVM_BANK_PTR: 473 offset = banks->nvm_ptr; 474 size = banks->nvm_size; 475 active_bank = banks->nvm_bank; 476 break; 477 case ICE_SR_1ST_OROM_BANK_PTR: 478 offset = banks->orom_ptr; 479 size = banks->orom_size; 480 active_bank = banks->orom_bank; 481 break; 482 case ICE_SR_NETLIST_BANK_PTR: 483 offset = banks->netlist_ptr; 484 size = banks->netlist_size; 485 active_bank = banks->netlist_bank; 486 break; 487 default: 488 ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash module: 0x%04x\n", module); 489 return 0; 490 } 491 492 switch (active_bank) { 493 case ICE_1ST_FLASH_BANK: 494 second_bank_active = false; 495 break; 496 case ICE_2ND_FLASH_BANK: 497 second_bank_active = true; 498 break; 499 default: 500 ice_debug(hw, ICE_DBG_NVM, "Unexpected value for active flash bank: %u\n", 501 active_bank); 502 return 0; 503 } 504 505 /* The second flash bank is stored immediately following the first 506 * bank. Based on whether the 1st or 2nd bank is active, and whether 507 * we want the active or inactive bank, calculate the desired offset. 508 */ 509 switch (bank) { 510 case ICE_ACTIVE_FLASH_BANK: 511 return offset + (second_bank_active ? size : 0); 512 case ICE_INACTIVE_FLASH_BANK: 513 return offset + (second_bank_active ? 0 : size); 514 } 515 516 ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash bank selection: %u\n", bank); 517 return 0; 518 } 519 520 /** 521 * ice_read_flash_module - Read a word from one of the main NVM modules 522 * @hw: pointer to the HW structure 523 * @bank: which bank of the module to read 524 * @module: the module to read 525 * @offset: the offset into the module in bytes 526 * @data: storage for the word read from the flash 527 * @length: bytes of data to read 528 * 529 * Read data from the specified flash module. The bank parameter indicates 530 * whether or not to read from the active bank or the inactive bank of that 531 * module. 532 * 533 * The word will be read using flat NVM access, and relies on the 534 * hw->flash.banks data being setup by ice_determine_active_flash_banks() 535 * during initialization. 536 */ 537 static enum ice_status 538 ice_read_flash_module(struct ice_hw *hw, enum ice_bank_select bank, u16 module, 539 u32 offset, u8 *data, u32 length) 540 { 541 enum ice_status status; 542 u32 start; 543 544 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 545 546 start = ice_get_flash_bank_offset(hw, bank, module); 547 if (!start) { 548 ice_debug(hw, ICE_DBG_NVM, "Unable to calculate flash bank offset for module 0x%04x\n", 549 module); 550 return ICE_ERR_PARAM; 551 } 552 553 status = ice_acquire_nvm(hw, ICE_RES_READ); 554 if (status) 555 return status; 556 557 status = ice_read_flat_nvm(hw, start + offset, &length, data, false); 558 559 ice_release_nvm(hw); 560 561 return status; 562 } 563 564 /** 565 * ice_read_nvm_module - Read from the active main NVM module 566 * @hw: pointer to the HW structure 567 * @bank: whether to read from active or inactive NVM module 568 * @offset: offset into the NVM module to read, in words 569 * @data: storage for returned word value 570 * 571 * Read the specified word from the active NVM module. This includes the CSS 572 * header at the start of the NVM module. 573 */ 574 static enum ice_status 575 ice_read_nvm_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data) 576 { 577 enum ice_status status; 578 __le16 data_local; 579 580 status = ice_read_flash_module(hw, bank, ICE_SR_1ST_NVM_BANK_PTR, offset * sizeof(u16), 581 (_FORCE_ u8 *)&data_local, sizeof(u16)); 582 if (!status) 583 *data = LE16_TO_CPU(data_local); 584 585 return status; 586 } 587 588 /** 589 * ice_get_nvm_css_hdr_len - Read the CSS header length from the NVM CSS header 590 * @hw: pointer to the HW struct 591 * @bank: whether to read from the active or inactive flash bank 592 * @hdr_len: storage for header length in words 593 * 594 * Read the CSS header length from the NVM CSS header and add the Authentication 595 * header size, and then convert to words. 596 */ 597 static enum ice_status 598 ice_get_nvm_css_hdr_len(struct ice_hw *hw, enum ice_bank_select bank, 599 u32 *hdr_len) 600 { 601 u16 hdr_len_l, hdr_len_h; 602 enum ice_status status; 603 u32 hdr_len_dword; 604 605 status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_HDR_LEN_L, 606 &hdr_len_l); 607 if (status) 608 return status; 609 610 status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_HDR_LEN_H, 611 &hdr_len_h); 612 if (status) 613 return status; 614 615 /* CSS header length is in DWORD, so convert to words and add 616 * authentication header size 617 */ 618 hdr_len_dword = hdr_len_h << 16 | hdr_len_l; 619 *hdr_len = (hdr_len_dword * 2) + ICE_NVM_AUTH_HEADER_LEN; 620 621 return ICE_SUCCESS; 622 } 623 624 /** 625 * ice_read_nvm_sr_copy - Read a word from the Shadow RAM copy in the NVM bank 626 * @hw: pointer to the HW structure 627 * @bank: whether to read from the active or inactive NVM module 628 * @offset: offset into the Shadow RAM copy to read, in words 629 * @data: storage for returned word value 630 * 631 * Read the specified word from the copy of the Shadow RAM found in the 632 * specified NVM module. 633 */ 634 static enum ice_status 635 ice_read_nvm_sr_copy(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data) 636 { 637 enum ice_status status; 638 u32 hdr_len; 639 640 status = ice_get_nvm_css_hdr_len(hw, bank, &hdr_len); 641 if (status) 642 return status; 643 644 hdr_len = ROUND_UP(hdr_len, 32); 645 646 return ice_read_nvm_module(hw, bank, hdr_len + offset, data); 647 } 648 649 /** 650 * ice_read_orom_module - Read from the active Option ROM module 651 * @hw: pointer to the HW structure 652 * @bank: whether to read from active or inactive OROM module 653 * @offset: offset into the OROM module to read, in words 654 * @data: storage for returned word value 655 * 656 * Read the specified word from the active Option ROM module of the flash. 657 * Note that unlike the NVM module, the CSS data is stored at the end of the 658 * module instead of at the beginning. 