1 /* SPDX-License-Identifier: BSD-3-Clause */ 2 /* Copyright (c) 2021, Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * 3. Neither the name of the Intel Corporation nor the names of its 16 * contributors may be used to endorse or promote products derived from 17 * this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /*$FreeBSD$*/ 32 33 #include "ice_common.h" 34 #include "ice_flex_pipe.h" 35 #include "ice_protocol_type.h" 36 #include "ice_flow.h" 37 38 /* To support tunneling entries by PF, the package will append the PF number to 39 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 40 */ 41 #define ICE_TNL_PRE "TNL_" 42 static const struct ice_tunnel_type_scan tnls[] = { 43 { TNL_VXLAN, "TNL_VXLAN_PF" }, 44 { TNL_GENEVE, "TNL_GENEVE_PF" }, 45 { TNL_LAST, "" } 46 }; 47 48 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 49 /* SWITCH */ 50 { 51 ICE_SID_XLT0_SW, 52 ICE_SID_XLT_KEY_BUILDER_SW, 53 ICE_SID_XLT1_SW, 54 ICE_SID_XLT2_SW, 55 ICE_SID_PROFID_TCAM_SW, 56 ICE_SID_PROFID_REDIR_SW, 57 ICE_SID_FLD_VEC_SW, 58 ICE_SID_CDID_KEY_BUILDER_SW, 59 ICE_SID_CDID_REDIR_SW 60 }, 61 62 /* ACL */ 63 { 64 ICE_SID_XLT0_ACL, 65 ICE_SID_XLT_KEY_BUILDER_ACL, 66 ICE_SID_XLT1_ACL, 67 ICE_SID_XLT2_ACL, 68 ICE_SID_PROFID_TCAM_ACL, 69 ICE_SID_PROFID_REDIR_ACL, 70 ICE_SID_FLD_VEC_ACL, 71 ICE_SID_CDID_KEY_BUILDER_ACL, 72 ICE_SID_CDID_REDIR_ACL 73 }, 74 75 /* FD */ 76 { 77 ICE_SID_XLT0_FD, 78 ICE_SID_XLT_KEY_BUILDER_FD, 79 ICE_SID_XLT1_FD, 80 ICE_SID_XLT2_FD, 81 ICE_SID_PROFID_TCAM_FD, 82 ICE_SID_PROFID_REDIR_FD, 83 ICE_SID_FLD_VEC_FD, 84 ICE_SID_CDID_KEY_BUILDER_FD, 85 ICE_SID_CDID_REDIR_FD 86 }, 87 88 /* RSS */ 89 { 90 ICE_SID_XLT0_RSS, 91 ICE_SID_XLT_KEY_BUILDER_RSS, 92 ICE_SID_XLT1_RSS, 93 ICE_SID_XLT2_RSS, 94 ICE_SID_PROFID_TCAM_RSS, 95 ICE_SID_PROFID_REDIR_RSS, 96 ICE_SID_FLD_VEC_RSS, 97 ICE_SID_CDID_KEY_BUILDER_RSS, 98 ICE_SID_CDID_REDIR_RSS 99 }, 100 101 /* PE */ 102 { 103 ICE_SID_XLT0_PE, 104 ICE_SID_XLT_KEY_BUILDER_PE, 105 ICE_SID_XLT1_PE, 106 ICE_SID_XLT2_PE, 107 ICE_SID_PROFID_TCAM_PE, 108 ICE_SID_PROFID_REDIR_PE, 109 ICE_SID_FLD_VEC_PE, 110 ICE_SID_CDID_KEY_BUILDER_PE, 111 ICE_SID_CDID_REDIR_PE 112 } 113 }; 114 115 /** 116 * ice_sect_id - returns section ID 117 * @blk: block type 118 * @sect: section type 119 * 120 * This helper function returns the proper section ID given a block type and a 121 * section type. 122 */ 123 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 124 { 125 return ice_sect_lkup[blk][sect]; 126 } 127 128 /** 129 * ice_pkg_val_buf 130 * @buf: pointer to the ice buffer 131 * 132 * This helper function validates a buffer's header. 133 */ 134 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 135 { 136 struct ice_buf_hdr *hdr; 137 u16 section_count; 138 u16 data_end; 139 140 hdr = (struct ice_buf_hdr *)buf->buf; 141 /* verify data */ 142 section_count = LE16_TO_CPU(hdr->section_count); 143 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 144 return NULL; 145 146 data_end = LE16_TO_CPU(hdr->data_end); 147 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 148 return NULL; 149 150 return hdr; 151 } 152 153 /** 154 * ice_find_buf_table 155 * @ice_seg: pointer to the ice segment 156 * 157 * Returns the address of the buffer table within the ice segment. 158 */ 159 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 160 { 161 struct ice_nvm_table *nvms; 162 163 nvms = (struct ice_nvm_table *) 164 (ice_seg->device_table + 165 LE32_TO_CPU(ice_seg->device_table_count)); 166 167 return (_FORCE_ struct ice_buf_table *) 168 (nvms->vers + LE32_TO_CPU(nvms->table_count)); 169 } 170 171 /** 172 * ice_pkg_enum_buf 173 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 174 * @state: pointer to the enum state 175 * 176 * This function will enumerate all the buffers in the ice segment. The first 177 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 178 * ice_seg is set to NULL which continues the enumeration. When the function 179 * returns a NULL pointer, then the end of the buffers has been reached, or an 180 * unexpected value has been detected (for example an invalid section count or 181 * an invalid buffer end value). 182 */ 183 static struct ice_buf_hdr * 184 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 185 { 186 if (ice_seg) { 187 state->buf_table = ice_find_buf_table(ice_seg); 188 if (!state->buf_table) 189 return NULL; 190 191 state->buf_idx = 0; 192 return ice_pkg_val_buf(state->buf_table->buf_array); 193 } 194 195 if (++state->buf_idx < LE32_TO_CPU(state->buf_table->buf_count)) 196 return ice_pkg_val_buf(state->buf_table->buf_array + 197 state->buf_idx); 198 else 199 return NULL; 200 } 201 202 /** 203 * ice_pkg_advance_sect 204 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 205 * @state: pointer to the enum state 206 * 207 * This helper function will advance the section within the ice segment, 208 * also advancing the buffer if needed. 209 */ 210 static bool 211 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 212 { 213 if (!ice_seg && !state->buf) 214 return false; 215 216 if (!ice_seg && state->buf) 217 if (++state->sect_idx < LE16_TO_CPU(state->buf->section_count)) 218 return true; 219 220 state->buf = ice_pkg_enum_buf(ice_seg, state); 221 if (!state->buf) 222 return false; 223 224 /* start of new buffer, reset section index */ 225 state->sect_idx = 0; 226 return true; 227 } 228 229 /** 230 * ice_pkg_enum_section 231 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 232 * @state: pointer to the enum state 233 * @sect_type: section type to enumerate 234 * 235 * This function will enumerate all the sections of a particular type in the 236 * ice segment. The first call is made with the ice_seg parameter non-NULL; 237 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 238 * When the function returns a NULL pointer, then the end of the matching 239 * sections has been reached. 240 */ 241 static void * 242 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 243 u32 sect_type) 244 { 245 u16 offset, size; 246 247 if (ice_seg) 248 state->type = sect_type; 249 250 if (!ice_pkg_advance_sect(ice_seg, state)) 251 return NULL; 252 253 /* scan for next matching section */ 254 while (state->buf->section_entry[state->sect_idx].type != 255 CPU_TO_LE32(state->type)) 256 if (!ice_pkg_advance_sect(NULL, state)) 257 return NULL; 258 259 /* validate section */ 260 offset = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset); 261 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 262 return NULL; 263 264 size = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].size); 265 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 266 return NULL; 267 268 /* make sure the section fits in the buffer */ 269 if (offset + size > ICE_PKG_BUF_SIZE) 270 return NULL; 271 272 state->sect_type = 273 LE32_TO_CPU(state->buf->section_entry[state->sect_idx].type); 274 275 /* calc pointer to this section */ 276 state->sect = ((u8 *)state->buf) + 277 LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset); 278 279 return state->sect; 280 } 281 282 /** 283 * ice_pkg_enum_entry 284 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 285 * @state: pointer to the enum state 286 * @sect_type: section type to enumerate 287 * @offset: pointer to variable that receives the offset in the table (optional) 288 * @handler: function that handles access to the entries into the section type 289 * 290 * This function will enumerate all the entries in particular section type in 291 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 292 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 293 * When the function returns a NULL pointer, then the end of the entries has 294 * been reached. 295 * 296 * Since each section may have a different header and entry size, the handler 297 * function is needed to determine the number and location entries in each 298 * section. 299 * 300 * The offset parameter is optional, but should be used for sections that 301 * contain an offset for each section table. For such cases, the section handler 302 * function must return the appropriate offset + index to give the absolution 303 * offset for each entry. For example, if the base for a section's header 304 * indicates a base offset of 10, and the index for the entry is 2, then 305 * section handler function should set the offset to 10 + 2 = 12. 306 */ 307 static void * 308 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 309 u32 sect_type, u32 *offset, 310 void *(*handler)(u32 sect_type, void *section, 311 u32 index, u32 *offset)) 312 { 313 void *entry; 314 315 if (ice_seg) { 316 if (!handler) 317 return NULL; 318 319 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 320 return NULL; 321 322 state->entry_idx = 0; 323 state->handler = handler; 324 } else { 325 state->entry_idx++; 326 } 327 328 if (!state->handler) 329 return NULL; 330 331 /* get entry */ 332 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 333 offset); 334 if (!entry) { 335 /* end of a section, look for another section of this type */ 336 if (!ice_pkg_enum_section(NULL, state, 0)) 337 return NULL; 338 339 state->entry_idx = 0; 340 entry = state->handler(state->sect_type, state->sect, 341 state->entry_idx, offset); 342 } 343 344 return entry; 345 } 346 347 /** 348 * ice_boost_tcam_handler 349 * @sect_type: section type 350 * @section: pointer to section 351 * @index: index of the boost TCAM entry to be returned 352 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 353 * 354 * This is a callback function that can be passed to ice_pkg_enum_entry. 355 * Handles enumeration of individual boost TCAM entries. 356 */ 357 static void * 358 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) 359 { 360 struct ice_boost_tcam_section *boost; 361 362 if (!section) 363 return NULL; 364 365 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 366 return NULL; 367 368 /* cppcheck-suppress nullPointer */ 369 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 370 return NULL; 371 372 if (offset) 373 *offset = 0; 374 375 boost = (struct ice_boost_tcam_section *)section; 376 if (index >= LE16_TO_CPU(boost->count)) 377 return NULL; 378 379 return boost->tcam + index; 380 } 381 382 /** 383 * ice_find_boost_entry 384 * @ice_seg: pointer to the ice segment (non-NULL) 385 * @addr: Boost TCAM address of entry to search for 386 * @entry: returns pointer to the entry 387 * 388 * Finds a particular Boost TCAM entry and returns a pointer to that entry 389 * if it is found. The ice_seg parameter must not be NULL since the first call 390 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 391 */ 392 static enum ice_status 393 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 394 struct ice_boost_tcam_entry **entry) 395 { 396 struct ice_boost_tcam_entry *tcam; 397 struct ice_pkg_enum state; 398 399 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 400 401 if (!ice_seg) 402 return ICE_ERR_PARAM; 403 404 do { 405 tcam = (struct ice_boost_tcam_entry *) 406 ice_pkg_enum_entry(ice_seg, &state, 407 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 408 ice_boost_tcam_handler); 409 if (tcam && LE16_TO_CPU(tcam->addr) == addr) { 410 *entry = tcam; 411 return ICE_SUCCESS; 412 } 413 414 ice_seg = NULL; 415 } while (tcam); 416 417 *entry = NULL; 418 return ICE_ERR_CFG; 419 } 420 421 /** 422 * ice_label_enum_handler 423 * @sect_type: section type 424 * @section: pointer to section 425 * @index: index of the label entry to be returned 426 * @offset: pointer to receive absolute offset, always zero for label sections 427 * 428 * This is a callback function that can be passed to ice_pkg_enum_entry. 429 * Handles enumeration of individual label entries. 430 */ 431 static void * 432 ice_label_enum_handler(u32 __ALWAYS_UNUSED sect_type, void *section, u32 index, 433 u32 *offset) 434 { 435 struct ice_label_section *labels; 436 437 if (!section) 438 return NULL; 439 440 /* cppcheck-suppress nullPointer */ 441 if (index > ICE_MAX_LABELS_IN_BUF) 442 return NULL; 443 444 if (offset) 445 *offset = 0; 446 447 labels = (struct ice_label_section *)section; 448 if (index >= LE16_TO_CPU(labels->count)) 449 return NULL; 450 451 return labels->label + index; 452 } 453 454 /** 455 * ice_enum_labels 456 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 457 * @type: the section type that will contain the label (0 on subsequent calls) 458 * @state: ice_pkg_enum structure that will hold the state of the enumeration 459 * @value: pointer to a value that will return the label's value if found 460 * 461 * Enumerates a list of labels in the package. The caller will call 462 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 463 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 464 * the end of the list has been reached. 465 */ 466 static char * 467 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, 468 u16 *value) 469 { 470 struct ice_label *label; 471 472 /* Check for valid label section on first call */ 473 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 474 return NULL; 475 476 label = (struct ice_label *)ice_pkg_enum_entry(ice_seg, state, type, 477 NULL, 478 ice_label_enum_handler); 479 if (!label) 480 return NULL; 481 482 *value = LE16_TO_CPU(label->value); 483 return label->name; 484 } 485 486 /** 487 * ice_add_tunnel_hint 488 * @hw: pointer to the HW structure 489 * @label_name: label text 490 * @val: value of the tunnel port boost entry 491 */ 492 static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val) 493 { 494 if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 495 u16 i; 496 497 for (i = 0; tnls[i].type != TNL_LAST; i++) { 498 size_t len = strlen(tnls[i].label_prefix); 499 500 /* Look for matching label start, before continuing */ 501 if (strncmp(label_name, tnls[i].label_prefix, len)) 502 continue; 503 504 /* Make sure this label matches our PF. Note that the PF 505 * character ('0' - '7') will be located where our 506 * prefix string's null terminator is located. 507 */ 508 if ((label_name[len] - '0') == hw->pf_id) { 509 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 510 hw->tnl.tbl[hw->tnl.count].valid = false; 511 hw->tnl.tbl[hw->tnl.count].in_use = false; 512 hw->tnl.tbl[hw->tnl.count].marked = false; 513 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 514 hw->tnl.tbl[hw->tnl.count].port = 0; 515 hw->tnl.count++; 516 break; 517 } 518 } 519 } 520 } 521 522 /** 523 * ice_init_pkg_hints 524 * @hw: pointer to the HW structure 525 * @ice_seg: pointer to the segment of the package scan (non-NULL) 526 * 527 * This function will scan the package and save off relevant information 528 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 529 * since the first call to ice_enum_labels requires a pointer to an actual 530 * ice_seg structure. 531 */ 532 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 533 { 534 struct ice_pkg_enum state; 535 char *label_name; 536 u16 val; 537 int i; 538 539 ice_memset(&hw->tnl, 0, sizeof(hw->tnl), ICE_NONDMA_MEM); 540 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 541 542 if (!ice_seg) 543 return; 544 545 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 546 &val); 547 548 while (label_name) { 549 if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE))) 550 /* check for a tunnel entry */ 551 ice_add_tunnel_hint(hw, label_name, val); 552 553 label_name = ice_enum_labels(NULL, 0, &state, &val); 554 } 555 556 /* Cache the appropriate boost TCAM entry pointers for tunnels */ 557 for (i = 0; i < hw->tnl.count; i++) { 558 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 559 &hw->tnl.tbl[i].boost_entry); 560 if (hw->tnl.tbl[i].boost_entry) 561 hw->tnl.tbl[i].valid = true; 562 } 563 } 564 565 /* Key creation */ 566 567 #define ICE_DC_KEY 0x1 /* don't care */ 568 #define ICE_DC_KEYINV 0x1 569 #define ICE_NM_KEY 0x0 /* never match */ 570 #define ICE_NM_KEYINV 0x0 571 #define ICE_0_KEY 0x1 /* match 0 */ 572 #define ICE_0_KEYINV 0x0 573 #define ICE_1_KEY 0x0 /* match 1 */ 574 #define ICE_1_KEYINV 0x1 575 576 /** 577 * ice_gen_key_word - generate 16-bits of a key/mask word 578 * @val: the value 579 * @valid: valid bits mask (change only the valid bits) 580 * @dont_care: don't care mask 581 * @nvr_mtch: never match mask 582 * @key: pointer to an array of where the resulting key portion 583 * @key_inv: pointer to an array of where the resulting key invert portion 584 * 585 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 586 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 587 * of key and 8 bits of key invert. 