xref: /freebsd/sys/dev/ice/ice_nvm.c (revision 397e83df75e0fcd0d3fcb95ae4d794cb7600fc89)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2024, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "ice_common.h"
33 
34 #define GL_MNG_DEF_DEVID 0x000B611C
35 
36 /**
37  * ice_aq_read_nvm
38  * @hw: pointer to the HW struct
39  * @module_typeid: module pointer location in words from the NVM beginning
40  * @offset: byte offset from the module beginning
41  * @length: length of the section to be read (in bytes from the offset)
42  * @data: command buffer (size [bytes] = length)
43  * @last_command: tells if this is the last command in a series
44  * @read_shadow_ram: tell if this is a shadow RAM read
45  * @cd: pointer to command details structure or NULL
46  *
47  * Read the NVM using the admin queue commands (0x0701)
48  */
49 enum ice_status
50 ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length,
51 		void *data, bool last_command, bool read_shadow_ram,
52 		struct ice_sq_cd *cd)
53 {
54 	struct ice_aq_desc desc;
55 	struct ice_aqc_nvm *cmd;
56 
57 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
58 
59 	cmd = &desc.params.nvm;
60 
61 	if (offset > ICE_AQC_NVM_MAX_OFFSET)
62 		return ICE_ERR_PARAM;
63 
64 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
65 
66 	if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT)
67 		cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY;
68 
69 	/* If this is the last command in a series, set the proper flag. */
70 	if (last_command)
71 		cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
72 	cmd->module_typeid = CPU_TO_LE16(module_typeid);
73 	cmd->offset_low = CPU_TO_LE16(offset & 0xFFFF);
74 	cmd->offset_high = (offset >> 16) & 0xFF;
75 	cmd->length = CPU_TO_LE16(length);
76 
77 	return ice_aq_send_cmd(hw, &desc, data, length, cd);
78 }
79 
80 /**
81  * ice_read_flat_nvm - Read portion of NVM by flat offset
82  * @hw: pointer to the HW struct
83  * @offset: offset from beginning of NVM
84  * @length: (in) number of bytes to read; (out) number of bytes actually read
85  * @data: buffer to return data in (sized to fit the specified length)
86  * @read_shadow_ram: if true, read from shadow RAM instead of NVM
87  *
88  * Reads a portion of the NVM, as a flat memory space. This function correctly
89  * breaks read requests across Shadow RAM sectors and ensures that no single
90  * read request exceeds the maximum 4KB read for a single AdminQ command.
91  *
92  * Returns a status code on failure. Note that the data pointer may be
93  * partially updated if some reads succeed before a failure.
94  */
95 enum ice_status
96 ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data,
97 		  bool read_shadow_ram)
98 {
99 	enum ice_status status;
100 	u32 inlen = *length;
101 	u32 bytes_read = 0;
102 	bool last_cmd;
103 
104 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
105 
106 	*length = 0;
107 
108 	/* Verify the length of the read if this is for the Shadow RAM */
109 	if (read_shadow_ram && ((offset + inlen) > (hw->flash.sr_words * 2u))) {
110 		ice_debug(hw, ICE_DBG_NVM, "NVM error: requested data is beyond Shadow RAM limit\n");
111 		return ICE_ERR_PARAM;
112 	}
113 
114 	do {
115 		u32 read_size, sector_offset;
116 
117 		/* ice_aq_read_nvm cannot read more than 4KB at a time.
118 		 * Additionally, a read from the Shadow RAM may not cross over
119 		 * a sector boundary. Conveniently, the sector size is also
120 		 * 4KB.
121 		 */
122 		sector_offset = offset % ICE_AQ_MAX_BUF_LEN;
123 		read_size = MIN_T(u32, ICE_AQ_MAX_BUF_LEN - sector_offset,
124 				  inlen - bytes_read);
125 
126 		last_cmd = !(bytes_read + read_size < inlen);
127 
128 		/* ice_aq_read_nvm takes the length as a u16. Our read_size is
129 		 * calculated using a u32, but the ICE_AQ_MAX_BUF_LEN maximum
130 		 * size guarantees that it will fit within the 2 bytes.
131 		 */
132 		status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
133 					 offset, (u16)read_size,
134 					 data + bytes_read, last_cmd,
135 					 read_shadow_ram, NULL);
136 		if (status)
137 			break;
138 
139 		bytes_read += read_size;
140 		offset += read_size;
141 	} while (!last_cmd);
142 
143 	*length = bytes_read;
144 	return status;
145 }
146 
147 /**
148  * ice_aq_update_nvm
149  * @hw: pointer to the HW struct
150  * @module_typeid: module pointer location in words from the NVM beginning
151  * @offset: byte offset from the module beginning
152  * @length: length of the section to be written (in bytes from the offset)
153  * @data: command buffer (size [bytes] = length)
154  * @last_command: tells if this is the last command in a series
155  * @command_flags: command parameters
156  * @cd: pointer to command details structure or NULL
157  *
158  * Update the NVM using the admin queue commands (0x0703)
159  */
160 enum ice_status
161 ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset,
162 		  u16 length, void *data, bool last_command, u8 command_flags,
163 		  struct ice_sq_cd *cd)
164 {
165 	struct ice_aq_desc desc;
166 	struct ice_aqc_nvm *cmd;
167 
168 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
169 
170 	cmd = &desc.params.nvm;
171 
172 	/* In offset the highest byte must be zeroed. */
173 	if (offset & 0xFF000000)
174 		return ICE_ERR_PARAM;
175 
176 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write);
177 
178 	cmd->cmd_flags |= command_flags;
179 
180 	/* If this is the last command in a series, set the proper flag. */
181 	if (last_command)
182 		cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
183 	cmd->module_typeid = CPU_TO_LE16(module_typeid);
184 	cmd->offset_low = CPU_TO_LE16(offset & 0xFFFF);
185 	cmd->offset_high = (offset >> 16) & 0xFF;
186 	cmd->length = CPU_TO_LE16(length);
187 
188 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
189 
190 	return ice_aq_send_cmd(hw, &desc, data, length, cd);
191 }
192 
193 /**
194  * ice_aq_erase_nvm
195  * @hw: pointer to the HW struct
196  * @module_typeid: module pointer location in words from the NVM beginning
197  * @cd: pointer to command details structure or NULL
198  *
199  * Erase the NVM sector using the admin queue commands (0x0702)
200  */
201 enum ice_status
202 ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd)
203 {
204 	struct ice_aq_desc desc;
205 	struct ice_aqc_nvm *cmd;
206 	enum ice_status status;
207 	__le16 len;
208 
209 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
210 
211 	/* read a length value from SR, so module_typeid is equal to 0 */
212 	/* calculate offset where module size is placed from bytes to words */
213 	/* set last command and read from SR values to true */
214 	status = ice_aq_read_nvm(hw, 0, 2 * module_typeid + 2, 2, &len, true,
215 				 true, NULL);
216 	if (status)
217 		return status;
218 
219 	cmd = &desc.params.nvm;
220 
221 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase);
222 
223 	cmd->module_typeid = CPU_TO_LE16(module_typeid);
224 	cmd->length = len;
225 	cmd->offset_low = 0;
226 	cmd->offset_high = 0;
227 
228 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
229 }
230 
231 /**
232  * ice_aq_read_nvm_cfg - read an NVM config block
233  * @hw: pointer to the HW struct
234  * @cmd_flags: NVM access admin command bits
235  * @field_id: field or feature ID
236  * @data: buffer for result
237  * @buf_size: buffer size
238  * @elem_count: pointer to count of elements read by FW
239  * @cd: pointer to command details structure or NULL
240  *
241  * Reads single or multiple feature/field ID and data (0x0704)
242  */
243 enum ice_status
244 ice_aq_read_nvm_cfg(struct ice_hw *hw, u8 cmd_flags, u16 field_id, void *data,
245 		    u16 buf_size, u16 *elem_count, struct ice_sq_cd *cd)
246 {
247 	struct ice_aqc_nvm_cfg *cmd;
248 	struct ice_aq_desc desc;
249 	enum ice_status status;
250 
251 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
252 
253 	cmd = &desc.params.nvm_cfg;
254 
255 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_cfg_read);
256 
257 	cmd->cmd_flags = cmd_flags;
258 	cmd->id = CPU_TO_LE16(field_id);
259 
260 	status = ice_aq_send_cmd(hw, &desc, data, buf_size, cd);
261 	if (!status && elem_count)
262 		*elem_count = LE16_TO_CPU(cmd->count);
263 
264 	return status;
265 }
266 
267 /**
268  * ice_aq_write_nvm_cfg - write an NVM config block
269  * @hw: pointer to the HW struct
270  * @cmd_flags: NVM access admin command bits
271  * @data: buffer for result
272  * @buf_size: buffer size
273  * @elem_count: count of elements to be written
274  * @cd: pointer to command details structure or NULL
275  *
276  * Writes single or multiple feature/field ID and data (0x0705)
277  */
278 enum ice_status
279 ice_aq_write_nvm_cfg(struct ice_hw *hw, u8 cmd_flags, void *data, u16 buf_size,
280 		     u16 elem_count, struct ice_sq_cd *cd)
281 {
282 	struct ice_aqc_nvm_cfg *cmd;
283 	struct ice_aq_desc desc;
284 
285 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
286 
287 	cmd = &desc.params.nvm_cfg;
288 
289 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_cfg_write);
290 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
291 
292 	cmd->count = CPU_TO_LE16(elem_count);
293 	cmd->cmd_flags = cmd_flags;
294 
295 	return ice_aq_send_cmd(hw, &desc, data, buf_size, cd);
296 }
297 
298 /**
299  * ice_check_sr_access_params - verify params for Shadow RAM R/W operations
300  * @hw: pointer to the HW structure
301  * @offset: offset in words from module start
302  * @words: number of words to access
303  */
304 static enum ice_status
305 ice_check_sr_access_params(struct ice_hw *hw, u32 offset, u16 words)
306 {
307 	if ((offset + words) > hw->flash.sr_words) {
308 		ice_debug(hw, ICE_DBG_NVM, "NVM error: offset beyond SR lmt.\n");
309 		return ICE_ERR_PARAM;
310 	}
311 
312 	if (words > ICE_SR_SECTOR_SIZE_IN_WORDS) {
313 		/* We can access only up to 4KB (one sector), in one AQ write */
314 		ice_debug(hw, ICE_DBG_NVM, "NVM error: tried to access %d words, limit is %d.\n",
315 			  words, ICE_SR_SECTOR_SIZE_IN_WORDS);
316 		return ICE_ERR_PARAM;
317 	}
318 
319 	if (((offset + (words - 1)) / ICE_SR_SECTOR_SIZE_IN_WORDS) !=
320 	    (offset / ICE_SR_SECTOR_SIZE_IN_WORDS)) {
321 		/* A single access cannot spread over two sectors */
322 		ice_debug(hw, ICE_DBG_NVM, "NVM error: cannot spread over two sectors.\n");
323 		return ICE_ERR_PARAM;
324 	}
325 
326 	return ICE_SUCCESS;
327 }
328 
329 /**
330  * ice_read_sr_word_aq - Reads Shadow RAM via AQ
331  * @hw: pointer to the HW structure
332  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
333  * @data: word read from the Shadow RAM
334  *
335  * Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm.