659 */ 660 static enum ice_status 661 ice_read_orom_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data) 662 { 663 enum ice_status status; 664 __le16 data_local; 665 666 status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, offset * sizeof(u16), 667 (_FORCE_ u8 *)&data_local, sizeof(u16)); 668 if (!status) 669 *data = LE16_TO_CPU(data_local); 670 671 return status; 672 } 673 674 /** 675 * ice_read_netlist_module - Read data from the netlist module area 676 * @hw: pointer to the HW structure 677 * @bank: whether to read from the active or inactive module 678 * @offset: offset into the netlist to read from 679 * @data: storage for returned word value 680 * 681 * Read a word from the specified netlist bank. 682 */ 683 static enum ice_status 684 ice_read_netlist_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data) 685 { 686 enum ice_status status; 687 __le16 data_local; 688 689 status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, offset * sizeof(u16), 690 (_FORCE_ u8 *)&data_local, sizeof(u16)); 691 if (!status) 692 *data = LE16_TO_CPU(data_local); 693 694 return status; 695 } 696 697 /** 698 * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary 699 * @hw: pointer to the HW structure 700 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 701 * @data: word read from the Shadow RAM 702 * 703 * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq. 704 */ 705 enum ice_status ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data) 706 { 707 enum ice_status status; 708 709 status = ice_acquire_nvm(hw, ICE_RES_READ); 710 if (!status) { 711 status = ice_read_sr_word_aq(hw, offset, data); 712 ice_release_nvm(hw); 713 } 714 715 return status; 716 } 717 718 /** 719 * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA 720 * @hw: pointer to hardware structure 721 * @module_tlv: pointer to module TLV to return 722 * @module_tlv_len: pointer to module TLV length to return 723 * @module_type: module type requested 724 * 725 * Finds the requested sub module TLV type from the Preserved Field 726 * Area (PFA) and returns the TLV pointer and length. The caller can 727 * use these to read the variable length TLV value. 728 */ 729 enum ice_status 730 ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len, 731 u16 module_type) 732 { 733 enum ice_status status; 734 u16 pfa_len, pfa_ptr; 735 u16 next_tlv; 736 737 status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr); 738 if (status != ICE_SUCCESS) { 739 ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n"); 740 return status; 741 } 742 status = ice_read_sr_word(hw, pfa_ptr, &pfa_len); 743 if (status != ICE_SUCCESS) { 744 ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n"); 745 return status; 746 } 747 /* Starting with first TLV after PFA length, iterate through the list 748 * of TLVs to find the requested one. 749 */ 750 next_tlv = pfa_ptr + 1; 751 while (next_tlv < pfa_ptr + pfa_len) { 752 u16 tlv_sub_module_type; 753 u16 tlv_len; 754 755 /* Read TLV type */ 756 status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type); 757 if (status != ICE_SUCCESS) { 758 ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n"); 759 break; 760 } 761 /* Read TLV length */ 762 status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len); 763 if (status != ICE_SUCCESS) { 764 ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n"); 765 break; 766 } 767 if (tlv_sub_module_type == module_type) { 768 if (tlv_len) { 769 *module_tlv = next_tlv; 770 *module_tlv_len = tlv_len; 771 return ICE_SUCCESS; 772 } 773 return ICE_ERR_INVAL_SIZE; 774 } 775 /* Check next TLV, i.e. current TLV pointer + length + 2 words 776 * (for current TLV's type and length) 777 */ 778 next_tlv = next_tlv + tlv_len + 2; 779 } 780 /* Module does not exist */ 781 return ICE_ERR_DOES_NOT_EXIST; 782 } 783 784 /** 785 * ice_read_pba_string - Reads part number string from NVM 786 * @hw: pointer to hardware structure 787 * @pba_num: stores the part number string from the NVM 788 * @pba_num_size: part number string buffer length 789 * 790 * Reads the part number string from the NVM. 791 */ 792 enum ice_status 793 ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size) 794 { 795 u16 pba_tlv, pba_tlv_len; 796 enum ice_status status; 797 u16 pba_word, pba_size; 798 u16 i; 799 800 status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len, 801 ICE_SR_PBA_BLOCK_PTR); 802 if (status != ICE_SUCCESS) { 803 ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n"); 804 return status; 805 } 806 807 /* pba_size is the next word */ 808 status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size); 809 if (status != ICE_SUCCESS) { 810 ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n"); 811 return status; 812 } 813 814 if (pba_tlv_len < pba_size) { 815 ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n"); 816 return ICE_ERR_INVAL_SIZE; 817 } 818 819 /* Subtract one to get PBA word count (PBA Size word is included in 820 * total size) 821 */ 822 pba_size--; 823 if (pba_num_size < (((u32)pba_size * 2) + 1)) { 824 ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n"); 825 return ICE_ERR_PARAM; 826 } 827 828 for (i = 0; i < pba_size; i++) { 829 status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word); 830 if (status != ICE_SUCCESS) { 831 ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i); 832 return status; 833 } 834 835 pba_num[(i * 2)] = (pba_word >> 8) & 0xFF; 836 pba_num[(i * 2) + 1] = pba_word & 0xFF; 837 } 838 pba_num[(pba_size * 2)] = '\0'; 839 840 return status; 841 } 842 843 /** 844 * ice_get_nvm_srev - Read the security revision from the NVM CSS header 845 * @hw: pointer to the HW struct 846 * @bank: whether to read from the active or inactive flash bank 847 * @srev: storage for security revision 848 * 849 * Read the security revision out of the CSS header of the active NVM module 850 * bank. 851 */ 852 static enum ice_status ice_get_nvm_srev(struct ice_hw *hw, enum ice_bank_select bank, u32 *srev) 853 { 854 enum ice_status status; 855 u16 srev_l, srev_h; 856 857 status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_SREV_L, &srev_l); 858 if (status) 859 return status; 860 861 status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_SREV_H, &srev_h); 862 if (status) 863 return status; 864 865 *srev = srev_h << 16 | srev_l; 866 867 return ICE_SUCCESS; 868 } 869 870 /** 871 * ice_get_nvm_ver_info - Read NVM version information 872 * @hw: pointer to the HW struct 873 * @bank: whether to read from the active or inactive flash bank 874 * @nvm: pointer to NVM info structure 875 * 876 * Read the NVM EETRACK ID and map version of the main NVM image bank, filling 877 * in the nvm info structure. 878 */ 879 static enum ice_status 880 ice_get_nvm_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_nvm_info *nvm) 881 { 882 u16 eetrack_lo, eetrack_hi, ver; 883 enum ice_status status; 884 885 status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_DEV_STARTER_VER, &ver); 886 if (status) { 887 ice_debug(hw, ICE_DBG_NVM, "Failed to read DEV starter version.\n"); 888 return status; 889 } 890 891 nvm->major = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT; 892 nvm->minor = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT; 893 894 status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_LO, &eetrack_lo); 895 if (status) { 896 ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK lo.\n"); 897 return status; 898 } 899 status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_HI, &eetrack_hi); 900 if (status) { 901 ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK hi.\n"); 902 return status; 903 } 904 905 nvm->eetrack = (eetrack_hi << 16) | eetrack_lo; 906 907 status = ice_get_nvm_srev(hw, bank, &nvm->srev); 908 if (status) 909 ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM security revision.