588 * 589 * '0' = b01, always match a 0 bit 590 * '1' = b10, always match a 1 bit 591 * '?' = b11, don't care bit (always matches) 592 * '~' = b00, never match bit 593 * 594 * Input: 595 * val: b0 1 0 1 0 1 596 * dont_care: b0 0 1 1 0 0 597 * never_mtch: b0 0 0 0 1 1 598 * ------------------------------ 599 * Result: key: b01 10 11 11 00 00 600 */ 601 static enum ice_status 602 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 603 u8 *key_inv) 604 { 605 u8 in_key = *key, in_key_inv = *key_inv; 606 u8 i; 607 608 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 609 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 610 return ICE_ERR_CFG; 611 612 *key = 0; 613 *key_inv = 0; 614 615 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 616 for (i = 0; i < 8; i++) { 617 *key >>= 1; 618 *key_inv >>= 1; 619 620 if (!(valid & 0x1)) { /* change only valid bits */ 621 *key |= (in_key & 0x1) << 7; 622 *key_inv |= (in_key_inv & 0x1) << 7; 623 } else if (dont_care & 0x1) { /* don't care bit */ 624 *key |= ICE_DC_KEY << 7; 625 *key_inv |= ICE_DC_KEYINV << 7; 626 } else if (nvr_mtch & 0x1) { /* never match bit */ 627 *key |= ICE_NM_KEY << 7; 628 *key_inv |= ICE_NM_KEYINV << 7; 629 } else if (val & 0x01) { /* exact 1 match */ 630 *key |= ICE_1_KEY << 7; 631 *key_inv |= ICE_1_KEYINV << 7; 632 } else { /* exact 0 match */ 633 *key |= ICE_0_KEY << 7; 634 *key_inv |= ICE_0_KEYINV << 7; 635 } 636 637 dont_care >>= 1; 638 nvr_mtch >>= 1; 639 valid >>= 1; 640 val >>= 1; 641 in_key >>= 1; 642 in_key_inv >>= 1; 643 } 644 645 return ICE_SUCCESS; 646 } 647 648 /** 649 * ice_bits_max_set - determine if the number of bits set is within a maximum 650 * @mask: pointer to the byte array which is the mask 651 * @size: the number of bytes in the mask 652 * @max: the max number of set bits 653 * 654 * This function determines if there are at most 'max' number of bits set in an 655 * array. Returns true if the number for bits set is <= max or will return false 656 * otherwise. 657 */ 658 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 659 { 660 u16 count = 0; 661 u16 i; 662 663 /* check each byte */ 664 for (i = 0; i < size; i++) { 665 /* if 0, go to next byte */ 666 if (!mask[i]) 667 continue; 668 669 /* We know there is at least one set bit in this byte because of 670 * the above check; if we already have found 'max' number of 671 * bits set, then we can return failure now. 672 */ 673 if (count == max) 674 return false; 675 676 /* count the bits in this byte, checking threshold */ 677 count += ice_hweight8(mask[i]); 678 if (count > max) 679 return false; 680 } 681 682 return true; 683 } 684 685 /** 686 * ice_set_key - generate a variable sized key with multiples of 16-bits 687 * @key: pointer to where the key will be stored 688 * @size: the size of the complete key in bytes (must be even) 689 * @val: array of 8-bit values that makes up the value portion of the key 690 * @upd: array of 8-bit masks that determine what key portion to update 691 * @dc: array of 8-bit masks that make up the don't care mask 692 * @nm: array of 8-bit masks that make up the never match mask 693 * @off: the offset of the first byte in the key to update 694 * @len: the number of bytes in the key update 695 * 696 * This function generates a key from a value, a don't care mask and a never 697 * match mask. 698 * upd, dc, and nm are optional parameters, and can be NULL: 699 * upd == NULL --> upd mask is all 1's (update all bits) 700 * dc == NULL --> dc mask is all 0's (no don't care bits) 701 * nm == NULL --> nm mask is all 0's (no never match bits) 702 */ 703 static enum ice_status 704 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 705 u16 len) 706 { 707 u16 half_size; 708 u16 i; 709 710 /* size must be a multiple of 2 bytes. */ 711 if (size % 2) 712 return ICE_ERR_CFG; 713 half_size = size / 2; 714 715 if (off + len > half_size) 716 return ICE_ERR_CFG; 717 718 /* Make sure at most one bit is set in the never match mask. Having more 719 * than one never match mask bit set will cause HW to consume excessive 720 * power otherwise; this is a power management efficiency check. 721 */ 722 #define ICE_NVR_MTCH_BITS_MAX 1 723 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 724 return ICE_ERR_CFG; 725 726 for (i = 0; i < len; i++) 727 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 728 dc ? dc[i] : 0, nm ? nm[i] : 0, 729 key + off + i, key + half_size + off + i)) 730 return ICE_ERR_CFG; 731 732 return ICE_SUCCESS; 733 } 734 735 /** 736 * ice_acquire_global_cfg_lock 737 * @hw: pointer to the HW structure 738 * @access: access type (read or write) 739 * 740 * This function will request ownership of the global config lock for reading 741 * or writing of the package. When attempting to obtain write access, the 742 * caller must check for the following two return values: 743 * 744 * ICE_SUCCESS - Means the caller has acquired the global config lock 745 * and can perform writing of the package. 746 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the 747 * package or has found that no update was necessary; in 748 * this case, the caller can just skip performing any 749 * update of the package. 750 */ 751 static enum ice_status 752 ice_acquire_global_cfg_lock(struct ice_hw *hw, 753 enum ice_aq_res_access_type access) 754 { 755 enum ice_status status; 756 757 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 758 759 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 760 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 761 762 if (status == ICE_ERR_AQ_NO_WORK) 763 ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n"); 764 765 return status; 766 } 767 768 /** 769 * ice_release_global_cfg_lock 770 * @hw: pointer to the HW structure 771 * 772 * This function will release the global config lock. 773 */ 774 static void ice_release_global_cfg_lock(struct ice_hw *hw) 775 { 776 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 777 } 778 779 /** 780 * ice_acquire_change_lock 781 * @hw: pointer to the HW structure 782 * @access: access type (read or write) 783 * 784 * This function will request ownership of the change lock. 785 */ 786 static enum ice_status 787 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 788 { 789 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 790 791 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 792 ICE_CHANGE_LOCK_TIMEOUT); 793 } 794 795 /** 796 * ice_release_change_lock 797 * @hw: pointer to the HW structure 798 * 799 * This function will release the change lock using the proper Admin Command. 800 */ 801 static void ice_release_change_lock(struct ice_hw *hw) 802 { 803 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 804 805 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 806 } 807 808 /** 809 * ice_aq_download_pkg 810 * @hw: pointer to the hardware structure 811 * @pkg_buf: the package buffer to transfer 812 * @buf_size: the size of the package buffer 813 * @last_buf: last buffer indicator 814 * @error_offset: returns error offset 815 * @error_info: returns error information 816 * @cd: pointer to command details structure or NULL 817 * 818 * Download Package (0x0C40) 819 */ 820 static enum ice_status 821 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 822 u16 buf_size, bool last_buf, u32 *error_offset, 823 u32 *error_info, struct ice_sq_cd *cd) 824 { 825 struct ice_aqc_download_pkg *cmd; 826 struct ice_aq_desc desc; 827 enum ice_status status; 828 829 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 830 831 if (error_offset) 832 *error_offset = 0; 833 if (error_info) 834 *error_info = 0; 835 836 cmd = &desc.params.download_pkg; 837 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 838 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 839 840 if (last_buf) 841 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 842 843 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 844 if (status == ICE_ERR_AQ_ERROR) { 845 /* Read error from buffer only when the FW returned an error */ 846 struct ice_aqc_download_pkg_resp *resp; 847 848 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 849 if (error_offset) 850 *error_offset = LE32_TO_CPU(resp->error_offset); 851 if (error_info) 852 *error_info = LE32_TO_CPU(resp->error_info); 853 } 854 855 return status; 856 } 857 858 /** 859 * ice_aq_upload_section 860 * @hw: pointer to the hardware structure 861 * @pkg_buf: the package buffer which will receive the section 862 * @buf_size: the size of the package buffer 863 * @cd: pointer to command details structure or NULL 864 * 865 * Upload Section (0x0C41) 866 */ 867 enum ice_status 868 ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 869 u16 buf_size, struct ice_sq_cd *cd) 870 { 871 struct ice_aq_desc desc; 872 873 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 874 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section); 875 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 876 877 return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 878 } 879 880 /** 881 * ice_aq_update_pkg 882 * @hw: pointer to the hardware structure 883 * @pkg_buf: the package cmd buffer 884 * @buf_size: the size of the package cmd buffer 885 * @last_buf: last buffer indicator 886 * @error_offset: returns error offset 887 * @error_info: returns error information 888 * @cd: pointer to command details structure or NULL 889 * 890 * Update Package (0x0C42) 891 */ 892 static enum ice_status 893 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, 894 bool last_buf, u32 *error_offset, u32 *error_info, 895 struct ice_sq_cd *cd) 896 { 897 struct ice_aqc_download_pkg *cmd; 898 struct ice_aq_desc desc; 899 enum ice_status status; 900 901 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 902 903 if (error_offset) 904 *error_offset = 0; 905 if (error_info) 906 *error_info = 0; 907 908 cmd = &desc.params.download_pkg; 909 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 910 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 911 912 if (last_buf) 913 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 914 915 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 916 if (status == ICE_ERR_AQ_ERROR) { 917 /* Read error from buffer only when the FW returned an error */ 918 struct ice_aqc_download_pkg_resp *resp; 919 920 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 921 if (error_offset) 922 *error_offset = LE32_TO_CPU(resp->error_offset); 923 if (error_info) 924 *error_info = LE32_TO_CPU(resp->error_info); 925 } 926 927 return status; 928 } 929 930 /** 931 * ice_find_seg_in_pkg 932 * @hw: pointer to the hardware structure 933 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 934 * @pkg_hdr: pointer to the package header to be searched 935 * 936 * This function searches a package file for a particular segment type. On 937 * success it returns a pointer to the segment header, otherwise it will 938 * return NULL. 939 */ 940 static struct ice_generic_seg_hdr * 941 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 942 struct ice_pkg_hdr *pkg_hdr) 943 { 944 u32 i; 945 946 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 947 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 948 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 949 pkg_hdr->pkg_format_ver.update, 950 pkg_hdr->pkg_format_ver.draft); 951 952 /* Search all package segments for the requested segment type */ 953 for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) { 954 struct ice_generic_seg_hdr *seg; 955 956 seg = (struct ice_generic_seg_hdr *) 957 ((u8 *)pkg_hdr + LE32_TO_CPU(pkg_hdr->seg_offset[i])); 958 959 if (LE32_TO_CPU(seg->seg_type) == seg_type) 960 return seg; 961 } 962 963 return NULL; 964 } 965 966 /** 967 * ice_update_pkg_no_lock 968 * @hw: pointer to the hardware structure 969 * @bufs: pointer to an array of buffers 970 * @count: the number of buffers in the array 971 */ 972 static enum ice_status 973 ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 974 { 975 enum ice_status status = ICE_SUCCESS; 976 u32 i; 977 978 for (i = 0; i < count; i++) { 979 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 980 bool last = ((i + 1) == count); 981 u32 offset, info; 982 983 status = ice_aq_update_pkg(hw, bh, LE16_TO_CPU(bh->data_end), 984 last, &offset, &info, NULL); 985 986 if (status) { 987 ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n", 988 status, offset, info); 989 break; 990 } 991 } 992 993 return status; 994 } 995 996 /** 997 * ice_update_pkg 998 * @hw: pointer to the hardware structure 999 * @bufs: pointer to an array of buffers 1000 * @count: the number of buffers in the array 1001 * 1002 * Obtains change lock and updates package. 1003 */ 1004 enum ice_status 1005 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1006 { 1007 enum ice_status status; 1008 1009 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 1010 if (status) 1011 return status; 1012 1013 status = ice_update_pkg_no_lock(hw, bufs, count); 1014 1015 ice_release_change_lock(hw); 1016 1017 return status; 1018 } 1019 1020 /** 1021 * ice_dwnld_cfg_bufs 1022 * @hw: pointer to the hardware structure 1023 * @bufs: pointer to an array of buffers 1024 * @count: the number of buffers in the array 1025 * 1026 * Obtains global config lock and downloads the package configuration buffers 1027 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 1028 * found indicates that the rest of the buffers are all metadata buffers. 1029 */ 1030 static enum ice_status 1031 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1032 { 1033 enum ice_status status; 1034 struct ice_buf_hdr *bh; 1035 u32 offset, info, i; 1036 1037 if (!bufs || !count) 1038 return ICE_ERR_PARAM; 1039 1040 /* If the first buffer's first section has its metadata bit set 1041 * then there are no buffers to be downloaded, and the operation is 1042 * considered a success. 1043 */ 1044 bh = (struct ice_buf_hdr *)bufs; 1045 if (LE32_TO_CPU(bh->section_entry[0].type) & ICE_METADATA_BUF) 1046 return ICE_SUCCESS; 1047 1048 /* reset pkg_dwnld_status in case this function is called in the 1049 * reset/rebuild flow 1050 */ 1051 hw->pkg_dwnld_status = ICE_AQ_RC_OK; 1052 1053 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 1054 if (status) { 1055 if (status == ICE_ERR_AQ_NO_WORK) 1056 hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST; 1057 else 1058 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 1059 return status; 1060 } 1061 1062 for (i = 0; i < count; i++) { 1063 bool last = ((i + 1) == count); 1064 1065 if (!last) { 1066 /* check next buffer for metadata flag */ 1067 bh = (struct ice_buf_hdr *)(bufs + i + 1); 1068 1069 /* A set metadata flag in the next buffer will signal 1070 * that the current buffer will be the last buffer 1071 * downloaded 1072 */ 1073 if (LE16_TO_CPU(bh->section_count)) 1074 if (LE32_TO_CPU(bh->section_entry[0].type) & 1075 ICE_METADATA_BUF) 1076 last = true; 1077 } 1078 1079 bh = (struct ice_buf_hdr *)(bufs + i); 1080 1081 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 1082 &offset, &info, NULL); 1083 1084 /* Save AQ status from download package */ 1085 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 1086 if (status) { 1087 ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n", 1088 status, offset, info); 1089 1090 break; 1091 } 1092 1093 if (last) 1094 break; 1095 } 1096 1097 if (!status) { 1098 status = ice_set_vlan_mode(hw); 1099 if (status) 1100 ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n", 1101 status); 1102 } 1103 1104 ice_release_global_cfg_lock(hw); 1105 1106 return status; 1107 } 1108 1109 /** 1110 * ice_aq_get_pkg_info_list 1111 * @hw: pointer to the hardware structure 1112 * @pkg_info: the buffer which will receive the information list 1113 * @buf_size: the size of the pkg_info information buffer 1114 * @cd: pointer to command details structure or NULL 1115 * 1116 * Get Package Info List (0x0C43) 1117 */ 1118 static enum ice_status 1119 ice_aq_get_pkg_info_list(struct ice_hw *hw, 1120 struct ice_aqc_get_pkg_info_resp *pkg_info, 1121 u16 buf_size, struct ice_sq_cd *cd) 1122 { 1123 struct ice_aq_desc desc; 1124 1125 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1126 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1127 1128 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1129 } 1130 1131 /** 1132 * ice_download_pkg 1133 * @hw: pointer to the hardware structure 1134 * @ice_seg: pointer to the segment of the package to be downloaded 1135 * 1136 * Handles the download of a complete package. 1137 */ 1138 static enum ice_status 1139 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) 1140 { 1141 struct ice_buf_table *ice_buf_tbl; 1142 enum ice_status status; 1143 1144 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1145 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1146 ice_seg->hdr.seg_format_ver.major, 1147 ice_seg->hdr.seg_format_ver.minor, 1148 ice_seg->hdr.seg_format_ver.update, 1149 ice_seg->hdr.seg_format_ver.draft); 1150 1151 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1152 LE32_TO_CPU(ice_seg->hdr.seg_type), 1153 LE32_TO_CPU(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1154 1155 ice_buf_tbl = ice_find_buf_table(ice_seg); 1156 1157 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1158 LE32_TO_CPU(ice_buf_tbl->buf_count)); 1159 1160 status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1161 LE32_TO_CPU(ice_buf_tbl->buf_count)); 1162 1163 ice_cache_vlan_mode(hw); 1164 1165 return status; 1166 } 1167 1168 /** 1169 * ice_init_pkg_info 1170 * @hw: pointer to the hardware structure 1171 * @pkg_hdr: pointer to the driver's package hdr 1172 * 1173 * Saves off the package details into the HW structure. 