1 /* SPDX-License-Identifier: BSD-3-Clause */ 2 /* Copyright (c) 2020, Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * 3. Neither the name of the Intel Corporation nor the names of its 16 * contributors may be used to endorse or promote products derived from 17 * this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /*$FreeBSD$*/ 32 33 #include "ice_common.h" 34 #include "ice_flex_pipe.h" 35 #include "ice_protocol_type.h" 36 #include "ice_flow.h" 37 38 /* To support tunneling entries by PF, the package will append the PF number to 39 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 40 */ 41 static const struct ice_tunnel_type_scan tnls[] = { 42 { TNL_VXLAN, "TNL_VXLAN_PF" }, 43 { TNL_GENEVE, "TNL_GENEVE_PF" }, 44 { TNL_LAST, "" } 45 }; 46 47 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 48 /* SWITCH */ 49 { 50 ICE_SID_XLT0_SW, 51 ICE_SID_XLT_KEY_BUILDER_SW, 52 ICE_SID_XLT1_SW, 53 ICE_SID_XLT2_SW, 54 ICE_SID_PROFID_TCAM_SW, 55 ICE_SID_PROFID_REDIR_SW, 56 ICE_SID_FLD_VEC_SW, 57 ICE_SID_CDID_KEY_BUILDER_SW, 58 ICE_SID_CDID_REDIR_SW 59 }, 60 61 /* ACL */ 62 { 63 ICE_SID_XLT0_ACL, 64 ICE_SID_XLT_KEY_BUILDER_ACL, 65 ICE_SID_XLT1_ACL, 66 ICE_SID_XLT2_ACL, 67 ICE_SID_PROFID_TCAM_ACL, 68 ICE_SID_PROFID_REDIR_ACL, 69 ICE_SID_FLD_VEC_ACL, 70 ICE_SID_CDID_KEY_BUILDER_ACL, 71 ICE_SID_CDID_REDIR_ACL 72 }, 73 74 /* FD */ 75 { 76 ICE_SID_XLT0_FD, 77 ICE_SID_XLT_KEY_BUILDER_FD, 78 ICE_SID_XLT1_FD, 79 ICE_SID_XLT2_FD, 80 ICE_SID_PROFID_TCAM_FD, 81 ICE_SID_PROFID_REDIR_FD, 82 ICE_SID_FLD_VEC_FD, 83 ICE_SID_CDID_KEY_BUILDER_FD, 84 ICE_SID_CDID_REDIR_FD 85 }, 86 87 /* RSS */ 88 { 89 ICE_SID_XLT0_RSS, 90 ICE_SID_XLT_KEY_BUILDER_RSS, 91 ICE_SID_XLT1_RSS, 92 ICE_SID_XLT2_RSS, 93 ICE_SID_PROFID_TCAM_RSS, 94 ICE_SID_PROFID_REDIR_RSS, 95 ICE_SID_FLD_VEC_RSS, 96 ICE_SID_CDID_KEY_BUILDER_RSS, 97 ICE_SID_CDID_REDIR_RSS 98 }, 99 100 /* PE */ 101 { 102 ICE_SID_XLT0_PE, 103 ICE_SID_XLT_KEY_BUILDER_PE, 104 ICE_SID_XLT1_PE, 105 ICE_SID_XLT2_PE, 106 ICE_SID_PROFID_TCAM_PE, 107 ICE_SID_PROFID_REDIR_PE, 108 ICE_SID_FLD_VEC_PE, 109 ICE_SID_CDID_KEY_BUILDER_PE, 110 ICE_SID_CDID_REDIR_PE 111 } 112 }; 113 114 /** 115 * ice_sect_id - returns section ID 116 * @blk: block type 117 * @sect: section type 118 * 119 * This helper function returns the proper section ID given a block type and a 120 * section type. 121 */ 122 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 123 { 124 return ice_sect_lkup[blk][sect]; 125 } 126 127 /** 128 * ice_pkg_val_buf 129 * @buf: pointer to the ice buffer 130 * 131 * This helper function validates a buffer's header. 132 */ 133 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 134 { 135 struct ice_buf_hdr *hdr; 136 u16 section_count; 137 u16 data_end; 138 139 hdr = (struct ice_buf_hdr *)buf->buf; 140 /* verify data */ 141 section_count = LE16_TO_CPU(hdr->section_count); 142 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 143 return NULL; 144 145 data_end = LE16_TO_CPU(hdr->data_end); 146 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 147 return NULL; 148 149 return hdr; 150 } 151 152 /** 153 * ice_find_buf_table 154 * @ice_seg: pointer to the ice segment 155 * 156 * Returns the address of the buffer table within the ice segment. 157 */ 158 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 159 { 160 struct ice_nvm_table *nvms; 161 162 nvms = (struct ice_nvm_table *) 163 (ice_seg->device_table + 164 LE32_TO_CPU(ice_seg->device_table_count)); 165 166 return (_FORCE_ struct ice_buf_table *) 167 (nvms->vers + LE32_TO_CPU(nvms->table_count)); 168 } 169 170 /** 171 * ice_pkg_enum_buf 172 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 173 * @state: pointer to the enum state 174 * 175 * This function will enumerate all the buffers in the ice segment. The first 176 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 177 * ice_seg is set to NULL which continues the enumeration. When the function 178 * returns a NULL pointer, then the end of the buffers has been reached, or an 179 * unexpected value has been detected (for example an invalid section count or 180 * an invalid buffer end value). 181 */ 182 static struct ice_buf_hdr * 183 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 184 { 185 if (ice_seg) { 186 state->buf_table = ice_find_buf_table(ice_seg); 187 if (!state->buf_table) 188 return NULL; 189 190 state->buf_idx = 0; 191 return ice_pkg_val_buf(state->buf_table->buf_array); 192 } 193 194 if (++state->buf_idx < LE32_TO_CPU(state->buf_table->buf_count)) 195 return ice_pkg_val_buf(state->buf_table->buf_array + 196 state->buf_idx); 197 else 198 return NULL; 199 } 200 201 /** 202 * ice_pkg_advance_sect 203 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 204 * @state: pointer to the enum state 205 * 206 * This helper function will advance the section within the ice segment, 207 * also advancing the buffer if needed. 208 */ 209 static bool 210 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 211 { 212 if (!ice_seg && !state->buf) 213 return false; 214 215 if (!ice_seg && state->buf) 216 if (++state->sect_idx < LE16_TO_CPU(state->buf->section_count)) 217 return true; 218 219 state->buf = ice_pkg_enum_buf(ice_seg, state); 220 if (!state->buf) 221 return false; 222 223 /* start of new buffer, reset section index */ 224 state->sect_idx = 0; 225 return true; 226 } 227 228 /** 229 * ice_pkg_enum_section 230 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 231 * @state: pointer to the enum state 232 * @sect_type: section type to enumerate 233 * 234 * This function will enumerate all the sections of a particular type in the 235 * ice segment. The first call is made with the ice_seg parameter non-NULL; 236 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 237 * When the function returns a NULL pointer, then the end of the matching 238 * sections has been reached. 239 */ 240 static void * 241 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 242 u32 sect_type) 243 { 244 u16 offset, size; 245 246 if (ice_seg) 247 state->type = sect_type; 248 249 if (!ice_pkg_advance_sect(ice_seg, state)) 250 return NULL; 251 252 /* scan for next matching section */ 253 while (state->buf->section_entry[state->sect_idx].type != 254 CPU_TO_LE32(state->type)) 255 if (!ice_pkg_advance_sect(NULL, state)) 256 return NULL; 257 258 /* validate section */ 259 offset = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset); 260 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 261 return NULL; 262 263 size = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].size); 264 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 265 return NULL; 266 267 /* make sure the section fits in the buffer */ 268 if (offset + size > ICE_PKG_BUF_SIZE) 269 return NULL; 270 271 state->sect_type = 272 LE32_TO_CPU(state->buf->section_entry[state->sect_idx].type); 273 274 /* calc pointer to this section */ 275 state->sect = ((u8 *)state->buf) + 276 LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset); 277 278 return state->sect; 279 } 280 281 /** 282 * ice_pkg_enum_entry 283 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 284 * @state: pointer to the enum state 285 * @sect_type: section type to enumerate 286 * @offset: pointer to variable that receives the offset in the table (optional) 287 * @handler: function that handles access to the entries into the section type 288 * 289 * This function will enumerate all the entries in particular section type in 290 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 291 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 292 * When the function returns a NULL pointer, then the end of the entries has 293 * been reached. 294 * 295 * Since each section may have a different header and entry size, the handler 296 * function is needed to determine the number and location entries in each 297 * section. 298 * 299 * The offset parameter is optional, but should be used for sections that 300 * contain an offset for each section table. For such cases, the section handler 301 * function must return the appropriate offset + index to give the absolution 302 * offset for each entry. For example, if the base for a section's header 303 * indicates a base offset of 10, and the index for the entry is 2, then 304 * section handler function should set the offset to 10 + 2 = 12. 305 */ 306 static void * 307 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 308 u32 sect_type, u32 *offset, 309 void *(*handler)(u32 sect_type, void *section, 310 u32 index, u32 *offset)) 311 { 312 void *entry; 313 314 if (ice_seg) { 315 if (!handler) 316 return NULL; 317 318 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 319 return NULL; 320 321 state->entry_idx = 0; 322 state->handler = handler; 323 } else { 324 state->entry_idx++; 325 } 326 327 if (!state->handler) 328 return NULL; 329 330 /* get entry */ 331 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 332 offset); 333 if (!entry) { 334 /* end of a section, look for another section of this type */ 335 if (!ice_pkg_enum_section(NULL, state, 0)) 336 return NULL; 337 338 state->entry_idx = 0; 339 entry = state->handler(state->sect_type, state->sect, 340 state->entry_idx, offset); 341 } 342 343 return entry; 344 } 345 346 /** 347 * ice_boost_tcam_handler 348 * @sect_type: section type 349 * @section: pointer to section 350 * @index: index of the boost TCAM entry to be returned 351 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 352 * 353 * This is a callback function that can be passed to ice_pkg_enum_entry. 354 * Handles enumeration of individual boost TCAM entries. 355 */ 356 static void * 357 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) 358 { 359 struct ice_boost_tcam_section *boost; 360 361 if (!section) 362 return NULL; 363 364 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 365 return NULL; 366 367 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 368 return NULL; 369 370 if (offset) 371 *offset = 0; 372 373 boost = (struct ice_boost_tcam_section *)section; 374 if (index >= LE16_TO_CPU(boost->count)) 375 return NULL; 376 377 return boost->tcam + index; 378 } 379 380 /** 381 * ice_find_boost_entry 382 * @ice_seg: pointer to the ice segment (non-NULL) 383 * @addr: Boost TCAM address of entry to search for 384 * @entry: returns pointer to the entry 385 * 386 * Finds a particular Boost TCAM entry and returns a pointer to that entry 387 * if it is found. The ice_seg parameter must not be NULL since the first call 388 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 389 */ 390 static enum ice_status 391 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 392 struct ice_boost_tcam_entry **entry) 393 { 394 struct ice_boost_tcam_entry *tcam; 395 struct ice_pkg_enum state; 396 397 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 398 399 if (!ice_seg) 400 return ICE_ERR_PARAM; 401 402 do { 403 tcam = (struct ice_boost_tcam_entry *) 404 ice_pkg_enum_entry(ice_seg, &state, 405 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 406 ice_boost_tcam_handler); 407 if (tcam && LE16_TO_CPU(tcam->addr) == addr) { 408 *entry = tcam; 409 return ICE_SUCCESS; 410 } 411 412 ice_seg = NULL; 413 } while (tcam); 414 415 *entry = NULL; 416 return ICE_ERR_CFG; 417 } 418 419 /** 420 * ice_label_enum_handler 421 * @sect_type: section type 422 * @section: pointer to section 423 * @index: index of the label entry to be returned 424 * @offset: pointer to receive absolute offset, always zero for label sections 425 * 426 * This is a callback function that can be passed to ice_pkg_enum_entry. 427 * Handles enumeration of individual label entries. 428 */ 429 static void * 430 ice_label_enum_handler(u32 __ALWAYS_UNUSED sect_type, void *section, u32 index, 431 u32 *offset) 432 { 433 struct ice_label_section *labels; 434 435 if (!section) 436 return NULL; 437 438 if (index > ICE_MAX_LABELS_IN_BUF) 439 return NULL; 440 441 if (offset) 442 *offset = 0; 443 444 labels = (struct ice_label_section *)section; 445 if (index >= LE16_TO_CPU(labels->count)) 446 return NULL; 447 448 return labels->label + index; 449 } 450 451 /** 452 * ice_enum_labels 453 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 454 * @type: the section type that will contain the label (0 on subsequent calls) 455 * @state: ice_pkg_enum structure that will hold the state of the enumeration 456 * @value: pointer to a value that will return the label's value if found 457 * 458 * Enumerates a list of labels in the package. The caller will call 459 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 460 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 461 * the end of the list has been reached. 462 */ 463 static char * 464 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, 465 u16 *value) 466 { 467 struct ice_label *label; 468 469 /* Check for valid label section on first call */ 470 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 471 return NULL; 472 473 label = (struct ice_label *)ice_pkg_enum_entry(ice_seg, state, type, 474 NULL, 475 ice_label_enum_handler); 476 if (!label) 477 return NULL; 478 479 *value = LE16_TO_CPU(label->value); 480 return label->name; 481 } 482 483 /** 484 * ice_init_pkg_hints 485 * @hw: pointer to the HW structure 486 * @ice_seg: pointer to the segment of the package scan (non-NULL) 487 * 488 * This function will scan the package and save off relevant information 489 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 490 * since the first call to ice_enum_labels requires a pointer to an actual 491 * ice_seg structure. 492 */ 493 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 494 { 495 struct ice_pkg_enum state; 496 char *label_name; 497 u16 val; 498 int i; 499 500 ice_memset(&hw->tnl, 0, sizeof(hw->tnl), ICE_NONDMA_MEM); 501 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 502 503 if (!ice_seg) 504 return; 505 506 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 507 &val); 508 509 while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 510 for (i = 0; tnls[i].type != TNL_LAST; i++) { 511 size_t len = strlen(tnls[i].label_prefix); 512 513 /* Look for matching label start, before continuing */ 514 if (strncmp(label_name, tnls[i].label_prefix, len)) 515 continue; 516 517 /* Make sure this label matches our PF. Note that the PF 518 * character ('0' - '7') will be located where our 519 * prefix string's null terminator is located. 520 */ 521 if ((label_name[len] - '0') == hw->pf_id) { 522 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 523 hw->tnl.tbl[hw->tnl.count].valid = false; 524 hw->tnl.tbl[hw->tnl.count].in_use = false; 525 hw->tnl.tbl[hw->tnl.count].marked = false; 526 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 527 hw->tnl.tbl[hw->tnl.count].port = 0; 528 hw->tnl.count++; 529 break; 530 } 531 } 532 533 label_name = ice_enum_labels(NULL, 0, &state, &val); 534 } 535 536 /* Cache the appropriate boost TCAM entry pointers */ 537 for (i = 0; i < hw->tnl.count; i++) { 538 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 539 &hw->tnl.tbl[i].boost_entry); 540 if (hw->tnl.tbl[i].boost_entry) 541 hw->tnl.tbl[i].valid = true; 542 } 543 } 544 545 /* Key creation */ 546 547 #define ICE_DC_KEY 0x1 /* don't care */ 548 #define ICE_DC_KEYINV 0x1 549 #define ICE_NM_KEY 0x0 /* never match */ 550 #define ICE_NM_KEYINV 0x0 551 #define ICE_0_KEY 0x1 /* match 0 */ 552 #define ICE_0_KEYINV 0x0 553 #define ICE_1_KEY 0x0 /* match 1 */ 554 #define ICE_1_KEYINV 0x1 555 556 /** 557 * ice_gen_key_word - generate 16-bits of a key/mask word 558 * @val: the value 559 * @valid: valid bits mask (change only the valid bits) 560 * @dont_care: don't care mask 561 * @nvr_mtch: never match mask 562 * @key: pointer to an array of where the resulting key portion 563 * @key_inv: pointer to an array of where the resulting key invert portion 564 * 565 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 566 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 567 * of key and 8 bits of key invert. 568 * 569 * '0' = b01, always match a 0 bit 570 * '1' = b10, always match a 1 bit 571 * '?' = b11, don't care bit (always matches) 572 * '~' = b00, never match bit 573 * 574 * Input: 575 * val: b0 1 0 1 0 1 576 * dont_care: b0 0 1 1 0 0 577 * never_mtch: b0 0 0 0 1 1 578 * ------------------------------ 579 * Result: key: b01 10 11 11 00 00 580 */ 581 static enum ice_status 582 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 583 u8 *key_inv) 584 { 585 u8 in_key = *key, in_key_inv = *key_inv; 586 u8 i; 587 588 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 589 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 590 return ICE_ERR_CFG; 591 592 *key = 0; 593 *key_inv = 0; 594 595 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 596 for (i = 0; i < 8; i++) { 597 *key >>= 1; 598 *key_inv >>= 1; 599 600 if (!(valid & 0x1)) { /* change only valid bits */ 601 *key |= (in_key & 0x1) << 7; 602 *key_inv |= (in_key_inv & 0x1) << 7; 603 } else if (dont_care & 0x1) { /* don't care bit */ 604 *key |= ICE_DC_KEY << 7; 605 *key_inv |= ICE_DC_KEYINV << 7; 606 } else if (nvr_mtch & 0x1) { /* never match bit */ 607 *key |= ICE_NM_KEY << 7; 608 *key_inv |= ICE_NM_KEYINV << 7; 609 } else if (val & 0x01) { /* exact 1 match */ 610 *key |= ICE_1_KEY << 7; 611 *key_inv |= ICE_1_KEYINV << 7; 612 } else { /* exact 0 match */ 613 *key |= ICE_0_KEY << 7; 614 *key_inv |= ICE_0_KEYINV << 7; 615 } 616 617 dont_care >>= 1; 618 nvr_mtch >>= 1; 619 valid >>= 1; 620 val >>= 1; 621 in_key >>= 1; 622 in_key_inv >>= 1; 623 } 624 625 return ICE_SUCCESS; 626 } 627 628 /** 629 * ice_bits_max_set - determine if the number of bits set is within a maximum 630 * @mask: pointer to the byte array which is the mask 631 * @size: the number of bytes in the mask 632 * @max: the max number of set bits 633 * 634 * This function determines if there are at most 'max' number of bits set in an 635 * array. Returns true if the number for bits set is <= max or will return false 636 * otherwise. 637 */ 638 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 639 { 640 u16 count = 0; 641 u16 i; 642 643 /* check each byte */ 644 for (i = 0; i < size; i++) { 645 /* if 0, go to next byte */ 646 if (!mask[i]) 647 continue; 648 649 /* We know there is at least one set bit in this byte because of 650 * the above check; if we already have found 'max' number of 651 * bits set, then we can return failure now. 652 */ 653 if (count == max) 654 return false; 655 656 /* count the bits in this byte, checking threshold */ 657 count += ice_hweight8(mask[i]); 658 if (count > max) 659 return false; 660 } 661 662 return true; 663 } 664 665 /** 666 * ice_set_key - generate a variable sized key with multiples of 16-bits 667 * @key: pointer to where the key will be stored 668 * @size: the size of the complete key in bytes (must be even) 669 * @val: array of 8-bit values that makes up the value portion of the key 670 * @upd: array of 8-bit masks that determine what key portion to update 671 * @dc: array of 8-bit masks that make up the don't care mask 672 * @nm: array of 8-bit masks that make up the never match mask 673 * @off: the offset of the first byte in the key to update 674 * @len: the number of bytes in the key update 675 * 676 * This function generates a key from a value, a don't care mask and a never 677 * match mask. 678 * upd, dc, and nm are optional parameters, and can be NULL: 679 * upd == NULL --> udp mask is all 1's (update all bits) 680 * dc == NULL --> dc mask is all 0's (no don't care bits) 681 * nm == NULL --> nm mask is all 0's (no never match bits) 682 */ 683 enum ice_status 684 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 685 u16 len) 686 { 687 u16 half_size; 688 u16 i; 689 690 /* size must be a multiple of 2 bytes. */ 691 if (size % 2) 692 return ICE_ERR_CFG; 693 half_size = size / 2; 694 695 if (off + len > half_size) 696 return ICE_ERR_CFG; 697 698 /* Make sure at most one bit is set in the never match mask. Having more 699 * than one never match mask bit set will cause HW to consume excessive 700 * power otherwise; this is a power management efficiency check. 701 */ 702 #define ICE_NVR_MTCH_BITS_MAX 1 703 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 704 return ICE_ERR_CFG; 705 706 for (i = 0; i < len; i++) 707 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 708 dc ? dc[i] : 0, nm ? nm[i] : 0, 709 key + off + i, key + half_size + off + i)) 710 return ICE_ERR_CFG; 711 712 return ICE_SUCCESS; 713 } 714 715 /** 716 * ice_acquire_global_cfg_lock 717 * @hw: pointer to the HW structure 718 * @access: access type (read or write) 719 * 720 * This function will request ownership of the global config lock for reading 721 * or writing of the package. When attempting to obtain write access, the 722 * caller must check for the following two return values: 723 * 724 * ICE_SUCCESS - Means the caller has acquired the global config lock 725 * and can perform writing of the package. 