xref: /freebsd/sys/dev/ice/ice_flex_pipe.c (revision 91f764172e197c82efa97a66cfbc13d2c744b02b)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2021, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*$FreeBSD$*/
32 
33 #include "ice_common.h"
34 #include "ice_flex_pipe.h"
35 #include "ice_protocol_type.h"
36 #include "ice_flow.h"
37 
38 /* To support tunneling entries by PF, the package will append the PF number to
39  * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
40  */
41 static const struct ice_tunnel_type_scan tnls[] = {
42 	{ TNL_VXLAN,		"TNL_VXLAN_PF" },
43 	{ TNL_GENEVE,		"TNL_GENEVE_PF" },
44 	{ TNL_LAST,		"" }
45 };
46 
47 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
48 	/* SWITCH */
49 	{
50 		ICE_SID_XLT0_SW,
51 		ICE_SID_XLT_KEY_BUILDER_SW,
52 		ICE_SID_XLT1_SW,
53 		ICE_SID_XLT2_SW,
54 		ICE_SID_PROFID_TCAM_SW,
55 		ICE_SID_PROFID_REDIR_SW,
56 		ICE_SID_FLD_VEC_SW,
57 		ICE_SID_CDID_KEY_BUILDER_SW,
58 		ICE_SID_CDID_REDIR_SW
59 	},
60 
61 	/* ACL */
62 	{
63 		ICE_SID_XLT0_ACL,
64 		ICE_SID_XLT_KEY_BUILDER_ACL,
65 		ICE_SID_XLT1_ACL,
66 		ICE_SID_XLT2_ACL,
67 		ICE_SID_PROFID_TCAM_ACL,
68 		ICE_SID_PROFID_REDIR_ACL,
69 		ICE_SID_FLD_VEC_ACL,
70 		ICE_SID_CDID_KEY_BUILDER_ACL,
71 		ICE_SID_CDID_REDIR_ACL
72 	},
73 
74 	/* FD */
75 	{
76 		ICE_SID_XLT0_FD,
77 		ICE_SID_XLT_KEY_BUILDER_FD,
78 		ICE_SID_XLT1_FD,
79 		ICE_SID_XLT2_FD,
80 		ICE_SID_PROFID_TCAM_FD,
81 		ICE_SID_PROFID_REDIR_FD,
82 		ICE_SID_FLD_VEC_FD,
83 		ICE_SID_CDID_KEY_BUILDER_FD,
84 		ICE_SID_CDID_REDIR_FD
85 	},
86 
87 	/* RSS */
88 	{
89 		ICE_SID_XLT0_RSS,
90 		ICE_SID_XLT_KEY_BUILDER_RSS,
91 		ICE_SID_XLT1_RSS,
92 		ICE_SID_XLT2_RSS,
93 		ICE_SID_PROFID_TCAM_RSS,
94 		ICE_SID_PROFID_REDIR_RSS,
95 		ICE_SID_FLD_VEC_RSS,
96 		ICE_SID_CDID_KEY_BUILDER_RSS,
97 		ICE_SID_CDID_REDIR_RSS
98 	},
99 
100 	/* PE */
101 	{
102 		ICE_SID_XLT0_PE,
103 		ICE_SID_XLT_KEY_BUILDER_PE,
104 		ICE_SID_XLT1_PE,
105 		ICE_SID_XLT2_PE,
106 		ICE_SID_PROFID_TCAM_PE,
107 		ICE_SID_PROFID_REDIR_PE,
108 		ICE_SID_FLD_VEC_PE,
109 		ICE_SID_CDID_KEY_BUILDER_PE,
110 		ICE_SID_CDID_REDIR_PE
111 	}
112 };
113 
114 /**
115  * ice_sect_id - returns section ID
116  * @blk: block type
117  * @sect: section type
118  *
119  * This helper function returns the proper section ID given a block type and a
120  * section type.
121  */
122 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
123 {
124 	return ice_sect_lkup[blk][sect];
125 }
126 
127 /**
128  * ice_pkg_val_buf
129  * @buf: pointer to the ice buffer
130  *
131  * This helper function validates a buffer's header.
132  */
133 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
134 {
135 	struct ice_buf_hdr *hdr;
136 	u16 section_count;
137 	u16 data_end;
138 
139 	hdr = (struct ice_buf_hdr *)buf->buf;
140 	/* verify data */
141 	section_count = LE16_TO_CPU(hdr->section_count);
142 	if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
143 		return NULL;
144 
145 	data_end = LE16_TO_CPU(hdr->data_end);
146 	if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
147 		return NULL;
148 
149 	return hdr;
150 }
151 
152 /**
153  * ice_find_buf_table
154  * @ice_seg: pointer to the ice segment
155  *
156  * Returns the address of the buffer table within the ice segment.
157  */
158 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
159 {
160 	struct ice_nvm_table *nvms;
161 
162 	nvms = (struct ice_nvm_table *)
163 		(ice_seg->device_table +
164 		 LE32_TO_CPU(ice_seg->device_table_count));
165 
166 	return (_FORCE_ struct ice_buf_table *)
167 		(nvms->vers + LE32_TO_CPU(nvms->table_count));
168 }
169 
170 /**
171  * ice_pkg_enum_buf
172  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
173  * @state: pointer to the enum state
174  *
175  * This function will enumerate all the buffers in the ice segment. The first
176  * call is made with the ice_seg parameter non-NULL; on subsequent calls,
177  * ice_seg is set to NULL which continues the enumeration. When the function
178  * returns a NULL pointer, then the end of the buffers has been reached, or an
179  * unexpected value has been detected (for example an invalid section count or
180  * an invalid buffer end value).
181  */
182 static struct ice_buf_hdr *
183 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
184 {
185 	if (ice_seg) {
186 		state->buf_table = ice_find_buf_table(ice_seg);
187 		if (!state->buf_table)
188 			return NULL;
189 
190 		state->buf_idx = 0;
191 		return ice_pkg_val_buf(state->buf_table->buf_array);
192 	}
193 
194 	if (++state->buf_idx < LE32_TO_CPU(state->buf_table->buf_count))
195 		return ice_pkg_val_buf(state->buf_table->buf_array +
196 				       state->buf_idx);
197 	else
198 		return NULL;
199 }
200 
201 /**
202  * ice_pkg_advance_sect
203  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
204  * @state: pointer to the enum state
205  *
206  * This helper function will advance the section within the ice segment,
207  * also advancing the buffer if needed.
208  */
209 static bool
210 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
211 {
212 	if (!ice_seg && !state->buf)
213 		return false;
214 
215 	if (!ice_seg && state->buf)
216 		if (++state->sect_idx < LE16_TO_CPU(state->buf->section_count))
217 			return true;
218 
219 	state->buf = ice_pkg_enum_buf(ice_seg, state);
220 	if (!state->buf)
221 		return false;
222 
223 	/* start of new buffer, reset section index */
224 	state->sect_idx = 0;
225 	return true;
226 }
227 
228 /**
229  * ice_pkg_enum_section
230  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
231  * @state: pointer to the enum state
232  * @sect_type: section type to enumerate
233  *
234  * This function will enumerate all the sections of a particular type in the
235  * ice segment. The first call is made with the ice_seg parameter non-NULL;
236  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
237  * When the function returns a NULL pointer, then the end of the matching
238  * sections has been reached.
239  */
240 static void *
241 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
242 		     u32 sect_type)
243 {
244 	u16 offset, size;
245 
246 	if (ice_seg)
247 		state->type = sect_type;
248 
249 	if (!ice_pkg_advance_sect(ice_seg, state))
250 		return NULL;
251 
252 	/* scan for next matching section */
253 	while (state->buf->section_entry[state->sect_idx].type !=
254 	       CPU_TO_LE32(state->type))
255 		if (!ice_pkg_advance_sect(NULL, state))
256 			return NULL;
257 
258 	/* validate section */
259 	offset = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
260 	if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
261 		return NULL;
262 
263 	size = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].size);
264 	if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
265 		return NULL;
266 
267 	/* make sure the section fits in the buffer */
268 	if (offset + size > ICE_PKG_BUF_SIZE)
269 		return NULL;
270 
271 	state->sect_type =
272 		LE32_TO_CPU(state->buf->section_entry[state->sect_idx].type);
273 
274 	/* calc pointer to this section */
275 	state->sect = ((u8 *)state->buf) +
276 		LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
277 
278 	return state->sect;
279 }
280 
281 /**
282  * ice_pkg_enum_entry
283  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
284  * @state: pointer to the enum state
285  * @sect_type: section type to enumerate
286  * @offset: pointer to variable that receives the offset in the table (optional)
287  * @handler: function that handles access to the entries into the section type
288  *
289  * This function will enumerate all the entries in particular section type in
290  * the ice segment. The first call is made with the ice_seg parameter non-NULL;
291  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
292  * When the function returns a NULL pointer, then the end of the entries has
293  * been reached.
294  *
295  * Since each section may have a different header and entry size, the handler
296  * function is needed to determine the number and location entries in each
297  * section.
298  *
299  * The offset parameter is optional, but should be used for sections that
300  * contain an offset for each section table. For such cases, the section handler
301  * function must return the appropriate offset + index to give the absolution
302  * offset for each entry. For example, if the base for a section's header
303  * indicates a base offset of 10, and the index for the entry is 2, then
304  * section handler function should set the offset to 10 + 2 = 12.
305  */
306 static void *
307 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
308 		   u32 sect_type, u32 *offset,
309 		   void *(*handler)(u32 sect_type, void *section,
310 				    u32 index, u32 *offset))
311 {
312 	void *entry;
313 
314 	if (ice_seg) {
315 		if (!handler)
316 			return NULL;
317 
318 		if (!ice_pkg_enum_section(ice_seg, state, sect_type))
319 			return NULL;
320 
321 		state->entry_idx = 0;
322 		state->handler = handler;
323 	} else {
324 		state->entry_idx++;
325 	}
326 
327 	if (!state->handler)
328 		return NULL;
329 
330 	/* get entry */
331 	entry = state->handler(state->sect_type, state->sect, state->entry_idx,
332 			       offset);
333 	if (!entry) {
334 		/* end of a section, look for another section of this type */
335 		if (!ice_pkg_enum_section(NULL, state, 0))
336 			return NULL;
337 
338 		state->entry_idx = 0;
339 		entry = state->handler(state->sect_type, state->sect,
340 				       state->entry_idx, offset);
341 	}
342 
343 	return entry;
344 }
345 
346 /**
347  * ice_boost_tcam_handler
348  * @sect_type: section type
349  * @section: pointer to section
350  * @index: index of the boost TCAM entry to be returned
351  * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
352  *
353  * This is a callback function that can be passed to ice_pkg_enum_entry.
354  * Handles enumeration of individual boost TCAM entries.
355  */
356 static void *
357 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
358 {
359 	struct ice_boost_tcam_section *boost;
360 
361 	if (!section)
362 		return NULL;
363 
364 	if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
365 		return NULL;
366 
367 	if (index > ICE_MAX_BST_TCAMS_IN_BUF)
368 		return NULL;
369 
370 	if (offset)
371 		*offset = 0;
372 
373 	boost = (struct ice_boost_tcam_section *)section;
374 	if (index >= LE16_TO_CPU(boost->count))
375 		return NULL;
376 
377 	return boost->tcam + index;
378 }
379 
380 /**
381  * ice_find_boost_entry
382  * @ice_seg: pointer to the ice segment (non-NULL)
383  * @addr: Boost TCAM address of entry to search for
384  * @entry: returns pointer to the entry
385  *
386  * Finds a particular Boost TCAM entry and returns a pointer to that entry
387  * if it is found. The ice_seg parameter must not be NULL since the first call
388  * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
389  */
390 static enum ice_status
391 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
392 		     struct ice_boost_tcam_entry **entry)
393 {
394 	struct ice_boost_tcam_entry *tcam;
395 	struct ice_pkg_enum state;
396 
397 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
398 
399 	if (!ice_seg)
400 		return ICE_ERR_PARAM;
401 
402 	do {
403 		tcam = (struct ice_boost_tcam_entry *)
404 		       ice_pkg_enum_entry(ice_seg, &state,
405 					  ICE_SID_RXPARSER_BOOST_TCAM, NULL,
406 					  ice_boost_tcam_handler);
407 		if (tcam && LE16_TO_CPU(tcam->addr) == addr) {
408 			*entry = tcam;
409 			return ICE_SUCCESS;
410 		}
411 
412 		ice_seg = NULL;
413 	} while (tcam);
414 
415 	*entry = NULL;
416 	return ICE_ERR_CFG;
417 }
418 
419 /**
420  * ice_label_enum_handler
421  * @sect_type: section type
422  * @section: pointer to section
423  * @index: index of the label entry to be returned
424  * @offset: pointer to receive absolute offset, always zero for label sections
425  *
426  * This is a callback function that can be passed to ice_pkg_enum_entry.
427  * Handles enumeration of individual label entries.
428  */
429 static void *
430 ice_label_enum_handler(u32 __ALWAYS_UNUSED sect_type, void *section, u32 index,
431 		       u32 *offset)
432 {
433 	struct ice_label_section *labels;
434 
435 	if (!section)
436 		return NULL;
437 
438 	if (index > ICE_MAX_LABELS_IN_BUF)
439 		return NULL;
440 
441 	if (offset)
442 		*offset = 0;
443 
444 	labels = (struct ice_label_section *)section;
445 	if (index >= LE16_TO_CPU(labels->count))
446 		return NULL;
447 
448 	return labels->label + index;
449 }
450 
451 /**
452  * ice_enum_labels
453  * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
454  * @type: the section type that will contain the label (0 on subsequent calls)
455  * @state: ice_pkg_enum structure that will hold the state of the enumeration
456  * @value: pointer to a value that will return the label's value if found
457  *
458  * Enumerates a list of labels in the package. The caller will call
459  * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
460  * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
461  * the end of the list has been reached.
462  */
463 static char *
464 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
465 		u16 *value)
466 {
467 	struct ice_label *label;
468 
469 	/* Check for valid label section on first call */
470 	if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
471 		return NULL;
472 
473 	label = (struct ice_label *)ice_pkg_enum_entry(ice_seg, state, type,
474 						       NULL,
475 						       ice_label_enum_handler);
476 	if (!label)
477 		return NULL;
478 
479 	*value = LE16_TO_CPU(label->value);
480 	return label->name;
481 }
482 
483 /**
484  * ice_init_pkg_hints
485  * @hw: pointer to the HW structure
486  * @ice_seg: pointer to the segment of the package scan (non-NULL)
487  *
488  * This function will scan the package and save off relevant information
489  * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
490  * since the first call to ice_enum_labels requires a pointer to an actual
491  * ice_seg structure.
492  */
493 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
494 {
495 	struct ice_pkg_enum state;
496 	char *label_name;
497 	u16 val;
498 	int i;
499 
500 	ice_memset(&hw->tnl, 0, sizeof(hw->tnl), ICE_NONDMA_MEM);
501 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
502 
503 	if (!ice_seg)
504 		return;
505 
506 	label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
507 				     &val);
508 
509 	while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
510 		for (i = 0; tnls[i].type != TNL_LAST; i++) {
511 			size_t len = strlen(tnls[i].label_prefix);
512 
513 			/* Look for matching label start, before continuing */
514 			if (strncmp(label_name, tnls[i].label_prefix, len))
515 				continue;
516 
517 			/* Make sure this label matches our PF. Note that the PF
518 			 * character ('0' - '7') will be located where our
519 			 * prefix string's null terminator is located.
520 			 */
521 			if ((label_name[len] - '0') == hw->pf_id) {
522 				hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
523 				hw->tnl.tbl[hw->tnl.count].valid = false;
524 				hw->tnl.tbl[hw->tnl.count].in_use = false;
525 				hw->tnl.tbl[hw->tnl.count].marked = false;
526 				hw->tnl.tbl[hw->tnl.count].boost_addr = val;
527 				hw->tnl.tbl[hw->tnl.count].port = 0;
528 				hw->tnl.count++;
529 				break;
530 			}
531 		}
532 
533 		label_name = ice_enum_labels(NULL, 0, &state, &val);
534 	}
535 
536 	/* Cache the appropriate boost TCAM entry pointers */
537 	for (i = 0; i < hw->tnl.count; i++) {
538 		ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
539 				     &hw->tnl.tbl[i].boost_entry);
540 		if (hw->tnl.tbl[i].boost_entry)
541 			hw->tnl.tbl[i].valid = true;
542 	}
543 }
544 
545 /* Key creation */
546 
547 #define ICE_DC_KEY	0x1	/* don't care */
548 #define ICE_DC_KEYINV	0x1
549 #define ICE_NM_KEY	0x0	/* never match */
550 #define ICE_NM_KEYINV	0x0
551 #define ICE_0_KEY	0x1	/* match 0 */
552 #define ICE_0_KEYINV	0x0
553 #define ICE_1_KEY	0x0	/* match 1 */
554 #define ICE_1_KEYINV	0x1
555 
556 /**
557  * ice_gen_key_word - generate 16-bits of a key/mask word
558  * @val: the value
559  * @valid: valid bits mask (change only the valid bits)
560  * @dont_care: don't care mask
561  * @nvr_mtch: never match mask
562  * @key: pointer to an array of where the resulting key portion
563  * @key_inv: pointer to an array of where the resulting key invert portion
564  *
565  * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
566  * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
567  * of key and 8 bits of key invert.
568  *
569  *     '0' =    b01, always match a 0 bit
570  *     '1' =    b10, always match a 1 bit
571  *     '?' =    b11, don't care bit (always matches)
572  *     '~' =    b00, never match bit
573  *
574  * Input:
575  *          val:         b0  1  0  1  0  1
576  *          dont_care:   b0  0  1  1  0  0
577  *          never_mtch:  b0  0  0  0  1  1
578  *          ------------------------------
579  * Result:  key:        b01 10 11 11 00 00
580  */
581 static enum ice_status
582 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
583 		 u8 *key_inv)
584 {
585 	u8 in_key = *key, in_key_inv = *key_inv;
586 	u8 i;
587 
588 	/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
589 	if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
590 		return ICE_ERR_CFG;
591 
592 	*key = 0;
593 	*key_inv = 0;
594 
595 	/* encode the 8 bits into 8-bit key and 8-bit key invert */
596 	for (i = 0; i < 8; i++) {
597 		*key >>= 1;
598 		*key_inv >>= 1;
599 
600 		if (!(valid & 0x1)) { /* change only valid bits */
601 			*key |= (in_key & 0x1) << 7;
602 			*key_inv |= (in_key_inv & 0x1) << 7;
603 		} else if (dont_care & 0x1) { /* don't care bit */
604 			*key |= ICE_DC_KEY << 7;
605 			*key_inv |= ICE_DC_KEYINV << 7;
606 		} else if (nvr_mtch & 0x1) { /* never match bit */
607 			*key |= ICE_NM_KEY << 7;
608 			*key_inv |= ICE_NM_KEYINV << 7;
609 		} else if (val & 0x01) { /* exact 1 match */
610 			*key |= ICE_1_KEY << 7;
611 			*key_inv |= ICE_1_KEYINV << 7;
612 		} else { /* exact 0 match */
613 			*key |= ICE_0_KEY << 7;
614 			*key_inv |= ICE_0_KEYINV << 7;
615 		}
616 
617 		dont_care >>= 1;
618 		nvr_mtch >>= 1;
619 		valid >>= 1;
620 		val >>= 1;
621 		in_key >>= 1;
622 		in_key_inv >>= 1;
623 	}
624 
625 	return ICE_SUCCESS;
626 }
627 
628 /**
629  * ice_bits_max_set - determine if the number of bits set is within a maximum
630  * @mask: pointer to the byte array which is the mask
631  * @size: the number of bytes in the mask
632  * @max: the max number of set bits
633  *
634  * This function determines if there are at most 'max' number of bits set in an
635  * array. Returns true if the number for bits set is <= max or will return false
636  * otherwise.
637  */
638 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
639 {
640 	u16 count = 0;
641 	u16 i;
642 
643 	/* check each byte */
644 	for (i = 0; i < size; i++) {
645 		/* if 0, go to next byte */
646 		if (!mask[i])
647 			continue;
648 
649 		/* We know there is at least one set bit in this byte because of
650 		 * the above check; if we already have found 'max' number of
651 		 * bits set, then we can return failure now.
652 		 */
653 		if (count == max)
654 			return false;
655 
656 		/* count the bits in this byte, checking threshold */
657 		count += ice_hweight8(mask[i]);
658 		if (count > max)
659 			return false;
660 	}
661 
662 	return true;
663 }
664 
665 /**
666  * ice_set_key - generate a variable sized key with multiples of 16-bits
667  * @key: pointer to where the key will be stored
668  * @size: the size of the complete key in bytes (must be even)
669  * @val: array of 8-bit values that makes up the value portion of the key
670  * @upd: array of 8-bit masks that determine what key portion to update
671  * @dc: array of 8-bit masks that make up the don't care mask
672  * @nm: array of 8-bit masks that make up the never match mask
673  * @off: the offset of the first byte in the key to update
674  * @len: the number of bytes in the key update
675  *
676  * This function generates a key from a value, a don't care mask and a never
677  * match mask.
678  * upd, dc, and nm are optional parameters, and can be NULL:
679  *	upd == NULL --> upd mask is all 1's (update all bits)
680  *	dc == NULL --> dc mask is all 0's (no don't care bits)
681  *	nm == NULL --> nm mask is all 0's (no never match bits)
682  */
683 static enum ice_status
684 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
685 	    u16 len)
686 {
687 	u16 half_size;
688 	u16 i;
689 
690 	/* size must be a multiple of 2 bytes. */
691 	if (size % 2)
692 		return ICE_ERR_CFG;
693 	half_size = size / 2;
694 
695 	if (off + len > half_size)
696 		return ICE_ERR_CFG;
697 
698 	/* Make sure at most one bit is set in the never match mask. Having more
699 	 * than one never match mask bit set will cause HW to consume excessive
700 	 * power otherwise; this is a power management efficiency check.
701 	 */
702 #define ICE_NVR_MTCH_BITS_MAX	1
703 	if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
704 		return ICE_ERR_CFG;
705 
706 	for (i = 0; i < len; i++)
707 		if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
708 				     dc ? dc[i] : 0, nm ? nm[i] : 0,
709 				     key + off + i, key + half_size + off + i))
710 			return ICE_ERR_CFG;
711 
712 	return ICE_SUCCESS;
713 }
714 
715 /**
716  * ice_acquire_global_cfg_lock
717  * @hw: pointer to the HW structure
718  * @access: access type (read or write)
719  *
720  * This function will request ownership of the global config lock for reading
721  * or writing of the package. When attempting to obtain write access, the
722  * caller must check for the following two return values:
723  *
724  * ICE_SUCCESS        - Means the caller has acquired the global config lock
725  *                      and can perform writing of the package.
726  * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
727  *                      package or has found that no update was necessary; in
728  *                      this case, the caller can just skip performing any
729  *                      update of the package.
730  */
731 static enum ice_status
732 ice_acquire_global_cfg_lock(struct ice_hw *hw,
733 			    enum ice_aq_res_access_type access)
734 {
735 	enum ice_status status;
736 
737 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
738 
739 	status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
740 				 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
741 
742 	if (status == ICE_ERR_AQ_NO_WORK)
743 		ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
744 
745 	return status;
746 }
747 
748 /**
749  * ice_release_global_cfg_lock
750  * @hw: pointer to the HW structure
751  *
752  * This function will release the global config lock.
