1 /* SPDX-License-Identifier: BSD-3-Clause */ 2 /* Copyright (c) 2022, Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * 3. Neither the name of the Intel Corporation nor the names of its 16 * contributors may be used to endorse or promote products derived from 17 * this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /*$FreeBSD$*/ 32 33 #include "ice_common.h" 34 #include "ice_flow.h" 35 36 /* Size of known protocol header fields */ 37 #define ICE_FLOW_FLD_SZ_ETH_TYPE 2 38 #define ICE_FLOW_FLD_SZ_VLAN 2 39 #define ICE_FLOW_FLD_SZ_IPV4_ADDR 4 40 #define ICE_FLOW_FLD_SZ_IPV6_ADDR 16 41 #define ICE_FLOW_FLD_SZ_IP_DSCP 1 42 #define ICE_FLOW_FLD_SZ_IP_TTL 1 43 #define ICE_FLOW_FLD_SZ_IP_PROT 1 44 #define ICE_FLOW_FLD_SZ_PORT 2 45 #define ICE_FLOW_FLD_SZ_TCP_FLAGS 1 46 #define ICE_FLOW_FLD_SZ_ICMP_TYPE 1 47 #define ICE_FLOW_FLD_SZ_ICMP_CODE 1 48 #define ICE_FLOW_FLD_SZ_ARP_OPER 2 49 #define ICE_FLOW_FLD_SZ_GRE_KEYID 4 50 51 /* Describe properties of a protocol header field */ 52 struct ice_flow_field_info { 53 enum ice_flow_seg_hdr hdr; 54 s16 off; /* Offset from start of a protocol header, in bits */ 55 u16 size; /* Size of fields in bits */ 56 }; 57 58 #define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \ 59 .hdr = _hdr, \ 60 .off = (_offset_bytes) * BITS_PER_BYTE, \ 61 .size = (_size_bytes) * BITS_PER_BYTE, \ 62 } 63 64 /* Table containing properties of supported protocol header fields */ 65 static const 66 struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = { 67 /* Ether */ 68 /* ICE_FLOW_FIELD_IDX_ETH_DA */ 69 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN), 70 /* ICE_FLOW_FIELD_IDX_ETH_SA */ 71 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN), 72 /* ICE_FLOW_FIELD_IDX_S_VLAN */ 73 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, ICE_FLOW_FLD_SZ_VLAN), 74 /* ICE_FLOW_FIELD_IDX_C_VLAN */ 75 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, ICE_FLOW_FLD_SZ_VLAN), 76 /* ICE_FLOW_FIELD_IDX_ETH_TYPE */ 77 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ICE_FLOW_FLD_SZ_ETH_TYPE), 78 /* IPv4 / IPv6 */ 79 /* ICE_FLOW_FIELD_IDX_IPV4_DSCP */ 80 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 1, ICE_FLOW_FLD_SZ_IP_DSCP), 81 /* ICE_FLOW_FIELD_IDX_IPV6_DSCP */ 82 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 0, ICE_FLOW_FLD_SZ_IP_DSCP), 83 /* ICE_FLOW_FIELD_IDX_IPV4_TTL */ 84 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NONE, 8, ICE_FLOW_FLD_SZ_IP_TTL), 85 /* ICE_FLOW_FIELD_IDX_IPV4_PROT */ 86 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NONE, 9, ICE_FLOW_FLD_SZ_IP_PROT), 87 /* ICE_FLOW_FIELD_IDX_IPV6_TTL */ 88 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NONE, 7, ICE_FLOW_FLD_SZ_IP_TTL), 89 /* ICE_FLOW_FIELD_IDX_IPV4_PROT */ 90 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NONE, 6, ICE_FLOW_FLD_SZ_IP_PROT), 91 /* ICE_FLOW_FIELD_IDX_IPV4_SA */ 92 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, ICE_FLOW_FLD_SZ_IPV4_ADDR), 93 /* ICE_FLOW_FIELD_IDX_IPV4_DA */ 94 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, ICE_FLOW_FLD_SZ_IPV4_ADDR), 95 /* ICE_FLOW_FIELD_IDX_IPV6_SA */ 96 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, ICE_FLOW_FLD_SZ_IPV6_ADDR), 97 /* ICE_FLOW_FIELD_IDX_IPV6_DA */ 98 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, ICE_FLOW_FLD_SZ_IPV6_ADDR), 99 /* Transport */ 100 /* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */ 101 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, ICE_FLOW_FLD_SZ_PORT), 102 /* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */ 103 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, ICE_FLOW_FLD_SZ_PORT), 104 /* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */ 105 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, ICE_FLOW_FLD_SZ_PORT), 106 /* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */ 107 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, ICE_FLOW_FLD_SZ_PORT), 108 /* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */ 109 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, ICE_FLOW_FLD_SZ_PORT), 110 /* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */ 111 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, ICE_FLOW_FLD_SZ_PORT), 112 /* ICE_FLOW_FIELD_IDX_TCP_FLAGS */ 113 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, ICE_FLOW_FLD_SZ_TCP_FLAGS), 114 /* ARP */ 115 /* ICE_FLOW_FIELD_IDX_ARP_SIP */ 116 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, ICE_FLOW_FLD_SZ_IPV4_ADDR), 117 /* ICE_FLOW_FIELD_IDX_ARP_DIP */ 118 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, ICE_FLOW_FLD_SZ_IPV4_ADDR), 119 /* ICE_FLOW_FIELD_IDX_ARP_SHA */ 120 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN), 121 /* ICE_FLOW_FIELD_IDX_ARP_DHA */ 122 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN), 123 /* ICE_FLOW_FIELD_IDX_ARP_OP */ 124 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, ICE_FLOW_FLD_SZ_ARP_OPER), 125 /* ICMP */ 126 /* ICE_FLOW_FIELD_IDX_ICMP_TYPE */ 127 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, ICE_FLOW_FLD_SZ_ICMP_TYPE), 128 /* ICE_FLOW_FIELD_IDX_ICMP_CODE */ 129 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, ICE_FLOW_FLD_SZ_ICMP_CODE), 130 /* GRE */ 131 /* ICE_FLOW_FIELD_IDX_GRE_KEYID */ 132 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12, ICE_FLOW_FLD_SZ_GRE_KEYID), 133 }; 134 135 /* Bitmaps indicating relevant packet types for a particular protocol header 136 * 137 * Packet types for packets with an Outer/First/Single MAC header 138 */ 139 static const u32 ice_ptypes_mac_ofos[] = { 140 0xFDC00846, 0xBFBF7F7E, 0xF70001DF, 0xFEFDFDFB, 141 0x0000077E, 0x00000000, 0x00000000, 0x00000000, 142 0x00000000, 0x00000000, 0x00000000, 0x00000000, 143 0x00000000, 0x00000000, 0x00000000, 0x00000000, 144 0x00000000, 0x00000000, 0x00000000, 0x00000000, 145 0x00000000, 0x00000000, 0x00000000, 0x00000000, 146 0x00000000, 0x00000000, 0x00000000, 0x00000000, 147 0x00000000, 0x00000000, 0x00000000, 0x00000000, 148 }; 149 150 /* Packet types for packets with an Innermost/Last MAC VLAN header */ 151 static const u32 ice_ptypes_macvlan_il[] = { 152 0x00000000, 0xBC000000, 0x000001DF, 0xF0000000, 153 0x0000077E, 0x00000000, 0x00000000, 0x00000000, 154 0x00000000, 0x00000000, 0x00000000, 0x00000000, 155 0x00000000, 0x00000000, 0x00000000, 0x00000000, 156 0x00000000, 0x00000000, 0x00000000, 0x00000000, 157 0x00000000, 0x00000000, 0x00000000, 0x00000000, 158 0x00000000, 0x00000000, 0x00000000, 0x00000000, 159 0x00000000, 0x00000000, 0x00000000, 0x00000000, 160 }; 161 162 /* Packet types for packets with an Outer/First/Single non-frag IPv4 header, 163 * does NOT include IPV4 other PTYPEs 164 */ 165 static const u32 ice_ptypes_ipv4_ofos[] = { 166 0x1D800000, 0x04000800, 0x00000000, 0x00000000, 167 0x00000000, 0x00000000, 0x00000000, 0x00000000, 168 0x00000000, 0x00000000, 0x00000000, 0x00000000, 169 0x00000000, 0x00000000, 0x00000000, 0x00000000, 170 0x00000000, 0x00000000, 0x00000000, 0x00000000, 171 0x00000000, 0x00000000, 0x00000000, 0x00000000, 172 0x00000000, 0x00000000, 0x00000000, 0x00000000, 173 0x00000000, 0x00000000, 0x00000000, 0x00000000, 174 }; 175 176 /* Packet types for packets with an Outer/First/Single non-frag IPv4 header, 177 * includes IPV4 other PTYPEs 178 */ 179 static const u32 ice_ptypes_ipv4_ofos_all[] = { 180 0x1D800000, 0x04000800, 0x00000000, 0x00000000, 181 0x00000000, 0x00000000, 0x00000000, 0x00000000, 182 0x00000000, 0x00000000, 0x00000000, 0x00000000, 183 0x00000000, 0x00000000, 0x00000000, 0x00000000, 184 0x00000000, 0x00000000, 0x00000000, 0x00000000, 185 0x00000000, 0x00000000, 0x00000000, 0x00000000, 186 0x00000000, 0x00000000, 0x00000000, 0x00000000, 187 0x00000000, 0x00000000, 0x00000000, 0x00000000, 188 }; 189 190 /* Packet types for packets with an Innermost/Last IPv4 header */ 191 static const u32 ice_ptypes_ipv4_il[] = { 192 0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B, 193 0x0000000E, 0x00000000, 0x00000000, 0x00000000, 194 0x00000000, 0x00000000, 0x00000000, 0x00000000, 195 0x00000000, 0x00000000, 0x00000000, 0x00000000, 196 0x00000000, 0x00000000, 0x00000000, 0x00000000, 197 0x00000000, 0x00000000, 0x00000000, 0x00000000, 198 0x00000000, 0x00000000, 0x00000000, 0x00000000, 199 0x00000000, 0x00000000, 0x00000000, 0x00000000, 200 }; 201 202 /* Packet types for packets with an Outer/First/Single non-frag IPv6 header, 203 * does NOT include IVP6 other PTYPEs 204 */ 205 static const u32 ice_ptypes_ipv6_ofos[] = { 206 0x00000000, 0x00000000, 0x76000000, 0x10002000, 207 0x00000000, 0x00000000, 0x00000000, 0x00000000, 208 0x00000000, 0x00000000, 0x00000000, 0x00000000, 209 0x00000000, 0x00000000, 0x00000000, 0x00000000, 210 0x00000000, 0x00000000, 0x00000000, 0x00000000, 211 0x00000000, 