726 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the 727 * package or has found that no update was necessary; in 728 * this case, the caller can just skip performing any 729 * update of the package. 730 */ 731 static enum ice_status 732 ice_acquire_global_cfg_lock(struct ice_hw *hw, 733 enum ice_aq_res_access_type access) 734 { 735 enum ice_status status; 736 737 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 738 739 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 740 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 741 742 if (status == ICE_ERR_AQ_NO_WORK) 743 ice_debug(hw, ICE_DBG_PKG, 744 "Global config lock: No work to do\n"); 745 746 return status; 747 } 748 749 /** 750 * ice_release_global_cfg_lock 751 * @hw: pointer to the HW structure 752 * 753 * This function will release the global config lock. 754 */ 755 static void ice_release_global_cfg_lock(struct ice_hw *hw) 756 { 757 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 758 } 759 760 /** 761 * ice_acquire_change_lock 762 * @hw: pointer to the HW structure 763 * @access: access type (read or write) 764 * 765 * This function will request ownership of the change lock. 766 */ 767 enum ice_status 768 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 769 { 770 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 771 772 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 773 ICE_CHANGE_LOCK_TIMEOUT); 774 } 775 776 /** 777 * ice_release_change_lock 778 * @hw: pointer to the HW structure 779 * 780 * This function will release the change lock using the proper Admin Command. 781 */ 782 void ice_release_change_lock(struct ice_hw *hw) 783 { 784 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 785 786 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 787 } 788 789 /** 790 * ice_aq_download_pkg 791 * @hw: pointer to the hardware structure 792 * @pkg_buf: the package buffer to transfer 793 * @buf_size: the size of the package buffer 794 * @last_buf: last buffer indicator 795 * @error_offset: returns error offset 796 * @error_info: returns error information 797 * @cd: pointer to command details structure or NULL 798 * 799 * Download Package (0x0C40) 800 */ 801 static enum ice_status 802 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 803 u16 buf_size, bool last_buf, u32 *error_offset, 804 u32 *error_info, struct ice_sq_cd *cd) 805 { 806 struct ice_aqc_download_pkg *cmd; 807 struct ice_aq_desc desc; 808 enum ice_status status; 809 810 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 811 812 if (error_offset) 813 *error_offset = 0; 814 if (error_info) 815 *error_info = 0; 816 817 cmd = &desc.params.download_pkg; 818 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 819 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 820 821 if (last_buf) 822 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 823 824 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 825 if (status == ICE_ERR_AQ_ERROR) { 826 /* Read error from buffer only when the FW returned an error */ 827 struct ice_aqc_download_pkg_resp *resp; 828 829 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 830 if (error_offset) 831 *error_offset = LE32_TO_CPU(resp->error_offset); 832 if (error_info) 833 *error_info = LE32_TO_CPU(resp->error_info); 834 } 835 836 return status; 837 } 838 839 /** 840 * ice_aq_upload_section 841 * @hw: pointer to the hardware structure 842 * @pkg_buf: the package buffer which will receive the section 843 * @buf_size: the size of the package buffer 844 * @cd: pointer to command details structure or NULL 845 * 846 * Upload Section (0x0C41) 847 */ 848 enum ice_status 849 ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 850 u16 buf_size, struct ice_sq_cd *cd) 851 { 852 struct ice_aq_desc desc; 853 854 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 855 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section); 856 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 857 858 return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 859 } 860 861 /** 862 * ice_aq_update_pkg 863 * @hw: pointer to the hardware structure 864 * @pkg_buf: the package cmd buffer 865 * @buf_size: the size of the package cmd buffer 866 * @last_buf: last buffer indicator 867 * @error_offset: returns error offset 868 * @error_info: returns error information 869 * @cd: pointer to command details structure or NULL 870 * 871 * Update Package (0x0C42) 872 */ 873 static enum ice_status 874 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, 875 bool last_buf, u32 *error_offset, u32 *error_info, 876 struct ice_sq_cd *cd) 877 { 878 struct ice_aqc_download_pkg *cmd; 879 struct ice_aq_desc desc; 880 enum ice_status status; 881 882 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 883 884 if (error_offset) 885 *error_offset = 0; 886 if (error_info) 887 *error_info = 0; 888 889 cmd = &desc.params.download_pkg; 890 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 891 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 892 893 if (last_buf) 894 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 895 896 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 897 if (status == ICE_ERR_AQ_ERROR) { 898 /* Read error from buffer only when the FW returned an error */ 899 struct ice_aqc_download_pkg_resp *resp; 900 901 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 902 if (error_offset) 903 *error_offset = LE32_TO_CPU(resp->error_offset); 904 if (error_info) 905 *error_info = LE32_TO_CPU(resp->error_info); 906 } 907 908 return status; 909 } 910 911 /** 912 * ice_find_seg_in_pkg 913 * @hw: pointer to the hardware structure 914 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 915 * @pkg_hdr: pointer to the package header to be searched 916 * 917 * This function searches a package file for a particular segment type. On 918 * success it returns a pointer to the segment header, otherwise it will 919 * return NULL. 920 */ 921 static struct ice_generic_seg_hdr * 922 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 923 struct ice_pkg_hdr *pkg_hdr) 924 { 925 u32 i; 926 927 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 928 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 929 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 930 pkg_hdr->pkg_format_ver.update, 931 pkg_hdr->pkg_format_ver.draft); 932 933 /* Search all package segments for the requested segment type */ 934 for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) { 935 struct ice_generic_seg_hdr *seg; 936 937 seg = (struct ice_generic_seg_hdr *) 938 ((u8 *)pkg_hdr + LE32_TO_CPU(pkg_hdr->seg_offset[i])); 939 940 if (LE32_TO_CPU(seg->seg_type) == seg_type) 941 return seg; 942 } 943 944 return NULL; 945 } 946 947 /** 948 * ice_update_pkg 949 * @hw: pointer to the hardware structure 950 * @bufs: pointer to an array of buffers 951 * @count: the number of buffers in the array 952 * 953 * Obtains change lock and updates package. 954 */ 955 enum ice_status 956 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 957 { 958 enum ice_status status; 959 u32 offset, info, i; 960 961 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 962 if (status) 963 return status; 964 965 for (i = 0; i < count; i++) { 966 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 967 bool last = ((i + 1) == count); 968 969 status = ice_aq_update_pkg(hw, bh, LE16_TO_CPU(bh->data_end), 970 last, &offset, &info, NULL); 971 972 if (status) { 973 ice_debug(hw, ICE_DBG_PKG, 974 "Update pkg failed: err %d off %d inf %d\n", 975 status, offset, info); 976 break; 977 } 978 } 979 980 ice_release_change_lock(hw); 981 982 return status; 983 } 984 985 /** 986 * ice_dwnld_cfg_bufs 987 * @hw: pointer to the hardware structure 988 * @bufs: pointer to an array of buffers 989 * @count: the number of buffers in the array 990 * 991 * Obtains global config lock and downloads the package configuration buffers 992 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 993 * found indicates that the rest of the buffers are all metadata buffers. 994 */ 995 static enum ice_status 996 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 997 { 998 enum ice_status status; 999 struct ice_buf_hdr *bh; 1000 u32 offset, info, i; 1001 1002 if (!bufs || !count) 1003 return ICE_ERR_PARAM; 1004 1005 /* If the first buffer's first section has its metadata bit set 1006 * then there are no buffers to be downloaded, and the operation is 1007 * considered a success. 1008 */ 1009 bh = (struct ice_buf_hdr *)bufs; 1010 if (LE32_TO_CPU(bh->section_entry[0].type) & ICE_METADATA_BUF) 1011 return ICE_SUCCESS; 1012 1013 /* reset pkg_dwnld_status in case this function is called in the 1014 * reset/rebuild flow 1015 */ 1016 hw->pkg_dwnld_status = ICE_AQ_RC_OK; 1017 1018 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 1019 if (status) { 1020 if (status == ICE_ERR_AQ_NO_WORK) 1021 hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST; 1022 else 1023 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 1024 return status; 1025 } 1026 1027 for (i = 0; i < count; i++) { 1028 bool last = ((i + 1) == count); 1029 1030 if (!last) { 1031 /* check next buffer for metadata flag */ 1032 bh = (struct ice_buf_hdr *)(bufs + i + 1); 1033 1034 /* A set metadata flag in the next buffer will signal 1035 * that the current buffer will be the last buffer 1036 * downloaded 1037 */ 1038 if (LE16_TO_CPU(bh->section_count)) 1039 if (LE32_TO_CPU(bh->section_entry[0].type) & 1040 ICE_METADATA_BUF) 1041 last = true; 1042 } 1043 1044 bh = (struct ice_buf_hdr *)(bufs + i); 1045 1046 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 1047 &offset, &info, NULL); 1048 1049 /* Save AQ status from download package */ 1050 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 1051 if (status) { 1052 ice_debug(hw, ICE_DBG_PKG, 1053 "Pkg download failed: err %d off %d inf %d\n", 1054 status, offset, info); 1055 1056 break; 1057 } 1058 1059 if (last) 1060 break; 1061 } 1062 1063 ice_release_global_cfg_lock(hw); 1064 1065 return status; 1066 } 1067 1068 /** 1069 * ice_aq_get_pkg_info_list 1070 * @hw: pointer to the hardware structure 1071 * @pkg_info: the buffer which will receive the information list 1072 * @buf_size: the size of the pkg_info information buffer 1073 * @cd: pointer to command details structure or NULL 1074 * 1075 * Get Package Info List (0x0C43) 1076 */ 1077 static enum ice_status 1078 ice_aq_get_pkg_info_list(struct ice_hw *hw, 1079 struct ice_aqc_get_pkg_info_resp *pkg_info, 1080 u16 buf_size, struct ice_sq_cd *cd) 1081 { 1082 struct ice_aq_desc desc; 1083 1084 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1085 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1086 1087 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1088 } 1089 1090 /** 1091 * ice_download_pkg 1092 * @hw: pointer to the hardware structure 1093 * @ice_seg: pointer to the segment of the package to be downloaded 1094 * 1095 * Handles the download of a complete package. 1096 */ 1097 static enum ice_status 1098 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) 1099 { 1100 struct ice_buf_table *ice_buf_tbl; 1101 1102 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1103 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1104 ice_seg->hdr.seg_format_ver.major, 1105 ice_seg->hdr.seg_format_ver.minor, 1106 ice_seg->hdr.seg_format_ver.update, 1107 ice_seg->hdr.seg_format_ver.draft); 1108 1109 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1110 LE32_TO_CPU(ice_seg->hdr.seg_type), 1111 LE32_TO_CPU(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1112 1113 ice_buf_tbl = ice_find_buf_table(ice_seg); 1114 1115 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1116 LE32_TO_CPU(ice_buf_tbl->buf_count)); 1117 1118 return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1119 LE32_TO_CPU(ice_buf_tbl->buf_count)); 1120 } 1121 1122 /** 1123 * ice_init_pkg_info 1124 * @hw: pointer to the hardware structure 1125 * @pkg_hdr: pointer to the driver's package hdr 1126 * 1127 * Saves off the package details into the HW structure. 1128 */ 1129 static enum ice_status 1130 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) 1131 { 1132 struct ice_global_metadata_seg *meta_seg; 1133 struct ice_generic_seg_hdr *seg_hdr; 1134 1135 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1136 if (!pkg_hdr) 1137 return ICE_ERR_PARAM; 1138 1139 meta_seg = (struct ice_global_metadata_seg *) 1140 ice_find_seg_in_pkg(hw, SEGMENT_TYPE_METADATA, pkg_hdr); 1141 if (meta_seg) { 1142 hw->pkg_ver = meta_seg->pkg_ver; 1143 ice_memcpy(hw->pkg_name, meta_seg->pkg_name, 1144 sizeof(hw->pkg_name), ICE_NONDMA_TO_NONDMA); 1145 1146 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1147 meta_seg->pkg_ver.major, meta_seg->pkg_ver.minor, 1148 meta_seg->pkg_ver.update, meta_seg->pkg_ver.draft, 1149 meta_seg->pkg_name); 1150 } else { 1151 ice_debug(hw, ICE_DBG_INIT, 1152 "Did not find metadata segment in driver package\n"); 1153 return ICE_ERR_CFG; 1154 } 1155 1156 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); 1157 if (seg_hdr) { 1158 hw->ice_pkg_ver = seg_hdr->seg_format_ver; 1159 ice_memcpy(hw->ice_pkg_name, seg_hdr->seg_id, 1160 sizeof(hw->ice_pkg_name), ICE_NONDMA_TO_NONDMA); 1161 1162 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1163 seg_hdr->seg_format_ver.major, 1164 seg_hdr->seg_format_ver.minor, 1165 seg_hdr->seg_format_ver.update, 1166 seg_hdr->seg_format_ver.draft, 1167 seg_hdr->seg_id); 1168 } else { 1169 ice_debug(hw, ICE_DBG_INIT, 1170 "Did not find ice segment in driver package\n"); 1171 return ICE_ERR_CFG; 1172 } 1173 1174 return ICE_SUCCESS; 1175 } 1176 1177 /** 1178 * ice_get_pkg_info 1179 * @hw: pointer to the hardware structure 1180 * 1181 * Store details of the package currently loaded in HW into the HW structure. 1182 */ 1183 static enum ice_status ice_get_pkg_info(struct ice_hw *hw) 1184 { 1185 struct ice_aqc_get_pkg_info_resp *pkg_info; 1186 enum ice_status status; 1187 u16 size; 1188 u32 i; 1189 1190 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1191 1192 size = ice_struct_size(pkg_info, pkg_info, ICE_PKG_CNT - 1); 1193 pkg_info = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size); 1194 if (!pkg_info) 1195 return ICE_ERR_NO_MEMORY; 1196 1197 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL); 1198 if (status) 1199 goto init_pkg_free_alloc; 1200 1201 for (i = 0; i < LE32_TO_CPU(pkg_info->count); i++) { 1202 #define ICE_PKG_FLAG_COUNT 4 1203 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1204 u8 place = 0; 1205 1206 if (pkg_info->pkg_info[i].is_active) { 1207 flags[place++] = 'A'; 1208 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1209 hw->active_track_id = 1210 LE32_TO_CPU(pkg_info->pkg_info[i].track_id); 1211 ice_memcpy(hw->active_pkg_name, 1212 pkg_info->pkg_info[i].name, 1213 sizeof(pkg_info->pkg_info[i].name), 1214 ICE_NONDMA_TO_NONDMA); 1215 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1216 } 1217 if (pkg_info->pkg_info[i].is_active_at_boot) 1218 flags[place++] = 'B'; 1219 if (pkg_info->pkg_info[i].is_modified) 1220 flags[place++] = 'M'; 1221 if (pkg_info->pkg_info[i].is_in_nvm) 1222 flags[place++] = 'N'; 1223 1224 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", 1225 i, pkg_info->pkg_info[i].ver.major, 1226 pkg_info->pkg_info[i].ver.minor, 1227 pkg_info->pkg_info[i].ver.update, 1228 pkg_info->pkg_info[i].ver.draft, 1229 pkg_info->pkg_info[i].name, flags); 1230 } 1231 1232 init_pkg_free_alloc: 1233 ice_free(hw, pkg_info); 1234 1235 return status; 1236 } 1237 1238 /** 1239 * ice_find_label_value 1240 * @ice_seg: pointer to the ice segment (non-NULL) 1241 * @name: name of the label to search for 1242 * @type: the section type that will contain the label 1243 * @value: pointer to a value that will return the label's value if found 1244 * 1245 * Finds a label's value given the label name and the section type to search. 1246 * The ice_seg parameter must not be NULL since the first call to 1247 * ice_enum_labels requires a pointer to an actual ice_seg structure. 1248 */ 1249 enum ice_status 1250 ice_find_label_value(struct ice_seg *ice_seg, char const *name, u32 type, 1251 u16 *value) 1252 { 1253 struct ice_pkg_enum state; 1254 char *label_name; 1255 u16 val; 1256 1257 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1258 1259 if (!ice_seg) 1260 return ICE_ERR_PARAM; 1261 1262 do { 1263 label_name = ice_enum_labels(ice_seg, type, &state, &val); 1264 if (label_name && !strcmp(label_name, name)) { 1265 *value = val; 1266 return ICE_SUCCESS; 1267 } 1268 1269 ice_seg = NULL; 1270 } while (label_name); 1271 1272 return ICE_ERR_CFG; 1273 } 1274 1275 /** 1276 * ice_verify_pkg - verify package 1277 * @pkg: pointer to the package buffer 1278 * @len: size of the package buffer 1279 * 1280 * Verifies various attributes of the package file, including length, format 1281 * version, and the requirement of at least one segment. 1282 */ 1283 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 1284 { 1285 u32 seg_count; 1286 u32 i; 1287 1288 if (len < sizeof(*pkg)) 1289 return ICE_ERR_BUF_TOO_SHORT; 1290 1291 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 1292 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 1293 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 1294 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 1295 return ICE_ERR_CFG; 1296 1297 /* pkg must have at least one segment */ 1298 seg_count = LE32_TO_CPU(pkg->seg_count); 1299 if (seg_count < 1) 1300 return ICE_ERR_CFG; 1301 1302 /* make sure segment array fits in package length */ 1303 if (len < ice_struct_size(pkg, seg_offset, seg_count - 1)) 1304 return ICE_ERR_BUF_TOO_SHORT; 1305 1306 /* all segments must fit within length */ 1307 for (i = 0; i < seg_count; i++) { 1308 u32 off = LE32_TO_CPU(pkg->seg_offset[i]); 1309 struct ice_generic_seg_hdr *seg; 1310 1311 /* segment header must fit */ 1312 if (len < off + sizeof(*seg)) 1313 return ICE_ERR_BUF_TOO_SHORT; 1314 1315 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 1316 1317 /* segment body must fit */ 1318 if (len < off + LE32_TO_CPU(seg->seg_size)) 1319 return ICE_ERR_BUF_TOO_SHORT; 1320 } 1321 1322 return ICE_SUCCESS; 1323 } 1324 1325 /** 1326 * ice_free_seg - free package segment pointer 1327 * @hw: pointer to the hardware structure 1328 * 1329 * Frees the package segment pointer in the proper manner, depending on if the 1330 * segment was allocated or just the passed in pointer was stored. 1331 */ 1332 void ice_free_seg(struct ice_hw *hw) 1333 { 1334 if (hw->pkg_copy) { 1335 ice_free(hw, hw->pkg_copy); 1336 hw->pkg_copy = NULL; 1337 hw->pkg_size = 0; 1338 } 1339 hw->seg = NULL; 1340 } 1341 1342 /** 1343 * ice_init_pkg_regs - initialize additional package registers 1344 * @hw: pointer to the hardware structure 1345 */ 1346 static void ice_init_pkg_regs(struct ice_hw *hw) 1347 { 1348 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 1349 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 1350 #define ICE_SW_BLK_IDX 0 1351 1352 /* setup Switch block input mask, which is 48-bits in two parts */ 1353 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 1354 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 1355 } 1356 1357 /** 1358 * ice_chk_pkg_version - check package version for compatibility with driver 1359 * @pkg_ver: pointer to a version structure to check 1360 * 1361 * Check to make sure that the package about to be downloaded is compatible with 1362 * the driver. To be compatible, the major and minor components of the package 1363 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 1364 * definitions. 1365 */ 1366 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 1367 { 1368 if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ || 1369 pkg_ver->minor != ICE_PKG_SUPP_VER_MNR) 1370 return ICE_ERR_NOT_SUPPORTED; 1371 1372 return ICE_SUCCESS; 1373 } 1374 1375 /** 1376 * ice_chk_pkg_compat 1377 * @hw: pointer to the hardware structure 1378 * @ospkg: pointer to the package hdr 1379 * @seg: pointer to the package segment hdr 1380 * 1381 * This function checks the package version compatibility with driver and NVM 1382 */ 1383 static enum ice_status 1384 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, 1385 struct ice_seg **seg) 1386 { 1387 struct ice_aqc_get_pkg_info_resp *pkg; 1388 enum ice_status status; 1389 u16 size; 1390 u32 i; 1391 1392 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1393 1394 /* Check package version compatibility */ 1395 status = ice_chk_pkg_version(&hw->pkg_ver); 1396 if (status) { 1397 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1398 return status; 1399 } 1400 1401 /* find ICE segment in given package */ 1402 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, 1403 ospkg); 1404 if (!