336  */
337 enum ice_status ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
338 {
339 	u32 bytes = sizeof(u16);
340 	enum ice_status status;
341 	__le16 data_local;
342 
343 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
344 
345 	/* Note that ice_read_flat_nvm checks if the read is past the Shadow
346 	 * RAM size, and ensures we don't read across a Shadow RAM sector
347 	 * boundary
348 	 */
349 	status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
350 				   (_FORCE_ u8 *)&data_local, true);
351 	if (status)
352 		return status;
353 
354 	*data = LE16_TO_CPU(data_local);
355 	return ICE_SUCCESS;
356 }
357 
358 /**
359  * ice_write_sr_aq - Writes Shadow RAM
360  * @hw: pointer to the HW structure
361  * @offset: offset in words from module start
362  * @words: number of words to write
363  * @data: buffer with words to write to the Shadow RAM
364  * @last_command: tells the AdminQ that this is the last command
365  *
366  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
367  */
368 static enum ice_status
369 ice_write_sr_aq(struct ice_hw *hw, u32 offset, u16 words, __le16 *data,
370 		bool last_command)
371 {
372 	enum ice_status status;
373 
374 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
375 
376 	status = ice_check_sr_access_params(hw, offset, words);
377 	if (!status)
378 		status = ice_aq_update_nvm(hw, 0, 2 * offset, 2 * words, data,
379 					   last_command, 0, NULL);
380 
381 	return status;
382 }
383 
384 /**
385  * ice_read_sr_buf_aq - Reads Shadow RAM buf via AQ
386  * @hw: pointer to the HW structure
387  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
388  * @words: (in) number of words to read; (out) number of words actually read
389  * @data: words read from the Shadow RAM
390  *
391  * Reads 16 bit words (data buf) from the Shadow RAM. Ownership of the NVM is
392  * taken before reading the buffer and later released.
393  */
394 static enum ice_status
395 ice_read_sr_buf_aq(struct ice_hw *hw, u16 offset, u16 *words, u16 *data)
396 {
397 	u32 bytes = *words * 2, i;
398 	enum ice_status status;
399 
400 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
401 
402 	/* ice_read_flat_nvm takes into account the 4KB AdminQ and Shadow RAM
403 	 * sector restrictions necessary when reading from the NVM.
404 	 */
405 	status = ice_read_flat_nvm(hw, offset * 2, &bytes, (u8 *)data, true);
406 
407 	/* Report the number of words successfully read */
408 	*words = (u16)(bytes / 2);
409 
410 	/* Byte swap the words up to the amount we actually read */
411 	for (i = 0; i < *words; i++)
412 		data[i] = LE16_TO_CPU(((_FORCE_ __le16 *)data)[i]);
413 
414 	return status;
415 }
416 
417 /**
418  * ice_acquire_nvm - Generic request for acquiring the NVM ownership
419  * @hw: pointer to the HW structure
420  * @access: NVM access type (read or write)
421  *
422  * This function will request NVM ownership.
423  */
424 enum ice_status
425 ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
426 {
427 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
428 	if (hw->flash.blank_nvm_mode)
429 		return ICE_SUCCESS;
430 
431 	return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
432 }
433 
434 /**
435  * ice_release_nvm - Generic request for releasing the NVM ownership
436  * @hw: pointer to the HW structure
437  *
438  * This function will release NVM ownership.
439  */
440 void ice_release_nvm(struct ice_hw *hw)
441 {
442 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
443 
444 	if (hw->flash.blank_nvm_mode)
445 		return;
446 
447 	ice_release_res(hw, ICE_NVM_RES_ID);
448 }
449 
450 /**
451  * ice_get_flash_bank_offset - Get offset into requested flash bank
452  * @hw: pointer to the HW structure
453  * @bank: whether to read from the active or inactive flash bank
454  * @module: the module to read from
455  *
456  * Based on the module, lookup the module offset from the beginning of the
457  * flash.
458  *
459  * Returns the flash offset. Note that a value of zero is invalid and must be
460  * treated as an error.
461  */
462 static u32 ice_get_flash_bank_offset(struct ice_hw *hw, enum ice_bank_select bank, u16 module)
463 {
464 	struct ice_bank_info *banks = &hw->flash.banks;
465 	enum ice_flash_bank active_bank;
466 	bool second_bank_active;
467 	u32 offset, size;
468 
469 	switch (module) {
470 	case ICE_SR_1ST_NVM_BANK_PTR:
471 		offset = banks->nvm_ptr;
472 		size = banks->nvm_size;
473 		active_bank = banks->nvm_bank;
474 		break;
475 	case ICE_SR_1ST_OROM_BANK_PTR:
476 		offset = banks->orom_ptr;
477 		size = banks->orom_size;
478 		active_bank = banks->orom_bank;
479 		break;
480 	case ICE_SR_NETLIST_BANK_PTR:
481 		offset = banks->netlist_ptr;
482 		size = banks->netlist_size;
483 		active_bank = banks->netlist_bank;
484 		break;
485 	default:
486 		ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash module: 0x%04x\n", module);
487 		return 0;
488 	}
489 
490 	switch (active_bank) {
491 	case ICE_1ST_FLASH_BANK:
492 		second_bank_active = false;
493 		break;
494 	case ICE_2ND_FLASH_BANK:
495 		second_bank_active = true;
496 		break;
497 	default:
498 		ice_debug(hw, ICE_DBG_NVM, "Unexpected value for active flash bank: %u\n",
499 			  active_bank);
500 		return 0;
501 	}
502 
503 	/* The second flash bank is stored immediately following the first
504 	 * bank. Based on whether the 1st or 2nd bank is active, and whether
505 	 * we want the active or inactive bank, calculate the desired offset.
506 	 */
507 	switch (bank) {
508 	case ICE_ACTIVE_FLASH_BANK:
509 		return offset + (second_bank_active ? size : 0);
510 	case ICE_INACTIVE_FLASH_BANK:
511 		return offset + (second_bank_active ? 0 : size);
512 	}
513 
514 	ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash bank selection: %u\n", bank);
515 	return 0;
516 }
517 
518 /**
519  * ice_read_flash_module - Read a word from one of the main NVM modules
520  * @hw: pointer to the HW structure
521  * @bank: which bank of the module to read
522  * @module: the module to read
523  * @offset: the offset into the module in bytes
524  * @data: storage for the word read from the flash
525  * @length: bytes of data to read
526  *
527  * Read data from the specified flash module. The bank parameter indicates
528  * whether or not to read from the active bank or the inactive bank of that
529  * module.
530  *
531  * The word will be read using flat NVM access, and relies on the
532  * hw->flash.banks data being setup by ice_determine_active_flash_banks()
533  * during initialization.
534  */
535 static enum ice_status
536 ice_read_flash_module(struct ice_hw *hw, enum ice_bank_select bank, u16 module,
537 		      u32 offset, u8 *data, u32 length)
538 {
539 	enum ice_status status;
540 	u32 start;
541 
542 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
543 
544 	start = ice_get_flash_bank_offset(hw, bank, module);
545 	if (!start) {
546 		ice_debug(hw, ICE_DBG_NVM, "Unable to calculate flash bank offset for module 0x%04x\n",
547 			  module);
548 		return ICE_ERR_PARAM;
549 	}
550 
551 	status = ice_acquire_nvm(hw, ICE_RES_READ);
552 	if (status)
553 		return status;
554 
555 	status = ice_read_flat_nvm(hw, start + offset, &length, data, false);
556 
557 	ice_release_nvm(hw);
558 
559 	return status;
560 }
561 
562 /**
563  * ice_read_nvm_module - Read from the active main NVM module
564  * @hw: pointer to the HW structure
565  * @bank: whether to read from active or inactive NVM module
566  * @offset: offset into the NVM module to read, in words
567  * @data: storage for returned word value
568  *
569  * Read the specified word from the active NVM module. This includes the CSS
570  * header at the start of the NVM module.
571  */
572 static enum ice_status
573 ice_read_nvm_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
574 {
575 	enum ice_status status;
576 	__le16 data_local;
577 
578 	status = ice_read_flash_module(hw, bank, ICE_SR_1ST_NVM_BANK_PTR, offset * sizeof(u16),
579 				       (_FORCE_ u8 *)&data_local, sizeof(u16));
580 	if (!status)
581 		*data = LE16_TO_CPU(data_local);
582 
583 	return status;
584 }
585 
586 /**
587  * ice_get_nvm_css_hdr_len - Read the CSS header length from the NVM CSS header
588  * @hw: pointer to the HW struct
589  * @bank: whether to read from the active or inactive flash bank
590  * @hdr_len: storage for header length in words
591  *
592  * Read the CSS header length from the NVM CSS header and add the Authentication
593  * header size, and then convert to words.