0x00000000, 0x00000000, 0x00000000, 212 0x00000000, 0x00000000, 0x00000000, 0x00000000, 213 0x00000000, 0x00000000, 0x00000000, 0x00000000, 214 }; 215 216 /* Packet types for packets with an Outer/First/Single non-frag IPv6 header, 217 * includes IPV6 other PTYPEs 218 */ 219 static const u32 ice_ptypes_ipv6_ofos_all[] = { 220 0x00000000, 0x00000000, 0x76000000, 0x10002000, 221 0x00000000, 0x00000000, 0x00000000, 0x00000000, 222 0x00000000, 0x00000000, 0x00000000, 0x00000000, 223 0x00000000, 0x00000000, 0x00000000, 0x00000000, 224 0x00000000, 0x00000000, 0x00000000, 0x00000000, 225 0x00000000, 0x00000000, 0x00000000, 0x00000000, 226 0x00000000, 0x00000000, 0x00000000, 0x00000000, 227 0x00000000, 0x00000000, 0x00000000, 0x00000000, 228 }; 229 230 /* Packet types for packets with an Innermost/Last IPv6 header */ 231 static const u32 ice_ptypes_ipv6_il[] = { 232 0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000, 233 0x00000770, 0x00000000, 0x00000000, 0x00000000, 234 0x00000000, 0x00000000, 0x00000000, 0x00000000, 235 0x00000000, 0x00000000, 0x00000000, 0x00000000, 236 0x00000000, 0x00000000, 0x00000000, 0x00000000, 237 0x00000000, 0x00000000, 0x00000000, 0x00000000, 238 0x00000000, 0x00000000, 0x00000000, 0x00000000, 239 0x00000000, 0x00000000, 0x00000000, 0x00000000, 240 }; 241 242 /* Packet types for packets with an Outer/First/Single 243 * non-frag IPv4 header - no L4 244 */ 245 static const u32 ice_ptypes_ipv4_ofos_no_l4[] = { 246 0x10800000, 0x04000800, 0x00000000, 0x00000000, 247 0x00000000, 0x00000000, 0x00000000, 0x00000000, 248 0x00000000, 0x00000000, 0x00000000, 0x00000000, 249 0x00000000, 0x00000000, 0x00000000, 0x00000000, 250 0x00000000, 0x00000000, 0x00000000, 0x00000000, 251 0x00000000, 0x00000000, 0x00000000, 0x00000000, 252 0x00000000, 0x00000000, 0x00000000, 0x00000000, 253 0x00000000, 0x00000000, 0x00000000, 0x00000000, 254 }; 255 256 /* Packet types for packets with an Innermost/Last IPv4 header - no L4 */ 257 static const u32 ice_ptypes_ipv4_il_no_l4[] = { 258 0x60000000, 0x18043008, 0x80000002, 0x6010c021, 259 0x00000008, 0x00000000, 0x00000000, 0x00000000, 260 0x00000000, 0x00000000, 0x00000000, 0x00000000, 261 0x00000000, 0x00000000, 0x00000000, 0x00000000, 262 0x00000000, 0x00000000, 0x00000000, 0x00000000, 263 0x00000000, 0x00000000, 0x00000000, 0x00000000, 264 0x00000000, 0x00000000, 0x00000000, 0x00000000, 265 0x00000000, 0x00000000, 0x00000000, 0x00000000, 266 }; 267 268 /* Packet types for packets with an Outer/First/Single 269 * non-frag IPv6 header - no L4 270 */ 271 static const u32 ice_ptypes_ipv6_ofos_no_l4[] = { 272 0x00000000, 0x00000000, 0x42000000, 0x10002000, 273 0x00000000, 0x00000000, 0x00000000, 0x00000000, 274 0x00000000, 0x00000000, 0x00000000, 0x00000000, 275 0x00000000, 0x00000000, 0x00000000, 0x00000000, 276 0x00000000, 0x00000000, 0x00000000, 0x00000000, 277 0x00000000, 0x00000000, 0x00000000, 0x00000000, 278 0x00000000, 0x00000000, 0x00000000, 0x00000000, 279 0x00000000, 0x00000000, 0x00000000, 0x00000000, 280 }; 281 282 /* Packet types for packets with an Innermost/Last IPv6 header - no L4 */ 283 static const u32 ice_ptypes_ipv6_il_no_l4[] = { 284 0x00000000, 0x02180430, 0x0000010c, 0x086010c0, 285 0x00000430, 0x00000000, 0x00000000, 0x00000000, 286 0x00000000, 0x00000000, 0x00000000, 0x00000000, 287 0x00000000, 0x00000000, 0x00000000, 0x00000000, 288 0x00000000, 0x00000000, 0x00000000, 0x00000000, 289 0x00000000, 0x00000000, 0x00000000, 0x00000000, 290 0x00000000, 0x00000000, 0x00000000, 0x00000000, 291 0x00000000, 0x00000000, 0x00000000, 0x00000000, 292 }; 293 294 /* Packet types for packets with an Outermost/First ARP header */ 295 static const u32 ice_ptypes_arp_of[] = { 296 0x00000800, 0x00000000, 0x00000000, 0x00000000, 297 0x00000000, 0x00000000, 0x00000000, 0x00000000, 298 0x00000000, 0x00000000, 0x00000000, 0x00000000, 299 0x00000000, 0x00000000, 0x00000000, 0x00000000, 300 0x00000000, 0x00000000, 0x00000000, 0x00000000, 301 0x00000000, 0x00000000, 0x00000000, 0x00000000, 302 0x00000000, 0x00000000, 0x00000000, 0x00000000, 303 0x00000000, 0x00000000, 0x00000000, 0x00000000, 304 }; 305 306 /* UDP Packet types for non-tunneled packets or tunneled 307 * packets with inner UDP. 308 */ 309 static const u32 ice_ptypes_udp_il[] = { 310 0x81000000, 0x20204040, 0x04000010, 0x80810102, 311 0x00000040, 0x00000000, 0x00000000, 0x00000000, 312 0x00000000, 0x00000000, 0x00000000, 0x00000000, 313 0x00000000, 0x00000000, 0x00000000, 0x00000000, 314 0x00000000, 0x00000000, 0x00000000, 0x00000000, 315 0x00000000, 0x00000000, 0x00000000, 0x00000000, 316 0x00000000, 0x00000000, 0x00000000, 0x00000000, 317 0x00000000, 0x00000000, 0x00000000, 0x00000000, 318 }; 319 320 /* Packet types for packets with an Innermost/Last TCP header */ 321 static const u32 ice_ptypes_tcp_il[] = { 322 0x04000000, 0x80810102, 0x10000040, 0x02040408, 323 0x00000102, 0x00000000, 0x00000000, 0x00000000, 324 0x00000000, 0x00000000, 0x00000000, 0x00000000, 325 0x00000000, 0x00000000, 0x00000000, 0x00000000, 326 0x00000000, 0x00000000, 0x00000000, 0x00000000, 327 0x00000000, 0x00000000, 0x00000000, 0x00000000, 328 0x00000000, 0x00000000, 0x00000000, 0x00000000, 329 0x00000000, 0x00000000, 0x00000000, 0x00000000, 330 }; 331 332 /* Packet types for packets with an Innermost/Last SCTP header */ 333 static const u32 ice_ptypes_sctp_il[] = { 334 0x08000000, 0x01020204, 0x20000081, 0x04080810, 335 0x00000204, 0x00000000, 0x00000000, 0x00000000, 336 0x00000000, 0x00000000, 0x00000000, 0x00000000, 337 0x00000000, 0x00000000, 0x00000000, 0x00000000, 338 0x00000000, 0x00000000, 0x00000000, 0x00000000, 339 0x00000000, 0x00000000, 0x00000000, 0x00000000, 340 0x00000000, 0x00000000, 0x00000000, 0x00000000, 341 0x00000000, 0x00000000, 0x00000000, 0x00000000, 342 }; 343 344 /* Packet types for packets with an Outermost/First ICMP header */ 345 static const u32 ice_ptypes_icmp_of[] = { 346 0x10000000, 0x00000000, 0x00000000, 0x00000000, 347 0x00000000, 0x00000000, 0x00000000, 0x00000000, 348 0x00000000, 0x00000000, 0x00000000, 0x00000000, 349 0x00000000, 0x00000000, 0x00000000, 0x00000000, 350 0x00000000, 0x00000000, 0x00000000, 0x00000000, 351 0x00000000, 0x00000000, 0x00000000, 0x00000000, 352 0x00000000, 0x00000000, 0x00000000, 0x00000000, 353 0x00000000, 0x00000000, 0x00000000, 0x00000000, 354 }; 355 356 /* Packet types for packets with an Innermost/Last ICMP header */ 357 static const u32 ice_ptypes_icmp_il[] = { 358 0x00000000, 0x02040408, 0x40000102, 0x08101020, 359 0x00000408, 0x00000000, 0x00000000, 0x00000000, 360 0x00000000, 0x00000000, 0x00000000, 0x00000000, 361 0x00000000, 0x00000000, 0x00000000, 0x00000000, 362 0x00000000, 0x00000000, 0x00000000, 0x00000000, 363 0x00000000, 0x00000000, 0x00000000, 0x00000000, 364 0x00000000, 0x00000000, 0x00000000, 0x00000000, 365 0x00000000, 0x00000000, 0x00000000, 0x00000000, 366 }; 367 368 /* Packet types for packets with an Outermost/First GRE header */ 369 static const u32 ice_ptypes_gre_of[] = { 370 0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000, 371 0x0000017E, 0x00000000, 0x00000000, 0x00000000, 372 0x00000000, 0x00000000, 0x00000000, 0x00000000, 373 0x00000000, 0x00000000, 0x00000000, 0x00000000, 374 0x00000000, 0x00000000, 0x00000000, 0x00000000, 375 0x00000000, 0x00000000, 0x00000000, 0x00000000, 376 0x00000000, 0x00000000, 0x00000000, 0x00000000, 377 0x00000000, 0x00000000, 0x00000000, 0x00000000, 378 }; 379 380 /* Packet types for packets with an Innermost/Last MAC header */ 381 static const u32 ice_ptypes_mac_il[] = { 382 0x00000000, 0x00000000, 0x00000000, 0x00000000, 383 0x00000000, 0x00000000, 0x00000000, 0x00000000, 384 0x00000000, 0x00000000, 0x00000000, 0x00000000, 385 0x00000000, 0x00000000, 0x00000000, 0x00000000, 386 0x00000000, 0x00000000, 0x00000000, 0x00000000, 387 0x00000000, 0x00000000, 0x00000000, 0x00000000, 388 0x00000000, 0x00000000, 0x00000000, 0x00000000, 389 0x00000000, 0x00000000, 0x00000000, 0x00000000, 390 }; 391 392 /* Manage parameters and info. used during the creation of a flow profile */ 393 struct ice_flow_prof_params { 394 enum ice_block blk; 395 u16 entry_length; /* # of bytes formatted entry will require */ 396 u8 es_cnt; 397 struct ice_flow_prof *prof; 398 399 /* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0 400 * This will give us the direction flags. 