*seg) { 1405 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1406 return ICE_ERR_CFG; 1407 } 1408 1409 /* Check if FW is compatible with the OS package */ 1410 size = ice_struct_size(pkg, pkg_info, ICE_PKG_CNT - 1); 1411 pkg = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size); 1412 if (!pkg) 1413 return ICE_ERR_NO_MEMORY; 1414 1415 status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL); 1416 if (status) 1417 goto fw_ddp_compat_free_alloc; 1418 1419 for (i = 0; i < LE32_TO_CPU(pkg->count); i++) { 1420 /* loop till we find the NVM package */ 1421 if (!pkg->pkg_info[i].is_in_nvm) 1422 continue; 1423 if ((*seg)->hdr.seg_format_ver.major != 1424 pkg->pkg_info[i].ver.major || 1425 (*seg)->hdr.seg_format_ver.minor > 1426 pkg->pkg_info[i].ver.minor) { 1427 status = ICE_ERR_FW_DDP_MISMATCH; 1428 ice_debug(hw, ICE_DBG_INIT, 1429 "OS package is not compatible with NVM.\n"); 1430 } 1431 /* done processing NVM package so break */ 1432 break; 1433 } 1434 fw_ddp_compat_free_alloc: 1435 ice_free(hw, pkg); 1436 return status; 1437 } 1438 1439 /** 1440 * ice_init_pkg - initialize/download package 1441 * @hw: pointer to the hardware structure 1442 * @buf: pointer to the package buffer 1443 * @len: size of the package buffer 1444 * 1445 * This function initializes a package. The package contains HW tables 1446 * required to do packet processing. First, the function extracts package 1447 * information such as version. Then it finds the ice configuration segment 1448 * within the package; this function then saves a copy of the segment pointer 1449 * within the supplied package buffer. Next, the function will cache any hints 1450 * from the package, followed by downloading the package itself. Note, that if 1451 * a previous PF driver has already downloaded the package successfully, then 1452 * the current driver will not have to download the package again. 1453 * 1454 * The local package contents will be used to query default behavior and to 1455 * update specific sections of the HW's version of the package (e.g. to update 1456 * the parse graph to understand new protocols). 1457 * 1458 * This function stores a pointer to the package buffer memory, and it is 1459 * expected that the supplied buffer will not be freed immediately. If the 1460 * package buffer needs to be freed, such as when read from a file, use 1461 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1462 * case. 1463 */ 1464 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1465 { 1466 struct ice_pkg_hdr *pkg; 1467 enum ice_status status; 1468 struct ice_seg *seg; 1469 1470 if (!buf || !len) 1471 return ICE_ERR_PARAM; 1472 1473 pkg = (struct ice_pkg_hdr *)buf; 1474 status = ice_verify_pkg(pkg, len); 1475 if (status) { 1476 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1477 status); 1478 return status; 1479 } 1480 1481 /* initialize package info */ 1482 status = ice_init_pkg_info(hw, pkg); 1483 if (status) 1484 return status; 1485 1486 /* before downloading the package, check package version for 1487 * compatibility with driver 1488 */ 1489 status = ice_chk_pkg_compat(hw, pkg, &seg); 1490 if (status) 1491 return status; 1492 1493 /* initialize package hints and then download package */ 1494 ice_init_pkg_hints(hw, seg); 1495 status = ice_download_pkg(hw, seg); 1496 if (status == ICE_ERR_AQ_NO_WORK) { 1497 ice_debug(hw, ICE_DBG_INIT, 1498 "package previously loaded - no work.\n"); 1499 status = ICE_SUCCESS; 1500 } 1501 1502 /* Get information on the package currently loaded in HW, then make sure 1503 * the driver is compatible with this version. 1504 */ 1505 if (!status) { 1506 status = ice_get_pkg_info(hw); 1507 if (!status) 1508 status = ice_chk_pkg_version(&hw->active_pkg_ver); 1509 } 1510 1511 if (!status) { 1512 hw->seg = seg; 1513 /* on successful package download update other required 1514 * registers to support the package and fill HW tables 1515 * with package content. 1516 */ 1517 ice_init_pkg_regs(hw); 1518 ice_fill_blk_tbls(hw); 1519 } else { 1520 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", 1521 status); 1522 } 1523 1524 return status; 1525 } 1526 1527 /** 1528 * ice_copy_and_init_pkg - initialize/download a copy of the package 1529 * @hw: pointer to the hardware structure 1530 * @buf: pointer to the package buffer 1531 * @len: size of the package buffer 1532 * 1533 * This function copies the package buffer, and then calls ice_init_pkg() to 1534 * initialize the copied package contents. 1535 * 1536 * The copying is necessary if the package buffer supplied is constant, or if 1537 * the memory may disappear shortly after calling this function. 1538 * 1539 * If the package buffer resides in the data segment and can be modified, the 1540 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1541 * 1542 * However, if the package buffer needs to be copied first, such as when being 1543 * read from a file, the caller should use ice_copy_and_init_pkg(). 1544 * 1545 * This function will first copy the package buffer, before calling 1546 * ice_init_pkg(). The caller is free to immediately destroy the original 1547 * package buffer, as the new copy will be managed by this function and 1548 * related routines. 1549 */ 1550 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) 1551 { 1552 enum ice_status status; 1553 u8 *buf_copy; 1554 1555 if (!buf || !len) 1556 return ICE_ERR_PARAM; 1557 1558 buf_copy = (u8 *)ice_memdup(hw, buf, len, ICE_NONDMA_TO_NONDMA); 1559 1560 status = ice_init_pkg(hw, buf_copy, len); 1561 if (status) { 1562 /* Free the copy, since we failed to initialize the package */ 1563 ice_free(hw, buf_copy); 1564 } else { 1565 /* Track the copied pkg so we can free it later */ 1566 hw->pkg_copy = buf_copy; 1567 hw->pkg_size = len; 1568 } 1569 1570 return status; 1571 } 1572 1573 /** 1574 * ice_pkg_buf_alloc 1575 * @hw: pointer to the HW structure 1576 * 1577 * Allocates a package buffer and returns a pointer to the buffer header. 1578 * Note: all package contents must be in Little Endian form. 1579 */ 1580 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 1581 { 1582 struct ice_buf_build *bld; 1583 struct ice_buf_hdr *buf; 1584 1585 bld = (struct ice_buf_build *)ice_malloc(hw, sizeof(*bld)); 1586 if (!bld) 1587 return NULL; 1588 1589 buf = (struct ice_buf_hdr *)bld; 1590 buf->data_end = CPU_TO_LE16(offsetof(struct ice_buf_hdr, 1591 section_entry)); 1592 return bld; 1593 } 1594 1595 /** 1596 * ice_sw_fv_handler 1597 * @sect_type: section type 1598 * @section: pointer to section 1599 * @index: index of the field vector entry to be returned 1600 * @offset: ptr to variable that receives the offset in the field vector table 1601 * 1602 * This is a callback function that can be passed to ice_pkg_enum_entry. 1603 * This function treats the given section as of type ice_sw_fv_section and 1604 * enumerates offset field. "offset" is an index into the field vector 1605 * vector table. 1606 */ 1607 static void * 1608 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset) 1609 { 1610 struct ice_sw_fv_section *fv_section = 1611 (struct ice_sw_fv_section *)section; 1612 1613 if (!section || sect_type != ICE_SID_FLD_VEC_SW) 1614 return NULL; 1615 if (index >= LE16_TO_CPU(fv_section->count)) 1616 return NULL; 1617 if (offset) 1618 /* "index" passed in to this function is relative to a given 1619 * 4k block. To get to the true index into the field vector 1620 * table need to add the relative index to the base_offset 1621 * field of this section 1622 */ 1623 *offset = LE16_TO_CPU(fv_section->base_offset) + index; 1624 return fv_section->fv + index; 1625 } 1626 1627 /** 1628 * ice_get_sw_prof_type - determine switch profile type 1629 * @hw: pointer to the HW structure 1630 * @fv: pointer to the switch field vector 1631 */ 1632 static enum ice_prof_type 1633 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv) 1634 { 1635 u16 i; 1636 1637 for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) { 1638 /* UDP tunnel will have UDP_OF protocol ID and VNI offset */ 1639 if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF && 1640 fv->ew[i].off == ICE_VNI_OFFSET) 1641 return ICE_PROF_TUN_UDP; 1642 1643 /* GRE tunnel will have GRE protocol */ 1644 if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF) 1645 return ICE_PROF_TUN_GRE; 1646 } 1647 1648 return ICE_PROF_NON_TUN; 1649 } 1650 1651 /** 1652 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type 1653 * @hw: pointer to hardware structure 1654 * @req_profs: type of profiles requested 1655 * @bm: pointer to memory for returning the bitmap of field vectors 1656 */ 1657 void 1658 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs, 1659 ice_bitmap_t *bm) 1660 { 1661 struct ice_pkg_enum state; 1662 struct ice_seg *ice_seg; 1663 struct ice_fv *fv; 1664 1665 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1666 1667 if (req_profs == ICE_PROF_ALL) { 1668 u16 i; 1669 1670 for (i = 0; i < ICE_MAX_NUM_PROFILES; i++) 1671 ice_set_bit(i, bm); 1672 return; 1673 } 1674 1675 ice_zero_bitmap(bm, ICE_MAX_NUM_PROFILES); 1676 1677 ice_seg = hw->seg; 1678 do { 1679 enum ice_prof_type prof_type; 1680 u32 offset; 1681 1682 fv = (struct ice_fv *) 1683 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1684 &offset, ice_sw_fv_handler); 1685 ice_seg = NULL; 1686 1687 if (fv) { 1688 /* Determine field vector type */ 1689 prof_type = ice_get_sw_prof_type(hw, fv); 1690 1691 if (req_profs & prof_type) 1692 ice_set_bit((u16)offset, bm); 1693 } 1694 } while (fv); 1695 } 1696 1697 /** 1698 * ice_get_sw_fv_list 1699 * @hw: pointer to the HW structure 1700 * @prot_ids: field vector to search for with a given protocol ID 1701 * @ids_cnt: lookup/protocol count 1702 * @bm: bitmap of field vectors to consider 1703 * @fv_list: Head of a list 1704 * 1705 * Finds all the field vector entries from switch block that contain 1706 * a given protocol ID and returns a list of structures of type 1707 * "ice_sw_fv_list_entry". Every structure in the list has a field vector 1708 * definition and profile ID information 1709 * NOTE: The caller of the function is responsible for freeing the memory 1710 * allocated for every list entry. 1711 */ 1712 enum ice_status 1713 ice_get_sw_fv_list(struct ice_hw *hw, u8 *prot_ids, u16 ids_cnt, 1714 ice_bitmap_t *bm, struct LIST_HEAD_TYPE *fv_list) 1715 { 1716 struct ice_sw_fv_list_entry *fvl; 1717 struct ice_sw_fv_list_entry *tmp; 1718 struct ice_pkg_enum state; 1719 struct ice_seg *ice_seg; 1720 struct ice_fv *fv; 1721 u32 offset; 1722 1723 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1724 1725 if (!ids_cnt || !hw->seg) 1726 return ICE_ERR_PARAM; 1727 1728 ice_seg = hw->seg; 1729 do { 1730 u16 i; 1731 1732 fv = (struct ice_fv *) 1733 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1734 &offset, ice_sw_fv_handler); 1735 if (!fv) 1736 break; 1737 ice_seg = NULL; 1738 1739 /* If field vector is not in the bitmap list, then skip this 1740 * profile. 1741 */ 1742 if (!ice_is_bit_set(bm, (u16)offset)) 1743 continue; 1744 1745 for (i = 0; i < ids_cnt; i++) { 1746 int j; 1747 1748 /* This code assumes that if a switch field vector line 1749 * has a matching protocol, then this line will contain 1750 * the entries necessary to represent every field in 1751 * that protocol header. 1752 */ 1753 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1754 if (fv->ew[j].prot_id == prot_ids[i]) 1755 break; 1756 if (j >= hw->blk[ICE_BLK_SW].es.fvw) 1757 break; 1758 if (i + 1 == ids_cnt) { 1759 fvl = (struct ice_sw_fv_list_entry *) 1760 ice_malloc(hw, sizeof(*fvl)); 1761 if (!fvl) 1762 goto err; 1763 fvl->fv_ptr = fv; 1764 fvl->profile_id = offset; 1765 LIST_ADD(&fvl->list_entry, fv_list); 1766 break; 1767 } 1768 } 1769 } while (fv); 1770 if (LIST_EMPTY(fv_list)) 1771 return ICE_ERR_CFG; 1772 return ICE_SUCCESS; 1773 1774 err: 1775 LIST_FOR_EACH_ENTRY_SAFE(fvl, tmp, fv_list, ice_sw_fv_list_entry, 1776 list_entry) { 1777 LIST_DEL(&fvl->list_entry); 1778 ice_free(hw, fvl); 1779 } 1780 1781 return ICE_ERR_NO_MEMORY; 1782 } 1783 1784 /** 1785 * ice_init_prof_result_bm - Initialize the profile result index bitmap 1786 * @hw: pointer to hardware structure 1787 */ 1788 void ice_init_prof_result_bm(struct ice_hw *hw) 1789 { 1790 struct ice_pkg_enum state; 1791 struct ice_seg *ice_seg; 1792 struct ice_fv *fv; 1793 1794 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1795 1796 if (!hw->seg) 1797 return; 1798 1799 ice_seg = hw->seg; 1800 do { 1801 u32 off; 1802 u16 i; 1803 1804 fv = (struct ice_fv *) 1805 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1806 &off, ice_sw_fv_handler); 1807 ice_seg = NULL; 1808 if (!fv) 1809 break; 1810 1811 ice_zero_bitmap(hw->switch_info->prof_res_bm[off], 1812 ICE_MAX_FV_WORDS); 1813 1814 /* Determine empty field vector indices, these can be 1815 * used for recipe results. Skip index 0, since it is 1816 * always used for Switch ID. 1817 */ 1818 for (i = 1; i < ICE_MAX_FV_WORDS; i++) 1819 if (fv->ew[i].prot_id == ICE_PROT_INVALID && 1820 fv->ew[i].off == ICE_FV_OFFSET_INVAL) 1821 ice_set_bit(i, 1822 hw->switch_info->prof_res_bm[off]); 1823 } while (fv); 1824 } 1825 1826 /** 1827 * ice_pkg_buf_free 1828 * @hw: pointer to the HW structure 1829 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1830 * 1831 * Frees a package buffer 1832 */ 1833 static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 1834 { 1835 ice_free(hw, bld); 1836 } 1837 1838 /** 1839 * ice_pkg_buf_reserve_section 1840 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1841 * @count: the number of sections to reserve 1842 * 1843 * Reserves one or more section table entries in a package buffer. This routine 1844 * can be called multiple times as long as they are made before calling 1845 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 1846 * is called once, the number of sections that can be allocated will not be able 1847 * to be increased; not using all reserved sections is fine, but this will 1848 * result in some wasted space in the buffer. 1849 * Note: all package contents must be in Little Endian form. 1850 */ 1851 static enum ice_status 1852 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 1853 { 1854 struct ice_buf_hdr *buf; 1855 u16 section_count; 1856 u16 data_end; 1857 1858 if (!bld) 1859 return ICE_ERR_PARAM; 1860 1861 buf = (struct ice_buf_hdr *)&bld->buf; 1862 1863 /* already an active section, can't increase table size */ 1864 section_count = LE16_TO_CPU(buf->section_count); 1865 if (section_count > 0) 1866 return ICE_ERR_CFG; 1867 1868 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 1869 return ICE_ERR_CFG; 1870 bld->reserved_section_table_entries += count; 1871 1872 data_end = LE16_TO_CPU(buf->data_end) + 1873 (count * sizeof(buf->section_entry[0])); 1874 buf->data_end = CPU_TO_LE16(data_end); 1875 1876 return ICE_SUCCESS; 1877 } 1878 1879 /** 1880 * ice_pkg_buf_alloc_section 1881 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1882 * @type: the section type value 1883 * @size: the size of the section to reserve (in bytes) 1884 * 1885 * Reserves memory in the buffer for a section's content and updates the 1886 * buffers' status accordingly. This routine returns a pointer to the first 1887 * byte of the section start within the buffer, which is used to fill in the 1888 * section contents. 1889 * Note: all package contents must be in Little Endian form. 1890 */ 1891 static void * 1892 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 1893 { 1894 struct ice_buf_hdr *buf; 1895 u16 sect_count; 1896 u16 data_end; 1897 1898 if (!bld || !type || !size) 1899 return NULL; 1900 1901 buf = (struct ice_buf_hdr *)&bld->buf; 1902 1903 /* check for enough space left in buffer */ 1904 data_end = LE16_TO_CPU(buf->data_end); 1905 1906 /* section start must align on 4 byte boundary */ 1907 data_end = ICE_ALIGN(data_end, 4); 1908 1909 if ((data_end + size) > ICE_MAX_S_DATA_END) 1910 return NULL; 1911 1912 /* check for more available section table entries */ 1913 sect_count = LE16_TO_CPU(buf->section_count); 1914 if (sect_count < bld->reserved_section_table_entries) { 1915 void *section_ptr = ((u8 *)buf) + data_end; 1916 1917 buf->section_entry[sect_count].offset = CPU_TO_LE16(data_end); 1918 buf->section_entry[sect_count].size = CPU_TO_LE16(size); 1919 buf->section_entry[sect_count].type = CPU_TO_LE32(type); 1920 1921 data_end += size; 1922 buf->data_end = CPU_TO_LE16(data_end); 1923 1924 buf->section_count = CPU_TO_LE16(sect_count + 1); 1925 return section_ptr; 1926 } 1927 1928 /* no free section table entries */ 1929 return NULL; 1930 } 1931 1932 /** 1933 * ice_pkg_buf_alloc_single_section 1934 * @hw: pointer to the HW structure 1935 * @type: the section type value 1936 * @size: the size of the section to reserve (in bytes) 1937 * @section: returns pointer to the section 1938 * 1939 * Allocates a package buffer with a single section. 1940 * Note: all package contents must be in Little Endian form. 1941 */ 1942 static struct ice_buf_build * 1943 ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size, 1944 void **section) 1945 { 1946 struct ice_buf_build *buf; 1947 1948 if (!section) 1949 return NULL; 1950 1951 buf = ice_pkg_buf_alloc(hw); 1952 if (!buf) 1953 return NULL; 1954 1955 if (ice_pkg_buf_reserve_section(buf, 1)) 1956 goto ice_pkg_buf_alloc_single_section_err; 1957 1958 *section = ice_pkg_buf_alloc_section(buf, type, size); 1959 if (!*section) 1960 goto ice_pkg_buf_alloc_single_section_err; 1961 1962 return buf; 1963 1964 ice_pkg_buf_alloc_single_section_err: 1965 ice_pkg_buf_free(hw, buf); 1966 return NULL; 1967 } 1968 1969 /** 1970 * ice_pkg_buf_unreserve_section 1971 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1972 * @count: the number of sections to unreserve 1973 * 1974 * Unreserves one or more section table entries in a package buffer, releasing 1975 * space that can be used for section data. This routine can be called 1976 * multiple times as long as they are made before calling 1977 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 1978 * is called once, the number of sections that can be allocated will not be able 1979 * to be increased; not using all reserved sections is fine, but this will 1980 * result in some wasted space in the buffer. 1981 * Note: all package contents must be in Little Endian form. 1982 */ 1983 enum ice_status 1984 ice_pkg_buf_unreserve_section(struct ice_buf_build *bld, u16 count) 1985 { 1986 struct ice_buf_hdr *buf; 1987 u16 section_count; 1988 u16 data_end; 1989 1990 if (!bld) 1991 return ICE_ERR_PARAM; 1992 1993 buf = (struct ice_buf_hdr *)&bld->buf; 1994 1995 /* already an active section, can't decrease table size */ 1996 section_count = LE16_TO_CPU(buf->section_count); 1997 if (section_count > 0) 1998 return ICE_ERR_CFG; 1999 2000 if (count > bld->reserved_section_table_entries) 2001 return ICE_ERR_CFG; 2002 bld->reserved_section_table_entries -= count; 2003 2004 data_end = LE16_TO_CPU(buf->data_end) - 2005 (count * sizeof(buf->section_entry[0])); 2006 buf->data_end = CPU_TO_LE16(data_end); 2007 2008 return ICE_SUCCESS; 2009 } 2010 2011 /** 2012 * ice_pkg_buf_get_free_space 2013 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2014 * 2015 * Returns the number of free bytes remaining in the buffer. 2016 * Note: all package contents must be in Little Endian form. 2017 */ 2018 u16 ice_pkg_buf_get_free_space(struct ice_buf_build *bld) 2019 { 2020 struct ice_buf_hdr *buf; 2021 2022 if (!bld) 2023 return 0; 2024 2025 buf = (struct ice_buf_hdr *)&bld->buf; 2026 return ICE_MAX_S_DATA_END - LE16_TO_CPU(buf->data_end); 2027 } 2028 2029 /** 2030 * ice_pkg_buf_get_active_sections 2031 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2032 * 2033 * Returns the number of active sections. Before using the package buffer 2034 * in an update package command, the caller should make sure that there is at 2035 * least one active section - otherwise, the buffer is not legal and should 2036 * not be used. 2037 * Note: all package contents must be in Little Endian form. 2038 */ 2039 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 2040 { 2041 struct ice_buf_hdr *buf; 2042 2043 if (!bld) 2044 return 0; 2045 2046 buf = (struct ice_buf_hdr *)&bld->buf; 2047 return LE16_TO_CPU(buf->section_count); 2048 } 2049 2050 /** 2051 * ice_pkg_buf 2052 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2053 * 2054 * Return a pointer to the buffer's header 2055 */ 2056 static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 2057 { 2058 if (!bld) 2059 return NULL; 2060 2061 return &bld->buf; 2062 } 2063 2064 /** 2065 * ice_tunnel_port_in_use_hlpr - helper function to determine tunnel usage 2066 * @hw: pointer to the HW structure 2067 * @port: port to search for 2068 * @index: optionally returns index 2069 * 2070 * Returns whether a port is already in use as a tunnel, and optionally its 2071 * index 2072 */ 2073 static bool ice_tunnel_port_in_use_hlpr(struct ice_hw *hw, u16 port, u16 *index) 2074 { 2075 u16 i; 2076 2077 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2078 if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) { 2079 if (index) 2080 *index = i; 2081 return true; 2082 } 2083 2084 return false; 2085 } 2086 2087 /** 2088 * ice_tunnel_port_in_use 2089 * @hw: pointer to the HW structure 2090 * @port: port to search for 2091 * @index: optionally returns index 2092 * 2093 * Returns whether a port is already in use as a tunnel, and optionally its 2094 * index 2095 */ 2096 bool ice_tunnel_port_in_use(struct ice_hw *hw, u16 port, u16 *index) 2097 { 2098 bool res; 2099 2100 ice_acquire_lock(&hw->tnl_lock); 2101 res = ice_tunnel_port_in_use_hlpr(hw, port, index); 2102 ice_release_lock(&hw->tnl_lock); 2103 2104 return res; 2105 } 2106 2107 /** 2108 * ice_tunnel_get_type 2109 * @hw: pointer to the HW structure 2110 * @port: port to search for 2111 * @type: returns tunnel index 2112 * 2113 * For a given port number, will return the type of tunnel. 