753  */
754 static void ice_release_global_cfg_lock(struct ice_hw *hw)
755 {
756 	ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
757 }
758 
759 /**
760  * ice_acquire_change_lock
761  * @hw: pointer to the HW structure
762  * @access: access type (read or write)
763  *
764  * This function will request ownership of the change lock.
765  */
766 static enum ice_status
767 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
768 {
769 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
770 
771 	return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
772 			       ICE_CHANGE_LOCK_TIMEOUT);
773 }
774 
775 /**
776  * ice_release_change_lock
777  * @hw: pointer to the HW structure
778  *
779  * This function will release the change lock using the proper Admin Command.
780  */
781 static void ice_release_change_lock(struct ice_hw *hw)
782 {
783 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
784 
785 	ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
786 }
787 
788 /**
789  * ice_aq_download_pkg
790  * @hw: pointer to the hardware structure
791  * @pkg_buf: the package buffer to transfer
792  * @buf_size: the size of the package buffer
793  * @last_buf: last buffer indicator
794  * @error_offset: returns error offset
795  * @error_info: returns error information
796  * @cd: pointer to command details structure or NULL
797  *
798  * Download Package (0x0C40)
799  */
800 static enum ice_status
801 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
802 		    u16 buf_size, bool last_buf, u32 *error_offset,
803 		    u32 *error_info, struct ice_sq_cd *cd)
804 {
805 	struct ice_aqc_download_pkg *cmd;
806 	struct ice_aq_desc desc;
807 	enum ice_status status;
808 
809 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
810 
811 	if (error_offset)
812 		*error_offset = 0;
813 	if (error_info)
814 		*error_info = 0;
815 
816 	cmd = &desc.params.download_pkg;
817 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
818 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
819 
820 	if (last_buf)
821 		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
822 
823 	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
824 	if (status == ICE_ERR_AQ_ERROR) {
825 		/* Read error from buffer only when the FW returned an error */
826 		struct ice_aqc_download_pkg_resp *resp;
827 
828 		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
829 		if (error_offset)
830 			*error_offset = LE32_TO_CPU(resp->error_offset);
831 		if (error_info)
832 			*error_info = LE32_TO_CPU(resp->error_info);
833 	}
834 
835 	return status;
836 }
837 
838 /**
839  * ice_aq_upload_section
840  * @hw: pointer to the hardware structure
841  * @pkg_buf: the package buffer which will receive the section
842  * @buf_size: the size of the package buffer
843  * @cd: pointer to command details structure or NULL
844  *
845  * Upload Section (0x0C41)
846  */
847 enum ice_status
848 ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
849 		      u16 buf_size, struct ice_sq_cd *cd)
850 {
851 	struct ice_aq_desc desc;
852 
853 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
854 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
855 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
856 
857 	return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
858 }
859 
860 /**
861  * ice_aq_update_pkg
862  * @hw: pointer to the hardware structure
863  * @pkg_buf: the package cmd buffer
864  * @buf_size: the size of the package cmd buffer
865  * @last_buf: last buffer indicator
866  * @error_offset: returns error offset
867  * @error_info: returns error information
868  * @cd: pointer to command details structure or NULL
869  *
870  * Update Package (0x0C42)
871  */
872 static enum ice_status
873 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
874 		  bool last_buf, u32 *error_offset, u32 *error_info,
875 		  struct ice_sq_cd *cd)
876 {
877 	struct ice_aqc_download_pkg *cmd;
878 	struct ice_aq_desc desc;
879 	enum ice_status status;
880 
881 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
882 
883 	if (error_offset)
884 		*error_offset = 0;
885 	if (error_info)
886 		*error_info = 0;
887 
888 	cmd = &desc.params.download_pkg;
889 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
890 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
891 
892 	if (last_buf)
893 		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
894 
895 	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
896 	if (status == ICE_ERR_AQ_ERROR) {
897 		/* Read error from buffer only when the FW returned an error */
898 		struct ice_aqc_download_pkg_resp *resp;
899 
900 		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
901 		if (error_offset)
902 			*error_offset = LE32_TO_CPU(resp->error_offset);
903 		if (error_info)
904 			*error_info = LE32_TO_CPU(resp->error_info);
905 	}
906 
907 	return status;
908 }
909 
910 /**
911  * ice_find_seg_in_pkg
912  * @hw: pointer to the hardware structure
913  * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
914  * @pkg_hdr: pointer to the package header to be searched
915  *
916  * This function searches a package file for a particular segment type. On
917  * success it returns a pointer to the segment header, otherwise it will
918  * return NULL.
919  */
920 static struct ice_generic_seg_hdr *
921 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
922 		    struct ice_pkg_hdr *pkg_hdr)
923 {
924 	u32 i;
925 
926 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
927 	ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
928 		  pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
929 		  pkg_hdr->pkg_format_ver.update,
930 		  pkg_hdr->pkg_format_ver.draft);
931 
932 	/* Search all package segments for the requested segment type */
933 	for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) {
934 		struct ice_generic_seg_hdr *seg;
935 
936 		seg = (struct ice_generic_seg_hdr *)
937 			((u8 *)pkg_hdr + LE32_TO_CPU(pkg_hdr->seg_offset[i]));
938 
939 		if (LE32_TO_CPU(seg->seg_type) == seg_type)
940 			return seg;
941 	}
942 
943 	return NULL;
944 }
945 
946 /**
947  * ice_update_pkg
948  * @hw: pointer to the hardware structure
949  * @bufs: pointer to an array of buffers
950  * @count: the number of buffers in the array
951  *
952  * Obtains change lock and updates package.
953  */
954 enum ice_status
955 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
956 {
957 	enum ice_status status;
958 	u32 offset, info, i;
959 
960 	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
961 	if (status)
962 		return status;
963 
964 	for (i = 0; i < count; i++) {
965 		struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
966 		bool last = ((i + 1) == count);
967 
968 		status = ice_aq_update_pkg(hw, bh, LE16_TO_CPU(bh->data_end),
969 					   last, &offset, &info, NULL);
970 
971 		if (status) {
972 			ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
973 				  status, offset, info);
974 			break;
975 		}
976 	}
977 
978 	ice_release_change_lock(hw);
979 
980 	return status;
981 }
982 
983 /**
984  * ice_dwnld_cfg_bufs
985  * @hw: pointer to the hardware structure
986  * @bufs: pointer to an array of buffers
987  * @count: the number of buffers in the array
988  *
989  * Obtains global config lock and downloads the package configuration buffers
990  * to the firmware. Metadata buffers are skipped, and the first metadata buffer
991  * found indicates that the rest of the buffers are all metadata buffers.
992  */
993 static enum ice_status
994 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
995 {
996 	enum ice_status status;
997 	struct ice_buf_hdr *bh;
998 	u32 offset, info, i;
999 
1000 	if (!bufs || !count)
1001 		return ICE_ERR_PARAM;
1002 
1003 	/* If the first buffer's first section has its metadata bit set
1004 	 * then there are no buffers to be downloaded, and the operation is
1005 	 * considered a success.
1006 	 */
1007 	bh = (struct ice_buf_hdr *)bufs;
1008 	if (LE32_TO_CPU(bh->section_entry[0].type) & ICE_METADATA_BUF)
1009 		return ICE_SUCCESS;
1010 
1011 	/* reset pkg_dwnld_status in case this function is called in the
1012 	 * reset/rebuild flow
1013 	 */
1014 	hw->pkg_dwnld_status = ICE_AQ_RC_OK;
1015 
1016 	status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
1017 	if (status) {
1018 		if (status == ICE_ERR_AQ_NO_WORK)
1019 			hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
1020 		else
1021 			hw->pkg_dwnld_status = hw->adminq.sq_last_status;
1022 		return status;
1023 	}
1024 
1025 	for (i = 0; i < count; i++) {
1026 		bool last = ((i + 1) == count);
1027 
1028 		if (!last) {
1029 			/* check next buffer for metadata flag */
1030 			bh = (struct ice_buf_hdr *)(bufs + i + 1);
1031 
1032 			/* A set metadata flag in the next buffer will signal
1033 			 * that the current buffer will be the last buffer
1034 			 * downloaded
1035 			 */
1036 			if (LE16_TO_CPU(bh->section_count))
1037 				if (LE32_TO_CPU(bh->section_entry[0].type) &
1038 				    ICE_METADATA_BUF)
1039 					last = true;
1040 		}
1041 
1042 		bh = (struct ice_buf_hdr *)(bufs + i);
1043 
1044 		status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
1045 					     &offset, &info, NULL);
1046 
1047 		/* Save AQ status from download package */
1048 		hw->pkg_dwnld_status = hw->adminq.sq_last_status;
1049 		if (status) {
1050 			ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
1051 				  status, offset, info);
1052 
1053 			break;
1054 		}
1055 
1056 		if (last)
1057 			break;
1058 	}
1059 
1060 	if (!status) {
1061 		status = ice_set_vlan_mode(hw);
1062 		if (status)
1063 			ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n",
1064 				  status);
1065 	}
1066 
1067 	ice_release_global_cfg_lock(hw);
1068 
1069 	return status;
1070 }
1071 
1072 /**
1073  * ice_aq_get_pkg_info_list
1074  * @hw: pointer to the hardware structure
1075  * @pkg_info: the buffer which will receive the information list
1076  * @buf_size: the size of the pkg_info information buffer
1077  * @cd: pointer to command details structure or NULL
1078  *
1079  * Get Package Info List (0x0C43)
1080  */
1081 static enum ice_status
1082 ice_aq_get_pkg_info_list(struct ice_hw *hw,
1083 			 struct ice_aqc_get_pkg_info_resp *pkg_info,
1084 			 u16 buf_size, struct ice_sq_cd *cd)
1085 {
1086 	struct ice_aq_desc desc;
1087 
1088 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1089 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1090 
1091 	return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1092 }
1093 
1094 /**
1095  * ice_download_pkg
1096  * @hw: pointer to the hardware structure
1097  * @ice_seg: pointer to the segment of the package to be downloaded
1098  *
1099  * Handles the download of a complete package.
1100  */
1101 static enum ice_status
1102 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1103 {
1104 	struct ice_buf_table *ice_buf_tbl;
1105 
1106 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1107 	ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1108 		  ice_seg->hdr.seg_format_ver.major,
1109 		  ice_seg->hdr.seg_format_ver.minor,
1110 		  ice_seg->hdr.seg_format_ver.update,
1111 		  ice_seg->hdr.seg_format_ver.draft);
1112 
1113 	ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1114 		  LE32_TO_CPU(ice_seg->hdr.seg_type),
1115 		  LE32_TO_CPU(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1116 
1117 	ice_buf_tbl = ice_find_buf_table(ice_seg);
1118 
1119 	ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1120 		  LE32_TO_CPU(ice_buf_tbl->buf_count));
1121 
1122 	return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1123 				  LE32_TO_CPU(ice_buf_tbl->buf_count));
1124 }
1125 
1126 /**
1127  * ice_init_pkg_info
1128  * @hw: pointer to the hardware structure
1129  * @pkg_hdr: pointer to the driver's package hdr
1130  *
1131  * Saves off the package details into the HW structure.
1132  */
1133 static enum ice_status
1134 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1135 {
1136 	struct ice_generic_seg_hdr *seg_hdr;
1137 
1138 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1139 	if (!pkg_hdr)
1140 		return ICE_ERR_PARAM;
1141 
1142 	seg_hdr = (struct ice_generic_seg_hdr *)
1143 		ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
1144 	if (seg_hdr) {
1145 		struct ice_meta_sect *meta;
1146 		struct ice_pkg_enum state;
1147 
1148 		ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1149 
1150 		/* Get package information from the Metadata Section */
1151 		meta = (struct ice_meta_sect *)
1152 			ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
1153 					     ICE_SID_METADATA);
1154 		if (!meta) {
1155 			ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
1156 			return ICE_ERR_CFG;
1157 		}
1158 
1159 		hw->pkg_ver = meta->ver;
1160 		ice_memcpy(hw->pkg_name, meta->name, sizeof(meta->name),
1161 			   ICE_NONDMA_TO_NONDMA);
1162 
1163 		ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1164 			  meta->ver.major, meta->ver.minor, meta->ver.update,
1165 			  meta->ver.draft, meta->name);
1166 
1167 		hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
1168 		ice_memcpy(hw->ice_seg_id, seg_hdr->seg_id,
1169 			   sizeof(hw->ice_seg_id), ICE_NONDMA_TO_NONDMA);
1170 
1171 		ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1172 			  seg_hdr->seg_format_ver.major,
1173 			  seg_hdr->seg_format_ver.minor,
1174 			  seg_hdr->seg_format_ver.update,
1175 			  seg_hdr->seg_format_ver.draft,
1176 			  seg_hdr->seg_id);
1177 	} else {
1178 		ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
1179 		return ICE_ERR_CFG;
1180 	}
1181 
1182 	return ICE_SUCCESS;
1183 }
1184 
1185 /**
1186  * ice_get_pkg_info
1187  * @hw: pointer to the hardware structure
1188  *
1189  * Store details of the package currently loaded in HW into the HW structure.
1190  */
1191 static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
1192 {
1193 	struct ice_aqc_get_pkg_info_resp *pkg_info;
1194 	enum ice_status status;
1195 	u16 size;
1196 	u32 i;
1197 
1198 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1199 
1200 	size = ice_struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1201 	pkg_info = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size);
1202 	if (!pkg_info)
1203 		return ICE_ERR_NO_MEMORY;
1204 
1205 	status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
1206 	if (status)
1207 		goto init_pkg_free_alloc;
1208 
1209 	for (i = 0; i < LE32_TO_CPU(pkg_info->count); i++) {
1210 #define ICE_PKG_FLAG_COUNT	4
1211 		char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1212 		u8 place = 0;
1213 
1214 		if (pkg_info->pkg_info[i].is_active) {
1215 			flags[place++] = 'A';
1216 			hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1217 			hw->active_track_id =
1218 				LE32_TO_CPU(pkg_info->pkg_info[i].track_id);
1219 			ice_memcpy(hw->active_pkg_name,
1220 				   pkg_info->pkg_info[i].name,
1221 				   sizeof(pkg_info->pkg_info[i].name),
1222 				   ICE_NONDMA_TO_NONDMA);
1223 			hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1224 		}
1225 		if (pkg_info->pkg_info[i].is_active_at_boot)
1226 			flags[place++] = 'B';
1227 		if (pkg_info->pkg_info[i].is_modified)
1228 			flags[place++] = 'M';
1229 		if (pkg_info->pkg_info[i].is_in_nvm)
1230 			flags[place++] = 'N';
1231 
1232 		ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1233 			  i, pkg_info->pkg_info[i].ver.major,
1234 			  pkg_info->pkg_info[i].ver.minor,
1235 			  pkg_info->pkg_info[i].ver.update,
1236 			  pkg_info->pkg_info[i].ver.draft,
1237 			  pkg_info->pkg_info[i].name, flags);
1238 	}
1239 
1240 init_pkg_free_alloc:
1241 	ice_free(hw, pkg_info);
1242 
1243 	return status;
1244 }
1245 
1246 /**
1247  * ice_find_label_value
1248  * @ice_seg: pointer to the ice segment (non-NULL)
1249  * @name: name of the label to search for
1250  * @type: the section type that will contain the label
1251  * @value: pointer to a value that will return the label's value if found
1252  *
1253  * Finds a label's value given the label name and the section type to search.
1254  * The ice_seg parameter must not be NULL since the first call to
1255  * ice_enum_labels requires a pointer to an actual ice_seg structure.
1256  */
1257 enum ice_status
1258 ice_find_label_value(struct ice_seg *ice_seg, char const *name, u32 type,
1259 		     u16 *value)
1260 {
1261 	struct ice_pkg_enum state;
1262 	char *label_name;
1263 	u16 val;
1264 
1265 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1266 
1267 	if (!ice_seg)
1268 		return ICE_ERR_PARAM;
1269 
1270 	do {
1271 		label_name = ice_enum_labels(ice_seg, type, &state, &val);
1272 		if (label_name && !strcmp(label_name, name)) {
1273 			*value = val;
1274 			return ICE_SUCCESS;
1275 		}
1276 
1277 		ice_seg = NULL;
1278 	} while (label_name);
1279 
1280 	return ICE_ERR_CFG;
1281 }
1282 
1283 /**
1284  * ice_verify_pkg - verify package
1285  * @pkg: pointer to the package buffer
1286  * @len: size of the package buffer
1287  *
1288  * Verifies various attributes of the package file, including length, format
1289  * version, and the requirement of at least one segment.
1290  */
1291 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1292 {
1293 	u32 seg_count;
1294 	u32 i;
1295 
1296 	if (len < ice_struct_size(pkg, seg_offset, 1))
1297 		return ICE_ERR_BUF_TOO_SHORT;
1298 
1299 	if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1300 	    pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1301 	    pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1302 	    pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1303 		return ICE_ERR_CFG;
1304 
1305 	/* pkg must have at least one segment */
1306 	seg_count = LE32_TO_CPU(pkg->seg_count);
1307 	if (seg_count < 1)
1308 		return ICE_ERR_CFG;
1309 
1310 	/* make sure segment array fits in package length */
1311 	if (len < ice_struct_size(pkg, seg_offset, seg_count))
1312 		return ICE_ERR_BUF_TOO_SHORT;
1313 
1314 	/* all segments must fit within length */
1315 	for (i = 0; i < seg_count; i++) {
1316 		u32 off = LE32_TO_CPU(pkg->seg_offset[i]);
1317 		struct ice_generic_seg_hdr *seg;
1318 
1319 		/* segment header must fit */
1320 		if (len < off + sizeof(*seg))
1321 			return ICE_ERR_BUF_TOO_SHORT;
1322 
1323 		seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1324 
1325 		/* segment body must fit */
1326 		if (len < off + LE32_TO_CPU(seg->seg_size))
1327 			return ICE_ERR_BUF_TOO_SHORT;
1328 	}
1329 
1330 	return ICE_SUCCESS;
1331 }
1332 
1333 /**
1334  * ice_free_seg - free package segment pointer
1335  * @hw: pointer to the hardware structure
1336  *
1337  * Frees the package segment pointer in the proper manner, depending on if the
1338  * segment was allocated or just the passed in pointer was stored.
1339  */
1340 void ice_free_seg(struct ice_hw *hw)
1341 {
1342 	if (hw->pkg_copy) {
1343 		ice_free(hw, hw->pkg_copy);
1344 		hw->pkg_copy = NULL;
1345 		hw->pkg_size = 0;
1346 	}
1347 	hw->seg = NULL;
1348 }
1349 
1350 /**
1351  * ice_init_pkg_regs - initialize additional package registers
1352  * @hw: pointer to the hardware structure
1353  */
1354 static void ice_init_pkg_regs(struct ice_hw *hw)
1355 {
1356 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1357 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1358 #define ICE_SW_BLK_IDX	0
1359 
1360 	/* setup Switch block input mask, which is 48-bits in two parts */
1361 	wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1362 	wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1363 }
1364 
1365 /**
1366  * ice_chk_pkg_version - check package version for compatibility with driver
1367  * @pkg_ver: pointer to a version structure to check
1368  *
1369  * Check to make sure that the package about to be downloaded is compatible with
1370  * the driver. To be compatible, the major and minor components of the package
1371  * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1372  * definitions.
1373  */
1374 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1375 {
1376 	if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
1377 	    pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
1378 		return ICE_ERR_NOT_SUPPORTED;
1379 
1380 	return ICE_SUCCESS;
1381 }
1382 
1383 /**
1384  * ice_chk_pkg_compat
1385  * @hw: pointer to the hardware structure
1386  * @ospkg: pointer to the package hdr
1387  * @seg: pointer to the package segment hdr
1388  *
1389  * This function checks the package version compatibility with driver and NVM
1390  */
1391 static enum ice_status
1392 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1393 		   struct ice_seg **seg)
1394 {
1395 	struct ice_aqc_get_pkg_info_resp *pkg;
1396 	enum ice_status status;
1397 	u16 size;
1398 	u32 i;
1399 
1400 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1401 
1402 	/* Check package version compatibility */
1403 	status = ice_chk_pkg_version(&hw->pkg_ver);
1404 	if (status) {
1405 		ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1406 		return status;
1407 	}
1408 
1409 	/* find ICE segment in given package */
1410 	*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
1411 						     ospkg);
1412 	if (!*seg) {
1413 		ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1414 		return ICE_ERR_CFG;
1415 	}
1416 
1417 	/* Check if FW is compatible with the OS package */
1418 	size = ice_struct_size(pkg, pkg_info, ICE_PKG_CNT);
1419 	pkg = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size);
1420 	if (!pkg)
1421 		return ICE_ERR_NO_MEMORY;
1422 
1423 	status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL);
1424 	if (status)
1425 		goto fw_ddp_compat_free_alloc;
1426 
1427 	for (i = 0; i < LE32_TO_CPU(pkg->count); i++) {
1428 		/* loop till we find the NVM package */
1429 		if (!pkg->pkg_info[i].is_in_nvm)
1430 			continue;
1431 		if ((*seg)->hdr.seg_format_ver.major !=
1432 			pkg->pkg_info[i].ver.major ||
1433 		    (*seg)->hdr.seg_format_ver.minor >
1434 			pkg->pkg_info[i].ver.minor) {
1435 			status = ICE_ERR_FW_DDP_MISMATCH;
1436 			ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
1437 		}
1438 		/* done processing NVM package so break */
1439 		break;
1440 	}
1441 fw_ddp_compat_free_alloc:
1442 	ice_free(hw, pkg);
1443 	return status;
1444 }
1445 
1446 /**
1447  * ice_sw_fv_handler
1448  * @sect_type: section type
1449  * @section: pointer to section
1450  * @index: index of the field vector entry to be returned
1451  * @offset: ptr to variable that receives the offset in the field vector table
1452  *
1453  * This is a callback function that can be passed to ice_pkg_enum_entry.
1454  * This function treats the given section as of type ice_sw_fv_section and
1455  * enumerates offset field. "offset" is an index into the field vector table.
1456  */
1457 static void *
1458 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset)
1459 {
1460 	struct ice_sw_fv_section *fv_section =
1461 		(struct ice_sw_fv_section *)section;
1462 
1463 	if (!section || sect_type != ICE_SID_FLD_VEC_SW)
1464 		return NULL;
1465 	if (index >= LE16_TO_CPU(fv_section->count))
1466 		return NULL;
1467 	if (offset)
1468 		/* "index" passed in to this function is relative to a given
1469 		 * 4k block. To get to the true index into the field vector
1470 		 * table need to add the relative index to the base_offset
1471 		 * field of this section
1472 		 */
1473 		*offset = LE16_TO_CPU(fv_section->base_offset) + index;
1474 	return fv_section->fv + index;
1475 }
1476 
1477 /**
1478  * ice_get_prof_index_max - get the max profile index for used profile
1479  * @hw: pointer to the HW struct
1480  *
1481  * Calling this function will get the max profile index for used profile
1482  * and store the index number in struct ice_switch_info *switch_info
1483  * in hw for following use.
1484  */
1485 static int ice_get_prof_index_max(struct ice_hw *hw)
1486 {
1487 	u16 prof_index = 0, j, max_prof_index = 0;
1488 	struct ice_pkg_enum state;
1489 	struct ice_seg *ice_seg;
1490 	bool flag = false;
1491 	struct ice_fv *fv;
1492 	u32 offset;
1493 
1494 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1495 
1496 	if (!hw->seg)
1497 		return ICE_ERR_PARAM;
1498 
1499 	ice_seg = hw->seg;
1500 
1501 	do {
1502 		fv = (struct ice_fv *)
1503 			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1504 					   &offset, ice_sw_fv_handler);
1505 		if (!fv)
1506 			break;
1507 		ice_seg = NULL;
1508 
1509 		/* in the profile that not be used, the prot_id is set to 0xff
1510 		 * and the off is set to 0x1ff for all the field vectors.