\n"); 910 911 return ICE_SUCCESS; 912 } 913 914 /** 915 * ice_get_inactive_nvm_ver - Read Option ROM version from the inactive bank 916 * @hw: pointer to the HW structure 917 * @nvm: storage for Option ROM version information 918 * 919 * Reads the NVM EETRACK ID, Map version, and security revision of the 920 * inactive NVM bank. Used to access version data for a pending update that 921 * has not yet been activated. 922 */ 923 enum ice_status ice_get_inactive_nvm_ver(struct ice_hw *hw, struct ice_nvm_info *nvm) 924 { 925 return ice_get_nvm_ver_info(hw, ICE_INACTIVE_FLASH_BANK, nvm); 926 } 927 928 /** 929 * ice_get_orom_srev - Read the security revision from the OROM CSS header 930 * @hw: pointer to the HW struct 931 * @bank: whether to read from active or inactive flash module 932 * @srev: storage for security revision 933 * 934 * Read the security revision out of the CSS header of the active OROM module 935 * bank. 936 */ 937 static enum ice_status ice_get_orom_srev(struct ice_hw *hw, enum ice_bank_select bank, u32 *srev) 938 { 939 u32 orom_size_word = hw->flash.banks.orom_size / 2; 940 enum ice_status status; 941 u16 srev_l, srev_h; 942 u32 css_start; 943 u32 hdr_len; 944 945 status = ice_get_nvm_css_hdr_len(hw, bank, &hdr_len); 946 if (status) 947 return status; 948 949 if (orom_size_word < hdr_len) { 950 ice_debug(hw, ICE_DBG_NVM, "Unexpected Option ROM Size of %u\n", 951 hw->flash.banks.orom_size); 952 return ICE_ERR_CFG; 953 } 954 955 /* calculate how far into the Option ROM the CSS header starts. Note 956 * that ice_read_orom_module takes a word offset 957 */ 958 css_start = orom_size_word - hdr_len; 959 status = ice_read_orom_module(hw, bank, css_start + ICE_NVM_CSS_SREV_L, &srev_l); 960 if (status) 961 return status; 962 963 status = ice_read_orom_module(hw, bank, css_start + ICE_NVM_CSS_SREV_H, &srev_h); 964 if (status) 965 return status; 966 967 *srev = srev_h << 16 | srev_l; 968 969 return ICE_SUCCESS; 970 } 971 972 /** 973 * ice_get_orom_civd_data - Get the combo version information from Option ROM 974 * @hw: pointer to the HW struct 975 * @bank: whether to read from the active or inactive flash module 976 * @civd: storage for the Option ROM CIVD data. 977 * 978 * Searches through the Option ROM flash contents to locate the CIVD data for 979 * the image. 980 */ 981 static enum ice_status 982 ice_get_orom_civd_data(struct ice_hw *hw, enum ice_bank_select bank, 983 struct ice_orom_civd_info *civd) 984 { 985 u8 *orom_data; 986 enum ice_status status; 987 u32 offset; 988 989 /* The CIVD section is located in the Option ROM aligned to 512 bytes. 990 * The first 4 bytes must contain the ASCII characters "$CIV". 991 * A simple modulo 256 sum of all of the bytes of the structure must 992 * equal 0. 993 * 994 * The exact location is unknown and varies between images but is 995 * usually somewhere in the middle of the bank. We need to scan the 996 * Option ROM bank to locate it. 997 * 998 * It's significantly faster to read the entire Option ROM up front 999 * using the maximum page size, than to read each possible location 1000 * with a separate firmware command. 1001 */ 1002 orom_data = (u8 *)ice_calloc(hw, hw->flash.banks.orom_size, sizeof(u8)); 1003 if (!orom_data) 1004 return ICE_ERR_NO_MEMORY; 1005 1006 status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, 0, 1007 orom_data, hw->flash.banks.orom_size); 1008 if (status) { 1009 ice_debug(hw, ICE_DBG_NVM, "Unable to read Option ROM data\n"); 1010 return status; 1011 } 1012 1013 /* Scan the memory buffer to locate the CIVD data section */ 1014 for (offset = 0; (offset + 512) <= hw->flash.banks.orom_size; offset += 512) { 1015 struct ice_orom_civd_info *tmp; 1016 u8 sum = 0, i; 1017 1018 tmp = (struct ice_orom_civd_info *)&orom_data[offset]; 1019 1020 /* Skip forward until we find a matching signature */ 1021 if (memcmp("$CIV", tmp->signature, sizeof(tmp->signature)) != 0) 1022 continue; 1023 1024 ice_debug(hw, ICE_DBG_NVM, "Found CIVD section at offset %u\n", 1025 offset); 1026 1027 /* Verify that the simple checksum is zero */ 1028 for (i = 0; i < sizeof(*tmp); i++) 1029 sum += ((u8 *)tmp)[i]; 1030 1031 if (sum) { 1032 ice_debug(hw, ICE_DBG_NVM, "Found CIVD data with invalid checksum of %u\n", 1033 sum); 1034 goto err_invalid_checksum; 1035 } 1036 1037 *civd = *tmp; 1038 ice_free(hw, orom_data); 1039 return ICE_SUCCESS; 1040 } 1041 1042 ice_debug(hw, ICE_DBG_NVM, "Unable to locate CIVD data within the Option ROM\n"); 1043 1044 err_invalid_checksum: 1045 ice_free(hw, orom_data); 1046 return ICE_ERR_NVM; 1047 } 1048 1049 /** 1050 * ice_get_orom_ver_info - Read Option ROM version information 1051 * @hw: pointer to the HW struct 1052 * @bank: whether to read from the active or inactive flash module 1053 * @orom: pointer to Option ROM info structure 1054 * 1055 * Read Option ROM version and security revision from the Option ROM flash 1056 * section. 1057 */ 1058 static enum ice_status 1059 ice_get_orom_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_orom_info *orom) 1060 { 1061 struct ice_orom_civd_info civd; 1062 enum ice_status status; 1063 u32 combo_ver; 1064 1065 status = ice_get_orom_civd_data(hw, bank, &civd); 1066 if (status) { 1067 ice_debug(hw, ICE_DBG_NVM, "Failed to locate valid Option ROM CIVD data\n"); 1068 return status; 1069 } 1070 1071 combo_ver = LE32_TO_CPU(civd.combo_ver); 1072 1073 orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >> ICE_OROM_VER_SHIFT); 1074 orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK); 1075 orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >> ICE_OROM_VER_BUILD_SHIFT); 1076 1077 status = ice_get_orom_srev(hw, bank, &orom->srev); 1078 if (status) { 1079 ice_debug(hw, ICE_DBG_NVM, "Failed to read Option ROM security revision.\n"); 1080 return status; 1081 } 1082 1083 return ICE_SUCCESS; 1084 } 1085 1086 /** 1087 * ice_get_inactive_orom_ver - Read Option ROM version from the inactive bank 1088 * @hw: pointer to the HW structure 1089 * @orom: storage for Option ROM version information 1090 * 1091 * Reads the Option ROM version and security revision data for the inactive 1092 * section of flash. Used to access version data for a pending update that has 1093 * not yet been activated. 1094 */ 1095 enum ice_status ice_get_inactive_orom_ver(struct ice_hw *hw, struct ice_orom_info *orom) 1096 { 1097 return ice_get_orom_ver_info(hw, ICE_INACTIVE_FLASH_BANK, orom); 1098 } 1099 1100 /** 1101 * ice_get_netlist_info 1102 * @hw: pointer to the HW struct 1103 * @bank: whether to read from the active or inactive flash bank 1104 * @netlist: pointer to netlist version info structure 1105 * 1106 * Get the netlist version information from the requested bank. Reads the Link 1107 * Topology section to find the Netlist ID block and extract the relevant 1108 * information into the netlist version structure. 