1 /* SPDX-License-Identifier: BSD-3-Clause */ 2 /* Copyright (c) 2024, Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * 3. Neither the name of the Intel Corporation nor the names of its 16 * contributors may be used to endorse or promote products derived from 17 * this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include "ice_common.h" 33 34 #define GL_MNG_DEF_DEVID 0x000B611C 35 36 /** 37 * ice_aq_read_nvm 38 * @hw: pointer to the HW struct 39 * @module_typeid: module pointer location in words from the NVM beginning 40 * @offset: byte offset from the module beginning 41 * @length: length of the section to be read (in bytes from the offset) 42 * @data: command buffer (size [bytes] = length) 43 * @last_command: tells if this is the last command in a series 44 * @read_shadow_ram: tell if this is a shadow RAM read 45 * @cd: pointer to command details structure or NULL 46 * 47 * Read the NVM using the admin queue commands (0x0701) 48 */ 49 enum ice_status 50 ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length, 51 void *data, bool last_command, bool read_shadow_ram, 52 struct ice_sq_cd *cd) 53 { 54 struct ice_aq_desc desc; 55 struct ice_aqc_nvm *cmd; 56 57 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 58 59 cmd = &desc.params.nvm; 60 61 if (offset > ICE_AQC_NVM_MAX_OFFSET) 62 return ICE_ERR_PARAM; 63 64 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read); 65 66 if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT) 67 cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY; 68 69 /* If this is the last command in a series, set the proper flag. */ 70 if (last_command) 71 cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD; 72 cmd->module_typeid = CPU_TO_LE16(module_typeid); 73 cmd->offset_low = CPU_TO_LE16(offset & 0xFFFF); 74 cmd->offset_high = (offset >> 16) & 0xFF; 75 cmd->length = CPU_TO_LE16(length); 76 77 return ice_aq_send_cmd(hw, &desc, data, length, cd); 78 } 79 80 /** 81 * ice_read_flat_nvm - Read portion of NVM by flat offset 82 * @hw: pointer to the HW struct 83 * @offset: offset from beginning of NVM 84 * @length: (in) number of bytes to read; (out) number of bytes actually read 85 * @data: buffer to return data in (sized to fit the specified length) 86 * @read_shadow_ram: if true, read from shadow RAM instead of NVM 87 * 88 * Reads a portion of the NVM, as a flat memory space. This function correctly 89 * breaks read requests across Shadow RAM sectors and ensures that no single 90 * read request exceeds the maximum 4KB read for a single AdminQ command. 91 * 92 * Returns a status code on failure. Note that the data pointer may be 93 * partially updated if some reads succeed before a failure. 94 */ 95 enum ice_status 96 ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data, 97 bool read_shadow_ram) 98 { 99 enum ice_status status; 100 u32 inlen = *length; 101 u32 bytes_read = 0; 102 bool last_cmd; 103 104 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 105 106 *length = 0; 107 108 /* Verify the length of the read if this is for the Shadow RAM */ 109 if (read_shadow_ram && ((offset + inlen) > (hw->flash.sr_words * 2u))) { 110 ice_debug(hw, ICE_DBG_NVM, "NVM error: requested data is beyond Shadow RAM limit\n"); 111 return ICE_ERR_PARAM; 112 } 113 114 do { 115 u32 read_size, sector_offset; 116 117 /* ice_aq_read_nvm cannot read more than 4KB at a time. 118 * Additionally, a read from the Shadow RAM may not cross over 119 * a sector boundary. Conveniently, the sector size is also 120 * 4KB. 121 */ 122 sector_offset = offset % ICE_AQ_MAX_BUF_LEN; 123 read_size = MIN_T(u32, ICE_AQ_MAX_BUF_LEN - sector_offset, 124 inlen - bytes_read); 125 126 last_cmd = !(bytes_read + read_size < inlen); 127 128 /* ice_aq_read_nvm takes the length as a u16. Our read_size is 129 * calculated using a u32, but the ICE_AQ_MAX_BUF_LEN maximum 130 * size guarantees that it will fit within the 2 bytes. 131 */ 132 status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, 133 offset, (u16)read_size, 134 data + bytes_read, last_cmd, 135 read_shadow_ram, NULL); 136 if (status) 137 break; 138 139 bytes_read += read_size; 140 offset += read_size; 141 } while (!last_cmd); 142 143 *length = bytes_read; 144 return status; 145 } 146 147 /** 148 * ice_aq_update_nvm 149 * @hw: pointer to the HW struct 150 * @module_typeid: module pointer location in words from the NVM beginning 151 * @offset: byte offset from the module beginning 152 * @length: length of the section to be written (in bytes from the offset) 153 * @data: command buffer (size [bytes] = length) 154 * @last_command: tells if this is the last command in a series 155 * @command_flags: command parameters 156 * @cd: pointer to command details structure or NULL 157 * 158 * Update the NVM using the admin queue commands (0x0703) 159 */ 160 enum ice_status 161 ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, 162 u16 length, void *data, bool last_command, u8 command_flags, 163 struct ice_sq_cd *cd) 164 { 165 struct ice_aq_desc desc; 166 struct ice_aqc_nvm *cmd; 167 168 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 169 170 cmd = &desc.params.nvm; 171 172 /* In offset the highest byte must be zeroed. */ 173 if (offset & 0xFF000000) 174 return ICE_ERR_PARAM; 175 176 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write); 177 178 cmd->cmd_flags |= command_flags; 179 180 /* If this is the last command in a series, set the proper flag. */ 181 if (last_command) 182 cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD; 183 cmd->module_typeid = CPU_TO_LE16(module_typeid); 184 cmd->offset_low = CPU_TO_LE16(offset & 0xFFFF); 185 cmd->offset_high = (offset >> 16) & 0xFF; 186 cmd->length = CPU_TO_LE16(length); 187 188 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 189 190 return ice_aq_send_cmd(hw, &desc, data, length, cd); 191 } 192 193 /** 194 * ice_aq_erase_nvm 195 * @hw: pointer to the HW struct 196 * @module_typeid: module pointer location in words from the NVM beginning 197 * @cd: pointer to command details structure or NULL 198 * 199 * Erase the NVM sector using the admin queue commands (0x0702) 200 */ 201 enum ice_status 202 ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd) 203 { 204 struct ice_aq_desc desc; 205 struct ice_aqc_nvm *cmd; 206 enum ice_status status; 207 __le16 len; 208 209 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 210 211 /* read a length value from SR, so module_typeid is equal to 0 */ 212 /* calculate offset where module size is placed from bytes to words */ 213 /* set last command and read from SR values to true */ 214 status = ice_aq_read_nvm(hw, 0, 2 * module_typeid + 2, 2, &len, true, 215 true, NULL); 216 if (status) 217 return status; 218 219 cmd = &desc.params.nvm; 220 221 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase); 222 223 cmd->module_typeid = CPU_TO_LE16(module_typeid); 224 cmd->length = len; 225 cmd->offset_low = 0; 226 cmd->offset_high = 0; 227 228 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 229 } 230 231 /** 232 * ice_aq_read_nvm_cfg - read an NVM config block 233 * @hw: pointer to the HW struct 234 * @cmd_flags: NVM access admin command bits 235 * @field_id: field or feature ID 236 * @data: buffer for result 237 * @buf_size: buffer size 238 * @elem_count: pointer to count of elements read by FW 239 * @cd: pointer to command details structure or NULL 240 * 241 * Reads single or multiple feature/field ID and data (0x0704) 242 */ 243 enum ice_status 244 ice_aq_read_nvm_cfg(struct ice_hw *hw, u8 cmd_flags, u16 field_id, void *data, 245 u16 buf_size, u16 *elem_count, struct ice_sq_cd *cd) 246 { 247 struct ice_aqc_nvm_cfg *cmd; 248 struct ice_aq_desc desc; 249 enum ice_status status; 250 251 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 252 253 cmd = &desc.params.nvm_cfg; 254 255 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_cfg_read); 256 257 cmd->cmd_flags = cmd_flags; 258 cmd->id = CPU_TO_LE16(field_id); 259 260 status = ice_aq_send_cmd(hw, &desc, data, buf_size, cd); 261 if (!status && elem_count) 262 *elem_count = LE16_TO_CPU(cmd->count); 263 264 return status; 265 } 266 267 /** 268 * ice_aq_write_nvm_cfg - write an NVM config block 269 * @hw: pointer to the HW struct 270 * @cmd_flags: NVM access admin command bits 271 * @data: buffer for result 272 * @buf_size: buffer size 273 * @elem_count: count of elements to be written 274 * @cd: pointer to command details structure or NULL 275 * 276 * Writes single or multiple feature/field ID and data (0x0705) 277 */ 278 enum ice_status 279 ice_aq_write_nvm_cfg(struct ice_hw *hw, u8 cmd_flags, void *data, u16 buf_size, 280 u16 elem_count, struct ice_sq_cd *cd) 281 { 282 struct ice_aqc_nvm_cfg *cmd; 283 struct ice_aq_desc desc; 284 285 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 286 287 cmd = &desc.params.nvm_cfg; 288 289 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_cfg_write); 290 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 291 292 cmd->count = CPU_TO_LE16(elem_count); 293 cmd->cmd_flags = cmd_flags; 294 295 return ice_aq_send_cmd(hw, &desc, data, buf_size, cd); 296 } 297 298 /** 299 * ice_check_sr_access_params - verify params for Shadow RAM R/W operations 300 * @hw: pointer to the HW structure 301 * @offset: offset in words from module start 302 * @words: number of words to access 303 */ 304 static enum ice_status 305 ice_check_sr_access_params(struct ice_hw *hw, u32 offset, u16 words) 306 { 307 if ((offset + words) > hw->flash.sr_words) { 308 ice_debug(hw, ICE_DBG_NVM, "NVM error: offset beyond SR lmt.