1511 		 */
1512 		for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1513 			if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
1514 			    fv->ew[j].off != ICE_FV_OFFSET_INVAL)
1515 				flag = true;
1516 		if (flag && prof_index > max_prof_index)
1517 			max_prof_index = prof_index;
1518 
1519 		prof_index++;
1520 		flag = false;
1521 	} while (fv);
1522 
1523 	hw->switch_info->max_used_prof_index = max_prof_index;
1524 
1525 	return ICE_SUCCESS;
1526 }
1527 
1528 /**
1529  * ice_init_pkg - initialize/download package
1530  * @hw: pointer to the hardware structure
1531  * @buf: pointer to the package buffer
1532  * @len: size of the package buffer
1533  *
1534  * This function initializes a package. The package contains HW tables
1535  * required to do packet processing. First, the function extracts package
1536  * information such as version. Then it finds the ice configuration segment
1537  * within the package; this function then saves a copy of the segment pointer
1538  * within the supplied package buffer. Next, the function will cache any hints
1539  * from the package, followed by downloading the package itself. Note, that if
1540  * a previous PF driver has already downloaded the package successfully, then
1541  * the current driver will not have to download the package again.
1542  *
1543  * The local package contents will be used to query default behavior and to
1544  * update specific sections of the HW's version of the package (e.g. to update
1545  * the parse graph to understand new protocols).
1546  *
1547  * This function stores a pointer to the package buffer memory, and it is
1548  * expected that the supplied buffer will not be freed immediately. If the
1549  * package buffer needs to be freed, such as when read from a file, use
1550  * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1551  * case.
1552  */
1553 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1554 {
1555 	struct ice_pkg_hdr *pkg;
1556 	enum ice_status status;
1557 	struct ice_seg *seg;
1558 
1559 	if (!buf || !len)
1560 		return ICE_ERR_PARAM;
1561 
1562 	pkg = (struct ice_pkg_hdr *)buf;
1563 	status = ice_verify_pkg(pkg, len);
1564 	if (status) {
1565 		ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1566 			  status);
1567 		return status;
1568 	}
1569 
1570 	/* initialize package info */
1571 	status = ice_init_pkg_info(hw, pkg);
1572 	if (status)
1573 		return status;
1574 
1575 	/* before downloading the package, check package version for
1576 	 * compatibility with driver
1577 	 */
1578 	status = ice_chk_pkg_compat(hw, pkg, &seg);
1579 	if (status)
1580 		return status;
1581 
1582 	/* initialize package hints and then download package */
1583 	ice_init_pkg_hints(hw, seg);
1584 	status = ice_download_pkg(hw, seg);
1585 	if (status == ICE_ERR_AQ_NO_WORK) {
1586 		ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
1587 		status = ICE_SUCCESS;
1588 	}
1589 
1590 	/* Get information on the package currently loaded in HW, then make sure
1591 	 * the driver is compatible with this version.
1592 	 */
1593 	if (!status) {
1594 		status = ice_get_pkg_info(hw);
1595 		if (!status)
1596 			status = ice_chk_pkg_version(&hw->active_pkg_ver);
1597 	}
1598 
1599 	if (!status) {
1600 		hw->seg = seg;
1601 		/* on successful package download update other required
1602 		 * registers to support the package and fill HW tables
1603 		 * with package content.
1604 		 */
1605 		ice_init_pkg_regs(hw);
1606 		ice_fill_blk_tbls(hw);
1607 		ice_get_prof_index_max(hw);
1608 	} else {
1609 		ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1610 			  status);
1611 	}
1612 
1613 	return status;
1614 }
1615 
1616 /**
1617  * ice_copy_and_init_pkg - initialize/download a copy of the package
1618  * @hw: pointer to the hardware structure
1619  * @buf: pointer to the package buffer
1620  * @len: size of the package buffer
1621  *
1622  * This function copies the package buffer, and then calls ice_init_pkg() to
1623  * initialize the copied package contents.
1624  *
1625  * The copying is necessary if the package buffer supplied is constant, or if
1626  * the memory may disappear shortly after calling this function.
1627  *
1628  * If the package buffer resides in the data segment and can be modified, the
1629  * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1630  *
1631  * However, if the package buffer needs to be copied first, such as when being
1632  * read from a file, the caller should use ice_copy_and_init_pkg().
1633  *
1634  * This function will first copy the package buffer, before calling
1635  * ice_init_pkg(). The caller is free to immediately destroy the original
1636  * package buffer, as the new copy will be managed by this function and
1637  * related routines.
1638  */
1639 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1640 {
1641 	enum ice_status status;
1642 	u8 *buf_copy;
1643 
1644 	if (!buf || !len)
1645 		return ICE_ERR_PARAM;
1646 
1647 	buf_copy = (u8 *)ice_memdup(hw, buf, len, ICE_NONDMA_TO_NONDMA);
1648 
1649 	status = ice_init_pkg(hw, buf_copy, len);
1650 	if (status) {
1651 		/* Free the copy, since we failed to initialize the package */
1652 		ice_free(hw, buf_copy);
1653 	} else {
1654 		/* Track the copied pkg so we can free it later */
1655 		hw->pkg_copy = buf_copy;
1656 		hw->pkg_size = len;
1657 	}
1658 
1659 	return status;
1660 }
1661 
1662 /**
1663  * ice_pkg_buf_alloc
1664  * @hw: pointer to the HW structure
1665  *
1666  * Allocates a package buffer and returns a pointer to the buffer header.
1667  * Note: all package contents must be in Little Endian form.
1668  */
1669 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1670 {
1671 	struct ice_buf_build *bld;
1672 	struct ice_buf_hdr *buf;
1673 
1674 	bld = (struct ice_buf_build *)ice_malloc(hw, sizeof(*bld));
1675 	if (!bld)
1676 		return NULL;
1677 
1678 	buf = (struct ice_buf_hdr *)bld;
1679 	buf->data_end = CPU_TO_LE16(offsetof(struct ice_buf_hdr,
1680 					     section_entry));
1681 	return bld;
1682 }
1683 
1684 /**
1685  * ice_get_sw_prof_type - determine switch profile type
1686  * @hw: pointer to the HW structure
1687  * @fv: pointer to the switch field vector
1688  */
1689 static enum ice_prof_type
1690 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv)
1691 {
1692 	u16 i;
1693 
1694 	for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
1695 		/* UDP tunnel will have UDP_OF protocol ID and VNI offset */
1696 		if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
1697 		    fv->ew[i].off == ICE_VNI_OFFSET)
1698 			return ICE_PROF_TUN_UDP;
1699 
1700 		/* GRE tunnel will have GRE protocol */
1701 		if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
1702 			return ICE_PROF_TUN_GRE;
1703 	}
1704 
1705 	return ICE_PROF_NON_TUN;
1706 }
1707 
1708 /**
1709  * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
1710  * @hw: pointer to hardware structure
1711  * @req_profs: type of profiles requested
1712  * @bm: pointer to memory for returning the bitmap of field vectors
1713  */
1714 void
1715 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
1716 		     ice_bitmap_t *bm)
1717 {
1718 	struct ice_pkg_enum state;
1719 	struct ice_seg *ice_seg;
1720 	struct ice_fv *fv;
1721 
1722 	if (req_profs == ICE_PROF_ALL) {
1723 		ice_bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES);
1724 		return;
1725 	}
1726 
1727 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1728 	ice_zero_bitmap(bm, ICE_MAX_NUM_PROFILES);
1729 	ice_seg = hw->seg;
1730 	do {
1731 		enum ice_prof_type prof_type;
1732 		u32 offset;
1733 
1734 		fv = (struct ice_fv *)
1735 			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1736 					   &offset, ice_sw_fv_handler);
1737 		ice_seg = NULL;
1738 
1739 		if (fv) {
1740 			/* Determine field vector type */
1741 			prof_type = ice_get_sw_prof_type(hw, fv);
1742 
1743 			if (req_profs & prof_type)
1744 				ice_set_bit((u16)offset, bm);
1745 		}
1746 	} while (fv);
1747 }
1748 
1749 /**
1750  * ice_get_sw_fv_list
1751  * @hw: pointer to the HW structure
1752  * @prot_ids: field vector to search for with a given protocol ID
1753  * @ids_cnt: lookup/protocol count
1754  * @bm: bitmap of field vectors to consider
1755  * @fv_list: Head of a list
1756  *
1757  * Finds all the field vector entries from switch block that contain
1758  * a given protocol ID and returns a list of structures of type
1759  * "ice_sw_fv_list_entry". Every structure in the list has a field vector
1760  * definition and profile ID information
1761  * NOTE: The caller of the function is responsible for freeing the memory
1762  * allocated for every list entry.
1763  */
1764 enum ice_status
1765 ice_get_sw_fv_list(struct ice_hw *hw, u8 *prot_ids, u16 ids_cnt,
1766 		   ice_bitmap_t *bm, struct LIST_HEAD_TYPE *fv_list)
1767 {
1768 	struct ice_sw_fv_list_entry *fvl;
1769 	struct ice_sw_fv_list_entry *tmp;
1770 	struct ice_pkg_enum state;
1771 	struct ice_seg *ice_seg;
1772 	struct ice_fv *fv;
1773 	u32 offset;
1774 
1775 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1776 
1777 	if (!ids_cnt || !hw->seg)
1778 		return ICE_ERR_PARAM;
1779 
1780 	ice_seg = hw->seg;
1781 	do {
1782 		u16 i;
1783 
1784 		fv = (struct ice_fv *)
1785 			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1786 					   &offset, ice_sw_fv_handler);
1787 		if (!fv)
1788 			break;
1789 		ice_seg = NULL;
1790 
1791 		/* If field vector is not in the bitmap list, then skip this
1792 		 * profile.
1793 		 */
1794 		if (!ice_is_bit_set(bm, (u16)offset))
1795 			continue;
1796 
1797 		for (i = 0; i < ids_cnt; i++) {
1798 			int j;
1799 
1800 			/* This code assumes that if a switch field vector line
1801 			 * has a matching protocol, then this line will contain
1802 			 * the entries necessary to represent every field in
1803 			 * that protocol header.
1804 			 */
1805 			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1806 				if (fv->ew[j].prot_id == prot_ids[i])
1807 					break;
1808 			if (j >= hw->blk[ICE_BLK_SW].es.fvw)
1809 				break;
1810 			if (i + 1 == ids_cnt) {
1811 				fvl = (struct ice_sw_fv_list_entry *)
1812 					ice_malloc(hw, sizeof(*fvl));
1813 				if (!fvl)
1814 					goto err;
1815 				fvl->fv_ptr = fv;
1816 				fvl->profile_id = offset;
1817 				LIST_ADD(&fvl->list_entry, fv_list);
1818 				break;
1819 			}
1820 		}
1821 	} while (fv);
1822 	if (LIST_EMPTY(fv_list))
1823 		return ICE_ERR_CFG;
1824 	return ICE_SUCCESS;
1825 
1826 err:
1827 	LIST_FOR_EACH_ENTRY_SAFE(fvl, tmp, fv_list, ice_sw_fv_list_entry,
1828 				 list_entry) {
1829 		LIST_DEL(&fvl->list_entry);
1830 		ice_free(hw, fvl);
1831 	}
1832 
1833 	return ICE_ERR_NO_MEMORY;
1834 }
1835 
1836 /**
1837  * ice_init_prof_result_bm - Initialize the profile result index bitmap
1838  * @hw: pointer to hardware structure
1839  */
1840 void ice_init_prof_result_bm(struct ice_hw *hw)
1841 {
1842 	struct ice_pkg_enum state;
1843 	struct ice_seg *ice_seg;
1844 	struct ice_fv *fv;
1845 
1846 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1847 
1848 	if (!hw->seg)
1849 		return;
1850 
1851 	ice_seg = hw->seg;
1852 	do {
1853 		u32 off;
1854 		u16 i;
1855 
1856 		fv = (struct ice_fv *)
1857 			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1858 					   &off, ice_sw_fv_handler);
1859 		ice_seg = NULL;
1860 		if (!fv)
1861 			break;
1862 
1863 		ice_zero_bitmap(hw->switch_info->prof_res_bm[off],
1864 				ICE_MAX_FV_WORDS);
1865 
1866 		/* Determine empty field vector indices, these can be
1867 		 * used for recipe results. Skip index 0, since it is
1868 		 * always used for Switch ID.
1869 		 */
1870 		for (i = 1; i < ICE_MAX_FV_WORDS; i++)
1871 			if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
1872 			    fv->ew[i].off == ICE_FV_OFFSET_INVAL)
1873 				ice_set_bit(i,
1874 					    hw->switch_info->prof_res_bm[off]);
1875 	} while (fv);
1876 }
1877 
1878 /**
1879  * ice_pkg_buf_free
1880  * @hw: pointer to the HW structure
1881  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1882  *
1883  * Frees a package buffer
1884  */
1885 static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
1886 {
1887 	ice_free(hw, bld);
1888 }
1889 
1890 /**
1891  * ice_pkg_buf_reserve_section
1892  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1893  * @count: the number of sections to reserve
1894  *
1895  * Reserves one or more section table entries in a package buffer. This routine
1896  * can be called multiple times as long as they are made before calling
1897  * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
1898  * is called once, the number of sections that can be allocated will not be able
1899  * to be increased; not using all reserved sections is fine, but this will
1900  * result in some wasted space in the buffer.
1901  * Note: all package contents must be in Little Endian form.
1902  */
1903 static enum ice_status
1904 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
1905 {
1906 	struct ice_buf_hdr *buf;
1907 	u16 section_count;
1908 	u16 data_end;
1909 
1910 	if (!bld)
1911 		return ICE_ERR_PARAM;
1912 
1913 	buf = (struct ice_buf_hdr *)&bld->buf;
1914 
1915 	/* already an active section, can't increase table size */
1916 	section_count = LE16_TO_CPU(buf->section_count);
1917 	if (section_count > 0)
1918 		return ICE_ERR_CFG;
1919 
1920 	if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
1921 		return ICE_ERR_CFG;
1922 	bld->reserved_section_table_entries += count;
1923 
1924 	data_end = LE16_TO_CPU(buf->data_end) +
1925 		FLEX_ARRAY_SIZE(buf, section_entry, count);
1926 	buf->data_end = CPU_TO_LE16(data_end);
1927 
1928 	return ICE_SUCCESS;
1929 }
1930 
1931 /**
1932  * ice_pkg_buf_alloc_section
1933  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1934  * @type: the section type value
1935  * @size: the size of the section to reserve (in bytes)
1936  *
1937  * Reserves memory in the buffer for a section's content and updates the
1938  * buffers' status accordingly. This routine returns a pointer to the first
1939  * byte of the section start within the buffer, which is used to fill in the
1940  * section contents.
1941  * Note: all package contents must be in Little Endian form.
1942  */
1943 static void *
1944 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
1945 {
1946 	struct ice_buf_hdr *buf;
1947 	u16 sect_count;
1948 	u16 data_end;
1949 
1950 	if (!bld || !type || !size)
1951 		return NULL;
1952 
1953 	buf = (struct ice_buf_hdr *)&bld->buf;
1954 
1955 	/* check for enough space left in buffer */
1956 	data_end = LE16_TO_CPU(buf->data_end);
1957 
1958 	/* section start must align on 4 byte boundary */
1959 	data_end = ICE_ALIGN(data_end, 4);
1960 
1961 	if ((data_end + size) > ICE_MAX_S_DATA_END)
1962 		return NULL;
1963 
1964 	/* check for more available section table entries */
1965 	sect_count = LE16_TO_CPU(buf->section_count);
1966 	if (sect_count < bld->reserved_section_table_entries) {
1967 		void *section_ptr = ((u8 *)buf) + data_end;
1968 
1969 		buf->section_entry[sect_count].offset = CPU_TO_LE16(data_end);
1970 		buf->section_entry[sect_count].size = CPU_TO_LE16(size);
1971 		buf->section_entry[sect_count].type = CPU_TO_LE32(type);
1972 
1973 		data_end += size;
1974 		buf->data_end = CPU_TO_LE16(data_end);
1975 
1976 		buf->section_count = CPU_TO_LE16(sect_count + 1);
1977 		return section_ptr;
1978 	}
1979 
1980 	/* no free section table entries */
1981 	return NULL;
1982 }
1983 
1984 /**
1985  * ice_pkg_buf_alloc_single_section
1986  * @hw: pointer to the HW structure
1987  * @type: the section type value
1988  * @size: the size of the section to reserve (in bytes)
1989  * @section: returns pointer to the section
1990  *
1991  * Allocates a package buffer with a single section.
1992  * Note: all package contents must be in Little Endian form.
1993  */
1994 static struct ice_buf_build *
1995 ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size,
1996 				 void **section)
1997 {
1998 	struct ice_buf_build *buf;
1999 
2000 	if (!section)
2001 		return NULL;
2002 
2003 	buf = ice_pkg_buf_alloc(hw);
2004 	if (!buf)
2005 		return NULL;
2006 
2007 	if (ice_pkg_buf_reserve_section(buf, 1))
2008 		goto ice_pkg_buf_alloc_single_section_err;
2009 
2010 	*section = ice_pkg_buf_alloc_section(buf, type, size);
2011 	if (!*section)
2012 		goto ice_pkg_buf_alloc_single_section_err;
2013 
2014 	return buf;
2015 
2016 ice_pkg_buf_alloc_single_section_err:
2017 	ice_pkg_buf_free(hw, buf);
2018 	return NULL;
2019 }
2020 
2021 /**
2022  * ice_pkg_buf_unreserve_section
2023  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2024  * @count: the number of sections to unreserve
2025  *
2026  * Unreserves one or more section table entries in a package buffer, releasing
2027  * space that can be used for section data. This routine can be called
2028  * multiple times as long as they are made before calling
2029  * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
2030  * is called once, the number of sections that can be allocated will not be able
2031  * to be increased; not using all reserved sections is fine, but this will
2032  * result in some wasted space in the buffer.
2033  * Note: all package contents must be in Little Endian form.
2034  */
2035 enum ice_status
2036 ice_pkg_buf_unreserve_section(struct ice_buf_build *bld, u16 count)
2037 {
2038 	struct ice_buf_hdr *buf;
2039 	u16 section_count;
2040 	u16 data_end;
2041 
2042 	if (!bld)
2043 		return ICE_ERR_PARAM;
2044 
2045 	buf = (struct ice_buf_hdr *)&bld->buf;
2046 
2047 	/* already an active section, can't decrease table size */
2048 	section_count = LE16_TO_CPU(buf->section_count);
2049 	if (section_count > 0)
2050 		return ICE_ERR_CFG;
2051 
2052 	if (count > bld->reserved_section_table_entries)
2053 		return ICE_ERR_CFG;
2054 	bld->reserved_section_table_entries -= count;
2055 
2056 	data_end = LE16_TO_CPU(buf->data_end) -
2057 		FLEX_ARRAY_SIZE(buf, section_entry, count);
2058 	buf->data_end = CPU_TO_LE16(data_end);
2059 
2060 	return ICE_SUCCESS;
2061 }
2062 
2063 /**
2064  * ice_pkg_buf_get_free_space
2065  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2066  *
2067  * Returns the number of free bytes remaining in the buffer.
2068  * Note: all package contents must be in Little Endian form.
2069  */
2070 u16 ice_pkg_buf_get_free_space(struct ice_buf_build *bld)
2071 {
2072 	struct ice_buf_hdr *buf;
2073 
2074 	if (!bld)
2075 		return 0;
2076 
2077 	buf = (struct ice_buf_hdr *)&bld->buf;
2078 	return ICE_MAX_S_DATA_END - LE16_TO_CPU(buf->data_end);
2079 }
2080 
2081 /**
2082  * ice_pkg_buf_get_active_sections
2083  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2084  *
2085  * Returns the number of active sections. Before using the package buffer
2086  * in an update package command, the caller should make sure that there is at
2087  * least one active section - otherwise, the buffer is not legal and should
2088  * not be used.
2089  * Note: all package contents must be in Little Endian form.
2090  */
2091 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
2092 {
2093 	struct ice_buf_hdr *buf;
2094 
2095 	if (!bld)
2096 		return 0;
2097 
2098 	buf = (struct ice_buf_hdr *)&bld->buf;
2099 	return LE16_TO_CPU(buf->section_count);
2100 }
2101 
2102 /**
2103  * ice_pkg_buf
2104  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2105  *
2106  * Return a pointer to the buffer's header
2107  */
2108 static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
2109 {
2110 	if (!bld)
2111 		return NULL;
2112 
2113 	return &bld->buf;
2114 }
2115 
2116 /**
2117  * ice_tunnel_port_in_use_hlpr - helper function to determine tunnel usage
2118  * @hw: pointer to the HW structure
2119  * @port: port to search for
2120  * @index: optionally returns index
2121  *
2122  * Returns whether a port is already in use as a tunnel, and optionally its
2123  * index
2124  */
2125 static bool ice_tunnel_port_in_use_hlpr(struct ice_hw *hw, u16 port, u16 *index)
2126 {
2127 	u16 i;
2128 
2129 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2130 		if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
2131 			if (index)
2132 				*index = i;
2133 			return true;
2134 		}
2135 
2136 	return false;
2137 }
2138 
2139 /**
2140  * ice_tunnel_port_in_use
2141  * @hw: pointer to the HW structure
2142  * @port: port to search for
2143  * @index: optionally returns index
2144  *
2145  * Returns whether a port is already in use as a tunnel, and optionally its
2146  * index
2147  */
2148 bool ice_tunnel_port_in_use(struct ice_hw *hw, u16 port, u16 *index)
2149 {
2150 	bool res;
2151 
2152 	ice_acquire_lock(&hw->tnl_lock);
2153 	res = ice_tunnel_port_in_use_hlpr(hw, port, index);
2154 	ice_release_lock(&hw->tnl_lock);
2155 
2156 	return res;
2157 }
2158 
2159 /**
2160  * ice_tunnel_get_type
2161  * @hw: pointer to the HW structure
2162  * @port: port to search for
2163  * @type: returns tunnel index
2164  *
2165  * For a given port number, will return the type of tunnel.