1109 */ 1110 static enum ice_status 1111 ice_get_netlist_info(struct ice_hw *hw, enum ice_bank_select bank, 1112 struct ice_netlist_info *netlist) 1113 { 1114 u16 module_id, length, node_count, i; 1115 enum ice_status status; 1116 u16 *id_blk; 1117 1118 status = ice_read_netlist_module(hw, bank, ICE_NETLIST_TYPE_OFFSET, &module_id); 1119 if (status) 1120 return status; 1121 1122 if (module_id != ICE_NETLIST_LINK_TOPO_MOD_ID) { 1123 ice_debug(hw, ICE_DBG_NVM, "Expected netlist module_id ID of 0x%04x, but got 0x%04x\n", 1124 ICE_NETLIST_LINK_TOPO_MOD_ID, module_id); 1125 return ICE_ERR_NVM; 1126 } 1127 1128 status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_MODULE_LEN, &length); 1129 if (status) 1130 return status; 1131 1132 /* sanity check that we have at least enough words to store the netlist ID block */ 1133 if (length < ICE_NETLIST_ID_BLK_SIZE) { 1134 ice_debug(hw, ICE_DBG_NVM, "Netlist Link Topology module too small. Expected at least %u words, but got %u words.\n", 1135 ICE_NETLIST_ID_BLK_SIZE, length); 1136 return ICE_ERR_NVM; 1137 } 1138 1139 status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_NODE_COUNT, &node_count); 1140 if (status) 1141 return status; 1142 node_count &= ICE_LINK_TOPO_NODE_COUNT_M; 1143 1144 id_blk = (u16 *)ice_calloc(hw, ICE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk)); 1145 if (!id_blk) 1146 return ICE_ERR_NO_MEMORY; 1147 1148 /* Read out the entire Netlist ID Block at once. */ 1149 status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, 1150 ICE_NETLIST_ID_BLK_OFFSET(node_count) * sizeof(u16), 1151 (u8 *)id_blk, ICE_NETLIST_ID_BLK_SIZE * sizeof(u16)); 1152 if (status) 1153 goto exit_error; 1154 1155 for (i = 0; i < ICE_NETLIST_ID_BLK_SIZE; i++) 1156 id_blk[i] = LE16_TO_CPU(((_FORCE_ __le16 *)id_blk)[i]); 1157 1158 netlist->major = id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 | 1159 id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_LOW]; 1160 netlist->minor = id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 | 1161 id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_LOW]; 1162 netlist->type = id_blk[ICE_NETLIST_ID_BLK_TYPE_HIGH] << 16 | 1163 id_blk[ICE_NETLIST_ID_BLK_TYPE_LOW]; 1164 netlist->rev = id_blk[ICE_NETLIST_ID_BLK_REV_HIGH] << 16 | 1165 id_blk[ICE_NETLIST_ID_BLK_REV_LOW]; 1166 netlist->cust_ver = id_blk[ICE_NETLIST_ID_BLK_CUST_VER]; 1167 /* Read the left most 4 bytes of SHA */ 1168 netlist->hash = id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 | 1169 id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(14)]; 1170 1171 exit_error: 1172 ice_free(hw, id_blk); 1173 1174 return status; 1175 } 1176 1177 /** 1178 * ice_get_netlist_ver_info 1179 * @hw: pointer to the HW struct 1180 * @netlist: pointer to netlist version info structure 1181 * 1182 * Get the netlist version information 1183 */ 1184 enum ice_status ice_get_netlist_ver_info(struct ice_hw *hw, struct ice_netlist_info *netlist) 1185 { 1186 return ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, netlist); 1187 } 1188 1189 /** 1190 * ice_get_inactive_netlist_ver 1191 * @hw: pointer to the HW struct 1192 * @netlist: pointer to netlist version info structure 1193 * 1194 * Read the netlist version data from the inactive netlist bank. Used to 1195 * extract version data of a pending flash update in order to display the 1196 * version data. 1197 */ 1198 enum ice_status ice_get_inactive_netlist_ver(struct ice_hw *hw, struct ice_netlist_info *netlist) 1199 { 1200 return ice_get_netlist_info(hw, ICE_INACTIVE_FLASH_BANK, netlist); 1201 } 1202 1203 /** 1204 * ice_discover_flash_size - Discover the available flash size. 1205 * @hw: pointer to the HW struct 1206 * 1207 * The device flash could be up to 16MB in size. However, it is possible that 1208 * the actual size is smaller. Use bisection to determine the accessible size 1209 * of flash memory. 1210 */ 1211 static enum ice_status ice_discover_flash_size(struct ice_hw *hw) 1212 { 1213 u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1; 1214 enum ice_status status; 1215 1216 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1217 1218 status = ice_acquire_nvm(hw, ICE_RES_READ); 1219 if (status) 1220 return status; 1221 1222 while ((max_size - min_size) > 1) { 1223 u32 offset = (max_size + min_size) / 2; 1224 u32 len = 1; 1225 u8 data; 1226 1227 status = ice_read_flat_nvm(hw, offset, &len, &data, false); 1228 if (status == ICE_ERR_AQ_ERROR && 1229 hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) { 1230 ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n", 1231 __func__, offset); 1232 status = ICE_SUCCESS; 1233 max_size = offset; 1234 } else if (!status) { 1235 ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n", 1236 __func__, offset); 1237 min_size = offset; 1238 } else { 1239 /* an unexpected error occurred */ 1240 goto err_read_flat_nvm; 1241 } 1242 } 1243 1244 ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size); 1245 1246 hw->flash.flash_size = max_size; 1247 1248 err_read_flat_nvm: 1249 ice_release_nvm(hw); 1250 1251 return status; 1252 } 1253 1254 /** 1255 * ice_read_sr_pointer - Read the value of a Shadow RAM pointer word 1256 * @hw: pointer to the HW structure 1257 * @offset: the word offset of the Shadow RAM word to read 1258 * @pointer: pointer value read from Shadow RAM 1259 * 1260 * Read the given Shadow RAM word, and convert it to a pointer value specified 1261 * in bytes. This function assumes the specified offset is a valid pointer 1262 * word. 1263 * 1264 * Each pointer word specifies whether it is stored in word size or 4KB 1265 * sector size by using the highest bit. The reported pointer value will be in 1266 * bytes, intended for flat NVM reads. 1267 */ 1268 static enum ice_status 1269 ice_read_sr_pointer(struct ice_hw *hw, u16 offset, u32 *pointer) 1270 { 1271 enum ice_status status; 1272 u16 value; 1273 1274 status = ice_read_sr_word(hw, offset, &value); 1275 if (status) 1276 return status; 1277 1278 /* Determine if the pointer is in 4KB or word units */ 1279 if (value & ICE_SR_NVM_PTR_4KB_UNITS) 1280 *pointer = (value & ~ICE_SR_NVM_PTR_4KB_UNITS) * 4 * 1024; 1281 else 1282 *pointer = value * 2; 1283 1284 return ICE_SUCCESS; 1285 } 1286 1287 /** 1288 * ice_read_sr_area_size - Read an area size from a Shadow RAM word 1289 * @hw: pointer to the HW structure 1290 * @offset: the word offset of the Shadow RAM to read 1291 * @size: size value read from the Shadow RAM 1292 * 1293 * Read the given Shadow RAM word, and convert it to an area size value 1294 * specified in bytes. This function assumes the specified offset is a valid 1295 * area size word. 1296 * 1297 * Each area size word is specified in 4KB sector units. This function reports 1298 * the size in bytes, intended for flat NVM reads. 