594  */
595 static enum ice_status
596 ice_get_nvm_css_hdr_len(struct ice_hw *hw, enum ice_bank_select bank,
597 			u32 *hdr_len)
598 {
599 	u16 hdr_len_l, hdr_len_h;
600 	enum ice_status status;
601 	u32 hdr_len_dword;
602 
603 	status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_HDR_LEN_L,
604 				     &hdr_len_l);
605 	if (status)
606 		return status;
607 
608 	status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_HDR_LEN_H,
609 				     &hdr_len_h);
610 	if (status)
611 		return status;
612 
613 	/* CSS header length is in DWORD, so convert to words and add
614 	 * authentication header size
615 	 */
616 	hdr_len_dword = hdr_len_h << 16 | hdr_len_l;
617 	*hdr_len = (hdr_len_dword * 2) + ICE_NVM_AUTH_HEADER_LEN;
618 
619 	return ICE_SUCCESS;
620 }
621 
622 /**
623  * ice_read_nvm_sr_copy - Read a word from the Shadow RAM copy in the NVM bank
624  * @hw: pointer to the HW structure
625  * @bank: whether to read from the active or inactive NVM module
626  * @offset: offset into the Shadow RAM copy to read, in words
627  * @data: storage for returned word value
628  *
629  * Read the specified word from the copy of the Shadow RAM found in the
630  * specified NVM module.
631  */
632 static enum ice_status
633 ice_read_nvm_sr_copy(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
634 {
635 	enum ice_status status;
636 	u32 hdr_len;
637 
638 	status = ice_get_nvm_css_hdr_len(hw, bank, &hdr_len);
639 	if (status)
640 		return status;
641 
642 	hdr_len = ROUND_UP(hdr_len, 32);
643 
644 	return ice_read_nvm_module(hw, bank, hdr_len + offset, data);
645 }
646 
647 /**
648  * ice_read_orom_module - Read from the active Option ROM module
649  * @hw: pointer to the HW structure
650  * @bank: whether to read from active or inactive OROM module
651  * @offset: offset into the OROM module to read, in words
652  * @data: storage for returned word value
653  *
654  * Read the specified word from the active Option ROM module of the flash.
655  * Note that unlike the NVM module, the CSS data is stored at the end of the
656  * module instead of at the beginning.
657  */
658 static enum ice_status
659 ice_read_orom_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
660 {
661 	enum ice_status status;
662 	__le16 data_local;
663 
664 	status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, offset * sizeof(u16),
665 				       (_FORCE_ u8 *)&data_local, sizeof(u16));
666 	if (!status)
667 		*data = LE16_TO_CPU(data_local);
668 
669 	return status;
670 }
671 
672 /**
673  * ice_read_netlist_module - Read data from the netlist module area
674  * @hw: pointer to the HW structure
675  * @bank: whether to read from the active or inactive module
676  * @offset: offset into the netlist to read from
677  * @data: storage for returned word value
678  *
679  * Read a word from the specified netlist bank.
680  */
681 static enum ice_status
682 ice_read_netlist_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
683 {
684 	enum ice_status status;
685 	__le16 data_local;
686 
687 	status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, offset * sizeof(u16),
688 				       (_FORCE_ u8 *)&data_local, sizeof(u16));
689 	if (!status)
690 		*data = LE16_TO_CPU(data_local);
691 
692 	return status;
693 }
694 
695 /**
696  * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
697  * @hw: pointer to the HW structure
698  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
699  * @data: word read from the Shadow RAM
700  *
701  * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
702  */
703 enum ice_status ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
704 {
705 	enum ice_status status;
706 
707 	status = ice_acquire_nvm(hw, ICE_RES_READ);
708 	if (!status) {
709 		status = ice_read_sr_word_aq(hw, offset, data);
710 		ice_release_nvm(hw);
711 	}
712 
713 	return status;
714 }
715 
716 /**
717  * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
718  * @hw: pointer to hardware structure
719  * @module_tlv: pointer to module TLV to return
720  * @module_tlv_len: pointer to module TLV length to return
721  * @module_type: module type requested
722  *
723  * Finds the requested sub module TLV type from the Preserved Field
724  * Area (PFA) and returns the TLV pointer and length. The caller can
725  * use these to read the variable length TLV value.
726  */
727 enum ice_status
728 ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
729 		       u16 module_type)
730 {
731 	enum ice_status status;
732 	u16 pfa_len, pfa_ptr;
733 	u16 next_tlv;
734 
735 	status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
736 	if (status != ICE_SUCCESS) {
737 		ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
738 		return status;
739 	}
740 	status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
741 	if (status != ICE_SUCCESS) {
742 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
743 		return status;
744 	}
745 	/* Starting with first TLV after PFA length, iterate through the list
746 	 * of TLVs to find the requested one.
747 	 */
748 	next_tlv = pfa_ptr + 1;
749 	while (next_tlv < pfa_ptr + pfa_len) {
750 		u16 tlv_sub_module_type;
751 		u16 tlv_len;
752 
753 		/* Read TLV type */
754 		status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
755 		if (status != ICE_SUCCESS) {
756 			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
757 			break;
758 		}
759 		/* Read TLV length */
760 		status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
761 		if (status != ICE_SUCCESS) {
762 			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
763 			break;
764 		}
765 		if (tlv_sub_module_type == module_type) {
766 			if (tlv_len) {
767 				*module_tlv = next_tlv;
768 				*module_tlv_len = tlv_len;
769 				return ICE_SUCCESS;
770 			}
771 			return ICE_ERR_INVAL_SIZE;
772 		}
773 		/* Check next TLV, i.e. current TLV pointer + length + 2 words
774 		 * (for current TLV's type and length)
775 		 */
776 		next_tlv = next_tlv + tlv_len + 2;
777 	}
778 	/* Module does not exist */
779 	return ICE_ERR_DOES_NOT_EXIST;
780 }
781 
782 /**
783  * ice_read_pba_string - Reads part number string from NVM
784  * @hw: pointer to hardware structure
785  * @pba_num: stores the part number string from the NVM
786  * @pba_num_size: part number string buffer length
787  *
788  * Reads the part number string from the NVM.
789  */
790 enum ice_status
791 ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size)
792 {
793 	u16 pba_tlv, pba_tlv_len;
794 	enum ice_status status;
795 	u16 pba_word, pba_size;
796 	u16 i;
797 
798 	status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
799 					ICE_SR_PBA_BLOCK_PTR);
800 	if (status != ICE_SUCCESS) {
801 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n");
802 		return status;
803 	}
804 
805 	/* pba_size is the next word */
806 	status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size);
807 	if (status != ICE_SUCCESS) {
808 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n");
809 		return status;
810 	}
811 
812 	if (pba_tlv_len < pba_size) {
813 		ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n");
814 		return ICE_ERR_INVAL_SIZE;
815 	}
816 
817 	/* Subtract one to get PBA word count (PBA Size word is included in
818 	 * total size)
819 	 */
820 	pba_size--;
821 	if (pba_num_size < (((u32)pba_size * 2) + 1)) {
822 		ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n");
823 		return ICE_ERR_PARAM;
824 	}
825 
826 	for (i = 0; i < pba_size; i++) {
827 		status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word);
828 		if (status != ICE_SUCCESS) {
829 			ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i);
830 			return status;
831 		}
832 
833 		pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
834 		pba_num[(i * 2) + 1] = pba_word & 0xFF;
835 	}
836 	pba_num[(pba_size * 2)] = '\0';
837 
838 	return status;
839 }
840 
841 /**
842  * ice_get_nvm_srev - Read the security revision from the NVM CSS header
843  * @hw: pointer to the HW struct
844  * @bank: whether to read from the active or inactive flash bank
845  * @srev: storage for security revision
846  *
847  * Read the security revision out of the CSS header of the active NVM module
848  * bank.
849  */
850 static enum ice_status ice_get_nvm_srev(struct ice_hw *hw, enum ice_bank_select bank, u32 *srev)
851 {
852 	enum ice_status status;
853 	u16 srev_l, srev_h;
854 
855 	status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_SREV_L, &srev_l);
856 	if (status)
857 		return status;
858 
859 	status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_SREV_H, &srev_h);
860 	if (status)
861 		return status;
862 
863 	*srev = srev_h << 16 | srev_l;
864 
865 	return ICE_SUCCESS;
866 }
867 
868 /**
869  * ice_get_nvm_ver_info - Read NVM version information
870  * @hw: pointer to the HW struct
871  * @bank: whether to read from the active or inactive flash bank
872  * @nvm: pointer to NVM info structure
873  *
874  * Read the NVM EETRACK ID and map version of the main NVM image bank, filling
875  * in the NVM info structure.
876  */
877 static enum ice_status
878 ice_get_nvm_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_nvm_info *nvm)
879 {
880 	u16 eetrack_lo, eetrack_hi, ver;
881 	enum ice_status status;
882 
883 	status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_DEV_STARTER_VER, &ver);
884 	if (status) {
885 		ice_debug(hw, ICE_DBG_NVM, "Failed to read DEV starter version.\n");
886 		return status;
887 	}
888 
889 	nvm->major = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
890 	nvm->minor = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
891 
892 	status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
893 	if (status) {
894 		ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK lo.\n");
895 		return status;
896 	}
897 	status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
898 	if (status) {
899 		ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK hi.\n");
900 		return status;
901 	}
902 
903 	nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
904 
905 	status = ice_get_nvm_srev(hw, bank, &nvm->srev);
906 	if (status)
907 		ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM security revision.\n");
908 
909 	return ICE_SUCCESS;
910 }
911 
912 /**
913  * ice_get_inactive_nvm_ver - Read Option ROM version from the inactive bank
914  * @hw: pointer to the HW structure
915  * @nvm: storage for Option ROM version information
916  *
917  * Reads the NVM EETRACK ID, Map version, and security revision of the
918  * inactive NVM bank. Used to access version data for a pending update that
919  * has not yet been activated.