2166  */
2167 bool
2168 ice_tunnel_get_type(struct ice_hw *hw, u16 port, enum ice_tunnel_type *type)
2169 {
2170 	bool res = false;
2171 	u16 i;
2172 
2173 	ice_acquire_lock(&hw->tnl_lock);
2174 
2175 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2176 		if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
2177 			*type = hw->tnl.tbl[i].type;
2178 			res = true;
2179 			break;
2180 		}
2181 
2182 	ice_release_lock(&hw->tnl_lock);
2183 
2184 	return res;
2185 }
2186 
2187 /**
2188  * ice_find_free_tunnel_entry
2189  * @hw: pointer to the HW structure
2190  * @type: tunnel type
2191  * @index: optionally returns index
2192  *
2193  * Returns whether there is a free tunnel entry, and optionally its index
2194  */
2195 static bool
2196 ice_find_free_tunnel_entry(struct ice_hw *hw, enum ice_tunnel_type type,
2197 			   u16 *index)
2198 {
2199 	u16 i;
2200 
2201 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2202 		if (hw->tnl.tbl[i].valid && !hw->tnl.tbl[i].in_use &&
2203 		    hw->tnl.tbl[i].type == type) {
2204 			if (index)
2205 				*index = i;
2206 			return true;
2207 		}
2208 
2209 	return false;
2210 }
2211 
2212 /**
2213  * ice_get_open_tunnel_port - retrieve an open tunnel port
2214  * @hw: pointer to the HW structure
2215  * @type: tunnel type (TNL_ALL will return any open port)
2216  * @port: returns open port
2217  */
2218 bool
2219 ice_get_open_tunnel_port(struct ice_hw *hw, enum ice_tunnel_type type,
2220 			 u16 *port)
2221 {
2222 	bool res = false;
2223 	u16 i;
2224 
2225 	ice_acquire_lock(&hw->tnl_lock);
2226 
2227 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2228 		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2229 		    (type == TNL_ALL || hw->tnl.tbl[i].type == type)) {
2230 			*port = hw->tnl.tbl[i].port;
2231 			res = true;
2232 			break;
2233 		}
2234 
2235 	ice_release_lock(&hw->tnl_lock);
2236 
2237 	return res;
2238 }
2239 
2240 /**
2241  * ice_create_tunnel
2242  * @hw: pointer to the HW structure
2243  * @type: type of tunnel
2244  * @port: port of tunnel to create
2245  *
2246  * Create a tunnel by updating the parse graph in the parser. We do that by
2247  * creating a package buffer with the tunnel info and issuing an update package
2248  * command.
2249  */
2250 enum ice_status
2251 ice_create_tunnel(struct ice_hw *hw, enum ice_tunnel_type type, u16 port)
2252 {
2253 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
2254 	enum ice_status status = ICE_ERR_MAX_LIMIT;
2255 	struct ice_buf_build *bld;
2256 	u16 index;
2257 
2258 	ice_acquire_lock(&hw->tnl_lock);
2259 
2260 	if (ice_tunnel_port_in_use_hlpr(hw, port, &index)) {
2261 		hw->tnl.tbl[index].ref++;
2262 		status = ICE_SUCCESS;
2263 		goto ice_create_tunnel_end;
2264 	}
2265 
2266 	if (!ice_find_free_tunnel_entry(hw, type, &index)) {
2267 		status = ICE_ERR_OUT_OF_RANGE;
2268 		goto ice_create_tunnel_end;
2269 	}
2270 
2271 	bld = ice_pkg_buf_alloc(hw);
2272 	if (!bld) {
2273 		status = ICE_ERR_NO_MEMORY;
2274 		goto ice_create_tunnel_end;
2275 	}
2276 
2277 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
2278 	if (ice_pkg_buf_reserve_section(bld, 2))
2279 		goto ice_create_tunnel_err;
2280 
2281 	sect_rx = (struct ice_boost_tcam_section *)
2282 		ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2283 					  ice_struct_size(sect_rx, tcam, 1));
2284 	if (!sect_rx)
2285 		goto ice_create_tunnel_err;
2286 	sect_rx->count = CPU_TO_LE16(1);
2287 
2288 	sect_tx = (struct ice_boost_tcam_section *)
2289 		ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2290 					  ice_struct_size(sect_tx, tcam, 1));
2291 	if (!sect_tx)
2292 		goto ice_create_tunnel_err;
2293 	sect_tx->count = CPU_TO_LE16(1);
2294 
2295 	/* copy original boost entry to update package buffer */
2296 	ice_memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2297 		   sizeof(*sect_rx->tcam), ICE_NONDMA_TO_NONDMA);
2298 
2299 	/* over-write the never-match dest port key bits with the encoded port
2300 	 * bits
2301 	 */
2302 	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2303 		    (u8 *)&port, NULL, NULL, NULL,
2304 		    (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
2305 		    sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
2306 
2307 	/* exact copy of entry to Tx section entry */
2308 	ice_memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam),
2309 		   ICE_NONDMA_TO_NONDMA);
2310 
2311 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2312 	if (!status) {
2313 		hw->tnl.tbl[index].port = port;
2314 		hw->tnl.tbl[index].in_use = true;
2315 		hw->tnl.tbl[index].ref = 1;
2316 	}
2317 
2318 ice_create_tunnel_err:
2319 	ice_pkg_buf_free(hw, bld);
2320 
2321 ice_create_tunnel_end:
2322 	ice_release_lock(&hw->tnl_lock);
2323 
2324 	return status;
2325 }
2326 
2327 /**
2328  * ice_destroy_tunnel
2329  * @hw: pointer to the HW structure
2330  * @port: port of tunnel to destroy (ignored if the all parameter is true)
2331  * @all: flag that states to destroy all tunnels
2332  *
2333  * Destroys a tunnel or all tunnels by creating an update package buffer
2334  * targeting the specific updates requested and then performing an update
2335  * package.
2336  */
2337 enum ice_status ice_destroy_tunnel(struct ice_hw *hw, u16 port, bool all)
2338 {
2339 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
2340 	enum ice_status status = ICE_ERR_MAX_LIMIT;
2341 	struct ice_buf_build *bld;
2342 	u16 count = 0;
2343 	u16 index;
2344 	u16 size;
2345 	u16 i;
2346 
2347 	ice_acquire_lock(&hw->tnl_lock);
2348 
2349 	if (!all && ice_tunnel_port_in_use_hlpr(hw, port, &index))
2350 		if (hw->tnl.tbl[index].ref > 1) {
2351 			hw->tnl.tbl[index].ref--;
2352 			status = ICE_SUCCESS;
2353 			goto ice_destroy_tunnel_end;
2354 		}
2355 
2356 	/* determine count */
2357 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2358 		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2359 		    (all || hw->tnl.tbl[i].port == port))
2360 			count++;
2361 
2362 	if (!count) {
2363 		status = ICE_ERR_PARAM;
2364 		goto ice_destroy_tunnel_end;
2365 	}
2366 
2367 	/* size of section - there is at least one entry */
2368 	size = ice_struct_size(sect_rx, tcam, count);
2369 
2370 	bld = ice_pkg_buf_alloc(hw);
2371 	if (!bld) {
2372 		status = ICE_ERR_NO_MEMORY;
2373 		goto ice_destroy_tunnel_end;
2374 	}
2375 
2376 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
2377 	if (ice_pkg_buf_reserve_section(bld, 2))
2378 		goto ice_destroy_tunnel_err;
2379 
2380 	sect_rx = (struct ice_boost_tcam_section *)
2381 		ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2382 					  size);
2383 	if (!sect_rx)
2384 		goto ice_destroy_tunnel_err;
2385 	sect_rx->count = CPU_TO_LE16(1);
2386 
2387 	sect_tx = (struct ice_boost_tcam_section *)
2388 		ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2389 					  size);
2390 	if (!sect_tx)
2391 		goto ice_destroy_tunnel_err;
2392 	sect_tx->count = CPU_TO_LE16(1);
2393 
2394 	/* copy original boost entry to update package buffer, one copy to Rx
2395 	 * section, another copy to the Tx section
2396 	 */
2397 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2398 		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2399 		    (all || hw->tnl.tbl[i].port == port)) {
2400 			ice_memcpy(sect_rx->tcam + i,
2401 				   hw->tnl.tbl[i].boost_entry,
2402 				   sizeof(*sect_rx->tcam),
2403 				   ICE_NONDMA_TO_NONDMA);
2404 			ice_memcpy(sect_tx->tcam + i,
2405 				   hw->tnl.tbl[i].boost_entry,
2406 				   sizeof(*sect_tx->tcam),
2407 				   ICE_NONDMA_TO_NONDMA);
2408 			hw->tnl.tbl[i].marked = true;
2409 		}
2410 
2411 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2412 	if (!status)
2413 		for (i = 0; i < hw->tnl.count &&
2414 		     i < ICE_TUNNEL_MAX_ENTRIES; i++)
2415 			if (hw->tnl.tbl[i].marked) {
2416 				hw->tnl.tbl[i].ref = 0;
2417 				hw->tnl.tbl[i].port = 0;
2418 				hw->tnl.tbl[i].in_use = false;
2419 				hw->tnl.tbl[i].marked = false;
2420 			}
2421 
2422 ice_destroy_tunnel_err:
2423 	ice_pkg_buf_free(hw, bld);
2424 
2425 ice_destroy_tunnel_end:
2426 	ice_release_lock(&hw->tnl_lock);
2427 
2428 	return status;
2429 }
2430 
2431 /**
2432  * ice_replay_tunnels
2433  * @hw: pointer to the HW structure
2434  *
2435  * Replays all tunnels
2436  */
2437 enum ice_status ice_replay_tunnels(struct ice_hw *hw)
2438 {
2439 	enum ice_status status = ICE_SUCCESS;
2440 	u16 i;
2441 
2442 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2443 
2444 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) {
2445 		enum ice_tunnel_type type = hw->tnl.tbl[i].type;
2446 		u16 refs = hw->tnl.tbl[i].ref;
2447 		u16 port = hw->tnl.tbl[i].port;
2448 
2449 		if (!hw->tnl.tbl[i].in_use)
2450 			continue;
2451 
2452 		/* Replay tunnels one at a time by destroying them, then
2453 		 * recreating them
2454 		 */
2455 		hw->tnl.tbl[i].ref = 1; /* make sure to destroy in one call */
2456 		status = ice_destroy_tunnel(hw, port, false);
2457 		if (status) {
2458 			ice_debug(hw, ICE_DBG_PKG, "ERR: 0x%x - destroy tunnel port 0x%x\n",
2459 				  status, port);
2460 			break;
2461 		}
2462 
2463 		status = ice_create_tunnel(hw, type, port);
2464 		if (status) {
2465 			ice_debug(hw, ICE_DBG_PKG, "ERR: 0x%x - create tunnel port 0x%x\n",
2466 				  status, port);
2467 			break;
2468 		}
2469 
2470 		/* reset to original ref count */
2471 		hw->tnl.tbl[i].ref = refs;
2472 	}
2473 
2474 	return status;
2475 }
2476 
2477 /**
2478  * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
2479  * @hw: pointer to the hardware structure
2480  * @blk: hardware block
2481  * @prof: profile ID
2482  * @fv_idx: field vector word index
2483  * @prot: variable to receive the protocol ID
2484  * @off: variable to receive the protocol offset
2485  */
2486 enum ice_status
2487 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
2488 		  u8 *prot, u16 *off)
2489 {
2490 	struct ice_fv_word *fv_ext;
2491 
2492 	if (prof >= hw->blk[blk].es.count)
2493 		return ICE_ERR_PARAM;
2494 
2495 	if (fv_idx >= hw->blk[blk].es.fvw)
2496 		return ICE_ERR_PARAM;
2497 
2498 	fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
2499 
2500 	*prot = fv_ext[fv_idx].prot_id;
2501 	*off = fv_ext[fv_idx].off;
2502 
2503 	return ICE_SUCCESS;
2504 }
2505 
2506 /* PTG Management */
2507 
2508 /**
2509  * ice_ptg_update_xlt1 - Updates packet type groups in HW via XLT1 table
2510  * @hw: pointer to the hardware structure
2511  * @blk: HW block
2512  *
2513  * This function will update the XLT1 hardware table to reflect the new
2514  * packet type group configuration.
2515  */
2516 enum ice_status ice_ptg_update_xlt1(struct ice_hw *hw, enum ice_block blk)
2517 {
2518 	struct ice_xlt1_section *sect;
2519 	struct ice_buf_build *bld;
2520 	enum ice_status status;
2521 	u16 index;
2522 
2523 	bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT1),
2524 					       ice_struct_size(sect, value,
2525 							       ICE_XLT1_CNT),
2526 					       (void **)&sect);
2527 	if (!bld)
2528 		return ICE_ERR_NO_MEMORY;
2529 
2530 	sect->count = CPU_TO_LE16(ICE_XLT1_CNT);
2531 	sect->offset = CPU_TO_LE16(0);
2532 	for (index = 0; index < ICE_XLT1_CNT; index++)
2533 		sect->value[index] = hw->blk[blk].xlt1.ptypes[index].ptg;
2534 
2535 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2536 
2537 	ice_pkg_buf_free(hw, bld);
2538 
2539 	return status;
2540 }
2541 
2542 /**
2543  * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
2544  * @hw: pointer to the hardware structure
2545  * @blk: HW block
2546  * @ptype: the ptype to search for
2547  * @ptg: pointer to variable that receives the PTG
2548  *
2549  * This function will search the PTGs for a particular ptype, returning the
2550  * PTG ID that contains it through the PTG parameter, with the value of
2551  * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
2552  */
2553 static enum ice_status
2554 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
2555 {
2556 	if (ptype >= ICE_XLT1_CNT || !ptg)
2557 		return ICE_ERR_PARAM;
2558 
2559 	*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
2560 	return ICE_SUCCESS;
2561 }
2562 
2563 /**
2564  * ice_ptg_alloc_val - Allocates a new packet type group ID by value
2565  * @hw: pointer to the hardware structure
2566  * @blk: HW block
2567  * @ptg: the PTG to allocate
2568  *
2569  * This function allocates a given packet type group ID specified by the PTG
2570  * parameter.
2571  */
2572 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
2573 {
2574 	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
2575 }
2576 
2577 /**
2578  * ice_ptg_free - Frees a packet type group
2579  * @hw: pointer to the hardware structure
2580  * @blk: HW block
2581  * @ptg: the PTG ID to free
2582  *
2583  * This function frees a packet type group, and returns all the current ptypes
2584  * within it to the default PTG.
2585  */
2586 void ice_ptg_free(struct ice_hw *hw, enum ice_block blk, u8 ptg)
2587 {
2588 	struct ice_ptg_ptype *p, *temp;
2589 
2590 	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = false;
2591 	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2592 	while (p) {
2593 		p->ptg = ICE_DEFAULT_PTG;
2594 		temp = p->next_ptype;
2595 		p->next_ptype = NULL;
2596 		p = temp;
2597 	}
2598 
2599 	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = NULL;
2600 }
2601 
2602 /**
2603  * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
2604  * @hw: pointer to the hardware structure
2605  * @blk: HW block
2606  * @ptype: the ptype to remove
2607  * @ptg: the PTG to remove the ptype from
2608  *
2609  * This function will remove the ptype from the specific PTG, and move it to
2610  * the default PTG (ICE_DEFAULT_PTG).
2611  */
2612 static enum ice_status
2613 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2614 {
2615 	struct ice_ptg_ptype **ch;
2616 	struct ice_ptg_ptype *p;
2617 
2618 	if (ptype > ICE_XLT1_CNT - 1)
2619 		return ICE_ERR_PARAM;
2620 
2621 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
2622 		return ICE_ERR_DOES_NOT_EXIST;
2623 
2624 	/* Should not happen if .in_use is set, bad config */
2625 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
2626 		return ICE_ERR_CFG;
2627 
2628 	/* find the ptype within this PTG, and bypass the link over it */
2629 	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2630 	ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2631 	while (p) {
2632 		if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
2633 			*ch = p->next_ptype;
2634 			break;
2635 		}
2636 
2637 		ch = &p->next_ptype;
2638 		p = p->next_ptype;
2639 	}
2640 
2641 	hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
2642 	hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
2643 
2644 	return ICE_SUCCESS;
2645 }
2646 
2647 /**
2648  * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
2649  * @hw: pointer to the hardware structure
2650  * @blk: HW block
2651  * @ptype: the ptype to add or move
2652  * @ptg: the PTG to add or move the ptype to
2653  *
2654  * This function will either add or move a ptype to a particular PTG depending
2655  * on if the ptype is already part of another group. Note that using a
2656  * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
2657  * default PTG.
2658  */
2659 static enum ice_status
2660 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2661 {
2662 	enum ice_status status;
2663 	u8 original_ptg;
2664 
2665 	if (ptype > ICE_XLT1_CNT - 1)
2666 		return ICE_ERR_PARAM;
2667 
2668 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
2669 		return ICE_ERR_DOES_NOT_EXIST;
2670 
2671 	status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
2672 	if (status)
2673 		return status;
2674 
2675 	/* Is ptype already in the correct PTG? */
2676 	if (original_ptg == ptg)
2677 		return ICE_SUCCESS;
2678 
2679 	/* Remove from original PTG and move back to the default PTG */
2680 	if (original_ptg != ICE_DEFAULT_PTG)
2681 		ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
2682 
2683 	/* Moving to default PTG? Then we're done with this request */
2684 	if (ptg == ICE_DEFAULT_PTG)
2685 		return ICE_SUCCESS;
2686 
2687 	/* Add ptype to PTG at beginning of list */
2688 	hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
2689 		hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2690 	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
2691 		&hw->blk[blk].xlt1.ptypes[ptype];
2692 
2693 	hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
2694 	hw->blk[blk].xlt1.t[ptype] = ptg;
2695 
2696 	return ICE_SUCCESS;
2697 }
2698 
2699 /* Block / table size info */
2700 struct ice_blk_size_details {
2701 	u16 xlt1;			/* # XLT1 entries */
2702 	u16 xlt2;			/* # XLT2 entries */
2703 	u16 prof_tcam;			/* # profile ID TCAM entries */
2704 	u16 prof_id;			/* # profile IDs */
2705 	u8 prof_cdid_bits;		/* # CDID one-hot bits used in key */
2706 	u16 prof_redir;			/* # profile redirection entries */
2707 	u16 es;				/* # extraction sequence entries */
2708 	u16 fvw;			/* # field vector words */
2709 	u8 overwrite;			/* overwrite existing entries allowed */
2710 	u8 reverse;			/* reverse FV order */
2711 };
2712 
2713 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2714 	/**
2715 	 * Table Definitions
2716 	 * XLT1 - Number of entries in XLT1 table
2717 	 * XLT2 - Number of entries in XLT2 table
2718 	 * TCAM - Number of entries Profile ID TCAM table
2719 	 * CDID - Control Domain ID of the hardware block
2720 	 * PRED - Number of entries in the Profile Redirection Table
2721 	 * FV   - Number of entries in the Field Vector
2722 	 * FVW  - Width (in WORDs) of the Field Vector
2723 	 * OVR  - Overwrite existing table entries
2724 	 * REV  - Reverse FV
2725 	 */
2726 	/*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
2727 	/*          Overwrite   , Reverse FV */
2728 	/* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
2729 		    false, false },
2730 	/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
2731 		    false, false },
2732 	/* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2733 		    false, true  },
2734 	/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2735 		    true,  true  },
2736 	/* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
2737 		    false, false },
2738 };
2739 
2740 enum ice_sid_all {
2741 	ICE_SID_XLT1_OFF = 0,
2742 	ICE_SID_XLT2_OFF,
2743 	ICE_SID_PR_OFF,
2744 	ICE_SID_PR_REDIR_OFF,
2745 	ICE_SID_ES_OFF,
2746 	ICE_SID_OFF_COUNT,
2747 };
2748 
2749 /* Characteristic handling */
2750 
2751 /**
2752  * ice_match_prop_lst - determine if properties of two lists match
2753  * @list1: first properties list
2754  * @list2: second properties list
2755  *
2756  * Count, cookies and the order must match in order to be considered equivalent.
2757  */
2758 static bool
2759 ice_match_prop_lst(struct LIST_HEAD_TYPE *list1, struct LIST_HEAD_TYPE *list2)
2760 {
2761 	struct ice_vsig_prof *tmp1;
2762 	struct ice_vsig_prof *tmp2;
2763 	u16 chk_count = 0;
2764 	u16 count = 0;
2765 
2766 	/* compare counts */
2767 	LIST_FOR_EACH_ENTRY(tmp1, list1, ice_vsig_prof, list)
2768 		count++;
2769 	LIST_FOR_EACH_ENTRY(tmp2, list2, ice_vsig_prof, list)
2770 		chk_count++;
2771 	if (!count || count != chk_count)
2772 		return false;
2773 
2774 	tmp1 = LIST_FIRST_ENTRY(list1, struct ice_vsig_prof, list);
2775 	tmp2 = LIST_FIRST_ENTRY(list2, struct ice_vsig_prof, list);
2776 
2777 	/* profile cookies must compare, and in the exact same order to take
2778 	 * into account priority
2779 	 */
2780 	while (count--) {
2781 		if (tmp2->profile_cookie != tmp1->profile_cookie)
2782 			return false;
2783 
2784 		tmp1 = LIST_NEXT_ENTRY(tmp1, struct ice_vsig_prof, list);
2785 		tmp2 = LIST_NEXT_ENTRY(tmp2, struct ice_vsig_prof, list);
2786 	}
2787 
2788 	return true;
2789 }
2790 
2791 /* VSIG Management */
2792 
2793 /**
2794  * ice_vsig_update_xlt2_sect - update one section of XLT2 table
2795  * @hw: pointer to the hardware structure
2796  * @blk: HW block
2797  * @vsi: HW VSI number to program
2798  * @vsig: VSIG for the VSI
2799  *
2800  * This function will update the XLT2 hardware table with the input VSI
2801  * group configuration.
2802  */
2803 static enum ice_status
2804 ice_vsig_update_xlt2_sect(struct ice_hw *hw, enum ice_block blk, u16 vsi,
2805 			  u16 vsig)
2806 {
2807 	struct ice_xlt2_section *sect;
2808 	struct ice_buf_build *bld;
2809 	enum ice_status status;
2810 
2811 	bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT2),
2812 					       ice_struct_size(sect, value, 1),
2813 					       (void **)&sect);
2814 	if (!bld)
2815 		return ICE_ERR_NO_MEMORY;
2816 
2817 	sect->count = CPU_TO_LE16(1);
2818 	sect->offset = CPU_TO_LE16(vsi);
2819 	sect->value[0] = CPU_TO_LE16(vsig);
2820 
2821 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2822 
2823 	ice_pkg_buf_free(hw, bld);
2824 
2825 	return status;
2826 }
2827 
2828 /**
2829  * ice_vsig_update_xlt2 - update XLT2 table with VSIG configuration
2830  * @hw: pointer to the hardware structure
2831  * @blk: HW block
2832  *
2833  * This function will update the XLT2 hardware table with the input VSI
2834  * group configuration of used vsis.
2835  */
2836 enum ice_status ice_vsig_update_xlt2(struct ice_hw *hw, enum ice_block blk)
2837 {
2838 	u16 vsi;
2839 
2840 	for (vsi = 0; vsi < ICE_MAX_VSI; vsi++) {
2841 		/* update only vsis that have been changed */
2842 		if (hw->blk[blk].xlt2.vsis[vsi].changed) {
2843 			enum ice_status status;
2844 			u16 vsig;
2845 
2846 			vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2847 			status = ice_vsig_update_xlt2_sect(hw, blk, vsi, vsig);
2848 			if (status)
2849 				return status;
2850 
2851 			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
2852 		}
2853 	}
2854 
2855 	return ICE_SUCCESS;
2856 }
2857 
2858 /**
2859  * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2860  * @hw: pointer to the hardware structure
2861  * @blk: HW block
2862  * @vsi: VSI of interest
2863  * @vsig: pointer to receive the VSI group
2864  *
2865  * This function will lookup the VSI entry in the XLT2 list and return
2866  * the VSI group its associated with.
2867  */
2868 enum ice_status
2869 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2870 {
2871 	if (!vsig || vsi >= ICE_MAX_VSI)
2872 		return ICE_ERR_PARAM;
2873 
2874 	/* As long as there's a default or valid VSIG associated with the input
2875 	 * VSI, the functions returns a success. Any handling of VSIG will be
2876 	 * done by the following add, update or remove functions.
2877 	 */
2878 	*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2879 
2880 	return ICE_SUCCESS;
2881 }
2882 
2883 /**
2884  * ice_vsig_alloc_val - allocate a new VSIG by value
2885  * @hw: pointer to the hardware structure
2886  * @blk: HW block
2887  * @vsig: the VSIG to allocate
2888  *
2889  * This function will allocate a given VSIG specified by the VSIG parameter.