1299 */ 1300 static enum ice_status 1301 ice_read_sr_area_size(struct ice_hw *hw, u16 offset, u32 *size) 1302 { 1303 enum ice_status status; 1304 u16 value; 1305 1306 status = ice_read_sr_word(hw, offset, &value); 1307 if (status) 1308 return status; 1309 1310 /* Area sizes are always specified in 4KB units */ 1311 *size = value * 4 * 1024; 1312 1313 return ICE_SUCCESS; 1314 } 1315 1316 /** 1317 * ice_determine_active_flash_banks - Discover active bank for each module 1318 * @hw: pointer to the HW struct 1319 * 1320 * Read the Shadow RAM control word and determine which banks are active for 1321 * the NVM, OROM, and Netlist modules. Also read and calculate the associated 1322 * pointer and size. These values are then cached into the ice_flash_info 1323 * structure for later use in order to calculate the correct offset to read 1324 * from the active module. 1325 */ 1326 static enum ice_status 1327 ice_determine_active_flash_banks(struct ice_hw *hw) 1328 { 1329 struct ice_bank_info *banks = &hw->flash.banks; 1330 enum ice_status status; 1331 u16 ctrl_word; 1332 1333 status = ice_read_sr_word(hw, ICE_SR_NVM_CTRL_WORD, &ctrl_word); 1334 if (status) { 1335 ice_debug(hw, ICE_DBG_NVM, "Failed to read the Shadow RAM control word\n"); 1336 return status; 1337 } 1338 1339 /* Check that the control word indicates validity */ 1340 if ((ctrl_word & ICE_SR_CTRL_WORD_1_M) >> ICE_SR_CTRL_WORD_1_S != ICE_SR_CTRL_WORD_VALID) { 1341 ice_debug(hw, ICE_DBG_NVM, "Shadow RAM control word is invalid\n"); 1342 return ICE_ERR_CFG; 1343 } 1344 1345 if (!(ctrl_word & ICE_SR_CTRL_WORD_NVM_BANK)) 1346 banks->nvm_bank = ICE_1ST_FLASH_BANK; 1347 else 1348 banks->nvm_bank = ICE_2ND_FLASH_BANK; 1349 1350 if (!(ctrl_word & ICE_SR_CTRL_WORD_OROM_BANK)) 1351 banks->orom_bank = ICE_1ST_FLASH_BANK; 1352 else 1353 banks->orom_bank = ICE_2ND_FLASH_BANK; 1354 1355 if (!(ctrl_word & ICE_SR_CTRL_WORD_NETLIST_BANK)) 1356 banks->netlist_bank = ICE_1ST_FLASH_BANK; 1357 else 1358 banks->netlist_bank = ICE_2ND_FLASH_BANK; 1359 1360 status = ice_read_sr_pointer(hw, ICE_SR_1ST_NVM_BANK_PTR, &banks->nvm_ptr); 1361 if (status) { 1362 ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank pointer\n"); 1363 return status; 1364 } 1365 1366 status = ice_read_sr_area_size(hw, ICE_SR_NVM_BANK_SIZE, &banks->nvm_size); 1367 if (status) { 1368 ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank area size\n"); 1369 return status; 1370 } 1371 1372 status = ice_read_sr_pointer(hw, ICE_SR_1ST_OROM_BANK_PTR, &banks->orom_ptr); 1373 if (status) { 1374 ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank pointer\n"); 1375 return status; 1376 } 1377 1378 status = ice_read_sr_area_size(hw, ICE_SR_OROM_BANK_SIZE, &banks->orom_size); 1379 if (status) { 1380 ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank area size\n"); 1381 return status; 1382 } 1383 1384 status = ice_read_sr_pointer(hw, ICE_SR_NETLIST_BANK_PTR, &banks->netlist_ptr); 1385 if (status) { 1386 ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank pointer\n"); 1387 return status; 1388 } 1389 1390 status = ice_read_sr_area_size(hw, ICE_SR_NETLIST_BANK_SIZE, &banks->netlist_size); 1391 if (status) { 1392 ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank area size\n"); 1393 return status; 1394 } 1395 1396 return ICE_SUCCESS; 1397 } 1398 1399 /** 1400 * ice_init_nvm - initializes NVM setting 1401 * @hw: pointer to the HW struct 1402 * 1403 * This function reads and populates NVM settings such as Shadow RAM size, 1404 * max_timeout, and blank_nvm_mode 1405 */ 1406 enum ice_status ice_init_nvm(struct ice_hw *hw) 1407 { 1408 struct ice_flash_info *flash = &hw->flash; 1409 enum ice_status status; 1410 u32 fla, gens_stat; 1411 u8 sr_size; 1412 1413 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1414 1415 /* The SR size is stored regardless of the NVM programming mode 1416 * as the blank mode may be used in the factory line. 1417 */ 1418 gens_stat = rd32(hw, GLNVM_GENS); 1419 sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S; 1420 1421 /* Switching to words (sr_size contains power of 2) */ 1422 flash->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB; 1423 1424 /* Check if we are in the normal or blank NVM programming mode */ 1425 fla = rd32(hw, GLNVM_FLA); 1426 if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */ 1427 flash->blank_nvm_mode = false; 1428 } else { 1429 /* Blank programming mode */ 1430 flash->blank_nvm_mode = true; 1431 ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n"); 1432 return ICE_ERR_NVM_BLANK_MODE; 1433 } 1434 1435 status = ice_discover_flash_size(hw); 1436 if (status) { 1437 ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n"); 1438 return status; 1439 } 1440 1441 status = ice_determine_active_flash_banks(hw); 1442 if (status) { 1443 ice_debug(hw, ICE_DBG_NVM, "Failed to determine active flash banks.\n"); 1444 return status; 1445 } 1446 1447 status = ice_get_nvm_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->nvm); 1448 if (status) { 1449 ice_debug(hw, ICE_DBG_INIT, "Failed to read NVM info.\n"); 1450 return status; 1451 } 1452 1453 status = ice_get_orom_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->orom); 1454 if (status) 1455 ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n"); 1456 1457 /* read the netlist version information */ 1458 status = ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->netlist); 1459 if (status) 1460 ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n"); 1461 return ICE_SUCCESS; 1462 } 1463 1464 /** 1465 * ice_read_sr_buf - Reads Shadow RAM buf and acquire lock if necessary 1466 * @hw: pointer to the HW structure 1467 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 1468 * @words: (in) number of words to read; (out) number of words actually read 1469 * @data: words read from the Shadow RAM 1470 * 1471 * Reads 16 bit words (data buf) from the SR using the ice_read_nvm_buf_aq 1472 * method. The buf read is preceded by the NVM ownership take 1473 * and followed by the release. 1474 */ 1475 enum ice_status 1476 ice_read_sr_buf(struct ice_hw *hw, u16 offset, u16 *words, u16 *data) 1477 { 1478 enum ice_status status; 1479 1480 status = ice_acquire_nvm(hw, ICE_RES_READ); 1481 if (!status) { 1482 status = ice_read_sr_buf_aq(hw, offset, words, data); 1483 ice_release_nvm(hw); 1484 } 1485 1486 return status; 1487 } 1488 1489 /** 1490 * __ice_write_sr_word - Writes Shadow RAM word 1491 * @hw: pointer to the HW structure 1492 * @offset: offset of the Shadow RAM word to write 1493 * @data: word to write to the Shadow RAM 1494 * 1495 * Writes a 16 bit word to the SR using the ice_write_sr_aq method. 1496 * NVM ownership have to be acquired and released (on ARQ completion event 1497 * reception) by caller. To commit SR to NVM update checksum function 1498 * should be called. 