920  */
921 enum ice_status ice_get_inactive_nvm_ver(struct ice_hw *hw, struct ice_nvm_info *nvm)
922 {
923 	return ice_get_nvm_ver_info(hw, ICE_INACTIVE_FLASH_BANK, nvm);
924 }
925 
926 /**
927  * ice_get_orom_srev - Read the security revision from the OROM CSS header
928  * @hw: pointer to the HW struct
929  * @bank: whether to read from active or inactive flash module
930  * @srev: storage for security revision
931  *
932  * Read the security revision out of the CSS header of the active OROM module
933  * bank.
934  */
935 static enum ice_status ice_get_orom_srev(struct ice_hw *hw, enum ice_bank_select bank, u32 *srev)
936 {
937 	u32 orom_size_word = hw->flash.banks.orom_size / 2;
938 	enum ice_status status;
939 	u16 srev_l, srev_h;
940 	u32 css_start;
941 	u32 hdr_len;
942 
943 	status = ice_get_nvm_css_hdr_len(hw, bank, &hdr_len);
944 	if (status)
945 		return status;
946 
947 	if (orom_size_word < hdr_len) {
948 		ice_debug(hw, ICE_DBG_NVM, "Unexpected Option ROM Size of %u\n",
949 			  hw->flash.banks.orom_size);
950 		return ICE_ERR_CFG;
951 	}
952 
953 	/* calculate how far into the Option ROM the CSS header starts. Note
954 	 * that ice_read_orom_module takes a word offset
955 	 */
956 	css_start = orom_size_word - hdr_len;
957 	status = ice_read_orom_module(hw, bank, css_start + ICE_NVM_CSS_SREV_L, &srev_l);
958 	if (status)
959 		return status;
960 
961 	status = ice_read_orom_module(hw, bank, css_start + ICE_NVM_CSS_SREV_H, &srev_h);
962 	if (status)
963 		return status;
964 
965 	*srev = srev_h << 16 | srev_l;
966 
967 	return ICE_SUCCESS;
968 }
969 
970 /**
971  * ice_get_orom_civd_data - Get the combo version information from Option ROM
972  * @hw: pointer to the HW struct
973  * @bank: whether to read from the active or inactive flash module
974  * @civd: storage for the Option ROM CIVD data.
975  *
976  * Searches through the Option ROM flash contents to locate the CIVD data for
977  * the image.
978  */
979 static enum ice_status
980 ice_get_orom_civd_data(struct ice_hw *hw, enum ice_bank_select bank,
981 		       struct ice_orom_civd_info *civd)
982 {
983 	u8 *orom_data;
984 	enum ice_status status;
985 	u32 offset;
986 
987 	/* The CIVD section is located in the Option ROM aligned to 512 bytes.
988 	 * The first 4 bytes must contain the ASCII characters "$CIV".
989 	 * A simple modulo 256 sum of all of the bytes of the structure must
990 	 * equal 0.
991 	 *
992 	 * The exact location is unknown and varies between images but is
993 	 * usually somewhere in the middle of the bank. We need to scan the
994 	 * Option ROM bank to locate it.
995 	 *
996 	 * It's significantly faster to read the entire Option ROM up front
997 	 * using the maximum page size, than to read each possible location
998 	 * with a separate firmware command.
999 	 */
1000 	orom_data = (u8 *)ice_calloc(hw, hw->flash.banks.orom_size, sizeof(u8));
1001 	if (!orom_data)
1002 		return ICE_ERR_NO_MEMORY;
1003 
1004 	status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, 0,
1005 				       orom_data, hw->flash.banks.orom_size);
1006 	if (status) {
1007 		ice_debug(hw, ICE_DBG_NVM, "Unable to read Option ROM data\n");
1008 		goto exit_error;
1009 	}
1010 
1011 	/* Scan the memory buffer to locate the CIVD data section */
1012 	for (offset = 0; (offset + 512) <= hw->flash.banks.orom_size; offset += 512) {
1013 		struct ice_orom_civd_info *tmp;
1014 		u8 sum = 0, i;
1015 
1016 		tmp = (struct ice_orom_civd_info *)&orom_data[offset];
1017 
1018 		/* Skip forward until we find a matching signature */
1019 		if (memcmp("$CIV", tmp->signature, sizeof(tmp->signature)) != 0)
1020 			continue;
1021 
1022 		ice_debug(hw, ICE_DBG_NVM, "Found CIVD section at offset %u\n",
1023 			  offset);
1024 
1025 		/* Verify that the simple checksum is zero */
1026 		for (i = 0; i < sizeof(*tmp); i++)
1027 			sum += ((u8 *)tmp)[i];
1028 
1029 		if (sum) {
1030 			ice_debug(hw, ICE_DBG_NVM, "Found CIVD data with invalid checksum of %u\n",
1031 				  sum);
1032 			status = ICE_ERR_NVM;
1033 			goto exit_error;
1034 		}
1035 
1036 		*civd = *tmp;
1037 		ice_free(hw, orom_data);
1038 		return ICE_SUCCESS;
1039 	}
1040 
1041 	status = ICE_ERR_NVM;
1042 	ice_debug(hw, ICE_DBG_NVM, "Unable to locate CIVD data within the Option ROM\n");
1043 
1044 exit_error:
1045 	ice_free(hw, orom_data);
1046 	return status;
1047 }
1048 
1049 /**
1050  * ice_get_orom_ver_info - Read Option ROM version information
1051  * @hw: pointer to the HW struct
1052  * @bank: whether to read from the active or inactive flash module
1053  * @orom: pointer to Option ROM info structure
1054  *
1055  * Read Option ROM version and security revision from the Option ROM flash
1056  * section.
1057  */
1058 static enum ice_status
1059 ice_get_orom_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_orom_info *orom)
1060 {
1061 	struct ice_orom_civd_info civd;
1062 	enum ice_status status;
1063 	u32 combo_ver;
1064 
1065 	status = ice_get_orom_civd_data(hw, bank, &civd);
1066 	if (status) {
1067 		ice_debug(hw, ICE_DBG_NVM, "Failed to locate valid Option ROM CIVD data\n");
1068 		return status;
1069 	}
1070 
1071 	combo_ver = LE32_TO_CPU(civd.combo_ver);
1072 
1073 	orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >> ICE_OROM_VER_SHIFT);
1074 	orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK);
1075 	orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >> ICE_OROM_VER_BUILD_SHIFT);
1076 
1077 	status = ice_get_orom_srev(hw, bank, &orom->srev);
1078 	if (status) {
1079 		ice_debug(hw, ICE_DBG_NVM, "Failed to read Option ROM security revision.\n");
1080 		return status;
1081 	}
1082 
1083 	return ICE_SUCCESS;
1084 }
1085 
1086 /**
1087  * ice_get_inactive_orom_ver - Read Option ROM version from the inactive bank
1088  * @hw: pointer to the HW structure
1089  * @orom: storage for Option ROM version information
1090  *
1091  * Reads the Option ROM version and security revision data for the inactive
1092  * section of flash. Used to access version data for a pending update that has
1093  * not yet been activated.
1094  */
1095 enum ice_status ice_get_inactive_orom_ver(struct ice_hw *hw, struct ice_orom_info *orom)
1096 {
1097 	return ice_get_orom_ver_info(hw, ICE_INACTIVE_FLASH_BANK, orom);
1098 }
1099 
1100 /**
1101  * ice_get_netlist_info
1102  * @hw: pointer to the HW struct
1103  * @bank: whether to read from the active or inactive flash bank
1104  * @netlist: pointer to netlist version info structure
1105  *
1106  * Get the netlist version information from the requested bank. Reads the Link
1107  * Topology section to find the Netlist ID block and extract the relevant
1108  * information into the netlist version structure.