2114 */ 2115 bool 2116 ice_tunnel_get_type(struct ice_hw *hw, u16 port, enum ice_tunnel_type *type) 2117 { 2118 bool res = false; 2119 u16 i; 2120 2121 ice_acquire_lock(&hw->tnl_lock); 2122 2123 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2124 if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) { 2125 *type = hw->tnl.tbl[i].type; 2126 res = true; 2127 break; 2128 } 2129 2130 ice_release_lock(&hw->tnl_lock); 2131 2132 return res; 2133 } 2134 2135 /** 2136 * ice_find_free_tunnel_entry 2137 * @hw: pointer to the HW structure 2138 * @type: tunnel type 2139 * @index: optionally returns index 2140 * 2141 * Returns whether there is a free tunnel entry, and optionally its index 2142 */ 2143 static bool 2144 ice_find_free_tunnel_entry(struct ice_hw *hw, enum ice_tunnel_type type, 2145 u16 *index) 2146 { 2147 u16 i; 2148 2149 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2150 if (hw->tnl.tbl[i].valid && !hw->tnl.tbl[i].in_use && 2151 hw->tnl.tbl[i].type == type) { 2152 if (index) 2153 *index = i; 2154 return true; 2155 } 2156 2157 return false; 2158 } 2159 2160 /** 2161 * ice_get_open_tunnel_port - retrieve an open tunnel port 2162 * @hw: pointer to the HW structure 2163 * @type: tunnel type (TNL_ALL will return any open port) 2164 * @port: returns open port 2165 */ 2166 bool 2167 ice_get_open_tunnel_port(struct ice_hw *hw, enum ice_tunnel_type type, 2168 u16 *port) 2169 { 2170 bool res = false; 2171 u16 i; 2172 2173 ice_acquire_lock(&hw->tnl_lock); 2174 2175 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2176 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use && 2177 (type == TNL_ALL || hw->tnl.tbl[i].type == type)) { 2178 *port = hw->tnl.tbl[i].port; 2179 res = true; 2180 break; 2181 } 2182 2183 ice_release_lock(&hw->tnl_lock); 2184 2185 return res; 2186 } 2187 2188 /** 2189 * ice_create_tunnel 2190 * @hw: pointer to the HW structure 2191 * @type: type of tunnel 2192 * @port: port of tunnel to create 2193 * 2194 * Create a tunnel by updating the parse graph in the parser. We do that by 2195 * creating a package buffer with the tunnel info and issuing an update package 2196 * command. 2197 */ 2198 enum ice_status 2199 ice_create_tunnel(struct ice_hw *hw, enum ice_tunnel_type type, u16 port) 2200 { 2201 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2202 enum ice_status status = ICE_ERR_MAX_LIMIT; 2203 struct ice_buf_build *bld; 2204 u16 index; 2205 2206 ice_acquire_lock(&hw->tnl_lock); 2207 2208 if (ice_tunnel_port_in_use_hlpr(hw, port, &index)) { 2209 hw->tnl.tbl[index].ref++; 2210 status = ICE_SUCCESS; 2211 goto ice_create_tunnel_end; 2212 } 2213 2214 if (!ice_find_free_tunnel_entry(hw, type, &index)) { 2215 status = ICE_ERR_OUT_OF_RANGE; 2216 goto ice_create_tunnel_end; 2217 } 2218 2219 bld = ice_pkg_buf_alloc(hw); 2220 if (!bld) { 2221 status = ICE_ERR_NO_MEMORY; 2222 goto ice_create_tunnel_end; 2223 } 2224 2225 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2226 if (ice_pkg_buf_reserve_section(bld, 2)) 2227 goto ice_create_tunnel_err; 2228 2229 sect_rx = (struct ice_boost_tcam_section *) 2230 ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2231 sizeof(*sect_rx)); 2232 if (!sect_rx) 2233 goto ice_create_tunnel_err; 2234 sect_rx->count = CPU_TO_LE16(1); 2235 2236 sect_tx = (struct ice_boost_tcam_section *) 2237 ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2238 sizeof(*sect_tx)); 2239 if (!sect_tx) 2240 goto ice_create_tunnel_err; 2241 sect_tx->count = CPU_TO_LE16(1); 2242 2243 /* copy original boost entry to update package buffer */ 2244 ice_memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 2245 sizeof(*sect_rx->tcam), ICE_NONDMA_TO_NONDMA); 2246 2247 /* over-write the never-match dest port key bits with the encoded port 2248 * bits 2249 */ 2250 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 2251 (u8 *)&port, NULL, NULL, NULL, 2252 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 2253 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 2254 2255 /* exact copy of entry to Tx section entry */ 2256 ice_memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam), 2257 ICE_NONDMA_TO_NONDMA); 2258 2259 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2260 if (!status) { 2261 hw->tnl.tbl[index].port = port; 2262 hw->tnl.tbl[index].in_use = true; 2263 hw->tnl.tbl[index].ref = 1; 2264 } 2265 2266 ice_create_tunnel_err: 2267 ice_pkg_buf_free(hw, bld); 2268 2269 ice_create_tunnel_end: 2270 ice_release_lock(&hw->tnl_lock); 2271 2272 return status; 2273 } 2274 2275 /** 2276 * ice_destroy_tunnel 2277 * @hw: pointer to the HW structure 2278 * @port: port of tunnel to destroy (ignored if the all parameter is true) 2279 * @all: flag that states to destroy all tunnels 2280 * 2281 * Destroys a tunnel or all tunnels by creating an update package buffer 2282 * targeting the specific updates requested and then performing an update 2283 * package. 2284 */ 2285 enum ice_status ice_destroy_tunnel(struct ice_hw *hw, u16 port, bool all) 2286 { 2287 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2288 enum ice_status status = ICE_ERR_MAX_LIMIT; 2289 struct ice_buf_build *bld; 2290 u16 count = 0; 2291 u16 index; 2292 u16 size; 2293 u16 i; 2294 2295 ice_acquire_lock(&hw->tnl_lock); 2296 2297 if (!all && ice_tunnel_port_in_use_hlpr(hw, port, &index)) 2298 if (hw->tnl.tbl[index].ref > 1) { 2299 hw->tnl.tbl[index].ref--; 2300 status = ICE_SUCCESS; 2301 goto ice_destroy_tunnel_end; 2302 } 2303 2304 /* determine count */ 2305 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2306 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use && 2307 (all || hw->tnl.tbl[i].port == port)) 2308 count++; 2309 2310 if (!count) { 2311 status = ICE_ERR_PARAM; 2312 goto ice_destroy_tunnel_end; 2313 } 2314 2315 /* size of section - there is at least one entry */ 2316 size = ice_struct_size(sect_rx, tcam, count - 1); 2317 2318 bld = ice_pkg_buf_alloc(hw); 2319 if (!bld) { 2320 status = ICE_ERR_NO_MEMORY; 2321 goto ice_destroy_tunnel_end; 2322 } 2323 2324 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2325 if (ice_pkg_buf_reserve_section(bld, 2)) 2326 goto ice_destroy_tunnel_err; 2327 2328 sect_rx = (struct ice_boost_tcam_section *) 2329 ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2330 size); 2331 if (!sect_rx) 2332 goto ice_destroy_tunnel_err; 2333 sect_rx->count = CPU_TO_LE16(1); 2334 2335 sect_tx = (struct ice_boost_tcam_section *) 2336 ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2337 size); 2338 if (!sect_tx) 2339 goto ice_destroy_tunnel_err; 2340 sect_tx->count = CPU_TO_LE16(1); 2341 2342 /* copy original boost entry to update package buffer, one copy to Rx 2343 * section, another copy to the Tx section 2344 */ 2345 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2346 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use && 2347 (all || hw->tnl.tbl[i].port == port)) { 2348 ice_memcpy(sect_rx->tcam + i, 2349 hw->tnl.tbl[i].boost_entry, 2350 sizeof(*sect_rx->tcam), 2351 ICE_NONDMA_TO_NONDMA); 2352 ice_memcpy(sect_tx->tcam + i, 2353 hw->tnl.tbl[i].boost_entry, 2354 sizeof(*sect_tx->tcam), 2355 ICE_NONDMA_TO_NONDMA); 2356 hw->tnl.tbl[i].marked = true; 2357 } 2358 2359 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2360 if (!status) 2361 for (i = 0; i < hw->tnl.count && 2362 i < ICE_TUNNEL_MAX_ENTRIES; i++) 2363 if (hw->tnl.tbl[i].marked) { 2364 hw->tnl.tbl[i].ref = 0; 2365 hw->tnl.tbl[i].port = 0; 2366 hw->tnl.tbl[i].in_use = false; 2367 hw->tnl.tbl[i].marked = false; 2368 } 2369 2370 ice_destroy_tunnel_err: 2371 ice_pkg_buf_free(hw, bld); 2372 2373 ice_destroy_tunnel_end: 2374 ice_release_lock(&hw->tnl_lock); 2375 2376 return status; 2377 } 2378 2379 /** 2380 * ice_replay_tunnels 2381 * @hw: pointer to the HW structure 2382 * 2383 * Replays all tunnels 2384 */ 2385 enum ice_status ice_replay_tunnels(struct ice_hw *hw) 2386 { 2387 enum ice_status status = ICE_SUCCESS; 2388 u16 i; 2389 2390 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 2391 2392 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) { 2393 enum ice_tunnel_type type = hw->tnl.tbl[i].type; 2394 u16 refs = hw->tnl.tbl[i].ref; 2395 u16 port = hw->tnl.tbl[i].port; 2396 2397 if (!hw->tnl.tbl[i].in_use) 2398 continue; 2399 2400 /* Replay tunnels one at a time by destroying them, then 2401 * recreating them 2402 */ 2403 hw->tnl.tbl[i].ref = 1; /* make sure to destroy in one call */ 2404 status = ice_destroy_tunnel(hw, port, false); 2405 if (status) { 2406 ice_debug(hw, ICE_DBG_PKG, 2407 "ERR: 0x%x - destroy tunnel port 0x%x\n", 2408 status, port); 2409 break; 2410 } 2411 2412 status = ice_create_tunnel(hw, type, port); 2413 if (status) { 2414 ice_debug(hw, ICE_DBG_PKG, 2415 "ERR: 0x%x - create tunnel port 0x%x\n", 2416 status, port); 2417 break; 2418 } 2419 2420 /* reset to original ref count */ 2421 hw->tnl.tbl[i].ref = refs; 2422 } 2423 2424 return status; 2425 } 2426 2427 /** 2428 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index 2429 * @hw: pointer to the hardware structure 2430 * @blk: hardware block 2431 * @prof: profile ID 2432 * @fv_idx: field vector word index 2433 * @prot: variable to receive the protocol ID 2434 * @off: variable to receive the protocol offset 2435 */ 2436 enum ice_status 2437 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx, 2438 u8 *prot, u16 *off) 2439 { 2440 struct ice_fv_word *fv_ext; 2441 2442 if (prof >= hw->blk[blk].es.count) 2443 return ICE_ERR_PARAM; 2444 2445 if (fv_idx >= hw->blk[blk].es.fvw) 2446 return ICE_ERR_PARAM; 2447 2448 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw); 2449 2450 *prot = fv_ext[fv_idx].prot_id; 2451 *off = fv_ext[fv_idx].off; 2452 2453 return ICE_SUCCESS; 2454 } 2455 2456 /* PTG Management */ 2457 2458 /** 2459 * ice_ptg_update_xlt1 - Updates packet type groups in HW via XLT1 table 2460 * @hw: pointer to the hardware structure 2461 * @blk: HW block 2462 * 2463 * This function will update the XLT1 hardware table to reflect the new 2464 * packet type group configuration. 2465 */ 2466 enum ice_status ice_ptg_update_xlt1(struct ice_hw *hw, enum ice_block blk) 2467 { 2468 struct ice_xlt1_section *sect; 2469 struct ice_buf_build *bld; 2470 enum ice_status status; 2471 u16 index; 2472 2473 bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT1), 2474 ICE_XLT1_SIZE(ICE_XLT1_CNT), 2475 (void **)§); 2476 if (!bld) 2477 return ICE_ERR_NO_MEMORY; 2478 2479 sect->count = CPU_TO_LE16(ICE_XLT1_CNT); 2480 sect->offset = CPU_TO_LE16(0); 2481 for (index = 0; index < ICE_XLT1_CNT; index++) 2482 sect->value[index] = hw->blk[blk].xlt1.ptypes[index].ptg; 2483 2484 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2485 2486 ice_pkg_buf_free(hw, bld); 2487 2488 return status; 2489 } 2490 2491 /** 2492 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 2493 * @hw: pointer to the hardware structure 2494 * @blk: HW block 2495 * @ptype: the ptype to search for 2496 * @ptg: pointer to variable that receives the PTG 2497 * 2498 * This function will search the PTGs for a particular ptype, returning the 2499 * PTG ID that contains it through the PTG parameter, with the value of 2500 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 2501 */ 2502 static enum ice_status 2503 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 2504 { 2505 if (ptype >= ICE_XLT1_CNT || !ptg) 2506 return ICE_ERR_PARAM; 2507 2508 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 2509 return ICE_SUCCESS; 2510 } 2511 2512 /** 2513 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 2514 * @hw: pointer to the hardware structure 2515 * @blk: HW block 2516 * @ptg: the PTG to allocate 2517 * 2518 * This function allocates a given packet type group ID specified by the PTG 2519 * parameter. 2520 */ 2521 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 2522 { 2523 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 2524 } 2525 2526 /** 2527 * ice_ptg_free - Frees a packet type group 2528 * @hw: pointer to the hardware structure 2529 * @blk: HW block 2530 * @ptg: the PTG ID to free 2531 * 2532 * This function frees a packet type group, and returns all the current ptypes 2533 * within it to the default PTG. 2534 */ 2535 void ice_ptg_free(struct ice_hw *hw, enum ice_block blk, u8 ptg) 2536 { 2537 struct ice_ptg_ptype *p, *temp; 2538 2539 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = false; 2540 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2541 while (p) { 2542 p->ptg = ICE_DEFAULT_PTG; 2543 temp = p->next_ptype; 2544 p->next_ptype = NULL; 2545 p = temp; 2546 } 2547 2548 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = NULL; 2549 } 2550 2551 /** 2552 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 2553 * @hw: pointer to the hardware structure 2554 * @blk: HW block 2555 * @ptype: the ptype to remove 2556 * @ptg: the PTG to remove the ptype from 2557 * 2558 * This function will remove the ptype from the specific PTG, and move it to 2559 * the default PTG (ICE_DEFAULT_PTG). 2560 */ 2561 static enum ice_status 2562 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2563 { 2564 struct ice_ptg_ptype **ch; 2565 struct ice_ptg_ptype *p; 2566 2567 if (ptype > ICE_XLT1_CNT - 1) 2568 return ICE_ERR_PARAM; 2569 2570 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 2571 return ICE_ERR_DOES_NOT_EXIST; 2572 2573 /* Should not happen if .in_use is set, bad config */ 2574 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 2575 return ICE_ERR_CFG; 2576 2577 /* find the ptype within this PTG, and bypass the link over it */ 2578 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2579 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2580 while (p) { 2581 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 2582 *ch = p->next_ptype; 2583 break; 2584 } 2585 2586 ch = &p->next_ptype; 2587 p = p->next_ptype; 2588 } 2589 2590 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 2591 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 2592 2593 return ICE_SUCCESS; 2594 } 2595 2596 /** 2597 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 2598 * @hw: pointer to the hardware structure 2599 * @blk: HW block 2600 * @ptype: the ptype to add or move 2601 * @ptg: the PTG to add or move the ptype to 2602 * 2603 * This function will either add or move a ptype to a particular PTG depending 2604 * on if the ptype is already part of another group. Note that using a 2605 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 2606 * default PTG. 2607 */ 2608 static enum ice_status 2609 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2610 { 2611 enum ice_status status; 2612 u8 original_ptg; 2613 2614 if (ptype > ICE_XLT1_CNT - 1) 2615 return ICE_ERR_PARAM; 2616 2617 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 2618 return ICE_ERR_DOES_NOT_EXIST; 2619 2620 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 2621 if (status) 2622 return status; 2623 2624 /* Is ptype already in the correct PTG? */ 2625 if (original_ptg == ptg) 2626 return ICE_SUCCESS; 2627 2628 /* Remove from original PTG and move back to the default PTG */ 2629 if (original_ptg != ICE_DEFAULT_PTG) 2630 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 2631 2632 /* Moving to default PTG? Then we're done with this request */ 2633 if (ptg == ICE_DEFAULT_PTG) 2634 return ICE_SUCCESS; 2635 2636 /* Add ptype to PTG at beginning of list */ 2637 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 2638 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2639 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 2640 &hw->blk[blk].xlt1.ptypes[ptype]; 2641 2642 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 2643 hw->blk[blk].xlt1.t[ptype] = ptg; 2644 2645 return ICE_SUCCESS; 2646 } 2647 2648 /* Block / table size info */ 2649 struct ice_blk_size_details { 2650 u16 xlt1; /* # XLT1 entries */ 2651 u16 xlt2; /* # XLT2 entries */ 2652 u16 prof_tcam; /* # profile ID TCAM entries */ 2653 u16 prof_id; /* # profile IDs */ 2654 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 2655 u16 prof_redir; /* # profile redirection entries */ 2656 u16 es; /* # extraction sequence entries */ 2657 u16 fvw; /* # field vector words */ 2658 u8 overwrite; /* overwrite existing entries allowed */ 2659 u8 reverse; /* reverse FV order */ 2660 }; 2661 2662 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 2663 /** 2664 * Table Definitions 2665 * XLT1 - Number of entries in XLT1 table 2666 * XLT2 - Number of entries in XLT2 table 2667 * TCAM - Number of entries Profile ID TCAM table 2668 * CDID - Control Domain ID of the hardware block 2669 * PRED - Number of entries in the Profile Redirection Table 2670 * FV - Number of entries in the Field Vector 2671 * FVW - Width (in WORDs) of the Field Vector 2672 * OVR - Overwrite existing table entries 2673 * REV - Reverse FV 2674 */ 2675 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 2676 /* Overwrite , Reverse FV */ 2677 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 2678 false, false }, 2679 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 2680 false, false }, 2681 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2682 false, true }, 2683 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2684 true, true }, 2685 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 2686 false, false }, 2687 }; 2688 2689 enum ice_sid_all { 2690 ICE_SID_XLT1_OFF = 0, 2691 ICE_SID_XLT2_OFF, 2692 ICE_SID_PR_OFF, 2693 ICE_SID_PR_REDIR_OFF, 2694 ICE_SID_ES_OFF, 2695 ICE_SID_OFF_COUNT, 2696 }; 2697 2698 /* Characteristic handling */ 2699 2700 /** 2701 * ice_match_prop_lst - determine if properties of two lists match 2702 * @list1: first properties list 2703 * @list2: second properties list 2704 * 2705 * Count, cookies and the order must match in order to be considered equivalent. 2706 */ 2707 static bool 2708 ice_match_prop_lst(struct LIST_HEAD_TYPE *list1, struct LIST_HEAD_TYPE *list2) 2709 { 2710 struct ice_vsig_prof *tmp1; 2711 struct ice_vsig_prof *tmp2; 2712 u16 chk_count = 0; 2713 u16 count = 0; 2714 2715 /* compare counts */ 2716 LIST_FOR_EACH_ENTRY(tmp1, list1, ice_vsig_prof, list) { 2717 count++; 2718 } 2719 LIST_FOR_EACH_ENTRY(tmp2, list2, ice_vsig_prof, list) { 2720 chk_count++; 2721 } 2722 if (!count || count != chk_count) 2723 return false; 2724 2725 tmp1 = LIST_FIRST_ENTRY(list1, struct ice_vsig_prof, list); 2726 tmp2 = LIST_FIRST_ENTRY(list2, struct ice_vsig_prof, list); 2727 2728 /* profile cookies must compare, and in the exact same order to take 2729 * into account priority 2730 */ 2731 while (count--) { 2732 if (tmp2->profile_cookie != tmp1->profile_cookie) 2733 return false; 2734 2735 tmp1 = LIST_NEXT_ENTRY(tmp1, struct ice_vsig_prof, list); 2736 tmp2 = LIST_NEXT_ENTRY(tmp2, struct ice_vsig_prof, list); 2737 } 2738 2739 return true; 2740 } 2741 2742 /* VSIG Management */ 2743 2744 /** 2745 * ice_vsig_update_xlt2_sect - update one section of XLT2 table 2746 * @hw: pointer to the hardware structure 2747 * @blk: HW block 2748 * @vsi: HW VSI number to program 2749 * @vsig: VSIG for the VSI 2750 * 2751 * This function will update the XLT2 hardware table with the input VSI 2752 * group configuration. 