1499 */ 1500 enum ice_status 1501 __ice_write_sr_word(struct ice_hw *hw, u32 offset, const u16 *data) 1502 { 1503 __le16 data_local = CPU_TO_LE16(*data); 1504 1505 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1506 1507 /* Value 0x00 below means that we treat SR as a flat mem */ 1508 return ice_write_sr_aq(hw, offset, 1, &data_local, false); 1509 } 1510 1511 /** 1512 * __ice_write_sr_buf - Writes Shadow RAM buf 1513 * @hw: pointer to the HW structure 1514 * @offset: offset of the Shadow RAM buffer to write 1515 * @words: number of words to write 1516 * @data: words to write to the Shadow RAM 1517 * 1518 * Writes a 16 bit words buffer to the Shadow RAM using the admin command. 1519 * NVM ownership must be acquired before calling this function and released 1520 * on ARQ completion event reception by caller. To commit SR to NVM update 1521 * checksum function should be called. 1522 */ 1523 enum ice_status 1524 __ice_write_sr_buf(struct ice_hw *hw, u32 offset, u16 words, const u16 *data) 1525 { 1526 enum ice_status status; 1527 __le16 *data_local; 1528 void *vmem; 1529 u32 i; 1530 1531 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1532 1533 vmem = ice_calloc(hw, words, sizeof(u16)); 1534 if (!vmem) 1535 return ICE_ERR_NO_MEMORY; 1536 data_local = (_FORCE_ __le16 *)vmem; 1537 1538 for (i = 0; i < words; i++) 1539 data_local[i] = CPU_TO_LE16(data[i]); 1540 1541 /* Here we will only write one buffer as the size of the modules 1542 * mirrored in the Shadow RAM is always less than 4K. 1543 */ 1544 status = ice_write_sr_aq(hw, offset, words, data_local, false); 1545 1546 ice_free(hw, vmem); 1547 1548 return status; 1549 } 1550 1551 /** 1552 * ice_calc_sr_checksum - Calculates and returns Shadow RAM SW checksum 1553 * @hw: pointer to hardware structure 1554 * @checksum: pointer to the checksum 1555 * 1556 * This function calculates SW Checksum that covers the whole 64kB shadow RAM 1557 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD 1558 * is customer specific and unknown. Therefore, this function skips all maximum 1559 * possible size of VPD (1kB). 1560 */ 1561 static enum ice_status ice_calc_sr_checksum(struct ice_hw *hw, u16 *checksum) 1562 { 1563 enum ice_status status = ICE_SUCCESS; 1564 u16 pcie_alt_module = 0; 1565 u16 checksum_local = 0; 1566 u16 vpd_module; 1567 void *vmem; 1568 u16 *data; 1569 u16 i; 1570 1571 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1572 1573 vmem = ice_calloc(hw, ICE_SR_SECTOR_SIZE_IN_WORDS, sizeof(u16)); 1574 if (!vmem) 1575 return ICE_ERR_NO_MEMORY; 1576 data = (u16 *)vmem; 1577 1578 /* read pointer to VPD area */ 1579 status = ice_read_sr_word_aq(hw, ICE_SR_VPD_PTR, &vpd_module); 1580 if (status) 1581 goto ice_calc_sr_checksum_exit; 1582 1583 /* read pointer to PCIe Alt Auto-load module */ 1584 status = ice_read_sr_word_aq(hw, ICE_SR_PCIE_ALT_AUTO_LOAD_PTR, 1585 &pcie_alt_module); 1586 if (status) 1587 goto ice_calc_sr_checksum_exit; 1588 1589 /* Calculate SW checksum that covers the whole 64kB shadow RAM 1590 * except the VPD and PCIe ALT Auto-load modules 1591 */ 1592 for (i = 0; i < hw->flash.sr_words; i++) { 1593 /* Read SR page */ 1594 if ((i % ICE_SR_SECTOR_SIZE_IN_WORDS) == 0) { 1595 u16 words = ICE_SR_SECTOR_SIZE_IN_WORDS; 1596 1597 status = ice_read_sr_buf_aq(hw, i, &words, data); 1598 if (status != ICE_SUCCESS) 1599 goto ice_calc_sr_checksum_exit; 1600 } 1601 1602 /* Skip Checksum word */ 1603 if (i == ICE_SR_SW_CHECKSUM_WORD) 1604 continue; 1605 /* Skip VPD module (convert byte size to word count) */ 1606 if (i >= (u32)vpd_module && 1607 i < ((u32)vpd_module + ICE_SR_VPD_SIZE_WORDS)) 1608 continue; 1609 /* Skip PCIe ALT module (convert byte size to word count) */ 1610 if (i >= (u32)pcie_alt_module && 1611 i < ((u32)pcie_alt_module + ICE_SR_PCIE_ALT_SIZE_WORDS)) 1612 continue; 1613 1614 checksum_local += data[i % ICE_SR_SECTOR_SIZE_IN_WORDS]; 1615 } 1616 1617 *checksum = (u16)ICE_SR_SW_CHECKSUM_BASE - checksum_local; 1618 1619 ice_calc_sr_checksum_exit: 1620 ice_free(hw, vmem); 1621 return status; 1622 } 1623 1624 /** 1625 * ice_update_sr_checksum - Updates the Shadow RAM SW checksum 1626 * @hw: pointer to hardware structure 1627 * 1628 * NVM ownership must be acquired before calling this function and released 1629 * on ARQ completion event reception by caller. 1630 * This function will commit SR to NVM. 1631 */ 1632 enum ice_status ice_update_sr_checksum(struct ice_hw *hw) 1633 { 1634 enum ice_status status; 1635 __le16 le_sum; 1636 u16 checksum; 1637 1638 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1639 1640 status = ice_calc_sr_checksum(hw, &checksum); 1641 if (!status) { 1642 le_sum = CPU_TO_LE16(checksum); 1643 status = ice_write_sr_aq(hw, ICE_SR_SW_CHECKSUM_WORD, 1, 1644 &le_sum, true); 1645 } 1646 return status; 1647 } 1648 1649 /** 1650 * ice_validate_sr_checksum - Validate Shadow RAM SW checksum 1651 * @hw: pointer to hardware structure 1652 * @checksum: calculated checksum 1653 * 1654 * Performs checksum calculation and validates the Shadow RAM SW checksum. 1655 * If the caller does not need checksum, the value can be NULL. 1656 */ 1657 enum ice_status ice_validate_sr_checksum(struct ice_hw *hw, u16 *checksum) 1658 { 1659 enum ice_status status; 1660 u16 checksum_local; 1661 u16 checksum_sr; 1662 1663 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1664 1665 status = ice_acquire_nvm(hw, ICE_RES_READ); 1666 if (!status) { 1667 status = ice_calc_sr_checksum(hw, &checksum_local); 1668 ice_release_nvm(hw); 1669 if (status) 1670 return status; 1671 } else { 1672 return status; 1673 } 1674 1675 ice_read_sr_word(hw, ICE_SR_SW_CHECKSUM_WORD, &checksum_sr); 1676 1677 /* Verify read checksum from EEPROM is the same as 1678 * calculated checksum 1679 */ 1680 if (checksum_local != checksum_sr) 1681 status = ICE_ERR_NVM_CHECKSUM; 1682 1683 /* If the user cares, return the calculated checksum */ 1684 if (checksum) 1685 *checksum = checksum_local; 1686 1687 return status; 1688 } 1689 1690 /** 1691 * ice_nvm_validate_checksum 1692 * @hw: pointer to the HW struct 1693 * 1694 * Verify NVM PFA checksum validity (0x0706) 1695 */ 1696 enum ice_status ice_nvm_validate_checksum(struct ice_hw *hw) 1697 { 1698 struct ice_aqc_nvm_checksum *cmd; 1699 struct ice_aq_desc desc; 1700 enum ice_status status; 1701 1702 status = ice_acquire_nvm(hw, ICE_RES_READ); 1703 if (status) 1704 return status; 1705 1706 cmd = &desc.params.nvm_checksum; 1707 1708 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum); 1709 cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY; 1710 1711 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 1712 1713 ice_release_nvm(hw); 1714 1715 if (!status) 1716 if (LE16_TO_CPU(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT) 1717 status = ICE_ERR_NVM_CHECKSUM; 1718 1719 return status; 1720 } 1721 1722 /** 1723 * ice_nvm_recalculate_checksum 1724 * @hw: pointer to the HW