\n"); 309 return ICE_ERR_PARAM; 310 } 311 312 if (words > ICE_SR_SECTOR_SIZE_IN_WORDS) { 313 /* We can access only up to 4KB (one sector), in one AQ write */ 314 ice_debug(hw, ICE_DBG_NVM, "NVM error: tried to access %d words, limit is %d.\n", 315 words, ICE_SR_SECTOR_SIZE_IN_WORDS); 316 return ICE_ERR_PARAM; 317 } 318 319 if (((offset + (words - 1)) / ICE_SR_SECTOR_SIZE_IN_WORDS) != 320 (offset / ICE_SR_SECTOR_SIZE_IN_WORDS)) { 321 /* A single access cannot spread over two sectors */ 322 ice_debug(hw, ICE_DBG_NVM, "NVM error: cannot spread over two sectors.\n"); 323 return ICE_ERR_PARAM; 324 } 325 326 return ICE_SUCCESS; 327 } 328 329 /** 330 * ice_read_sr_word_aq - Reads Shadow RAM via AQ 331 * @hw: pointer to the HW structure 332 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 333 * @data: word read from the Shadow RAM 334 * 335 * Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm. 336 */ 337 enum ice_status ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data) 338 { 339 u32 bytes = sizeof(u16); 340 enum ice_status status; 341 __le16 data_local; 342 343 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 344 345 /* Note that ice_read_flat_nvm checks if the read is past the Shadow 346 * RAM size, and ensures we don't read across a Shadow RAM sector 347 * boundary 348 */ 349 status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes, 350 (_FORCE_ u8 *)&data_local, true); 351 if (status) 352 return status; 353 354 *data = LE16_TO_CPU(data_local); 355 return ICE_SUCCESS; 356 } 357 358 /** 359 * ice_write_sr_aq - Writes Shadow RAM 360 * @hw: pointer to the HW structure 361 * @offset: offset in words from module start 362 * @words: number of words to write 363 * @data: buffer with words to write to the Shadow RAM 364 * @last_command: tells the AdminQ that this is the last command 365 * 366 * Writes a 16 bit words buffer to the Shadow RAM using the admin command. 367 */ 368 static enum ice_status 369 ice_write_sr_aq(struct ice_hw *hw, u32 offset, u16 words, __le16 *data, 370 bool last_command) 371 { 372 enum ice_status status; 373 374 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 375 376 status = ice_check_sr_access_params(hw, offset, words); 377 if (!status) 378 status = ice_aq_update_nvm(hw, 0, 2 * offset, 2 * words, data, 379 last_command, 0, NULL); 380 381 return status; 382 } 383 384 /** 385 * ice_read_sr_buf_aq - Reads Shadow RAM buf via AQ 386 * @hw: pointer to the HW structure 387 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 388 * @words: (in) number of words to read; (out) number of words actually read 389 * @data: words read from the Shadow RAM 390 * 391 * Reads 16 bit words (data buf) from the Shadow RAM. Ownership of the NVM is 392 * taken before reading the buffer and later released. 393 */ 394 static enum ice_status 395 ice_read_sr_buf_aq(struct ice_hw *hw, u16 offset, u16 *words, u16 *data) 396 { 397 u32 bytes = *words * 2, i; 398 enum ice_status status; 399 400 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 401 402 /* ice_read_flat_nvm takes into account the 4KB AdminQ and Shadow RAM 403 * sector restrictions necessary when reading from the NVM. 404 */ 405 status = ice_read_flat_nvm(hw, offset * 2, &bytes, (u8 *)data, true); 406 407 /* Report the number of words successfully read */ 408 *words = (u16)(bytes / 2); 409 410 /* Byte swap the words up to the amount we actually read */ 411 for (i = 0; i < *words; i++) 412 data[i] = LE16_TO_CPU(((_FORCE_ __le16 *)data)[i]); 413 414 return status; 415 } 416 417 /** 418 * ice_acquire_nvm - Generic request for acquiring the NVM ownership 419 * @hw: pointer to the HW structure 420 * @access: NVM access type (read or write) 421 * 422 * This function will request NVM ownership. 423 */ 424 enum ice_status 425 ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access) 426 { 427 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 428 if (hw->flash.blank_nvm_mode) 429 return ICE_SUCCESS; 430 431 return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT); 432 } 433 434 /** 435 * ice_release_nvm - Generic request for releasing the NVM ownership 436 * @hw: pointer to the HW structure 437 * 438 * This function will release NVM ownership. 439 */ 440 void ice_release_nvm(struct ice_hw *hw) 441 { 442 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 443 444 if (hw->flash.blank_nvm_mode) 445 return; 446 447 ice_release_res(hw, ICE_NVM_RES_ID); 448 } 449 450 /** 451 * ice_get_flash_bank_offset - Get offset into requested flash bank 452 * @hw: pointer to the HW structure 453 * @bank: whether to read from the active or inactive flash bank 454 * @module: the module to read from 455 * 456 * Based on the module, lookup the module offset from the beginning of the 457 * flash. 458 * 459 * Returns the flash offset. Note that a value of zero is invalid and must be 460 * treated as an error. 461 */ 462 static u32 ice_get_flash_bank_offset(struct ice_hw *hw, enum ice_bank_select bank, u16 module) 463 { 464 struct ice_bank_info *banks = &hw->flash.banks; 465 enum ice_flash_bank active_bank; 466 bool second_bank_active; 467 u32 offset, size; 468 469 switch (module) { 470 case ICE_SR_1ST_NVM_BANK_PTR: 471 offset = banks->nvm_ptr; 472 size = banks->nvm_size; 473 active_bank = banks->nvm_bank; 474 break; 475 case ICE_SR_1ST_OROM_BANK_PTR: 476 offset = banks->orom_ptr; 477 size = banks->orom_size; 478 active_bank = banks->orom_bank; 479 break; 480 case ICE_SR_NETLIST_BANK_PTR: 481 offset = banks->netlist_ptr; 482 size = banks->netlist_size; 483 active_bank = banks->netlist_bank; 484 break; 485 default: 486 ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash module: 0x%04x\n", module); 487 return 0; 488 } 489 490 switch (active_bank) { 491 case ICE_1ST_FLASH_BANK: 492 second_bank_active = false; 493 break; 494 case ICE_2ND_FLASH_BANK: 495 second_bank_active = true; 496 break; 497 default: 498 ice_debug(hw, ICE_DBG_NVM, "Unexpected value for active flash bank: %u\n", 499 active_bank); 500 return 0; 501 } 502 503 /* The second flash bank is stored immediately following the first 504 * bank. Based on whether the 1st or 2nd bank is active, and whether 505 * we want the active or inactive bank, calculate the desired offset. 506 */ 507 switch (bank) { 508 case ICE_ACTIVE_FLASH_BANK: 509 return offset + (second_bank_active ? size : 0); 510 case ICE_INACTIVE_FLASH_BANK: 511 return offset + (second_bank_active ? 0 : size); 512 } 513 514 ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash bank selection: %u\n", bank); 515 return 0; 516 } 517 518 /** 519 * ice_read_flash_module - Read a word from one of the main NVM modules 520 * @hw: pointer to the HW structure 521 * @bank: which bank of the module to read 522 * @module: the module to read 523 * @offset: the offset into the module in bytes 524 * @data: storage for the word read from the flash 525 * @length: bytes of data to read 526 * 527 * Read data from the specified flash module. The bank parameter indicates 528 * whether or not to read from the active bank or the inactive bank of that 529 * module. 530 * 531 * The word will be read using flat NVM access, and relies on the 532 * hw->flash.banks data being setup by ice_determine_active_flash_banks() 533 * during initialization. 534 */ 535 static enum ice_status 536 ice_read_flash_module(struct ice_hw *hw, enum ice_bank_select bank, u16 module, 537 u32 offset, u8 *data, u32 length) 538 { 539 enum ice_status status; 540 u32 start; 541 542 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 543 544 start = ice_get_flash_bank_offset(hw, bank, module); 545 if (!start) { 546 ice_debug(hw, ICE_DBG_NVM, "Unable to calculate flash bank offset for module 0x%04x\n", 547 module); 548 return ICE_ERR_PARAM; 549 } 550 551 status = ice_acquire_nvm(hw, ICE_RES_READ); 552 if (status) 553 return status; 554 555 status = ice_read_flat_nvm(hw, start + offset, &length, data, false); 556 557 ice_release_nvm(hw); 558 559 return status; 560 } 561 562 /** 563 * ice_read_nvm_module - Read from the active main NVM module 564 * @hw: pointer to the HW structure 565 * @bank: whether to read from active or inactive NVM module 566 * @offset: offset into the NVM module to read, in words 567 * @data: storage for returned word value 568 * 569 * Read the specified word from the active NVM module. This includes the CSS 570 * header at the start of the NVM module. 