2753 */ 2754 static enum ice_status 2755 ice_vsig_update_xlt2_sect(struct ice_hw *hw, enum ice_block blk, u16 vsi, 2756 u16 vsig) 2757 { 2758 struct ice_xlt2_section *sect; 2759 struct ice_buf_build *bld; 2760 enum ice_status status; 2761 2762 bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT2), 2763 sizeof(struct ice_xlt2_section), 2764 (void **)§); 2765 if (!bld) 2766 return ICE_ERR_NO_MEMORY; 2767 2768 sect->count = CPU_TO_LE16(1); 2769 sect->offset = CPU_TO_LE16(vsi); 2770 sect->value[0] = CPU_TO_LE16(vsig); 2771 2772 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2773 2774 ice_pkg_buf_free(hw, bld); 2775 2776 return status; 2777 } 2778 2779 /** 2780 * ice_vsig_update_xlt2 - update XLT2 table with VSIG configuration 2781 * @hw: pointer to the hardware structure 2782 * @blk: HW block 2783 * 2784 * This function will update the XLT2 hardware table with the input VSI 2785 * group configuration of used vsis. 2786 */ 2787 enum ice_status ice_vsig_update_xlt2(struct ice_hw *hw, enum ice_block blk) 2788 { 2789 u16 vsi; 2790 2791 for (vsi = 0; vsi < ICE_MAX_VSI; vsi++) { 2792 /* update only vsis that have been changed */ 2793 if (hw->blk[blk].xlt2.vsis[vsi].changed) { 2794 enum ice_status status; 2795 u16 vsig; 2796 2797 vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2798 status = ice_vsig_update_xlt2_sect(hw, blk, vsi, vsig); 2799 if (status) 2800 return status; 2801 2802 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 2803 } 2804 } 2805 2806 return ICE_SUCCESS; 2807 } 2808 2809 /** 2810 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 2811 * @hw: pointer to the hardware structure 2812 * @blk: HW block 2813 * @vsi: VSI of interest 2814 * @vsig: pointer to receive the VSI group 2815 * 2816 * This function will lookup the VSI entry in the XLT2 list and return 2817 * the VSI group its associated with. 2818 */ 2819 enum ice_status 2820 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 2821 { 2822 if (!vsig || vsi >= ICE_MAX_VSI) 2823 return ICE_ERR_PARAM; 2824 2825 /* As long as there's a default or valid VSIG associated with the input 2826 * VSI, the functions returns a success. Any handling of VSIG will be 2827 * done by the following add, update or remove functions. 2828 */ 2829 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2830 2831 return ICE_SUCCESS; 2832 } 2833 2834 /** 2835 * ice_vsig_alloc_val - allocate a new VSIG by value 2836 * @hw: pointer to the hardware structure 2837 * @blk: HW block 2838 * @vsig: the VSIG to allocate 2839 * 2840 * This function will allocate a given VSIG specified by the VSIG parameter. 2841 */ 2842 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2843 { 2844 u16 idx = vsig & ICE_VSIG_IDX_M; 2845 2846 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 2847 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2848 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 2849 } 2850 2851 return ICE_VSIG_VALUE(idx, hw->pf_id); 2852 } 2853 2854 /** 2855 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 2856 * @hw: pointer to the hardware structure 2857 * @blk: HW block 2858 * 2859 * This function will iterate through the VSIG list and mark the first 2860 * unused entry for the new VSIG entry as used and return that value. 2861 */ 2862 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 2863 { 2864 u16 i; 2865 2866 for (i = 1; i < ICE_MAX_VSIGS; i++) 2867 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2868 return ice_vsig_alloc_val(hw, blk, i); 2869 2870 return ICE_DEFAULT_VSIG; 2871 } 2872 2873 /** 2874 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 2875 * @hw: pointer to the hardware structure 2876 * @blk: HW block 2877 * @chs: characteristic list 2878 * @vsig: returns the VSIG with the matching profiles, if found 2879 * 2880 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 2881 * a group have the same characteristic set. To check if there exists a VSIG 2882 * which has the same characteristics as the input characteristics; this 2883 * function will iterate through the XLT2 list and return the VSIG that has a 2884 * matching configuration. In order to make sure that priorities are accounted 2885 * for, the list must match exactly, including the order in which the 2886 * characteristics are listed. 2887 */ 2888 static enum ice_status 2889 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 2890 struct LIST_HEAD_TYPE *chs, u16 *vsig) 2891 { 2892 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 2893 u16 i; 2894 2895 for (i = 0; i < xlt2->count; i++) { 2896 if (xlt2->vsig_tbl[i].in_use && 2897 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 2898 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 2899 return ICE_SUCCESS; 2900 } 2901 } 2902 2903 return ICE_ERR_DOES_NOT_EXIST; 2904 } 2905 2906 /** 2907 * ice_vsig_free - free VSI group 2908 * @hw: pointer to the hardware structure 2909 * @blk: HW block 2910 * @vsig: VSIG to remove 2911 * 2912 * The function will remove all VSIs associated with the input VSIG and move 2913 * them to the DEFAULT_VSIG and mark the VSIG available. 2914 */ 2915 static enum ice_status 2916 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2917 { 2918 struct ice_vsig_prof *dtmp, *del; 2919 struct ice_vsig_vsi *vsi_cur; 2920 u16 idx; 2921 2922 idx = vsig & ICE_VSIG_IDX_M; 2923 if (idx >= ICE_MAX_VSIGS) 2924 return ICE_ERR_PARAM; 2925 2926 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2927 return ICE_ERR_DOES_NOT_EXIST; 2928 2929 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 2930 2931 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2932 /* If the VSIG has at least 1 VSI then iterate through the 2933 * list and remove the VSIs before deleting the group. 2934 */ 2935 if (vsi_cur) { 2936 /* remove all vsis associated with this VSIG XLT2 entry */ 2937 do { 2938 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 2939 2940 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2941 vsi_cur->changed = 1; 2942 vsi_cur->next_vsi = NULL; 2943 vsi_cur = tmp; 2944 } while (vsi_cur); 2945 2946 /* NULL terminate head of VSI list */ 2947 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 2948 } 2949 2950 /* free characteristic list */ 2951 LIST_FOR_EACH_ENTRY_SAFE(del, dtmp, 2952 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 2953 ice_vsig_prof, list) { 2954 LIST_DEL(&del->list); 2955 ice_free(hw, del); 2956 } 2957 2958 /* if VSIG characteristic list was cleared for reset 2959 * re-initialize the list head 2960 */ 2961 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2962 2963 return ICE_SUCCESS; 2964 } 2965 2966 /** 2967 * ice_vsig_remove_vsi - remove VSI from VSIG 2968 * @hw: pointer to the hardware structure 2969 * @blk: HW block 2970 * @vsi: VSI to remove 2971 * @vsig: VSI group to remove from 2972 * 2973 * The function will remove the input VSI from its VSI group and move it 2974 * to the DEFAULT_VSIG. 2975 */ 2976 static enum ice_status 2977 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2978 { 2979 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 2980 u16 idx; 2981 2982 idx = vsig & ICE_VSIG_IDX_M; 2983 2984 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2985 return ICE_ERR_PARAM; 2986 2987 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2988 return ICE_ERR_DOES_NOT_EXIST; 2989 2990 /* entry already in default VSIG, don't have to remove */ 2991 if (idx == ICE_DEFAULT_VSIG) 2992 return ICE_SUCCESS; 2993 2994 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2995 if (!(*vsi_head)) 2996 return ICE_ERR_CFG; 2997 2998 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 2999 vsi_cur = (*vsi_head); 3000 3001 /* iterate the VSI list, skip over the entry to be removed */ 3002 while (vsi_cur) { 3003 if (vsi_tgt == vsi_cur) { 3004 (*vsi_head) = vsi_cur->next_vsi; 3005 break; 3006 } 3007 vsi_head = &vsi_cur->next_vsi; 3008 vsi_cur = vsi_cur->next_vsi; 3009 } 3010 3011 /* verify if VSI was removed from group list */ 3012 if (!vsi_cur) 3013 return ICE_ERR_DOES_NOT_EXIST; 3014 3015 vsi_cur->vsig = ICE_DEFAULT_VSIG; 3016 vsi_cur->changed = 1; 3017 vsi_cur->next_vsi = NULL; 3018 3019 return ICE_SUCCESS; 3020 } 3021 3022 /** 3023 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 3024 * @hw: pointer to the hardware structure 3025 * @blk: HW block 3026 * @vsi: VSI to move 3027 * @vsig: destination VSI group 3028 * 3029 * This function will move or add the input VSI to the target VSIG. 3030 * The function will find the original VSIG the VSI belongs to and 3031 * move the entry to the DEFAULT_VSIG, update the original VSIG and 3032 * then move entry to the new VSIG. 3033 */ 3034 static enum ice_status 3035 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 3036 { 3037 struct ice_vsig_vsi *tmp; 3038 enum ice_status status; 3039 u16 orig_vsig, idx; 3040 3041 idx = vsig & ICE_VSIG_IDX_M; 3042 3043 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 3044 return ICE_ERR_PARAM; 3045 3046 /* if VSIG not in use and VSIG is not default type this VSIG 3047 * doesn't exist. 3048 */ 3049 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 3050 vsig != ICE_DEFAULT_VSIG) 3051 return ICE_ERR_DOES_NOT_EXIST; 3052 3053 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 3054 if (status) 3055 return status; 3056 3057 /* no update required if vsigs match */ 3058 if (orig_vsig == vsig) 3059 return ICE_SUCCESS; 3060 3061 if (orig_vsig != ICE_DEFAULT_VSIG) { 3062 /* remove entry from orig_vsig and add to default VSIG */ 3063 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 3064 if (status) 3065 return status; 3066 } 3067 3068 if (idx == ICE_DEFAULT_VSIG) 3069 return ICE_SUCCESS; 3070 3071 /* Create VSI entry and add VSIG and prop_mask values */ 3072 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 3073 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 3074 3075 /* Add new entry to the head of the VSIG list */ 3076 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3077 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 3078 &hw->blk[blk].xlt2.vsis[vsi]; 3079 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 3080 hw->blk[blk].xlt2.t[vsi] = vsig; 3081 3082 return ICE_SUCCESS; 3083 } 3084 3085 /** 3086 * ice_find_prof_id - find profile ID for a given field vector 3087 * @hw: pointer to the hardware structure 3088 * @blk: HW block 3089 * @fv: field vector to search for 3090 * @prof_id: receives the profile ID 3091 */ 3092 static enum ice_status 3093 ice_find_prof_id(struct ice_hw *hw, enum ice_block blk, 3094 struct ice_fv_word *fv, u8 *prof_id) 3095 { 3096 struct ice_es *es = &hw->blk[blk].es; 3097 u16 off; 3098 u8 i; 3099 3100 for (i = 0; i < (u8)es->count; i++) { 3101 off = i * es->fvw; 3102 3103 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 3104 continue; 3105 3106 *prof_id = i; 3107 return ICE_SUCCESS; 3108 } 3109 3110 return ICE_ERR_DOES_NOT_EXIST; 3111 } 3112 3113 /** 3114 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 3115 * @blk: the block type 3116 * @rsrc_type: pointer to variable to receive the resource type 3117 */ 3118 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 3119 { 3120 switch (blk) { 3121 case ICE_BLK_SW: 3122 *rsrc_type = ICE_AQC_RES_TYPE_SWITCH_PROF_BLDR_PROFID; 3123 break; 3124 case ICE_BLK_ACL: 3125 *rsrc_type = ICE_AQC_RES_TYPE_ACL_PROF_BLDR_PROFID; 3126 break; 3127 case ICE_BLK_FD: 3128 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; 3129 break; 3130 case ICE_BLK_RSS: 3131 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 3132 break; 3133 case ICE_BLK_PE: 3134 *rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_PROFID; 3135 break; 3136 default: 3137 return false; 3138 } 3139 return true; 3140 } 3141 3142 /** 3143 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 3144 * @blk: the block type 3145 * @rsrc_type: pointer to variable to receive the resource type 3146 */ 3147 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 3148 { 3149 switch (blk) { 3150 case ICE_BLK_SW: 3151 *rsrc_type = ICE_AQC_RES_TYPE_SWITCH_PROF_BLDR_TCAM; 3152 break; 3153 case ICE_BLK_ACL: 3154 *rsrc_type = ICE_AQC_RES_TYPE_ACL_PROF_BLDR_TCAM; 3155 break; 3156 case ICE_BLK_FD: 3157 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; 3158 break; 3159 case ICE_BLK_RSS: 3160 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 3161 break; 3162 case ICE_BLK_PE: 3163 *rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_TCAM; 3164 break; 3165 default: 3166 return false; 3167 } 3168 return true; 3169 } 3170 3171 /** 3172 * ice_alloc_tcam_ent - allocate hardware TCAM entry 3173 * @hw: pointer to the HW struct 3174 * @blk: the block to allocate the TCAM for 3175 * @tcam_idx: pointer to variable to receive the TCAM entry 3176 * 3177 * This function allocates a new entry in a Profile ID TCAM for a specific 3178 * block. 3179 */ 3180 static enum ice_status 3181 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 *tcam_idx) 3182 { 3183 u16 res_type; 3184 3185 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 3186 return ICE_ERR_PARAM; 3187 3188 return ice_alloc_hw_res(hw, res_type, 1, true, tcam_idx); 3189 } 3190 3191 /** 3192 * ice_free_tcam_ent - free hardware TCAM entry 3193 * @hw: pointer to the HW struct 3194 * @blk: the block from which to free the TCAM entry 3195 * @tcam_idx: the TCAM entry to free 3196 * 3197 * This function frees an entry in a Profile ID TCAM for a specific block. 3198 */ 3199 static enum ice_status 3200 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 3201 { 3202 u16 res_type; 3203 3204 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 3205 return ICE_ERR_PARAM; 3206 3207 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 3208 } 3209 3210 /** 3211 * ice_alloc_prof_id - allocate profile ID 3212 * @hw: pointer to the HW struct 3213 * @blk: the block to allocate the profile ID for 3214 * @prof_id: pointer to variable to receive the profile ID 3215 * 3216 * This function allocates a new profile ID, which also corresponds to a Field 3217 * Vector (Extraction Sequence) entry. 3218 */ 3219 static enum ice_status 3220 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 3221 { 3222 enum ice_status status; 3223 u16 res_type; 3224 u16 get_prof; 3225 3226 if (!ice_prof_id_rsrc_type(blk, &res_type)) 3227 return ICE_ERR_PARAM; 3228 3229 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 3230 if (!status) 3231 *prof_id = (u8)get_prof; 3232 3233 return status; 3234 } 3235 3236 /** 3237 * ice_free_prof_id - free profile ID 3238 * @hw: pointer to the HW struct 3239 * @blk: the block from which to free the profile ID 3240 * @prof_id: the profile ID to free 3241 * 3242 * This function frees a profile ID, which also corresponds to a Field Vector. 3243 */ 3244 static enum ice_status 3245 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3246 { 3247 u16 tmp_prof_id = (u16)prof_id; 3248 u16 res_type; 3249 3250 if (!ice_prof_id_rsrc_type(blk, &res_type)) 3251 return ICE_ERR_PARAM; 3252 3253 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 3254 } 3255 3256 /** 3257 * ice_prof_inc_ref - increment reference count for profile 3258 * @hw: pointer to the HW struct 3259 * @blk: the block from which to free the profile ID 3260 * @prof_id: the profile ID for which to increment the reference count 3261 */ 3262 static enum ice_status 3263 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3264 { 3265 if (prof_id > hw->blk[blk].es.count) 3266 return ICE_ERR_PARAM; 3267 3268 hw->blk[blk].es.ref_count[prof_id]++; 3269 3270 return ICE_SUCCESS; 3271 } 3272 3273 /** 3274 * ice_write_es - write an extraction sequence to hardware 3275 * @hw: pointer to the HW struct 3276 * @blk: the block in which to write the extraction sequence 3277 * @prof_id: the profile ID to write 3278 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 3279 */ 3280 static void 3281 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 3282 struct ice_fv_word *fv) 3283 { 3284 u16 off; 3285 3286 off = prof_id * hw->blk[blk].es.fvw; 3287 if (!fv) { 3288 ice_memset(&hw->blk[blk].es.t[off], 0, hw->blk[blk].es.fvw * 3289 sizeof(*fv), ICE_NONDMA_MEM); 3290 hw->blk[blk].es.written[prof_id] = false; 3291 } else { 3292 ice_memcpy(&hw->blk[blk].es.t[off], fv, hw->blk[blk].es.fvw * 3293 sizeof(*fv), ICE_NONDMA_TO_NONDMA); 3294 } 3295 } 3296 3297 /** 3298 * ice_prof_dec_ref - decrement reference count for profile 3299 * @hw: pointer to the HW struct 3300 * @blk: the block from which to free the profile ID 3301 * @prof_id: the profile ID for which to decrement the reference count 3302 */ 3303 static enum ice_status 3304 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3305 { 3306 if (prof_id > hw->blk[blk].es.count) 3307 return ICE_ERR_PARAM; 3308 3309 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 3310 if (!--hw->blk[blk].es.ref_count[prof_id]) { 3311 ice_write_es(hw, blk, prof_id, NULL); 3312 return ice_free_prof_id(hw, blk, prof_id); 3313 } 3314 } 3315 3316 return ICE_SUCCESS; 3317 } 3318 3319 /* Block / table section IDs */ 3320 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 3321 /* SWITCH */ 3322 { ICE_SID_XLT1_SW, 3323 ICE_SID_XLT2_SW, 3324 ICE_SID_PROFID_TCAM_SW, 3325 ICE_SID_PROFID_REDIR_SW, 3326 ICE_SID_FLD_VEC_SW 3327 }, 3328 3329 /* ACL */ 3330 { ICE_SID_XLT1_ACL, 3331 ICE_SID_XLT2_ACL, 3332 ICE_SID_PROFID_TCAM_ACL, 3333 ICE_SID_PROFID_REDIR_ACL, 3334 ICE_SID_FLD_VEC_ACL 3335 }, 3336 3337 /* FD */ 3338 { ICE_SID_XLT1_FD, 3339 ICE_SID_XLT2_FD, 3340 ICE_SID_PROFID_TCAM_FD, 3341 ICE_SID_PROFID_REDIR_FD, 3342 ICE_SID_FLD_VEC_FD 3343 }, 3344 3345 /* RSS */ 3346 { ICE_SID_XLT1_RSS, 3347 ICE_SID_XLT2_RSS, 3348 ICE_SID_PROFID_TCAM_RSS, 3349 ICE_SID_PROFID_REDIR_RSS, 3350 ICE_SID_FLD_VEC_RSS 3351 }, 3352 3353 /* PE */ 3354 { ICE_SID_XLT1_PE, 3355 ICE_SID_XLT2_PE, 3356 ICE_SID_PROFID_TCAM_PE, 3357 ICE_SID_PROFID_REDIR_PE, 3358 ICE_SID_FLD_VEC_PE 3359 } 3360 }; 3361 3362 /** 3363 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 3364 * @hw: pointer to the hardware structure 3365 * @blk: the HW block to initialize 3366 */ 3367 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 3368 { 3369 u16 pt; 3370 3371 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 3372 u8 ptg; 3373 3374 ptg = hw->blk[blk].xlt1.t[pt]; 3375 if (ptg != ICE_DEFAULT_PTG) { 3376 ice_ptg_alloc_val(hw, blk, ptg); 3377 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 3378 } 3379 } 3380 } 3381 3382 /** 3383 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 3384 * @hw: pointer to the hardware structure 3385 * @blk: the HW block to initialize 3386 */ 3387 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 3388 { 3389 u16 vsi; 3390 3391 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 3392 u16 vsig; 3393 3394 vsig = hw->blk[blk].xlt2.t[vsi]; 3395 if (vsig) { 3396 ice_vsig_alloc_val(hw, blk, vsig); 3397 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 3398 /* no changes at this time, since this has been 3399 * initialized from the original package 3400 */ 3401 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 3402 } 3403 } 3404 } 3405 3406 /** 3407 * ice_init_sw_db - init software database from HW tables 3408 * @hw: pointer to the hardware structure 3409 */ 3410 static void ice_init_sw_db(struct ice_hw *hw) 3411 { 3412 u16 i; 3413 3414 for (i = 0; i < ICE_BLK_COUNT; i++) { 3415 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 3416 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 3417 } 3418 } 3419 3420 /** 3421 * ice_fill_tbl - Reads content of a single table type into database 3422 * @hw: pointer to the hardware structure 3423 * @block_id: Block ID of the table to copy 3424 * @sid: Section ID of the table to copy 3425 * 3426 * Will attempt to read the entire content of a given table of a single block 3427 * into the driver database. We assume that the buffer will always 3428 * be as large or larger than the data contained in the package. If 3429 * this condition is not met, there is most likely an error in the package 3430 * contents. 3431 */ 3432 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 3433 { 3434 u32 dst_len, sect_len, offset = 0; 3435 struct ice_prof_redir_section *pr; 3436 struct ice_prof_id_section *pid; 3437 struct ice_xlt1_section *xlt1; 3438 struct ice_xlt2_section *xlt2; 3439 struct ice_sw_fv_section *es; 3440 struct ice_pkg_enum state; 3441 u8 *src, *dst; 3442 void *sect; 3443 3444 /* if the HW segment pointer is null then the first iteration of 3445 * ice_pkg_enum_section() will fail. In this case the HW tables will 3446 * not be filled and return success. 