struct 1725 * 1726 * Recalculate NVM PFA checksum (0x0706) 1727 */ 1728 enum ice_status ice_nvm_recalculate_checksum(struct ice_hw *hw) 1729 { 1730 struct ice_aqc_nvm_checksum *cmd; 1731 struct ice_aq_desc desc; 1732 enum ice_status status; 1733 1734 status = ice_acquire_nvm(hw, ICE_RES_READ); 1735 if (status) 1736 return status; 1737 1738 cmd = &desc.params.nvm_checksum; 1739 1740 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum); 1741 cmd->flags = ICE_AQC_NVM_CHECKSUM_RECALC; 1742 1743 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 1744 1745 ice_release_nvm(hw); 1746 1747 return status; 1748 } 1749 1750 /** 1751 * ice_nvm_write_activate 1752 * @hw: pointer to the HW struct 1753 * @cmd_flags: flags for write activate command 1754 * @response_flags: response indicators from firmware 1755 * 1756 * Update the control word with the required banks' validity bits 1757 * and dumps the Shadow RAM to flash (0x0707) 1758 * 1759 * cmd_flags controls which banks to activate, the preservation level to use 1760 * when activating the NVM bank, and whether an EMP reset is required for 1761 * activation. 1762 * 1763 * Note that the 16bit cmd_flags value is split between two separate 1 byte 1764 * flag values in the descriptor. 1765 * 1766 * On successful return of the firmware command, the response_flags variable 1767 * is updated with the flags reported by firmware indicating certain status, 1768 * such as whether EMP reset is enabled. 1769 */ 1770 enum ice_status 1771 ice_nvm_write_activate(struct ice_hw *hw, u16 cmd_flags, u8 *response_flags) 1772 { 1773 struct ice_aqc_nvm *cmd; 1774 struct ice_aq_desc desc; 1775 enum ice_status status; 1776 1777 cmd = &desc.params.nvm; 1778 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate); 1779 1780 cmd->cmd_flags = ICE_LO_BYTE(cmd_flags); 1781 cmd->offset_high = ICE_HI_BYTE(cmd_flags); 1782 1783 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 1784 if (!status && response_flags) 1785 *response_flags = cmd->cmd_flags; 1786 1787 return status; 1788 } 1789 1790 /** 1791 * ice_get_nvm_minsrevs - Get the Minimum Security Revision values from flash 1792 * @hw: pointer to the HW struct 1793 * @minsrevs: structure to store NVM and OROM minsrev values 1794 * 1795 * Read the Minimum Security Revision TLV and extract the revision values from 1796 * the flash image into a readable structure for processing. 1797 */ 1798 enum ice_status 1799 ice_get_nvm_minsrevs(struct ice_hw *hw, struct ice_minsrev_info *minsrevs) 1800 { 1801 struct ice_aqc_nvm_minsrev data; 1802 enum ice_status status; 1803 u16 valid; 1804 1805 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1806 1807 status = ice_acquire_nvm(hw, ICE_RES_READ); 1808 if (status) 1809 return status; 1810 1811 status = ice_aq_read_nvm(hw, ICE_AQC_NVM_MINSREV_MOD_ID, 0, sizeof(data), 1812 &data, true, false, NULL); 1813 1814 ice_release_nvm(hw); 1815 1816 if (status) 1817 return status; 1818 1819 valid = LE16_TO_CPU(data.validity); 1820 1821 /* Extract NVM minimum security revision */ 1822 if (valid & ICE_AQC_NVM_MINSREV_NVM_VALID) { 1823 u16 minsrev_l, minsrev_h; 1824 1825 minsrev_l = LE16_TO_CPU(data.nvm_minsrev_l); 1826 minsrev_h = LE16_TO_CPU(data.nvm_minsrev_h); 1827 1828 minsrevs->nvm = minsrev_h << 16 | minsrev_l; 1829 minsrevs->nvm_valid = true; 1830 } 1831 1832 /* Extract the OROM minimum security revision */ 1833 if (valid & ICE_AQC_NVM_MINSREV_OROM_VALID) { 1834 u16 minsrev_l, minsrev_h; 1835 1836 minsrev_l = LE16_TO_CPU(data.orom_minsrev_l); 1837 minsrev_h = LE16_TO_CPU(data.orom_minsrev_h); 1838 1839 minsrevs->orom = minsrev_h << 16 | minsrev_l; 1840 minsrevs->orom_valid = true; 1841 } 1842 1843 return ICE_SUCCESS; 1844 } 1845 1846 /** 1847 * ice_update_nvm_minsrevs - Update minimum security revision TLV data in flash 1848 * @hw: pointer to the HW struct 1849 * @minsrevs: minimum security revision information 1850 * 1851 * Update the NVM or Option ROM minimum security revision fields in the PFA 1852 * area of the flash. Reads the minsrevs->nvm_valid and minsrevs->orom_valid 1853 * fields to determine what update is being requested. If the valid bit is not 1854 * set for that module, then the associated minsrev will be left as is. 1855 */ 1856 enum ice_status 1857 ice_update_nvm_minsrevs(struct ice_hw *hw, struct ice_minsrev_info *minsrevs) 1858 { 1859 struct ice_aqc_nvm_minsrev data; 1860 enum ice_status status; 1861 1862 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1863 1864 if (!minsrevs->nvm_valid && !minsrevs->orom_valid) { 1865 ice_debug(hw, ICE_DBG_NVM, "At least one of NVM and OROM MinSrev must be valid"); 1866 return ICE_ERR_PARAM; 1867 } 1868 1869 status = ice_acquire_nvm(hw, ICE_RES_WRITE); 1870 if (status) 1871 return status; 1872 1873 /* Get current data */ 1874 status = ice_aq_read_nvm(hw, ICE_AQC_NVM_MINSREV_MOD_ID, 0, sizeof(data), 1875 &data, true, false, NULL); 1876 if (status) 1877 goto exit_release_res; 1878 1879 if (minsrevs->nvm_valid) { 1880 data.nvm_minsrev_l = CPU_TO_LE16(minsrevs->nvm & 0xFFFF); 1881 data.nvm_minsrev_h = CPU_TO_LE16(minsrevs->nvm >> 16); 1882 data.validity |= CPU_TO_LE16(ICE_AQC_NVM_MINSREV_NVM_VALID); 1883 } 1884 1885 if (minsrevs->orom_valid) { 1886 data.orom_minsrev_l = CPU_TO_LE16(minsrevs->orom & 0xFFFF); 1887 data.orom_minsrev_h = CPU_TO_LE16(minsrevs->orom >> 16); 1888 data.validity |= CPU_TO_LE16(ICE_AQC_NVM_MINSREV_OROM_VALID); 1889 } 1890 1891 /* Update flash data */ 1892 status = ice_aq_update_nvm(hw, ICE_AQC_NVM_MINSREV_MOD_ID, 0, sizeof(data), &data, 1893 false, ICE_AQC_NVM_SPECIAL_UPDATE, NULL); 1894 if (status) 1895 goto exit_release_res; 1896 1897 /* Dump the Shadow RAM to the flash */ 1898 status = ice_nvm_write_activate(hw, 0, NULL); 1899 1900 exit_release_res: 1901 ice_release_nvm(hw); 1902 1903 return status; 1904 } 1905 1906 /** 1907 * ice_nvm_access_get_features - Return the NVM access features structure 1908 * @cmd: NVM access command to process 1909 * @data: storage for the driver NVM features 1910 * 1911 * Fill in the data section of the NVM access request with a copy of the NVM 1912 * features structure. 1913 */ 1914 enum ice_status 1915 ice_nvm_access_get_features(struct ice_nvm_access_cmd *cmd, 1916 union ice_nvm_access_data *data) 1917 { 1918 /* The provided data_size must be at least as large as our NVM 1919 * features structure. A larger size should not be treated as an 1920 * error, to allow future extensions to the features structure to 1921 * work on older drivers. 1922 */ 1923 if (cmd->data_size < sizeof(struct ice_nvm_features)) 1924 return ICE_ERR_NO_MEMORY; 1925 1926 /* Initialize the data buffer to zeros */ 1927 ice_memset(data, 0, cmd->data_size, ICE_NONDMA_MEM); 1928 1929 /* Fill in the features data */ 1930 data->drv_features.major = ICE_NVM_ACCESS_MAJOR_VER; 1931 data->drv_features.minor = ICE_NVM_ACCESS_MINOR_VER; 1932 data->drv_features.size = sizeof(struct ice_nvm_features); 1933 data->drv_features.features[0] = ICE_NVM_FEATURES_0_REG_ACCESS; 1934 1935 return ICE_SUCCESS; 1936 } 1937 1938 /** 1939 * ice_nvm_access_get_module - Helper function to read module value 1940 * @cmd: NVM access command structure 1941 * 1942 * Reads the module value out of the NVM access config field. 