1109  */
1110 static enum ice_status
1111 ice_get_netlist_info(struct ice_hw *hw, enum ice_bank_select bank,
1112 		     struct ice_netlist_info *netlist)
1113 {
1114 	u16 module_id, length, node_count, i;
1115 	enum ice_status status;
1116 	u16 *id_blk;
1117 
1118 	status = ice_read_netlist_module(hw, bank, ICE_NETLIST_TYPE_OFFSET, &module_id);
1119 	if (status)
1120 		return status;
1121 
1122 	if (module_id != ICE_NETLIST_LINK_TOPO_MOD_ID) {
1123 		ice_debug(hw, ICE_DBG_NVM, "Expected netlist module_id ID of 0x%04x, but got 0x%04x\n",
1124 			  ICE_NETLIST_LINK_TOPO_MOD_ID, module_id);
1125 		return ICE_ERR_NVM;
1126 	}
1127 
1128 	status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_MODULE_LEN, &length);
1129 	if (status)
1130 		return status;
1131 
1132 	/* sanity check that we have at least enough words to store the netlist ID block */
1133 	if (length < ICE_NETLIST_ID_BLK_SIZE) {
1134 		ice_debug(hw, ICE_DBG_NVM, "Netlist Link Topology module too small. Expected at least %u words, but got %u words.\n",
1135 			  ICE_NETLIST_ID_BLK_SIZE, length);
1136 		return ICE_ERR_NVM;
1137 	}
1138 
1139 	status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_NODE_COUNT, &node_count);
1140 	if (status)
1141 		return status;
1142 	node_count &= ICE_LINK_TOPO_NODE_COUNT_M;
1143 
1144 	id_blk = (u16 *)ice_calloc(hw, ICE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk));
1145 	if (!id_blk)
1146 		return ICE_ERR_NO_MEMORY;
1147 
1148 	/* Read out the entire Netlist ID Block at once. */
1149 	status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR,
1150 				       ICE_NETLIST_ID_BLK_OFFSET(node_count) * sizeof(u16),
1151 				       (u8 *)id_blk, ICE_NETLIST_ID_BLK_SIZE * sizeof(u16));
1152 	if (status)
1153 		goto exit_error;
1154 
1155 	for (i = 0; i < ICE_NETLIST_ID_BLK_SIZE; i++)
1156 		id_blk[i] = LE16_TO_CPU(((_FORCE_ __le16 *)id_blk)[i]);
1157 
1158 	netlist->major = id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 |
1159 			 id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_LOW];
1160 	netlist->minor = id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 |
1161 			 id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_LOW];
1162 	netlist->type = id_blk[ICE_NETLIST_ID_BLK_TYPE_HIGH] << 16 |
1163 			id_blk[ICE_NETLIST_ID_BLK_TYPE_LOW];
1164 	netlist->rev = id_blk[ICE_NETLIST_ID_BLK_REV_HIGH] << 16 |
1165 		       id_blk[ICE_NETLIST_ID_BLK_REV_LOW];
1166 	netlist->cust_ver = id_blk[ICE_NETLIST_ID_BLK_CUST_VER];
1167 	/* Read the left most 4 bytes of SHA */
1168 	netlist->hash = id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 |
1169 			id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(14)];
1170 
1171 exit_error:
1172 	ice_free(hw, id_blk);
1173 
1174 	return status;
1175 }
1176 
1177 /**
1178  * ice_get_netlist_ver_info
1179  * @hw: pointer to the HW struct
1180  * @netlist: pointer to netlist version info structure
1181  *
1182  * Get the netlist version information
1183  */
1184 enum ice_status ice_get_netlist_ver_info(struct ice_hw *hw, struct ice_netlist_info *netlist)
1185 {
1186 	return ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, netlist);
1187 }
1188 
1189 /**
1190  * ice_get_inactive_netlist_ver
1191  * @hw: pointer to the HW struct
1192  * @netlist: pointer to netlist version info structure
1193  *
1194  * Read the netlist version data from the inactive netlist bank. Used to
1195  * extract version data of a pending flash update in order to display the
1196  * version data.
1197  */
1198 enum ice_status ice_get_inactive_netlist_ver(struct ice_hw *hw, struct ice_netlist_info *netlist)
1199 {
1200 	return ice_get_netlist_info(hw, ICE_INACTIVE_FLASH_BANK, netlist);
1201 }
1202 
1203 /**
1204  * ice_discover_flash_size - Discover the available flash size
1205  * @hw: pointer to the HW struct
1206  *
1207  * The device flash could be up to 16MB in size. However, it is possible that
1208  * the actual size is smaller. Use bisection to determine the accessible size
1209  * of flash memory.
1210  */
1211 static enum ice_status ice_discover_flash_size(struct ice_hw *hw)
1212 {
1213 	u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1;
1214 	enum ice_status status;
1215 
1216 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1217 
1218 	status = ice_acquire_nvm(hw, ICE_RES_READ);
1219 	if (status)
1220 		return status;
1221 
1222 	while ((max_size - min_size) > 1) {
1223 		u32 offset = (max_size + min_size) / 2;
1224 		u32 len = 1;
1225 		u8 data;
1226 
1227 		status = ice_read_flat_nvm(hw, offset, &len, &data, false);
1228 		if (status == ICE_ERR_AQ_ERROR &&
1229 		    hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) {
1230 			ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n",
1231 				  __func__, offset);
1232 			status = ICE_SUCCESS;
1233 			max_size = offset;
1234 		} else if (!status) {
1235 			ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n",
1236 				  __func__, offset);
1237 			min_size = offset;
1238 		} else {
1239 			/* an unexpected error occurred */
1240 			goto err_read_flat_nvm;
1241 		}
1242 	}
1243 
1244 	ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size);
1245 
1246 	hw->flash.flash_size = max_size;
1247 
1248 err_read_flat_nvm:
1249 	ice_release_nvm(hw);
1250 
1251 	return status;
1252 }
1253 
1254 /**
1255  * ice_read_sr_pointer - Read the value of a Shadow RAM pointer word
1256  * @hw: pointer to the HW structure
1257  * @offset: the word offset of the Shadow RAM word to read
1258  * @pointer: pointer value read from Shadow RAM
1259  *
1260  * Read the given Shadow RAM word, and convert it to a pointer value specified
1261  * in bytes. This function assumes the specified offset is a valid pointer
1262  * word.
1263  *
1264  * Each pointer word specifies whether it is stored in word size or 4KB
1265  * sector size by using the highest bit. The reported pointer value will be in
1266  * bytes, intended for flat NVM reads.
1267  */
1268 static enum ice_status
1269 ice_read_sr_pointer(struct ice_hw *hw, u16 offset, u32 *pointer)
1270 {
1271 	enum ice_status status;
1272 	u16 value;
1273 
1274 	status = ice_read_sr_word(hw, offset, &value);
1275 	if (status)
1276 		return status;
1277 
1278 	/* Determine if the pointer is in 4KB or word units */
1279 	if (value & ICE_SR_NVM_PTR_4KB_UNITS)
1280 		*pointer = (value & ~ICE_SR_NVM_PTR_4KB_UNITS) * 4 * 1024;
1281 	else
1282 		*pointer = value * 2;
1283 
1284 	return ICE_SUCCESS;
1285 }
1286 
1287 /**
1288  * ice_read_sr_area_size - Read an area size from a Shadow RAM word
1289  * @hw: pointer to the HW structure
1290  * @offset: the word offset of the Shadow RAM to read
1291  * @size: size value read from the Shadow RAM
1292  *
1293  * Read the given Shadow RAM word, and convert it to an area size value
1294  * specified in bytes. This function assumes the specified offset is a valid
1295  * area size word.
1296  *
1297  * Each area size word is specified in 4KB sector units. This function reports
1298  * the size in bytes, intended for flat NVM reads.
1299  */
1300 static enum ice_status
1301 ice_read_sr_area_size(struct ice_hw *hw, u16 offset, u32 *size)
1302 {
1303 	enum ice_status status;
1304 	u16 value;
1305 
1306 	status = ice_read_sr_word(hw, offset, &value);
1307 	if (status)
1308 		return status;
1309 
1310 	/* Area sizes are always specified in 4KB units */
1311 	*size = value * 4 * 1024;
1312 
1313 	return ICE_SUCCESS;
1314 }
1315 
1316 /**
1317  * ice_determine_active_flash_banks - Discover active bank for each module
1318  * @hw: pointer to the HW struct
1319  *
1320  * Read the Shadow RAM control word and determine which banks are active for
1321  * the NVM, OROM, and Netlist modules. Also read and calculate the associated
1322  * pointer and size. These values are then cached into the ice_flash_info
1323  * structure for later use in order to calculate the correct offset to read
1324  * from the active module.
1325  */
1326 static enum ice_status
1327 ice_determine_active_flash_banks(struct ice_hw *hw)
1328 {
1329 	struct ice_bank_info *banks = &hw->flash.banks;
1330 	enum ice_status status;
1331 	u16 ctrl_word;
1332 
1333 	status = ice_read_sr_word(hw, ICE_SR_NVM_CTRL_WORD, &ctrl_word);
1334 	if (status) {
1335 		ice_debug(hw, ICE_DBG_NVM, "Failed to read the Shadow RAM control word\n");
1336 		return status;
1337 	}
1338 
1339 	/* Check that the control word indicates validity */
1340 	if ((ctrl_word & ICE_SR_CTRL_WORD_1_M) >> ICE_SR_CTRL_WORD_1_S != ICE_SR_CTRL_WORD_VALID) {
1341 		ice_debug(hw, ICE_DBG_NVM, "Shadow RAM control word is invalid\n");
1342 		return ICE_ERR_CFG;
1343 	}
1344 
1345 	if (!(ctrl_word & ICE_SR_CTRL_WORD_NVM_BANK))
1346 		banks->nvm_bank = ICE_1ST_FLASH_BANK;
1347 	else
1348 		banks->nvm_bank = ICE_2ND_FLASH_BANK;
1349 
1350 	if (!(ctrl_word & ICE_SR_CTRL_WORD_OROM_BANK))
1351 		banks->orom_bank = ICE_1ST_FLASH_BANK;
1352 	else
1353 		banks->orom_bank = ICE_2ND_FLASH_BANK;
1354 
1355 	if (!(ctrl_word & ICE_SR_CTRL_WORD_NETLIST_BANK))
1356 		banks->netlist_bank = ICE_1ST_FLASH_BANK;
1357 	else
1358 		banks->netlist_bank = ICE_2ND_FLASH_BANK;
1359 
1360 	status = ice_read_sr_pointer(hw, ICE_SR_1ST_NVM_BANK_PTR, &banks->nvm_ptr);
1361 	if (status) {
1362 		ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank pointer\n");
1363 		return status;
1364 	}
1365 
1366 	status = ice_read_sr_area_size(hw, ICE_SR_NVM_BANK_SIZE, &banks->nvm_size);
1367 	if (status) {
1368 		ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank area size\n");
1369 		return status;
1370 	}
1371 
1372 	status = ice_read_sr_pointer(hw, ICE_SR_1ST_OROM_BANK_PTR, &banks->orom_ptr);
1373 	if (status) {
1374 		ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank pointer\n");
1375 		return status;
1376 	}
1377 
1378 	status = ice_read_sr_area_size(hw, ICE_SR_OROM_BANK_SIZE, &banks->orom_size);
1379 	if (status) {
1380 		ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank area size\n");
1381 		return status;
1382 	}
1383 
1384 	status = ice_read_sr_pointer(hw, ICE_SR_NETLIST_BANK_PTR, &banks->netlist_ptr);
1385 	if (status) {
1386 		ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank pointer\n");
1387 		return status;
1388 	}
1389 
1390 	status = ice_read_sr_area_size(hw, ICE_SR_NETLIST_BANK_SIZE, &banks->netlist_size);
1391 	if (status) {
1392 		ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank area size\n");
1393 		return status;
1394 	}
1395 
1396 	return ICE_SUCCESS;
1397 }
1398 
1399 /**
1400  * ice_init_nvm - initializes NVM setting
1401  * @hw: pointer to the HW struct
1402  *
1403  * This function reads and populates NVM settings such as Shadow RAM size,
1404  * max_timeout, and blank_nvm_mode
1405  */
1406 enum ice_status ice_init_nvm(struct ice_hw *hw)
1407 {
1408 	struct ice_flash_info *flash = &hw->flash;
1409 	enum ice_status status;
1410 	u32 fla, gens_stat;
1411 	u8 sr_size;
1412 
1413 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1414 
1415 	/* The SR size is stored regardless of the NVM programming mode
1416 	 * as the blank mode may be used in the factory line.