3447 */ 3448 if (!hw->seg) { 3449 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 3450 return; 3451 } 3452 3453 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 3454 3455 sect = ice_pkg_enum_section(hw->seg, &state, sid); 3456 3457 while (sect) { 3458 switch (sid) { 3459 case ICE_SID_XLT1_SW: 3460 case ICE_SID_XLT1_FD: 3461 case ICE_SID_XLT1_RSS: 3462 case ICE_SID_XLT1_ACL: 3463 case ICE_SID_XLT1_PE: 3464 xlt1 = (struct ice_xlt1_section *)sect; 3465 src = xlt1->value; 3466 sect_len = LE16_TO_CPU(xlt1->count) * 3467 sizeof(*hw->blk[block_id].xlt1.t); 3468 dst = hw->blk[block_id].xlt1.t; 3469 dst_len = hw->blk[block_id].xlt1.count * 3470 sizeof(*hw->blk[block_id].xlt1.t); 3471 break; 3472 case ICE_SID_XLT2_SW: 3473 case ICE_SID_XLT2_FD: 3474 case ICE_SID_XLT2_RSS: 3475 case ICE_SID_XLT2_ACL: 3476 case ICE_SID_XLT2_PE: 3477 xlt2 = (struct ice_xlt2_section *)sect; 3478 src = (_FORCE_ u8 *)xlt2->value; 3479 sect_len = LE16_TO_CPU(xlt2->count) * 3480 sizeof(*hw->blk[block_id].xlt2.t); 3481 dst = (u8 *)hw->blk[block_id].xlt2.t; 3482 dst_len = hw->blk[block_id].xlt2.count * 3483 sizeof(*hw->blk[block_id].xlt2.t); 3484 break; 3485 case ICE_SID_PROFID_TCAM_SW: 3486 case ICE_SID_PROFID_TCAM_FD: 3487 case ICE_SID_PROFID_TCAM_RSS: 3488 case ICE_SID_PROFID_TCAM_ACL: 3489 case ICE_SID_PROFID_TCAM_PE: 3490 pid = (struct ice_prof_id_section *)sect; 3491 src = (u8 *)pid->entry; 3492 sect_len = LE16_TO_CPU(pid->count) * 3493 sizeof(*hw->blk[block_id].prof.t); 3494 dst = (u8 *)hw->blk[block_id].prof.t; 3495 dst_len = hw->blk[block_id].prof.count * 3496 sizeof(*hw->blk[block_id].prof.t); 3497 break; 3498 case ICE_SID_PROFID_REDIR_SW: 3499 case ICE_SID_PROFID_REDIR_FD: 3500 case ICE_SID_PROFID_REDIR_RSS: 3501 case ICE_SID_PROFID_REDIR_ACL: 3502 case ICE_SID_PROFID_REDIR_PE: 3503 pr = (struct ice_prof_redir_section *)sect; 3504 src = pr->redir_value; 3505 sect_len = LE16_TO_CPU(pr->count) * 3506 sizeof(*hw->blk[block_id].prof_redir.t); 3507 dst = hw->blk[block_id].prof_redir.t; 3508 dst_len = hw->blk[block_id].prof_redir.count * 3509 sizeof(*hw->blk[block_id].prof_redir.t); 3510 break; 3511 case ICE_SID_FLD_VEC_SW: 3512 case ICE_SID_FLD_VEC_FD: 3513 case ICE_SID_FLD_VEC_RSS: 3514 case ICE_SID_FLD_VEC_ACL: 3515 case ICE_SID_FLD_VEC_PE: 3516 es = (struct ice_sw_fv_section *)sect; 3517 src = (u8 *)es->fv; 3518 sect_len = (u32)(LE16_TO_CPU(es->count) * 3519 hw->blk[block_id].es.fvw) * 3520 sizeof(*hw->blk[block_id].es.t); 3521 dst = (u8 *)hw->blk[block_id].es.t; 3522 dst_len = (u32)(hw->blk[block_id].es.count * 3523 hw->blk[block_id].es.fvw) * 3524 sizeof(*hw->blk[block_id].es.t); 3525 break; 3526 default: 3527 return; 3528 } 3529 3530 /* if the section offset exceeds destination length, terminate 3531 * table fill. 3532 */ 3533 if (offset > dst_len) 3534 return; 3535 3536 /* if the sum of section size and offset exceed destination size 3537 * then we are out of bounds of the HW table size for that PF. 3538 * Changing section length to fill the remaining table space 3539 * of that PF. 3540 */ 3541 if ((offset + sect_len) > dst_len) 3542 sect_len = dst_len - offset; 3543 3544 ice_memcpy(dst + offset, src, sect_len, ICE_NONDMA_TO_NONDMA); 3545 offset += sect_len; 3546 sect = ice_pkg_enum_section(NULL, &state, sid); 3547 } 3548 } 3549 3550 /** 3551 * ice_fill_blk_tbls - Read package context for tables 3552 * @hw: pointer to the hardware structure 3553 * 3554 * Reads the current package contents and populates the driver 3555 * database with the data iteratively for all advanced feature 3556 * blocks. Assume that the HW tables have been allocated. 3557 */ 3558 void ice_fill_blk_tbls(struct ice_hw *hw) 3559 { 3560 u8 i; 3561 3562 for (i = 0; i < ICE_BLK_COUNT; i++) { 3563 enum ice_block blk_id = (enum ice_block)i; 3564 3565 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 3566 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 3567 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 3568 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 3569 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 3570 } 3571 3572 ice_init_sw_db(hw); 3573 } 3574 3575 /** 3576 * ice_free_prof_map - free profile map 3577 * @hw: pointer to the hardware structure 3578 * @blk_idx: HW block index 3579 */ 3580 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 3581 { 3582 struct ice_es *es = &hw->blk[blk_idx].es; 3583 struct ice_prof_map *del, *tmp; 3584 3585 ice_acquire_lock(&es->prof_map_lock); 3586 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &es->prof_map, 3587 ice_prof_map, list) { 3588 LIST_DEL(&del->list); 3589 ice_free(hw, del); 3590 } 3591 INIT_LIST_HEAD(&es->prof_map); 3592 ice_release_lock(&es->prof_map_lock); 3593 } 3594 3595 /** 3596 * ice_free_flow_profs - free flow profile entries 3597 * @hw: pointer to the hardware structure 3598 * @blk_idx: HW block index 3599 */ 3600 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 3601 { 3602 struct ice_flow_prof *p, *tmp; 3603 3604 ice_acquire_lock(&hw->fl_profs_locks[blk_idx]); 3605 LIST_FOR_EACH_ENTRY_SAFE(p, tmp, &hw->fl_profs[blk_idx], 3606 ice_flow_prof, l_entry) { 3607 struct ice_flow_entry *e, *t; 3608 3609 LIST_FOR_EACH_ENTRY_SAFE(e, t, &p->entries, 3610 ice_flow_entry, l_entry) 3611 ice_flow_rem_entry(hw, (enum ice_block)blk_idx, 3612 ICE_FLOW_ENTRY_HNDL(e)); 3613 3614 LIST_DEL(&p->l_entry); 3615 if (p->acts) 3616 ice_free(hw, p->acts); 3617 ice_free(hw, p); 3618 } 3619 ice_release_lock(&hw->fl_profs_locks[blk_idx]); 3620 3621 /* if driver is in reset and tables are being cleared 3622 * re-initialize the flow profile list heads 3623 */ 3624 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3625 } 3626 3627 /** 3628 * ice_free_vsig_tbl - free complete VSIG table entries 3629 * @hw: pointer to the hardware structure 3630 * @blk: the HW block on which to free the VSIG table entries 3631 */ 3632 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 3633 { 3634 u16 i; 3635 3636 if (!hw->blk[blk].xlt2.vsig_tbl) 3637 return; 3638 3639 for (i = 1; i < ICE_MAX_VSIGS; i++) 3640 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 3641 ice_vsig_free(hw, blk, i); 3642 } 3643 3644 /** 3645 * ice_free_hw_tbls - free hardware table memory 3646 * @hw: pointer to the hardware structure 3647 */ 3648 void ice_free_hw_tbls(struct ice_hw *hw) 3649 { 3650 struct ice_rss_cfg *r, *rt; 3651 u8 i; 3652 3653 for (i = 0; i < ICE_BLK_COUNT; i++) { 3654 if (hw->blk[i].is_list_init) { 3655 struct ice_es *es = &hw->blk[i].es; 3656 3657 ice_free_prof_map(hw, i); 3658 ice_destroy_lock(&es->prof_map_lock); 3659 3660 ice_free_flow_profs(hw, i); 3661 ice_destroy_lock(&hw->fl_profs_locks[i]); 3662 3663 hw->blk[i].is_list_init = false; 3664 } 3665 ice_free_vsig_tbl(hw, (enum ice_block)i); 3666 ice_free(hw, hw->blk[i].xlt1.ptypes); 3667 ice_free(hw, hw->blk[i].xlt1.ptg_tbl); 3668 ice_free(hw, hw->blk[i].xlt1.t); 3669 ice_free(hw, hw->blk[i].xlt2.t); 3670 ice_free(hw, hw->blk[i].xlt2.vsig_tbl); 3671 ice_free(hw, hw->blk[i].xlt2.vsis); 3672 ice_free(hw, hw->blk[i].prof.t); 3673 ice_free(hw, hw->blk[i].prof_redir.t); 3674 ice_free(hw, hw->blk[i].es.t); 3675 ice_free(hw, hw->blk[i].es.ref_count); 3676 ice_free(hw, hw->blk[i].es.written); 3677 } 3678 3679 LIST_FOR_EACH_ENTRY_SAFE(r, rt, &hw->rss_list_head, 3680 ice_rss_cfg, l_entry) { 3681 LIST_DEL(&r->l_entry); 3682 ice_free(hw, r); 3683 } 3684 ice_destroy_lock(&hw->rss_locks); 3685 ice_memset(hw->blk, 0, sizeof(hw->blk), ICE_NONDMA_MEM); 3686 } 3687 3688 /** 3689 * ice_init_flow_profs - init flow profile locks and list heads 3690 * @hw: pointer to the hardware structure 3691 * @blk_idx: HW block index 3692 */ 3693 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 3694 { 3695 ice_init_lock(&hw->fl_profs_locks[blk_idx]); 3696 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3697 } 3698 3699 /** 3700 * ice_clear_hw_tbls - clear HW tables and flow profiles 3701 * @hw: pointer to the hardware structure 3702 */ 3703 void ice_clear_hw_tbls(struct ice_hw *hw) 3704 { 3705 u8 i; 3706 3707 for (i = 0; i < ICE_BLK_COUNT; i++) { 3708 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3709 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3710 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3711 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3712 struct ice_es *es = &hw->blk[i].es; 3713 3714 if (hw->blk[i].is_list_init) { 3715 ice_free_prof_map(hw, i); 3716 ice_free_flow_profs(hw, i); 3717 } 3718 3719 ice_free_vsig_tbl(hw, (enum ice_block)i); 3720 3721 ice_memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes), 3722 ICE_NONDMA_MEM); 3723 ice_memset(xlt1->ptg_tbl, 0, 3724 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl), 3725 ICE_NONDMA_MEM); 3726 ice_memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t), 3727 ICE_NONDMA_MEM); 3728 3729 ice_memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis), 3730 ICE_NONDMA_MEM); 3731 ice_memset(xlt2->vsig_tbl, 0, 3732 xlt2->count * sizeof(*xlt2->vsig_tbl), 3733 ICE_NONDMA_MEM); 3734 ice_memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t), 3735 ICE_NONDMA_MEM); 3736 3737 ice_memset(prof->t, 0, prof->count * sizeof(*prof->t), 3738 ICE_NONDMA_MEM); 3739 ice_memset(prof_redir->t, 0, 3740 prof_redir->count * sizeof(*prof_redir->t), 3741 ICE_NONDMA_MEM); 3742 3743 ice_memset(es->t, 0, es->count * sizeof(*es->t), 3744 ICE_NONDMA_MEM); 3745 ice_memset(es->ref_count, 0, es->count * sizeof(*es->ref_count), 3746 ICE_NONDMA_MEM); 3747 ice_memset(es->written, 0, es->count * sizeof(*es->written), 3748 ICE_NONDMA_MEM); 3749 } 3750 } 3751 3752 /** 3753 * ice_init_hw_tbls - init hardware table memory 3754 * @hw: pointer to the hardware structure 3755 */ 3756 enum ice_status ice_init_hw_tbls(struct ice_hw *hw) 3757 { 3758 u8 i; 3759 3760 ice_init_lock(&hw->rss_locks); 3761 INIT_LIST_HEAD(&hw->rss_list_head); 3762 for (i = 0; i < ICE_BLK_COUNT; i++) { 3763 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3764 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3765 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3766 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3767 struct ice_es *es = &hw->blk[i].es; 3768 u16 j; 3769 3770 if (hw->blk[i].is_list_init) 3771 continue; 3772 3773 ice_init_flow_profs(hw, i); 3774 ice_init_lock(&es->prof_map_lock); 3775 INIT_LIST_HEAD(&es->prof_map); 3776 hw->blk[i].is_list_init = true; 3777 3778 hw->blk[i].overwrite = blk_sizes[i].overwrite; 3779 es->reverse = blk_sizes[i].reverse; 3780 3781 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 3782 xlt1->count = blk_sizes[i].xlt1; 3783 3784 xlt1->ptypes = (struct ice_ptg_ptype *) 3785 ice_calloc(hw, xlt1->count, sizeof(*xlt1->ptypes)); 3786 3787 if (!xlt1->ptypes) 3788 goto err; 3789 3790 xlt1->ptg_tbl = (struct ice_ptg_entry *) 3791 ice_calloc(hw, ICE_MAX_PTGS, sizeof(*xlt1->ptg_tbl)); 3792 3793 if (!xlt1->ptg_tbl) 3794 goto err; 3795 3796 xlt1->t = (u8 *)ice_calloc(hw, xlt1->count, sizeof(*xlt1->t)); 3797 if (!xlt1->t) 3798 goto err; 3799 3800 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 3801 xlt2->count = blk_sizes[i].xlt2; 3802 3803 xlt2->vsis = (struct ice_vsig_vsi *) 3804 ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsis)); 3805 3806 if (!xlt2->vsis) 3807 goto err; 3808 3809 xlt2->vsig_tbl = (struct ice_vsig_entry *) 3810 ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsig_tbl)); 3811 if (!xlt2->vsig_tbl) 3812 goto err; 3813 3814 for (j = 0; j < xlt2->count; j++) 3815 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 3816 3817 xlt2->t = (u16 *)ice_calloc(hw, xlt2->count, sizeof(*xlt2->t)); 3818 if (!xlt2->t) 3819 goto err; 3820 3821 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 3822 prof->count = blk_sizes[i].prof_tcam; 3823 prof->max_prof_id = blk_sizes[i].prof_id; 3824 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 3825 prof->t = (struct ice_prof_tcam_entry *) 3826 ice_calloc(hw, prof->count, sizeof(*prof->t)); 3827 3828 if (!prof->t) 3829 goto err; 3830 3831 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 3832 prof_redir->count = blk_sizes[i].prof_redir; 3833 prof_redir->t = (u8 *)ice_calloc(hw, prof_redir->count, 3834 sizeof(*prof_redir->t)); 3835 3836 if (!prof_redir->t) 3837 goto err; 3838 3839 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 3840 es->count = blk_sizes[i].es; 3841 es->fvw = blk_sizes[i].fvw; 3842 es->t = (struct ice_fv_word *) 3843 ice_calloc(hw, (u32)(es->count * es->fvw), 3844 sizeof(*es->t)); 3845 if (!es->t) 3846 goto err; 3847 3848 es->ref_count = (u16 *) 3849 ice_calloc(hw, es->count, sizeof(*es->ref_count)); 3850 3851 es->written = (u8 *) 3852 ice_calloc(hw, es->count, sizeof(*es->written)); 3853 if (!es->ref_count) 3854 goto err; 3855 } 3856 return ICE_SUCCESS; 3857 3858 err: 3859 ice_free_hw_tbls(hw); 3860 return ICE_ERR_NO_MEMORY; 3861 } 3862 3863 /** 3864 * ice_prof_gen_key - generate profile ID key 3865 * @hw: pointer to the HW struct 3866 * @blk: the block in which to write profile ID to 3867 * @ptg: packet type group (PTG) portion of key 3868 * @vsig: VSIG portion of key 3869 * @cdid: CDID portion of key 3870 * @flags: flag portion of key 3871 * @vl_msk: valid mask 3872 * @dc_msk: don't care mask 3873 * @nm_msk: never match mask 3874 * @key: output of profile ID key 3875 */ 3876 static enum ice_status 3877 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 3878 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3879 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 3880 u8 key[ICE_TCAM_KEY_SZ]) 3881 { 3882 struct ice_prof_id_key inkey; 3883 3884 inkey.xlt1 = ptg; 3885 inkey.xlt2_cdid = CPU_TO_LE16(vsig); 3886 inkey.flags = CPU_TO_LE16(flags); 3887 3888 switch (hw->blk[blk].prof.cdid_bits) { 3889 case 0: 3890 break; 3891 case 2: 3892 #define ICE_CD_2_M 0xC000U 3893 #define ICE_CD_2_S 14 3894 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_2_M); 3895 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_2_S); 3896 break; 3897 case 4: 3898 #define ICE_CD_4_M 0xF000U 3899 #define ICE_CD_4_S 12 3900 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_4_M); 3901 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_4_S); 3902 break; 3903 case 8: 3904 #define ICE_CD_8_M 0xFF00U 3905 #define ICE_CD_8_S 16 3906 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_8_M); 3907 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_8_S); 3908 break; 3909 default: 3910 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 3911 break; 3912 } 3913 3914 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 3915 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 3916 } 3917 3918 /** 3919 * ice_tcam_write_entry - write TCAM entry 3920 * @hw: pointer to the HW struct 3921 * @blk: the block in which to write profile ID to 3922 * @idx: the entry index to write to 3923 * @prof_id: profile ID 3924 * @ptg: packet type group (PTG) portion of key 3925 * @vsig: VSIG portion of key 3926 * @cdid: CDID: portion of key 3927 * @flags: flag portion of key 3928 * @vl_msk: valid mask 3929 * @dc_msk: don't care mask 3930 * @nm_msk: never match mask 3931 */ 3932 static enum ice_status 3933 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 3934 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 3935 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3936 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 3937 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 3938 { 3939 struct ice_prof_tcam_entry; 3940 enum ice_status status; 3941 3942 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 3943 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 3944 if (!status) { 3945 hw->blk[blk].prof.t[idx].addr = CPU_TO_LE16(idx); 3946 hw->blk[blk].prof.t[idx].prof_id = prof_id; 3947 } 3948 3949 return status; 3950 } 3951 3952 /** 3953 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 3954 * @hw: pointer to the hardware structure 3955 * @blk: HW block 3956 * @vsig: VSIG to query 3957 * @refs: pointer to variable to receive the reference count 3958 */ 3959 static enum ice_status 3960 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 3961 { 3962 u16 idx = vsig & ICE_VSIG_IDX_M; 3963 struct ice_vsig_vsi *ptr; 3964 3965 *refs = 0; 3966 3967 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 3968 return ICE_ERR_DOES_NOT_EXIST; 3969 3970 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3971 while (ptr) { 3972 (*refs)++; 3973 ptr = ptr->next_vsi; 3974 } 3975 3976 return ICE_SUCCESS; 3977 } 3978 3979 /** 3980 * ice_has_prof_vsig - check to see if VSIG has a specific profile 3981 * @hw: pointer to the hardware structure 3982 * @blk: HW block 3983 * @vsig: VSIG to check against 3984 * @hdl: profile handle 3985 */ 3986 static bool 3987 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 3988 { 3989 u16 idx = vsig & ICE_VSIG_IDX_M; 3990 struct ice_vsig_prof *ent; 3991 3992 LIST_FOR_EACH_ENTRY(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3993 ice_vsig_prof, list) { 3994 if (ent->profile_cookie == hdl) 3995 return true; 3996 } 3997 3998 ice_debug(hw, ICE_DBG_INIT, 3999 "Characteristic list for VSI group %d not found.\n", 4000 vsig); 4001 return false; 4002 } 4003 4004 /** 4005 * ice_prof_bld_es - build profile ID extraction sequence changes 4006 * @hw: pointer to the HW struct 4007 * @blk: hardware block 4008 * @bld: the update package buffer build to add to 4009 * @chgs: the list of changes to make in hardware 4010 */ 4011 static enum ice_status 4012 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 4013 struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs) 4014 { 4015 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 4016 struct ice_chs_chg *tmp; 4017 4018 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) { 4019 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 4020 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 4021 struct ice_pkg_es *p; 4022 u32 id; 4023 4024 id = ice_sect_id(blk, ICE_VEC_TBL); 4025 p = (struct ice_pkg_es *) 4026 ice_pkg_buf_alloc_section(bld, id, sizeof(*p) + 4027 vec_size - 4028 sizeof(p->es[0])); 4029 4030 if (!p) 4031 return ICE_ERR_MAX_LIMIT; 4032 4033 p->count = CPU_TO_LE16(1); 4034 p->offset = CPU_TO_LE16(tmp->prof_id); 4035 4036 ice_memcpy(p->es, &hw->blk[blk].es.t[off], vec_size, 4037 ICE_NONDMA_TO_NONDMA); 4038 } 4039 } 4040 4041 return ICE_SUCCESS; 4042 } 4043 4044 /** 4045 * ice_prof_bld_tcam - build profile ID TCAM changes 4046 * @hw: pointer to the HW struct 4047 * @blk: hardware block 4048 * @bld: the update package buffer build to add to 4049 * @chgs: the list of changes to make in hardware 4050 */ 4051 static enum ice_status 4052 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 4053 struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs) 4054 { 4055 struct ice_chs_chg *tmp; 4056 4057 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) { 4058 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 4059 struct ice_prof_id_section *p; 4060 u32 id; 4061 4062 id = ice_sect_id(blk, ICE_PROF_TCAM); 4063 p = (struct ice_prof_id_section *) 4064 ice_pkg_buf_alloc_section(bld, id, sizeof(*p)); 4065 4066 if (!p) 4067 return ICE_ERR_MAX_LIMIT; 4068 4069 p->count = CPU_TO_LE16(1); 4070 p->entry[0].addr = CPU_TO_LE16(tmp->tcam_idx); 4071 p->entry[0].prof_id = tmp->prof_id; 4072 4073 ice_memcpy(p->entry[0].key, 4074 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 4075 sizeof(hw->blk[blk].prof.t->key), 4076 ICE_NONDMA_TO_NONDMA); 4077 } 4078 } 4079 4080 return ICE_SUCCESS; 4081 } 4082 4083 /** 4084 * ice_prof_bld_xlt1 - build XLT1 changes 4085 * @blk: hardware block 4086 * @bld: the update package buffer build to add to 4087 * @chgs: the list of changes to make in hardware 4088 */ 4089 static enum ice_status 4090 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 4091 struct LIST_HEAD_TYPE *chgs) 4092 { 4093 struct ice_chs_chg *tmp; 4094 4095 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) { 4096 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 4097 struct ice_xlt1_section *p; 4098 u32 id; 4099 4100 id = ice_sect_id(blk, ICE_XLT1); 4101 p = (struct ice_xlt1_section *) 4102 ice_pkg_buf_alloc_section(bld, id, sizeof(*p)); 4103 4104 if (!p) 4105 return ICE_ERR_MAX_LIMIT; 4106 4107 p->count = CPU_TO_LE16(1); 4108 p->offset = CPU_TO_LE16(tmp->ptype); 4109 p->value[0] = tmp->ptg; 4110 } 4111 } 4112 4113 return ICE_SUCCESS; 4114 } 4115 4116 /** 4117 * ice_prof_bld_xlt2 - build XLT2 changes 4118 * @blk: hardware block 4119 * @bld: the update package buffer build to add to 4120 * @chgs: the list of changes to make in hardware 4121 */ 4122 static enum ice_status 4123 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 4124 struct LIST_HEAD_TYPE *chgs) 4125 { 4126 struct ice_chs_chg *tmp; 4127 4128 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) { 4129 struct ice_xlt2_section *p; 4130 u32 id; 4131 4132 switch (tmp->type) { 4133 case ICE_VSIG_ADD: 4134 case ICE_VSI_MOVE: 4135 case ICE_VSIG_REM: 4136 id = ice_sect_id(blk, ICE_XLT2); 4137 p = (struct ice_xlt2_section *) 4138 ice_pkg_buf_alloc_section(bld, id, sizeof(*p)); 4139 4140 if (!p) 4141 return ICE_ERR_MAX_LIMIT; 4142 4143 p->count = CPU_TO_LE16(1); 4144 p->offset = CPU_TO_LE16(tmp->vsi); 4145 p->value[0] = CPU_TO_LE16(tmp->vsig); 4146 break; 4147 default: 4148 break; 4149 } 4150 } 4151 4152 return ICE_SUCCESS; 4153 } 4154 4155 /** 4156 * ice_upd_prof_hw - update hardware using the change list 4157 * @hw: pointer to the HW struct 4158 * @blk: hardware block 4159 * @chgs: the list of changes to make in hardware 4160 */ 4161 static enum ice_status 4162 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 4163 struct LIST_HEAD_TYPE *chgs) 4164 { 4165 struct ice_buf_build *b; 4166 struct ice_chs_chg *tmp; 4167 enum ice_status status; 4168 u16 pkg_sects; 4169 u16 xlt1 = 0; 4170 u16 xlt2 = 0; 4171 u16 tcam = 0; 4172 u16 es = 0; 4173 u16 sects; 4174 4175 /* count number of sections we need */ 4176 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) { 4177 switch (tmp->type) { 4178 case ICE_PTG_ES_ADD: 4179 if (tmp->add_ptg) 4180 xlt1++; 4181 if (tmp->add_prof) 4182 es++; 4183 break; 4184 case ICE_TCAM_ADD: 4185 tcam++; 4186 break; 4187 case ICE_VSIG_ADD: 4188 case ICE_VSI_MOVE: 4189 case ICE_VSIG_REM: 4190 xlt2++; 4191 break; 4192 default: 4193 break; 4194 } 4195 } 4196 sects = xlt1 + xlt2 + tcam + es; 4197 4198 if (!sects) 4199 return ICE_SUCCESS; 4200 4201 /* Build update package buffer */ 4202 b = ice_pkg_buf_alloc(hw); 4203 if (!b) 4204 return ICE_ERR_NO_MEMORY; 4205 4206 status = ice_pkg_buf_reserve_section(b, sects); 4207 if (status) 4208 goto error_tmp; 4209 4210 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 4211 if (es) { 4212 status = ice_prof_bld_es(hw, blk, b, chgs); 4213 if (status) 4214 goto error_tmp; 4215 } 4216 4217 if (tcam) { 4218 status = ice_prof_bld_tcam(hw, blk, b, chgs); 4219 if (status) 4220 goto error_tmp; 4221 } 4222 4223 if (xlt1) { 4224 status = ice_prof_bld_xlt1(blk, b, chgs); 4225 if (status) 4226 goto error_tmp; 4227 } 4228 4229 if (xlt2) { 4230 status = ice_prof_bld_xlt2(blk, b, chgs); 4231 if (status) 4232 goto error_tmp; 4233 } 4234 4235 /* After package buffer build check if the section count in buffer is 4236 * non-zero and matches the number of sections detected for package 4237 * update. 