2890  */
2891 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2892 {
2893 	u16 idx = vsig & ICE_VSIG_IDX_M;
2894 
2895 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2896 		INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2897 		hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2898 	}
2899 
2900 	return ICE_VSIG_VALUE(idx, hw->pf_id);
2901 }
2902 
2903 /**
2904  * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2905  * @hw: pointer to the hardware structure
2906  * @blk: HW block
2907  *
2908  * This function will iterate through the VSIG list and mark the first
2909  * unused entry for the new VSIG entry as used and return that value.
2910  */
2911 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2912 {
2913 	u16 i;
2914 
2915 	for (i = 1; i < ICE_MAX_VSIGS; i++)
2916 		if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2917 			return ice_vsig_alloc_val(hw, blk, i);
2918 
2919 	return ICE_DEFAULT_VSIG;
2920 }
2921 
2922 /**
2923  * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2924  * @hw: pointer to the hardware structure
2925  * @blk: HW block
2926  * @chs: characteristic list
2927  * @vsig: returns the VSIG with the matching profiles, if found
2928  *
2929  * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2930  * a group have the same characteristic set. To check if there exists a VSIG
2931  * which has the same characteristics as the input characteristics; this
2932  * function will iterate through the XLT2 list and return the VSIG that has a
2933  * matching configuration. In order to make sure that priorities are accounted
2934  * for, the list must match exactly, including the order in which the
2935  * characteristics are listed.
2936  */
2937 static enum ice_status
2938 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2939 			struct LIST_HEAD_TYPE *chs, u16 *vsig)
2940 {
2941 	struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2942 	u16 i;
2943 
2944 	for (i = 0; i < xlt2->count; i++)
2945 		if (xlt2->vsig_tbl[i].in_use &&
2946 		    ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2947 			*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2948 			return ICE_SUCCESS;
2949 		}
2950 
2951 	return ICE_ERR_DOES_NOT_EXIST;
2952 }
2953 
2954 /**
2955  * ice_vsig_free - free VSI group
2956  * @hw: pointer to the hardware structure
2957  * @blk: HW block
2958  * @vsig: VSIG to remove
2959  *
2960  * The function will remove all VSIs associated with the input VSIG and move
2961  * them to the DEFAULT_VSIG and mark the VSIG available.
2962  */
2963 static enum ice_status
2964 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2965 {
2966 	struct ice_vsig_prof *dtmp, *del;
2967 	struct ice_vsig_vsi *vsi_cur;
2968 	u16 idx;
2969 
2970 	idx = vsig & ICE_VSIG_IDX_M;
2971 	if (idx >= ICE_MAX_VSIGS)
2972 		return ICE_ERR_PARAM;
2973 
2974 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2975 		return ICE_ERR_DOES_NOT_EXIST;
2976 
2977 	hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2978 
2979 	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2980 	/* If the VSIG has at least 1 VSI then iterate through the
2981 	 * list and remove the VSIs before deleting the group.
2982 	 */
2983 	if (vsi_cur) {
2984 		/* remove all vsis associated with this VSIG XLT2 entry */
2985 		do {
2986 			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2987 
2988 			vsi_cur->vsig = ICE_DEFAULT_VSIG;
2989 			vsi_cur->changed = 1;
2990 			vsi_cur->next_vsi = NULL;
2991 			vsi_cur = tmp;
2992 		} while (vsi_cur);
2993 
2994 		/* NULL terminate head of VSI list */
2995 		hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2996 	}
2997 
2998 	/* free characteristic list */
2999 	LIST_FOR_EACH_ENTRY_SAFE(del, dtmp,
3000 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3001 				 ice_vsig_prof, list) {
3002 		LIST_DEL(&del->list);
3003 		ice_free(hw, del);
3004 	}
3005 
3006 	/* if VSIG characteristic list was cleared for reset
3007 	 * re-initialize the list head
3008 	 */
3009 	INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
3010 
3011 	return ICE_SUCCESS;
3012 }
3013 
3014 /**
3015  * ice_vsig_remove_vsi - remove VSI from VSIG
3016  * @hw: pointer to the hardware structure
3017  * @blk: HW block
3018  * @vsi: VSI to remove
3019  * @vsig: VSI group to remove from
3020  *
3021  * The function will remove the input VSI from its VSI group and move it
3022  * to the DEFAULT_VSIG.
3023  */
3024 static enum ice_status
3025 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
3026 {
3027 	struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
3028 	u16 idx;
3029 
3030 	idx = vsig & ICE_VSIG_IDX_M;
3031 
3032 	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
3033 		return ICE_ERR_PARAM;
3034 
3035 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
3036 		return ICE_ERR_DOES_NOT_EXIST;
3037 
3038 	/* entry already in default VSIG, don't have to remove */
3039 	if (idx == ICE_DEFAULT_VSIG)
3040 		return ICE_SUCCESS;
3041 
3042 	vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3043 	if (!(*vsi_head))
3044 		return ICE_ERR_CFG;
3045 
3046 	vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
3047 	vsi_cur = (*vsi_head);
3048 
3049 	/* iterate the VSI list, skip over the entry to be removed */
3050 	while (vsi_cur) {
3051 		if (vsi_tgt == vsi_cur) {
3052 			(*vsi_head) = vsi_cur->next_vsi;
3053 			break;
3054 		}
3055 		vsi_head = &vsi_cur->next_vsi;
3056 		vsi_cur = vsi_cur->next_vsi;
3057 	}
3058 
3059 	/* verify if VSI was removed from group list */
3060 	if (!vsi_cur)
3061 		return ICE_ERR_DOES_NOT_EXIST;
3062 
3063 	vsi_cur->vsig = ICE_DEFAULT_VSIG;
3064 	vsi_cur->changed = 1;
3065 	vsi_cur->next_vsi = NULL;
3066 
3067 	return ICE_SUCCESS;
3068 }
3069 
3070 /**
3071  * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
3072  * @hw: pointer to the hardware structure
3073  * @blk: HW block
3074  * @vsi: VSI to move
3075  * @vsig: destination VSI group
3076  *
3077  * This function will move or add the input VSI to the target VSIG.
3078  * The function will find the original VSIG the VSI belongs to and
3079  * move the entry to the DEFAULT_VSIG, update the original VSIG and
3080  * then move entry to the new VSIG.
3081  */
3082 static enum ice_status
3083 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
3084 {
3085 	struct ice_vsig_vsi *tmp;
3086 	enum ice_status status;
3087 	u16 orig_vsig, idx;
3088 
3089 	idx = vsig & ICE_VSIG_IDX_M;
3090 
3091 	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
3092 		return ICE_ERR_PARAM;
3093 
3094 	/* if VSIG not in use and VSIG is not default type this VSIG
3095 	 * doesn't exist.
3096 	 */
3097 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
3098 	    vsig != ICE_DEFAULT_VSIG)
3099 		return ICE_ERR_DOES_NOT_EXIST;
3100 
3101 	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3102 	if (status)
3103 		return status;
3104 
3105 	/* no update required if vsigs match */
3106 	if (orig_vsig == vsig)
3107 		return ICE_SUCCESS;
3108 
3109 	if (orig_vsig != ICE_DEFAULT_VSIG) {
3110 		/* remove entry from orig_vsig and add to default VSIG */
3111 		status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
3112 		if (status)
3113 			return status;
3114 	}
3115 
3116 	if (idx == ICE_DEFAULT_VSIG)
3117 		return ICE_SUCCESS;
3118 
3119 	/* Create VSI entry and add VSIG and prop_mask values */
3120 	hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
3121 	hw->blk[blk].xlt2.vsis[vsi].changed = 1;
3122 
3123 	/* Add new entry to the head of the VSIG list */
3124 	tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3125 	hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
3126 		&hw->blk[blk].xlt2.vsis[vsi];
3127 	hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
3128 	hw->blk[blk].xlt2.t[vsi] = vsig;
3129 
3130 	return ICE_SUCCESS;
3131 }
3132 
3133 /**
3134  * ice_find_prof_id - find profile ID for a given field vector
3135  * @hw: pointer to the hardware structure
3136  * @blk: HW block
3137  * @fv: field vector to search for
3138  * @prof_id: receives the profile ID
3139  */
3140 static enum ice_status
3141 ice_find_prof_id(struct ice_hw *hw, enum ice_block blk,
3142 		 struct ice_fv_word *fv, u8 *prof_id)
3143 {
3144 	struct ice_es *es = &hw->blk[blk].es;
3145 	u16 off;
3146 	u8 i;
3147 
3148 	for (i = 0; i < (u8)es->count; i++) {
3149 		off = i * es->fvw;
3150 
3151 		if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
3152 			continue;
3153 
3154 		*prof_id = i;
3155 		return ICE_SUCCESS;
3156 	}
3157 
3158 	return ICE_ERR_DOES_NOT_EXIST;
3159 }
3160 
3161 /**
3162  * ice_prof_id_rsrc_type - get profile ID resource type for a block type
3163  * @blk: the block type
3164  * @rsrc_type: pointer to variable to receive the resource type
3165  */
3166 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3167 {
3168 	switch (blk) {
3169 	case ICE_BLK_RSS:
3170 		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
3171 		break;
3172 	case ICE_BLK_PE:
3173 		*rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_PROFID;
3174 		break;
3175 	default:
3176 		return false;
3177 	}
3178 	return true;
3179 }
3180 
3181 /**
3182  * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
3183  * @blk: the block type
3184  * @rsrc_type: pointer to variable to receive the resource type
3185  */
3186 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3187 {
3188 	switch (blk) {
3189 	case ICE_BLK_RSS:
3190 		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
3191 		break;
3192 	case ICE_BLK_PE:
3193 		*rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_TCAM;
3194 		break;
3195 	default:
3196 		return false;
3197 	}
3198 	return true;
3199 }
3200 
3201 /**
3202  * ice_alloc_tcam_ent - allocate hardware TCAM entry
3203  * @hw: pointer to the HW struct
3204  * @blk: the block to allocate the TCAM for
3205  * @btm: true to allocate from bottom of table, false to allocate from top
3206  * @tcam_idx: pointer to variable to receive the TCAM entry
3207  *
3208  * This function allocates a new entry in a Profile ID TCAM for a specific
3209  * block.
3210  */
3211 static enum ice_status
3212 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
3213 		   u16 *tcam_idx)
3214 {
3215 	u16 res_type;
3216 
3217 	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3218 		return ICE_ERR_PARAM;
3219 
3220 	return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
3221 }
3222 
3223 /**
3224  * ice_free_tcam_ent - free hardware TCAM entry
3225  * @hw: pointer to the HW struct
3226  * @blk: the block from which to free the TCAM entry
3227  * @tcam_idx: the TCAM entry to free
3228  *
3229  * This function frees an entry in a Profile ID TCAM for a specific block.
3230  */
3231 static enum ice_status
3232 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
3233 {
3234 	u16 res_type;
3235 
3236 	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3237 		return ICE_ERR_PARAM;
3238 
3239 	return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
3240 }
3241 
3242 /**
3243  * ice_alloc_prof_id - allocate profile ID
3244  * @hw: pointer to the HW struct
3245  * @blk: the block to allocate the profile ID for
3246  * @prof_id: pointer to variable to receive the profile ID
3247  *
3248  * This function allocates a new profile ID, which also corresponds to a Field
3249  * Vector (Extraction Sequence) entry.
3250  */
3251 static enum ice_status
3252 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
3253 {
3254 	enum ice_status status;
3255 	u16 res_type;
3256 	u16 get_prof;
3257 
3258 	if (!ice_prof_id_rsrc_type(blk, &res_type))
3259 		return ICE_ERR_PARAM;
3260 
3261 	status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
3262 	if (!status)
3263 		*prof_id = (u8)get_prof;
3264 
3265 	return status;
3266 }
3267 
3268 /**
3269  * ice_free_prof_id - free profile ID
3270  * @hw: pointer to the HW struct
3271  * @blk: the block from which to free the profile ID
3272  * @prof_id: the profile ID to free
3273  *
3274  * This function frees a profile ID, which also corresponds to a Field Vector.
3275  */
3276 static enum ice_status
3277 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3278 {
3279 	u16 tmp_prof_id = (u16)prof_id;
3280 	u16 res_type;
3281 
3282 	if (!ice_prof_id_rsrc_type(blk, &res_type))
3283 		return ICE_ERR_PARAM;
3284 
3285 	return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
3286 }
3287 
3288 /**
3289  * ice_prof_inc_ref - increment reference count for profile
3290  * @hw: pointer to the HW struct
3291  * @blk: the block from which to free the profile ID
3292  * @prof_id: the profile ID for which to increment the reference count
3293  */
3294 static enum ice_status
3295 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3296 {
3297 	if (prof_id > hw->blk[blk].es.count)
3298 		return ICE_ERR_PARAM;
3299 
3300 	hw->blk[blk].es.ref_count[prof_id]++;
3301 
3302 	return ICE_SUCCESS;
3303 }
3304 
3305 /**
3306  * ice_write_es - write an extraction sequence to hardware
3307  * @hw: pointer to the HW struct
3308  * @blk: the block in which to write the extraction sequence
3309  * @prof_id: the profile ID to write
3310  * @fv: pointer to the extraction sequence to write - NULL to clear extraction
3311  */
3312 static void
3313 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
3314 	     struct ice_fv_word *fv)
3315 {
3316 	u16 off;
3317 
3318 	off = prof_id * hw->blk[blk].es.fvw;
3319 	if (!fv) {
3320 		ice_memset(&hw->blk[blk].es.t[off], 0, hw->blk[blk].es.fvw *
3321 			   sizeof(*fv), ICE_NONDMA_MEM);
3322 		hw->blk[blk].es.written[prof_id] = false;
3323 	} else {
3324 		ice_memcpy(&hw->blk[blk].es.t[off], fv, hw->blk[blk].es.fvw *
3325 			   sizeof(*fv), ICE_NONDMA_TO_NONDMA);
3326 	}
3327 }
3328 
3329 /**
3330  * ice_prof_dec_ref - decrement reference count for profile
3331  * @hw: pointer to the HW struct
3332  * @blk: the block from which to free the profile ID
3333  * @prof_id: the profile ID for which to decrement the reference count
3334  */
3335 static enum ice_status
3336 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3337 {
3338 	if (prof_id > hw->blk[blk].es.count)
3339 		return ICE_ERR_PARAM;
3340 
3341 	if (hw->blk[blk].es.ref_count[prof_id] > 0) {
3342 		if (!--hw->blk[blk].es.ref_count[prof_id]) {
3343 			ice_write_es(hw, blk, prof_id, NULL);
3344 			return ice_free_prof_id(hw, blk, prof_id);
3345 		}
3346 	}
3347 
3348 	return ICE_SUCCESS;
3349 }
3350 
3351 /* Block / table section IDs */
3352 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
3353 	/* SWITCH */
3354 	{	ICE_SID_XLT1_SW,
3355 		ICE_SID_XLT2_SW,
3356 		ICE_SID_PROFID_TCAM_SW,
3357 		ICE_SID_PROFID_REDIR_SW,
3358 		ICE_SID_FLD_VEC_SW
3359 	},
3360 
3361 	/* ACL */
3362 	{	ICE_SID_XLT1_ACL,
3363 		ICE_SID_XLT2_ACL,
3364 		ICE_SID_PROFID_TCAM_ACL,
3365 		ICE_SID_PROFID_REDIR_ACL,
3366 		ICE_SID_FLD_VEC_ACL
3367 	},
3368 
3369 	/* FD */
3370 	{	ICE_SID_XLT1_FD,
3371 		ICE_SID_XLT2_FD,
3372 		ICE_SID_PROFID_TCAM_FD,
3373 		ICE_SID_PROFID_REDIR_FD,
3374 		ICE_SID_FLD_VEC_FD
3375 	},
3376 
3377 	/* RSS */
3378 	{	ICE_SID_XLT1_RSS,
3379 		ICE_SID_XLT2_RSS,
3380 		ICE_SID_PROFID_TCAM_RSS,
3381 		ICE_SID_PROFID_REDIR_RSS,
3382 		ICE_SID_FLD_VEC_RSS
3383 	},
3384 
3385 	/* PE */
3386 	{	ICE_SID_XLT1_PE,
3387 		ICE_SID_XLT2_PE,
3388 		ICE_SID_PROFID_TCAM_PE,
3389 		ICE_SID_PROFID_REDIR_PE,
3390 		ICE_SID_FLD_VEC_PE
3391 	}
3392 };
3393 
3394 /**
3395  * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
3396  * @hw: pointer to the hardware structure
3397  * @blk: the HW block to initialize
3398  */
3399 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
3400 {
3401 	u16 pt;
3402 
3403 	for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
3404 		u8 ptg;
3405 
3406 		ptg = hw->blk[blk].xlt1.t[pt];
3407 		if (ptg != ICE_DEFAULT_PTG) {
3408 			ice_ptg_alloc_val(hw, blk, ptg);
3409 			ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
3410 		}
3411 	}
3412 }
3413 
3414 /**
3415  * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
3416  * @hw: pointer to the hardware structure
3417  * @blk: the HW block to initialize
3418  */
3419 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
3420 {
3421 	u16 vsi;
3422 
3423 	for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
3424 		u16 vsig;
3425 
3426 		vsig = hw->blk[blk].xlt2.t[vsi];
3427 		if (vsig) {
3428 			ice_vsig_alloc_val(hw, blk, vsig);
3429 			ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3430 			/* no changes at this time, since this has been
3431 			 * initialized from the original package
3432 			 */
3433 			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
3434 		}
3435 	}
3436 }
3437 
3438 /**
3439  * ice_init_sw_db - init software database from HW tables
3440  * @hw: pointer to the hardware structure
3441  */
3442 static void ice_init_sw_db(struct ice_hw *hw)
3443 {
3444 	u16 i;
3445 
3446 	for (i = 0; i < ICE_BLK_COUNT; i++) {
3447 		ice_init_sw_xlt1_db(hw, (enum ice_block)i);
3448 		ice_init_sw_xlt2_db(hw, (enum ice_block)i);
3449 	}
3450 }
3451 
3452 /**
3453  * ice_fill_tbl - Reads content of a single table type into database
3454  * @hw: pointer to the hardware structure
3455  * @block_id: Block ID of the table to copy
3456  * @sid: Section ID of the table to copy
3457  *
3458  * Will attempt to read the entire content of a given table of a single block
3459  * into the driver database. We assume that the buffer will always
3460  * be as large or larger than the data contained in the package. If
3461  * this condition is not met, there is most likely an error in the package
3462  * contents.
3463  */
3464 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
3465 {
3466 	u32 dst_len, sect_len, offset = 0;
3467 	struct ice_prof_redir_section *pr;
3468 	struct ice_prof_id_section *pid;
3469 	struct ice_xlt1_section *xlt1;
3470 	struct ice_xlt2_section *xlt2;
3471 	struct ice_sw_fv_section *es;
3472 	struct ice_pkg_enum state;
3473 	u8 *src, *dst;
3474 	void *sect;
3475 
3476 	/* if the HW segment pointer is null then the first iteration of
3477 	 * ice_pkg_enum_section() will fail. In this case the HW tables will
3478 	 * not be filled and return success.
3479 	 */
3480 	if (!hw->seg) {
3481 		ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
3482 		return;
3483 	}
3484 
3485 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
3486 
3487 	sect = ice_pkg_enum_section(hw->seg, &state, sid);
3488 
3489 	while (sect) {
3490 		switch (sid) {
3491 		case ICE_SID_XLT1_SW:
3492 		case ICE_SID_XLT1_FD:
3493 		case ICE_SID_XLT1_RSS:
3494 		case ICE_SID_XLT1_ACL:
3495 		case ICE_SID_XLT1_PE:
3496 			xlt1 = (struct ice_xlt1_section *)sect;
3497 			src = xlt1->value;
3498 			sect_len = LE16_TO_CPU(xlt1->count) *
3499 				sizeof(*hw->blk[block_id].xlt1.t);
3500 			dst = hw->blk[block_id].xlt1.t;
3501 			dst_len = hw->blk[block_id].xlt1.count *
3502 				sizeof(*hw->blk[block_id].xlt1.t);
3503 			break;
3504 		case ICE_SID_XLT2_SW:
3505 		case ICE_SID_XLT2_FD:
3506 		case ICE_SID_XLT2_RSS:
3507 		case ICE_SID_XLT2_ACL:
3508 		case ICE_SID_XLT2_PE:
3509 			xlt2 = (struct ice_xlt2_section *)sect;
3510 			src = (_FORCE_ u8 *)xlt2->value;
3511 			sect_len = LE16_TO_CPU(xlt2->count) *
3512 				sizeof(*hw->blk[block_id].xlt2.t);
3513 			dst = (u8 *)hw->blk[block_id].xlt2.t;
3514 			dst_len = hw->blk[block_id].xlt2.count *
3515 				sizeof(*hw->blk[block_id].xlt2.t);
3516 			break;
3517 		case ICE_SID_PROFID_TCAM_SW:
3518 		case ICE_SID_PROFID_TCAM_FD:
3519 		case ICE_SID_PROFID_TCAM_RSS:
3520 		case ICE_SID_PROFID_TCAM_ACL:
3521 		case ICE_SID_PROFID_TCAM_PE:
3522 			pid = (struct ice_prof_id_section *)sect;
3523 			src = (u8 *)pid->entry;
3524 			sect_len = LE16_TO_CPU(pid->count) *
3525 				sizeof(*hw->blk[block_id].prof.t);
3526 			dst = (u8 *)hw->blk[block_id].prof.t;
3527 			dst_len = hw->blk[block_id].prof.count *
3528 				sizeof(*hw->blk[block_id].prof.t);
3529 			break;
3530 		case ICE_SID_PROFID_REDIR_SW:
3531 		case ICE_SID_PROFID_REDIR_FD:
3532 		case ICE_SID_PROFID_REDIR_RSS:
3533 		case ICE_SID_PROFID_REDIR_ACL:
3534 		case ICE_SID_PROFID_REDIR_PE:
3535 			pr = (struct ice_prof_redir_section *)sect;
3536 			src = pr->redir_value;
3537 			sect_len = LE16_TO_CPU(pr->count) *
3538 				sizeof(*hw->blk[block_id].prof_redir.t);
3539 			dst = hw->blk[block_id].prof_redir.t;
3540 			dst_len = hw->blk[block_id].prof_redir.count *
3541 				sizeof(*hw->blk[block_id].prof_redir.t);
3542 			break;
3543 		case ICE_SID_FLD_VEC_SW:
3544 		case ICE_SID_FLD_VEC_FD:
3545 		case ICE_SID_FLD_VEC_RSS:
3546 		case ICE_SID_FLD_VEC_ACL:
3547 		case ICE_SID_FLD_VEC_PE:
3548 			es = (struct ice_sw_fv_section *)sect;
3549 			src = (u8 *)es->fv;
3550 			sect_len = (u32)(LE16_TO_CPU(es->count) *
3551 					 hw->blk[block_id].es.fvw) *
3552 				sizeof(*hw->blk[block_id].es.t);
3553 			dst = (u8 *)hw->blk[block_id].es.t;
3554 			dst_len = (u32)(hw->blk[block_id].es.count *
3555 					hw->blk[block_id].es.fvw) *
3556 				sizeof(*hw->blk[block_id].es.t);
3557 			break;
3558 		default:
3559 			return;
3560 		}
3561 
3562 		/* if the section offset exceeds destination length, terminate
3563 		 * table fill.