401 */ 402 struct ice_fv_word es[ICE_MAX_FV_WORDS]; 403 404 ice_declare_bitmap(ptypes, ICE_FLOW_PTYPE_MAX); 405 }; 406 407 #define ICE_FLOW_SEG_HDRS_L3_MASK \ 408 (ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | \ 409 ICE_FLOW_SEG_HDR_ARP) 410 #define ICE_FLOW_SEG_HDRS_L4_MASK \ 411 (ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \ 412 ICE_FLOW_SEG_HDR_SCTP) 413 /* mask for L4 protocols that are NOT part of IPV4/6 OTHER PTYPE groups */ 414 #define ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER \ 415 (ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP) 416 417 /** 418 * ice_flow_val_hdrs - validates packet segments for valid protocol headers 419 * @segs: array of one or more packet segments that describe the flow 420 * @segs_cnt: number of packet segments provided 421 */ 422 static enum ice_status 423 ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt) 424 { 425 u8 i; 426 427 for (i = 0; i < segs_cnt; i++) { 428 /* Multiple L3 headers */ 429 if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK && 430 !ice_is_pow2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK)) 431 return ICE_ERR_PARAM; 432 433 /* Multiple L4 headers */ 434 if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK && 435 !ice_is_pow2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)) 436 return ICE_ERR_PARAM; 437 } 438 439 return ICE_SUCCESS; 440 } 441 442 /** 443 * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments 444 * @params: information about the flow to be processed 445 * 446 * This function identifies the packet types associated with the protocol 447 * headers being present in packet segments of the specified flow profile. 448 */ 449 static enum ice_status 450 ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params) 451 { 452 struct ice_flow_prof *prof; 453 u8 i; 454 455 ice_memset(params->ptypes, 0xff, sizeof(params->ptypes), 456 ICE_NONDMA_MEM); 457 458 prof = params->prof; 459 460 for (i = 0; i < params->prof->segs_cnt; i++) { 461 const ice_bitmap_t *src; 462 u32 hdrs; 463 464 hdrs = prof->segs[i].hdrs; 465 466 if (hdrs & ICE_FLOW_SEG_HDR_ETH) { 467 src = !i ? (const ice_bitmap_t *)ice_ptypes_mac_ofos : 468 (const ice_bitmap_t *)ice_ptypes_mac_il; 469 ice_and_bitmap(params->ptypes, params->ptypes, src, 470 ICE_FLOW_PTYPE_MAX); 471 } 472 473 if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) { 474 src = (const ice_bitmap_t *)ice_ptypes_macvlan_il; 475 ice_and_bitmap(params->ptypes, params->ptypes, src, 476 ICE_FLOW_PTYPE_MAX); 477 } 478 479 if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) { 480 ice_and_bitmap(params->ptypes, params->ptypes, 481 (const ice_bitmap_t *)ice_ptypes_arp_of, 482 ICE_FLOW_PTYPE_MAX); 483 } 484 485 if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) && 486 (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) { 487 src = i ? 488 (const ice_bitmap_t *)ice_ptypes_ipv4_il : 489 (const ice_bitmap_t *)ice_ptypes_ipv4_ofos_all; 490 ice_and_bitmap(params->ptypes, params->ptypes, src, 491 ICE_FLOW_PTYPE_MAX); 492 } else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) && 493 (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) { 494 src = i ? 495 (const ice_bitmap_t *)ice_ptypes_ipv6_il : 496 (const ice_bitmap_t *)ice_ptypes_ipv6_ofos_all; 497 ice_and_bitmap(params->ptypes, params->ptypes, src, 498 ICE_FLOW_PTYPE_MAX); 499 } else if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) && 500 !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) { 501 src = !i ? (const ice_bitmap_t *)ice_ptypes_ipv4_ofos_no_l4 : 502 (const ice_bitmap_t *)ice_ptypes_ipv4_il_no_l4; 503 ice_and_bitmap(params->ptypes, params->ptypes, src, 504 ICE_FLOW_PTYPE_MAX); 505 } else if (hdrs & ICE_FLOW_SEG_HDR_IPV4) { 506 src = !i ? (const ice_bitmap_t *)ice_ptypes_ipv4_ofos : 507 (const ice_bitmap_t *)ice_ptypes_ipv4_il; 508 ice_and_bitmap(params->ptypes, params->ptypes, src, 509 ICE_FLOW_PTYPE_MAX); 510 } else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) && 511 !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) { 512 src = !i ? (const ice_bitmap_t *)ice_ptypes_ipv6_ofos_no_l4 : 513 (const ice_bitmap_t *)ice_ptypes_ipv6_il_no_l4; 514 ice_and_bitmap(params->ptypes, params->ptypes, src, 515 ICE_FLOW_PTYPE_MAX); 516 } else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) { 517 src = !i ? (const ice_bitmap_t *)ice_ptypes_ipv6_ofos : 518 (const ice_bitmap_t *)ice_ptypes_ipv6_il; 519 ice_and_bitmap(params->ptypes, params->ptypes, src, 520 ICE_FLOW_PTYPE_MAX); 521 } 522 523 if (hdrs & ICE_FLOW_SEG_HDR_UDP) { 524 src = (const ice_bitmap_t *)ice_ptypes_udp_il; 525 ice_and_bitmap(params->ptypes, params->ptypes, src, 526 ICE_FLOW_PTYPE_MAX); 527 } else if (hdrs & ICE_FLOW_SEG_HDR_TCP) { 528 ice_and_bitmap(params->ptypes, params->ptypes, 529 (const ice_bitmap_t *)ice_ptypes_tcp_il, 530 ICE_FLOW_PTYPE_MAX); 531 } else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) { 532 src = (const ice_bitmap_t *)ice_ptypes_sctp_il; 533 ice_and_bitmap(params->ptypes, params->ptypes, src, 534 ICE_FLOW_PTYPE_MAX); 535 } 536 537 if (hdrs & ICE_FLOW_SEG_HDR_ICMP) { 538 src = !i ? (const ice_bitmap_t *)ice_ptypes_icmp_of : 539 (const ice_bitmap_t *)ice_ptypes_icmp_il; 540 ice_and_bitmap(params->ptypes, params->ptypes, src, 541 ICE_FLOW_PTYPE_MAX); 542 } else if (hdrs & ICE_FLOW_SEG_HDR_GRE) { 543 if (!i) { 544 src = (const ice_bitmap_t *)ice_ptypes_gre_of; 545 ice_and_bitmap(params->ptypes, params->ptypes, 546 src, ICE_FLOW_PTYPE_MAX); 547 } 548 } 549 } 550 551 return ICE_SUCCESS; 552 } 553 554 /** 555 * ice_flow_xtract_fld - Create an extraction sequence entry for the given field 556 * @hw: pointer to the HW struct 557 * @params: information about the flow to be processed 558 * @seg: packet segment index of the field to be extracted 559 * @fld: ID of field to be extracted 560 * 561 * This function determines the protocol ID, offset, and size of the given 562 * field. It then allocates one or more extraction sequence entries for the 563 * given field, and fill the entries with protocol ID and offset information. 564 */ 565 static enum ice_status 566 ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params, 567 u8 seg, enum ice_flow_field fld) 568 { 569 enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX; 570 u8 fv_words = (u8)hw->blk[params->blk].es.fvw; 571 enum ice_prot_id prot_id = ICE_PROT_ID_INVAL; 572 struct ice_flow_fld_info *flds; 573 u16 cnt, ese_bits, i; 574 u16 off; 575 576 flds = params->prof->segs[seg].fields; 577 578 switch (fld) { 579 case ICE_FLOW_FIELD_IDX_ETH_DA: 580 case ICE_FLOW_FIELD_IDX_ETH_SA: 581 case ICE_FLOW_FIELD_IDX_S_VLAN: 582 case ICE_FLOW_FIELD_IDX_C_VLAN: 583 prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL; 584 break; 585 case ICE_FLOW_FIELD_IDX_ETH_TYPE: 586 prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL; 587 break; 588 case ICE_FLOW_FIELD_IDX_IPV4_DSCP: 589 prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL; 590 break; 591 case ICE_FLOW_FIELD_IDX_IPV6_DSCP: 592 prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL; 593 break; 594 case ICE_FLOW_FIELD_IDX_IPV4_TTL: 595 case ICE_FLOW_FIELD_IDX_IPV4_PROT: 596 prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL; 597 /* TTL and PROT share the same extraction seq. entry. 598 * Each is considered a sibling to the other in terms of sharing 599 * the same extraction sequence entry. 600 */ 601 if (fld == ICE_FLOW_FIELD_IDX_IPV4_TTL) 602 sib = ICE_FLOW_FIELD_IDX_IPV4_PROT; 603 else 604 sib = ICE_FLOW_FIELD_IDX_IPV4_TTL; 605 break; 606 case ICE_FLOW_FIELD_IDX_IPV6_TTL: 607 case ICE_FLOW_FIELD_IDX_IPV6_PROT: 608 prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL; 609 /* TTL and PROT share the same extraction seq. entry. 610 * Each is considered a sibling to the other in terms of sharing 611 * the same extraction sequence entry. 612 */ 613 if (fld == ICE_FLOW_FIELD_IDX_IPV6_TTL) 614 sib = ICE_FLOW_FIELD_IDX_IPV6_PROT; 615 else 616 sib = ICE_FLOW_FIELD_IDX_IPV6_TTL; 617 break; 618 case ICE_FLOW_FIELD_IDX_IPV4_SA: 619 case ICE_FLOW_FIELD_IDX_IPV4_DA: 620 prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL; 621 break; 622 case ICE_FLOW_FIELD_IDX_IPV6_SA: 623 case ICE_FLOW_FIELD_IDX_IPV6_DA: 624 prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL; 625 break; 626 case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT: 627 case ICE_FLOW_FIELD_IDX_TCP_DST_PORT: 628 case ICE_FLOW_FIELD_IDX_TCP_FLAGS: 629 prot_id = ICE_PROT_TCP_IL; 630 break; 631 case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT: 632 case ICE_FLOW_FIELD_IDX_UDP_DST_PORT: 633 prot_id = ICE_PROT_UDP_IL_OR_S; 634 break; 635 case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT: 636 case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT: 637 prot_id = ICE_PROT_SCTP_IL; 638 break; 639 case ICE_FLOW_FIELD_IDX_ARP_SIP: 640 case ICE_FLOW_FIELD_IDX_ARP_DIP: 641 case ICE_FLOW_FIELD_IDX_ARP_SHA: 642 case ICE_FLOW_FIELD_IDX_ARP_DHA: 643 case ICE_FLOW_FIELD_IDX_ARP_OP: 644 prot_id = ICE_PROT_ARP_OF; 645 break; 646 case ICE_FLOW_FIELD_IDX_ICMP_TYPE: 647 case ICE_FLOW_FIELD_IDX_ICMP_CODE: 648 /* ICMP type and code share the same extraction seq. entry */ 649 prot_id = (params->prof->segs[seg].hdrs & 650 ICE_FLOW_SEG_HDR_IPV4) ? 