4238 */ 4239 pkg_sects = ice_pkg_buf_get_active_sections(b); 4240 if (!pkg_sects || pkg_sects != sects) { 4241 status = ICE_ERR_INVAL_SIZE; 4242 goto error_tmp; 4243 } 4244 4245 /* update package */ 4246 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 4247 if (status == ICE_ERR_AQ_ERROR) 4248 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 4249 4250 error_tmp: 4251 ice_pkg_buf_free(hw, b); 4252 return status; 4253 } 4254 4255 /** 4256 * ice_add_prof - add profile 4257 * @hw: pointer to the HW struct 4258 * @blk: hardware block 4259 * @id: profile tracking ID 4260 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 4261 * @es: extraction sequence (length of array is determined by the block) 4262 * 4263 * This function registers a profile, which matches a set of PTGs with a 4264 * particular extraction sequence. While the hardware profile is allocated 4265 * it will not be written until the first call to ice_add_flow that specifies 4266 * the ID value used here. 4267 */ 4268 enum ice_status 4269 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 4270 struct ice_fv_word *es) 4271 { 4272 u32 bytes = DIVIDE_AND_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 4273 ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT); 4274 struct ice_prof_map *prof; 4275 enum ice_status status; 4276 u8 byte = 0; 4277 u8 prof_id; 4278 4279 ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT); 4280 4281 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 4282 4283 /* search for existing profile */ 4284 status = ice_find_prof_id(hw, blk, es, &prof_id); 4285 if (status) { 4286 /* allocate profile ID */ 4287 status = ice_alloc_prof_id(hw, blk, &prof_id); 4288 if (status) 4289 goto err_ice_add_prof; 4290 4291 /* and write new es */ 4292 ice_write_es(hw, blk, prof_id, es); 4293 } 4294 4295 ice_prof_inc_ref(hw, blk, prof_id); 4296 4297 /* add profile info */ 4298 4299 prof = (struct ice_prof_map *)ice_malloc(hw, sizeof(*prof)); 4300 if (!prof) 4301 goto err_ice_add_prof; 4302 4303 prof->profile_cookie = id; 4304 prof->prof_id = prof_id; 4305 prof->ptg_cnt = 0; 4306 prof->context = 0; 4307 4308 /* build list of ptgs */ 4309 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 4310 u8 bit; 4311 4312 if (!ptypes[byte]) { 4313 bytes--; 4314 byte++; 4315 continue; 4316 } 4317 /* Examine 8 bits per byte */ 4318 for (bit = 0; bit < 8; bit++) { 4319 if (ptypes[byte] & BIT(bit)) { 4320 u16 ptype; 4321 u8 ptg; 4322 u8 m; 4323 4324 ptype = byte * BITS_PER_BYTE + bit; 4325 4326 /* The package should place all ptypes in a 4327 * non-zero PTG, so the following call should 4328 * never fail. 4329 */ 4330 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 4331 continue; 4332 4333 /* If PTG is already added, skip and continue */ 4334 if (ice_is_bit_set(ptgs_used, ptg)) 4335 continue; 4336 4337 ice_set_bit(ptg, ptgs_used); 4338 prof->ptg[prof->ptg_cnt] = ptg; 4339 4340 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 4341 break; 4342 4343 /* nothing left in byte, then exit */ 4344 m = ~(u8)((1 << (bit + 1)) - 1); 4345 if (!(ptypes[byte] & m)) 4346 break; 4347 } 4348 } 4349 4350 bytes--; 4351 byte++; 4352 } 4353 4354 LIST_ADD(&prof->list, &hw->blk[blk].es.prof_map); 4355 status = ICE_SUCCESS; 4356 4357 err_ice_add_prof: 4358 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 4359 return status; 4360 } 4361 4362 /** 4363 * ice_search_prof_id_low - Search for a profile tracking ID low level 4364 * @hw: pointer to the HW struct 4365 * @blk: hardware block 4366 * @id: profile tracking ID 4367 * 4368 * This will search for a profile tracking ID which was previously added. This 4369 * version assumes that the caller has already acquired the prof map lock. 4370 */ 4371 static struct ice_prof_map * 4372 ice_search_prof_id_low(struct ice_hw *hw, enum ice_block blk, u64 id) 4373 { 4374 struct ice_prof_map *entry = NULL; 4375 struct ice_prof_map *map; 4376 4377 LIST_FOR_EACH_ENTRY(map, &hw->blk[blk].es.prof_map, ice_prof_map, 4378 list) { 4379 if (map->profile_cookie == id) { 4380 entry = map; 4381 break; 4382 } 4383 } 4384 4385 return entry; 4386 } 4387 4388 /** 4389 * ice_search_prof_id - Search for a profile tracking ID 4390 * @hw: pointer to the HW struct 4391 * @blk: hardware block 4392 * @id: profile tracking ID 4393 * 4394 * This will search for a profile tracking ID which was previously added. 4395 */ 4396 struct ice_prof_map * 4397 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 4398 { 4399 struct ice_prof_map *entry; 4400 4401 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 4402 entry = ice_search_prof_id_low(hw, blk, id); 4403 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 4404 4405 return entry; 4406 } 4407 4408 /** 4409 * ice_set_prof_context - Set context for a given profile 4410 * @hw: pointer to the HW struct 4411 * @blk: hardware block 4412 * @id: profile tracking ID 4413 * @cntxt: context 4414 */ 4415 struct ice_prof_map * 4416 ice_set_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 cntxt) 4417 { 4418 struct ice_prof_map *entry; 4419 4420 entry = ice_search_prof_id(hw, blk, id); 4421 if (entry) 4422 entry->context = cntxt; 4423 4424 return entry; 4425 } 4426 4427 /** 4428 * ice_get_prof_context - Get context for a given profile 4429 * @hw: pointer to the HW struct 4430 * @blk: hardware block 4431 * @id: profile tracking ID 4432 * @cntxt: pointer to variable to receive the context 4433 */ 4434 struct ice_prof_map * 4435 ice_get_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 *cntxt) 4436 { 4437 struct ice_prof_map *entry; 4438 4439 entry = ice_search_prof_id(hw, blk, id); 4440 if (entry) 4441 *cntxt = entry->context; 4442 4443 return entry; 4444 } 4445 4446 /** 4447 * ice_vsig_prof_id_count - count profiles in a VSIG 4448 * @hw: pointer to the HW struct 4449 * @blk: hardware block 4450 * @vsig: VSIG to remove the profile from 4451 */ 4452 static u16 4453 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 4454 { 4455 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 4456 struct ice_vsig_prof *p; 4457 4458 LIST_FOR_EACH_ENTRY(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4459 ice_vsig_prof, list) { 4460 count++; 4461 } 4462 4463 return count; 4464 } 4465 4466 /** 4467 * ice_rel_tcam_idx - release a TCAM index 4468 * @hw: pointer to the HW struct 4469 * @blk: hardware block 4470 * @idx: the index to release 4471 */ 4472 static enum ice_status 4473 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 4474 { 4475 /* Masks to invoke a never match entry */ 4476 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4477 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 4478 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 4479 enum ice_status status; 4480 4481 /* write the TCAM entry */ 4482 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 4483 dc_msk, nm_msk); 4484 if (status) 4485 return status; 4486 4487 /* release the TCAM entry */ 4488 status = ice_free_tcam_ent(hw, blk, idx); 4489 4490 return status; 4491 } 4492 4493 /** 4494 * ice_rem_prof_id - remove one profile from a VSIG 4495 * @hw: pointer to the HW struct 4496 * @blk: hardware block 4497 * @prof: pointer to profile structure to remove 4498 */ 4499 static enum ice_status 4500 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 4501 struct ice_vsig_prof *prof) 4502 { 4503 enum ice_status status; 4504 u16 i; 4505 4506 for (i = 0; i < prof->tcam_count; i++) { 4507 if (prof->tcam[i].in_use) { 4508 prof->tcam[i].in_use = false; 4509 status = ice_rel_tcam_idx(hw, blk, 4510 prof->tcam[i].tcam_idx); 4511 if (status) 4512 return ICE_ERR_HW_TABLE; 4513 } 4514 } 4515 4516 return ICE_SUCCESS; 4517 } 4518 4519 /** 4520 * ice_rem_vsig - remove VSIG 4521 * @hw: pointer to the HW struct 4522 * @blk: hardware block 4523 * @vsig: the VSIG to remove 4524 * @chg: the change list 4525 */ 4526 static enum ice_status 4527 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4528 struct LIST_HEAD_TYPE *chg) 4529 { 4530 u16 idx = vsig & ICE_VSIG_IDX_M; 4531 struct ice_vsig_vsi *vsi_cur; 4532 struct ice_vsig_prof *d, *t; 4533 enum ice_status status; 4534 4535 /* remove TCAM entries */ 4536 LIST_FOR_EACH_ENTRY_SAFE(d, t, 4537 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4538 ice_vsig_prof, list) { 4539 status = ice_rem_prof_id(hw, blk, d); 4540 if (status) 4541 return status; 4542 4543 LIST_DEL(&d->list); 4544 ice_free(hw, d); 4545 } 4546 4547 /* Move all VSIS associated with this VSIG to the default VSIG */ 4548 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4549 /* If the VSIG has at least 1 VSI then iterate through the list 4550 * and remove the VSIs before deleting the group. 4551 */ 4552 if (vsi_cur) { 4553 do { 4554 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 4555 struct ice_chs_chg *p; 4556 4557 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 4558 if (!p) 4559 return ICE_ERR_NO_MEMORY; 4560 4561 p->type = ICE_VSIG_REM; 4562 p->orig_vsig = vsig; 4563 p->vsig = ICE_DEFAULT_VSIG; 4564 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 4565 4566 LIST_ADD(&p->list_entry, chg); 4567 4568 vsi_cur = tmp; 4569 } while (vsi_cur); 4570 } 4571 4572 return ice_vsig_free(hw, blk, vsig); 4573 } 4574 4575 /** 4576 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 4577 * @hw: pointer to the HW struct 4578 * @blk: hardware block 4579 * @vsig: VSIG to remove the profile from 4580 * @hdl: profile handle indicating which profile to remove 4581 * @chg: list to receive a record of changes 4582 */ 4583 static enum ice_status 4584 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4585 struct LIST_HEAD_TYPE *chg) 4586 { 4587 u16 idx = vsig & ICE_VSIG_IDX_M; 4588 struct ice_vsig_prof *p, *t; 4589 enum ice_status status; 4590 4591 LIST_FOR_EACH_ENTRY_SAFE(p, t, 4592 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4593 ice_vsig_prof, list) { 4594 if (p->profile_cookie == hdl) { 4595 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 4596 /* this is the last profile, remove the VSIG */ 4597 return ice_rem_vsig(hw, blk, vsig, chg); 4598 4599 status = ice_rem_prof_id(hw, blk, p); 4600 if (!status) { 4601 LIST_DEL(&p->list); 4602 ice_free(hw, p); 4603 } 4604 return status; 4605 } 4606 } 4607 4608 return ICE_ERR_DOES_NOT_EXIST; 4609 } 4610 4611 /** 4612 * ice_rem_flow_all - remove all flows with a particular profile 4613 * @hw: pointer to the HW struct 4614 * @blk: hardware block 4615 * @id: profile tracking ID 4616 */ 4617 static enum ice_status 4618 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 4619 { 4620 struct ice_chs_chg *del, *tmp; 4621 struct LIST_HEAD_TYPE chg; 4622 enum ice_status status; 4623 u16 i; 4624 4625 INIT_LIST_HEAD(&chg); 4626 4627 for (i = 1; i < ICE_MAX_VSIGS; i++) { 4628 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 4629 if (ice_has_prof_vsig(hw, blk, i, id)) { 4630 status = ice_rem_prof_id_vsig(hw, blk, i, id, 4631 &chg); 4632 if (status) 4633 goto err_ice_rem_flow_all; 4634 } 4635 } 4636 } 4637 4638 status = ice_upd_prof_hw(hw, blk, &chg); 4639 4640 err_ice_rem_flow_all: 4641 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) { 4642 LIST_DEL(&del->list_entry); 4643 ice_free(hw, del); 4644 } 4645 4646 return status; 4647 } 4648 4649 /** 4650 * ice_rem_prof - remove profile 4651 * @hw: pointer to the HW struct 4652 * @blk: hardware block 4653 * @id: profile tracking ID 4654 * 4655 * This will remove the profile specified by the ID parameter, which was 4656 * previously created through ice_add_prof. If any existing entries 4657 * are associated with this profile, they will be removed as well. 4658 */ 4659 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 4660 { 4661 struct ice_prof_map *pmap; 4662 enum ice_status status; 4663 4664 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 4665 4666 pmap = ice_search_prof_id_low(hw, blk, id); 4667 if (!pmap) { 4668 status = ICE_ERR_DOES_NOT_EXIST; 4669 goto err_ice_rem_prof; 4670 } 4671 4672 /* remove all flows with this profile */ 4673 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 4674 if (status) 4675 goto err_ice_rem_prof; 4676 4677 /* dereference profile, and possibly remove */ 4678 ice_prof_dec_ref(hw, blk, pmap->prof_id); 4679 4680 LIST_DEL(&pmap->list); 4681 ice_free(hw, pmap); 4682 4683 err_ice_rem_prof: 4684 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 4685 return status; 4686 } 4687 4688 /** 4689 * ice_get_prof - get profile 4690 * @hw: pointer to the HW struct 4691 * @blk: hardware block 4692 * @hdl: profile handle 4693 * @chg: change list 4694 */ 4695 static enum ice_status 4696 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 4697 struct LIST_HEAD_TYPE *chg) 4698 { 4699 struct ice_prof_map *map; 4700 struct ice_chs_chg *p; 4701 u16 i; 4702 4703 /* Get the details on the profile specified by the handle ID */ 4704 map = ice_search_prof_id(hw, blk, hdl); 4705 if (!map) 4706 return ICE_ERR_DOES_NOT_EXIST; 4707 4708 for (i = 0; i < map->ptg_cnt; i++) { 4709 if (!hw->blk[blk].es.written[map->prof_id]) { 4710 /* add ES to change list */ 4711 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 4712 if (!p) 4713 goto err_ice_get_prof; 4714 4715 p->type = ICE_PTG_ES_ADD; 4716 p->ptype = 0; 4717 p->ptg = map->ptg[i]; 4718 p->add_ptg = 0; 4719 4720 p->add_prof = 1; 4721 p->prof_id = map->prof_id; 4722 4723 hw->blk[blk].es.written[map->prof_id] = true; 4724 4725 LIST_ADD(&p->list_entry, chg); 4726 } 4727 } 4728 4729 return ICE_SUCCESS; 4730 4731 err_ice_get_prof: 4732 /* let caller clean up the change list */ 4733 return ICE_ERR_NO_MEMORY; 4734 } 4735 4736 /** 4737 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 4738 * @hw: pointer to the HW struct 4739 * @blk: hardware block 4740 * @vsig: VSIG from which to copy the list 4741 * @lst: output list 4742 * 4743 * This routine makes a copy of the list of profiles in the specified VSIG. 4744 */ 4745 static enum ice_status 4746 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4747 struct LIST_HEAD_TYPE *lst) 4748 { 4749 struct ice_vsig_prof *ent1, *ent2; 4750 u16 idx = vsig & ICE_VSIG_IDX_M; 4751 4752 LIST_FOR_EACH_ENTRY(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4753 ice_vsig_prof, list) { 4754 struct ice_vsig_prof *p; 4755 4756 /* copy to the input list */ 4757 p = (struct ice_vsig_prof *)ice_memdup(hw, ent1, sizeof(*p), 4758 ICE_NONDMA_TO_NONDMA); 4759 if (!p) 4760 goto err_ice_get_profs_vsig; 4761 4762 LIST_ADD_TAIL(&p->list, lst); 4763 } 4764 4765 return ICE_SUCCESS; 4766 4767 err_ice_get_profs_vsig: 4768 LIST_FOR_EACH_ENTRY_SAFE(ent1, ent2, lst, ice_vsig_prof, list) { 4769 LIST_DEL(&ent1->list); 4770 ice_free(hw, ent1); 4771 } 4772 4773 return ICE_ERR_NO_MEMORY; 4774 } 4775 4776 /** 4777 * ice_add_prof_to_lst - add profile entry to a list 4778 * @hw: pointer to the HW struct 4779 * @blk: hardware block 4780 * @lst: the list to be added to 4781 * @hdl: profile handle of entry to add 4782 */ 4783 static enum ice_status 4784 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 4785 struct LIST_HEAD_TYPE *lst, u64 hdl) 4786 { 4787 struct ice_prof_map *map; 4788 struct ice_vsig_prof *p; 4789 u16 i; 4790 4791 map = ice_search_prof_id(hw, blk, hdl); 4792 if (!map) 4793 return ICE_ERR_DOES_NOT_EXIST; 4794 4795 p = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*p)); 4796 if (!p) 4797 return ICE_ERR_NO_MEMORY; 4798 4799 p->profile_cookie = map->profile_cookie; 4800 p->prof_id = map->prof_id; 4801 p->tcam_count = map->ptg_cnt; 4802 4803 for (i = 0; i < map->ptg_cnt; i++) { 4804 p->tcam[i].prof_id = map->prof_id; 4805 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 4806 p->tcam[i].ptg = map->ptg[i]; 4807 } 4808 4809 LIST_ADD(&p->list, lst); 4810 4811 return ICE_SUCCESS; 4812 } 4813 4814 /** 4815 * ice_move_vsi - move VSI to another VSIG 4816 * @hw: pointer to the HW struct 4817 * @blk: hardware block 4818 * @vsi: the VSI to move 4819 * @vsig: the VSIG to move the VSI to 4820 * @chg: the change list 4821 */ 4822 static enum ice_status 4823 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 4824 struct LIST_HEAD_TYPE *chg) 4825 { 4826 enum ice_status status; 4827 struct ice_chs_chg *p; 4828 u16 orig_vsig; 4829 4830 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 4831 if (!p) 4832 return ICE_ERR_NO_MEMORY; 4833 4834 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 4835 if (!status) 4836 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 4837 4838 if (status) { 4839 ice_free(hw, p); 4840 return status; 4841 } 4842 4843 p->type = ICE_VSI_MOVE; 4844 p->vsi = vsi; 4845 p->orig_vsig = orig_vsig; 4846 p->vsig = vsig; 4847 4848 LIST_ADD(&p->list_entry, chg); 4849 4850 return ICE_SUCCESS; 4851 } 4852 4853 /** 4854 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 4855 * @hw: pointer to the HW struct 4856 * @idx: the index of the TCAM entry to remove 4857 * @chg: the list of change structures to search 4858 */ 4859 static void 4860 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct LIST_HEAD_TYPE *chg) 4861 { 4862 struct ice_chs_chg *pos, *tmp; 4863 4864 LIST_FOR_EACH_ENTRY_SAFE(tmp, pos, chg, ice_chs_chg, list_entry) { 4865 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 4866 LIST_DEL(&tmp->list_entry); 4867 ice_free(hw, tmp); 4868 } 4869 } 4870 } 4871 4872 /** 4873 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 4874 * @hw: pointer to the HW struct 4875 * @blk: hardware block 4876 * @enable: true to enable, false to disable 4877 * @vsig: the VSIG of the TCAM entry 4878 * @tcam: pointer the TCAM info structure of the TCAM to disable 4879 * @chg: the change list 4880 * 4881 * This function appends an enable or disable TCAM entry in the change log 4882 */ 4883 static enum ice_status 4884 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 4885 u16 vsig, struct ice_tcam_inf *tcam, 4886 struct LIST_HEAD_TYPE *chg) 4887 { 4888 enum ice_status status; 4889 struct ice_chs_chg *p; 4890 4891 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4892 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 4893 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 4894 4895 /* if disabling, free the TCAM */ 4896 if (!enable) { 4897 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 4898 4899 /* if we have already created a change for this TCAM entry, then 4900 * we need to remove that entry, in order to prevent writing to 4901 * a TCAM entry we no longer will have ownership of. 4902 */ 4903 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 4904 tcam->tcam_idx = 0; 4905 tcam->in_use = 0; 4906 return status; 4907 } 4908 4909 /* for re-enabling, reallocate a TCAM */ 4910 status = ice_alloc_tcam_ent(hw, blk, &tcam->tcam_idx); 4911 if (status) 4912 return status; 4913 4914 /* add TCAM to change list */ 4915 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 4916 if (!p) 4917 return ICE_ERR_NO_MEMORY; 4918 4919 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 4920 tcam->ptg, vsig, 0, 0, vl_msk, dc_msk, 4921 nm_msk); 4922 if (status) 4923 goto err_ice_prof_tcam_ena_dis; 4924 4925 tcam->in_use = 1; 4926 4927 p->type = ICE_TCAM_ADD; 4928 p->add_tcam_idx = true; 4929 p->prof_id = tcam->prof_id; 4930 p->ptg = tcam->ptg; 4931 p->vsig = 0; 4932 p->tcam_idx = tcam->tcam_idx; 4933 4934 /* log change */ 4935 LIST_ADD(&p->list_entry, chg); 4936 4937 return ICE_SUCCESS; 4938 4939 err_ice_prof_tcam_ena_dis: 4940 ice_free(hw, p); 4941 return status; 4942 } 4943 4944 /** 4945 * ice_adj_prof_priorities - adjust profile based on priorities 4946 * @hw: pointer to the HW struct 4947 * @blk: hardware block 4948 * @vsig: the VSIG for which to adjust profile priorities 4949 * @chg: the change list 4950 */ 4951 static enum ice_status 4952 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4953 struct LIST_HEAD_TYPE *chg) 4954 { 4955 ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT); 4956 enum ice_status status = ICE_SUCCESS; 4957 struct ice_vsig_prof *t; 4958 u16 idx; 4959 4960 ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT); 4961 idx = vsig & ICE_VSIG_IDX_M; 4962 4963 /* Priority is based on the order in which the profiles are added. The 4964 * newest added profile has highest priority and the oldest added 4965 * profile has the lowest priority. Since the profile property list for 4966 * a VSIG is sorted from newest to oldest, this code traverses the list 4967 * in order and enables the first of each PTG that it finds (that is not 4968 * already enabled); it also disables any duplicate PTGs that it finds 4969 * in the older profiles (that are currently enabled). 