1417 	 */
1418 	gens_stat = rd32(hw, GLNVM_GENS);
1419 	sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
1420 
1421 	/* Switching to words (sr_size contains power of 2) */
1422 	flash->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
1423 
1424 	/* Check if we are in the normal or blank NVM programming mode */
1425 	fla = rd32(hw, GLNVM_FLA);
1426 	if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
1427 		flash->blank_nvm_mode = false;
1428 	} else {
1429 		/* Blank programming mode */
1430 		flash->blank_nvm_mode = true;
1431 		ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n");
1432 		return ICE_ERR_NVM_BLANK_MODE;
1433 	}
1434 
1435 	status = ice_discover_flash_size(hw);
1436 	if (status) {
1437 		ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n");
1438 		return status;
1439 	}
1440 
1441 	status = ice_determine_active_flash_banks(hw);
1442 	if (status) {
1443 		ice_debug(hw, ICE_DBG_NVM, "Failed to determine active flash banks.\n");
1444 		return status;
1445 	}
1446 
1447 	status = ice_get_nvm_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->nvm);
1448 	if (status) {
1449 		ice_debug(hw, ICE_DBG_INIT, "Failed to read NVM info.\n");
1450 		return status;
1451 	}
1452 
1453 	status = ice_get_orom_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->orom);
1454 	if (status)
1455 		ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n");
1456 
1457 	/* read the netlist version information */
1458 	status = ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->netlist);
1459 	if (status)
1460 		ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n");
1461 
1462 	return ICE_SUCCESS;
1463 }
1464 
1465 /**
1466  * ice_read_sr_buf - Reads Shadow RAM buf and acquire lock if necessary
1467  * @hw: pointer to the HW structure
1468  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
1469  * @words: (in) number of words to read; (out) number of words actually read
1470  * @data: words read from the Shadow RAM
1471  *
1472  * Reads 16 bit words (data buf) from the SR using the ice_read_nvm_buf_aq
1473  * method. The buf read is preceded by the NVM ownership take
1474  * and followed by the release.
1475  */
1476 enum ice_status
1477 ice_read_sr_buf(struct ice_hw *hw, u16 offset, u16 *words, u16 *data)
1478 {
1479 	enum ice_status status;
1480 
1481 	status = ice_acquire_nvm(hw, ICE_RES_READ);
1482 	if (!status) {
1483 		status = ice_read_sr_buf_aq(hw, offset, words, data);
1484 		ice_release_nvm(hw);
1485 	}
1486 
1487 	return status;
1488 }
1489 
1490 /**
1491  * __ice_write_sr_word - Writes Shadow RAM word
1492  * @hw: pointer to the HW structure
1493  * @offset: offset of the Shadow RAM word to write
1494  * @data: word to write to the Shadow RAM
1495  *
1496  * Writes a 16 bit word to the SR using the ice_write_sr_aq method.
1497  * NVM ownership have to be acquired and released (on ARQ completion event
1498  * reception) by caller. To commit SR to NVM update checksum function
1499  * should be called.
1500  */
1501 enum ice_status
1502 __ice_write_sr_word(struct ice_hw *hw, u32 offset, const u16 *data)
1503 {
1504 	__le16 data_local = CPU_TO_LE16(*data);
1505 
1506 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1507 
1508 	/* Value 0x00 below means that we treat SR as a flat mem */
1509 	return ice_write_sr_aq(hw, offset, 1, &data_local, false);
1510 }
1511 
1512 /**
1513  * __ice_write_sr_buf - Writes Shadow RAM buf
1514  * @hw: pointer to the HW structure
1515  * @offset: offset of the Shadow RAM buffer to write
1516  * @words: number of words to write
1517  * @data: words to write to the Shadow RAM
1518  *
1519  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
1520  * NVM ownership must be acquired before calling this function and released
1521  * on ARQ completion event reception by caller. To commit SR to NVM update
1522  * checksum function should be called.
1523  */
1524 enum ice_status
1525 __ice_write_sr_buf(struct ice_hw *hw, u32 offset, u16 words, const u16 *data)
1526 {
1527 	enum ice_status status;
1528 	__le16 *data_local;
1529 	void *vmem;
1530 	u32 i;
1531 
1532 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1533 
1534 	vmem = ice_calloc(hw, words, sizeof(u16));
1535 	if (!vmem)
1536 		return ICE_ERR_NO_MEMORY;
1537 	data_local = (_FORCE_ __le16 *)vmem;
1538 
1539 	for (i = 0; i < words; i++)
1540 		data_local[i] = CPU_TO_LE16(data[i]);
1541 
1542 	/* Here we will only write one buffer as the size of the modules
1543 	 * mirrored in the Shadow RAM is always less than 4K.
1544 	 */
1545 	status = ice_write_sr_aq(hw, offset, words, data_local, false);
1546 
1547 	ice_free(hw, vmem);
1548 
1549 	return status;
1550 }
1551 
1552 /**
1553  * ice_calc_sr_checksum - Calculates and returns Shadow RAM SW checksum
1554  * @hw: pointer to hardware structure
1555  * @checksum: pointer to the checksum
1556  *
1557  * This function calculates SW Checksum that covers the whole 64kB shadow RAM
1558  * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
1559  * is customer specific and unknown. Therefore, this function skips all maximum
1560  * possible size of VPD (1kB).
1561  */
1562 static enum ice_status ice_calc_sr_checksum(struct ice_hw *hw, u16 *checksum)
1563 {
1564 	enum ice_status status = ICE_SUCCESS;
1565 	u16 pcie_alt_module = 0;
1566 	u16 checksum_local = 0;
1567 	u16 vpd_module;
1568 	void *vmem;
1569 	u16 *data;
1570 	u16 i;
1571 
1572 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1573 
1574 	vmem = ice_calloc(hw, ICE_SR_SECTOR_SIZE_IN_WORDS, sizeof(u16));
1575 	if (!vmem)
1576 		return ICE_ERR_NO_MEMORY;
1577 	data = (u16 *)vmem;
1578 
1579 	/* read pointer to VPD area */
1580 	status = ice_read_sr_word_aq(hw, ICE_SR_VPD_PTR, &vpd_module);
1581 	if (status)
1582 		goto ice_calc_sr_checksum_exit;
1583 
1584 	/* read pointer to PCIe Alt Auto-load module */
1585 	status = ice_read_sr_word_aq(hw, ICE_SR_PCIE_ALT_AUTO_LOAD_PTR,
1586 				     &pcie_alt_module);
1587 	if (status)
1588 		goto ice_calc_sr_checksum_exit;
1589 
1590 	/* Calculate SW checksum that covers the whole 64kB shadow RAM
1591 	 * except the VPD and PCIe ALT Auto-load modules
1592 	 */
1593 	for (i = 0; i < hw->flash.sr_words; i++) {
1594 		/* Read SR page */
1595 		if ((i % ICE_SR_SECTOR_SIZE_IN_WORDS) == 0) {
1596 			u16 words = ICE_SR_SECTOR_SIZE_IN_WORDS;
1597 
1598 			status = ice_read_sr_buf_aq(hw, i, &words, data);
1599 			if (status != ICE_SUCCESS)
1600 				goto ice_calc_sr_checksum_exit;
1601 		}
1602 
1603 		/* Skip Checksum word */
1604 		if (i == ICE_SR_SW_CHECKSUM_WORD)
1605 			continue;
1606 		/* Skip VPD module (convert byte size to word count) */
1607 		if (i >= (u32)vpd_module &&
1608 		    i < ((u32)vpd_module + ICE_SR_VPD_SIZE_WORDS))
1609 			continue;
1610 		/* Skip PCIe ALT module (convert byte size to word count) */
1611 		if (i >= (u32)pcie_alt_module &&
1612 		    i < ((u32)pcie_alt_module + ICE_SR_PCIE_ALT_SIZE_WORDS))
1613 			continue;
1614 
1615 		checksum_local += data[i % ICE_SR_SECTOR_SIZE_IN_WORDS];
1616 	}
1617 
1618 	*checksum = (u16)ICE_SR_SW_CHECKSUM_BASE - checksum_local;
1619 
1620 ice_calc_sr_checksum_exit:
1621 	ice_free(hw, vmem);
1622 	return status;
1623 }
1624 
1625 /**
1626  * ice_update_sr_checksum - Updates the Shadow RAM SW checksum
1627  * @hw: pointer to hardware structure
1628  *
1629  * NVM ownership must be acquired before calling this function and released
1630  * on ARQ completion event reception by caller.
1631  * This function will commit SR to NVM.
1632  */
1633 enum ice_status ice_update_sr_checksum(struct ice_hw *hw)
1634 {
1635 	enum ice_status status;
1636 	__le16 le_sum;
1637 	u16 checksum;
1638 
1639 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1640 
1641 	status = ice_calc_sr_checksum(hw, &checksum);
1642 	if (!status) {
1643 		le_sum = CPU_TO_LE16(checksum);
1644 		status = ice_write_sr_aq(hw, ICE_SR_SW_CHECKSUM_WORD, 1,
1645 					 &le_sum, true);
1646 	}
1647 	return status;
1648 }
1649 
1650 /**
1651  * ice_validate_sr_checksum - Validate Shadow RAM SW checksum
1652  * @hw: pointer to hardware structure
1653  * @checksum: calculated checksum
1654  *
1655  * Performs checksum calculation and validates the Shadow RAM SW checksum.