1174 */ 1175 static enum ice_status 1176 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) 1177 { 1178 struct ice_generic_seg_hdr *seg_hdr; 1179 1180 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1181 if (!pkg_hdr) 1182 return ICE_ERR_PARAM; 1183 1184 seg_hdr = (struct ice_generic_seg_hdr *) 1185 ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); 1186 if (seg_hdr) { 1187 struct ice_meta_sect *meta; 1188 struct ice_pkg_enum state; 1189 1190 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1191 1192 /* Get package information from the Metadata Section */ 1193 meta = (struct ice_meta_sect *) 1194 ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state, 1195 ICE_SID_METADATA); 1196 if (!meta) { 1197 ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n"); 1198 return ICE_ERR_CFG; 1199 } 1200 1201 hw->pkg_ver = meta->ver; 1202 ice_memcpy(hw->pkg_name, meta->name, sizeof(meta->name), 1203 ICE_NONDMA_TO_NONDMA); 1204 1205 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1206 meta->ver.major, meta->ver.minor, meta->ver.update, 1207 meta->ver.draft, meta->name); 1208 1209 hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver; 1210 ice_memcpy(hw->ice_seg_id, seg_hdr->seg_id, 1211 sizeof(hw->ice_seg_id), ICE_NONDMA_TO_NONDMA); 1212 1213 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1214 seg_hdr->seg_format_ver.major, 1215 seg_hdr->seg_format_ver.minor, 1216 seg_hdr->seg_format_ver.update, 1217 seg_hdr->seg_format_ver.draft, 1218 seg_hdr->seg_id); 1219 } else { 1220 ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n"); 1221 return ICE_ERR_CFG; 1222 } 1223 1224 return ICE_SUCCESS; 1225 } 1226 1227 /** 1228 * ice_get_pkg_info 1229 * @hw: pointer to the hardware structure 1230 * 1231 * Store details of the package currently loaded in HW into the HW structure. 1232 */ 1233 static enum ice_status ice_get_pkg_info(struct ice_hw *hw) 1234 { 1235 struct ice_aqc_get_pkg_info_resp *pkg_info; 1236 enum ice_status status; 1237 u16 size; 1238 u32 i; 1239 1240 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1241 1242 size = ice_struct_size(pkg_info, pkg_info, ICE_PKG_CNT); 1243 pkg_info = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size); 1244 if (!pkg_info) 1245 return ICE_ERR_NO_MEMORY; 1246 1247 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL); 1248 if (status) 1249 goto init_pkg_free_alloc; 1250 1251 for (i = 0; i < LE32_TO_CPU(pkg_info->count); i++) { 1252 #define ICE_PKG_FLAG_COUNT 4 1253 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1254 u8 place = 0; 1255 1256 if (pkg_info->pkg_info[i].is_active) { 1257 flags[place++] = 'A'; 1258 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1259 hw->active_track_id = 1260 LE32_TO_CPU(pkg_info->pkg_info[i].track_id); 1261 ice_memcpy(hw->active_pkg_name, 1262 pkg_info->pkg_info[i].name, 1263 sizeof(pkg_info->pkg_info[i].name), 1264 ICE_NONDMA_TO_NONDMA); 1265 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1266 } 1267 if (pkg_info->pkg_info[i].is_active_at_boot) 1268 flags[place++] = 'B'; 1269 if (pkg_info->pkg_info[i].is_modified) 1270 flags[place++] = 'M'; 1271 if (pkg_info->pkg_info[i].is_in_nvm) 1272 flags[place++] = 'N'; 1273 1274 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", 1275 i, pkg_info->pkg_info[i].ver.major, 1276 pkg_info->pkg_info[i].ver.minor, 1277 pkg_info->pkg_info[i].ver.update, 1278 pkg_info->pkg_info[i].ver.draft, 1279 pkg_info->pkg_info[i].name, flags); 1280 } 1281 1282 init_pkg_free_alloc: 1283 ice_free(hw, pkg_info); 1284 1285 return status; 1286 } 1287 1288 /** 1289 * ice_find_label_value 1290 * @ice_seg: pointer to the ice segment (non-NULL) 1291 * @name: name of the label to search for 1292 * @type: the section type that will contain the label 1293 * @value: pointer to a value that will return the label's value if found 1294 * 1295 * Finds a label's value given the label name and the section type to search. 1296 * The ice_seg parameter must not be NULL since the first call to 1297 * ice_enum_labels requires a pointer to an actual ice_seg structure. 1298 */ 1299 enum ice_status 1300 ice_find_label_value(struct ice_seg *ice_seg, char const *name, u32 type, 1301 u16 *value) 1302 { 1303 struct ice_pkg_enum state; 1304 char *label_name; 1305 u16 val; 1306 1307 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1308 1309 if (!ice_seg) 1310 return ICE_ERR_PARAM; 1311 1312 do { 1313 label_name = ice_enum_labels(ice_seg, type, &state, &val); 1314 if (label_name && !strcmp(label_name, name)) { 1315 *value = val; 1316 return ICE_SUCCESS; 1317 } 1318 1319 ice_seg = NULL; 1320 } while (label_name); 1321 1322 return ICE_ERR_CFG; 1323 } 1324 1325 /** 1326 * ice_verify_pkg - verify package 1327 * @pkg: pointer to the package buffer 1328 * @len: size of the package buffer 1329 * 1330 * Verifies various attributes of the package file, including length, format 1331 * version, and the requirement of at least one segment. 1332 */ 1333 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 1334 { 1335 u32 seg_count; 1336 u32 i; 1337 1338 if (len < ice_struct_size(pkg, seg_offset, 1)) 1339 return ICE_ERR_BUF_TOO_SHORT; 1340 1341 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 1342 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 1343 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 1344 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 1345 return ICE_ERR_CFG; 1346 1347 /* pkg must have at least one segment */ 1348 seg_count = LE32_TO_CPU(pkg->seg_count); 1349 if (seg_count < 1) 1350 return ICE_ERR_CFG; 1351 1352 /* make sure segment array fits in package length */ 1353 if (len < ice_struct_size(pkg, seg_offset, seg_count)) 1354 return ICE_ERR_BUF_TOO_SHORT; 1355 1356 /* all segments must fit within length */ 1357 for (i = 0; i < seg_count; i++) { 1358 u32 off = LE32_TO_CPU(pkg->seg_offset[i]); 1359 struct ice_generic_seg_hdr *seg; 1360 1361 /* segment header must fit */ 1362 if (len < off + sizeof(*seg)) 1363 return ICE_ERR_BUF_TOO_SHORT; 1364 1365 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 1366 1367 /* segment body must fit */ 1368 if (len < off + LE32_TO_CPU(seg->seg_size)) 1369 return ICE_ERR_BUF_TOO_SHORT; 1370 } 1371 1372 return ICE_SUCCESS; 1373 } 1374 1375 /** 1376 * ice_free_seg - free package segment pointer 1377 * @hw: pointer to the hardware structure 1378 * 1379 * Frees the package segment pointer in the proper manner, depending on if the 1380 * segment was allocated or just the passed in pointer was stored. 1381 */ 1382 void ice_free_seg(struct ice_hw *hw) 1383 { 1384 if (hw->pkg_copy) { 1385 ice_free(hw, hw->pkg_copy); 1386 hw->pkg_copy = NULL; 1387 hw->pkg_size = 0; 1388 } 1389 hw->seg = NULL; 1390 } 1391 1392 /** 1393 * ice_init_pkg_regs - initialize additional package registers 1394 * @hw: pointer to the hardware structure 1395 */ 1396 static void ice_init_pkg_regs(struct ice_hw *hw) 1397 { 1398 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 1399 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 1400 #define ICE_SW_BLK_IDX 0 1401 1402 /* setup Switch block input mask, which is 48-bits in two parts */ 1403 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 1404 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 1405 } 1406 1407 /** 1408 * ice_chk_pkg_version - check package version for compatibility with driver 1409 * @pkg_ver: pointer to a version structure to check 1410 * 1411 * Check to make sure that the package about to be downloaded is compatible with 1412 * the driver. To be compatible, the major and minor components of the package 1413 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 1414 * definitions. 1415 */ 1416 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 1417 { 1418 if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ || 1419 pkg_ver->minor != ICE_PKG_SUPP_VER_MNR) 1420 return ICE_ERR_NOT_SUPPORTED; 1421 1422 return ICE_SUCCESS; 1423 } 1424 1425 /** 1426 * ice_chk_pkg_compat 1427 * @hw: pointer to the hardware structure 1428 * @ospkg: pointer to the package hdr 1429 * @seg: pointer to the package segment hdr 1430 * 1431 * This function checks the package version compatibility with driver and NVM 1432 */ 1433 static enum ice_status 1434 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, 1435 struct ice_seg **seg) 1436 { 1437 struct ice_aqc_get_pkg_info_resp *pkg; 1438 enum ice_status status; 1439 u16 size; 1440 u32 i; 1441 1442 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1443 1444 /* Check package version compatibility */ 1445 status = ice_chk_pkg_version(&hw->pkg_ver); 1446 if (status) { 1447 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1448 return status; 1449 } 1450 1451 /* find ICE segment in given package */ 1452 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, 1453 ospkg); 1454 if (!*seg) { 1455 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1456 return ICE_ERR_CFG; 1457 } 1458 1459 /* Check if FW is compatible with the OS package */ 1460 size = ice_struct_size(pkg, pkg_info, ICE_PKG_CNT); 1461 pkg = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size); 1462 if (!pkg) 1463 return ICE_ERR_NO_MEMORY; 1464 1465 status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL); 1466 if (status) 1467 goto fw_ddp_compat_free_alloc; 1468 1469 for (i = 0; i < LE32_TO_CPU(pkg->count); i++) { 1470 /* loop till we find the NVM package */ 1471 if (!pkg->pkg_info[i].is_in_nvm) 1472 continue; 1473 if ((*seg)->hdr.seg_format_ver.major != 1474 pkg->pkg_info[i].ver.major || 1475 (*seg)->hdr.seg_format_ver.minor > 1476 pkg->pkg_info[i].ver.minor) { 1477 status = ICE_ERR_FW_DDP_MISMATCH; 1478 ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n"); 1479 } 1480 /* done processing NVM package so break */ 1481 break; 1482 } 1483 fw_ddp_compat_free_alloc: 1484 ice_free(hw, pkg); 1485 return status; 1486 } 1487 1488 /** 1489 * ice_sw_fv_handler 1490 * @sect_type: section type 1491 * @section: pointer to section 1492 * @index: index of the field vector entry to be returned 1493 * @offset: ptr to variable that receives the offset in the field vector table 1494 * 1495 * This is a callback function that can be passed to ice_pkg_enum_entry. 1496 * This function treats the given section as of type ice_sw_fv_section and 1497 * enumerates offset field. "offset" is an index into the field vector table. 1498 */ 1499 static void * 1500 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset) 1501 { 1502 struct ice_sw_fv_section *fv_section = 1503 (struct ice_sw_fv_section *)section; 1504 1505 if (!section || sect_type != ICE_SID_FLD_VEC_SW) 1506 return NULL; 1507 if (index >= LE16_TO_CPU(fv_section->count)) 1508 return NULL; 1509 if (offset) 1510 /* "index" passed in to this function is relative to a given 1511 * 4k block. To get to the true index into the field vector 1512 * table need to add the relative index to the base_offset 1513 * field of this section 1514 */ 1515 *offset = LE16_TO_CPU(fv_section->base_offset) + index; 1516 return fv_section->fv + index; 1517 } 1518 1519 /** 1520 * ice_get_prof_index_max - get the max profile index for used profile 1521 * @hw: pointer to the HW struct 1522 * 1523 * Calling this function will get the max profile index for used profile 1524 * and store the index number in struct ice_switch_info *switch_info 1525 * in hw for following use. 1526 */ 1527 static int ice_get_prof_index_max(struct ice_hw *hw) 1528 { 1529 u16 prof_index = 0, j, max_prof_index = 0; 1530 struct ice_pkg_enum state; 1531 struct ice_seg *ice_seg; 1532 bool flag = false; 1533 struct ice_fv *fv; 1534 u32 offset; 1535 1536 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1537 1538 if (!hw->seg) 1539 return ICE_ERR_PARAM; 1540 1541 ice_seg = hw->seg; 1542 1543 do { 1544 fv = (struct ice_fv *) 1545 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1546 &offset, ice_sw_fv_handler); 1547 if (!fv) 1548 break; 1549 ice_seg = NULL; 1550 1551 /* in the profile that not be used, the prot_id is set to 0xff 1552 * and the off is set to 0x1ff for all the field vectors. 1553 */ 1554 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1555 if (fv->ew[j].prot_id != ICE_PROT_INVALID || 1556 fv->ew[j].off != ICE_FV_OFFSET_INVAL) 1557 flag = true; 1558 if (flag && prof_index > max_prof_index) 1559 max_prof_index = prof_index; 1560 1561 prof_index++; 1562 flag = false; 1563 } while (fv); 1564 1565 hw->switch_info->max_used_prof_index = max_prof_index; 1566 1567 return ICE_SUCCESS; 1568 } 1569 1570 /** 1571 * ice_init_pkg - initialize/download package 1572 * @hw: pointer to the hardware structure 1573 * @buf: pointer to the package buffer 1574 * @len: size of the package buffer 1575 * 1576 * This function initializes a package. The package contains HW tables 1577 * required to do packet processing. First, the function extracts package 1578 * information such as version. Then it finds the ice configuration segment 1579 * within the package; this function then saves a copy of the segment pointer 1580 * within the supplied package buffer. Next, the function will cache any hints 1581 * from the package, followed by downloading the package itself. Note, that if 1582 * a previous PF driver has already downloaded the package successfully, then 1583 * the current driver will not have to download the package again. 1584 * 1585 * The local package contents will be used to query default behavior and to 1586 * update specific sections of the HW's version of the package (e.g. to update 1587 * the parse graph to understand new protocols). 1588 * 1589 * This function stores a pointer to the package buffer memory, and it is 1590 * expected that the supplied buffer will not be freed immediately. If the 1591 * package buffer needs to be freed, such as when read from a file, use 1592 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1593 * case. 1594 */ 1595 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1596 { 1597 struct ice_pkg_hdr *pkg; 1598 enum ice_status status; 1599 struct ice_seg *seg; 1600 1601 if (!buf || !len) 1602 return ICE_ERR_PARAM; 1603 1604 pkg = (struct ice_pkg_hdr *)buf; 1605 status = ice_verify_pkg(pkg, len); 1606 if (status) { 1607 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1608 status); 1609 return status; 1610 } 1611 1612 /* initialize package info */ 1613 status = ice_init_pkg_info(hw, pkg); 1614 if (status) 1615 return status; 1616 1617 /* before downloading the package, check package version for 1618 * compatibility with driver 1619 */ 1620 status = ice_chk_pkg_compat(hw, pkg, &seg); 1621 if (status) 1622 return status; 1623 1624 /* initialize package hints and then download package */ 1625 ice_init_pkg_hints(hw, seg); 1626 status = ice_download_pkg(hw, seg); 1627 if (status == ICE_ERR_AQ_NO_WORK) { 1628 ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n"); 1629 status = ICE_SUCCESS; 1630 } 1631 1632 /* Get information on the package currently loaded in HW, then make sure 1633 * the driver is compatible with this version. 1634 */ 1635 if (!status) { 1636 status = ice_get_pkg_info(hw); 1637 if (!status) 1638 status = ice_chk_pkg_version(&hw->active_pkg_ver); 1639 } 1640 1641 if (!status) { 1642 hw->seg = seg; 1643 /* on successful package download update other required 1644 * registers to support the package and fill HW tables 1645 * with package content. 1646 */ 1647 ice_init_pkg_regs(hw); 1648 ice_fill_blk_tbls(hw); 1649 ice_get_prof_index_max(hw); 1650 } else { 1651 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", 1652 status); 1653 } 1654 1655 return status; 1656 } 1657 1658 /** 1659 * ice_copy_and_init_pkg - initialize/download a copy of the package 1660 * @hw: pointer to the hardware structure 1661 * @buf: pointer to the package buffer 1662 * @len: size of the package buffer 1663 * 1664 * This function copies the package buffer, and then calls ice_init_pkg() to 1665 * initialize the copied package contents. 1666 * 1667 * The copying is necessary if the package buffer supplied is constant, or if 1668 * the memory may disappear shortly after calling this function. 1669 * 1670 * If the package buffer resides in the data segment and can be modified, the 1671 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1672 * 1673 * However, if the package buffer needs to be copied first, such as when being 1674 * read from a file, the caller should use ice_copy_and_init_pkg(). 