571 */ 572 static enum ice_status 573 ice_read_nvm_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data) 574 { 575 enum ice_status status; 576 __le16 data_local; 577 578 status = ice_read_flash_module(hw, bank, ICE_SR_1ST_NVM_BANK_PTR, offset * sizeof(u16), 579 (_FORCE_ u8 *)&data_local, sizeof(u16)); 580 if (!status) 581 *data = LE16_TO_CPU(data_local); 582 583 return status; 584 } 585 586 /** 587 * ice_get_nvm_css_hdr_len - Read the CSS header length from the NVM CSS header 588 * @hw: pointer to the HW struct 589 * @bank: whether to read from the active or inactive flash bank 590 * @hdr_len: storage for header length in words 591 * 592 * Read the CSS header length from the NVM CSS header and add the Authentication 593 * header size, and then convert to words. 594 */ 595 static enum ice_status 596 ice_get_nvm_css_hdr_len(struct ice_hw *hw, enum ice_bank_select bank, 597 u32 *hdr_len) 598 { 599 u16 hdr_len_l, hdr_len_h; 600 enum ice_status status; 601 u32 hdr_len_dword; 602 603 status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_HDR_LEN_L, 604 &hdr_len_l); 605 if (status) 606 return status; 607 608 status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_HDR_LEN_H, 609 &hdr_len_h); 610 if (status) 611 return status; 612 613 /* CSS header length is in DWORD, so convert to words and add 614 * authentication header size 615 */ 616 hdr_len_dword = hdr_len_h << 16 | hdr_len_l; 617 *hdr_len = (hdr_len_dword * 2) + ICE_NVM_AUTH_HEADER_LEN; 618 619 return ICE_SUCCESS; 620 } 621 622 /** 623 * ice_read_nvm_sr_copy - Read a word from the Shadow RAM copy in the NVM bank 624 * @hw: pointer to the HW structure 625 * @bank: whether to read from the active or inactive NVM module 626 * @offset: offset into the Shadow RAM copy to read, in words 627 * @data: storage for returned word value 628 * 629 * Read the specified word from the copy of the Shadow RAM found in the 630 * specified NVM module. 631 */ 632 static enum ice_status 633 ice_read_nvm_sr_copy(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data) 634 { 635 enum ice_status status; 636 u32 hdr_len; 637 638 status = ice_get_nvm_css_hdr_len(hw, bank, &hdr_len); 639 if (status) 640 return status; 641 642 hdr_len = ROUND_UP(hdr_len, 32); 643 644 return ice_read_nvm_module(hw, bank, hdr_len + offset, data); 645 } 646 647 /** 648 * ice_read_orom_module - Read from the active Option ROM module 649 * @hw: pointer to the HW structure 650 * @bank: whether to read from active or inactive OROM module 651 * @offset: offset into the OROM module to read, in words 652 * @data: storage for returned word value 653 * 654 * Read the specified word from the active Option ROM module of the flash. 655 * Note that unlike the NVM module, the CSS data is stored at the end of the 656 * module instead of at the beginning. 657 */ 658 static enum ice_status 659 ice_read_orom_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data) 660 { 661 enum ice_status status; 662 __le16 data_local; 663 664 status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, offset * sizeof(u16), 665 (_FORCE_ u8 *)&data_local, sizeof(u16)); 666 if (!status) 667 *data = LE16_TO_CPU(data_local); 668 669 return status; 670 } 671 672 /** 673 * ice_read_netlist_module - Read data from the netlist module area 674 * @hw: pointer to the HW structure 675 * @bank: whether to read from the active or inactive module 676 * @offset: offset into the netlist to read from 677 * @data: storage for returned word value 678 * 679 * Read a word from the specified netlist bank. 680 */ 681 static enum ice_status 682 ice_read_netlist_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data) 683 { 684 enum ice_status status; 685 __le16 data_local; 686 687 status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, offset * sizeof(u16), 688 (_FORCE_ u8 *)&data_local, sizeof(u16)); 689 if (!status) 690 *data = LE16_TO_CPU(data_local); 691 692 return status; 693 } 694 695 /** 696 * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary 697 * @hw: pointer to the HW structure 698 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 699 * @data: word read from the Shadow RAM 700 * 701 * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq. 702 */ 703 enum ice_status ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data) 704 { 705 enum ice_status status; 706 707 status = ice_acquire_nvm(hw, ICE_RES_READ); 708 if (!status) { 709 status = ice_read_sr_word_aq(hw, offset, data); 710 ice_release_nvm(hw); 711 } 712 713 return status; 714 } 715 716 /** 717 * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA 718 * @hw: pointer to hardware structure 719 * @module_tlv: pointer to module TLV to return 720 * @module_tlv_len: pointer to module TLV length to return 721 * @module_type: module type requested 722 * 723 * Finds the requested sub module TLV type from the Preserved Field 724 * Area (PFA) and returns the TLV pointer and length. The caller can 725 * use these to read the variable length TLV value. 726 */ 727 enum ice_status 728 ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len, 729 u16 module_type) 730 { 731 enum ice_status status; 732 u16 pfa_len, pfa_ptr; 733 u16 next_tlv; 734 735 status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr); 736 if (status != ICE_SUCCESS) { 737 ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n"); 738 return status; 739 } 740 status = ice_read_sr_word(hw, pfa_ptr, &pfa_len); 741 if (status != ICE_SUCCESS) { 742 ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n"); 743 return status; 744 } 745 /* Starting with first TLV after PFA length, iterate through the list 746 * of TLVs to find the requested one. 747 */ 748 next_tlv = pfa_ptr + 1; 749 while (next_tlv < pfa_ptr + pfa_len) { 750 u16 tlv_sub_module_type; 751 u16 tlv_len; 752 753 /* Read TLV type */ 754 status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type); 755 if (status != ICE_SUCCESS) { 756 ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n"); 757 break; 758 } 759 /* Read TLV length */ 760 status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len); 761 if (status != ICE_SUCCESS) { 762 ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n"); 763 break; 764 } 765 if (tlv_sub_module_type == module_type) { 766 if (tlv_len) { 767 *module_tlv = next_tlv; 768 *module_tlv_len = tlv_len; 769 return ICE_SUCCESS; 770 } 771 return ICE_ERR_INVAL_SIZE; 772 } 773 /* Check next TLV, i.e. current TLV pointer + length + 2 words 774 * (for current TLV's type and length) 775 */ 776 next_tlv = next_tlv + tlv_len + 2; 777 } 778 /* Module does not exist */ 779 return ICE_ERR_DOES_NOT_EXIST; 780 } 781 782 /** 783 * ice_read_pba_string - Reads part number string from NVM 784 * @hw: pointer to hardware structure 785 * @pba_num: stores the part number string from the NVM 786 * @pba_num_size: part number string buffer length 787 * 788 * Reads the part number string from the NVM. 789 */ 790 enum ice_status 791 ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size) 792 { 793 u16 pba_tlv, pba_tlv_len; 794 enum ice_status status; 795 u16 pba_word, pba_size; 796 u16 i; 797 798 status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len, 799 ICE_SR_PBA_BLOCK_PTR); 800 if (status != ICE_SUCCESS) { 801 ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n"); 802 return status; 803 } 804 805 /* pba_size is the next word */ 806 status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size); 807 if (status != ICE_SUCCESS) { 808 ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n"); 809 return status; 810 } 811 812 if (pba_tlv_len < pba_size) { 813 ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n"); 814 return ICE_ERR_INVAL_SIZE; 815 } 816 817 /* Subtract one to get PBA word count (PBA Size word is included in 818 * total size) 819 */ 820 pba_size--; 821 if (pba_num_size < (((u32)pba_size * 2) + 1)) { 822 ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n"); 823 return ICE_ERR_PARAM; 824 } 825 826 for (i = 0; i < pba_size; i++) { 827 status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word); 828 if (status != ICE_SUCCESS) { 829 ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i); 830 return status; 831 } 832 833 pba_num[(i * 2)] = (pba_word >> 8) & 0xFF; 834 pba_num[(i * 2) + 1] = pba_word & 0xFF; 835 } 836 pba_num[(pba_size * 2)] = '\0'; 837 838 return status; 839 } 840 841 /** 842 * ice_get_nvm_srev - Read the security revision from the NVM CSS header 843 * @hw: pointer to the HW struct 844 * @bank: whether to read from the active or inactive flash bank 845 * @srev: storage for security revision 846 * 847 * Read the security revision out of the CSS header of the active NVM module 848 * bank. 849 */ 850 static enum ice_status ice_get_nvm_srev(struct ice_hw *hw, enum ice_bank_select bank, u32 *srev) 851 { 852 enum ice_status status; 853 u16 srev_l, srev_h; 854 855 status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_SREV_L, &srev_l); 856 if (status) 857 return status; 858 859 status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_SREV_H, &srev_h); 860 if (status) 861 return status; 862 863 *srev = srev_h << 16 | srev_l; 864 865 return ICE_SUCCESS; 866 } 867 868 /** 869 * ice_get_nvm_ver_info - Read NVM version information 870 * @hw: pointer to the HW struct 871 * @bank: whether to read from the active or inactive flash bank 872 * @nvm: pointer to NVM info structure 873 * 874 * Read the NVM EETRACK ID and map version of the main NVM image bank, filling 875 * in the NVM info structure. 