3564 		 */
3565 		if (offset > dst_len)
3566 			return;
3567 
3568 		/* if the sum of section size and offset exceed destination size
3569 		 * then we are out of bounds of the HW table size for that PF.
3570 		 * Changing section length to fill the remaining table space
3571 		 * of that PF.
3572 		 */
3573 		if ((offset + sect_len) > dst_len)
3574 			sect_len = dst_len - offset;
3575 
3576 		ice_memcpy(dst + offset, src, sect_len, ICE_NONDMA_TO_NONDMA);
3577 		offset += sect_len;
3578 		sect = ice_pkg_enum_section(NULL, &state, sid);
3579 	}
3580 }
3581 
3582 /**
3583  * ice_fill_blk_tbls - Read package context for tables
3584  * @hw: pointer to the hardware structure
3585  *
3586  * Reads the current package contents and populates the driver
3587  * database with the data iteratively for all advanced feature
3588  * blocks. Assume that the HW tables have been allocated.
3589  */
3590 void ice_fill_blk_tbls(struct ice_hw *hw)
3591 {
3592 	u8 i;
3593 
3594 	for (i = 0; i < ICE_BLK_COUNT; i++) {
3595 		enum ice_block blk_id = (enum ice_block)i;
3596 
3597 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
3598 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
3599 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
3600 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
3601 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
3602 	}
3603 
3604 	ice_init_sw_db(hw);
3605 }
3606 
3607 /**
3608  * ice_free_prof_map - free profile map
3609  * @hw: pointer to the hardware structure
3610  * @blk_idx: HW block index
3611  */
3612 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
3613 {
3614 	struct ice_es *es = &hw->blk[blk_idx].es;
3615 	struct ice_prof_map *del, *tmp;
3616 
3617 	ice_acquire_lock(&es->prof_map_lock);
3618 	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &es->prof_map,
3619 				 ice_prof_map, list) {
3620 		LIST_DEL(&del->list);
3621 		ice_free(hw, del);
3622 	}
3623 	INIT_LIST_HEAD(&es->prof_map);
3624 	ice_release_lock(&es->prof_map_lock);
3625 }
3626 
3627 /**
3628  * ice_free_flow_profs - free flow profile entries
3629  * @hw: pointer to the hardware structure
3630  * @blk_idx: HW block index
3631  */
3632 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
3633 {
3634 	struct ice_flow_prof *p, *tmp;
3635 
3636 	ice_acquire_lock(&hw->fl_profs_locks[blk_idx]);
3637 	LIST_FOR_EACH_ENTRY_SAFE(p, tmp, &hw->fl_profs[blk_idx],
3638 				 ice_flow_prof, l_entry) {
3639 		LIST_DEL(&p->l_entry);
3640 
3641 		ice_free(hw, p);
3642 	}
3643 	ice_release_lock(&hw->fl_profs_locks[blk_idx]);
3644 
3645 	/* if driver is in reset and tables are being cleared
3646 	 * re-initialize the flow profile list heads
3647 	 */
3648 	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3649 }
3650 
3651 /**
3652  * ice_free_vsig_tbl - free complete VSIG table entries
3653  * @hw: pointer to the hardware structure
3654  * @blk: the HW block on which to free the VSIG table entries
3655  */
3656 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
3657 {
3658 	u16 i;
3659 
3660 	if (!hw->blk[blk].xlt2.vsig_tbl)
3661 		return;
3662 
3663 	for (i = 1; i < ICE_MAX_VSIGS; i++)
3664 		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
3665 			ice_vsig_free(hw, blk, i);
3666 }
3667 
3668 /**
3669  * ice_free_hw_tbls - free hardware table memory
3670  * @hw: pointer to the hardware structure
3671  */
3672 void ice_free_hw_tbls(struct ice_hw *hw)
3673 {
3674 	struct ice_rss_cfg *r, *rt;
3675 	u8 i;
3676 
3677 	for (i = 0; i < ICE_BLK_COUNT; i++) {
3678 		if (hw->blk[i].is_list_init) {
3679 			struct ice_es *es = &hw->blk[i].es;
3680 
3681 			ice_free_prof_map(hw, i);
3682 			ice_destroy_lock(&es->prof_map_lock);
3683 
3684 			ice_free_flow_profs(hw, i);
3685 			ice_destroy_lock(&hw->fl_profs_locks[i]);
3686 
3687 			hw->blk[i].is_list_init = false;
3688 		}
3689 		ice_free_vsig_tbl(hw, (enum ice_block)i);
3690 		ice_free(hw, hw->blk[i].xlt1.ptypes);
3691 		ice_free(hw, hw->blk[i].xlt1.ptg_tbl);
3692 		ice_free(hw, hw->blk[i].xlt1.t);
3693 		ice_free(hw, hw->blk[i].xlt2.t);
3694 		ice_free(hw, hw->blk[i].xlt2.vsig_tbl);
3695 		ice_free(hw, hw->blk[i].xlt2.vsis);
3696 		ice_free(hw, hw->blk[i].prof.t);
3697 		ice_free(hw, hw->blk[i].prof_redir.t);
3698 		ice_free(hw, hw->blk[i].es.t);
3699 		ice_free(hw, hw->blk[i].es.ref_count);
3700 		ice_free(hw, hw->blk[i].es.written);
3701 	}
3702 
3703 	LIST_FOR_EACH_ENTRY_SAFE(r, rt, &hw->rss_list_head,
3704 				 ice_rss_cfg, l_entry) {
3705 		LIST_DEL(&r->l_entry);
3706 		ice_free(hw, r);
3707 	}
3708 	ice_destroy_lock(&hw->rss_locks);
3709 	ice_memset(hw->blk, 0, sizeof(hw->blk), ICE_NONDMA_MEM);
3710 }
3711 
3712 /**
3713  * ice_init_flow_profs - init flow profile locks and list heads
3714  * @hw: pointer to the hardware structure
3715  * @blk_idx: HW block index
3716  */
3717 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
3718 {
3719 	ice_init_lock(&hw->fl_profs_locks[blk_idx]);
3720 	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3721 }
3722 
3723 /**
3724  * ice_clear_hw_tbls - clear HW tables and flow profiles
3725  * @hw: pointer to the hardware structure
3726  */
3727 void ice_clear_hw_tbls(struct ice_hw *hw)
3728 {
3729 	u8 i;
3730 
3731 	for (i = 0; i < ICE_BLK_COUNT; i++) {
3732 		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3733 		struct ice_prof_tcam *prof = &hw->blk[i].prof;
3734 		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3735 		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3736 		struct ice_es *es = &hw->blk[i].es;
3737 
3738 		if (hw->blk[i].is_list_init) {
3739 			ice_free_prof_map(hw, i);
3740 			ice_free_flow_profs(hw, i);
3741 		}
3742 
3743 		ice_free_vsig_tbl(hw, (enum ice_block)i);
3744 
3745 		ice_memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes),
3746 			   ICE_NONDMA_MEM);
3747 		ice_memset(xlt1->ptg_tbl, 0,
3748 			   ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl),
3749 			   ICE_NONDMA_MEM);
3750 		ice_memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t),
3751 			   ICE_NONDMA_MEM);
3752 
3753 		ice_memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis),
3754 			   ICE_NONDMA_MEM);
3755 		ice_memset(xlt2->vsig_tbl, 0,
3756 			   xlt2->count * sizeof(*xlt2->vsig_tbl),
3757 			   ICE_NONDMA_MEM);
3758 		ice_memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t),
3759 			   ICE_NONDMA_MEM);
3760 
3761 		ice_memset(prof->t, 0, prof->count * sizeof(*prof->t),
3762 			   ICE_NONDMA_MEM);
3763 		ice_memset(prof_redir->t, 0,
3764 			   prof_redir->count * sizeof(*prof_redir->t),
3765 			   ICE_NONDMA_MEM);
3766 
3767 		ice_memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw,
3768 			   ICE_NONDMA_MEM);
3769 		ice_memset(es->ref_count, 0, es->count * sizeof(*es->ref_count),
3770 			   ICE_NONDMA_MEM);
3771 		ice_memset(es->written, 0, es->count * sizeof(*es->written),
3772 			   ICE_NONDMA_MEM);
3773 	}
3774 }
3775 
3776 /**
3777  * ice_init_hw_tbls - init hardware table memory
3778  * @hw: pointer to the hardware structure
3779  */
3780 enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
3781 {
3782 	u8 i;
3783 
3784 	ice_init_lock(&hw->rss_locks);
3785 	INIT_LIST_HEAD(&hw->rss_list_head);
3786 	for (i = 0; i < ICE_BLK_COUNT; i++) {
3787 		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3788 		struct ice_prof_tcam *prof = &hw->blk[i].prof;
3789 		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3790 		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3791 		struct ice_es *es = &hw->blk[i].es;
3792 		u16 j;
3793 
3794 		if (hw->blk[i].is_list_init)
3795 			continue;
3796 
3797 		ice_init_flow_profs(hw, i);
3798 		ice_init_lock(&es->prof_map_lock);
3799 		INIT_LIST_HEAD(&es->prof_map);
3800 		hw->blk[i].is_list_init = true;
3801 
3802 		hw->blk[i].overwrite = blk_sizes[i].overwrite;
3803 		es->reverse = blk_sizes[i].reverse;
3804 
3805 		xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
3806 		xlt1->count = blk_sizes[i].xlt1;
3807 
3808 		xlt1->ptypes = (struct ice_ptg_ptype *)
3809 			ice_calloc(hw, xlt1->count, sizeof(*xlt1->ptypes));
3810 
3811 		if (!xlt1->ptypes)
3812 			goto err;
3813 
3814 		xlt1->ptg_tbl = (struct ice_ptg_entry *)
3815 			ice_calloc(hw, ICE_MAX_PTGS, sizeof(*xlt1->ptg_tbl));
3816 
3817 		if (!xlt1->ptg_tbl)
3818 			goto err;
3819 
3820 		xlt1->t = (u8 *)ice_calloc(hw, xlt1->count, sizeof(*xlt1->t));
3821 		if (!xlt1->t)
3822 			goto err;
3823 
3824 		xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
3825 		xlt2->count = blk_sizes[i].xlt2;
3826 
3827 		xlt2->vsis = (struct ice_vsig_vsi *)
3828 			ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsis));
3829 
3830 		if (!xlt2->vsis)
3831 			goto err;
3832 
3833 		xlt2->vsig_tbl = (struct ice_vsig_entry *)
3834 			ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsig_tbl));
3835 		if (!xlt2->vsig_tbl)
3836 			goto err;
3837 
3838 		for (j = 0; j < xlt2->count; j++)
3839 			INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
3840 
3841 		xlt2->t = (u16 *)ice_calloc(hw, xlt2->count, sizeof(*xlt2->t));
3842 		if (!xlt2->t)
3843 			goto err;
3844 
3845 		prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
3846 		prof->count = blk_sizes[i].prof_tcam;
3847 		prof->max_prof_id = blk_sizes[i].prof_id;
3848 		prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
3849 		prof->t = (struct ice_prof_tcam_entry *)
3850 			ice_calloc(hw, prof->count, sizeof(*prof->t));
3851 
3852 		if (!prof->t)
3853 			goto err;
3854 
3855 		prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
3856 		prof_redir->count = blk_sizes[i].prof_redir;
3857 		prof_redir->t = (u8 *)ice_calloc(hw, prof_redir->count,
3858 						 sizeof(*prof_redir->t));
3859 
3860 		if (!prof_redir->t)
3861 			goto err;
3862 
3863 		es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
3864 		es->count = blk_sizes[i].es;
3865 		es->fvw = blk_sizes[i].fvw;
3866 		es->t = (struct ice_fv_word *)
3867 			ice_calloc(hw, (u32)(es->count * es->fvw),
3868 				   sizeof(*es->t));
3869 		if (!es->t)
3870 			goto err;
3871 
3872 		es->ref_count = (u16 *)
3873 			ice_calloc(hw, es->count, sizeof(*es->ref_count));
3874 
3875 		if (!es->ref_count)
3876 			goto err;
3877 
3878 		es->written = (u8 *)
3879 			ice_calloc(hw, es->count, sizeof(*es->written));
3880 
3881 		if (!es->written)
3882 			goto err;
3883 
3884 	}
3885 	return ICE_SUCCESS;
3886 
3887 err:
3888 	ice_free_hw_tbls(hw);
3889 	return ICE_ERR_NO_MEMORY;
3890 }
3891 
3892 /**
3893  * ice_prof_gen_key - generate profile ID key
3894  * @hw: pointer to the HW struct
3895  * @blk: the block in which to write profile ID to
3896  * @ptg: packet type group (PTG) portion of key
3897  * @vsig: VSIG portion of key
3898  * @cdid: CDID portion of key
3899  * @flags: flag portion of key
3900  * @vl_msk: valid mask
3901  * @dc_msk: don't care mask
3902  * @nm_msk: never match mask
3903  * @key: output of profile ID key
3904  */
3905 static enum ice_status
3906 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
3907 		 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3908 		 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
3909 		 u8 key[ICE_TCAM_KEY_SZ])
3910 {
3911 	struct ice_prof_id_key inkey;
3912 
3913 	inkey.xlt1 = ptg;
3914 	inkey.xlt2_cdid = CPU_TO_LE16(vsig);
3915 	inkey.flags = CPU_TO_LE16(flags);
3916 
3917 	switch (hw->blk[blk].prof.cdid_bits) {
3918 	case 0:
3919 		break;
3920 	case 2:
3921 #define ICE_CD_2_M 0xC000U
3922 #define ICE_CD_2_S 14
3923 		inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_2_M);
3924 		inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_2_S);
3925 		break;
3926 	case 4:
3927 #define ICE_CD_4_M 0xF000U
3928 #define ICE_CD_4_S 12
3929 		inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_4_M);
3930 		inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_4_S);
3931 		break;
3932 	case 8:
3933 #define ICE_CD_8_M 0xFF00U
3934 #define ICE_CD_8_S 16
3935 		inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_8_M);
3936 		inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_8_S);
3937 		break;
3938 	default:
3939 		ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
3940 		break;
3941 	}
3942 
3943 	return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
3944 			   nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
3945 }
3946 
3947 /**
3948  * ice_tcam_write_entry - write TCAM entry
3949  * @hw: pointer to the HW struct
3950  * @blk: the block in which to write profile ID to
3951  * @idx: the entry index to write to
3952  * @prof_id: profile ID
3953  * @ptg: packet type group (PTG) portion of key
3954  * @vsig: VSIG portion of key
3955  * @cdid: CDID portion of key
3956  * @flags: flag portion of key
3957  * @vl_msk: valid mask
3958  * @dc_msk: don't care mask
3959  * @nm_msk: never match mask
3960  */
3961 static enum ice_status
3962 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
3963 		     u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
3964 		     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3965 		     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
3966 		     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
3967 {
3968 	struct ice_prof_tcam_entry;
3969 	enum ice_status status;
3970 
3971 	status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
3972 				  dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
3973 	if (!status) {
3974 		hw->blk[blk].prof.t[idx].addr = CPU_TO_LE16(idx);
3975 		hw->blk[blk].prof.t[idx].prof_id = prof_id;
3976 	}
3977 
3978 	return status;
3979 }
3980 
3981 /**
3982  * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
3983  * @hw: pointer to the hardware structure
3984  * @blk: HW block
3985  * @vsig: VSIG to query
3986  * @refs: pointer to variable to receive the reference count
3987  */
3988 static enum ice_status
3989 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
3990 {
3991 	u16 idx = vsig & ICE_VSIG_IDX_M;
3992 	struct ice_vsig_vsi *ptr;
3993 
3994 	*refs = 0;
3995 
3996 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
3997 		return ICE_ERR_DOES_NOT_EXIST;
3998 
3999 	ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4000 	while (ptr) {
4001 		(*refs)++;
4002 		ptr = ptr->next_vsi;
4003 	}
4004 
4005 	return ICE_SUCCESS;
4006 }
4007 
4008 /**
4009  * ice_has_prof_vsig - check to see if VSIG has a specific profile
4010  * @hw: pointer to the hardware structure
4011  * @blk: HW block
4012  * @vsig: VSIG to check against
4013  * @hdl: profile handle
4014  */
4015 static bool
4016 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
4017 {
4018 	u16 idx = vsig & ICE_VSIG_IDX_M;
4019 	struct ice_vsig_prof *ent;
4020 
4021 	LIST_FOR_EACH_ENTRY(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4022 			    ice_vsig_prof, list)
4023 		if (ent->profile_cookie == hdl)
4024 			return true;
4025 
4026 	ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
4027 		  vsig);
4028 	return false;
4029 }
4030 
4031 /**
4032  * ice_prof_bld_es - build profile ID extraction sequence changes
4033  * @hw: pointer to the HW struct
4034  * @blk: hardware block
4035  * @bld: the update package buffer build to add to
4036  * @chgs: the list of changes to make in hardware
4037  */
4038 static enum ice_status
4039 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
4040 		struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
4041 {
4042 	u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
4043 	struct ice_chs_chg *tmp;
4044 
4045 	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4046 		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
4047 			u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
4048 			struct ice_pkg_es *p;
4049 			u32 id;
4050 
4051 			id = ice_sect_id(blk, ICE_VEC_TBL);
4052 			p = (struct ice_pkg_es *)
4053 				ice_pkg_buf_alloc_section(bld, id,
4054 							  ice_struct_size(p, es,
4055 									  1) +
4056 							  vec_size -
4057 							  sizeof(p->es[0]));
4058 
4059 			if (!p)
4060 				return ICE_ERR_MAX_LIMIT;
4061 
4062 			p->count = CPU_TO_LE16(1);
4063 			p->offset = CPU_TO_LE16(tmp->prof_id);
4064 
4065 			ice_memcpy(p->es, &hw->blk[blk].es.t[off], vec_size,
4066 				   ICE_NONDMA_TO_NONDMA);
4067 		}
4068 
4069 	return ICE_SUCCESS;
4070 }
4071 
4072 /**
4073  * ice_prof_bld_tcam - build profile ID TCAM changes
4074  * @hw: pointer to the HW struct
4075  * @blk: hardware block
4076  * @bld: the update package buffer build to add to
4077  * @chgs: the list of changes to make in hardware
4078  */
4079 static enum ice_status
4080 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
4081 		  struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
4082 {
4083 	struct ice_chs_chg *tmp;
4084 
4085 	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4086 		if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
4087 			struct ice_prof_id_section *p;
4088 			u32 id;
4089 
4090 			id = ice_sect_id(blk, ICE_PROF_TCAM);
4091 			p = (struct ice_prof_id_section *)
4092 				ice_pkg_buf_alloc_section(bld, id,
4093 							  ice_struct_size(p,
4094 									  entry,
4095 									  1));
4096 
4097 			if (!p)
4098 				return ICE_ERR_MAX_LIMIT;
4099 
4100 			p->count = CPU_TO_LE16(1);
4101 			p->entry[0].addr = CPU_TO_LE16(tmp->tcam_idx);
4102 			p->entry[0].prof_id = tmp->prof_id;
4103 
4104 			ice_memcpy(p->entry[0].key,
4105 				   &hw->blk[blk].prof.t[tmp->tcam_idx].key,
4106 				   sizeof(hw->blk[blk].prof.t->key),
4107 				   ICE_NONDMA_TO_NONDMA);
4108 		}
4109 
4110 	return ICE_SUCCESS;
4111 }
4112 
4113 /**
4114  * ice_prof_bld_xlt1 - build XLT1 changes
4115  * @blk: hardware block
4116  * @bld: the update package buffer build to add to
4117  * @chgs: the list of changes to make in hardware
4118  */
4119 static enum ice_status
4120 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
4121 		  struct LIST_HEAD_TYPE *chgs)
4122 {
4123 	struct ice_chs_chg *tmp;
4124 
4125 	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4126 		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
4127 			struct ice_xlt1_section *p;
4128 			u32 id;
4129 
4130 			id = ice_sect_id(blk, ICE_XLT1);
4131 			p = (struct ice_xlt1_section *)
4132 				ice_pkg_buf_alloc_section(bld, id,
4133 							  ice_struct_size(p,
4134 									  value,
4135 									  1));
4136 
4137 			if (!p)
4138 				return ICE_ERR_MAX_LIMIT;
4139 
4140 			p->count = CPU_TO_LE16(1);
4141 			p->offset = CPU_TO_LE16(tmp->ptype);
4142 			p->value[0] = tmp->ptg;
4143 		}
4144 
4145 	return ICE_SUCCESS;
4146 }
4147 
4148 /**
4149  * ice_prof_bld_xlt2 - build XLT2 changes
4150  * @blk: hardware block
4151  * @bld: the update package buffer build to add to
4152  * @chgs: the list of changes to make in hardware
4153  */
4154 static enum ice_status
4155 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
4156 		  struct LIST_HEAD_TYPE *chgs)
4157 {
4158 	struct ice_chs_chg *tmp;
4159 
4160 	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
4161 		struct ice_xlt2_section *p;
4162 		u32 id;
4163 
4164 		switch (tmp->type) {
4165 		case ICE_VSIG_ADD:
4166 		case ICE_VSI_MOVE:
4167 		case ICE_VSIG_REM:
4168 			id = ice_sect_id(blk, ICE_XLT2);
4169 			p = (struct ice_xlt2_section *)
4170 				ice_pkg_buf_alloc_section(bld, id,
4171 							  ice_struct_size(p,
4172 									  value,
4173 									  1));
4174 
4175 			if (!p)
4176 				return ICE_ERR_MAX_LIMIT;
4177 
4178 			p->count = CPU_TO_LE16(1);
4179 			p->offset = CPU_TO_LE16(tmp->vsi);
4180 			p->value[0] = CPU_TO_LE16(tmp->vsig);
4181 			break;
4182 		default:
4183 			break;
4184 		}
4185 	}
4186 
4187 	return ICE_SUCCESS;
4188 }
4189 
4190 /**
4191  * ice_upd_prof_hw - update hardware using the change list
4192  * @hw: pointer to the HW struct
4193  * @blk: hardware block
4194  * @chgs: the list of changes to make in hardware
4195  */
4196 static enum ice_status
4197 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
4198 		struct LIST_HEAD_TYPE *chgs)
4199 {
4200 	struct ice_buf_build *b;
4201 	struct ice_chs_chg *tmp;
4202 	enum ice_status status;
4203 	u16 pkg_sects;
4204 	u16 xlt1 = 0;
4205 	u16 xlt2 = 0;
4206 	u16 tcam = 0;
4207 	u16 es = 0;
4208 	u16 sects;
4209 
4210 	/* count number of sections we need */
4211 	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
4212 		switch (tmp->type) {
4213 		case ICE_PTG_ES_ADD:
4214 			if (tmp->add_ptg)
4215 				xlt1++;
4216 			if (tmp->add_prof)
4217 				es++;
4218 			break;
4219 		case ICE_TCAM_ADD:
4220 			tcam++;
4221 			break;
4222 		case ICE_VSIG_ADD:
4223 		case ICE_VSI_MOVE:
4224 		case ICE_VSIG_REM:
4225 			xlt2++;
4226 			break;
4227 		default:
4228 			break;
4229 		}
4230 	}
4231 	sects = xlt1 + xlt2 + tcam + es;
4232 
4233 	if (!sects)
4234 		return ICE_SUCCESS;
4235 
4236 	/* Build update package buffer */
4237 	b = ice_pkg_buf_alloc(hw);
4238 	if (!b)
4239 		return ICE_ERR_NO_MEMORY;
4240 
4241 	status = ice_pkg_buf_reserve_section(b, sects);
4242 	if (status)
4243 		goto error_tmp;
4244 
4245 	/* Preserve order of table update: ES, TCAM, PTG, VSIG */
4246 	if (es) {
4247 		status = ice_prof_bld_es(hw, blk, b, chgs);
4248 		if (status)
4249 			goto error_tmp;
4250 	}
4251 
4252 	if (tcam) {
4253 		status = ice_prof_bld_tcam(hw, blk, b, chgs);
4254 		if (status)
4255 			goto error_tmp;
4256 	}
4257 
4258 	if (xlt1) {
4259 		status = ice_prof_bld_xlt1(blk, b, chgs);
4260 		if (status)
4261 			goto error_tmp;
4262 	}
4263 
4264 	if (xlt2) {
4265 		status = ice_prof_bld_xlt2(blk, b, chgs);
4266 		if (status)
4267 			goto error_tmp;
4268 	}
4269 
4270 	/* After package buffer build check if the section count in buffer is
4271 	 * non-zero and matches the number of sections detected for package
4272 	 * update.