1675 * 1676 * This function will first copy the package buffer, before calling 1677 * ice_init_pkg(). The caller is free to immediately destroy the original 1678 * package buffer, as the new copy will be managed by this function and 1679 * related routines. 1680 */ 1681 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) 1682 { 1683 enum ice_status status; 1684 u8 *buf_copy; 1685 1686 if (!buf || !len) 1687 return ICE_ERR_PARAM; 1688 1689 buf_copy = (u8 *)ice_memdup(hw, buf, len, ICE_NONDMA_TO_NONDMA); 1690 1691 status = ice_init_pkg(hw, buf_copy, len); 1692 if (status) { 1693 /* Free the copy, since we failed to initialize the package */ 1694 ice_free(hw, buf_copy); 1695 } else { 1696 /* Track the copied pkg so we can free it later */ 1697 hw->pkg_copy = buf_copy; 1698 hw->pkg_size = len; 1699 } 1700 1701 return status; 1702 } 1703 1704 /** 1705 * ice_pkg_buf_alloc 1706 * @hw: pointer to the HW structure 1707 * 1708 * Allocates a package buffer and returns a pointer to the buffer header. 1709 * Note: all package contents must be in Little Endian form. 1710 */ 1711 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 1712 { 1713 struct ice_buf_build *bld; 1714 struct ice_buf_hdr *buf; 1715 1716 bld = (struct ice_buf_build *)ice_malloc(hw, sizeof(*bld)); 1717 if (!bld) 1718 return NULL; 1719 1720 buf = (struct ice_buf_hdr *)bld; 1721 buf->data_end = CPU_TO_LE16(offsetof(struct ice_buf_hdr, 1722 section_entry)); 1723 return bld; 1724 } 1725 1726 /** 1727 * ice_get_sw_prof_type - determine switch profile type 1728 * @hw: pointer to the HW structure 1729 * @fv: pointer to the switch field vector 1730 */ 1731 static enum ice_prof_type 1732 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv) 1733 { 1734 u16 i; 1735 1736 for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) { 1737 /* UDP tunnel will have UDP_OF protocol ID and VNI offset */ 1738 if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF && 1739 fv->ew[i].off == ICE_VNI_OFFSET) 1740 return ICE_PROF_TUN_UDP; 1741 1742 /* GRE tunnel will have GRE protocol */ 1743 if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF) 1744 return ICE_PROF_TUN_GRE; 1745 } 1746 1747 return ICE_PROF_NON_TUN; 1748 } 1749 1750 /** 1751 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type 1752 * @hw: pointer to hardware structure 1753 * @req_profs: type of profiles requested 1754 * @bm: pointer to memory for returning the bitmap of field vectors 1755 */ 1756 void 1757 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs, 1758 ice_bitmap_t *bm) 1759 { 1760 struct ice_pkg_enum state; 1761 struct ice_seg *ice_seg; 1762 struct ice_fv *fv; 1763 1764 if (req_profs == ICE_PROF_ALL) { 1765 ice_bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES); 1766 return; 1767 } 1768 1769 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1770 ice_zero_bitmap(bm, ICE_MAX_NUM_PROFILES); 1771 ice_seg = hw->seg; 1772 do { 1773 enum ice_prof_type prof_type; 1774 u32 offset; 1775 1776 fv = (struct ice_fv *) 1777 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1778 &offset, ice_sw_fv_handler); 1779 ice_seg = NULL; 1780 1781 if (fv) { 1782 /* Determine field vector type */ 1783 prof_type = ice_get_sw_prof_type(hw, fv); 1784 1785 if (req_profs & prof_type) 1786 ice_set_bit((u16)offset, bm); 1787 } 1788 } while (fv); 1789 } 1790 1791 /** 1792 * ice_get_sw_fv_list 1793 * @hw: pointer to the HW structure 1794 * @prot_ids: field vector to search for with a given protocol ID 1795 * @ids_cnt: lookup/protocol count 1796 * @bm: bitmap of field vectors to consider 1797 * @fv_list: Head of a list 1798 * 1799 * Finds all the field vector entries from switch block that contain 1800 * a given protocol ID and returns a list of structures of type 1801 * "ice_sw_fv_list_entry". Every structure in the list has a field vector 1802 * definition and profile ID information 1803 * NOTE: The caller of the function is responsible for freeing the memory 1804 * allocated for every list entry. 1805 */ 1806 enum ice_status 1807 ice_get_sw_fv_list(struct ice_hw *hw, u8 *prot_ids, u16 ids_cnt, 1808 ice_bitmap_t *bm, struct LIST_HEAD_TYPE *fv_list) 1809 { 1810 struct ice_sw_fv_list_entry *fvl; 1811 struct ice_sw_fv_list_entry *tmp; 1812 struct ice_pkg_enum state; 1813 struct ice_seg *ice_seg; 1814 struct ice_fv *fv; 1815 u32 offset; 1816 1817 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1818 1819 if (!ids_cnt || !hw->seg) 1820 return ICE_ERR_PARAM; 1821 1822 ice_seg = hw->seg; 1823 do { 1824 u16 i; 1825 1826 fv = (struct ice_fv *) 1827 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1828 &offset, ice_sw_fv_handler); 1829 if (!fv) 1830 break; 1831 ice_seg = NULL; 1832 1833 /* If field vector is not in the bitmap list, then skip this 1834 * profile. 1835 */ 1836 if (!ice_is_bit_set(bm, (u16)offset)) 1837 continue; 1838 1839 for (i = 0; i < ids_cnt; i++) { 1840 int j; 1841 1842 /* This code assumes that if a switch field vector line 1843 * has a matching protocol, then this line will contain 1844 * the entries necessary to represent every field in 1845 * that protocol header. 1846 */ 1847 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1848 if (fv->ew[j].prot_id == prot_ids[i]) 1849 break; 1850 if (j >= hw->blk[ICE_BLK_SW].es.fvw) 1851 break; 1852 if (i + 1 == ids_cnt) { 1853 fvl = (struct ice_sw_fv_list_entry *) 1854 ice_malloc(hw, sizeof(*fvl)); 1855 if (!fvl) 1856 goto err; 1857 fvl->fv_ptr = fv; 1858 fvl->profile_id = offset; 1859 LIST_ADD(&fvl->list_entry, fv_list); 1860 break; 1861 } 1862 } 1863 } while (fv); 1864 if (LIST_EMPTY(fv_list)) 1865 return ICE_ERR_CFG; 1866 return ICE_SUCCESS; 1867 1868 err: 1869 LIST_FOR_EACH_ENTRY_SAFE(fvl, tmp, fv_list, ice_sw_fv_list_entry, 1870 list_entry) { 1871 LIST_DEL(&fvl->list_entry); 1872 ice_free(hw, fvl); 1873 } 1874 1875 return ICE_ERR_NO_MEMORY; 1876 } 1877 1878 /** 1879 * ice_init_prof_result_bm - Initialize the profile result index bitmap 1880 * @hw: pointer to hardware structure 1881 */ 1882 void ice_init_prof_result_bm(struct ice_hw *hw) 1883 { 1884 struct ice_pkg_enum state; 1885 struct ice_seg *ice_seg; 1886 struct ice_fv *fv; 1887 1888 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1889 1890 if (!hw->seg) 1891 return; 1892 1893 ice_seg = hw->seg; 1894 do { 1895 u32 off; 1896 u16 i; 1897 1898 fv = (struct ice_fv *) 1899 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1900 &off, ice_sw_fv_handler); 1901 ice_seg = NULL; 1902 if (!fv) 1903 break; 1904 1905 ice_zero_bitmap(hw->switch_info->prof_res_bm[off], 1906 ICE_MAX_FV_WORDS); 1907 1908 /* Determine empty field vector indices, these can be 1909 * used for recipe results. Skip index 0, since it is 1910 * always used for Switch ID. 1911 */ 1912 for (i = 1; i < ICE_MAX_FV_WORDS; i++) 1913 if (fv->ew[i].prot_id == ICE_PROT_INVALID && 1914 fv->ew[i].off == ICE_FV_OFFSET_INVAL) 1915 ice_set_bit(i, 1916 hw->switch_info->prof_res_bm[off]); 1917 } while (fv); 1918 } 1919 1920 /** 1921 * ice_pkg_buf_free 1922 * @hw: pointer to the HW structure 1923 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1924 * 1925 * Frees a package buffer 1926 */ 1927 void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 1928 { 1929 ice_free(hw, bld); 1930 } 1931 1932 /** 1933 * ice_pkg_buf_reserve_section 1934 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1935 * @count: the number of sections to reserve 1936 * 1937 * Reserves one or more section table entries in a package buffer. This routine 1938 * can be called multiple times as long as they are made before calling 1939 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 1940 * is called once, the number of sections that can be allocated will not be able 1941 * to be increased; not using all reserved sections is fine, but this will 1942 * result in some wasted space in the buffer. 1943 * Note: all package contents must be in Little Endian form. 1944 */ 1945 static enum ice_status 1946 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 1947 { 1948 struct ice_buf_hdr *buf; 1949 u16 section_count; 1950 u16 data_end; 1951 1952 if (!bld) 1953 return ICE_ERR_PARAM; 1954 1955 buf = (struct ice_buf_hdr *)&bld->buf; 1956 1957 /* already an active section, can't increase table size */ 1958 section_count = LE16_TO_CPU(buf->section_count); 1959 if (section_count > 0) 1960 return ICE_ERR_CFG; 1961 1962 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 1963 return ICE_ERR_CFG; 1964 bld->reserved_section_table_entries += count; 1965 1966 data_end = LE16_TO_CPU(buf->data_end) + 1967 FLEX_ARRAY_SIZE(buf, section_entry, count); 1968 buf->data_end = CPU_TO_LE16(data_end); 1969 1970 return ICE_SUCCESS; 1971 } 1972 1973 /** 1974 * ice_pkg_buf_alloc_section 1975 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1976 * @type: the section type value 1977 * @size: the size of the section to reserve (in bytes) 1978 * 1979 * Reserves memory in the buffer for a section's content and updates the 1980 * buffers' status accordingly. This routine returns a pointer to the first 1981 * byte of the section start within the buffer, which is used to fill in the 1982 * section contents. 1983 * Note: all package contents must be in Little Endian form. 1984 */ 1985 static void * 1986 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 1987 { 1988 struct ice_buf_hdr *buf; 1989 u16 sect_count; 1990 u16 data_end; 1991 1992 if (!bld || !type || !size) 1993 return NULL; 1994 1995 buf = (struct ice_buf_hdr *)&bld->buf; 1996 1997 /* check for enough space left in buffer */ 1998 data_end = LE16_TO_CPU(buf->data_end); 1999 2000 /* section start must align on 4 byte boundary */ 2001 data_end = ICE_ALIGN(data_end, 4); 2002 2003 if ((data_end + size) > ICE_MAX_S_DATA_END) 2004 return NULL; 2005 2006 /* check for more available section table entries */ 2007 sect_count = LE16_TO_CPU(buf->section_count); 2008 if (sect_count < bld->reserved_section_table_entries) { 2009 void *section_ptr = ((u8 *)buf) + data_end; 2010 2011 buf->section_entry[sect_count].offset = CPU_TO_LE16(data_end); 2012 buf->section_entry[sect_count].size = CPU_TO_LE16(size); 2013 buf->section_entry[sect_count].type = CPU_TO_LE32(type); 2014 2015 data_end += size; 2016 buf->data_end = CPU_TO_LE16(data_end); 2017 2018 buf->section_count = CPU_TO_LE16(sect_count + 1); 2019 return section_ptr; 2020 } 2021 2022 /* no free section table entries */ 2023 return NULL; 2024 } 2025 2026 /** 2027 * ice_pkg_buf_alloc_single_section 2028 * @hw: pointer to the HW structure 2029 * @type: the section type value 2030 * @size: the size of the section to reserve (in bytes) 2031 * @section: returns pointer to the section 2032 * 2033 * Allocates a package buffer with a single section. 2034 * Note: all package contents must be in Little Endian form. 2035 */ 2036 struct ice_buf_build * 2037 ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size, 2038 void **section) 2039 { 2040 struct ice_buf_build *buf; 2041 2042 if (!section) 2043 return NULL; 2044 2045 buf = ice_pkg_buf_alloc(hw); 2046 if (!buf) 2047 return NULL; 2048 2049 if (ice_pkg_buf_reserve_section(buf, 1)) 2050 goto ice_pkg_buf_alloc_single_section_err; 2051 2052 *section = ice_pkg_buf_alloc_section(buf, type, size); 2053 if (!*section) 2054 goto ice_pkg_buf_alloc_single_section_err; 2055 2056 return buf; 2057 2058 ice_pkg_buf_alloc_single_section_err: 2059 ice_pkg_buf_free(hw, buf); 2060 return NULL; 2061 } 2062 2063 /** 2064 * ice_pkg_buf_unreserve_section 2065 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2066 * @count: the number of sections to unreserve 2067 * 2068 * Unreserves one or more section table entries in a package buffer, releasing 2069 * space that can be used for section data. This routine can be called 2070 * multiple times as long as they are made before calling 2071 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 2072 * is called once, the number of sections that can be allocated will not be able 2073 * to be increased; not using all reserved sections is fine, but this will 2074 * result in some wasted space in the buffer. 2075 * Note: all package contents must be in Little Endian form. 2076 */ 2077 enum ice_status 2078 ice_pkg_buf_unreserve_section(struct ice_buf_build *bld, u16 count) 2079 { 2080 struct ice_buf_hdr *buf; 2081 u16 section_count; 2082 u16 data_end; 2083 2084 if (!bld) 2085 return ICE_ERR_PARAM; 2086 2087 buf = (struct ice_buf_hdr *)&bld->buf; 2088 2089 /* already an active section, can't decrease table size */ 2090 section_count = LE16_TO_CPU(buf->section_count); 2091 if (section_count > 0) 2092 return ICE_ERR_CFG; 2093 2094 if (count > bld->reserved_section_table_entries) 2095 return ICE_ERR_CFG; 2096 bld->reserved_section_table_entries -= count; 2097 2098 data_end = LE16_TO_CPU(buf->data_end) - 2099 FLEX_ARRAY_SIZE(buf, section_entry, count); 2100 buf->data_end = CPU_TO_LE16(data_end); 2101 2102 return ICE_SUCCESS; 2103 } 2104 2105 /** 2106 * ice_pkg_buf_get_free_space 2107 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2108 * 2109 * Returns the number of free bytes remaining in the buffer. 2110 * Note: all package contents must be in Little Endian form. 2111 */ 2112 u16 ice_pkg_buf_get_free_space(struct ice_buf_build *bld) 2113 { 2114 struct ice_buf_hdr *buf; 2115 2116 if (!bld) 2117 return 0; 2118 2119 buf = (struct ice_buf_hdr *)&bld->buf; 2120 return ICE_MAX_S_DATA_END - LE16_TO_CPU(buf->data_end); 2121 } 2122 2123 /** 2124 * ice_pkg_buf_get_active_sections 2125 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2126 * 2127 * Returns the number of active sections. Before using the package buffer 2128 * in an update package command, the caller should make sure that there is at 2129 * least one active section - otherwise, the buffer is not legal and should 2130 * not be used. 2131 * Note: all package contents must be in Little Endian form. 2132 */ 2133 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 2134 { 2135 struct ice_buf_hdr *buf; 2136 2137 if (!bld) 2138 return 0; 2139 2140 buf = (struct ice_buf_hdr *)&bld->buf; 2141 return LE16_TO_CPU(buf->section_count); 2142 } 2143 2144 /** 2145 * ice_pkg_buf 2146 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2147 * 2148 * Return a pointer to the buffer's header 2149 */ 2150 struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 2151 { 2152 if (!bld) 2153 return NULL; 2154 2155 return &bld->buf; 2156 } 2157 2158 /** 2159 * ice_tunnel_port_in_use_hlpr - helper function to determine tunnel usage 2160 * @hw: pointer to the HW structure 2161 * @port: port to search for 2162 * @index: optionally returns index 2163 * 2164 * Returns whether a port is already in use as a tunnel, and optionally its 2165 * index 2166 */ 2167 static bool ice_tunnel_port_in_use_hlpr(struct ice_hw *hw, u16 port, u16 *index) 2168 { 2169 u16 i; 2170 2171 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2172 if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) { 2173 if (index) 2174 *index = i; 2175 return true; 2176 } 2177 2178 return false; 2179 } 2180 2181 /** 2182 * ice_tunnel_port_in_use 2183 * @hw: pointer to the HW structure 2184 * @port: port to search for 2185 * @index: optionally returns index 2186 * 2187 * Returns whether a port is already in use as a tunnel, and optionally its 2188 * index 2189 */ 2190 bool ice_tunnel_port_in_use(struct ice_hw *hw, u16 port, u16 *index) 2191 { 2192 bool res; 2193 2194 ice_acquire_lock(&hw->tnl_lock); 2195 res = ice_tunnel_port_in_use_hlpr(hw, port, index); 2196 ice_release_lock(&hw->tnl_lock); 2197 2198 return res; 2199 } 2200 2201 /** 2202 * ice_tunnel_get_type 2203 * @hw: pointer to the HW structure 2204 * @port: port to search for 2205 * @type: returns tunnel index 2206 * 2207 * For a given port number, will return the type of tunnel. 