876 */ 877 static enum ice_status 878 ice_get_nvm_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_nvm_info *nvm) 879 { 880 u16 eetrack_lo, eetrack_hi, ver; 881 enum ice_status status; 882 883 status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_DEV_STARTER_VER, &ver); 884 if (status) { 885 ice_debug(hw, ICE_DBG_NVM, "Failed to read DEV starter version.\n"); 886 return status; 887 } 888 889 nvm->major = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT; 890 nvm->minor = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT; 891 892 status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_LO, &eetrack_lo); 893 if (status) { 894 ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK lo.\n"); 895 return status; 896 } 897 status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_HI, &eetrack_hi); 898 if (status) { 899 ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK hi.\n"); 900 return status; 901 } 902 903 nvm->eetrack = (eetrack_hi << 16) | eetrack_lo; 904 905 status = ice_get_nvm_srev(hw, bank, &nvm->srev); 906 if (status) 907 ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM security revision.\n"); 908 909 return ICE_SUCCESS; 910 } 911 912 /** 913 * ice_get_inactive_nvm_ver - Read Option ROM version from the inactive bank 914 * @hw: pointer to the HW structure 915 * @nvm: storage for Option ROM version information 916 * 917 * Reads the NVM EETRACK ID, Map version, and security revision of the 918 * inactive NVM bank. Used to access version data for a pending update that 919 * has not yet been activated. 920 */ 921 enum ice_status ice_get_inactive_nvm_ver(struct ice_hw *hw, struct ice_nvm_info *nvm) 922 { 923 return ice_get_nvm_ver_info(hw, ICE_INACTIVE_FLASH_BANK, nvm); 924 } 925 926 /** 927 * ice_get_orom_srev - Read the security revision from the OROM CSS header 928 * @hw: pointer to the HW struct 929 * @bank: whether to read from active or inactive flash module 930 * @srev: storage for security revision 931 * 932 * Read the security revision out of the CSS header of the active OROM module 933 * bank. 934 */ 935 static enum ice_status ice_get_orom_srev(struct ice_hw *hw, enum ice_bank_select bank, u32 *srev) 936 { 937 u32 orom_size_word = hw->flash.banks.orom_size / 2; 938 enum ice_status status; 939 u16 srev_l, srev_h; 940 u32 css_start; 941 u32 hdr_len; 942 943 status = ice_get_nvm_css_hdr_len(hw, bank, &hdr_len); 944 if (status) 945 return status; 946 947 if (orom_size_word < hdr_len) { 948 ice_debug(hw, ICE_DBG_NVM, "Unexpected Option ROM Size of %u\n", 949 hw->flash.banks.orom_size); 950 return ICE_ERR_CFG; 951 } 952 953 /* calculate how far into the Option ROM the CSS header starts. Note 954 * that ice_read_orom_module takes a word offset 955 */ 956 css_start = orom_size_word - hdr_len; 957 status = ice_read_orom_module(hw, bank, css_start + ICE_NVM_CSS_SREV_L, &srev_l); 958 if (status) 959 return status; 960 961 status = ice_read_orom_module(hw, bank, css_start + ICE_NVM_CSS_SREV_H, &srev_h); 962 if (status) 963 return status; 964 965 *srev = srev_h << 16 | srev_l; 966 967 return ICE_SUCCESS; 968 } 969 970 /** 971 * ice_get_orom_civd_data - Get the combo version information from Option ROM 972 * @hw: pointer to the HW struct 973 * @bank: whether to read from the active or inactive flash module 974 * @civd: storage for the Option ROM CIVD data. 975 * 976 * Searches through the Option ROM flash contents to locate the CIVD data for 977 * the image. 978 */ 979 static enum ice_status 980 ice_get_orom_civd_data(struct ice_hw *hw, enum ice_bank_select bank, 981 struct ice_orom_civd_info *civd) 982 { 983 u8 *orom_data; 984 enum ice_status status; 985 u32 offset; 986 987 /* The CIVD section is located in the Option ROM aligned to 512 bytes. 988 * The first 4 bytes must contain the ASCII characters "$CIV". 989 * A simple modulo 256 sum of all of the bytes of the structure must 990 * equal 0. 991 * 992 * The exact location is unknown and varies between images but is 993 * usually somewhere in the middle of the bank. We need to scan the 994 * Option ROM bank to locate it. 995 * 996 * It's significantly faster to read the entire Option ROM up front 997 * using the maximum page size, than to read each possible location 998 * with a separate firmware command. 999 */ 1000 orom_data = (u8 *)ice_calloc(hw, hw->flash.banks.orom_size, sizeof(u8)); 1001 if (!orom_data) 1002 return ICE_ERR_NO_MEMORY; 1003 1004 status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, 0, 1005 orom_data, hw->flash.banks.orom_size); 1006 if (status) { 1007 ice_debug(hw, ICE_DBG_NVM, "Unable to read Option ROM data\n"); 1008 goto exit_error; 1009 } 1010 1011 /* Scan the memory buffer to locate the CIVD data section */ 1012 for (offset = 0; (offset + 512) <= hw->flash.banks.orom_size; offset += 512) { 1013 struct ice_orom_civd_info *tmp; 1014 u8 sum = 0, i; 1015 1016 tmp = (struct ice_orom_civd_info *)&orom_data[offset]; 1017 1018 /* Skip forward until we find a matching signature */ 1019 if (memcmp("$CIV", tmp->signature, sizeof(tmp->signature)) != 0) 1020 continue; 1021 1022 ice_debug(hw, ICE_DBG_NVM, "Found CIVD section at offset %u\n", 1023 offset); 1024 1025 /* Verify that the simple checksum is zero */ 1026 for (i = 0; i < sizeof(*tmp); i++) 1027 sum += ((u8 *)tmp)[i]; 1028 1029 if (sum) { 1030 ice_debug(hw, ICE_DBG_NVM, "Found CIVD data with invalid checksum of %u\n", 1031 sum); 1032 status = ICE_ERR_NVM; 1033 goto exit_error; 1034 } 1035 1036 *civd = *tmp; 1037 ice_free(hw, orom_data); 1038 return ICE_SUCCESS; 1039 } 1040 1041 status = ICE_ERR_NVM; 1042 ice_debug(hw, ICE_DBG_NVM, "Unable to locate CIVD data within the Option ROM\n"); 1043 1044 exit_error: 1045 ice_free(hw, orom_data); 1046 return status; 1047 } 1048 1049 /** 1050 * ice_get_orom_ver_info - Read Option ROM version information 1051 * @hw: pointer to the HW struct 1052 * @bank: whether to read from the active or inactive flash module 1053 * @orom: pointer to Option ROM info structure 1054 * 1055 * Read Option ROM version and security revision from the Option ROM flash 1056 * section. 1057 */ 1058 static enum ice_status 1059 ice_get_orom_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_orom_info *orom) 1060 { 1061 struct ice_orom_civd_info civd; 1062 enum ice_status status; 1063 u32 combo_ver; 1064 1065 status = ice_get_orom_civd_data(hw, bank, &civd); 1066 if (status) { 1067 ice_debug(hw, ICE_DBG_NVM, "Failed to locate valid Option ROM CIVD data\n"); 1068 return status; 1069 } 1070 1071 combo_ver = LE32_TO_CPU(civd.combo_ver); 1072 1073 orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >> ICE_OROM_VER_SHIFT); 1074 orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK); 1075 orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >> ICE_OROM_VER_BUILD_SHIFT); 1076 1077 status = ice_get_orom_srev(hw, bank, &orom->srev); 1078 if (status) { 1079 ice_debug(hw, ICE_DBG_NVM, "Failed to read Option ROM security revision.\n"); 1080 return status; 1081 } 1082 1083 return ICE_SUCCESS; 1084 } 1085 1086 /** 1087 * ice_get_inactive_orom_ver - Read Option ROM version from the inactive bank 1088 * @hw: pointer to the HW structure 1089 * @orom: storage for Option ROM version information 1090 * 1091 * Reads the Option ROM version and security revision data for the inactive 1092 * section of flash. Used to access version data for a pending update that has 1093 * not yet been activated. 