651 ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL; 652 sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ? 653 ICE_FLOW_FIELD_IDX_ICMP_CODE : 654 ICE_FLOW_FIELD_IDX_ICMP_TYPE; 655 break; 656 case ICE_FLOW_FIELD_IDX_GRE_KEYID: 657 prot_id = ICE_PROT_GRE_OF; 658 break; 659 default: 660 return ICE_ERR_NOT_IMPL; 661 } 662 663 /* Each extraction sequence entry is a word in size, and extracts a 664 * word-aligned offset from a protocol header. 665 */ 666 ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE; 667 668 flds[fld].xtrct.prot_id = (u8)prot_id; 669 flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) * 670 ICE_FLOW_FV_EXTRACT_SZ; 671 flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits); 672 flds[fld].xtrct.idx = params->es_cnt; 673 674 /* Adjust the next field-entry index after accommodating the number of 675 * entries this field consumes 676 */ 677 cnt = DIVIDE_AND_ROUND_UP(flds[fld].xtrct.disp + 678 ice_flds_info[fld].size, ese_bits); 679 680 /* Fill in the extraction sequence entries needed for this field */ 681 off = flds[fld].xtrct.off; 682 for (i = 0; i < cnt; i++) { 683 /* Only consume an extraction sequence entry if there is no 684 * sibling field associated with this field or the sibling entry 685 * already extracts the word shared with this field. 686 */ 687 if (sib == ICE_FLOW_FIELD_IDX_MAX || 688 flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL || 689 flds[sib].xtrct.off != off) { 690 u8 idx; 691 692 /* Make sure the number of extraction sequence required 693 * does not exceed the block's capability 694 */ 695 if (params->es_cnt >= fv_words) 696 return ICE_ERR_MAX_LIMIT; 697 698 /* some blocks require a reversed field vector layout */ 699 if (hw->blk[params->blk].es.reverse) 700 idx = fv_words - params->es_cnt - 1; 701 else 702 idx = params->es_cnt; 703 704 params->es[idx].prot_id = (u8)prot_id; 705 params->es[idx].off = off; 706 params->es_cnt++; 707 } 708 709 off += ICE_FLOW_FV_EXTRACT_SZ; 710 } 711 712 return ICE_SUCCESS; 713 } 714 715 /** 716 * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments 717 * @hw: pointer to the HW struct 718 * @params: information about the flow to be processed 719 * 720 * This function iterates through all matched fields in the given segments, and 721 * creates an extraction sequence for the fields. 722 */ 723 static enum ice_status 724 ice_flow_create_xtrct_seq(struct ice_hw *hw, 725 struct ice_flow_prof_params *params) 726 { 727 enum ice_status status = ICE_SUCCESS; 728 u8 i; 729 730 for (i = 0; i < params->prof->segs_cnt; i++) { 731 u64 match = params->prof->segs[i].match; 732 enum ice_flow_field j; 733 734 ice_for_each_set_bit(j, (ice_bitmap_t *)&match, 735 ICE_FLOW_FIELD_IDX_MAX) { 736 status = ice_flow_xtract_fld(hw, params, i, j); 737 if (status) 738 return status; 739 ice_clear_bit(j, (ice_bitmap_t *)&match); 740 } 741 } 742 743 return status; 744 } 745 746 /** 747 * ice_flow_proc_segs - process all packet segments associated with a profile 748 * @hw: pointer to the HW struct 749 * @params: information about the flow to be processed 750 */ 751 static enum ice_status 752 ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params) 753 { 754 enum ice_status status; 755 756 status = ice_flow_proc_seg_hdrs(params); 757 if (status) 758 return status; 759 760 status = ice_flow_create_xtrct_seq(hw, params); 761 if (status) 762 return status; 763 764 switch (params->blk) { 765 case ICE_BLK_RSS: 766 status = ICE_SUCCESS; 767 break; 768 default: 769 return ICE_ERR_NOT_IMPL; 770 } 771 772 return status; 773 } 774 775 #define ICE_FLOW_FIND_PROF_CHK_FLDS 0x00000001 776 #define ICE_FLOW_FIND_PROF_CHK_VSI 0x00000002 777 #define ICE_FLOW_FIND_PROF_NOT_CHK_DIR 0x00000004 778 779 /** 780 * ice_flow_find_prof_conds - Find a profile matching headers and conditions 781 * @hw: pointer to the HW struct 782 * @blk: classification stage 783 * @dir: flow direction 784 * @segs: array of one or more packet segments that describe the flow 785 * @segs_cnt: number of packet segments provided 786 * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI) 787 * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*) 788 */ 789 static struct ice_flow_prof * 790 ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk, 791 enum ice_flow_dir dir, struct ice_flow_seg_info *segs, 792 u8 segs_cnt, u16 vsi_handle, u32 conds) 793 { 794 struct ice_flow_prof *p, *prof = NULL; 795 796 ice_acquire_lock(&hw->fl_profs_locks[blk]); 797 LIST_FOR_EACH_ENTRY(p, &hw->fl_profs[blk], ice_flow_prof, l_entry) 798 if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) && 799 segs_cnt && segs_cnt == p->segs_cnt) { 800 u8 i; 801 802 /* Check for profile-VSI association if specified */ 803 if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) && 804 ice_is_vsi_valid(hw, vsi_handle) && 805 !ice_is_bit_set(p->vsis, vsi_handle)) 806 continue; 807 808 /* Protocol headers must be checked. Matched fields are 809 * checked if specified. 810 */ 811 for (i = 0; i < segs_cnt; i++) 812 if (segs[i].hdrs != p->segs[i].hdrs || 813 ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) && 814 segs[i].match != p->segs[i].match)) 815 break; 816 817 /* A match is found if all segments are matched */ 818 if (i == segs_cnt) { 819 prof = p; 820 break; 821 } 822 } 823 ice_release_lock(&hw->fl_profs_locks[blk]); 824 825 return prof; 826 } 827 828 /** 829 * ice_flow_find_prof - Look up a profile matching headers and matched fields 830 * @hw: pointer to the HW struct 831 * @blk: classification stage 832 * @dir: flow direction 833 * @segs: array of one or more packet segments that describe the flow 834 * @segs_cnt: number of packet segments provided 835 */ 836 u64 837 ice_flow_find_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir, 838 struct ice_flow_seg_info *segs, u8 segs_cnt) 839 { 840 struct ice_flow_prof *p; 841 842 p = ice_flow_find_prof_conds(hw, blk, dir, segs, segs_cnt, 843 ICE_MAX_VSI, ICE_FLOW_FIND_PROF_CHK_FLDS); 844 845 return p ? p->id : ICE_FLOW_PROF_ID_INVAL; 846 } 847 848 /** 849 * ice_flow_find_prof_id - Look up a profile with given profile ID 850 * @hw: pointer to the HW struct 851 * @blk: classification stage 852 * @prof_id: unique ID to identify this flow profile 853 */ 854 static struct ice_flow_prof * 855 ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id) 856 { 857 struct ice_flow_prof *p; 858 859 LIST_FOR_EACH_ENTRY(p, &hw->fl_profs[blk], ice_flow_prof, l_entry) 860 if (p->id == prof_id) 861 return p; 862 863 return NULL; 864 } 865 866 /** 867 * ice_flow_get_hw_prof - return the HW profile for a specific profile ID handle 868 * @hw: pointer to the HW struct 869 * @blk: classification stage 870 * @prof_id: the profile ID handle 871 * @hw_prof_id: pointer to variable to receive the HW profile ID 872 */ 873 enum ice_status 874 ice_flow_get_hw_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id, 875 u8 *hw_prof_id) 876 { 877 enum ice_status status = ICE_ERR_DOES_NOT_EXIST; 878 struct ice_prof_map *map; 879 880 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 881 map = ice_search_prof_id(hw, blk, prof_id); 882 if (map) { 883 *hw_prof_id = map->prof_id; 884 status = ICE_SUCCESS; 885 } 886 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 887 return status; 888 } 889 890 /** 891 * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields 892 * @hw: pointer to the HW struct 893 * @blk: classification stage 894 * @dir: flow direction 895 * @prof_id: unique ID to identify this flow profile 896 * @segs: array of one or more packet segments that describe the flow 897 * @segs_cnt: number of packet segments provided 898 * @acts: array of default actions 899 * @acts_cnt: number of default actions 900 * @prof: stores the returned flow profile added 901 * 902 * Assumption: the caller has acquired the lock to the profile list 903 */ 904 static enum ice_status 905 ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk, 906 enum ice_flow_dir dir, u64 prof_id, 907 struct ice_flow_seg_info *segs, u8 segs_cnt, 908 struct ice_flow_action *acts, u8 acts_cnt, 909 struct ice_flow_prof **prof) 910 { 911 struct ice_flow_prof_params *params; 912 enum ice_status status; 913 u8 i; 914 915 if (!prof || (acts_cnt && !acts)) 916 return ICE_ERR_BAD_PTR; 917 918 params = (struct ice_flow_prof_params *)ice_malloc(hw, sizeof(*params)); 919 if (!params) 920 return ICE_ERR_NO_MEMORY; 921 922 params->prof = (struct ice_flow_prof *) 923 ice_malloc(hw, sizeof(*params->prof)); 924 if (!params->prof) { 925 status = ICE_ERR_NO_MEMORY; 926 goto free_params; 927 } 928 929 /* initialize extraction sequence to all invalid (0xff) */ 930 for (i = 0; i < ICE_MAX_FV_WORDS; i++) { 931 params->es[i].prot_id = ICE_PROT_INVALID; 932 params->es[i].off = ICE_FV_OFFSET_INVAL; 933 } 934 935 params->blk = blk; 936 params->prof->id = prof_id; 937 params->prof->dir = dir; 938 params->prof->segs_cnt = segs_cnt; 939 940 /* Make a copy of the segments that need to be persistent in the flow 941 * profile instance 942 */ 943 for (i = 0; i < segs_cnt; i++) 944 ice_memcpy(¶ms->prof->segs[i], &segs[i], sizeof(*segs), 945 ICE_NONDMA_TO_NONDMA); 946 947 status = ice_flow_proc_segs(hw, params); 948 if (status) { 949 ice_debug(hw, ICE_DBG_FLOW, "Error processing a flow's packet segments\n"); 950 goto out; 951 } 952 953 /* Add a HW profile for this flow profile */ 954 status = ice_add_prof(hw, blk, prof_id, params->ptypes, params->es); 955 if (status) { 956 ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n"); 957 goto out; 958 } 959 960 *prof = params->prof; 961 962 out: 963 if (status) { 964 ice_free(hw, params->prof); 965 } 966 free_params: 967 ice_free(hw, params); 968 969 return status; 970 } 971 972 /** 973 * ice_flow_rem_prof_sync - remove a flow profile 974 * @hw: pointer to the hardware structure 975 * @blk: classification stage 976 * @prof: pointer to flow profile to remove 977 * 978 * Assumption: the caller has acquired the lock to the profile list 979 */ 980 static enum ice_status 981 ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk, 982 struct ice_flow_prof *prof) 983 { 984 enum ice_status status; 985 986 /* Remove all hardware profiles associated with this flow profile */ 987 status = ice_rem_prof(hw, blk, prof->id); 988 if (!status) { 989 LIST_DEL(&prof->l_entry); 990 ice_free(hw, prof); 991 } 992 993 return status; 994 } 995 996 /** 997 * ice_flow_assoc_vsig_vsi - associate a VSI with VSIG 998 * @hw: pointer to the hardware structure 999 * @blk: classification stage 1000 * @vsi_handle: software VSI handle 1001 * @vsig: target VSI group 1002 * 1003 * Assumption: the caller has already verified that the VSI to 1004 * be added has the same characteristics as the VSIG and will 1005 * thereby have access to all resources added to that VSIG. 1006 */ 1007 enum ice_status 1008 ice_flow_assoc_vsig_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi_handle, 1009 u16 vsig) 1010 { 1011 enum ice_status status; 1012 1013 if (!ice_is_vsi_valid(hw, vsi_handle) || blk >= ICE_BLK_COUNT) 1014 return ICE_ERR_PARAM; 1015 1016 ice_acquire_lock(&hw->fl_profs_locks[blk]); 1017 status = ice_add_vsi_flow(hw, blk, ice_get_hw_vsi_num(hw, vsi_handle), 1018 vsig); 1019 ice_release_lock(&hw->fl_profs_locks[blk]); 1020 1021 return status; 1022 } 1023 1024 /** 1025 * ice_flow_assoc_prof - associate a VSI with a flow profile 1026 * @hw: pointer to the hardware structure 1027 * @blk: classification stage 1028 * @prof: pointer to flow profile 1029 * @vsi_handle: software VSI handle 1030 * 1031 * Assumption: the caller has acquired the lock to the profile list 1032 * and the software VSI handle has been validated 1033 */ 1034 static enum ice_status 1035 ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk, 1036 struct ice_flow_prof *prof, u16 vsi_handle) 1037 { 1038 enum ice_status status = ICE_SUCCESS; 1039 1040 if (!ice_is_bit_set(prof->vsis, vsi_handle)) { 1041 status = ice_add_prof_id_flow(hw, blk, 1042 ice_get_hw_vsi_num(hw, 1043 vsi_handle), 1044 prof->id); 1045 if (!status) 1046 ice_set_bit(vsi_handle, prof->vsis); 1047 else 1048 ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed, %d\n", 1049 status); 1050 } 1051 1052 return status; 1053 } 1054 1055 /** 1056 * ice_flow_disassoc_prof - disassociate a VSI from a flow profile 1057 * @hw: pointer to the hardware structure 1058 * @blk: classification stage 1059 * @prof: pointer to flow profile 1060 * @vsi_handle: software VSI handle 1061 * 1062 * Assumption: the caller has acquired the lock to the profile list 1063 * and the software VSI handle has been validated 1064 */ 1065 static enum ice_status 1066 ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk, 1067 struct ice_flow_prof *prof, u16 vsi_handle) 1068 { 1069 enum ice_status status = ICE_SUCCESS; 1070 1071 if (ice_is_bit_set(prof->vsis, vsi_handle)) { 1072 status = ice_rem_prof_id_flow(hw, blk, 1073 ice_get_hw_vsi_num(hw, 1074 vsi_handle), 1075 prof->id); 1076 if (!status) 1077 ice_clear_bit(vsi_handle, prof->vsis); 1078 else 1079 ice_debug(hw, ICE_DBG_FLOW, "HW profile remove failed, %d\n", 1080 status); 1081 } 1082 1083 return status; 1084 } 1085 1086 /** 1087 * ice_flow_add_prof - Add a flow profile for packet segments and matched fields 1088 * @hw: pointer to the HW struct 1089 * @blk: classification stage 1090 * @dir: flow direction 1091 * @prof_id: unique ID to identify this flow profile 1092 * @segs: array of one or more packet segments that describe the flow 1093 * @segs_cnt: number of packet segments provided 1094 * @acts: array of default actions 1095 * @acts_cnt: number of default actions 1096 * @prof: stores the returned flow profile added 1097 */ 1098 static enum ice_status 1099 ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir, 1100 u64 prof_id, struct ice_flow_seg_info *segs, u8 segs_cnt, 1101 struct ice_flow_action *acts, u8 acts_cnt, 1102 struct ice_flow_prof **prof) 1103 { 1104 enum ice_status status; 1105 1106 if (segs_cnt > ICE_FLOW_SEG_MAX) 1107 return ICE_ERR_MAX_LIMIT; 1108 1109 if (!segs_cnt) 1110 return ICE_ERR_PARAM; 1111 1112 if (!segs) 1113 return ICE_ERR_BAD_PTR; 1114 1115 status = ice_flow_val_hdrs(segs, segs_cnt); 1116 if (status) 1117 return status; 1118 1119 ice_acquire_lock(&hw->fl_profs_locks[blk]); 1120 1121 status = ice_flow_add_prof_sync(hw, blk, dir, prof_id, segs, segs_cnt, 1122 acts, acts_cnt, prof); 1123 if (!status) 1124 LIST_ADD(&(*prof)->l_entry, &hw->fl_profs[blk]); 1125 1126 ice_release_lock(&hw->fl_profs_locks[blk]); 1127 1128 return status; 1129 } 1130 1131 /** 1132 * ice_flow_rem_prof - Remove a flow profile and all entries associated with it 1133 * @hw: pointer to the HW struct 1134 * @blk: the block for which the flow profile is to be removed 1135 * @prof_id: unique ID of the flow profile to be removed 1136 */ 1137 static enum ice_status 1138 ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id) 1139 { 1140 struct ice_flow_prof *prof; 1141 enum ice_status status; 1142 1143 ice_acquire_lock(&hw->fl_profs_locks[blk]); 1144 1145 prof = ice_flow_find_prof_id(hw, blk, prof_id); 1146 if (!prof) { 1147 status = ICE_ERR_DOES_NOT_EXIST; 1148 goto out; 1149 } 1150 1151 /* prof becomes invalid after the call */ 1152 status = ice_flow_rem_prof_sync(hw, blk, prof); 1153 1154 out: 1155 ice_release_lock(&hw->fl_profs_locks[blk]); 1156 1157 return status; 1158 } 1159 1160 /** 1161 * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer 1162 * @seg: packet segment the field being set belongs to 1163 * @fld: field to be set 1164 * @field_type: type of the field 1165 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from 1166 * entry's input buffer 1167 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's 1168 * input buffer 1169 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from 1170 * entry's input buffer 1171 * 1172 * This helper function stores information of a field being matched, including 1173 * the type of the field and the locations of the value to match, the mask, and 1174 * the upper-bound value in the start of the input buffer for a flow entry. 1175 * This function should only be used for fixed-size data structures. 1176 * 1177 * This function also opportunistically determines the protocol headers to be 1178 * present based on the fields being set. Some fields cannot be used alone to 1179 * determine the protocol headers present. Sometimes, fields for particular 1180 * protocol headers are not matched. In those cases, the protocol headers 1181 * must be explicitly set. 1182 */ 1183 static void 1184 ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld, 1185 enum ice_flow_fld_match_type field_type, u16 val_loc, 1186 u16 mask_loc, u16 last_loc) 1187 { 1188 u64 bit = BIT_ULL(fld); 1189 1190 seg->match |= bit; 1191 if (field_type == ICE_FLOW_FLD_TYPE_RANGE) 1192 seg->range |= bit; 1193 1194 seg->fields[fld].type = field_type; 1195 seg->fields[fld].src.val = val_loc; 1196 seg->fields[fld].src.mask = mask_loc; 1197 seg->fields[fld].src.last = last_loc; 1198 1199 ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr); 1200 } 1201 1202 /** 1203 * ice_flow_set_fld - specifies locations of field from entry's input buffer 1204 * @seg: packet segment the field being set belongs to 1205 * @fld: field to be set 1206 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from 1207 * entry's input buffer 1208 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's 1209 * input buffer 1210 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from 1211 * entry's input buffer 1212 * @range: indicate if field being matched is to be in a range 1213 * 1214 * This function specifies the locations, in the form of byte offsets from the 1215 * start of the input buffer for a flow entry, from where the value to match, 1216 * the mask value, and upper value can be extracted. These locations are then 1217 * stored in the flow profile. When adding a flow entry associated with the 1218 * flow profile, these locations will be used to quickly extract the values and 1219 * create the content of a match entry. This function should only be used for 1220 * fixed-size data structures. 