2208 */ 2209 bool 2210 ice_tunnel_get_type(struct ice_hw *hw, u16 port, enum ice_tunnel_type *type) 2211 { 2212 bool res = false; 2213 u16 i; 2214 2215 ice_acquire_lock(&hw->tnl_lock); 2216 2217 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2218 if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) { 2219 *type = hw->tnl.tbl[i].type; 2220 res = true; 2221 break; 2222 } 2223 2224 ice_release_lock(&hw->tnl_lock); 2225 2226 return res; 2227 } 2228 2229 /** 2230 * ice_find_free_tunnel_entry 2231 * @hw: pointer to the HW structure 2232 * @type: tunnel type 2233 * @index: optionally returns index 2234 * 2235 * Returns whether there is a free tunnel entry, and optionally its index 2236 */ 2237 static bool 2238 ice_find_free_tunnel_entry(struct ice_hw *hw, enum ice_tunnel_type type, 2239 u16 *index) 2240 { 2241 u16 i; 2242 2243 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2244 if (hw->tnl.tbl[i].valid && !hw->tnl.tbl[i].in_use && 2245 hw->tnl.tbl[i].type == type) { 2246 if (index) 2247 *index = i; 2248 return true; 2249 } 2250 2251 return false; 2252 } 2253 2254 /** 2255 * ice_get_open_tunnel_port - retrieve an open tunnel port 2256 * @hw: pointer to the HW structure 2257 * @type: tunnel type (TNL_ALL will return any open port) 2258 * @port: returns open port 2259 */ 2260 bool 2261 ice_get_open_tunnel_port(struct ice_hw *hw, enum ice_tunnel_type type, 2262 u16 *port) 2263 { 2264 bool res = false; 2265 u16 i; 2266 2267 ice_acquire_lock(&hw->tnl_lock); 2268 2269 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2270 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use && 2271 (type == TNL_ALL || hw->tnl.tbl[i].type == type)) { 2272 *port = hw->tnl.tbl[i].port; 2273 res = true; 2274 break; 2275 } 2276 2277 ice_release_lock(&hw->tnl_lock); 2278 2279 return res; 2280 } 2281 2282 /** 2283 * ice_create_tunnel 2284 * @hw: pointer to the HW structure 2285 * @type: type of tunnel 2286 * @port: port of tunnel to create 2287 * 2288 * Create a tunnel by updating the parse graph in the parser. We do that by 2289 * creating a package buffer with the tunnel info and issuing an update package 2290 * command. 2291 */ 2292 enum ice_status 2293 ice_create_tunnel(struct ice_hw *hw, enum ice_tunnel_type type, u16 port) 2294 { 2295 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2296 enum ice_status status = ICE_ERR_MAX_LIMIT; 2297 struct ice_buf_build *bld; 2298 u16 index; 2299 2300 ice_acquire_lock(&hw->tnl_lock); 2301 2302 if (ice_tunnel_port_in_use_hlpr(hw, port, &index)) { 2303 hw->tnl.tbl[index].ref++; 2304 status = ICE_SUCCESS; 2305 goto ice_create_tunnel_end; 2306 } 2307 2308 if (!ice_find_free_tunnel_entry(hw, type, &index)) { 2309 status = ICE_ERR_OUT_OF_RANGE; 2310 goto ice_create_tunnel_end; 2311 } 2312 2313 bld = ice_pkg_buf_alloc(hw); 2314 if (!bld) { 2315 status = ICE_ERR_NO_MEMORY; 2316 goto ice_create_tunnel_end; 2317 } 2318 2319 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2320 if (ice_pkg_buf_reserve_section(bld, 2)) 2321 goto ice_create_tunnel_err; 2322 2323 sect_rx = (struct ice_boost_tcam_section *) 2324 ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2325 ice_struct_size(sect_rx, tcam, 1)); 2326 if (!sect_rx) 2327 goto ice_create_tunnel_err; 2328 sect_rx->count = CPU_TO_LE16(1); 2329 2330 sect_tx = (struct ice_boost_tcam_section *) 2331 ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2332 ice_struct_size(sect_tx, tcam, 1)); 2333 if (!sect_tx) 2334 goto ice_create_tunnel_err; 2335 sect_tx->count = CPU_TO_LE16(1); 2336 2337 /* copy original boost entry to update package buffer */ 2338 ice_memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 2339 sizeof(*sect_rx->tcam), ICE_NONDMA_TO_NONDMA); 2340 2341 /* over-write the never-match dest port key bits with the encoded port 2342 * bits 2343 */ 2344 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 2345 (u8 *)&port, NULL, NULL, NULL, 2346 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 2347 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 2348 2349 /* exact copy of entry to Tx section entry */ 2350 ice_memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam), 2351 ICE_NONDMA_TO_NONDMA); 2352 2353 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2354 if (!status) { 2355 hw->tnl.tbl[index].port = port; 2356 hw->tnl.tbl[index].in_use = true; 2357 hw->tnl.tbl[index].ref = 1; 2358 } 2359 2360 ice_create_tunnel_err: 2361 ice_pkg_buf_free(hw, bld); 2362 2363 ice_create_tunnel_end: 2364 ice_release_lock(&hw->tnl_lock); 2365 2366 return status; 2367 } 2368 2369 /** 2370 * ice_destroy_tunnel 2371 * @hw: pointer to the HW structure 2372 * @port: port of tunnel to destroy (ignored if the all parameter is true) 2373 * @all: flag that states to destroy all tunnels 2374 * 2375 * Destroys a tunnel or all tunnels by creating an update package buffer 2376 * targeting the specific updates requested and then performing an update 2377 * package. 2378 */ 2379 enum ice_status ice_destroy_tunnel(struct ice_hw *hw, u16 port, bool all) 2380 { 2381 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2382 enum ice_status status = ICE_ERR_MAX_LIMIT; 2383 struct ice_buf_build *bld; 2384 u16 count = 0; 2385 u16 index; 2386 u16 size; 2387 u16 i, j; 2388 2389 ice_acquire_lock(&hw->tnl_lock); 2390 2391 if (!all && ice_tunnel_port_in_use_hlpr(hw, port, &index)) 2392 if (hw->tnl.tbl[index].ref > 1) { 2393 hw->tnl.tbl[index].ref--; 2394 status = ICE_SUCCESS; 2395 goto ice_destroy_tunnel_end; 2396 } 2397 2398 /* determine count */ 2399 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2400 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use && 2401 (all || hw->tnl.tbl[i].port == port)) 2402 count++; 2403 2404 if (!count) { 2405 status = ICE_ERR_PARAM; 2406 goto ice_destroy_tunnel_end; 2407 } 2408 2409 /* size of section - there is at least one entry */ 2410 size = ice_struct_size(sect_rx, tcam, count); 2411 2412 bld = ice_pkg_buf_alloc(hw); 2413 if (!bld) { 2414 status = ICE_ERR_NO_MEMORY; 2415 goto ice_destroy_tunnel_end; 2416 } 2417 2418 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2419 if (ice_pkg_buf_reserve_section(bld, 2)) 2420 goto ice_destroy_tunnel_err; 2421 2422 sect_rx = (struct ice_boost_tcam_section *) 2423 ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2424 size); 2425 if (!sect_rx) 2426 goto ice_destroy_tunnel_err; 2427 sect_rx->count = CPU_TO_LE16(count); 2428 2429 sect_tx = (struct ice_boost_tcam_section *) 2430 ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2431 size); 2432 if (!sect_tx) 2433 goto ice_destroy_tunnel_err; 2434 sect_tx->count = CPU_TO_LE16(count); 2435 2436 /* copy original boost entry to update package buffer, one copy to Rx 2437 * section, another copy to the Tx section 2438 */ 2439 for (i = 0, j = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2440 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use && 2441 (all || hw->tnl.tbl[i].port == port)) { 2442 ice_memcpy(sect_rx->tcam + j, 2443 hw->tnl.tbl[i].boost_entry, 2444 sizeof(*sect_rx->tcam), 2445 ICE_NONDMA_TO_NONDMA); 2446 ice_memcpy(sect_tx->tcam + j, 2447 hw->tnl.tbl[i].boost_entry, 2448 sizeof(*sect_tx->tcam), 2449 ICE_NONDMA_TO_NONDMA); 2450 hw->tnl.tbl[i].marked = true; 2451 j++; 2452 } 2453 2454 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2455 if (!status) 2456 for (i = 0; i < hw->tnl.count && 2457 i < ICE_TUNNEL_MAX_ENTRIES; i++) 2458 if (hw->tnl.tbl[i].marked) { 2459 hw->tnl.tbl[i].ref = 0; 2460 hw->tnl.tbl[i].port = 0; 2461 hw->tnl.tbl[i].in_use = false; 2462 hw->tnl.tbl[i].marked = false; 2463 } 2464 2465 ice_destroy_tunnel_err: 2466 ice_pkg_buf_free(hw, bld); 2467 2468 ice_destroy_tunnel_end: 2469 ice_release_lock(&hw->tnl_lock); 2470 2471 return status; 2472 } 2473 2474 /** 2475 * ice_replay_tunnels 2476 * @hw: pointer to the HW structure 2477 * 2478 * Replays all tunnels 2479 */ 2480 enum ice_status ice_replay_tunnels(struct ice_hw *hw) 2481 { 2482 enum ice_status status = ICE_SUCCESS; 2483 u16 i; 2484 2485 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 2486 2487 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) { 2488 enum ice_tunnel_type type = hw->tnl.tbl[i].type; 2489 u16 refs = hw->tnl.tbl[i].ref; 2490 u16 port = hw->tnl.tbl[i].port; 2491 2492 if (!hw->tnl.tbl[i].in_use) 2493 continue; 2494 2495 /* Replay tunnels one at a time by destroying them, then 2496 * recreating them 2497 */ 2498 hw->tnl.tbl[i].ref = 1; /* make sure to destroy in one call */ 2499 status = ice_destroy_tunnel(hw, port, false); 2500 if (status) { 2501 ice_debug(hw, ICE_DBG_PKG, "ERR: 0x%x - destroy tunnel port 0x%x\n", 2502 status, port); 2503 break; 2504 } 2505 2506 status = ice_create_tunnel(hw, type, port); 2507 if (status) { 2508 ice_debug(hw, ICE_DBG_PKG, "ERR: 0x%x - create tunnel port 0x%x\n", 2509 status, port); 2510 break; 2511 } 2512 2513 /* reset to original ref count */ 2514 hw->tnl.tbl[i].ref = refs; 2515 } 2516 2517 return status; 2518 } 2519 2520 /** 2521 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index 2522 * @hw: pointer to the hardware structure 2523 * @blk: hardware block 2524 * @prof: profile ID 2525 * @fv_idx: field vector word index 2526 * @prot: variable to receive the protocol ID 2527 * @off: variable to receive the protocol offset 2528 */ 2529 enum ice_status 2530 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx, 2531 u8 *prot, u16 *off) 2532 { 2533 struct ice_fv_word *fv_ext; 2534 2535 if (prof >= hw->blk[blk].es.count) 2536 return ICE_ERR_PARAM; 2537 2538 if (fv_idx >= hw->blk[blk].es.fvw) 2539 return ICE_ERR_PARAM; 2540 2541 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw); 2542 2543 *prot = fv_ext[fv_idx].prot_id; 2544 *off = fv_ext[fv_idx].off; 2545 2546 return ICE_SUCCESS; 2547 } 2548 2549 /* PTG Management */ 2550 2551 /** 2552 * ice_ptg_update_xlt1 - Updates packet type groups in HW via XLT1 table 2553 * @hw: pointer to the hardware structure 2554 * @blk: HW block 2555 * 2556 * This function will update the XLT1 hardware table to reflect the new 2557 * packet type group configuration. 2558 */ 2559 enum ice_status ice_ptg_update_xlt1(struct ice_hw *hw, enum ice_block blk) 2560 { 2561 struct ice_xlt1_section *sect; 2562 struct ice_buf_build *bld; 2563 enum ice_status status; 2564 u16 index; 2565 2566 bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT1), 2567 ice_struct_size(sect, value, 2568 ICE_XLT1_CNT), 2569 (void **)§); 2570 if (!bld) 2571 return ICE_ERR_NO_MEMORY; 2572 2573 sect->count = CPU_TO_LE16(ICE_XLT1_CNT); 2574 sect->offset = CPU_TO_LE16(0); 2575 for (index = 0; index < ICE_XLT1_CNT; index++) 2576 sect->value[index] = hw->blk[blk].xlt1.ptypes[index].ptg; 2577 2578 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2579 2580 ice_pkg_buf_free(hw, bld); 2581 2582 return status; 2583 } 2584 2585 /** 2586 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 2587 * @hw: pointer to the hardware structure 2588 * @blk: HW block 2589 * @ptype: the ptype to search for 2590 * @ptg: pointer to variable that receives the PTG 2591 * 2592 * This function will search the PTGs for a particular ptype, returning the 2593 * PTG ID that contains it through the PTG parameter, with the value of 2594 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 2595 */ 2596 static enum ice_status 2597 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 2598 { 2599 if (ptype >= ICE_XLT1_CNT || !ptg) 2600 return ICE_ERR_PARAM; 2601 2602 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 2603 return ICE_SUCCESS; 2604 } 2605 2606 /** 2607 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 2608 * @hw: pointer to the hardware structure 2609 * @blk: HW block 2610 * @ptg: the PTG to allocate 2611 * 2612 * This function allocates a given packet type group ID specified by the PTG 2613 * parameter. 2614 */ 2615 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 2616 { 2617 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 2618 } 2619 2620 /** 2621 * ice_ptg_free - Frees a packet type group 2622 * @hw: pointer to the hardware structure 2623 * @blk: HW block 2624 * @ptg: the PTG ID to free 2625 * 2626 * This function frees a packet type group, and returns all the current ptypes 2627 * within it to the default PTG. 2628 */ 2629 void ice_ptg_free(struct ice_hw *hw, enum ice_block blk, u8 ptg) 2630 { 2631 struct ice_ptg_ptype *p, *temp; 2632 2633 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = false; 2634 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2635 while (p) { 2636 p->ptg = ICE_DEFAULT_PTG; 2637 temp = p->next_ptype; 2638 p->next_ptype = NULL; 2639 p = temp; 2640 } 2641 2642 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = NULL; 2643 } 2644 2645 /** 2646 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 2647 * @hw: pointer to the hardware structure 2648 * @blk: HW block 2649 * @ptype: the ptype to remove 2650 * @ptg: the PTG to remove the ptype from 2651 * 2652 * This function will remove the ptype from the specific PTG, and move it to 2653 * the default PTG (ICE_DEFAULT_PTG). 2654 */ 2655 static enum ice_status 2656 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2657 { 2658 struct ice_ptg_ptype **ch; 2659 struct ice_ptg_ptype *p; 2660 2661 if (ptype > ICE_XLT1_CNT - 1) 2662 return ICE_ERR_PARAM; 2663 2664 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 2665 return ICE_ERR_DOES_NOT_EXIST; 2666 2667 /* Should not happen if .in_use is set, bad config */ 2668 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 2669 return ICE_ERR_CFG; 2670 2671 /* find the ptype within this PTG, and bypass the link over it */ 2672 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2673 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2674 while (p) { 2675 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 2676 *ch = p->next_ptype; 2677 break; 2678 } 2679 2680 ch = &p->next_ptype; 2681 p = p->next_ptype; 2682 } 2683 2684 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 2685 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 2686 2687 return ICE_SUCCESS; 2688 } 2689 2690 /** 2691 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 2692 * @hw: pointer to the hardware structure 2693 * @blk: HW block 2694 * @ptype: the ptype to add or move 2695 * @ptg: the PTG to add or move the ptype to 2696 * 2697 * This function will either add or move a ptype to a particular PTG depending 2698 * on if the ptype is already part of another group. Note that using a 2699 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 2700 * default PTG. 2701 */ 2702 static enum ice_status 2703 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2704 { 2705 enum ice_status status; 2706 u8 original_ptg; 2707 2708 if (ptype > ICE_XLT1_CNT - 1) 2709 return ICE_ERR_PARAM; 2710 2711 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 2712 return ICE_ERR_DOES_NOT_EXIST; 2713 2714 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 2715 if (status) 2716 return status; 2717 2718 /* Is ptype already in the correct PTG? */ 2719 if (original_ptg == ptg) 2720 return ICE_SUCCESS; 2721 2722 /* Remove from original PTG and move back to the default PTG */ 2723 if (original_ptg != ICE_DEFAULT_PTG) 2724 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 2725 2726 /* Moving to default PTG? Then we're done with this request */ 2727 if (ptg == ICE_DEFAULT_PTG) 2728 return ICE_SUCCESS; 2729 2730 /* Add ptype to PTG at beginning of list */ 2731 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 2732 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2733 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 2734 &hw->blk[blk].xlt1.ptypes[ptype]; 2735 2736 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 2737 hw->blk[blk].xlt1.t[ptype] = ptg; 2738 2739 return ICE_SUCCESS; 2740 } 2741 2742 /* Block / table size info */ 2743 struct ice_blk_size_details { 2744 u16 xlt1; /* # XLT1 entries */ 2745 u16 xlt2; /* # XLT2 entries */ 2746 u16 prof_tcam; /* # profile ID TCAM entries */ 2747 u16 prof_id; /* # profile IDs */ 2748 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 2749 u16 prof_redir; /* # profile redirection entries */ 2750 u16 es; /* # extraction sequence entries */ 2751 u16 fvw; /* # field vector words */ 2752 u8 overwrite; /* overwrite existing entries allowed */ 2753 u8 reverse; /* reverse FV order */ 2754 }; 2755 2756 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 2757 /** 2758 * Table Definitions 2759 * XLT1 - Number of entries in XLT1 table 2760 * XLT2 - Number of entries in XLT2 table 2761 * TCAM - Number of entries Profile ID TCAM table 2762 * CDID - Control Domain ID of the hardware block 2763 * PRED - Number of entries in the Profile Redirection Table 2764 * FV - Number of entries in the Field Vector 2765 * FVW - Width (in WORDs) of the Field Vector 2766 * OVR - Overwrite existing table entries 2767 * REV - Reverse FV 2768 */ 2769 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 2770 /* Overwrite , Reverse FV */ 2771 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 2772 false, false }, 2773 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 2774 false, false }, 2775 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2776 false, true }, 2777 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2778 true, true }, 2779 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 2780 false, false }, 2781 }; 2782 2783 enum ice_sid_all { 2784 ICE_SID_XLT1_OFF = 0, 2785 ICE_SID_XLT2_OFF, 2786 ICE_SID_PR_OFF, 2787 ICE_SID_PR_REDIR_OFF, 2788 ICE_SID_ES_OFF, 2789 ICE_SID_OFF_COUNT, 2790 }; 2791 2792 /* Characteristic handling */ 2793 2794 /** 2795 * ice_match_prop_lst - determine if properties of two lists match 2796 * @list1: first properties list 2797 * @list2: second properties list 2798 * 2799 * Count, cookies and the order must match in order to be considered equivalent. 