1094 */ 1095 enum ice_status ice_get_inactive_orom_ver(struct ice_hw *hw, struct ice_orom_info *orom) 1096 { 1097 return ice_get_orom_ver_info(hw, ICE_INACTIVE_FLASH_BANK, orom); 1098 } 1099 1100 /** 1101 * ice_get_netlist_info 1102 * @hw: pointer to the HW struct 1103 * @bank: whether to read from the active or inactive flash bank 1104 * @netlist: pointer to netlist version info structure 1105 * 1106 * Get the netlist version information from the requested bank. Reads the Link 1107 * Topology section to find the Netlist ID block and extract the relevant 1108 * information into the netlist version structure. 1109 */ 1110 static enum ice_status 1111 ice_get_netlist_info(struct ice_hw *hw, enum ice_bank_select bank, 1112 struct ice_netlist_info *netlist) 1113 { 1114 u16 module_id, length, node_count, i; 1115 enum ice_status status; 1116 u16 *id_blk; 1117 1118 status = ice_read_netlist_module(hw, bank, ICE_NETLIST_TYPE_OFFSET, &module_id); 1119 if (status) 1120 return status; 1121 1122 if (module_id != ICE_NETLIST_LINK_TOPO_MOD_ID) { 1123 ice_debug(hw, ICE_DBG_NVM, "Expected netlist module_id ID of 0x%04x, but got 0x%04x\n", 1124 ICE_NETLIST_LINK_TOPO_MOD_ID, module_id); 1125 return ICE_ERR_NVM; 1126 } 1127 1128 status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_MODULE_LEN, &length); 1129 if (status) 1130 return status; 1131 1132 /* sanity check that we have at least enough words to store the netlist ID block */ 1133 if (length < ICE_NETLIST_ID_BLK_SIZE) { 1134 ice_debug(hw, ICE_DBG_NVM, "Netlist Link Topology module too small. Expected at least %u words, but got %u words.\n", 1135 ICE_NETLIST_ID_BLK_SIZE, length); 1136 return ICE_ERR_NVM; 1137 } 1138 1139 status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_NODE_COUNT, &node_count); 1140 if (status) 1141 return status; 1142 node_count &= ICE_LINK_TOPO_NODE_COUNT_M; 1143 1144 id_blk = (u16 *)ice_calloc(hw, ICE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk)); 1145 if (!id_blk) 1146 return ICE_ERR_NO_MEMORY; 1147 1148 /* Read out the entire Netlist ID Block at once. */ 1149 status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, 1150 ICE_NETLIST_ID_BLK_OFFSET(node_count) * sizeof(u16), 1151 (u8 *)id_blk, ICE_NETLIST_ID_BLK_SIZE * sizeof(u16)); 1152 if (status) 1153 goto exit_error; 1154 1155 for (i = 0; i < ICE_NETLIST_ID_BLK_SIZE; i++) 1156 id_blk[i] = LE16_TO_CPU(((_FORCE_ __le16 *)id_blk)[i]); 1157 1158 netlist->major = id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 | 1159 id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_LOW]; 1160 netlist->minor = id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 | 1161 id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_LOW]; 1162 netlist->type = id_blk[ICE_NETLIST_ID_BLK_TYPE_HIGH] << 16 | 1163 id_blk[ICE_NETLIST_ID_BLK_TYPE_LOW]; 1164 netlist->rev = id_blk[ICE_NETLIST_ID_BLK_REV_HIGH] << 16 | 1165 id_blk[ICE_NETLIST_ID_BLK_REV_LOW]; 1166 netlist->cust_ver = id_blk[ICE_NETLIST_ID_BLK_CUST_VER]; 1167 /* Read the left most 4 bytes of SHA */ 1168 netlist->hash = id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 | 1169 id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(14)]; 1170 1171 exit_error: 1172 ice_free(hw, id_blk); 1173 1174 return status; 1175 } 1176 1177 /** 1178 * ice_get_netlist_ver_info 1179 * @hw: pointer to the HW struct 1180 * @netlist: pointer to netlist version info structure 1181 * 1182 * Get the netlist version information 1183 */ 1184 enum ice_status ice_get_netlist_ver_info(struct ice_hw *hw, struct ice_netlist_info *netlist) 1185 { 1186 return ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, netlist); 1187 } 1188 1189 /** 1190 * ice_get_inactive_netlist_ver 1191 * @hw: pointer to the HW struct 1192 * @netlist: pointer to netlist version info structure 1193 * 1194 * Read the netlist version data from the inactive netlist bank. Used to 1195 * extract version data of a pending flash update in order to display the 1196 * version data. 1197 */ 1198 enum ice_status ice_get_inactive_netlist_ver(struct ice_hw *hw, struct ice_netlist_info *netlist) 1199 { 1200 return ice_get_netlist_info(hw, ICE_INACTIVE_FLASH_BANK, netlist); 1201 } 1202 1203 /** 1204 * ice_discover_flash_size - Discover the available flash size 1205 * @hw: pointer to the HW struct 1206 * 1207 * The device flash could be up to 16MB in size. However, it is possible that 1208 * the actual size is smaller. Use bisection to determine the accessible size 1209 * of flash memory. 1210 */ 1211 static enum ice_status ice_discover_flash_size(struct ice_hw *hw) 1212 { 1213 u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1; 1214 enum ice_status status; 1215 1216 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1217 1218 status = ice_acquire_nvm(hw, ICE_RES_READ); 1219 if (status) 1220 return status; 1221 1222 while ((max_size - min_size) > 1) { 1223 u32 offset = (max_size + min_size) / 2; 1224 u32 len = 1; 1225 u8 data; 1226 1227 status = ice_read_flat_nvm(hw, offset, &len, &data, false); 1228 if (status == ICE_ERR_AQ_ERROR && 1229 hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) { 1230 ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n", 1231 __func__, offset); 1232 status = ICE_SUCCESS; 1233 max_size = offset; 1234 } else if (!status) { 1235 ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n", 1236 __func__, offset); 1237 min_size = offset; 1238 } else { 1239 /* an unexpected error occurred */ 1240 goto err_read_flat_nvm; 1241 } 1242 } 1243 1244 ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size); 1245 1246 hw->flash.flash_size = max_size; 1247 1248 err_read_flat_nvm: 1249 ice_release_nvm(hw); 1250 1251 return status; 1252 } 1253 1254 /** 1255 * ice_read_sr_pointer - Read the value of a Shadow RAM pointer word 1256 * @hw: pointer to the HW structure 1257 * @offset: the word offset of the Shadow RAM word to read 1258 * @pointer: pointer value read from Shadow RAM 1259 * 1260 * Read the given Shadow RAM word, and convert it to a pointer value specified 1261 * in bytes. This function assumes the specified offset is a valid pointer 1262 * word. 1263 * 1264 * Each pointer word specifies whether it is stored in word size or 4KB 1265 * sector size by using the highest bit. The reported pointer value will be in 1266 * bytes, intended for flat NVM reads. 1267 */ 1268 static enum ice_status 1269 ice_read_sr_pointer(struct ice_hw *hw, u16 offset, u32 *pointer) 1270 { 1271 enum ice_status status; 1272 u16 value; 1273 1274 status = ice_read_sr_word(hw, offset, &value); 1275 if (status) 1276 return status; 1277 1278 /* Determine if the pointer is in 4KB or word units */ 1279 if (value & ICE_SR_NVM_PTR_4KB_UNITS) 1280 *pointer = (value & ~ICE_SR_NVM_PTR_4KB_UNITS) * 4 * 1024; 1281 else 1282 *pointer = value * 2; 1283 1284 return ICE_SUCCESS; 1285 } 1286 1287 /** 1288 * ice_read_sr_area_size - Read an area size from a Shadow RAM word 1289 * @hw: pointer to the HW structure 1290 * @offset: the word offset of the Shadow RAM to read 1291 * @size: size value read from the Shadow RAM 1292 * 1293 * Read the given Shadow RAM word, and convert it to an area size value 1294 * specified in bytes. This function assumes the specified offset is a valid 1295 * area size word. 1296 * 1297 * Each area size word is specified in 4KB sector units. This function reports 1298 * the size in bytes, intended for flat NVM reads. 1299 */ 1300 static enum ice_status 1301 ice_read_sr_area_size(struct ice_hw *hw, u16 offset, u32 *size) 1302 { 1303 enum ice_status status; 1304 u16 value; 1305 1306 status = ice_read_sr_word(hw, offset, &value); 1307 if (status) 1308 return status; 1309 1310 /* Area sizes are always specified in 4KB units */ 1311 *size = value * 4 * 1024; 1312 1313 return ICE_SUCCESS; 1314 } 1315 1316 /** 1317 * ice_determine_active_flash_banks - Discover active bank for each module 1318 * @hw: pointer to the HW struct 1319 * 1320 * Read the Shadow RAM control word and determine which banks are active for 1321 * the NVM, OROM, and Netlist modules. Also read and calculate the associated 1322 * pointer and size. These values are then cached into the ice_flash_info 1323 * structure for later use in order to calculate the correct offset to read 1324 * from the active module. 1325 */ 1326 static enum ice_status 1327 ice_determine_active_flash_banks(struct ice_hw *hw) 1328 { 1329 struct ice_bank_info *banks = &hw->flash.banks; 1330 enum ice_status status; 1331 u16 ctrl_word; 1332 1333 status = ice_read_sr_word(hw, ICE_SR_NVM_CTRL_WORD, &ctrl_word); 1334 if (status) { 1335 ice_debug(hw, ICE_DBG_NVM, "Failed to read the Shadow RAM control word\n"); 1336 return status; 1337 } 1338 1339 /* Check that the control word indicates validity */ 1340 if ((ctrl_word & ICE_SR_CTRL_WORD_1_M) >> ICE_SR_CTRL_WORD_1_S != ICE_SR_CTRL_WORD_VALID) { 1341 ice_debug(hw, ICE_DBG_NVM, "Shadow RAM control word is invalid\n"); 1342 return ICE_ERR_CFG; 1343 } 1344 1345 if (!