1656  * If the caller does not need checksum, the value can be NULL.
1657  */
1658 enum ice_status ice_validate_sr_checksum(struct ice_hw *hw, u16 *checksum)
1659 {
1660 	enum ice_status status;
1661 	u16 checksum_local;
1662 	u16 checksum_sr;
1663 
1664 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1665 
1666 	status = ice_acquire_nvm(hw, ICE_RES_READ);
1667 	if (!status) {
1668 		status = ice_calc_sr_checksum(hw, &checksum_local);
1669 		ice_release_nvm(hw);
1670 		if (status)
1671 			return status;
1672 	} else {
1673 		return status;
1674 	}
1675 
1676 	ice_read_sr_word(hw, ICE_SR_SW_CHECKSUM_WORD, &checksum_sr);
1677 
1678 	/* Verify read checksum from EEPROM is the same as
1679 	 * calculated checksum
1680 	 */
1681 	if (checksum_local != checksum_sr)
1682 		status = ICE_ERR_NVM_CHECKSUM;
1683 
1684 	/* If the user cares, return the calculated checksum */
1685 	if (checksum)
1686 		*checksum = checksum_local;
1687 
1688 	return status;
1689 }
1690 
1691 /**
1692  * ice_nvm_validate_checksum
1693  * @hw: pointer to the HW struct
1694  *
1695  * Verify NVM PFA checksum validity (0x0706)
1696  */
1697 enum ice_status ice_nvm_validate_checksum(struct ice_hw *hw)
1698 {
1699 	struct ice_aqc_nvm_checksum *cmd;
1700 	struct ice_aq_desc desc;
1701 	enum ice_status status;
1702 
1703 	status = ice_acquire_nvm(hw, ICE_RES_READ);
1704 	if (status)
1705 		return status;
1706 
1707 	cmd = &desc.params.nvm_checksum;
1708 
1709 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
1710 	cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
1711 
1712 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1713 	ice_release_nvm(hw);
1714 
1715 	if (!status)
1716 		if (LE16_TO_CPU(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
1717 			status = ICE_ERR_NVM_CHECKSUM;
1718 
1719 	return status;
1720 }
1721 
1722 /**
1723  * ice_nvm_recalculate_checksum
1724  * @hw: pointer to the HW struct
1725  *
1726  * Recalculate NVM PFA checksum (0x0706)
1727  */
1728 enum ice_status ice_nvm_recalculate_checksum(struct ice_hw *hw)
1729 {
1730 	struct ice_aqc_nvm_checksum *cmd;
1731 	struct ice_aq_desc desc;
1732 	enum ice_status status;
1733 
1734 	status = ice_acquire_nvm(hw, ICE_RES_READ);
1735 	if (status)
1736 		return status;
1737 
1738 	cmd = &desc.params.nvm_checksum;
1739 
1740 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
1741 	cmd->flags = ICE_AQC_NVM_CHECKSUM_RECALC;
1742 
1743 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1744 
1745 	ice_release_nvm(hw);
1746 
1747 	return status;
1748 }
1749 
1750 /**
1751  * ice_nvm_write_activate
1752  * @hw: pointer to the HW struct
1753  * @cmd_flags: flags for write activate command
1754  * @response_flags: response indicators from firmware
1755  *
1756  * Update the control word with the required banks' validity bits
1757  * and dumps the Shadow RAM to flash (0x0707)
1758  *
1759  * cmd_flags controls which banks to activate, the preservation level to use
1760  * when activating the NVM bank, and whether an EMP reset is required for
1761  * activation.
1762  *
1763  * Note that the 16bit cmd_flags value is split between two separate 1 byte
1764  * flag values in the descriptor.
1765  *
1766  * On successful return of the firmware command, the response_flags variable
1767  * is updated with the flags reported by firmware indicating certain status,
1768  * such as whether EMP reset is enabled.
1769  */
1770 enum ice_status
1771 ice_nvm_write_activate(struct ice_hw *hw, u16 cmd_flags, u8 *response_flags)
1772 {
1773 	struct ice_aqc_nvm *cmd;
1774 	struct ice_aq_desc desc;
1775 	enum ice_status err;
1776 
1777 	cmd = &desc.params.nvm;
1778 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate);
1779 
1780 	cmd->cmd_flags = (u8)(cmd_flags & 0xFF);
1781 	cmd->offset_high = (u8)((cmd_flags >> 8) & 0xFF);
1782 
1783 	err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1784 	if (!err && response_flags)
1785 		*response_flags = cmd->cmd_flags;
1786 
1787 	return err;
1788 }
1789 
1790 /**
1791  * ice_get_nvm_minsrevs - Get the Minimum Security Revision values from flash
1792  * @hw: pointer to the HW struct
1793  * @minsrevs: structure to store NVM and OROM minsrev values
1794  *
1795  * Read the Minimum Security Revision TLV and extract the revision values from
1796  * the flash image into a readable structure for processing.
1797  */
1798 enum ice_status
1799 ice_get_nvm_minsrevs(struct ice_hw *hw, struct ice_minsrev_info *minsrevs)
1800 {
1801 	struct ice_aqc_nvm_minsrev data;
1802 	enum ice_status status;
1803 	u16 valid;
1804 
1805 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1806 
1807 	status = ice_acquire_nvm(hw, ICE_RES_READ);
1808 	if (status)
1809 		return status;
1810 
1811 	status = ice_aq_read_nvm(hw, ICE_AQC_NVM_MINSREV_MOD_ID, 0, sizeof(data),
1812 				 &data, true, false, NULL);
1813 
1814 	ice_release_nvm(hw);
1815 
1816 	if (status)
1817 		return status;
1818 
1819 	valid = LE16_TO_CPU(data.validity);
1820 
1821 	/* Extract NVM minimum security revision */
1822 	if (valid & ICE_AQC_NVM_MINSREV_NVM_VALID) {
1823 		u16 minsrev_l, minsrev_h;
1824 
1825 		minsrev_l = LE16_TO_CPU(data.nvm_minsrev_l);
1826 		minsrev_h = LE16_TO_CPU(data.nvm_minsrev_h);
1827 
1828 		minsrevs->nvm = minsrev_h << 16 | minsrev_l;
1829 		minsrevs->nvm_valid = true;
1830 	}
1831 
1832 	/* Extract the OROM minimum security revision */
1833 	if (valid & ICE_AQC_NVM_MINSREV_OROM_VALID) {
1834 		u16 minsrev_l, minsrev_h;
1835 
1836 		minsrev_l = LE16_TO_CPU(data.orom_minsrev_l);
1837 		minsrev_h = LE16_TO_CPU(data.orom_minsrev_h);
1838 
1839 		minsrevs->orom = minsrev_h << 16 | minsrev_l;
1840 		minsrevs->orom_valid = true;
1841 	}
1842 
1843 	return ICE_SUCCESS;
1844 }
1845 
1846 /**
1847  * ice_update_nvm_minsrevs - Update minimum security revision TLV data in flash
1848  * @hw: pointer to the HW struct
1849  * @minsrevs: minimum security revision information
1850  *
1851  * Update the NVM or Option ROM minimum security revision fields in the PFA
1852  * area of the flash. Reads the minsrevs->nvm_valid and minsrevs->orom_valid
1853  * fields to determine what update is being requested. If the valid bit is not
1854  * set for that module, then the associated minsrev will be left as is.
1855  */
1856 enum ice_status
1857 ice_update_nvm_minsrevs(struct ice_hw *hw, struct ice_minsrev_info *minsrevs)
1858 {
1859 	struct ice_aqc_nvm_minsrev data;
1860 	enum ice_status status;
1861 
1862 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1863 
1864 	if (!minsrevs->nvm_valid && !minsrevs->orom_valid) {
1865 		ice_debug(hw, ICE_DBG_NVM, "At least one of NVM and OROM MinSrev must be valid");
1866 		return ICE_ERR_PARAM;
1867 	}
1868 
1869 	status = ice_acquire_nvm(hw, ICE_RES_WRITE);
1870 	if (status)
1871 		return status;
1872 
1873 	/* Get current data */
1874 	status = ice_aq_read_nvm(hw, ICE_AQC_NVM_MINSREV_MOD_ID, 0, sizeof(data),
1875 				 &data, true, false, NULL);
1876 	if (status)
1877 		goto exit_release_res;
1878 
1879 	if (minsrevs->nvm_valid) {
1880 		data.nvm_minsrev_l = CPU_TO_LE16(minsrevs->nvm & 0xFFFF);
1881 		data.nvm_minsrev_h = CPU_TO_LE16(minsrevs->nvm >> 16);
1882 		data.validity |= CPU_TO_LE16(ICE_AQC_NVM_MINSREV_NVM_VALID);
1883 	}
1884 
1885 	if (minsrevs->orom_valid) {
1886 		data.orom_minsrev_l = CPU_TO_LE16(minsrevs->orom & 0xFFFF);
1887 		data.orom_minsrev_h = CPU_TO_LE16(minsrevs->orom >> 16);
1888 		data.validity |= CPU_TO_LE16(ICE_AQC_NVM_MINSREV_OROM_VALID);
1889 	}
1890 
1891 	/* Update flash data */
1892 	status = ice_aq_update_nvm(hw, ICE_AQC_NVM_MINSREV_MOD_ID, 0, sizeof(data), &data,
1893 				   false, ICE_AQC_NVM_SPECIAL_UPDATE, NULL);
1894 	if (status)
1895 		goto exit_release_res;
1896 
1897 	/* Dump the Shadow RAM to the flash */
1898 	status = ice_nvm_write_activate(hw, 0, NULL);
1899 
1900 exit_release_res:
1901 	ice_release_nvm(hw);
1902 
1903 	return status;
1904 }
1905 
1906 /**
1907  * ice_nvm_access_get_features - Return the NVM access features structure
1908  * @cmd: NVM access command to process
1909  * @data: storage for the driver NVM features
1910  *
1911  * Fill in the data section of the NVM access request with a copy of the NVM
1912  * features structure.