4273 	 */
4274 	pkg_sects = ice_pkg_buf_get_active_sections(b);
4275 	if (!pkg_sects || pkg_sects != sects) {
4276 		status = ICE_ERR_INVAL_SIZE;
4277 		goto error_tmp;
4278 	}
4279 
4280 	/* update package */
4281 	status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
4282 	if (status == ICE_ERR_AQ_ERROR)
4283 		ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
4284 
4285 error_tmp:
4286 	ice_pkg_buf_free(hw, b);
4287 	return status;
4288 }
4289 
4290 /**
4291  * ice_add_prof - add profile
4292  * @hw: pointer to the HW struct
4293  * @blk: hardware block
4294  * @id: profile tracking ID
4295  * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
4296  * @es: extraction sequence (length of array is determined by the block)
4297  *
4298  * This function registers a profile, which matches a set of PTGs with a
4299  * particular extraction sequence. While the hardware profile is allocated
4300  * it will not be written until the first call to ice_add_flow that specifies
4301  * the ID value used here.
4302  */
4303 enum ice_status
4304 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
4305 	     struct ice_fv_word *es)
4306 {
4307 	u32 bytes = DIVIDE_AND_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
4308 	ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
4309 	struct ice_prof_map *prof;
4310 	enum ice_status status;
4311 	u8 byte = 0;
4312 	u8 prof_id;
4313 
4314 	ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT);
4315 
4316 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4317 
4318 	/* search for existing profile */
4319 	status = ice_find_prof_id(hw, blk, es, &prof_id);
4320 	if (status) {
4321 		/* allocate profile ID */
4322 		status = ice_alloc_prof_id(hw, blk, &prof_id);
4323 		if (status)
4324 			goto err_ice_add_prof;
4325 
4326 		/* and write new es */
4327 		ice_write_es(hw, blk, prof_id, es);
4328 	}
4329 
4330 	ice_prof_inc_ref(hw, blk, prof_id);
4331 
4332 	/* add profile info */
4333 
4334 	prof = (struct ice_prof_map *)ice_malloc(hw, sizeof(*prof));
4335 	if (!prof)
4336 		goto err_ice_add_prof;
4337 
4338 	prof->profile_cookie = id;
4339 	prof->prof_id = prof_id;
4340 	prof->ptg_cnt = 0;
4341 	prof->context = 0;
4342 
4343 	/* build list of ptgs */
4344 	while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
4345 		u8 bit;
4346 
4347 		if (!ptypes[byte]) {
4348 			bytes--;
4349 			byte++;
4350 			continue;
4351 		}
4352 
4353 		/* Examine 8 bits per byte */
4354 		ice_for_each_set_bit(bit, (ice_bitmap_t *)&ptypes[byte],
4355 				     BITS_PER_BYTE) {
4356 			u16 ptype;
4357 			u8 ptg;
4358 
4359 			ptype = byte * BITS_PER_BYTE + bit;
4360 
4361 			/* The package should place all ptypes in a non-zero
4362 			 * PTG, so the following call should never fail.
4363 			 */
4364 			if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
4365 				continue;
4366 
4367 			/* If PTG is already added, skip and continue */
4368 			if (ice_is_bit_set(ptgs_used, ptg))
4369 				continue;
4370 
4371 			ice_set_bit(ptg, ptgs_used);
4372 			prof->ptg[prof->ptg_cnt] = ptg;
4373 
4374 			if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
4375 				break;
4376 		}
4377 
4378 		bytes--;
4379 		byte++;
4380 	}
4381 
4382 	LIST_ADD(&prof->list, &hw->blk[blk].es.prof_map);
4383 	status = ICE_SUCCESS;
4384 
4385 err_ice_add_prof:
4386 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4387 	return status;
4388 }
4389 
4390 /**
4391  * ice_search_prof_id - Search for a profile tracking ID
4392  * @hw: pointer to the HW struct
4393  * @blk: hardware block
4394  * @id: profile tracking ID
4395  *
4396  * This will search for a profile tracking ID which was previously added.
4397  * The profile map lock should be held before calling this function.
4398  */
4399 struct ice_prof_map *
4400 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
4401 {
4402 	struct ice_prof_map *entry = NULL;
4403 	struct ice_prof_map *map;
4404 
4405 	LIST_FOR_EACH_ENTRY(map, &hw->blk[blk].es.prof_map, ice_prof_map, list)
4406 		if (map->profile_cookie == id) {
4407 			entry = map;
4408 			break;
4409 		}
4410 
4411 	return entry;
4412 }
4413 
4414 /**
4415  * ice_set_prof_context - Set context for a given profile
4416  * @hw: pointer to the HW struct
4417  * @blk: hardware block
4418  * @id: profile tracking ID
4419  * @cntxt: context
4420  */
4421 enum ice_status
4422 ice_set_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 cntxt)
4423 {
4424 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4425 	struct ice_prof_map *entry;
4426 
4427 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4428 	entry = ice_search_prof_id(hw, blk, id);
4429 	if (entry) {
4430 		entry->context = cntxt;
4431 		status = ICE_SUCCESS;
4432 	}
4433 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4434 	return status;
4435 }
4436 
4437 /**
4438  * ice_get_prof_context - Get context for a given profile
4439  * @hw: pointer to the HW struct
4440  * @blk: hardware block
4441  * @id: profile tracking ID
4442  * @cntxt: pointer to variable to receive the context
4443  */
4444 enum ice_status
4445 ice_get_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 *cntxt)
4446 {
4447 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4448 	struct ice_prof_map *entry;
4449 
4450 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4451 	entry = ice_search_prof_id(hw, blk, id);
4452 	if (entry) {
4453 		*cntxt = entry->context;
4454 		status = ICE_SUCCESS;
4455 	}
4456 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4457 	return status;
4458 }
4459 
4460 /**
4461  * ice_vsig_prof_id_count - count profiles in a VSIG
4462  * @hw: pointer to the HW struct
4463  * @blk: hardware block
4464  * @vsig: VSIG to remove the profile from
4465  */
4466 static u16
4467 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
4468 {
4469 	u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
4470 	struct ice_vsig_prof *p;
4471 
4472 	LIST_FOR_EACH_ENTRY(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4473 			    ice_vsig_prof, list)
4474 		count++;
4475 
4476 	return count;
4477 }
4478 
4479 /**
4480  * ice_rel_tcam_idx - release a TCAM index
4481  * @hw: pointer to the HW struct
4482  * @blk: hardware block
4483  * @idx: the index to release
4484  */
4485 static enum ice_status
4486 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
4487 {
4488 	/* Masks to invoke a never match entry */
4489 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4490 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
4491 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
4492 	enum ice_status status;
4493 
4494 	/* write the TCAM entry */
4495 	status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
4496 				      dc_msk, nm_msk);
4497 	if (status)
4498 		return status;
4499 
4500 	/* release the TCAM entry */
4501 	status = ice_free_tcam_ent(hw, blk, idx);
4502 
4503 	return status;
4504 }
4505 
4506 /**
4507  * ice_rem_prof_id - remove one profile from a VSIG
4508  * @hw: pointer to the HW struct
4509  * @blk: hardware block
4510  * @prof: pointer to profile structure to remove
4511  */
4512 static enum ice_status
4513 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
4514 		struct ice_vsig_prof *prof)
4515 {
4516 	enum ice_status status;
4517 	u16 i;
4518 
4519 	for (i = 0; i < prof->tcam_count; i++)
4520 		if (prof->tcam[i].in_use) {
4521 			prof->tcam[i].in_use = false;
4522 			status = ice_rel_tcam_idx(hw, blk,
4523 						  prof->tcam[i].tcam_idx);
4524 			if (status)
4525 				return ICE_ERR_HW_TABLE;
4526 		}
4527 
4528 	return ICE_SUCCESS;
4529 }
4530 
4531 /**
4532  * ice_rem_vsig - remove VSIG
4533  * @hw: pointer to the HW struct
4534  * @blk: hardware block
4535  * @vsig: the VSIG to remove
4536  * @chg: the change list
4537  */
4538 static enum ice_status
4539 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4540 	     struct LIST_HEAD_TYPE *chg)
4541 {
4542 	u16 idx = vsig & ICE_VSIG_IDX_M;
4543 	struct ice_vsig_vsi *vsi_cur;
4544 	struct ice_vsig_prof *d, *t;
4545 	enum ice_status status;
4546 
4547 	/* remove TCAM entries */
4548 	LIST_FOR_EACH_ENTRY_SAFE(d, t,
4549 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4550 				 ice_vsig_prof, list) {
4551 		status = ice_rem_prof_id(hw, blk, d);
4552 		if (status)
4553 			return status;
4554 
4555 		LIST_DEL(&d->list);
4556 		ice_free(hw, d);
4557 	}
4558 
4559 	/* Move all VSIS associated with this VSIG to the default VSIG */
4560 	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4561 	/* If the VSIG has at least 1 VSI then iterate through the list
4562 	 * and remove the VSIs before deleting the group.
4563 	 */
4564 	if (vsi_cur)
4565 		do {
4566 			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
4567 			struct ice_chs_chg *p;
4568 
4569 			p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4570 			if (!p)
4571 				return ICE_ERR_NO_MEMORY;
4572 
4573 			p->type = ICE_VSIG_REM;
4574 			p->orig_vsig = vsig;
4575 			p->vsig = ICE_DEFAULT_VSIG;
4576 			p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
4577 
4578 			LIST_ADD(&p->list_entry, chg);
4579 
4580 			vsi_cur = tmp;
4581 		} while (vsi_cur);
4582 
4583 	return ice_vsig_free(hw, blk, vsig);
4584 }
4585 
4586 /**
4587  * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
4588  * @hw: pointer to the HW struct
4589  * @blk: hardware block
4590  * @vsig: VSIG to remove the profile from
4591  * @hdl: profile handle indicating which profile to remove
4592  * @chg: list to receive a record of changes
4593  */
4594 static enum ice_status
4595 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
4596 		     struct LIST_HEAD_TYPE *chg)
4597 {
4598 	u16 idx = vsig & ICE_VSIG_IDX_M;
4599 	struct ice_vsig_prof *p, *t;
4600 	enum ice_status status;
4601 
4602 	LIST_FOR_EACH_ENTRY_SAFE(p, t,
4603 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4604 				 ice_vsig_prof, list)
4605 		if (p->profile_cookie == hdl) {
4606 			if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
4607 				/* this is the last profile, remove the VSIG */
4608 				return ice_rem_vsig(hw, blk, vsig, chg);
4609 
4610 			status = ice_rem_prof_id(hw, blk, p);
4611 			if (!status) {
4612 				LIST_DEL(&p->list);
4613 				ice_free(hw, p);
4614 			}
4615 			return status;
4616 		}
4617 
4618 	return ICE_ERR_DOES_NOT_EXIST;
4619 }
4620 
4621 /**
4622  * ice_rem_flow_all - remove all flows with a particular profile
4623  * @hw: pointer to the HW struct
4624  * @blk: hardware block
4625  * @id: profile tracking ID
4626  */
4627 static enum ice_status
4628 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
4629 {
4630 	struct ice_chs_chg *del, *tmp;
4631 	enum ice_status status;
4632 	struct LIST_HEAD_TYPE chg;
4633 	u16 i;
4634 
4635 	INIT_LIST_HEAD(&chg);
4636 
4637 	for (i = 1; i < ICE_MAX_VSIGS; i++)
4638 		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
4639 			if (ice_has_prof_vsig(hw, blk, i, id)) {
4640 				status = ice_rem_prof_id_vsig(hw, blk, i, id,
4641 							      &chg);
4642 				if (status)
4643 					goto err_ice_rem_flow_all;
4644 			}
4645 		}
4646 
4647 	status = ice_upd_prof_hw(hw, blk, &chg);
4648 
4649 err_ice_rem_flow_all:
4650 	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
4651 		LIST_DEL(&del->list_entry);
4652 		ice_free(hw, del);
4653 	}
4654 
4655 	return status;
4656 }
4657 
4658 /**
4659  * ice_rem_prof - remove profile
4660  * @hw: pointer to the HW struct
4661  * @blk: hardware block
4662  * @id: profile tracking ID
4663  *
4664  * This will remove the profile specified by the ID parameter, which was
4665  * previously created through ice_add_prof. If any existing entries
4666  * are associated with this profile, they will be removed as well.
4667  */
4668 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
4669 {
4670 	struct ice_prof_map *pmap;
4671 	enum ice_status status;
4672 
4673 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4674 
4675 	pmap = ice_search_prof_id(hw, blk, id);
4676 	if (!pmap) {
4677 		status = ICE_ERR_DOES_NOT_EXIST;
4678 		goto err_ice_rem_prof;
4679 	}
4680 
4681 	/* remove all flows with this profile */
4682 	status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
4683 	if (status)
4684 		goto err_ice_rem_prof;
4685 
4686 	/* dereference profile, and possibly remove */
4687 	ice_prof_dec_ref(hw, blk, pmap->prof_id);
4688 
4689 	LIST_DEL(&pmap->list);
4690 	ice_free(hw, pmap);
4691 
4692 err_ice_rem_prof:
4693 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4694 	return status;
4695 }
4696 
4697 /**
4698  * ice_get_prof - get profile
4699  * @hw: pointer to the HW struct
4700  * @blk: hardware block
4701  * @hdl: profile handle
4702  * @chg: change list
4703  */
4704 static enum ice_status
4705 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
4706 	     struct LIST_HEAD_TYPE *chg)
4707 {
4708 	enum ice_status status = ICE_SUCCESS;
4709 	struct ice_prof_map *map;
4710 	struct ice_chs_chg *p;
4711 	u16 i;
4712 
4713 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4714 	/* Get the details on the profile specified by the handle ID */
4715 	map = ice_search_prof_id(hw, blk, hdl);
4716 	if (!map) {
4717 		status = ICE_ERR_DOES_NOT_EXIST;
4718 		goto err_ice_get_prof;
4719 	}
4720 
4721 	for (i = 0; i < map->ptg_cnt; i++)
4722 		if (!hw->blk[blk].es.written[map->prof_id]) {
4723 			/* add ES to change list */
4724 			p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4725 			if (!p) {
4726 				status = ICE_ERR_NO_MEMORY;
4727 				goto err_ice_get_prof;
4728 			}
4729 
4730 			p->type = ICE_PTG_ES_ADD;
4731 			p->ptype = 0;
4732 			p->ptg = map->ptg[i];
4733 			p->add_ptg = 0;
4734 
4735 			p->add_prof = 1;
4736 			p->prof_id = map->prof_id;
4737 
4738 			hw->blk[blk].es.written[map->prof_id] = true;
4739 
4740 			LIST_ADD(&p->list_entry, chg);
4741 		}
4742 
4743 err_ice_get_prof:
4744 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4745 	/* let caller clean up the change list */
4746 	return status;
4747 }
4748 
4749 /**
4750  * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
4751  * @hw: pointer to the HW struct
4752  * @blk: hardware block
4753  * @vsig: VSIG from which to copy the list
4754  * @lst: output list
4755  *
4756  * This routine makes a copy of the list of profiles in the specified VSIG.
4757  */
4758 static enum ice_status
4759 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4760 		   struct LIST_HEAD_TYPE *lst)
4761 {
4762 	struct ice_vsig_prof *ent1, *ent2;
4763 	u16 idx = vsig & ICE_VSIG_IDX_M;
4764 
4765 	LIST_FOR_EACH_ENTRY(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4766 			    ice_vsig_prof, list) {
4767 		struct ice_vsig_prof *p;
4768 
4769 		/* copy to the input list */
4770 		p = (struct ice_vsig_prof *)ice_memdup(hw, ent1, sizeof(*p),
4771 						       ICE_NONDMA_TO_NONDMA);
4772 		if (!p)
4773 			goto err_ice_get_profs_vsig;
4774 
4775 		LIST_ADD_TAIL(&p->list, lst);
4776 	}
4777 
4778 	return ICE_SUCCESS;
4779 
4780 err_ice_get_profs_vsig:
4781 	LIST_FOR_EACH_ENTRY_SAFE(ent1, ent2, lst, ice_vsig_prof, list) {
4782 		LIST_DEL(&ent1->list);
4783 		ice_free(hw, ent1);
4784 	}
4785 
4786 	return ICE_ERR_NO_MEMORY;
4787 }
4788 
4789 /**
4790  * ice_add_prof_to_lst - add profile entry to a list
4791  * @hw: pointer to the HW struct
4792  * @blk: hardware block
4793  * @lst: the list to be added to
4794  * @hdl: profile handle of entry to add
4795  */
4796 static enum ice_status
4797 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
4798 		    struct LIST_HEAD_TYPE *lst, u64 hdl)
4799 {
4800 	enum ice_status status = ICE_SUCCESS;
4801 	struct ice_prof_map *map;
4802 	struct ice_vsig_prof *p;
4803 	u16 i;
4804 
4805 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4806 	map = ice_search_prof_id(hw, blk, hdl);
4807 	if (!map) {
4808 		status = ICE_ERR_DOES_NOT_EXIST;
4809 		goto err_ice_add_prof_to_lst;
4810 	}
4811 
4812 	p = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*p));
4813 	if (!p) {
4814 		status = ICE_ERR_NO_MEMORY;
4815 		goto err_ice_add_prof_to_lst;
4816 	}
4817 
4818 	p->profile_cookie = map->profile_cookie;
4819 	p->prof_id = map->prof_id;
4820 	p->tcam_count = map->ptg_cnt;
4821 
4822 	for (i = 0; i < map->ptg_cnt; i++) {
4823 		p->tcam[i].prof_id = map->prof_id;
4824 		p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
4825 		p->tcam[i].ptg = map->ptg[i];
4826 	}
4827 
4828 	LIST_ADD(&p->list, lst);
4829 
4830 err_ice_add_prof_to_lst:
4831 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4832 	return status;
4833 }
4834 
4835 /**
4836  * ice_move_vsi - move VSI to another VSIG
4837  * @hw: pointer to the HW struct
4838  * @blk: hardware block
4839  * @vsi: the VSI to move
4840  * @vsig: the VSIG to move the VSI to
4841  * @chg: the change list
4842  */
4843 static enum ice_status
4844 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
4845 	     struct LIST_HEAD_TYPE *chg)
4846 {
4847 	enum ice_status status;
4848 	struct ice_chs_chg *p;
4849 	u16 orig_vsig;
4850 
4851 	p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4852 	if (!p)
4853 		return ICE_ERR_NO_MEMORY;
4854 
4855 	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
4856 	if (!status)
4857 		status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
4858 
4859 	if (status) {
4860 		ice_free(hw, p);
4861 		return status;
4862 	}
4863 
4864 	p->type = ICE_VSI_MOVE;
4865 	p->vsi = vsi;
4866 	p->orig_vsig = orig_vsig;
4867 	p->vsig = vsig;
4868 
4869 	LIST_ADD(&p->list_entry, chg);
4870 
4871 	return ICE_SUCCESS;
4872 }
4873 
4874 /**
4875  * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
4876  * @hw: pointer to the HW struct
4877  * @idx: the index of the TCAM entry to remove
4878  * @chg: the list of change structures to search
4879  */
4880 static void
4881 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct LIST_HEAD_TYPE *chg)
4882 {
4883 	struct ice_chs_chg *pos, *tmp;
4884 
4885 	LIST_FOR_EACH_ENTRY_SAFE(tmp, pos, chg, ice_chs_chg, list_entry)
4886 		if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
4887 			LIST_DEL(&tmp->list_entry);
4888 			ice_free(hw, tmp);
4889 		}
4890 }
4891 
4892 /**
4893  * ice_prof_tcam_ena_dis - add enable or disable TCAM change
4894  * @hw: pointer to the HW struct
4895  * @blk: hardware block
4896  * @enable: true to enable, false to disable
4897  * @vsig: the VSIG of the TCAM entry
4898  * @tcam: pointer the TCAM info structure of the TCAM to disable
4899  * @chg: the change list
4900  *
4901  * This function appends an enable or disable TCAM entry in the change log
4902  */
4903 static enum ice_status
4904 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
4905 		      u16 vsig, struct ice_tcam_inf *tcam,
4906 		      struct LIST_HEAD_TYPE *chg)
4907 {
4908 	enum ice_status status;
4909 	struct ice_chs_chg *p;
4910 
4911 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4912 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
4913 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
4914 
4915 	/* if disabling, free the TCAM */
4916 	if (!enable) {
4917 		status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
4918 
4919 		/* if we have already created a change for this TCAM entry, then
4920 		 * we need to remove that entry, in order to prevent writing to
4921 		 * a TCAM entry we no longer will have ownership of.
4922 		 */
4923 		ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
4924 		tcam->tcam_idx = 0;
4925 		tcam->in_use = 0;
4926 		return status;
4927 	}
4928 
4929 	/* for re-enabling, reallocate a TCAM */
4930 	status = ice_alloc_tcam_ent(hw, blk, true, &tcam->tcam_idx);
4931 	if (status)
4932 		return status;
4933 
4934 	/* add TCAM to change list */
4935 	p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4936 	if (!p)
4937 		return ICE_ERR_NO_MEMORY;
4938 
4939 	status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
4940 				      tcam->ptg, vsig, 0, 0, vl_msk, dc_msk,
4941 				      nm_msk);
4942 	if (status)
4943 		goto err_ice_prof_tcam_ena_dis;
4944 
4945 	tcam->in_use = 1;
4946 
4947 	p->type = ICE_TCAM_ADD;
4948 	p->add_tcam_idx = true;
4949 	p->prof_id = tcam->prof_id;
4950 	p->ptg = tcam->ptg;
4951 	p->vsig = 0;
4952 	p->tcam_idx = tcam->tcam_idx;
4953 
4954 	/* log change */
4955 	LIST_ADD(&p->list_entry, chg);
4956 
4957 	return ICE_SUCCESS;
4958 
4959 err_ice_prof_tcam_ena_dis:
4960 	ice_free(hw, p);
4961 	return status;
4962 }
4963 
4964 /**
4965  * ice_adj_prof_priorities - adjust profile based on priorities
4966  * @hw: pointer to the HW struct
4967  * @blk: hardware block
4968  * @vsig: the VSIG for which to adjust profile priorities
4969  * @chg: the change list
4970  */
4971 static enum ice_status
4972 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4973 			struct LIST_HEAD_TYPE *chg)
4974 {
4975 	ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
4976 	enum ice_status status = ICE_SUCCESS;
4977 	struct ice_vsig_prof *t;
4978 	u16 idx;
4979 
4980 	ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT);
4981 	idx = vsig & ICE_VSIG_IDX_M;
4982 
4983 	/* Priority is based on the order in which the profiles are added. The
4984 	 * newest added profile has highest priority and the oldest added
4985 	 * profile has the lowest priority. Since the profile property list for
4986 	 * a VSIG is sorted from newest to oldest, this code traverses the list
4987 	 * in order and enables the first of each PTG that it finds (that is not
4988 	 * already enabled); it also disables any duplicate PTGs that it finds
4989 	 * in the older profiles (that are currently enabled).