1943 */ 1944 u32 ice_nvm_access_get_module(struct ice_nvm_access_cmd *cmd) 1945 { 1946 return ((cmd->config & ICE_NVM_CFG_MODULE_M) >> ICE_NVM_CFG_MODULE_S); 1947 } 1948 1949 /** 1950 * ice_nvm_access_get_flags - Helper function to read flags value 1951 * @cmd: NVM access command structure 1952 * 1953 * Reads the flags value out of the NVM access config field. 1954 */ 1955 u32 ice_nvm_access_get_flags(struct ice_nvm_access_cmd *cmd) 1956 { 1957 return ((cmd->config & ICE_NVM_CFG_FLAGS_M) >> ICE_NVM_CFG_FLAGS_S); 1958 } 1959 1960 /** 1961 * ice_nvm_access_get_adapter - Helper function to read adapter info 1962 * @cmd: NVM access command structure 1963 * 1964 * Read the adapter info value out of the NVM access config field. 1965 */ 1966 u32 ice_nvm_access_get_adapter(struct ice_nvm_access_cmd *cmd) 1967 { 1968 return ((cmd->config & ICE_NVM_CFG_ADAPTER_INFO_M) >> 1969 ICE_NVM_CFG_ADAPTER_INFO_S); 1970 } 1971 1972 /** 1973 * ice_validate_nvm_rw_reg - Check than an NVM access request is valid 1974 * @cmd: NVM access command structure 1975 * 1976 * Validates that an NVM access structure is request to read or write a valid 1977 * register offset. First validates that the module and flags are correct, and 1978 * then ensures that the register offset is one of the accepted registers. 1979 */ 1980 static enum ice_status 1981 ice_validate_nvm_rw_reg(struct ice_nvm_access_cmd *cmd) 1982 { 1983 u32 module, flags, offset; 1984 u16 i; 1985 1986 module = ice_nvm_access_get_module(cmd); 1987 flags = ice_nvm_access_get_flags(cmd); 1988 offset = cmd->offset; 1989 1990 /* Make sure the module and flags indicate a read/write request */ 1991 if (module != ICE_NVM_REG_RW_MODULE || 1992 flags != ICE_NVM_REG_RW_FLAGS || 1993 cmd->data_size != FIELD_SIZEOF(union ice_nvm_access_data, regval)) 1994 return ICE_ERR_PARAM; 1995 1996 switch (offset) { 1997 case GL_HICR: 1998 case GL_HICR_EN: /* Note, this register is read only */ 1999 case GL_FWSTS: 2000 case GL_MNG_FWSM: 2001 case GLGEN_CSR_DEBUG_C: 2002 case GLGEN_RSTAT: 2003 case GLPCI_LBARCTRL: 2004 case GL_MNG_DEF_DEVID: 2005 case GLNVM_GENS: 2006 case GLNVM_FLA: 2007 case PF_FUNC_RID: 2008 return ICE_SUCCESS; 2009 default: 2010 break; 2011 } 2012 2013 for (i = 0; i <= GL_HIDA_MAX_INDEX; i++) 2014 if (offset == (u32)GL_HIDA(i)) 2015 return ICE_SUCCESS; 2016 2017 for (i = 0; i <= GL_HIBA_MAX_INDEX; i++) 2018 if (offset == (u32)GL_HIBA(i)) 2019 return ICE_SUCCESS; 2020 2021 /* All other register offsets are not valid */ 2022 return ICE_ERR_OUT_OF_RANGE; 2023 } 2024 2025 /** 2026 * ice_nvm_access_read - Handle an NVM read request 2027 * @hw: pointer to the HW struct 2028 * @cmd: NVM access command to process 2029 * @data: storage for the register value read 2030 * 2031 * Process an NVM access request to read a register. 2032 */ 2033 enum ice_status 2034 ice_nvm_access_read(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd, 2035 union ice_nvm_access_data *data) 2036 { 2037 enum ice_status status; 2038 2039 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 2040 2041 /* Always initialize the output data, even on failure */ 2042 ice_memset(data, 0, cmd->data_size, ICE_NONDMA_MEM); 2043 2044 /* Make sure this is a valid read/write access request */ 2045 status = ice_validate_nvm_rw_reg(cmd); 2046 if (status) 2047 return status; 2048 2049 ice_debug(hw, ICE_DBG_NVM, "NVM access: reading register %08x\n", 2050 cmd->offset); 2051 2052 /* Read the register and store the contents in the data field */ 2053 data->regval = rd32(hw, cmd->offset); 2054 2055 return ICE_SUCCESS; 2056 } 2057 2058 /** 2059 * ice_nvm_access_write - Handle an NVM write request 2060 * @hw: pointer to the HW struct 2061 * @cmd: NVM access command to process 2062 * @data: NVM access data to write 2063 * 2064 * Process an NVM access request to write a register. 2065 */ 2066 enum ice_status 2067 ice_nvm_access_write(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd, 2068 union ice_nvm_access_data *data) 2069 { 2070 enum ice_status status; 2071 2072 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 2073 2074 /* Make sure this is a valid read/write access request */ 2075 status = ice_validate_nvm_rw_reg(cmd); 2076 if (status) 2077 return status; 2078 2079 /* Reject requests to write to read-only registers */ 2080 switch (cmd->offset) { 2081 case GL_HICR_EN: 2082 case GLGEN_RSTAT: 2083 return ICE_ERR_OUT_OF_RANGE; 2084 default: 2085 break; 2086 } 2087 2088 ice_debug(hw, ICE_DBG_NVM, "NVM access: writing register %08x with value %08x\n", 2089 cmd->offset, data->regval); 2090 2091 /* Write the data field to the specified register */ 2092 wr32(hw, cmd->offset, data->regval); 2093 2094 return ICE_SUCCESS; 2095 } 2096 2097 /** 2098 * ice_handle_nvm_access - Handle an NVM access request 2099 * @hw: pointer to the HW struct 2100 * @cmd: NVM access command info 2101 * @data: pointer to read or return data 2102 * 2103 * Process an NVM access request. Read the command structure information and 2104 * determine if it is valid. If not, report an error indicating the command 2105 * was invalid. 2106 * 2107 * For valid commands, perform the necessary function, copying the data into 2108 * the provided data buffer. 2109 */ 2110 enum ice_status 2111 ice_handle_nvm_access(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd, 2112 union ice_nvm_access_data *data) 2113 { 2114 u32 module, flags, adapter_info; 2115 2116 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 2117 2118 /* Extended flags are currently reserved and must be zero */ 2119 if ((cmd->config & ICE_NVM_CFG_EXT_FLAGS_M) != 0) 2120 return ICE_ERR_PARAM; 2121 2122 /* Adapter info must match the HW device ID */ 2123 adapter_info = ice_nvm_access_get_adapter(cmd); 2124 if (adapter_info != hw->device_id) 2125 return ICE_ERR_PARAM; 2126 2127 switch (cmd->command) { 2128 case ICE_NVM_CMD_READ: 2129 module = ice_nvm_access_get_module(cmd); 2130 flags = ice_nvm_access_get_flags(cmd); 2131 2132 /* Getting the driver's NVM features structure shares the same 2133 * command type as reading a register. Read the config field 2134 * to determine if this is a request to get features. 2135 */ 2136 if (module == ICE_NVM_GET_FEATURES_MODULE && 2137 flags == ICE_NVM_GET_FEATURES_FLAGS && 2138 cmd->offset == 0) 2139 return ice_nvm_access_get_features(cmd, data); 2140 else 2141 return ice_nvm_access_read(hw, cmd, data); 2142 case ICE_NVM_CMD_WRITE: 2143 return ice_nvm_access_write(hw, cmd, data); 2144 default: 2145 return ICE_ERR_PARAM; 2146 } 2147 } 2148 2149