(ctrl_word & ICE_SR_CTRL_WORD_NVM_BANK)) 1346 banks->nvm_bank = ICE_1ST_FLASH_BANK; 1347 else 1348 banks->nvm_bank = ICE_2ND_FLASH_BANK; 1349 1350 if (!(ctrl_word & ICE_SR_CTRL_WORD_OROM_BANK)) 1351 banks->orom_bank = ICE_1ST_FLASH_BANK; 1352 else 1353 banks->orom_bank = ICE_2ND_FLASH_BANK; 1354 1355 if (!(ctrl_word & ICE_SR_CTRL_WORD_NETLIST_BANK)) 1356 banks->netlist_bank = ICE_1ST_FLASH_BANK; 1357 else 1358 banks->netlist_bank = ICE_2ND_FLASH_BANK; 1359 1360 status = ice_read_sr_pointer(hw, ICE_SR_1ST_NVM_BANK_PTR, &banks->nvm_ptr); 1361 if (status) { 1362 ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank pointer\n"); 1363 return status; 1364 } 1365 1366 status = ice_read_sr_area_size(hw, ICE_SR_NVM_BANK_SIZE, &banks->nvm_size); 1367 if (status) { 1368 ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank area size\n"); 1369 return status; 1370 } 1371 1372 status = ice_read_sr_pointer(hw, ICE_SR_1ST_OROM_BANK_PTR, &banks->orom_ptr); 1373 if (status) { 1374 ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank pointer\n"); 1375 return status; 1376 } 1377 1378 status = ice_read_sr_area_size(hw, ICE_SR_OROM_BANK_SIZE, &banks->orom_size); 1379 if (status) { 1380 ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank area size\n"); 1381 return status; 1382 } 1383 1384 status = ice_read_sr_pointer(hw, ICE_SR_NETLIST_BANK_PTR, &banks->netlist_ptr); 1385 if (status) { 1386 ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank pointer\n"); 1387 return status; 1388 } 1389 1390 status = ice_read_sr_area_size(hw, ICE_SR_NETLIST_BANK_SIZE, &banks->netlist_size); 1391 if (status) { 1392 ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank area size\n"); 1393 return status; 1394 } 1395 1396 return ICE_SUCCESS; 1397 } 1398 1399 /** 1400 * ice_init_nvm - initializes NVM setting 1401 * @hw: pointer to the HW struct 1402 * 1403 * This function reads and populates NVM settings such as Shadow RAM size, 1404 * max_timeout, and blank_nvm_mode 1405 */ 1406 enum ice_status ice_init_nvm(struct ice_hw *hw) 1407 { 1408 struct ice_flash_info *flash = &hw->flash; 1409 enum ice_status status; 1410 u32 fla, gens_stat; 1411 u8 sr_size; 1412 1413 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1414 1415 /* The SR size is stored regardless of the NVM programming mode 1416 * as the blank mode may be used in the factory line. 1417 */ 1418 gens_stat = rd32(hw, GLNVM_GENS); 1419 sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S; 1420 1421 /* Switching to words (sr_size contains power of 2) */ 1422 flash->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB; 1423 1424 /* Check if we are in the normal or blank NVM programming mode */ 1425 fla = rd32(hw, GLNVM_FLA); 1426 if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */ 1427 flash->blank_nvm_mode = false; 1428 } else { 1429 /* Blank programming mode */ 1430 flash->blank_nvm_mode = true; 1431 ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n"); 1432 return ICE_ERR_NVM_BLANK_MODE; 1433 } 1434 1435 status = ice_discover_flash_size(hw); 1436 if (status) { 1437 ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n"); 1438 return status; 1439 } 1440 1441 status = ice_determine_active_flash_banks(hw); 1442 if (status) { 1443 ice_debug(hw, ICE_DBG_NVM, "Failed to determine active flash banks.\n"); 1444 return status; 1445 } 1446 1447 status = ice_get_nvm_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->nvm); 1448 if (status) { 1449 ice_debug(hw, ICE_DBG_INIT, "Failed to read NVM info.\n"); 1450 return status; 1451 } 1452 1453 status = ice_get_orom_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->orom); 1454 if (status) 1455 ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n"); 1456 1457 /* read the netlist version information */ 1458 status = ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->netlist); 1459 if (status) 1460 ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n"); 1461 1462 return ICE_SUCCESS; 1463 } 1464 1465 /** 1466 * ice_read_sr_buf - Reads Shadow RAM buf and acquire lock if necessary 1467 * @hw: pointer to the HW structure 1468 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 1469 * @words: (in) number of words to read; (out) number of words actually read 1470 * @data: words read from the Shadow RAM 1471 * 1472 * Reads 16 bit words (data buf) from the SR using the ice_read_nvm_buf_aq 1473 * method. The buf read is preceded by the NVM ownership take 1474 * and followed by the release. 1475 */ 1476 enum ice_status 1477 ice_read_sr_buf(struct ice_hw *hw, u16 offset, u16 *words, u16 *data) 1478 { 1479 enum ice_status status; 1480 1481 status = ice_acquire_nvm(hw, ICE_RES_READ); 1482 if (!status) { 1483 status = ice_read_sr_buf_aq(hw, offset, words, data); 1484 ice_release_nvm(hw); 1485 } 1486 1487 return status; 1488 } 1489 1490 /** 1491 * __ice_write_sr_word - Writes Shadow RAM word 1492 * @hw: pointer to the HW structure 1493 * @offset: offset of the Shadow RAM word to write 1494 * @data: word to write to the Shadow RAM 1495 * 1496 * Writes a 16 bit word to the SR using the ice_write_sr_aq method. 1497 * NVM ownership have to be acquired and released (on ARQ completion event 1498 * reception) by caller. To commit SR to NVM update checksum function 1499 * should be called. 1500 */ 1501 enum ice_status 1502 __ice_write_sr_word(struct ice_hw *hw, u32 offset, const u16 *data) 1503 { 1504 __le16 data_local = CPU_TO_LE16(*data); 1505 1506 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1507 1508 /* Value 0x00 below means that we treat SR as a flat mem */ 1509 return ice_write_sr_aq(hw, offset, 1, &data_local, false); 1510 } 1511 1512 /** 1513 * __ice_write_sr_buf - Writes Shadow RAM buf 1514 * @hw: pointer to the HW structure 1515 * @offset: offset of the Shadow RAM buffer to write 1516 * @words: number of words to write 1517 * @data: words to write to the Shadow RAM 1518 * 1519 * Writes a 16 bit words buffer to the Shadow RAM using the admin command. 1520 * NVM ownership must be acquired before calling this function and released 1521 * on ARQ completion event reception by caller. To commit SR to NVM update 1522 * checksum function should be called. 1523 */ 1524 enum ice_status 1525 __ice_write_sr_buf(struct ice_hw *hw, u32 offset, u16 words, const u16 *data) 1526 { 1527 enum ice_status status; 1528 __le16 *data_local; 1529 void *vmem; 1530 u32 i; 1531 1532 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1533 1534 vmem = ice_calloc(hw, words, sizeof(u16)); 1535 if (!vmem) 1536 return ICE_ERR_NO_MEMORY; 1537 data_local = (_FORCE_ __le16 *)vmem; 1538 1539 for (i = 0; i < words; i++) 1540 data_local[i] = CPU_TO_LE16(data[i]); 1541 1542 /* Here we will only write one buffer as the size of the modules 1543 * mirrored in the Shadow RAM is always less than 4K. 1544 */ 1545 status = ice_write_sr_aq(hw, offset, words, data_local, false); 1546 1547 ice_free(hw, vmem); 1548 1549 return status; 1550 } 1551 1552 /** 1553 * ice_calc_sr_checksum - Calculates and returns Shadow RAM SW checksum 1554 * @hw: pointer to hardware structure 1555 * @checksum: pointer to the checksum 1556 * 1557 * This function calculates SW Checksum that covers the whole 64kB shadow RAM 1558 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD 1559 * is customer specific and unknown. Therefore, this function skips all maximum 1560 * possible size of VPD (1kB). 1561 */ 1562 static enum ice_status ice_calc_sr_checksum(struct ice_hw *hw, u16 *checksum) 1563 { 1564 enum ice_status status = ICE_SUCCESS; 1565 u16 pcie_alt_module = 0; 1566 u16 checksum_local = 0; 1567 u16 vpd_module; 1568 void *vmem; 1569 u16 *data; 1570 u16 i; 1571 1572 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1573 1574 vmem = ice_calloc(hw, ICE_SR_SECTOR_SIZE_IN_WORDS, sizeof(u16)); 1575 if (!vmem) 1576 return ICE_ERR_NO_MEMORY; 1577 data = (u16 *)vmem; 1578 1579 /* read pointer to VPD area */ 1580 status = ice_read_sr_word_aq(hw, ICE_SR_VPD_PTR, &vpd_module); 1581 if (status) 1582 goto ice_calc_sr_checksum_exit; 1583 1584 /* read pointer to PCIe Alt Auto-load module */ 1585 status = ice_read_sr_word_aq(hw, ICE_SR_PCIE_ALT_AUTO_LOAD_PTR, 1586 &pcie_alt_module); 1587 if (status) 1588 goto ice_calc_sr_checksum_exit; 1589 1590 /* Calculate SW checksum that covers the whole 64kB shadow RAM 1591 * except the VPD and PCIe ALT Auto-load modules 1592 */ 1593 for (i = 0; i < hw->flash.sr_words; i++) { 1594 /* Read SR page */ 1595 if ((i % ICE_SR_SECTOR_SIZE_IN_WORDS) == 0) { 1596 u16 words = ICE_SR_SECTOR_SIZE_IN_WORDS; 1597 1598 status = ice_read_sr_buf_aq(hw, i, &words, data); 1599 if (status != ICE_SUCCESS) 1600 goto ice_calc_sr_checksum_exit; 1601 } 1602 1603 /* Skip Checksum word */ 1604 if (i == ICE_SR_SW_CHECKSUM_WORD) 1605 continue; 1606 /* Skip VPD module (convert byte size to word count) */ 1607 if (i >= (u32)vpd_module && 1608 i < ((u32)vpd_module + ICE_SR_VPD_SIZE_WORDS)) 1609 continue; 1610 /* Skip PCIe ALT module (convert byte size to word count) */ 1611 if (i >= (u32)pcie_alt_module && 1612 i < ((u32)pcie_alt_module + ICE_SR_PCIE_ALT_SIZE_WORDS)) 1613 continue; 1614 1615 checksum_local += data[i % ICE_SR_SECTOR_SIZE_IN_WORDS]; 1616 } 1617 1618 *checksum = (u16)ICE_SR_SW_CHECKSUM_BASE - checksum_local; 1619 1620 ice_calc_sr_checksum_exit: 1621 ice_free(hw, vmem); 1622 return status; 1623 } 1624 1625 /** 1626 * ice_update_sr_checksum - Updates the Shadow RAM SW checksum 1627 * @hw: pointer to hardware structure 1628 * 1629 * NVM ownership must be acquired before calling this function and released 1630 * on ARQ completion event reception by caller. 