1913  */
1914 enum ice_status
1915 ice_nvm_access_get_features(struct ice_nvm_access_cmd *cmd,
1916 			    union ice_nvm_access_data *data)
1917 {
1918 	/* The provided data_size must be at least as large as our NVM
1919 	 * features structure. A larger size should not be treated as an
1920 	 * error, to allow future extensions to the features structure to
1921 	 * work on older drivers.
1922 	 */
1923 	if (cmd->data_size < sizeof(struct ice_nvm_features))
1924 		return ICE_ERR_NO_MEMORY;
1925 
1926 	/* Initialize the data buffer to zeros */
1927 	ice_memset(data, 0, cmd->data_size, ICE_NONDMA_MEM);
1928 
1929 	/* Fill in the features data */
1930 	data->drv_features.major = ICE_NVM_ACCESS_MAJOR_VER;
1931 	data->drv_features.minor = ICE_NVM_ACCESS_MINOR_VER;
1932 	data->drv_features.size = sizeof(struct ice_nvm_features);
1933 	data->drv_features.features[0] = ICE_NVM_FEATURES_0_REG_ACCESS;
1934 
1935 	return ICE_SUCCESS;
1936 }
1937 
1938 /**
1939  * ice_nvm_access_get_module - Helper function to read module value
1940  * @cmd: NVM access command structure
1941  *
1942  * Reads the module value out of the NVM access config field.
1943  */
1944 u32 ice_nvm_access_get_module(struct ice_nvm_access_cmd *cmd)
1945 {
1946 	return ((cmd->config & ICE_NVM_CFG_MODULE_M) >> ICE_NVM_CFG_MODULE_S);
1947 }
1948 
1949 /**
1950  * ice_nvm_access_get_flags - Helper function to read flags value
1951  * @cmd: NVM access command structure
1952  *
1953  * Reads the flags value out of the NVM access config field.
1954  */
1955 u32 ice_nvm_access_get_flags(struct ice_nvm_access_cmd *cmd)
1956 {
1957 	return ((cmd->config & ICE_NVM_CFG_FLAGS_M) >> ICE_NVM_CFG_FLAGS_S);
1958 }
1959 
1960 /**
1961  * ice_nvm_access_get_adapter - Helper function to read adapter info
1962  * @cmd: NVM access command structure
1963  *
1964  * Read the adapter info value out of the NVM access config field.
1965  */
1966 u32 ice_nvm_access_get_adapter(struct ice_nvm_access_cmd *cmd)
1967 {
1968 	return ((cmd->config & ICE_NVM_CFG_ADAPTER_INFO_M) >>
1969 		ICE_NVM_CFG_ADAPTER_INFO_S);
1970 }
1971 
1972 /**
1973  * ice_validate_nvm_rw_reg - Check than an NVM access request is valid
1974  * @cmd: NVM access command structure
1975  *
1976  * Validates that an NVM access structure is request to read or write a valid
1977  * register offset. First validates that the module and flags are correct, and
1978  * then ensures that the register offset is one of the accepted registers.
1979  */
1980 static enum ice_status
1981 ice_validate_nvm_rw_reg(struct ice_nvm_access_cmd *cmd)
1982 {
1983 	u32 module, flags, offset;
1984 	u16 i;
1985 
1986 	module = ice_nvm_access_get_module(cmd);
1987 	flags = ice_nvm_access_get_flags(cmd);
1988 	offset = cmd->offset;
1989 
1990 	/* Make sure the module and flags indicate a read/write request */
1991 	if (module != ICE_NVM_REG_RW_MODULE ||
1992 	    flags != ICE_NVM_REG_RW_FLAGS ||
1993 	    cmd->data_size != FIELD_SIZEOF(union ice_nvm_access_data, regval))
1994 		return ICE_ERR_PARAM;
1995 
1996 	switch (offset) {
1997 	case GL_HICR:
1998 	case GL_HICR_EN: /* Note, this register is read only */
1999 	case GL_FWSTS:
2000 	case GL_MNG_FWSM:
2001 	case GLGEN_CSR_DEBUG_C:
2002 	case GLGEN_RSTAT:
2003 	case GLPCI_LBARCTRL:
2004 	case GL_MNG_DEF_DEVID:
2005 	case GLNVM_GENS:
2006 	case GLNVM_FLA:
2007 	case PF_FUNC_RID:
2008 		return ICE_SUCCESS;
2009 	default:
2010 		break;
2011 	}
2012 
2013 	for (i = 0; i <= GL_HIDA_MAX_INDEX; i++)
2014 		if (offset == (u32)GL_HIDA(i))
2015 			return ICE_SUCCESS;
2016 
2017 	for (i = 0; i <= GL_HIBA_MAX_INDEX; i++)
2018 		if (offset == (u32)GL_HIBA(i))
2019 			return ICE_SUCCESS;
2020 
2021 	/* All other register offsets are not valid */
2022 	return ICE_ERR_OUT_OF_RANGE;
2023 }
2024 
2025 /**
2026  * ice_nvm_access_read - Handle an NVM read request
2027  * @hw: pointer to the HW struct
2028  * @cmd: NVM access command to process
2029  * @data: storage for the register value read
2030  *
2031  * Process an NVM access request to read a register.
2032  */
2033 enum ice_status
2034 ice_nvm_access_read(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd,
2035 		    union ice_nvm_access_data *data)
2036 {
2037 	enum ice_status status;
2038 
2039 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2040 
2041 	/* Always initialize the output data, even on failure */
2042 	ice_memset(data, 0, cmd->data_size, ICE_NONDMA_MEM);
2043 
2044 	/* Make sure this is a valid read/write access request */
2045 	status = ice_validate_nvm_rw_reg(cmd);
2046 	if (status)
2047 		return status;
2048 
2049 	ice_debug(hw, ICE_DBG_NVM, "NVM access: reading register %08x\n",
2050 		  cmd->offset);
2051 
2052 	/* Read the register and store the contents in the data field */
2053 	data->regval = rd32(hw, cmd->offset);
2054 
2055 	return ICE_SUCCESS;
2056 }
2057 
2058 /**
2059  * ice_nvm_access_write - Handle an NVM write request
2060  * @hw: pointer to the HW struct
2061  * @cmd: NVM access command to process
2062  * @data: NVM access data to write
2063  *
2064  * Process an NVM access request to write a register.
2065  */
2066 enum ice_status
2067 ice_nvm_access_write(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd,
2068 		     union ice_nvm_access_data *data)
2069 {
2070 	enum ice_status status;
2071 
2072 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2073 
2074 	/* Make sure this is a valid read/write access request */
2075 	status = ice_validate_nvm_rw_reg(cmd);
2076 	if (status)
2077 		return status;
2078 
2079 	/* Reject requests to write to read-only registers */
2080 	switch (cmd->offset) {
2081 	case GL_HICR_EN:
2082 	case GLGEN_RSTAT:
2083 		return ICE_ERR_OUT_OF_RANGE;
2084 	default:
2085 		break;
2086 	}
2087 
2088 	ice_debug(hw, ICE_DBG_NVM, "NVM access: writing register %08x with value %08x\n",
2089 		  cmd->offset, data->regval);
2090 
2091 	/* Write the data field to the specified register */
2092 	wr32(hw, cmd->offset, data->regval);
2093 
2094 	return ICE_SUCCESS;
2095 }
2096 
2097 /**
2098  * ice_handle_nvm_access - Handle an NVM access request
2099  * @hw: pointer to the HW struct
2100  * @cmd: NVM access command info
2101  * @data: pointer to read or return data
2102  *
2103  * Process an NVM access request. Read the command structure information and
2104  * determine if it is valid. If not, report an error indicating the command
2105  * was invalid.
2106  *
2107  * For valid commands, perform the necessary function, copying the data into
2108  * the provided data buffer.
2109  */
2110 enum ice_status
2111 ice_handle_nvm_access(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd,
2112 		      union ice_nvm_access_data *data)
2113 {
2114 	u32 module, flags, adapter_info;
2115 
2116 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2117 
2118 	/* Extended flags are currently reserved and must be zero */
2119 	if ((cmd->config & ICE_NVM_CFG_EXT_FLAGS_M) != 0)
2120 		return ICE_ERR_PARAM;
2121 
2122 	/* Adapter info must match the HW device ID */
2123 	adapter_info = ice_nvm_access_get_adapter(cmd);
2124 	if (adapter_info != hw->device_id)
2125 		return ICE_ERR_PARAM;
2126 
2127 	switch (cmd->command) {
2128 	case ICE_NVM_CMD_READ:
2129 		module = ice_nvm_access_get_module(cmd);
2130 		flags = ice_nvm_access_get_flags(cmd);
2131 
2132 		/* Getting the driver's NVM features structure shares the same
2133 		 * command type as reading a register. Read the config field
2134 		 * to determine if this is a request to get features.
2135 		 */
2136 		if (module == ICE_NVM_GET_FEATURES_MODULE &&
2137 		    flags == ICE_NVM_GET_FEATURES_FLAGS &&
2138 		    cmd->offset == 0)
2139 			return ice_nvm_access_get_features(cmd, data);
2140 		else
2141 			return ice_nvm_access_read(hw, cmd, data);
2142 	case ICE_NVM_CMD_WRITE:
2143 		return ice_nvm_access_write(hw, cmd, data);
2144 	default:
2145 		return ICE_ERR_PARAM;
2146 	}
2147 }
2148 
2149