1221 */ 1222 static void 1223 ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld, 1224 u16 val_loc, u16 mask_loc, u16 last_loc, bool range) 1225 { 1226 enum ice_flow_fld_match_type t = range ? 1227 ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG; 1228 1229 ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc); 1230 } 1231 1232 /** 1233 * ice_flow_set_fld_prefix - sets locations of prefix field from entry's buf 1234 * @seg: packet segment the field being set belongs to 1235 * @fld: field to be set 1236 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from 1237 * entry's input buffer 1238 * @pref_loc: location of prefix value from entry's input buffer 1239 * @pref_sz: size of the location holding the prefix value 1240 * 1241 * This function specifies the locations, in the form of byte offsets from the 1242 * start of the input buffer for a flow entry, from where the value to match 1243 * and the IPv4 prefix value can be extracted. These locations are then stored 1244 * in the flow profile. When adding flow entries to the associated flow profile, 1245 * these locations can be used to quickly extract the values to create the 1246 * content of a match entry. This function should only be used for fixed-size 1247 * data structures. 1248 */ 1249 void 1250 ice_flow_set_fld_prefix(struct ice_flow_seg_info *seg, enum ice_flow_field fld, 1251 u16 val_loc, u16 pref_loc, u8 pref_sz) 1252 { 1253 /* For this type of field, the "mask" location is for the prefix value's 1254 * location and the "last" location is for the size of the location of 1255 * the prefix value. 1256 */ 1257 ice_flow_set_fld_ext(seg, fld, ICE_FLOW_FLD_TYPE_PREFIX, val_loc, 1258 pref_loc, (u16)pref_sz); 1259 } 1260 1261 #define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \ 1262 (ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6) 1263 1264 #define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \ 1265 (ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP) 1266 1267 #define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \ 1268 (ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \ 1269 ICE_FLOW_RSS_SEG_HDR_L4_MASKS) 1270 1271 /** 1272 * ice_flow_set_rss_seg_info - setup packet segments for RSS 1273 * @segs: pointer to the flow field segment(s) 1274 * @seg_cnt: segment count 1275 * @cfg: configure parameters 1276 * 1277 * Helper function to extract fields from hash bitmap and use flow 1278 * header value to set flow field segment for further use in flow 1279 * profile entry or removal. 1280 */ 1281 static enum ice_status 1282 ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u8 seg_cnt, 1283 const struct ice_rss_hash_cfg *cfg) 1284 { 1285 struct ice_flow_seg_info *seg; 1286 u64 val; 1287 u16 i; 1288 1289 /* set inner most segment */ 1290 seg = &segs[seg_cnt - 1]; 1291 1292 ice_for_each_set_bit(i, (const ice_bitmap_t *)&cfg->hash_flds, 1293 (u16)ICE_FLOW_FIELD_IDX_MAX) 1294 ice_flow_set_fld(seg, (enum ice_flow_field)i, 1295 ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL, 1296 ICE_FLOW_FLD_OFF_INVAL, false); 1297 1298 ICE_FLOW_SET_HDRS(seg, cfg->addl_hdrs); 1299 1300 /* set outer most header */ 1301 if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV4) 1302 segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV4 | 1303 ICE_FLOW_SEG_HDR_IPV_FRAG | 1304 ICE_FLOW_SEG_HDR_IPV_OTHER; 1305 else if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV6) 1306 segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV6 | 1307 ICE_FLOW_SEG_HDR_IPV_FRAG | 1308 ICE_FLOW_SEG_HDR_IPV_OTHER; 1309 else if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV4_GRE) 1310 segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV4 | 1311 ICE_FLOW_SEG_HDR_GRE | 1312 ICE_FLOW_SEG_HDR_IPV_OTHER; 1313 else if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV6_GRE) 1314 segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV6 | 1315 ICE_FLOW_SEG_HDR_GRE | 1316 ICE_FLOW_SEG_HDR_IPV_OTHER; 1317 1318 if (seg->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS) 1319 return ICE_ERR_PARAM; 1320 1321 val = (u64)(seg->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS); 1322 if (val && !ice_is_pow2(val)) 1323 return ICE_ERR_CFG; 1324 1325 val = (u64)(seg->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS); 1326 if (val && !ice_is_pow2(val)) 1327 return ICE_ERR_CFG; 1328 1329 return ICE_SUCCESS; 1330 } 1331 1332 /** 1333 * ice_rem_vsi_rss_list - remove VSI from RSS list 1334 * @hw: pointer to the hardware structure 1335 * @vsi_handle: software VSI handle 1336 * 1337 * Remove the VSI from all RSS configurations in the list. 1338 */ 1339 void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle) 1340 { 1341 struct ice_rss_cfg *r, *tmp; 1342 1343 if (LIST_EMPTY(&hw->rss_list_head)) 1344 return; 1345 1346 ice_acquire_lock(&hw->rss_locks); 1347 LIST_FOR_EACH_ENTRY_SAFE(r, tmp, &hw->rss_list_head, 1348 ice_rss_cfg, l_entry) 1349 if (ice_test_and_clear_bit(vsi_handle, r->vsis)) 1350 if (!ice_is_any_bit_set(r->vsis, ICE_MAX_VSI)) { 1351 LIST_DEL(&r->l_entry); 1352 ice_free(hw, r); 1353 } 1354 ice_release_lock(&hw->rss_locks); 1355 } 1356 1357 /** 1358 * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI 1359 * @hw: pointer to the hardware structure 1360 * @vsi_handle: software VSI handle 1361 * 1362 * This function will iterate through all flow profiles and disassociate 1363 * the VSI from that profile. If the flow profile has no VSIs it will 1364 * be removed. 1365 */ 1366 enum ice_status ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle) 1367 { 1368 const enum ice_block blk = ICE_BLK_RSS; 1369 struct ice_flow_prof *p, *t; 1370 enum ice_status status = ICE_SUCCESS; 1371 1372 if (!ice_is_vsi_valid(hw, vsi_handle)) 1373 return ICE_ERR_PARAM; 1374 1375 if (LIST_EMPTY(&hw->fl_profs[blk])) 1376 return ICE_SUCCESS; 1377 1378 ice_acquire_lock(&hw->rss_locks); 1379 LIST_FOR_EACH_ENTRY_SAFE(p, t, &hw->fl_profs[blk], ice_flow_prof, 1380 l_entry) 1381 if (ice_is_bit_set(p->vsis, vsi_handle)) { 1382 status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle); 1383 if (status) 1384 break; 1385 1386 if (!ice_is_any_bit_set(p->vsis, ICE_MAX_VSI)) { 1387 status = ice_flow_rem_prof(hw, blk, p->id); 1388 if (status) 1389 break; 1390 } 1391 } 1392 ice_release_lock(&hw->rss_locks); 1393 1394 return status; 1395 } 1396 1397 /** 1398 * ice_get_rss_hdr_type - get a RSS profile's header type 1399 * @prof: RSS flow profile 1400 */ 1401 static enum ice_rss_cfg_hdr_type 1402 ice_get_rss_hdr_type(struct ice_flow_prof *prof) 1403 { 1404 enum ice_rss_cfg_hdr_type hdr_type = ICE_RSS_ANY_HEADERS; 1405 1406 if (prof->segs_cnt == ICE_FLOW_SEG_SINGLE) { 1407 hdr_type = ICE_RSS_OUTER_HEADERS; 1408 } else if (prof->segs_cnt == ICE_FLOW_SEG_MAX) { 1409 if (prof->segs[ICE_RSS_OUTER_HEADERS].hdrs == ICE_FLOW_SEG_HDR_NONE) 1410 hdr_type = ICE_RSS_INNER_HEADERS; 1411 if (prof->segs[ICE_RSS_OUTER_HEADERS].hdrs & ICE_FLOW_SEG_HDR_IPV4) 1412 hdr_type = ICE_RSS_INNER_HEADERS_W_OUTER_IPV4; 1413 if (prof->segs[ICE_RSS_OUTER_HEADERS].hdrs & ICE_FLOW_SEG_HDR_IPV6) 1414 hdr_type = ICE_RSS_INNER_HEADERS_W_OUTER_IPV6; 1415 } 1416 1417 return hdr_type; 1418 } 1419 1420 /** 1421 * ice_rem_rss_list - remove RSS configuration from list 1422 * @hw: pointer to the hardware structure 1423 * @vsi_handle: software VSI handle 1424 * @prof: pointer to flow profile 1425 * 1426 * Assumption: lock has already been acquired for RSS list 1427 */ 1428 static void 1429 ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof) 1430 { 1431 enum ice_rss_cfg_hdr_type hdr_type; 1432 struct ice_rss_cfg *r, *tmp; 1433 1434 /* Search for RSS hash fields associated to the VSI that match the 1435 * hash configurations associated to the flow profile. If found 1436 * remove from the RSS entry list of the VSI context and delete entry. 