1631 * This function will commit SR to NVM. 1632 */ 1633 enum ice_status ice_update_sr_checksum(struct ice_hw *hw) 1634 { 1635 enum ice_status status; 1636 __le16 le_sum; 1637 u16 checksum; 1638 1639 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1640 1641 status = ice_calc_sr_checksum(hw, &checksum); 1642 if (!status) { 1643 le_sum = CPU_TO_LE16(checksum); 1644 status = ice_write_sr_aq(hw, ICE_SR_SW_CHECKSUM_WORD, 1, 1645 &le_sum, true); 1646 } 1647 return status; 1648 } 1649 1650 /** 1651 * ice_validate_sr_checksum - Validate Shadow RAM SW checksum 1652 * @hw: pointer to hardware structure 1653 * @checksum: calculated checksum 1654 * 1655 * Performs checksum calculation and validates the Shadow RAM SW checksum. 1656 * If the caller does not need checksum, the value can be NULL. 1657 */ 1658 enum ice_status ice_validate_sr_checksum(struct ice_hw *hw, u16 *checksum) 1659 { 1660 enum ice_status status; 1661 u16 checksum_local; 1662 u16 checksum_sr; 1663 1664 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1665 1666 status = ice_acquire_nvm(hw, ICE_RES_READ); 1667 if (!status) { 1668 status = ice_calc_sr_checksum(hw, &checksum_local); 1669 ice_release_nvm(hw); 1670 if (status) 1671 return status; 1672 } else { 1673 return status; 1674 } 1675 1676 ice_read_sr_word(hw, ICE_SR_SW_CHECKSUM_WORD, &checksum_sr); 1677 1678 /* Verify read checksum from EEPROM is the same as 1679 * calculated checksum 1680 */ 1681 if (checksum_local != checksum_sr) 1682 status = ICE_ERR_NVM_CHECKSUM; 1683 1684 /* If the user cares, return the calculated checksum */ 1685 if (checksum) 1686 *checksum = checksum_local; 1687 1688 return status; 1689 } 1690 1691 /** 1692 * ice_nvm_validate_checksum 1693 * @hw: pointer to the HW struct 1694 * 1695 * Verify NVM PFA checksum validity (0x0706) 1696 */ 1697 enum ice_status ice_nvm_validate_checksum(struct ice_hw *hw) 1698 { 1699 struct ice_aqc_nvm_checksum *cmd; 1700 struct ice_aq_desc desc; 1701 enum ice_status status; 1702 1703 status = ice_acquire_nvm(hw, ICE_RES_READ); 1704 if (status) 1705 return status; 1706 1707 cmd = &desc.params.nvm_checksum; 1708 1709 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum); 1710 cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY; 1711 1712 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 1713 ice_release_nvm(hw); 1714 1715 if (!status) 1716 if (LE16_TO_CPU(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT) 1717 status = ICE_ERR_NVM_CHECKSUM; 1718 1719 return status; 1720 } 1721 1722 /** 1723 * ice_nvm_recalculate_checksum 1724 * @hw: pointer to the HW struct 1725 * 1726 * Recalculate NVM PFA checksum (0x0706) 1727 */ 1728 enum ice_status ice_nvm_recalculate_checksum(struct ice_hw *hw) 1729 { 1730 struct ice_aqc_nvm_checksum *cmd; 1731 struct ice_aq_desc desc; 1732 enum ice_status status; 1733 1734 status = ice_acquire_nvm(hw, ICE_RES_READ); 1735 if (status) 1736 return status; 1737 1738 cmd = &desc.params.nvm_checksum; 1739 1740 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum); 1741 cmd->flags = ICE_AQC_NVM_CHECKSUM_RECALC; 1742 1743 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 1744 1745 ice_release_nvm(hw); 1746 1747 return status; 1748 } 1749 1750 /** 1751 * ice_nvm_write_activate 1752 * @hw: pointer to the HW struct 1753 * @cmd_flags: flags for write activate command 1754 * @response_flags: response indicators from firmware 1755 * 1756 * Update the control word with the required banks' validity bits 1757 * and dumps the Shadow RAM to flash (0x0707) 1758 * 1759 * cmd_flags controls which banks to activate, the preservation level to use 1760 * when activating the NVM bank, and whether an EMP reset is required for 1761 * activation. 1762 * 1763 * Note that the 16bit cmd_flags value is split between two separate 1 byte 1764 * flag values in the descriptor. 1765 * 1766 * On successful return of the firmware command, the response_flags variable 1767 * is updated with the flags reported by firmware indicating certain status, 1768 * such as whether EMP reset is enabled. 1769 */ 1770 enum ice_status 1771 ice_nvm_write_activate(struct ice_hw *hw, u16 cmd_flags, u8 *response_flags) 1772 { 1773 struct ice_aqc_nvm *cmd; 1774 struct ice_aq_desc desc; 1775 enum ice_status err; 1776 1777 cmd = &desc.params.nvm; 1778 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate); 1779 1780 cmd->cmd_flags = (u8)(cmd_flags & 0xFF); 1781 cmd->offset_high = (u8)((cmd_flags >> 8) & 0xFF); 1782 1783 err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 1784 if (!err && response_flags) 1785 *response_flags = cmd->cmd_flags; 1786 1787 return err; 1788 } 1789 1790 /** 1791 * ice_get_nvm_minsrevs - Get the Minimum Security Revision values from flash 1792 * @hw: pointer to the HW struct 1793 * @minsrevs: structure to store NVM and OROM minsrev values 1794 * 1795 * Read the Minimum Security Revision TLV and extract the revision values from 1796 * the flash image into a readable structure for processing. 1797 */ 1798 enum ice_status 1799 ice_get_nvm_minsrevs(struct ice_hw *hw, struct ice_minsrev_info *minsrevs) 1800 { 1801 struct ice_aqc_nvm_minsrev data; 1802 enum ice_status status; 1803 u16 valid; 1804 1805 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1806 1807 status = ice_acquire_nvm(hw, ICE_RES_READ); 1808 if (status) 1809 return status; 1810 1811 status = ice_aq_read_nvm(hw, ICE_AQC_NVM_MINSREV_MOD_ID, 0, sizeof(data), 1812 &data, true, false, NULL); 1813 1814 ice_release_nvm(hw); 1815 1816 if (status) 1817 return status; 1818 1819 valid = LE16_TO_CPU(data.validity); 1820 1821 /* Extract NVM minimum security revision */ 1822 if (valid & ICE_AQC_NVM_MINSREV_NVM_VALID) { 1823 u16 minsrev_l, minsrev_h; 1824 1825 minsrev_l = LE16_TO_CPU(data.nvm_minsrev_l); 1826 minsrev_h = LE16_TO_CPU(data.nvm_minsrev_h); 1827 1828 minsrevs->nvm = minsrev_h << 16 | minsrev_l; 1829 minsrevs->nvm_valid = true; 1830 } 1831 1832 /* Extract the OROM minimum security revision */ 1833 if (valid & ICE_AQC_NVM_MINSREV_OROM_VALID) { 1834 u16 minsrev_l, minsrev_h; 1835 1836 minsrev_l = LE16_TO_CPU(data.orom_minsrev_l); 1837 minsrev_h = LE16_TO_CPU(data.orom_minsrev_h); 1838 1839 minsrevs->orom = minsrev_h << 16 | minsrev_l; 1840 minsrevs->orom_valid = true; 1841 } 1842 1843 return ICE_SUCCESS; 1844 } 1845 1846 /** 1847 * ice_update_nvm_minsrevs - Update minimum security revision TLV data in flash 1848 * @hw: pointer to the HW struct 1849 * @minsrevs: minimum security revision information 1850 * 1851 * Update the NVM or Option ROM minimum security revision fields in the PFA 1852 * area of the flash. Reads the minsrevs->nvm_valid and minsrevs->orom_valid 1853 * fields to determine what update is being requested. If the valid bit is not 1854 * set for that module, then the associated minsrev will be left as is. 1855 */ 1856 enum ice_status 1857 ice_update_nvm_minsrevs(struct ice_hw *hw, struct ice_minsrev_info *minsrevs) 1858 { 1859 struct ice_aqc_nvm_minsrev data; 1860 enum ice_status status; 1861 1862 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1863 1864 if (!minsrevs->nvm_valid && !minsrevs->orom_valid) { 1865 ice_debug(hw, ICE_DBG_NVM, "At least one of NVM and OROM MinSrev must be valid"); 1866 return ICE_ERR_PARAM; 1867 } 1868 1869 status = ice_acquire_nvm(hw, ICE_RES_WRITE); 1870 if (status) 1871 return status; 1872 1873 /* Get current data */ 1874 status = ice_aq_read_nvm(hw, ICE_AQC_NVM_MINSREV_MOD_ID, 0, sizeof(data), 1875 &data, true, false, NULL); 1876 if (status) 1877 goto exit_release_res; 1878 1879 if (minsrevs->nvm_valid) { 1880 data.nvm_minsrev_l = CPU_TO_LE16(minsrevs->nvm & 0xFFFF); 1881 data.nvm_minsrev_h = CPU_TO_LE16(minsrevs->nvm >> 16); 1882 data.validity |= CPU_TO_LE16(ICE_AQC_NVM_MINSREV_NVM_VALID); 1883 } 1884 1885 if (minsrevs->orom_valid) { 1886 data.orom_minsrev_l = CPU_TO_LE16(minsrevs->orom & 0xFFFF); 1887 data.orom_minsrev_h = CPU_TO_LE16(minsrevs->orom >> 16); 1888 data.validity |= CPU_TO_LE16(ICE_AQC_NVM_MINSREV_OROM_VALID); 1889 } 1890 1891 /* Update flash data */ 1892 status = ice_aq_update_nvm(hw, ICE_AQC_NVM_MINSREV_MOD_ID, 0, sizeof(data), &data, 1893 false, ICE_AQC_NVM_SPECIAL_UPDATE, NULL); 1894 if (status) 1895 goto exit_release_res; 1896 1897 /* Dump the Shadow RAM to the flash */ 1898 status = ice_nvm_write_activate(hw, 0, NULL); 1899 1900 exit_release_res: 1901 ice_release_nvm(hw); 1902 1903 return status; 1904 } 1905 1906 /** 1907 * ice_nvm_access_get_features - Return the NVM access features structure 1908 * @cmd: NVM access command to process 1909 * @data: storage for the driver NVM features 1910 * 1911 * Fill in the data section of the NVM access request with a copy of the NVM 1912 * features structure. 