4990 	 */
4991 
4992 	LIST_FOR_EACH_ENTRY(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4993 			    ice_vsig_prof, list) {
4994 		u16 i;
4995 
4996 		for (i = 0; i < t->tcam_count; i++) {
4997 			bool used;
4998 
4999 			/* Scan the priorities from newest to oldest.
5000 			 * Make sure that the newest profiles take priority.
5001 			 */
5002 			used = ice_is_bit_set(ptgs_used, t->tcam[i].ptg);
5003 
5004 			if (used && t->tcam[i].in_use) {
5005 				/* need to mark this PTG as never match, as it
5006 				 * was already in use and therefore duplicate
5007 				 * (and lower priority)
5008 				 */
5009 				status = ice_prof_tcam_ena_dis(hw, blk, false,
5010 							       vsig,
5011 							       &t->tcam[i],
5012 							       chg);
5013 				if (status)
5014 					return status;
5015 			} else if (!used && !t->tcam[i].in_use) {
5016 				/* need to enable this PTG, as it in not in use
5017 				 * and not enabled (highest priority)
5018 				 */
5019 				status = ice_prof_tcam_ena_dis(hw, blk, true,
5020 							       vsig,
5021 							       &t->tcam[i],
5022 							       chg);
5023 				if (status)
5024 					return status;
5025 			}
5026 
5027 			/* keep track of used ptgs */
5028 			ice_set_bit(t->tcam[i].ptg, ptgs_used);
5029 		}
5030 	}
5031 
5032 	return status;
5033 }
5034 
5035 /**
5036  * ice_add_prof_id_vsig - add profile to VSIG
5037  * @hw: pointer to the HW struct
5038  * @blk: hardware block
5039  * @vsig: the VSIG to which this profile is to be added
5040  * @hdl: the profile handle indicating the profile to add
5041  * @rev: true to add entries to the end of the list
5042  * @chg: the change list
5043  */
5044 static enum ice_status
5045 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5046 		     bool rev, struct LIST_HEAD_TYPE *chg)
5047 {
5048 	/* Masks that ignore flags */
5049 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5050 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5051 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5052 	enum ice_status status = ICE_SUCCESS;
5053 	struct ice_prof_map *map;
5054 	struct ice_vsig_prof *t;
5055 	struct ice_chs_chg *p;
5056 	u16 vsig_idx, i;
5057 
5058 	/* Error, if this VSIG already has this profile */
5059 	if (ice_has_prof_vsig(hw, blk, vsig, hdl))
5060 		return ICE_ERR_ALREADY_EXISTS;
5061 
5062 	/* new VSIG profile structure */
5063 	t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
5064 	if (!t)
5065 		return ICE_ERR_NO_MEMORY;
5066 
5067 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
5068 	/* Get the details on the profile specified by the handle ID */
5069 	map = ice_search_prof_id(hw, blk, hdl);
5070 	if (!map) {
5071 		status = ICE_ERR_DOES_NOT_EXIST;
5072 		goto err_ice_add_prof_id_vsig;
5073 	}
5074 
5075 	t->profile_cookie = map->profile_cookie;
5076 	t->prof_id = map->prof_id;
5077 	t->tcam_count = map->ptg_cnt;
5078 
5079 	/* create TCAM entries */
5080 	for (i = 0; i < map->ptg_cnt; i++) {
5081 		u16 tcam_idx;
5082 
5083 		/* add TCAM to change list */
5084 		p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5085 		if (!p) {
5086 			status = ICE_ERR_NO_MEMORY;
5087 			goto err_ice_add_prof_id_vsig;
5088 		}
5089 
5090 		/* allocate the TCAM entry index */
5091 		status = ice_alloc_tcam_ent(hw, blk, true, &tcam_idx);
5092 		if (status) {
5093 			ice_free(hw, p);
5094 			goto err_ice_add_prof_id_vsig;
5095 		}
5096 
5097 		t->tcam[i].ptg = map->ptg[i];
5098 		t->tcam[i].prof_id = map->prof_id;
5099 		t->tcam[i].tcam_idx = tcam_idx;
5100 		t->tcam[i].in_use = true;
5101 
5102 		p->type = ICE_TCAM_ADD;
5103 		p->add_tcam_idx = true;
5104 		p->prof_id = t->tcam[i].prof_id;
5105 		p->ptg = t->tcam[i].ptg;
5106 		p->vsig = vsig;
5107 		p->tcam_idx = t->tcam[i].tcam_idx;
5108 
5109 		/* write the TCAM entry */
5110 		status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
5111 					      t->tcam[i].prof_id,
5112 					      t->tcam[i].ptg, vsig, 0, 0,
5113 					      vl_msk, dc_msk, nm_msk);
5114 		if (status) {
5115 			ice_free(hw, p);
5116 			goto err_ice_add_prof_id_vsig;
5117 		}
5118 
5119 		/* log change */
5120 		LIST_ADD(&p->list_entry, chg);
5121 	}
5122 
5123 	/* add profile to VSIG */
5124 	vsig_idx = vsig & ICE_VSIG_IDX_M;
5125 	if (rev)
5126 		LIST_ADD_TAIL(&t->list,
5127 			      &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5128 	else
5129 		LIST_ADD(&t->list,
5130 			 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5131 
5132 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5133 	return status;
5134 
5135 err_ice_add_prof_id_vsig:
5136 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5137 	/* let caller clean up the change list */
5138 	ice_free(hw, t);
5139 	return status;
5140 }
5141 
5142 /**
5143  * ice_create_prof_id_vsig - add a new VSIG with a single profile
5144  * @hw: pointer to the HW struct
5145  * @blk: hardware block
5146  * @vsi: the initial VSI that will be in VSIG
5147  * @hdl: the profile handle of the profile that will be added to the VSIG
5148  * @chg: the change list
5149  */
5150 static enum ice_status
5151 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
5152 			struct LIST_HEAD_TYPE *chg)
5153 {
5154 	enum ice_status status;
5155 	struct ice_chs_chg *p;
5156 	u16 new_vsig;
5157 
5158 	p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5159 	if (!p)
5160 		return ICE_ERR_NO_MEMORY;
5161 
5162 	new_vsig = ice_vsig_alloc(hw, blk);
5163 	if (!new_vsig) {
5164 		status = ICE_ERR_HW_TABLE;
5165 		goto err_ice_create_prof_id_vsig;
5166 	}
5167 
5168 	status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
5169 	if (status)
5170 		goto err_ice_create_prof_id_vsig;
5171 
5172 	status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
5173 	if (status)
5174 		goto err_ice_create_prof_id_vsig;
5175 
5176 	p->type = ICE_VSIG_ADD;
5177 	p->vsi = vsi;
5178 	p->orig_vsig = ICE_DEFAULT_VSIG;
5179 	p->vsig = new_vsig;
5180 
5181 	LIST_ADD(&p->list_entry, chg);
5182 
5183 	return ICE_SUCCESS;
5184 
5185 err_ice_create_prof_id_vsig:
5186 	/* let caller clean up the change list */
5187 	ice_free(hw, p);
5188 	return status;
5189 }
5190 
5191 /**
5192  * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
5193  * @hw: pointer to the HW struct
5194  * @blk: hardware block
5195  * @vsi: the initial VSI that will be in VSIG
5196  * @lst: the list of profile that will be added to the VSIG
5197  * @new_vsig: return of new VSIG
5198  * @chg: the change list
5199  */
5200 static enum ice_status
5201 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
5202 			 struct LIST_HEAD_TYPE *lst, u16 *new_vsig,
5203 			 struct LIST_HEAD_TYPE *chg)
5204 {
5205 	struct ice_vsig_prof *t;
5206 	enum ice_status status;
5207 	u16 vsig;
5208 
5209 	vsig = ice_vsig_alloc(hw, blk);
5210 	if (!vsig)
5211 		return ICE_ERR_HW_TABLE;
5212 
5213 	status = ice_move_vsi(hw, blk, vsi, vsig, chg);
5214 	if (status)
5215 		return status;
5216 
5217 	LIST_FOR_EACH_ENTRY(t, lst, ice_vsig_prof, list) {
5218 		/* Reverse the order here since we are copying the list */
5219 		status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
5220 					      true, chg);
5221 		if (status)
5222 			return status;
5223 	}
5224 
5225 	*new_vsig = vsig;
5226 
5227 	return ICE_SUCCESS;
5228 }
5229 
5230 /**
5231  * ice_find_prof_vsig - find a VSIG with a specific profile handle
5232  * @hw: pointer to the HW struct
5233  * @blk: hardware block
5234  * @hdl: the profile handle of the profile to search for
5235  * @vsig: returns the VSIG with the matching profile
5236  */
5237 static bool
5238 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
5239 {
5240 	struct ice_vsig_prof *t;
5241 	enum ice_status status;
5242 	struct LIST_HEAD_TYPE lst;
5243 
5244 	INIT_LIST_HEAD(&lst);
5245 
5246 	t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
5247 	if (!t)
5248 		return false;
5249 
5250 	t->profile_cookie = hdl;
5251 	LIST_ADD(&t->list, &lst);
5252 
5253 	status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
5254 
5255 	LIST_DEL(&t->list);
5256 	ice_free(hw, t);
5257 
5258 	return status == ICE_SUCCESS;
5259 }
5260 
5261 /**
5262  * ice_add_vsi_flow - add VSI flow
5263  * @hw: pointer to the HW struct
5264  * @blk: hardware block
5265  * @vsi: input VSI
5266  * @vsig: target VSIG to include the input VSI
5267  *
5268  * Calling this function will add the VSI to a given VSIG and
5269  * update the HW tables accordingly. This call can be used to
5270  * add multiple VSIs to a VSIG if we know beforehand that those
5271  * VSIs have the same characteristics of the VSIG. This will
5272  * save time in generating a new VSIG and TCAMs till a match is
5273  * found and subsequent rollback when a matching VSIG is found.
5274  */
5275 enum ice_status
5276 ice_add_vsi_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
5277 {
5278 	struct ice_chs_chg *tmp, *del;
5279 	struct LIST_HEAD_TYPE chg;
5280 	enum ice_status status;
5281 
5282 	/* if target VSIG is default the move is invalid */
5283 	if ((vsig & ICE_VSIG_IDX_M) == ICE_DEFAULT_VSIG)
5284 		return ICE_ERR_PARAM;
5285 
5286 	INIT_LIST_HEAD(&chg);
5287 
5288 	/* move VSI to the VSIG that matches */
5289 	status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5290 	/* update hardware if success */
5291 	if (!status)
5292 		status = ice_upd_prof_hw(hw, blk, &chg);
5293 
5294 	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5295 		LIST_DEL(&del->list_entry);
5296 		ice_free(hw, del);
5297 	}
5298 
5299 	return status;
5300 }
5301 
5302 /**
5303  * ice_add_prof_id_flow - add profile flow
5304  * @hw: pointer to the HW struct
5305  * @blk: hardware block
5306  * @vsi: the VSI to enable with the profile specified by ID
5307  * @hdl: profile handle
5308  *
5309  * Calling this function will update the hardware tables to enable the
5310  * profile indicated by the ID parameter for the VSIs specified in the VSI
5311  * array. Once successfully called, the flow will be enabled.
5312  */
5313 enum ice_status
5314 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5315 {
5316 	struct ice_vsig_prof *tmp1, *del1;
5317 	struct ice_chs_chg *tmp, *del;
5318 	struct LIST_HEAD_TYPE union_lst;
5319 	enum ice_status status;
5320 	struct LIST_HEAD_TYPE chg;
5321 	u16 vsig;
5322 
5323 	INIT_LIST_HEAD(&union_lst);
5324 	INIT_LIST_HEAD(&chg);
5325 
5326 	/* Get profile */
5327 	status = ice_get_prof(hw, blk, hdl, &chg);
5328 	if (status)
5329 		return status;
5330 
5331 	/* determine if VSI is already part of a VSIG */
5332 	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5333 	if (!status && vsig) {
5334 		bool only_vsi;
5335 		u16 or_vsig;
5336 		u16 ref;
5337 
5338 		/* found in VSIG */
5339 		or_vsig = vsig;
5340 
5341 		/* make sure that there is no overlap/conflict between the new
5342 		 * characteristics and the existing ones; we don't support that
5343 		 * scenario
5344 		 */
5345 		if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
5346 			status = ICE_ERR_ALREADY_EXISTS;
5347 			goto err_ice_add_prof_id_flow;
5348 		}
5349 
5350 		/* last VSI in the VSIG? */
5351 		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5352 		if (status)
5353 			goto err_ice_add_prof_id_flow;
5354 		only_vsi = (ref == 1);
5355 
5356 		/* create a union of the current profiles and the one being
5357 		 * added
5358 		 */
5359 		status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
5360 		if (status)
5361 			goto err_ice_add_prof_id_flow;
5362 
5363 		status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
5364 		if (status)
5365 			goto err_ice_add_prof_id_flow;
5366 
5367 		/* search for an existing VSIG with an exact charc match */
5368 		status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
5369 		if (!status) {
5370 			/* move VSI to the VSIG that matches */
5371 			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5372 			if (status)
5373 				goto err_ice_add_prof_id_flow;
5374 
5375 			/* VSI has been moved out of or_vsig. If the or_vsig had
5376 			 * only that VSI it is now empty and can be removed.
5377 			 */
5378 			if (only_vsi) {
5379 				status = ice_rem_vsig(hw, blk, or_vsig, &chg);
5380 				if (status)
5381 					goto err_ice_add_prof_id_flow;
5382 			}
5383 		} else if (only_vsi) {
5384 			/* If the original VSIG only contains one VSI, then it
5385 			 * will be the requesting VSI. In this case the VSI is
5386 			 * not sharing entries and we can simply add the new
5387 			 * profile to the VSIG.
5388 			 */
5389 			status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
5390 						      &chg);
5391 			if (status)
5392 				goto err_ice_add_prof_id_flow;
5393 
5394 			/* Adjust priorities */
5395 			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5396 			if (status)
5397 				goto err_ice_add_prof_id_flow;
5398 		} else {
5399 			/* No match, so we need a new VSIG */
5400 			status = ice_create_vsig_from_lst(hw, blk, vsi,
5401 							  &union_lst, &vsig,
5402 							  &chg);
5403 			if (status)
5404 				goto err_ice_add_prof_id_flow;
5405 
5406 			/* Adjust priorities */
5407 			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5408 			if (status)
5409 				goto err_ice_add_prof_id_flow;
5410 		}
5411 	} else {
5412 		/* need to find or add a VSIG */
5413 		/* search for an existing VSIG with an exact charc match */
5414 		if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
5415 			/* found an exact match */
5416 			/* add or move VSI to the VSIG that matches */
5417 			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5418 			if (status)
5419 				goto err_ice_add_prof_id_flow;
5420 		} else {
5421 			/* we did not find an exact match */
5422 			/* we need to add a VSIG */
5423 			status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
5424 							 &chg);
5425 			if (status)
5426 				goto err_ice_add_prof_id_flow;
5427 		}
5428 	}
5429 
5430 	/* update hardware */
5431 	if (!status)
5432 		status = ice_upd_prof_hw(hw, blk, &chg);
5433 
5434 err_ice_add_prof_id_flow:
5435 	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5436 		LIST_DEL(&del->list_entry);
5437 		ice_free(hw, del);
5438 	}
5439 
5440 	LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &union_lst, ice_vsig_prof, list) {
5441 		LIST_DEL(&del1->list);
5442 		ice_free(hw, del1);
5443 	}
5444 
5445 	return status;
5446 }
5447 
5448 /**
5449  * ice_add_flow - add flow
5450  * @hw: pointer to the HW struct
5451  * @blk: hardware block
5452  * @vsi: array of VSIs to enable with the profile specified by ID
5453  * @count: number of elements in the VSI array
5454  * @id: profile tracking ID
5455  *
5456  * Calling this function will update the hardware tables to enable the
5457  * profile indicated by the ID parameter for the VSIs specified in the VSI
5458  * array. Once successfully called, the flow will be enabled.
5459  */
5460 enum ice_status
5461 ice_add_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count,
5462 	     u64 id)
5463 {
5464 	enum ice_status status;
5465 	u16 i;
5466 
5467 	for (i = 0; i < count; i++) {
5468 		status = ice_add_prof_id_flow(hw, blk, vsi[i], id);
5469 		if (status)
5470 			return status;
5471 	}
5472 
5473 	return ICE_SUCCESS;
5474 }
5475 
5476 /**
5477  * ice_rem_prof_from_list - remove a profile from list
5478  * @hw: pointer to the HW struct
5479  * @lst: list to remove the profile from
5480  * @hdl: the profile handle indicating the profile to remove
5481  */
5482 static enum ice_status
5483 ice_rem_prof_from_list(struct ice_hw *hw, struct LIST_HEAD_TYPE *lst, u64 hdl)
5484 {
5485 	struct ice_vsig_prof *ent, *tmp;
5486 
5487 	LIST_FOR_EACH_ENTRY_SAFE(ent, tmp, lst, ice_vsig_prof, list)
5488 		if (ent->profile_cookie == hdl) {
5489 			LIST_DEL(&ent->list);
5490 			ice_free(hw, ent);
5491 			return ICE_SUCCESS;
5492 		}
5493 
5494 	return ICE_ERR_DOES_NOT_EXIST;
5495 }
5496 
5497 /**
5498  * ice_rem_prof_id_flow - remove flow
5499  * @hw: pointer to the HW struct
5500  * @blk: hardware block
5501  * @vsi: the VSI from which to remove the profile specified by ID
5502  * @hdl: profile tracking handle
5503  *
5504  * Calling this function will update the hardware tables to remove the
5505  * profile indicated by the ID parameter for the VSIs specified in the VSI
5506  * array. Once successfully called, the flow will be disabled.
5507  */
5508 enum ice_status
5509 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5510 {
5511 	struct ice_vsig_prof *tmp1, *del1;
5512 	struct ice_chs_chg *tmp, *del;
5513 	struct LIST_HEAD_TYPE chg, copy;
5514 	enum ice_status status;
5515 	u16 vsig;
5516 
5517 	INIT_LIST_HEAD(&copy);
5518 	INIT_LIST_HEAD(&chg);
5519 
5520 	/* determine if VSI is already part of a VSIG */
5521 	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5522 	if (!status && vsig) {
5523 		bool last_profile;
5524 		bool only_vsi;
5525 		u16 ref;
5526 
5527 		/* found in VSIG */
5528 		last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
5529 		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5530 		if (status)
5531 			goto err_ice_rem_prof_id_flow;
5532 		only_vsi = (ref == 1);
5533 
5534 		if (only_vsi) {
5535 			/* If the original VSIG only contains one reference,
5536 			 * which will be the requesting VSI, then the VSI is not
5537 			 * sharing entries and we can simply remove the specific
5538 			 * characteristics from the VSIG.
5539 			 */
5540 
5541 			if (last_profile) {
5542 				/* If there are no profiles left for this VSIG,
5543 				 * then simply remove the VSIG.
5544 				 */
5545 				status = ice_rem_vsig(hw, blk, vsig, &chg);
5546 				if (status)
5547 					goto err_ice_rem_prof_id_flow;
5548 			} else {
5549 				status = ice_rem_prof_id_vsig(hw, blk, vsig,
5550 							      hdl, &chg);
5551 				if (status)
5552 					goto err_ice_rem_prof_id_flow;
5553 
5554 				/* Adjust priorities */
5555 				status = ice_adj_prof_priorities(hw, blk, vsig,
5556 								 &chg);
5557 				if (status)
5558 					goto err_ice_rem_prof_id_flow;
5559 			}
5560 
5561 		} else {
5562 			/* Make a copy of the VSIG's list of Profiles */
5563 			status = ice_get_profs_vsig(hw, blk, vsig, &copy);
5564 			if (status)
5565 				goto err_ice_rem_prof_id_flow;
5566 
5567 			/* Remove specified profile entry from the list */
5568 			status = ice_rem_prof_from_list(hw, &copy, hdl);
5569 			if (status)
5570 				goto err_ice_rem_prof_id_flow;
5571 
5572 			if (LIST_EMPTY(&copy)) {
5573 				status = ice_move_vsi(hw, blk, vsi,
5574 						      ICE_DEFAULT_VSIG, &chg);
5575 				if (status)
5576 					goto err_ice_rem_prof_id_flow;
5577 
5578 			} else if (!ice_find_dup_props_vsig(hw, blk, &copy,
5579 							    &vsig)) {
5580 				/* found an exact match */
5581 				/* add or move VSI to the VSIG that matches */
5582 				/* Search for a VSIG with a matching profile
5583 				 * list
5584 				 */
5585 
5586 				/* Found match, move VSI to the matching VSIG */
5587 				status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5588 				if (status)
5589 					goto err_ice_rem_prof_id_flow;
5590 			} else {
5591 				/* since no existing VSIG supports this
5592 				 * characteristic pattern, we need to create a
5593 				 * new VSIG and TCAM entries
5594 				 */
5595 				status = ice_create_vsig_from_lst(hw, blk, vsi,
5596 								  &copy, &vsig,
5597 								  &chg);
5598 				if (status)
5599 					goto err_ice_rem_prof_id_flow;
5600 
5601 				/* Adjust priorities */
5602 				status = ice_adj_prof_priorities(hw, blk, vsig,
5603 								 &chg);
5604 				if (status)
5605 					goto err_ice_rem_prof_id_flow;
5606 			}
5607 		}
5608 	} else {
5609 		status = ICE_ERR_DOES_NOT_EXIST;
5610 	}
5611 
5612 	/* update hardware tables */
5613 	if (!status)
5614 		status = ice_upd_prof_hw(hw, blk, &chg);
5615 
5616 err_ice_rem_prof_id_flow:
5617 	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5618 		LIST_DEL(&del->list_entry);
5619 		ice_free(hw, del);
5620 	}
5621 
5622 	LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &copy, ice_vsig_prof, list) {
5623 		LIST_DEL(&del1->list);
5624 		ice_free(hw, del1);
5625 	}
5626 
5627 	return status;
5628 }
5629 
5630 /**
5631  * ice_rem_flow - remove flow
5632  * @hw: pointer to the HW struct
5633  * @blk: hardware block
5634  * @vsi: array of VSIs from which to remove the profile specified by ID
5635  * @count: number of elements in the VSI array
5636  * @id: profile tracking ID
5637  *
5638  * The function will remove flows from the specified VSIs that were enabled
5639  * using ice_add_flow. The ID value will indicated which profile will be
5640  * removed. Once successfully called, the flow will be disabled.
5641  */
5642 enum ice_status
5643 ice_rem_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count,
5644 	     u64 id)
5645 {
5646 	enum ice_status status;
5647 	u16 i;
5648 
5649 	for (i = 0; i < count; i++) {
5650 		status = ice_rem_prof_id_flow(hw, blk, vsi[i], id);
5651 		if (status)
5652 			return status;
5653 	}
5654 
5655 	return ICE_SUCCESS;
5656 }
5657