2800 */ 2801 static bool 2802 ice_match_prop_lst(struct LIST_HEAD_TYPE *list1, struct LIST_HEAD_TYPE *list2) 2803 { 2804 struct ice_vsig_prof *tmp1; 2805 struct ice_vsig_prof *tmp2; 2806 u16 chk_count = 0; 2807 u16 count = 0; 2808 2809 /* compare counts */ 2810 LIST_FOR_EACH_ENTRY(tmp1, list1, ice_vsig_prof, list) 2811 count++; 2812 LIST_FOR_EACH_ENTRY(tmp2, list2, ice_vsig_prof, list) 2813 chk_count++; 2814 /* cppcheck-suppress knownConditionTrueFalse */ 2815 if (!count || count != chk_count) 2816 return false; 2817 2818 tmp1 = LIST_FIRST_ENTRY(list1, struct ice_vsig_prof, list); 2819 tmp2 = LIST_FIRST_ENTRY(list2, struct ice_vsig_prof, list); 2820 2821 /* profile cookies must compare, and in the exact same order to take 2822 * into account priority 2823 */ 2824 while (count--) { 2825 if (tmp2->profile_cookie != tmp1->profile_cookie) 2826 return false; 2827 2828 tmp1 = LIST_NEXT_ENTRY(tmp1, struct ice_vsig_prof, list); 2829 tmp2 = LIST_NEXT_ENTRY(tmp2, struct ice_vsig_prof, list); 2830 } 2831 2832 return true; 2833 } 2834 2835 /* VSIG Management */ 2836 2837 /** 2838 * ice_vsig_update_xlt2_sect - update one section of XLT2 table 2839 * @hw: pointer to the hardware structure 2840 * @blk: HW block 2841 * @vsi: HW VSI number to program 2842 * @vsig: VSIG for the VSI 2843 * 2844 * This function will update the XLT2 hardware table with the input VSI 2845 * group configuration. 2846 */ 2847 static enum ice_status 2848 ice_vsig_update_xlt2_sect(struct ice_hw *hw, enum ice_block blk, u16 vsi, 2849 u16 vsig) 2850 { 2851 struct ice_xlt2_section *sect; 2852 struct ice_buf_build *bld; 2853 enum ice_status status; 2854 2855 bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT2), 2856 ice_struct_size(sect, value, 1), 2857 (void **)§); 2858 if (!bld) 2859 return ICE_ERR_NO_MEMORY; 2860 2861 sect->count = CPU_TO_LE16(1); 2862 sect->offset = CPU_TO_LE16(vsi); 2863 sect->value[0] = CPU_TO_LE16(vsig); 2864 2865 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2866 2867 ice_pkg_buf_free(hw, bld); 2868 2869 return status; 2870 } 2871 2872 /** 2873 * ice_vsig_update_xlt2 - update XLT2 table with VSIG configuration 2874 * @hw: pointer to the hardware structure 2875 * @blk: HW block 2876 * 2877 * This function will update the XLT2 hardware table with the input VSI 2878 * group configuration of used vsis. 2879 */ 2880 enum ice_status ice_vsig_update_xlt2(struct ice_hw *hw, enum ice_block blk) 2881 { 2882 u16 vsi; 2883 2884 for (vsi = 0; vsi < ICE_MAX_VSI; vsi++) { 2885 /* update only vsis that have been changed */ 2886 if (hw->blk[blk].xlt2.vsis[vsi].changed) { 2887 enum ice_status status; 2888 u16 vsig; 2889 2890 vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2891 status = ice_vsig_update_xlt2_sect(hw, blk, vsi, vsig); 2892 if (status) 2893 return status; 2894 2895 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 2896 } 2897 } 2898 2899 return ICE_SUCCESS; 2900 } 2901 2902 /** 2903 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 2904 * @hw: pointer to the hardware structure 2905 * @blk: HW block 2906 * @vsi: VSI of interest 2907 * @vsig: pointer to receive the VSI group 2908 * 2909 * This function will lookup the VSI entry in the XLT2 list and return 2910 * the VSI group its associated with. 2911 */ 2912 enum ice_status 2913 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 2914 { 2915 if (!vsig || vsi >= ICE_MAX_VSI) 2916 return ICE_ERR_PARAM; 2917 2918 /* As long as there's a default or valid VSIG associated with the input 2919 * VSI, the functions returns a success. Any handling of VSIG will be 2920 * done by the following add, update or remove functions. 2921 */ 2922 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2923 2924 return ICE_SUCCESS; 2925 } 2926 2927 /** 2928 * ice_vsig_alloc_val - allocate a new VSIG by value 2929 * @hw: pointer to the hardware structure 2930 * @blk: HW block 2931 * @vsig: the VSIG to allocate 2932 * 2933 * This function will allocate a given VSIG specified by the VSIG parameter. 2934 */ 2935 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2936 { 2937 u16 idx = vsig & ICE_VSIG_IDX_M; 2938 2939 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 2940 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2941 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 2942 } 2943 2944 return ICE_VSIG_VALUE(idx, hw->pf_id); 2945 } 2946 2947 /** 2948 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 2949 * @hw: pointer to the hardware structure 2950 * @blk: HW block 2951 * 2952 * This function will iterate through the VSIG list and mark the first 2953 * unused entry for the new VSIG entry as used and return that value. 2954 */ 2955 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 2956 { 2957 u16 i; 2958 2959 for (i = 1; i < ICE_MAX_VSIGS; i++) 2960 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2961 return ice_vsig_alloc_val(hw, blk, i); 2962 2963 return ICE_DEFAULT_VSIG; 2964 } 2965 2966 /** 2967 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 2968 * @hw: pointer to the hardware structure 2969 * @blk: HW block 2970 * @chs: characteristic list 2971 * @vsig: returns the VSIG with the matching profiles, if found 2972 * 2973 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 2974 * a group have the same characteristic set. To check if there exists a VSIG 2975 * which has the same characteristics as the input characteristics; this 2976 * function will iterate through the XLT2 list and return the VSIG that has a 2977 * matching configuration. In order to make sure that priorities are accounted 2978 * for, the list must match exactly, including the order in which the 2979 * characteristics are listed. 2980 */ 2981 static enum ice_status 2982 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 2983 struct LIST_HEAD_TYPE *chs, u16 *vsig) 2984 { 2985 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 2986 u16 i; 2987 2988 for (i = 0; i < xlt2->count; i++) 2989 if (xlt2->vsig_tbl[i].in_use && 2990 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 2991 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 2992 return ICE_SUCCESS; 2993 } 2994 2995 return ICE_ERR_DOES_NOT_EXIST; 2996 } 2997 2998 /** 2999 * ice_vsig_free - free VSI group 3000 * @hw: pointer to the hardware structure 3001 * @blk: HW block 3002 * @vsig: VSIG to remove 3003 * 3004 * The function will remove all VSIs associated with the input VSIG and move 3005 * them to the DEFAULT_VSIG and mark the VSIG available. 3006 */ 3007 static enum ice_status 3008 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 3009 { 3010 struct ice_vsig_prof *dtmp, *del; 3011 struct ice_vsig_vsi *vsi_cur; 3012 u16 idx; 3013 3014 idx = vsig & ICE_VSIG_IDX_M; 3015 if (idx >= ICE_MAX_VSIGS) 3016 return ICE_ERR_PARAM; 3017 3018 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 3019 return ICE_ERR_DOES_NOT_EXIST; 3020 3021 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 3022 3023 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3024 /* If the VSIG has at least 1 VSI then iterate through the 3025 * list and remove the VSIs before deleting the group. 3026 */ 3027 if (vsi_cur) { 3028 /* remove all vsis associated with this VSIG XLT2 entry */ 3029 do { 3030 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 3031 3032 vsi_cur->vsig = ICE_DEFAULT_VSIG; 3033 vsi_cur->changed = 1; 3034 vsi_cur->next_vsi = NULL; 3035 vsi_cur = tmp; 3036 } while (vsi_cur); 3037 3038 /* NULL terminate head of VSI list */ 3039 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 3040 } 3041 3042 /* free characteristic list */ 3043 LIST_FOR_EACH_ENTRY_SAFE(del, dtmp, 3044 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3045 ice_vsig_prof, list) { 3046 LIST_DEL(&del->list); 3047 ice_free(hw, del); 3048 } 3049 3050 /* if VSIG characteristic list was cleared for reset 3051 * re-initialize the list head 3052 */ 3053 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 3054 3055 return ICE_SUCCESS; 3056 } 3057 3058 /** 3059 * ice_vsig_remove_vsi - remove VSI from VSIG 3060 * @hw: pointer to the hardware structure 3061 * @blk: HW block 3062 * @vsi: VSI to remove 3063 * @vsig: VSI group to remove from 3064 * 3065 * The function will remove the input VSI from its VSI group and move it 3066 * to the DEFAULT_VSIG. 3067 */ 3068 static enum ice_status 3069 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 3070 { 3071 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 3072 u16 idx; 3073 3074 idx = vsig & ICE_VSIG_IDX_M; 3075 3076 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 3077 return ICE_ERR_PARAM; 3078 3079 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 3080 return ICE_ERR_DOES_NOT_EXIST; 3081 3082 /* entry already in default VSIG, don't have to remove */ 3083 if (idx == ICE_DEFAULT_VSIG) 3084 return ICE_SUCCESS; 3085 3086 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3087 if (!(*vsi_head)) 3088 return ICE_ERR_CFG; 3089 3090 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 3091 vsi_cur = (*vsi_head); 3092 3093 /* iterate the VSI list, skip over the entry to be removed */ 3094 while (vsi_cur) { 3095 if (vsi_tgt == vsi_cur) { 3096 (*vsi_head) = vsi_cur->next_vsi; 3097 break; 3098 } 3099 vsi_head = &vsi_cur->next_vsi; 3100 vsi_cur = vsi_cur->next_vsi; 3101 } 3102 3103 /* verify if VSI was removed from group list */ 3104 if (!vsi_cur) 3105 return ICE_ERR_DOES_NOT_EXIST; 3106 3107 vsi_cur->vsig = ICE_DEFAULT_VSIG; 3108 vsi_cur->changed = 1; 3109 vsi_cur->next_vsi = NULL; 3110 3111 return ICE_SUCCESS; 3112 } 3113 3114 /** 3115 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 3116 * @hw: pointer to the hardware structure 3117 * @blk: HW block 3118 * @vsi: VSI to move 3119 * @vsig: destination VSI group 3120 * 3121 * This function will move or add the input VSI to the target VSIG. 3122 * The function will find the original VSIG the VSI belongs to and 3123 * move the entry to the DEFAULT_VSIG, update the original VSIG and 3124 * then move entry to the new VSIG. 3125 */ 3126 static enum ice_status 3127 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 3128 { 3129 struct ice_vsig_vsi *tmp; 3130 enum ice_status status; 3131 u16 orig_vsig, idx; 3132 3133 idx = vsig & ICE_VSIG_IDX_M; 3134 3135 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 3136 return ICE_ERR_PARAM; 3137 3138 /* if VSIG not in use and VSIG is not default type this VSIG 3139 * doesn't exist. 3140 */ 3141 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 3142 vsig != ICE_DEFAULT_VSIG) 3143 return ICE_ERR_DOES_NOT_EXIST; 3144 3145 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 3146 if (status) 3147 return status; 3148 3149 /* no update required if vsigs match */ 3150 if (orig_vsig == vsig) 3151 return ICE_SUCCESS; 3152 3153 if (orig_vsig != ICE_DEFAULT_VSIG) { 3154 /* remove entry from orig_vsig and add to default VSIG */ 3155 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 3156 if (status) 3157 return status; 3158 } 3159 3160 if (idx == ICE_DEFAULT_VSIG) 3161 return ICE_SUCCESS; 3162 3163 /* Create VSI entry and add VSIG and prop_mask values */ 3164 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 3165 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 3166 3167 /* Add new entry to the head of the VSIG list */ 3168 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3169 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 3170 &hw->blk[blk].xlt2.vsis[vsi]; 3171 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 3172 hw->blk[blk].xlt2.t[vsi] = vsig; 3173 3174 return ICE_SUCCESS; 3175 } 3176 3177 /** 3178 * ice_find_prof_id - find profile ID for a given field vector 3179 * @hw: pointer to the hardware structure 3180 * @blk: HW block 3181 * @fv: field vector to search for 3182 * @prof_id: receives the profile ID 3183 */ 3184 static enum ice_status 3185 ice_find_prof_id(struct ice_hw *hw, enum ice_block blk, 3186 struct ice_fv_word *fv, u8 *prof_id) 3187 { 3188 struct ice_es *es = &hw->blk[blk].es; 3189 u16 off; 3190 u8 i; 3191 3192 for (i = 0; i < (u8)es->count; i++) { 3193 off = i * es->fvw; 3194 3195 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 3196 continue; 3197 3198 *prof_id = i; 3199 return ICE_SUCCESS; 3200 } 3201 3202 return ICE_ERR_DOES_NOT_EXIST; 3203 } 3204 3205 /** 3206 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 3207 * @blk: the block type 3208 * @rsrc_type: pointer to variable to receive the resource type 3209 */ 3210 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 3211 { 3212 switch (blk) { 3213 case ICE_BLK_RSS: 3214 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 3215 break; 3216 case ICE_BLK_PE: 3217 *rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_PROFID; 3218 break; 3219 default: 3220 return false; 3221 } 3222 return true; 3223 } 3224 3225 /** 3226 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 3227 * @blk: the block type 3228 * @rsrc_type: pointer to variable to receive the resource type 3229 */ 3230 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 3231 { 3232 switch (blk) { 3233 case ICE_BLK_RSS: 3234 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 3235 break; 3236 case ICE_BLK_PE: 3237 *rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_TCAM; 3238 break; 3239 default: 3240 return false; 3241 } 3242 return true; 3243 } 3244 3245 /** 3246 * ice_alloc_tcam_ent - allocate hardware TCAM entry 3247 * @hw: pointer to the HW struct 3248 * @blk: the block to allocate the TCAM for 3249 * @btm: true to allocate from bottom of table, false to allocate from top 3250 * @tcam_idx: pointer to variable to receive the TCAM entry 3251 * 3252 * This function allocates a new entry in a Profile ID TCAM for a specific 3253 * block. 3254 */ 3255 static enum ice_status 3256 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm, 3257 u16 *tcam_idx) 3258 { 3259 u16 res_type; 3260 3261 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 3262 return ICE_ERR_PARAM; 3263 3264 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx); 3265 } 3266 3267 /** 3268 * ice_free_tcam_ent - free hardware TCAM entry 3269 * @hw: pointer to the HW struct 3270 * @blk: the block from which to free the TCAM entry 3271 * @tcam_idx: the TCAM entry to free 3272 * 3273 * This function frees an entry in a Profile ID TCAM for a specific block. 3274 */ 3275 static enum ice_status 3276 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 3277 { 3278 u16 res_type; 3279 3280 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 3281 return ICE_ERR_PARAM; 3282 3283 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 3284 } 3285 3286 /** 3287 * ice_alloc_prof_id - allocate profile ID 3288 * @hw: pointer to the HW struct 3289 * @blk: the block to allocate the profile ID for 3290 * @prof_id: pointer to variable to receive the profile ID 3291 * 3292 * This function allocates a new profile ID, which also corresponds to a Field 3293 * Vector (Extraction Sequence) entry. 3294 */ 3295 static enum ice_status 3296 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 3297 { 3298 enum ice_status status; 3299 u16 res_type; 3300 u16 get_prof; 3301 3302 if (!ice_prof_id_rsrc_type(blk, &res_type)) 3303 return ICE_ERR_PARAM; 3304 3305 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 3306 if (!status) 3307 *prof_id = (u8)get_prof; 3308 3309 return status; 3310 } 3311 3312 /** 3313 * ice_free_prof_id - free profile ID 3314 * @hw: pointer to the HW struct 3315 * @blk: the block from which to free the profile ID 3316 * @prof_id: the profile ID to free 3317 * 3318 * This function frees a profile ID, which also corresponds to a Field Vector. 3319 */ 3320 static enum ice_status 3321 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3322 { 3323 u16 tmp_prof_id = (u16)prof_id; 3324 u16 res_type; 3325 3326 if (!ice_prof_id_rsrc_type(blk, &res_type)) 3327 return ICE_ERR_PARAM; 3328 3329 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 3330 } 3331 3332 /** 3333 * ice_prof_inc_ref - increment reference count for profile 3334 * @hw: pointer to the HW struct 3335 * @blk: the block from which to free the profile ID 3336 * @prof_id: the profile ID for which to increment the reference count 3337 */ 3338 static enum ice_status 3339 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3340 { 3341 if (prof_id > hw->blk[blk].es.count) 3342 return ICE_ERR_PARAM; 3343 3344 hw->blk[blk].es.ref_count[prof_id]++; 3345 3346 return ICE_SUCCESS; 3347 } 3348 3349 /** 3350 * ice_write_es - write an extraction sequence to hardware 3351 * @hw: pointer to the HW struct 3352 * @blk: the block in which to write the extraction sequence 3353 * @prof_id: the profile ID to write 3354 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 3355 */ 3356 static void 3357 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 3358 struct ice_fv_word *fv) 3359 { 3360 u16 off; 3361 3362 off = prof_id * hw->blk[blk].es.fvw; 3363 if (!fv) { 3364 ice_memset(&hw->blk[blk].es.t[off], 0, hw->blk[blk].es.fvw * 3365 sizeof(*fv), ICE_NONDMA_MEM); 3366 hw->blk[blk].es.written[prof_id] = false; 3367 } else { 3368 ice_memcpy(&hw->blk[blk].es.t[off], fv, hw->blk[blk].es.fvw * 3369 sizeof(*fv), ICE_NONDMA_TO_NONDMA); 3370 } 3371 } 3372 3373 /** 3374 * ice_prof_dec_ref - decrement reference count for profile 3375 * @hw: pointer to the HW struct 3376 * @blk: the block from which to free the profile ID 3377 * @prof_id: the profile ID for which to decrement the reference count 3378 */ 3379 static enum ice_status 3380 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3381 { 3382 if (prof_id > hw->blk[blk].es.count) 3383 return ICE_ERR_PARAM; 3384 3385 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 3386 if (!