1913 */ 1914 enum ice_status 1915 ice_nvm_access_get_features(struct ice_nvm_access_cmd *cmd, 1916 union ice_nvm_access_data *data) 1917 { 1918 /* The provided data_size must be at least as large as our NVM 1919 * features structure. A larger size should not be treated as an 1920 * error, to allow future extensions to the features structure to 1921 * work on older drivers. 1922 */ 1923 if (cmd->data_size < sizeof(struct ice_nvm_features)) 1924 return ICE_ERR_NO_MEMORY; 1925 1926 /* Initialize the data buffer to zeros */ 1927 ice_memset(data, 0, cmd->data_size, ICE_NONDMA_MEM); 1928 1929 /* Fill in the features data */ 1930 data->drv_features.major = ICE_NVM_ACCESS_MAJOR_VER; 1931 data->drv_features.minor = ICE_NVM_ACCESS_MINOR_VER; 1932 data->drv_features.size = sizeof(struct ice_nvm_features); 1933 data->drv_features.features[0] = ICE_NVM_FEATURES_0_REG_ACCESS; 1934 1935 return ICE_SUCCESS; 1936 } 1937 1938 /** 1939 * ice_nvm_access_get_module - Helper function to read module value 1940 * @cmd: NVM access command structure 1941 * 1942 * Reads the module value out of the NVM access config field. 1943 */ 1944 u32 ice_nvm_access_get_module(struct ice_nvm_access_cmd *cmd) 1945 { 1946 return ((cmd->config & ICE_NVM_CFG_MODULE_M) >> ICE_NVM_CFG_MODULE_S); 1947 } 1948 1949 /** 1950 * ice_nvm_access_get_flags - Helper function to read flags value 1951 * @cmd: NVM access command structure 1952 * 1953 * Reads the flags value out of the NVM access config field. 1954 */ 1955 u32 ice_nvm_access_get_flags(struct ice_nvm_access_cmd *cmd) 1956 { 1957 return ((cmd->config & ICE_NVM_CFG_FLAGS_M) >> ICE_NVM_CFG_FLAGS_S); 1958 } 1959 1960 /** 1961 * ice_nvm_access_get_adapter - Helper function to read adapter info 1962 * @cmd: NVM access command structure 1963 * 1964 * Read the adapter info value out of the NVM access config field. 1965 */ 1966 u32 ice_nvm_access_get_adapter(struct ice_nvm_access_cmd *cmd) 1967 { 1968 return ((cmd->config & ICE_NVM_CFG_ADAPTER_INFO_M) >> 1969 ICE_NVM_CFG_ADAPTER_INFO_S); 1970 } 1971 1972 /** 1973 * ice_validate_nvm_rw_reg - Check than an NVM access request is valid 1974 * @cmd: NVM access command structure 1975 * 1976 * Validates that an NVM access structure is request to read or write a valid 1977 * register offset. First validates that the module and flags are correct, and 1978 * then ensures that the register offset is one of the accepted registers. 1979 */ 1980 static enum ice_status 1981 ice_validate_nvm_rw_reg(struct ice_nvm_access_cmd *cmd) 1982 { 1983 u32 module, flags, offset; 1984 u16 i; 1985 1986 module = ice_nvm_access_get_module(cmd); 1987 flags = ice_nvm_access_get_flags(cmd); 1988 offset = cmd->offset; 1989 1990 /* Make sure the module and flags indicate a read/write request */ 1991 if (module != ICE_NVM_REG_RW_MODULE || 1992 flags != ICE_NVM_REG_RW_FLAGS || 1993 cmd->data_size != FIELD_SIZEOF(union ice_nvm_access_data, regval)) 1994 return ICE_ERR_PARAM; 1995 1996 switch (offset) { 1997 case GL_HICR: 1998 case GL_HICR_EN: /* Note, this register is read only */ 1999 case GL_FWSTS: 2000 case GL_MNG_FWSM: 2001 case GLGEN_CSR_DEBUG_C: 2002 case GLGEN_RSTAT: 2003 case GLPCI_LBARCTRL: 2004 case GL_MNG_DEF_DEVID: 2005 case GLNVM_GENS: 2006 case GLNVM_FLA: 2007 case PF_FUNC_RID: 2008 return ICE_SUCCESS; 2009 default: 2010 break; 2011 } 2012 2013 for (i = 0; i <= GL_HIDA_MAX_INDEX; i++) 2014 if (offset == (u32)GL_HIDA(i)) 2015 return ICE_SUCCESS; 2016 2017 for (i = 0; i <= GL_HIBA_MAX_INDEX; i++) 2018 if (offset == (u32)GL_HIBA(i)) 2019 return ICE_SUCCESS; 2020 2021 /* All other register offsets are not valid */ 2022 return ICE_ERR_OUT_OF_RANGE; 2023 } 2024 2025 /** 2026 * ice_nvm_access_read - Handle an NVM read request 2027 * @hw: pointer to the HW struct 2028 * @cmd: NVM access command to process 2029 * @data: storage for the register value read 2030 * 2031 * Process an NVM access request to read a register. 2032 */ 2033 enum ice_status 2034 ice_nvm_access_read(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd, 2035 union ice_nvm_access_data *data) 2036 { 2037 enum ice_status status; 2038 2039 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 2040 2041 /* Always initialize the output data, even on failure */ 2042 ice_memset(data, 0, cmd->data_size, ICE_NONDMA_MEM); 2043 2044 /* Make sure this is a valid read/write access request */ 2045 status = ice_validate_nvm_rw_reg(cmd); 2046 if (status) 2047 return status; 2048 2049 ice_debug(hw, ICE_DBG_NVM, "NVM access: reading register %08x\n", 2050 cmd->offset); 2051 2052 /* Read the register and store the contents in the data field */ 2053 data->regval = rd32(hw, cmd->offset); 2054 2055 return ICE_SUCCESS; 2056 } 2057 2058 /** 2059 * ice_nvm_access_write - Handle an NVM write request 2060 * @hw: pointer to the HW struct 2061 * @cmd: NVM access command to process 2062 * @data: NVM access data to write 2063 * 2064 * Process an NVM access request to write a register. 2065 */ 2066 enum ice_status 2067 ice_nvm_access_write(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd, 2068 union ice_nvm_access_data *data) 2069 { 2070 enum ice_status status; 2071 2072 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 2073 2074 /* Make sure this is a valid read/write access request */ 2075 status = ice_validate_nvm_rw_reg(cmd); 2076 if (status) 2077 return status; 2078 2079 /* Reject requests to write to read-only registers */ 2080 switch (cmd->offset) { 2081 case GL_HICR_EN: 2082 case GLGEN_RSTAT: 2083 return ICE_ERR_OUT_OF_RANGE; 2084 default: 2085 break; 2086 } 2087 2088 ice_debug(hw, ICE_DBG_NVM, "NVM access: writing register %08x with value %08x\n", 2089 cmd->offset, data->regval); 2090 2091 /* Write the data field to the specified register */ 2092 wr32(hw, cmd->offset, data->regval); 2093 2094 return ICE_SUCCESS; 2095 } 2096 2097 /** 2098 * ice_handle_nvm_access - Handle an NVM access request 2099 * @hw: pointer to the HW struct 2100 * @cmd: NVM access command info 2101 * @data: pointer to read or return data 2102 * 2103 * Process an NVM access request. Read the command structure information and 2104 * determine if it is valid. If not, report an error indicating the command 2105 * was invalid. 2106 * 2107 * For valid commands, perform the necessary function, copying the data into 2108 * the provided data buffer. 2109 */ 2110 enum ice_status 2111 ice_handle_nvm_access(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd, 2112 union ice_nvm_access_data *data) 2113 { 2114 u32 module, flags, adapter_info; 2115 2116 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 2117 2118 /* Extended flags are currently reserved and must be zero */ 2119 if ((cmd->config & ICE_NVM_CFG_EXT_FLAGS_M) != 0) 2120 return ICE_ERR_PARAM; 2121 2122 /* Adapter info must match the HW device ID */ 2123 adapter_info = ice_nvm_access_get_adapter(cmd); 2124 if (adapter_info != hw->device_id) 2125 return ICE_ERR_PARAM; 2126 2127 switch (cmd->command) { 2128 case ICE_NVM_CMD_READ: 2129 module = ice_nvm_access_get_module(cmd); 2130 flags = ice_nvm_access_get_flags(cmd); 2131 2132 /* Getting the driver's NVM features structure shares the same 2133 * command type as reading a register. Read the config field 2134 * to determine if this is a request to get features. 2135 */ 2136 if (module == ICE_NVM_GET_FEATURES_MODULE && 2137 flags == ICE_NVM_GET_FEATURES_FLAGS && 2138 cmd->offset == 0) 2139 return ice_nvm_access_get_features(cmd, data); 2140 else 2141 return ice_nvm_access_read(hw, cmd, data); 2142 case ICE_NVM_CMD_WRITE: 2143 return ice_nvm_access_write(hw, cmd, data); 2144 default: 2145 return ICE_ERR_PARAM; 2146 } 2147 } 2148 2149