1437 */ 1438 hdr_type = ice_get_rss_hdr_type(prof); 1439 LIST_FOR_EACH_ENTRY_SAFE(r, tmp, &hw->rss_list_head, 1440 ice_rss_cfg, l_entry) 1441 if (r->hash.hash_flds == prof->segs[prof->segs_cnt - 1].match && 1442 r->hash.addl_hdrs == prof->segs[prof->segs_cnt - 1].hdrs && 1443 r->hash.hdr_type == hdr_type) { 1444 ice_clear_bit(vsi_handle, r->vsis); 1445 if (!ice_is_any_bit_set(r->vsis, ICE_MAX_VSI)) { 1446 LIST_DEL(&r->l_entry); 1447 ice_free(hw, r); 1448 } 1449 return; 1450 } 1451 } 1452 1453 /** 1454 * ice_add_rss_list - add RSS configuration to list 1455 * @hw: pointer to the hardware structure 1456 * @vsi_handle: software VSI handle 1457 * @prof: pointer to flow profile 1458 * 1459 * Assumption: lock has already been acquired for RSS list 1460 */ 1461 static enum ice_status 1462 ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof) 1463 { 1464 enum ice_rss_cfg_hdr_type hdr_type; 1465 struct ice_rss_cfg *r, *rss_cfg; 1466 1467 hdr_type = ice_get_rss_hdr_type(prof); 1468 LIST_FOR_EACH_ENTRY(r, &hw->rss_list_head, 1469 ice_rss_cfg, l_entry) 1470 if (r->hash.hash_flds == prof->segs[prof->segs_cnt - 1].match && 1471 r->hash.addl_hdrs == prof->segs[prof->segs_cnt - 1].hdrs && 1472 r->hash.hdr_type == hdr_type) { 1473 ice_set_bit(vsi_handle, r->vsis); 1474 return ICE_SUCCESS; 1475 } 1476 1477 rss_cfg = (struct ice_rss_cfg *)ice_malloc(hw, sizeof(*rss_cfg)); 1478 if (!rss_cfg) 1479 return ICE_ERR_NO_MEMORY; 1480 1481 rss_cfg->hash.hash_flds = prof->segs[prof->segs_cnt - 1].match; 1482 rss_cfg->hash.addl_hdrs = prof->segs[prof->segs_cnt - 1].hdrs; 1483 rss_cfg->hash.hdr_type = hdr_type; 1484 rss_cfg->hash.symm = prof->cfg.symm; 1485 ice_set_bit(vsi_handle, rss_cfg->vsis); 1486 1487 LIST_ADD_TAIL(&rss_cfg->l_entry, &hw->rss_list_head); 1488 1489 return ICE_SUCCESS; 1490 } 1491 1492 #define ICE_FLOW_PROF_HASH_S 0 1493 #define ICE_FLOW_PROF_HASH_M (0xFFFFFFFFULL << ICE_FLOW_PROF_HASH_S) 1494 #define ICE_FLOW_PROF_HDR_S 32 1495 #define ICE_FLOW_PROF_HDR_M (0x3FFFFFFFULL << ICE_FLOW_PROF_HDR_S) 1496 #define ICE_FLOW_PROF_ENCAP_S 62 1497 #define ICE_FLOW_PROF_ENCAP_M (0x3ULL << ICE_FLOW_PROF_ENCAP_S) 1498 1499 /* Flow profile ID format: 1500 * [0:31] - Packet match fields 1501 * [32:61] - Protocol header 1502 * [62:63] - Encapsulation flag: 1503 * 0 if non-tunneled 1504 * 1 if tunneled 1505 * 2 for tunneled with outer ipv4 1506 * 3 for tunneled with outer ipv6 1507 */ 1508 #define ICE_FLOW_GEN_PROFID(hash, hdr, encap) \ 1509 ((u64)(((u64)(hash) & ICE_FLOW_PROF_HASH_M) | \ 1510 (((u64)(hdr) << ICE_FLOW_PROF_HDR_S) & ICE_FLOW_PROF_HDR_M) | \ 1511 (((u64)(encap) << ICE_FLOW_PROF_ENCAP_S) & ICE_FLOW_PROF_ENCAP_M))) 1512 1513 /** 1514 * ice_add_rss_cfg_sync - add an RSS configuration 1515 * @hw: pointer to the hardware structure 1516 * @vsi_handle: software VSI handle 1517 * @cfg: configure parameters 1518 * 1519 * Assumption: lock has already been acquired for RSS list 1520 */ 1521 static enum ice_status 1522 ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, 1523 const struct ice_rss_hash_cfg *cfg) 1524 { 1525 const enum ice_block blk = ICE_BLK_RSS; 1526 struct ice_flow_prof *prof = NULL; 1527 struct ice_flow_seg_info *segs; 1528 enum ice_status status; 1529 u8 segs_cnt; 1530 1531 if (cfg->symm) 1532 return ICE_ERR_PARAM; 1533 1534 segs_cnt = (cfg->hdr_type == ICE_RSS_OUTER_HEADERS) ? 1535 ICE_FLOW_SEG_SINGLE : ICE_FLOW_SEG_MAX; 1536 1537 segs = (struct ice_flow_seg_info *)ice_calloc(hw, segs_cnt, 1538 sizeof(*segs)); 1539 if (!segs) 1540 return ICE_ERR_NO_MEMORY; 1541 1542 /* Construct the packet segment info from the hashed fields */ 1543 status = ice_flow_set_rss_seg_info(segs, segs_cnt, cfg); 1544 if (status) 1545 goto exit; 1546 1547 /* Search for a flow profile that has matching headers, hash fields 1548 * and has the input VSI associated to it. If found, no further 1549 * operations required and exit. 1550 */ 1551 prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt, 1552 vsi_handle, 1553 ICE_FLOW_FIND_PROF_CHK_FLDS | 1554 ICE_FLOW_FIND_PROF_CHK_VSI); 1555 if (prof) 1556 goto exit; 1557 1558 /* Check if a flow profile exists with the same protocol headers and 1559 * associated with the input VSI. If so disassociate the VSI from 1560 * this profile. The VSI will be added to a new profile created with 1561 * the protocol header and new hash field configuration. 1562 */ 1563 prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt, 1564 vsi_handle, ICE_FLOW_FIND_PROF_CHK_VSI); 1565 if (prof) { 1566 status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle); 1567 if (!status) 1568 ice_rem_rss_list(hw, vsi_handle, prof); 1569 else 1570 goto exit; 1571 1572 /* Remove profile if it has no VSIs associated */ 1573 if (!ice_is_any_bit_set(prof->vsis, ICE_MAX_VSI)) { 1574 status = ice_flow_rem_prof(hw, blk, prof->id); 1575 if (status) 1576 goto exit; 1577 } 1578 } 1579 1580 /* Search for a profile that has same match fields only. If this 1581 * exists then associate the VSI to this profile. 1582 */ 1583 prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt, 1584 vsi_handle, 1585 ICE_FLOW_FIND_PROF_CHK_FLDS); 1586 if (prof) { 1587 status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle); 1588 if (!status) 1589 status = ice_add_rss_list(hw, vsi_handle, prof); 1590 goto exit; 1591 } 1592 1593 /* Create a new flow profile with generated profile and packet 1594 * segment information. 1595 */ 1596 status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX, 1597 ICE_FLOW_GEN_PROFID(cfg->hash_flds, 1598 segs[segs_cnt - 1].hdrs, 1599 cfg->hdr_type), 1600 segs, segs_cnt, NULL, 0, &prof); 1601 if (status) 1602 goto exit; 1603 1604 status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle); 1605 /* If association to a new flow profile failed then this profile can 1606 * be removed. 1607 */ 1608 if (status) { 1609 ice_flow_rem_prof(hw, blk, prof->id); 1610 goto exit; 1611 } 1612 1613 status = ice_add_rss_list(hw, vsi_handle, prof); 1614 1615 prof->cfg.symm = cfg->symm; 1616 1617 exit: 1618 ice_free(hw, segs); 1619 return status; 1620 } 1621 1622 /** 1623 * ice_add_rss_cfg - add an RSS configuration with specified hashed fields 1624 * @hw: pointer to the hardware structure 1625 * @vsi_handle: software VSI handle 1626 * @cfg: configure parameters 1627 * 1628 * This function will generate a flow profile based on fields associated with 1629 * the input fields to hash on, the flow type and use the VSI number to add 1630 * a flow entry to the profile. 1631 */ 1632 enum ice_status 1633 ice_add_rss_cfg(struct ice_hw *hw, u16 vsi_handle, 1634 const struct ice_rss_hash_cfg *cfg) 1635 { 1636 struct ice_rss_hash_cfg local_cfg; 1637 enum ice_status status; 1638 1639 if (!ice_is_vsi_valid(hw, vsi_handle) || 1640 !cfg || cfg->hdr_type > ICE_RSS_ANY_HEADERS || 1641 cfg->hash_flds == ICE_HASH_INVALID) 1642 return ICE_ERR_PARAM; 1643 1644 local_cfg = *cfg; 1645 if (cfg->hdr_type < ICE_RSS_ANY_HEADERS) { 1646 ice_acquire_lock(&hw->rss_locks); 1647 status = ice_add_rss_cfg_sync(hw, vsi_handle, &local_cfg); 1648 ice_release_lock(&hw->rss_locks); 1649 } else { 1650 ice_acquire_lock(&hw->rss_locks); 1651 local_cfg.hdr_type = ICE_RSS_OUTER_HEADERS; 1652 status = ice_add_rss_cfg_sync(hw, vsi_handle, &local_cfg); 1653 if (!status) { 1654 local_cfg.hdr_type = ICE_RSS_INNER_HEADERS; 1655 status = ice_add_rss_cfg_sync(hw, vsi_handle, 1656 &local_cfg); 1657 } 1658 ice_release_lock(&hw->rss_locks); 1659 } 1660 1661 return status; 1662 } 1663 1664 /** 1665 * ice_rem_rss_cfg_sync - remove an existing RSS configuration 1666 * @hw: pointer to the hardware structure 1667 * @vsi_handle: software VSI handle 1668 * @cfg: configure parameters 1669 * 1670 * Assumption: lock has already been acquired for RSS list 1671 */ 1672 static enum ice_status 1673 ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, 1674 const struct ice_rss_hash_cfg *cfg) 1675 { 1676 const enum ice_block blk = ICE_BLK_RSS; 1677 struct ice_flow_seg_info *segs; 1678 struct ice_flow_prof *prof; 1679 enum ice_status status; 1680 u8 segs_cnt; 1681 1682 segs_cnt = (cfg->hdr_type == ICE_RSS_OUTER_HEADERS) ? 1683 ICE_FLOW_SEG_SINGLE : ICE_FLOW_SEG_MAX; 1684 segs = (struct ice_flow_seg_info *)ice_calloc(hw, segs_cnt, 1685 sizeof(*segs)); 1686 if (!segs) 1687 return ICE_ERR_NO_MEMORY; 1688 1689 /* Construct the packet segment info from the hashed fields */ 1690 status = ice_flow_set_rss_seg_info(segs, segs_cnt, cfg); 1691 if (status) 1692 goto out; 1693 1694 prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt, 1695 vsi_handle, 1696 ICE_FLOW_FIND_PROF_CHK_FLDS); 1697 if (!prof) { 1698 status = ICE_ERR_DOES_NOT_EXIST; 1699 goto out; 1700 } 1701 1702 status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle); 1703 if (status) 1704 goto out; 1705 1706 /* Remove RSS configuration from VSI context before deleting 1707 * the flow profile. 