4970 */ 4971 4972 LIST_FOR_EACH_ENTRY(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4973 ice_vsig_prof, list) { 4974 u16 i; 4975 4976 for (i = 0; i < t->tcam_count; i++) { 4977 bool used; 4978 4979 /* Scan the priorities from newest to oldest. 4980 * Make sure that the newest profiles take priority. 4981 */ 4982 used = ice_is_bit_set(ptgs_used, t->tcam[i].ptg); 4983 4984 if (used && t->tcam[i].in_use) { 4985 /* need to mark this PTG as never match, as it 4986 * was already in use and therefore duplicate 4987 * (and lower priority) 4988 */ 4989 status = ice_prof_tcam_ena_dis(hw, blk, false, 4990 vsig, 4991 &t->tcam[i], 4992 chg); 4993 if (status) 4994 return status; 4995 } else if (!used && !t->tcam[i].in_use) { 4996 /* need to enable this PTG, as it in not in use 4997 * and not enabled (highest priority) 4998 */ 4999 status = ice_prof_tcam_ena_dis(hw, blk, true, 5000 vsig, 5001 &t->tcam[i], 5002 chg); 5003 if (status) 5004 return status; 5005 } 5006 5007 /* keep track of used ptgs */ 5008 ice_set_bit(t->tcam[i].ptg, ptgs_used); 5009 } 5010 } 5011 5012 return status; 5013 } 5014 5015 /** 5016 * ice_add_prof_id_vsig - add profile to VSIG 5017 * @hw: pointer to the HW struct 5018 * @blk: hardware block 5019 * @vsig: the VSIG to which this profile is to be added 5020 * @hdl: the profile handle indicating the profile to add 5021 * @rev: true to add entries to the end of the list 5022 * @chg: the change list 5023 */ 5024 static enum ice_status 5025 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 5026 bool rev, struct LIST_HEAD_TYPE *chg) 5027 { 5028 /* Masks that ignore flags */ 5029 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5030 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5031 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5032 struct ice_prof_map *map; 5033 struct ice_vsig_prof *t; 5034 struct ice_chs_chg *p; 5035 u16 vsig_idx, i; 5036 5037 /* Get the details on the profile specified by the handle ID */ 5038 map = ice_search_prof_id(hw, blk, hdl); 5039 if (!map) 5040 return ICE_ERR_DOES_NOT_EXIST; 5041 5042 /* Error, if this VSIG already has this profile */ 5043 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 5044 return ICE_ERR_ALREADY_EXISTS; 5045 5046 /* new VSIG profile structure */ 5047 t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t)); 5048 if (!t) 5049 return ICE_ERR_NO_MEMORY; 5050 5051 t->profile_cookie = map->profile_cookie; 5052 t->prof_id = map->prof_id; 5053 t->tcam_count = map->ptg_cnt; 5054 5055 /* create TCAM entries */ 5056 for (i = 0; i < map->ptg_cnt; i++) { 5057 enum ice_status status; 5058 u16 tcam_idx; 5059 5060 /* add TCAM to change list */ 5061 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 5062 if (!p) 5063 goto err_ice_add_prof_id_vsig; 5064 5065 /* allocate the TCAM entry index */ 5066 status = ice_alloc_tcam_ent(hw, blk, &tcam_idx); 5067 if (status) { 5068 ice_free(hw, p); 5069 goto err_ice_add_prof_id_vsig; 5070 } 5071 5072 t->tcam[i].ptg = map->ptg[i]; 5073 t->tcam[i].prof_id = map->prof_id; 5074 t->tcam[i].tcam_idx = tcam_idx; 5075 t->tcam[i].in_use = true; 5076 5077 p->type = ICE_TCAM_ADD; 5078 p->add_tcam_idx = true; 5079 p->prof_id = t->tcam[i].prof_id; 5080 p->ptg = t->tcam[i].ptg; 5081 p->vsig = vsig; 5082 p->tcam_idx = t->tcam[i].tcam_idx; 5083 5084 /* write the TCAM entry */ 5085 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 5086 t->tcam[i].prof_id, 5087 t->tcam[i].ptg, vsig, 0, 0, 5088 vl_msk, dc_msk, nm_msk); 5089 if (status) { 5090 ice_free(hw, p); 5091 goto err_ice_add_prof_id_vsig; 5092 } 5093 5094 /* log change */ 5095 LIST_ADD(&p->list_entry, chg); 5096 } 5097 5098 /* add profile to VSIG */ 5099 vsig_idx = vsig & ICE_VSIG_IDX_M; 5100 if (rev) 5101 LIST_ADD_TAIL(&t->list, 5102 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5103 else 5104 LIST_ADD(&t->list, 5105 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5106 5107 return ICE_SUCCESS; 5108 5109 err_ice_add_prof_id_vsig: 5110 /* let caller clean up the change list */ 5111 ice_free(hw, t); 5112 return ICE_ERR_NO_MEMORY; 5113 } 5114 5115 /** 5116 * ice_create_prof_id_vsig - add a new VSIG with a single profile 5117 * @hw: pointer to the HW struct 5118 * @blk: hardware block 5119 * @vsi: the initial VSI that will be in VSIG 5120 * @hdl: the profile handle of the profile that will be added to the VSIG 5121 * @chg: the change list 5122 */ 5123 static enum ice_status 5124 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 5125 struct LIST_HEAD_TYPE *chg) 5126 { 5127 enum ice_status status; 5128 struct ice_chs_chg *p; 5129 u16 new_vsig; 5130 5131 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 5132 if (!p) 5133 return ICE_ERR_NO_MEMORY; 5134 5135 new_vsig = ice_vsig_alloc(hw, blk); 5136 if (!new_vsig) { 5137 status = ICE_ERR_HW_TABLE; 5138 goto err_ice_create_prof_id_vsig; 5139 } 5140 5141 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 5142 if (status) 5143 goto err_ice_create_prof_id_vsig; 5144 5145 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 5146 if (status) 5147 goto err_ice_create_prof_id_vsig; 5148 5149 p->type = ICE_VSIG_ADD; 5150 p->vsi = vsi; 5151 p->orig_vsig = ICE_DEFAULT_VSIG; 5152 p->vsig = new_vsig; 5153 5154 LIST_ADD(&p->list_entry, chg); 5155 5156 return ICE_SUCCESS; 5157 5158 err_ice_create_prof_id_vsig: 5159 /* let caller clean up the change list */ 5160 ice_free(hw, p); 5161 return status; 5162 } 5163 5164 /** 5165 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 5166 * @hw: pointer to the HW struct 5167 * @blk: hardware block 5168 * @vsi: the initial VSI that will be in VSIG 5169 * @lst: the list of profile that will be added to the VSIG 5170 * @new_vsig: return of new VSIG 5171 * @chg: the change list 5172 */ 5173 static enum ice_status 5174 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 5175 struct LIST_HEAD_TYPE *lst, u16 *new_vsig, 5176 struct LIST_HEAD_TYPE *chg) 5177 { 5178 struct ice_vsig_prof *t; 5179 enum ice_status status; 5180 u16 vsig; 5181 5182 vsig = ice_vsig_alloc(hw, blk); 5183 if (!vsig) 5184 return ICE_ERR_HW_TABLE; 5185 5186 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 5187 if (status) 5188 return status; 5189 5190 LIST_FOR_EACH_ENTRY(t, lst, ice_vsig_prof, list) { 5191 /* Reverse the order here since we are copying the list */ 5192 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 5193 true, chg); 5194 if (status) 5195 return status; 5196 } 5197 5198 *new_vsig = vsig; 5199 5200 return ICE_SUCCESS; 5201 } 5202 5203 /** 5204 * ice_find_prof_vsig - find a VSIG with a specific profile handle 5205 * @hw: pointer to the HW struct 5206 * @blk: hardware block 5207 * @hdl: the profile handle of the profile to search for 5208 * @vsig: returns the VSIG with the matching profile 5209 */ 5210 static bool 5211 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 5212 { 5213 struct ice_vsig_prof *t; 5214 struct LIST_HEAD_TYPE lst; 5215 enum ice_status status; 5216 5217 INIT_LIST_HEAD(&lst); 5218 5219 t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t)); 5220 if (!t) 5221 return false; 5222 5223 t->profile_cookie = hdl; 5224 LIST_ADD(&t->list, &lst); 5225 5226 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 5227 5228 LIST_DEL(&t->list); 5229 ice_free(hw, t); 5230 5231 return status == ICE_SUCCESS; 5232 } 5233 5234 /** 5235 * ice_add_vsi_flow - add VSI flow 5236 * @hw: pointer to the HW struct 5237 * @blk: hardware block 5238 * @vsi: input VSI 5239 * @vsig: target VSIG to include the input VSI 5240 * 5241 * Calling this function will add the VSI to a given VSIG and 5242 * update the HW tables accordingly. This call can be used to 5243 * add multiple VSIs to a VSIG if we know beforehand that those 5244 * VSIs have the same characteristics of the VSIG. This will 5245 * save time in generating a new VSIG and TCAMs till a match is 5246 * found and subsequent rollback when a matching VSIG is found. 5247 */ 5248 enum ice_status 5249 ice_add_vsi_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 5250 { 5251 struct ice_chs_chg *tmp, *del; 5252 struct LIST_HEAD_TYPE chg; 5253 enum ice_status status; 5254 5255 /* if target VSIG is default the move is invalid */ 5256 if ((vsig & ICE_VSIG_IDX_M) == ICE_DEFAULT_VSIG) 5257 return ICE_ERR_PARAM; 5258 5259 INIT_LIST_HEAD(&chg); 5260 5261 /* move VSI to the VSIG that matches */ 5262 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5263 /* update hardware if success */ 5264 if (!status) 5265 status = ice_upd_prof_hw(hw, blk, &chg); 5266 5267 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) { 5268 LIST_DEL(&del->list_entry); 5269 ice_free(hw, del); 5270 } 5271 5272 return status; 5273 } 5274 5275 /** 5276 * ice_add_prof_id_flow - add profile flow 5277 * @hw: pointer to the HW struct 5278 * @blk: hardware block 5279 * @vsi: the VSI to enable with the profile specified by ID 5280 * @hdl: profile handle 5281 * 5282 * Calling this function will update the hardware tables to enable the 5283 * profile indicated by the ID parameter for the VSIs specified in the VSI 5284 * array. Once successfully called, the flow will be enabled. 5285 */ 5286 enum ice_status 5287 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5288 { 5289 struct ice_vsig_prof *tmp1, *del1; 5290 struct LIST_HEAD_TYPE union_lst; 5291 struct ice_chs_chg *tmp, *del; 5292 struct LIST_HEAD_TYPE chg; 5293 enum ice_status status; 5294 u16 vsig; 5295 5296 INIT_LIST_HEAD(&union_lst); 5297 INIT_LIST_HEAD(&chg); 5298 5299 /* Get profile */ 5300 status = ice_get_prof(hw, blk, hdl, &chg); 5301 if (status) 5302 return status; 5303 5304 /* determine if VSI is already part of a VSIG */ 5305 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5306 if (!status && vsig) { 5307 bool only_vsi; 5308 u16 or_vsig; 5309 u16 ref; 5310 5311 /* found in VSIG */ 5312 or_vsig = vsig; 5313 5314 /* make sure that there is no overlap/conflict between the new 5315 * characteristics and the existing ones; we don't support that 5316 * scenario 5317 */ 5318 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 5319 status = ICE_ERR_ALREADY_EXISTS; 5320 goto err_ice_add_prof_id_flow; 5321 } 5322 5323 /* last VSI in the VSIG? */ 5324 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5325 if (status) 5326 goto err_ice_add_prof_id_flow; 5327 only_vsi = (ref == 1); 5328 5329 /* create a union of the current profiles and the one being 5330 * added 5331 */ 5332 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 5333 if (status) 5334 goto err_ice_add_prof_id_flow; 5335 5336 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 5337 if (status) 5338 goto err_ice_add_prof_id_flow; 5339 5340 /* search for an existing VSIG with an exact charc match */ 5341 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 5342 if (!status) { 5343 /* move VSI to the VSIG that matches */ 5344 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5345 if (status) 5346 goto err_ice_add_prof_id_flow; 5347 5348 /* VSI has been moved out of or_vsig. If the or_vsig had 5349 * only that VSI it is now empty and can be removed. 5350 */ 5351 if (only_vsi) { 5352 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 5353 if (status) 5354 goto err_ice_add_prof_id_flow; 5355 } 5356 } else if (only_vsi) { 5357 /* If the original VSIG only contains one VSI, then it 5358 * will be the requesting VSI. In this case the VSI is 5359 * not sharing entries and we can simply add the new 5360 * profile to the VSIG. 5361 */ 5362 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 5363 &chg); 5364 if (status) 5365 goto err_ice_add_prof_id_flow; 5366 5367 /* Adjust priorities */ 5368 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5369 if (status) 5370 goto err_ice_add_prof_id_flow; 5371 } else { 5372 /* No match, so we need a new VSIG */ 5373 status = ice_create_vsig_from_lst(hw, blk, vsi, 5374 &union_lst, &vsig, 5375 &chg); 5376 if (status) 5377 goto err_ice_add_prof_id_flow; 5378 5379 /* Adjust priorities */ 5380 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5381 if (status) 5382 goto err_ice_add_prof_id_flow; 5383 } 5384 } else { 5385 /* need to find or add a VSIG */ 5386 /* search for an existing VSIG with an exact charc match */ 5387 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 5388 /* found an exact match */ 5389 /* add or move VSI to the VSIG that matches */ 5390 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5391 if (status) 5392 goto err_ice_add_prof_id_flow; 5393 } else { 5394 /* we did not find an exact match */ 5395 /* we need to add a VSIG */ 5396 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 5397 &chg); 5398 if (status) 5399 goto err_ice_add_prof_id_flow; 5400 } 5401 } 5402 5403 /* update hardware */ 5404 if (!status) 5405 status = ice_upd_prof_hw(hw, blk, &chg); 5406 5407 err_ice_add_prof_id_flow: 5408 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) { 5409 LIST_DEL(&del->list_entry); 5410 ice_free(hw, del); 5411 } 5412 5413 LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &union_lst, ice_vsig_prof, list) { 5414 LIST_DEL(&del1->list); 5415 ice_free(hw, del1); 5416 } 5417 5418 return status; 5419 } 5420 5421 /** 5422 * ice_add_flow - add flow 5423 * @hw: pointer to the HW struct 5424 * @blk: hardware block 5425 * @vsi: array of VSIs to enable with the profile specified by ID 5426 * @count: number of elements in the VSI array 5427 * @id: profile tracking ID 5428 * 5429 * Calling this function will update the hardware tables to enable the 5430 * profile indicated by the ID parameter for the VSIs specified in the VSI 5431 * array. Once successfully called, the flow will be enabled. 5432 */ 5433 enum ice_status 5434 ice_add_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count, 5435 u64 id) 5436 { 5437 enum ice_status status; 5438 u16 i; 5439 5440 for (i = 0; i < count; i++) { 5441 status = ice_add_prof_id_flow(hw, blk, vsi[i], id); 5442 if (status) 5443 return status; 5444 } 5445 5446 return ICE_SUCCESS; 5447 } 5448 5449 /** 5450 * ice_rem_prof_from_list - remove a profile from list 5451 * @hw: pointer to the HW struct 5452 * @lst: list to remove the profile from 5453 * @hdl: the profile handle indicating the profile to remove 5454 */ 5455 static enum ice_status 5456 ice_rem_prof_from_list(struct ice_hw *hw, struct LIST_HEAD_TYPE *lst, u64 hdl) 5457 { 5458 struct ice_vsig_prof *ent, *tmp; 5459 5460 LIST_FOR_EACH_ENTRY_SAFE(ent, tmp, lst, ice_vsig_prof, list) { 5461 if (ent->profile_cookie == hdl) { 5462 LIST_DEL(&ent->list); 5463 ice_free(hw, ent); 5464 return ICE_SUCCESS; 5465 } 5466 } 5467 5468 return ICE_ERR_DOES_NOT_EXIST; 5469 } 5470 5471 /** 5472 * ice_rem_prof_id_flow - remove flow 5473 * @hw: pointer to the HW struct 5474 * @blk: hardware block 5475 * @vsi: the VSI from which to remove the profile specified by ID 5476 * @hdl: profile tracking handle 5477 * 5478 * Calling this function will update the hardware tables to remove the 5479 * profile indicated by the ID parameter for the VSIs specified in the VSI 5480 * array. Once successfully called, the flow will be disabled. 5481 */ 5482 enum ice_status 5483 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5484 { 5485 struct ice_vsig_prof *tmp1, *del1; 5486 struct LIST_HEAD_TYPE chg, copy; 5487 struct ice_chs_chg *tmp, *del; 5488 enum ice_status status; 5489 u16 vsig; 5490 5491 INIT_LIST_HEAD(©); 5492 INIT_LIST_HEAD(&chg); 5493 5494 /* determine if VSI is already part of a VSIG */ 5495 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5496 if (!status && vsig) { 5497 bool last_profile; 5498 bool only_vsi; 5499 u16 ref; 5500 5501 /* found in VSIG */ 5502 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 5503 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5504 if (status) 5505 goto err_ice_rem_prof_id_flow; 5506 only_vsi = (ref == 1); 5507 5508 if (only_vsi) { 5509 /* If the original VSIG only contains one reference, 5510 * which will be the requesting VSI, then the VSI is not 5511 * sharing entries and we can simply remove the specific 5512 * characteristics from the VSIG. 5513 */ 5514 5515 if (last_profile) { 5516 /* If there are no profiles left for this VSIG, 5517 * then simply remove the the VSIG. 5518 */ 5519 status = ice_rem_vsig(hw, blk, vsig, &chg); 5520 if (status) 5521 goto err_ice_rem_prof_id_flow; 5522 } else { 5523 status = ice_rem_prof_id_vsig(hw, blk, vsig, 5524 hdl, &chg); 5525 if (status) 5526 goto err_ice_rem_prof_id_flow; 5527 5528 /* Adjust priorities */ 5529 status = ice_adj_prof_priorities(hw, blk, vsig, 5530 &chg); 5531 if (status) 5532 goto err_ice_rem_prof_id_flow; 5533 } 5534 5535 } else { 5536 /* Make a copy of the VSIG's list of Profiles */ 5537 status = ice_get_profs_vsig(hw, blk, vsig, ©); 5538 if (status) 5539 goto err_ice_rem_prof_id_flow; 5540 5541 /* Remove specified profile entry from the list */ 5542 status = ice_rem_prof_from_list(hw, ©, hdl); 5543 if (status) 5544 goto err_ice_rem_prof_id_flow; 5545 5546 if (LIST_EMPTY(©)) { 5547 status = ice_move_vsi(hw, blk, vsi, 5548 ICE_DEFAULT_VSIG, &chg); 5549 if (status) 5550 goto err_ice_rem_prof_id_flow; 5551 5552 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 5553 &vsig)) { 5554 /* found an exact match */ 5555 /* add or move VSI to the VSIG that matches */ 5556 /* Search for a VSIG with a matching profile 5557 * list 5558 */ 5559 5560 /* Found match, move VSI to the matching VSIG */ 5561 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5562 if (status) 5563 goto err_ice_rem_prof_id_flow; 5564 } else { 5565 /* since no existing VSIG supports this 5566 * characteristic pattern, we need to create a 5567 * new VSIG and TCAM entries 5568 */ 5569 status = ice_create_vsig_from_lst(hw, blk, vsi, 5570 ©, &vsig, 5571 &chg); 5572 if (status) 5573 goto err_ice_rem_prof_id_flow; 5574 5575 /* Adjust priorities */ 5576 status = ice_adj_prof_priorities(hw, blk, vsig, 5577 &chg); 5578 if (status) 5579 goto err_ice_rem_prof_id_flow; 5580 } 5581 } 5582 } else { 5583 status = ICE_ERR_DOES_NOT_EXIST; 5584 } 5585 5586 /* update hardware tables */ 5587 if (!status) 5588 status = ice_upd_prof_hw(hw, blk, &chg); 5589 5590 err_ice_rem_prof_id_flow: 5591 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) { 5592 LIST_DEL(&del->list_entry); 5593 ice_free(hw, del); 5594 } 5595 5596 LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, ©, ice_vsig_prof, list) { 5597 LIST_DEL(&del1->list); 5598 ice_free(hw, del1); 5599 } 5600 5601 return status; 5602 } 5603 5604 /** 5605 * ice_rem_flow - remove flow 5606 * @hw: pointer to the HW struct 5607 * @blk: hardware block 5608 * @vsi: array of VSIs from which to remove the profile specified by ID 5609 * @count: number of elements in the VSI array 5610 * @id: profile tracking ID 5611 * 5612 * The function will remove flows from the specified VSIs that were enabled 5613 * using ice_add_flow. The ID value will indicated which profile will be 5614 * removed. Once successfully called, the flow will be disabled. 5615 */ 5616 enum ice_status 5617 ice_rem_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count, 5618 u64 id) 5619 { 5620 enum ice_status status; 5621 u16 i; 5622 5623 for (i = 0; i < count; i++) { 5624 status = ice_rem_prof_id_flow(hw, blk, vsi[i], id); 5625 if (status) 5626 return status; 5627 } 5628 5629 return ICE_SUCCESS; 5630 } 5631