1708 */ 1709 ice_rem_rss_list(hw, vsi_handle, prof); 1710 1711 if (!ice_is_any_bit_set(prof->vsis, ICE_MAX_VSI)) 1712 status = ice_flow_rem_prof(hw, blk, prof->id); 1713 1714 out: 1715 ice_free(hw, segs); 1716 return status; 1717 } 1718 1719 /** 1720 * ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields 1721 * @hw: pointer to the hardware structure 1722 * @vsi_handle: software VSI handle 1723 * @cfg: configure parameters 1724 * 1725 * This function will lookup the flow profile based on the input 1726 * hash field bitmap, iterate through the profile entry list of 1727 * that profile and find entry associated with input VSI to be 1728 * removed. Calls are made to underlying flow apis which will in 1729 * turn build or update buffers for RSS XLT1 section. 1730 */ 1731 enum ice_status 1732 ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle, 1733 const struct ice_rss_hash_cfg *cfg) 1734 { 1735 struct ice_rss_hash_cfg local_cfg; 1736 enum ice_status status; 1737 1738 if (!ice_is_vsi_valid(hw, vsi_handle) || 1739 !cfg || cfg->hdr_type > ICE_RSS_ANY_HEADERS || 1740 cfg->hash_flds == ICE_HASH_INVALID) 1741 return ICE_ERR_PARAM; 1742 1743 ice_acquire_lock(&hw->rss_locks); 1744 local_cfg = *cfg; 1745 if (cfg->hdr_type < ICE_RSS_ANY_HEADERS) { 1746 status = ice_rem_rss_cfg_sync(hw, vsi_handle, &local_cfg); 1747 } else { 1748 local_cfg.hdr_type = ICE_RSS_OUTER_HEADERS; 1749 status = ice_rem_rss_cfg_sync(hw, vsi_handle, &local_cfg); 1750 1751 if (!status) { 1752 local_cfg.hdr_type = ICE_RSS_INNER_HEADERS; 1753 status = ice_rem_rss_cfg_sync(hw, vsi_handle, 1754 &local_cfg); 1755 } 1756 } 1757 ice_release_lock(&hw->rss_locks); 1758 1759 return status; 1760 } 1761 1762 /* Mapping of AVF hash bit fields to an L3-L4 hash combination. 1763 * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash, 1764 * convert its values to their appropriate flow L3, L4 values. 1765 */ 1766 #define ICE_FLOW_AVF_RSS_IPV4_MASKS \ 1767 (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \ 1768 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4)) 1769 #define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \ 1770 (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \ 1771 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP)) 1772 #define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \ 1773 (BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \ 1774 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \ 1775 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP)) 1776 #define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \ 1777 (ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \ 1778 ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) 1779 1780 #define ICE_FLOW_AVF_RSS_IPV6_MASKS \ 1781 (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \ 1782 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6)) 1783 #define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \ 1784 (BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \ 1785 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \ 1786 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP)) 1787 #define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \ 1788 (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \ 1789 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP)) 1790 #define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \ 1791 (ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \ 1792 ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) 1793 1794 /** 1795 * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver 1796 * @hw: pointer to the hardware structure 1797 * @vsi_handle: software VSI handle 1798 * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure 1799 * 1800 * This function will take the hash bitmap provided by the AVF driver via a 1801 * message, convert it to ICE-compatible values, and configure RSS flow 1802 * profiles. 1803 */ 1804 enum ice_status 1805 ice_add_avf_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 avf_hash) 1806 { 1807 enum ice_status status = ICE_SUCCESS; 1808 struct ice_rss_hash_cfg hcfg; 1809 u64 hash_flds; 1810 1811 if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID || 1812 !ice_is_vsi_valid(hw, vsi_handle)) 1813 return ICE_ERR_PARAM; 1814 1815 /* Make sure no unsupported bits are specified */ 1816 if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS | 1817 ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)) 1818 return ICE_ERR_CFG; 1819 1820 hash_flds = avf_hash; 1821 1822 /* Always create an L3 RSS configuration for any L4 RSS configuration */ 1823 if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) 1824 hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS; 1825 1826 if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) 1827 hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS; 1828 1829 /* Create the corresponding RSS configuration for each valid hash bit */ 1830 while (hash_flds) { 1831 u64 rss_hash = ICE_HASH_INVALID; 1832 1833 if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) { 1834 if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) { 1835 rss_hash = ICE_FLOW_HASH_IPV4; 1836 hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS; 1837 } else if (hash_flds & 1838 ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) { 1839 rss_hash = ICE_FLOW_HASH_IPV4 | 1840 ICE_FLOW_HASH_TCP_PORT; 1841 hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS; 1842 } else if (hash_flds & 1843 ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) { 1844 rss_hash = ICE_FLOW_HASH_IPV4 | 1845 ICE_FLOW_HASH_UDP_PORT; 1846 hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS; 1847 } else if (hash_flds & 1848 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) { 1849 rss_hash = ICE_FLOW_HASH_IPV4 | 1850 ICE_FLOW_HASH_SCTP_PORT; 1851 hash_flds &= 1852 ~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP); 1853 } 1854 } else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) { 1855 if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) { 1856 rss_hash = ICE_FLOW_HASH_IPV6; 1857 hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS; 1858 } else if (hash_flds & 1859 ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) { 1860 rss_hash = ICE_FLOW_HASH_IPV6 | 1861 ICE_FLOW_HASH_TCP_PORT; 1862 hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS; 1863 } else if (hash_flds & 1864 ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) { 1865 rss_hash = ICE_FLOW_HASH_IPV6 | 1866 ICE_FLOW_HASH_UDP_PORT; 1867 hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS; 1868 } else if (hash_flds & 1869 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) { 1870 rss_hash = ICE_FLOW_HASH_IPV6 | 1871 ICE_FLOW_HASH_SCTP_PORT; 1872 hash_flds &= 1873 ~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP); 1874 } 1875 } 1876 1877 if (rss_hash == ICE_HASH_INVALID) 1878 return ICE_ERR_OUT_OF_RANGE; 1879 1880 hcfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 1881 hcfg.hash_flds = rss_hash; 1882 hcfg.symm = false; 1883 hcfg.hdr_type = ICE_RSS_ANY_HEADERS; 1884 status = ice_add_rss_cfg(hw, vsi_handle, &hcfg); 1885 if (status) 1886 break; 1887 } 1888 1889 return status; 1890 } 1891 1892 /** 1893 * ice_replay_rss_cfg - replay RSS configurations associated with VSI 1894 * @hw: pointer to the hardware structure 1895 * @vsi_handle: software VSI handle 1896 */ 1897 enum ice_status ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle) 1898 { 1899 enum ice_status status = ICE_SUCCESS; 1900 struct ice_rss_cfg *r; 1901 1902 if (!ice_is_vsi_valid(hw, vsi_handle)) 1903 return ICE_ERR_PARAM; 1904 1905 ice_acquire_lock(&hw->rss_locks); 1906 LIST_FOR_EACH_ENTRY(r, &hw->rss_list_head, 1907 ice_rss_cfg, l_entry) { 1908 if (ice_is_bit_set(r->vsis, vsi_handle)) { 1909 status = ice_add_rss_cfg_sync(hw, vsi_handle, &r->hash); 1910 if (status) 1911 break; 1912 } 1913 } 1914 ice_release_lock(&hw->rss_locks); 1915 1916 return status; 1917 } 1918 1919 /** 1920 * ice_get_rss_cfg - returns hashed fields for the given header types 1921 * @hw: pointer to the hardware structure 1922 * @vsi_handle: software VSI handle 1923 * @hdrs: protocol header type 1924 * 1925 * This function will return the match fields of the first instance of flow 1926 * profile having the given header types and containing input VSI 1927 */ 1928 u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs) 1929 { 1930 u64 rss_hash = ICE_HASH_INVALID; 1931 struct ice_rss_cfg *r; 1932 1933 /* verify if the protocol header is non zero and VSI is valid */ 1934 if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle)) 1935 return ICE_HASH_INVALID; 1936 1937 ice_acquire_lock(&hw->rss_locks); 1938 LIST_FOR_EACH_ENTRY(r, &hw->rss_list_head, 1939 ice_rss_cfg, l_entry) 1940 if (ice_is_bit_set(r->vsis, vsi_handle) && 1941 r->hash.addl_hdrs == hdrs) { 1942 rss_hash = r->hash.hash_flds; 1943 break; 1944 } 1945 ice_release_lock(&hw->rss_locks); 1946 1947 return rss_hash; 1948 } 1949