--hw->blk[blk].es.ref_count[prof_id]) { 3387 ice_write_es(hw, blk, prof_id, NULL); 3388 return ice_free_prof_id(hw, blk, prof_id); 3389 } 3390 } 3391 3392 return ICE_SUCCESS; 3393 } 3394 3395 /* Block / table section IDs */ 3396 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 3397 /* SWITCH */ 3398 { ICE_SID_XLT1_SW, 3399 ICE_SID_XLT2_SW, 3400 ICE_SID_PROFID_TCAM_SW, 3401 ICE_SID_PROFID_REDIR_SW, 3402 ICE_SID_FLD_VEC_SW 3403 }, 3404 3405 /* ACL */ 3406 { ICE_SID_XLT1_ACL, 3407 ICE_SID_XLT2_ACL, 3408 ICE_SID_PROFID_TCAM_ACL, 3409 ICE_SID_PROFID_REDIR_ACL, 3410 ICE_SID_FLD_VEC_ACL 3411 }, 3412 3413 /* FD */ 3414 { ICE_SID_XLT1_FD, 3415 ICE_SID_XLT2_FD, 3416 ICE_SID_PROFID_TCAM_FD, 3417 ICE_SID_PROFID_REDIR_FD, 3418 ICE_SID_FLD_VEC_FD 3419 }, 3420 3421 /* RSS */ 3422 { ICE_SID_XLT1_RSS, 3423 ICE_SID_XLT2_RSS, 3424 ICE_SID_PROFID_TCAM_RSS, 3425 ICE_SID_PROFID_REDIR_RSS, 3426 ICE_SID_FLD_VEC_RSS 3427 }, 3428 3429 /* PE */ 3430 { ICE_SID_XLT1_PE, 3431 ICE_SID_XLT2_PE, 3432 ICE_SID_PROFID_TCAM_PE, 3433 ICE_SID_PROFID_REDIR_PE, 3434 ICE_SID_FLD_VEC_PE 3435 } 3436 }; 3437 3438 /** 3439 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 3440 * @hw: pointer to the hardware structure 3441 * @blk: the HW block to initialize 3442 */ 3443 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 3444 { 3445 u16 pt; 3446 3447 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 3448 u8 ptg; 3449 3450 ptg = hw->blk[blk].xlt1.t[pt]; 3451 if (ptg != ICE_DEFAULT_PTG) { 3452 ice_ptg_alloc_val(hw, blk, ptg); 3453 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 3454 } 3455 } 3456 } 3457 3458 /** 3459 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 3460 * @hw: pointer to the hardware structure 3461 * @blk: the HW block to initialize 3462 */ 3463 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 3464 { 3465 u16 vsi; 3466 3467 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 3468 u16 vsig; 3469 3470 vsig = hw->blk[blk].xlt2.t[vsi]; 3471 if (vsig) { 3472 ice_vsig_alloc_val(hw, blk, vsig); 3473 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 3474 /* no changes at this time, since this has been 3475 * initialized from the original package 3476 */ 3477 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 3478 } 3479 } 3480 } 3481 3482 /** 3483 * ice_init_sw_db - init software database from HW tables 3484 * @hw: pointer to the hardware structure 3485 */ 3486 static void ice_init_sw_db(struct ice_hw *hw) 3487 { 3488 u16 i; 3489 3490 for (i = 0; i < ICE_BLK_COUNT; i++) { 3491 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 3492 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 3493 } 3494 } 3495 3496 /** 3497 * ice_fill_tbl - Reads content of a single table type into database 3498 * @hw: pointer to the hardware structure 3499 * @block_id: Block ID of the table to copy 3500 * @sid: Section ID of the table to copy 3501 * 3502 * Will attempt to read the entire content of a given table of a single block 3503 * into the driver database. We assume that the buffer will always 3504 * be as large or larger than the data contained in the package. If 3505 * this condition is not met, there is most likely an error in the package 3506 * contents. 3507 */ 3508 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 3509 { 3510 u32 dst_len, sect_len, offset = 0; 3511 struct ice_prof_redir_section *pr; 3512 struct ice_prof_id_section *pid; 3513 struct ice_xlt1_section *xlt1; 3514 struct ice_xlt2_section *xlt2; 3515 struct ice_sw_fv_section *es; 3516 struct ice_pkg_enum state; 3517 u8 *src, *dst; 3518 void *sect; 3519 3520 /* if the HW segment pointer is null then the first iteration of 3521 * ice_pkg_enum_section() will fail. In this case the HW tables will 3522 * not be filled and return success. 3523 */ 3524 if (!hw->seg) { 3525 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 3526 return; 3527 } 3528 3529 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 3530 3531 sect = ice_pkg_enum_section(hw->seg, &state, sid); 3532 3533 while (sect) { 3534 switch (sid) { 3535 case ICE_SID_XLT1_SW: 3536 case ICE_SID_XLT1_FD: 3537 case ICE_SID_XLT1_RSS: 3538 case ICE_SID_XLT1_ACL: 3539 case ICE_SID_XLT1_PE: 3540 xlt1 = (struct ice_xlt1_section *)sect; 3541 src = xlt1->value; 3542 sect_len = LE16_TO_CPU(xlt1->count) * 3543 sizeof(*hw->blk[block_id].xlt1.t); 3544 dst = hw->blk[block_id].xlt1.t; 3545 dst_len = hw->blk[block_id].xlt1.count * 3546 sizeof(*hw->blk[block_id].xlt1.t); 3547 break; 3548 case ICE_SID_XLT2_SW: 3549 case ICE_SID_XLT2_FD: 3550 case ICE_SID_XLT2_RSS: 3551 case ICE_SID_XLT2_ACL: 3552 case ICE_SID_XLT2_PE: 3553 xlt2 = (struct ice_xlt2_section *)sect; 3554 src = (_FORCE_ u8 *)xlt2->value; 3555 sect_len = LE16_TO_CPU(xlt2->count) * 3556 sizeof(*hw->blk[block_id].xlt2.t); 3557 dst = (u8 *)hw->blk[block_id].xlt2.t; 3558 dst_len = hw->blk[block_id].xlt2.count * 3559 sizeof(*hw->blk[block_id].xlt2.t); 3560 break; 3561 case ICE_SID_PROFID_TCAM_SW: 3562 case ICE_SID_PROFID_TCAM_FD: 3563 case ICE_SID_PROFID_TCAM_RSS: 3564 case ICE_SID_PROFID_TCAM_ACL: 3565 case ICE_SID_PROFID_TCAM_PE: 3566 pid = (struct ice_prof_id_section *)sect; 3567 src = (u8 *)pid->entry; 3568 sect_len = LE16_TO_CPU(pid->count) * 3569 sizeof(*hw->blk[block_id].prof.t); 3570 dst = (u8 *)hw->blk[block_id].prof.t; 3571 dst_len = hw->blk[block_id].prof.count * 3572 sizeof(*hw->blk[block_id].prof.t); 3573 break; 3574 case ICE_SID_PROFID_REDIR_SW: 3575 case ICE_SID_PROFID_REDIR_FD: 3576 case ICE_SID_PROFID_REDIR_RSS: 3577 case ICE_SID_PROFID_REDIR_ACL: 3578 case ICE_SID_PROFID_REDIR_PE: 3579 pr = (struct ice_prof_redir_section *)sect; 3580 src = pr->redir_value; 3581 sect_len = LE16_TO_CPU(pr->count) * 3582 sizeof(*hw->blk[block_id].prof_redir.t); 3583 dst = hw->blk[block_id].prof_redir.t; 3584 dst_len = hw->blk[block_id].prof_redir.count * 3585 sizeof(*hw->blk[block_id].prof_redir.t); 3586 break; 3587 case ICE_SID_FLD_VEC_SW: 3588 case ICE_SID_FLD_VEC_FD: 3589 case ICE_SID_FLD_VEC_RSS: 3590 case ICE_SID_FLD_VEC_ACL: 3591 case ICE_SID_FLD_VEC_PE: 3592 es = (struct ice_sw_fv_section *)sect; 3593 src = (u8 *)es->fv; 3594 sect_len = (u32)(LE16_TO_CPU(es->count) * 3595 hw->blk[block_id].es.fvw) * 3596 sizeof(*hw->blk[block_id].es.t); 3597 dst = (u8 *)hw->blk[block_id].es.t; 3598 dst_len = (u32)(hw->blk[block_id].es.count * 3599 hw->blk[block_id].es.fvw) * 3600 sizeof(*hw->blk[block_id].es.t); 3601 break; 3602 default: 3603 return; 3604 } 3605 3606 /* if the section offset exceeds destination length, terminate 3607 * table fill. 3608 */ 3609 if (offset > dst_len) 3610 return; 3611 3612 /* if the sum of section size and offset exceed destination size 3613 * then we are out of bounds of the HW table size for that PF. 3614 * Changing section length to fill the remaining table space 3615 * of that PF. 3616 */ 3617 if ((offset + sect_len) > dst_len) 3618 sect_len = dst_len - offset; 3619 3620 ice_memcpy(dst + offset, src, sect_len, ICE_NONDMA_TO_NONDMA); 3621 offset += sect_len; 3622 sect = ice_pkg_enum_section(NULL, &state, sid); 3623 } 3624 } 3625 3626 /** 3627 * ice_fill_blk_tbls - Read package context for tables 3628 * @hw: pointer to the hardware structure 3629 * 3630 * Reads the current package contents and populates the driver 3631 * database with the data iteratively for all advanced feature 3632 * blocks. Assume that the HW tables have been allocated. 3633 */ 3634 void ice_fill_blk_tbls(struct ice_hw *hw) 3635 { 3636 u8 i; 3637 3638 for (i = 0; i < ICE_BLK_COUNT; i++) { 3639 enum ice_block blk_id = (enum ice_block)i; 3640 3641 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 3642 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 3643 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 3644 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 3645 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 3646 } 3647 3648 ice_init_sw_db(hw); 3649 } 3650 3651 /** 3652 * ice_free_prof_map - free profile map 3653 * @hw: pointer to the hardware structure 3654 * @blk_idx: HW block index 3655 */ 3656 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 3657 { 3658 struct ice_es *es = &hw->blk[blk_idx].es; 3659 struct ice_prof_map *del, *tmp; 3660 3661 ice_acquire_lock(&es->prof_map_lock); 3662 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &es->prof_map, 3663 ice_prof_map, list) { 3664 LIST_DEL(&del->list); 3665 ice_free(hw, del); 3666 } 3667 INIT_LIST_HEAD(&es->prof_map); 3668 ice_release_lock(&es->prof_map_lock); 3669 } 3670 3671 /** 3672 * ice_free_flow_profs - free flow profile entries 3673 * @hw: pointer to the hardware structure 3674 * @blk_idx: HW block index 3675 */ 3676 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 3677 { 3678 struct ice_flow_prof *p, *tmp; 3679 3680 ice_acquire_lock(&hw->fl_profs_locks[blk_idx]); 3681 LIST_FOR_EACH_ENTRY_SAFE(p, tmp, &hw->fl_profs[blk_idx], 3682 ice_flow_prof, l_entry) { 3683 LIST_DEL(&p->l_entry); 3684 3685 ice_free(hw, p); 3686 } 3687 ice_release_lock(&hw->fl_profs_locks[blk_idx]); 3688 3689 /* if driver is in reset and tables are being cleared 3690 * re-initialize the flow profile list heads 3691 */ 3692 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3693 } 3694 3695 /** 3696 * ice_free_vsig_tbl - free complete VSIG table entries 3697 * @hw: pointer to the hardware structure 3698 * @blk: the HW block on which to free the VSIG table entries 3699 */ 3700 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 3701 { 3702 u16 i; 3703 3704 if (!hw->blk[blk].xlt2.vsig_tbl) 3705 return; 3706 3707 for (i = 1; i < ICE_MAX_VSIGS; i++) 3708 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 3709 ice_vsig_free(hw, blk, i); 3710 } 3711 3712 /** 3713 * ice_free_hw_tbls - free hardware table memory 3714 * @hw: pointer to the hardware structure 3715 */ 3716 void ice_free_hw_tbls(struct ice_hw *hw) 3717 { 3718 struct ice_rss_cfg *r, *rt; 3719 u8 i; 3720 3721 for (i = 0; i < ICE_BLK_COUNT; i++) { 3722 if (hw->blk[i].is_list_init) { 3723 struct ice_es *es = &hw->blk[i].es; 3724 3725 ice_free_prof_map(hw, i); 3726 ice_destroy_lock(&es->prof_map_lock); 3727 3728 ice_free_flow_profs(hw, i); 3729 ice_destroy_lock(&hw->fl_profs_locks[i]); 3730 3731 hw->blk[i].is_list_init = false; 3732 } 3733 ice_free_vsig_tbl(hw, (enum ice_block)i); 3734 ice_free(hw, hw->blk[i].xlt1.ptypes); 3735 ice_free(hw, hw->blk[i].xlt1.ptg_tbl); 3736 ice_free(hw, hw->blk[i].xlt1.t); 3737 ice_free(hw, hw->blk[i].xlt2.t); 3738 ice_free(hw, hw->blk[i].xlt2.vsig_tbl); 3739 ice_free(hw, hw->blk[i].xlt2.vsis); 3740 ice_free(hw, hw->blk[i].prof.t); 3741 ice_free(hw, hw->blk[i].prof_redir.t); 3742 ice_free(hw, hw->blk[i].es.t); 3743 ice_free(hw, hw->blk[i].es.ref_count); 3744 ice_free(hw, hw->blk[i].es.written); 3745 } 3746 3747 LIST_FOR_EACH_ENTRY_SAFE(r, rt, &hw->rss_list_head, 3748 ice_rss_cfg, l_entry) { 3749 LIST_DEL(&r->l_entry); 3750 ice_free(hw, r); 3751 } 3752 ice_destroy_lock(&hw->rss_locks); 3753 ice_memset(hw->blk, 0, sizeof(hw->blk), ICE_NONDMA_MEM); 3754 } 3755 3756 /** 3757 * ice_init_flow_profs - init flow profile locks and list heads 3758 * @hw: pointer to the hardware structure 3759 * @blk_idx: HW block index 3760 */ 3761 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 3762 { 3763 ice_init_lock(&hw->fl_profs_locks[blk_idx]); 3764 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3765 } 3766 3767 /** 3768 * ice_clear_hw_tbls - clear HW tables and flow profiles 3769 * @hw: pointer to the hardware structure 3770 */ 3771 void ice_clear_hw_tbls(struct ice_hw *hw) 3772 { 3773 u8 i; 3774 3775 for (i = 0; i < ICE_BLK_COUNT; i++) { 3776 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3777 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3778 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3779 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3780 struct ice_es *es = &hw->blk[i].es; 3781 3782 if (hw->blk[i].is_list_init) { 3783 ice_free_prof_map(hw, i); 3784 ice_free_flow_profs(hw, i); 3785 } 3786 3787 ice_free_vsig_tbl(hw, (enum ice_block)i); 3788 3789 ice_memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes), 3790 ICE_NONDMA_MEM); 3791 ice_memset(xlt1->ptg_tbl, 0, 3792 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl), 3793 ICE_NONDMA_MEM); 3794 ice_memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t), 3795 ICE_NONDMA_MEM); 3796 3797 ice_memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis), 3798 ICE_NONDMA_MEM); 3799 ice_memset(xlt2->vsig_tbl, 0, 3800 xlt2->count * sizeof(*xlt2->vsig_tbl), 3801 ICE_NONDMA_MEM); 3802 ice_memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t), 3803 ICE_NONDMA_MEM); 3804 3805 ice_memset(prof->t, 0, prof->count * sizeof(*prof->t), 3806 ICE_NONDMA_MEM); 3807 ice_memset(prof_redir->t, 0, 3808 prof_redir->count * sizeof(*prof_redir->t), 3809 ICE_NONDMA_MEM); 3810 3811 ice_memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw, 3812 ICE_NONDMA_MEM); 3813 ice_memset(es->ref_count, 0, es->count * sizeof(*es->ref_count), 3814 ICE_NONDMA_MEM); 3815 ice_memset(es->written, 0, es->count * sizeof(*es->written), 3816 ICE_NONDMA_MEM); 3817 } 3818 } 3819 3820 /** 3821 * ice_init_hw_tbls - init hardware table memory 3822 * @hw: pointer to the hardware structure 3823 */ 3824 enum ice_status ice_init_hw_tbls(struct ice_hw *hw) 3825 { 3826 u8 i; 3827 3828 ice_init_lock(&hw->rss_locks); 3829 INIT_LIST_HEAD(&hw->rss_list_head); 3830 for (i = 0; i < ICE_BLK_COUNT; i++) { 3831 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3832 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3833 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3834 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3835 struct ice_es *es = &hw->blk[i].es; 3836 u16 j; 3837 3838 if (hw->blk[i].is_list_init) 3839 continue; 3840 3841 ice_init_flow_profs(hw, i); 3842 ice_init_lock(&es->prof_map_lock); 3843 INIT_LIST_HEAD(&es->prof_map); 3844 hw->blk[i].is_list_init = true; 3845 3846 hw->blk[i].overwrite = blk_sizes[i].overwrite; 3847 es->reverse = blk_sizes[i].reverse; 3848 3849 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 3850 xlt1->count = blk_sizes[i].xlt1; 3851 3852 xlt1->ptypes = (struct ice_ptg_ptype *) 3853 ice_calloc(hw, xlt1->count, sizeof(*xlt1->ptypes)); 3854 3855 if (!xlt1->ptypes) 3856 goto err; 3857 3858 xlt1->ptg_tbl = (struct ice_ptg_entry *) 3859 ice_calloc(hw, ICE_MAX_PTGS, sizeof(*xlt1->ptg_tbl)); 3860 3861 if (!xlt1->ptg_tbl) 3862 goto err; 3863 3864 xlt1->t = (u8 *)ice_calloc(hw, xlt1->count, sizeof(*xlt1->t)); 3865 if (!xlt1->t) 3866 goto err; 3867 3868 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 3869 xlt2->count = blk_sizes[i].xlt2; 3870 3871 xlt2->vsis = (struct ice_vsig_vsi *) 3872 ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsis)); 3873 3874 if (!xlt2->vsis) 3875 goto err; 3876 3877 xlt2->vsig_tbl = (struct ice_vsig_entry *) 3878 ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsig_tbl)); 3879 if (!xlt2->vsig_tbl) 3880 goto err; 3881 3882 for (j = 0; j < xlt2->count; j++) 3883 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 3884 3885 xlt2->t = (u16 *)ice_calloc(hw, xlt2->count, sizeof(*xlt2->t)); 3886 if (!xlt2->t) 3887 goto err; 3888 3889 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 3890 prof->count = blk_sizes[i].prof_tcam; 3891 prof->max_prof_id = blk_sizes[i].prof_id; 3892 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 3893 prof->t = (struct ice_prof_tcam_entry *) 3894 ice_calloc(hw, prof->count, sizeof(*prof->t)); 3895 3896 if (!prof->t) 3897 goto err; 3898 3899 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 3900 prof_redir->count = blk_sizes[i].prof_redir; 3901 prof_redir->t = (u8 *)ice_calloc(hw, prof_redir->count, 3902 sizeof(*prof_redir->t)); 3903 3904 if (!prof_redir->t) 3905 goto err; 3906 3907 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 3908 es->count = blk_sizes[i].es; 3909 es->fvw = blk_sizes[i].fvw; 3910 es->t = (struct ice_fv_word *) 3911 ice_calloc(hw, (u32)(es->count * es->fvw), 3912 sizeof(*es->t)); 3913 if (!es->t) 3914 goto err; 3915 3916 es->ref_count = (u16 *) 3917 ice_calloc(hw, es->count, sizeof(*es->ref_count)); 3918 3919 if (!es->ref_count) 3920 goto err; 3921 3922 es->written = (u8 *) 3923 ice_calloc(hw, es->count, sizeof(*es->written)); 3924 3925 if (!es->written) 3926 goto err; 3927 3928 } 3929 return ICE_SUCCESS; 3930 3931 err: 3932 ice_free_hw_tbls(hw); 3933 return ICE_ERR_NO_MEMORY; 3934 } 3935 3936 /** 3937 * ice_prof_gen_key - generate profile ID key 3938 * @hw: pointer to the HW struct 3939 * @blk: the block in which to write profile ID to 3940 * @ptg: packet type group (PTG) portion of key 3941 * @vsig: VSIG portion of key 3942 * @cdid: CDID portion of key 3943 * @flags: flag portion of key 3944 * @vl_msk: valid mask 3945 * @dc_msk: don't care mask 3946 * @nm_msk: never match mask 3947 * @key: output of profile ID key 3948 */ 3949 static enum ice_status 3950 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 3951 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3952 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 3953 u8 key[ICE_TCAM_KEY_SZ]) 3954 { 3955 struct ice_prof_id_key inkey; 3956 3957 inkey.xlt1 = ptg; 3958 inkey.xlt2_cdid = CPU_TO_LE16(vsig); 3959 inkey.flags = CPU_TO_LE16(flags); 3960 3961 switch (hw->blk[blk].prof.cdid_bits) { 3962 case 0: 3963 break; 3964 case 2: 3965 #define ICE_CD_2_M 0xC000U 3966 #define ICE_CD_2_S 14 3967 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_2_M); 3968 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_2_S); 3969 break; 3970 case 4: 3971 #define ICE_CD_4_M 0xF000U 3972 #define ICE_CD_4_S 12 3973 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_4_M); 3974 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_4_S); 3975 break; 3976 case 8: 3977 #define ICE_CD_8_M 0xFF00U 3978 #define ICE_CD_8_S 16 3979 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_8_M); 3980 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_8_S); 3981 break; 3982 default: 3983 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 3984 break; 3985 } 3986 3987 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 3988 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 3989 } 3990 3991 /** 3992 * ice_tcam_write_entry - write TCAM entry 3993 * @hw: pointer to the HW struct 3994 * @blk: the block in which to write profile ID to 3995 * @idx: the entry index to write to 3996 * @prof_id: profile ID 3997 * @ptg: packet type group (PTG) portion of key 3998 * @vsig: VSIG portion of key 3999 * @cdid: CDID portion of key 4000 * @flags: flag portion of key 4001 * @vl_msk: valid mask 4002 * @dc_msk: don't care mask 4003 * @nm_msk: never match mask 4004 */ 4005 static enum ice_status 4006 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 4007 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 4008 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 4009 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 4010 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 4011 { 4012 struct ice_prof_tcam_entry; 4013 enum ice_status status; 4014 4015 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 4016 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 4017 if (!status) { 4018 hw->blk[blk].prof.t[idx].addr = CPU_TO_LE16(idx); 4019 hw->blk[blk].prof.t[idx].prof_id = prof_id; 4020 } 4021 4022 return status; 4023 } 4024 4025 /** 4026 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 4027 * @hw: pointer to the hardware structure 4028 * @blk: HW block 4029 * @vsig: VSIG to query 4030 * @refs: pointer to variable to receive the reference count 4031 */ 4032 static enum ice_status 4033 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 4034 { 4035 u16 idx = vsig & ICE_VSIG_IDX_M; 4036 struct ice_vsig_vsi *ptr; 4037 4038 *refs = 0; 4039 4040 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 4041 return ICE_ERR_DOES_NOT_EXIST; 4042 4043 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4044 while (ptr) { 4045 (*refs)++; 4046 ptr = ptr->next_vsi; 4047 } 4048 4049 return ICE_SUCCESS; 4050 } 4051 4052 /** 4053 * ice_has_prof_vsig - check to see if VSIG has a specific profile 4054 * @hw: pointer to the hardware structure 4055 * @blk: HW block 4056 * @vsig: VSIG to check against 4057 * @hdl: profile handle 4058 */ 4059 static bool 4060 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 4061 { 4062 u16 idx = vsig & ICE_VSIG_IDX_M; 4063 struct ice_vsig_prof *ent; 4064 4065 LIST_FOR_EACH_ENTRY(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4066 ice_vsig_prof, list) 4067 if (ent->profile_cookie == hdl) 4068 return true; 4069 4070 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n", 4071 vsig); 4072 return false; 4073 } 4074 4075 /** 4076 * ice_prof_bld_es - build profile ID extraction sequence changes 4077 * @hw: pointer to the HW struct 4078 * @blk: hardware block 4079 * @bld: the update package buffer build to add to 4080 * @chgs: the list of changes to make in hardware 4081 */ 4082 static enum ice_status 4083 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 4084 struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs) 4085 { 4086 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 4087 struct ice_chs_chg *tmp; 4088 4089 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) 4090 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 4091 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 4092 struct ice_pkg_es *p; 4093 u32 id; 4094 4095 id = ice_sect_id(blk, ICE_VEC_TBL); 4096 p = (struct ice_pkg_es *) 4097 ice_pkg_buf_alloc_section(bld, id, 4098 ice_struct_size(p, es, 4099 1) + 4100 vec_size - 4101 sizeof(p->es[0])); 4102 4103 if (!p) 4104 return ICE_ERR_MAX_LIMIT; 4105 4106 p->count = CPU_TO_LE16(1); 4107 p->offset = CPU_TO_LE16(tmp->prof_id); 4108 4109 ice_memcpy(p->es, &hw->blk[blk].es.t[off], vec_size, 4110 ICE_NONDMA_TO_NONDMA); 4111 } 4112 4113 return ICE_SUCCESS; 4114 } 4115 4116 /** 4117 * ice_prof_bld_tcam - build profile ID TCAM changes 4118 * @hw: pointer to the HW struct 4119 * @blk: hardware block 4120 * @bld: the update package buffer build to add to 4121 * @chgs: the list of changes to make in hardware 4122 */ 4123 static enum ice_status 4124 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 4125 struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs) 4126 { 4127 struct ice_chs_chg *tmp; 4128 4129 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) 4130 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 4131 struct ice_prof_id_section *p; 4132 u32 id; 4133 4134 id = ice_sect_id(blk, ICE_PROF_TCAM); 4135 p = (struct ice_prof_id_section *) 4136 ice_pkg_buf_alloc_section(bld, id, 4137 ice_struct_size(p, 4138 entry, 4139 1)); 4140 4141 if (!p) 4142 return ICE_ERR_MAX_LIMIT; 4143 4144 p->count = CPU_TO_LE16(1); 4145 p->entry[0].addr = CPU_TO_LE16(tmp->tcam_idx); 4146 p->entry[0].prof_id = tmp->prof_id; 4147 4148 ice_memcpy(p->entry[0].key, 4149 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 4150 sizeof(hw->blk[blk].prof.t->key), 4151 ICE_NONDMA_TO_NONDMA); 4152 } 4153 4154 return ICE_SUCCESS; 4155 } 4156 4157 /** 4158 * ice_prof_bld_xlt1 - build XLT1 changes 4159 * @blk: hardware block 4160 * @bld: the update package buffer build to add to 4161 * @chgs: the list of changes to make in hardware 4162 */ 4163 static enum ice_status 4164 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 4165 struct LIST_HEAD_TYPE *chgs) 4166 { 4167 struct ice_chs_chg *tmp; 4168 4169 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) 4170 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 4171 struct ice_xlt1_section *p; 4172 u32 id; 4173 4174 id = ice_sect_id(blk, ICE_XLT1); 4175 p = (struct ice_xlt1_section *) 4176 ice_pkg_buf_alloc_section(bld, id, 4177 ice_struct_size(p, 4178 value, 4179 1)); 4180 4181 if (!p) 4182 return ICE_ERR_MAX_LIMIT; 4183 4184 p->count = CPU_TO_LE16(1); 4185 p->offset = CPU_TO_LE16(tmp->ptype); 4186 p->value[0] = tmp->ptg; 4187 } 4188 4189 return ICE_SUCCESS; 4190 } 4191 4192 /** 4193 * ice_prof_bld_xlt2 - build XLT2 changes 4194 * @blk: hardware block 4195 * @bld: the update package buffer build to add to 4196 * @chgs: the list of changes to make in hardware 4197 */ 4198 static enum ice_status 4199 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 4200 struct LIST_HEAD_TYPE *chgs) 4201 { 4202 struct ice_chs_chg *tmp; 4203 4204 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) { 4205 struct ice_xlt2_section *p; 4206 u32 id; 4207 4208 switch (tmp->type) { 4209 case ICE_VSIG_ADD: 4210 case ICE_VSI_MOVE: 4211 case ICE_VSIG_REM: 4212 id = ice_sect_id(blk, ICE_XLT2); 4213 p = (struct ice_xlt2_section *) 4214 ice_pkg_buf_alloc_section(bld, id, 4215 ice_struct_size(p, 4216 value, 4217 1)); 4218 4219 if (!p) 4220 return ICE_ERR_MAX_LIMIT; 4221 4222 p->count = CPU_TO_LE16(1); 4223 p->offset = CPU_TO_LE16(tmp->vsi); 4224 p->value[0] = CPU_TO_LE16(tmp->vsig); 4225 break; 4226 default: 4227 break; 4228 } 4229 } 4230 4231 return ICE_SUCCESS; 4232 } 4233 4234 /** 4235 * ice_upd_prof_hw - update hardware using the change list 4236 * @hw: pointer to the HW struct 4237 * @blk: hardware block 4238 * @chgs: the list of changes to make in hardware 4239 */ 4240 static enum ice_status 4241 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 4242 struct LIST_HEAD_TYPE *chgs) 4243 { 4244 struct ice_buf_build *b; 4245 struct ice_chs_chg *tmp; 4246 enum ice_status status; 4247 u16 pkg_sects; 4248 u16 xlt1 = 0; 4249 u16 xlt2 = 0; 4250 u16 tcam = 0; 4251 u16 es = 0; 4252 u16 sects; 4253 4254 /* count number of sections we need */ 4255 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) { 4256 switch (tmp->type) { 4257 case ICE_PTG_ES_ADD: 4258 if (tmp->add_ptg) 4259 xlt1++; 4260 if (tmp->add_prof) 4261 es++; 4262 break; 4263 case ICE_TCAM_ADD: 4264 tcam++; 4265 break; 4266 case ICE_VSIG_ADD: 4267 case ICE_VSI_MOVE: 4268 case ICE_VSIG_REM: 4269 xlt2++; 4270 break; 4271 default: 4272 break; 4273 } 4274 } 4275 sects = xlt1 + xlt2 + tcam + es; 4276 4277 if (!sects) 4278 return ICE_SUCCESS; 4279 4280 /* Build update package buffer */ 4281 b = ice_pkg_buf_alloc(hw); 4282 if (!b) 4283 return ICE_ERR_NO_MEMORY; 4284 4285 status = ice_pkg_buf_reserve_section(b, sects); 4286 if (status) 4287 goto error_tmp; 4288 4289 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 4290 if (es) { 4291 status = ice_prof_bld_es(hw, blk, b, chgs); 4292 if (status) 4293 goto error_tmp; 4294 } 4295 4296 if (tcam) { 4297 status = ice_prof_bld_tcam(hw, blk, b, chgs); 4298 if (status) 4299 goto error_tmp; 4300 } 4301 4302 if (xlt1) { 4303 status = ice_prof_bld_xlt1(blk, b, chgs); 4304 if (status) 4305 goto error_tmp; 4306 } 4307 4308 if (xlt2) { 4309 status = ice_prof_bld_xlt2(blk, b, chgs); 4310 if (status) 4311 goto error_tmp; 4312 } 4313 4314 /* After package buffer build check if the section count in buffer is 4315 * non-zero and matches the number of sections detected for package 4316 * update. 4317 */ 4318 pkg_sects = ice_pkg_buf_get_active_sections(b); 4319 if (!pkg_sects || pkg_sects != sects) { 4320 status = ICE_ERR_INVAL_SIZE; 4321 goto error_tmp; 4322 } 4323 4324 /* update package */ 4325 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 4326 if (status == ICE_ERR_AQ_ERROR) 4327 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 4328 4329 error_tmp: 4330 ice_pkg_buf_free(hw, b); 4331 return status; 4332 } 4333 4334 /** 4335 * ice_add_prof - add profile 4336 * @hw: pointer to the HW struct 4337 * @blk: hardware block 4338 * @id: profile tracking ID 4339 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 4340 * @es: extraction sequence (length of array is determined by the block) 4341 * 4342 * This function registers a profile, which matches a set of PTGs with a 4343 * particular extraction sequence. While the hardware profile is allocated 4344 * it will not be written until the first call to ice_add_flow that specifies 4345 * the ID value used here. 4346 */ 4347 enum ice_status 4348 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 4349 struct ice_fv_word *es) 4350 { 4351 u32 bytes = DIVIDE_AND_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 4352 ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT); 4353 struct ice_prof_map *prof; 4354 enum ice_status status; 4355 u8 byte = 0; 4356 u8 prof_id; 4357 4358 ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT); 4359 4360 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 4361 4362 /* search for existing profile */ 4363 status = ice_find_prof_id(hw, blk, es, &prof_id); 4364 if (status) { 4365 /* allocate profile ID */ 4366 status = ice_alloc_prof_id(hw, blk, &prof_id); 4367 if (status) 4368 goto err_ice_add_prof; 4369 4370 /* and write new es */ 4371 ice_write_es(hw, blk, prof_id, es); 4372 } 4373 4374 ice_prof_inc_ref(hw, blk, prof_id); 4375 4376 /* add profile info */ 4377 4378 prof = (struct ice_prof_map *)ice_malloc(hw, sizeof(*prof)); 4379 if (!prof) 4380 goto err_ice_add_prof; 4381 4382 prof->profile_cookie = id; 4383 prof->prof_id = prof_id; 4384 prof->ptg_cnt = 0; 4385 prof->context = 0; 4386 4387 /* build list of ptgs */ 4388 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 4389 u8 bit; 4390 4391 if (!ptypes[byte]) { 4392 bytes--; 4393 byte++; 4394 continue; 4395 } 4396 4397 /* Examine 8 bits per byte */ 4398 ice_for_each_set_bit(bit, (ice_bitmap_t *)&ptypes[byte], 4399 BITS_PER_BYTE) { 4400 u16 ptype; 4401 u8 ptg; 4402 4403 ptype = byte * BITS_PER_BYTE + bit; 4404 4405 /* The package should place all ptypes in a non-zero 4406 * PTG, so the following call should never fail. 4407 */ 4408 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 4409 continue; 4410 4411 /* If PTG is already added, skip and continue */ 4412 if (ice_is_bit_set(ptgs_used, ptg)) 4413 continue; 4414 4415 ice_set_bit(ptg, ptgs_used); 4416 prof->ptg[prof->ptg_cnt] = ptg; 4417 4418 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 4419 break; 4420 } 4421 4422 bytes--; 4423 byte++; 4424 } 4425 4426 LIST_ADD(&prof->list, &hw->blk[blk].es.prof_map); 4427 status = ICE_SUCCESS; 4428 4429 err_ice_add_prof: 4430 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 4431 return status; 4432 } 4433 4434 /** 4435 * ice_search_prof_id - Search for a profile tracking ID 4436 * @hw: pointer to the HW struct 4437 * @blk: hardware block 4438 * @id: profile tracking ID 4439 * 4440 * This will search for a profile tracking ID which was previously added. 4441 * The profile map lock should be held before calling this function. 4442 */ 4443 struct ice_prof_map * 4444 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 4445 { 4446 struct ice_prof_map *entry = NULL; 4447 struct ice_prof_map *map; 4448 4449 LIST_FOR_EACH_ENTRY(map, &hw->blk[blk].es.prof_map, ice_prof_map, list) 4450 if (map->profile_cookie == id) { 4451 entry = map; 4452 break; 4453 } 4454 4455 return entry; 4456 } 4457 4458 /** 4459 * ice_set_prof_context - Set context for a given profile 4460 * @hw: pointer to the HW struct 4461 * @blk: hardware block 4462 * @id: profile tracking ID 4463 * @cntxt: context 4464 */ 4465 enum ice_status 4466 ice_set_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 cntxt) 4467 { 4468 enum ice_status status = ICE_ERR_DOES_NOT_EXIST; 4469 struct ice_prof_map *entry; 4470 4471 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 4472 entry = ice_search_prof_id(hw, blk, id); 4473 if (entry) { 4474 entry->context = cntxt; 4475 status = ICE_SUCCESS; 4476 } 4477 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 4478 return status; 4479 } 4480 4481 /** 4482 * ice_get_prof_context - Get context for a given profile 4483 * @hw: pointer to the HW struct 4484 * @blk: hardware block 4485 * @id: profile tracking ID 4486 * @cntxt: pointer to variable to receive the context 4487 */ 4488 enum ice_status 4489 ice_get_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 *cntxt) 4490 { 4491 enum ice_status status = ICE_ERR_DOES_NOT_EXIST; 4492 struct ice_prof_map *entry; 4493 4494 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 4495 entry = ice_search_prof_id(hw, blk, id); 4496 if (entry) { 4497 *cntxt = entry->context; 4498 status = ICE_SUCCESS; 4499 } 4500 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 4501 return status; 4502 } 4503 4504 /** 4505 * ice_vsig_prof_id_count - count profiles in a VSIG 4506 * @hw: pointer to the HW struct 4507 * @blk: hardware block 4508 * @vsig: VSIG to remove the profile from 4509 */ 4510 static u16 4511 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 4512 { 4513 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 4514 struct ice_vsig_prof *p; 4515 4516 LIST_FOR_EACH_ENTRY(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4517 ice_vsig_prof, list) 4518 count++; 4519 4520 return count; 4521 } 4522 4523 /** 4524 * ice_rel_tcam_idx - release a TCAM index 4525 * @hw: pointer to the HW struct 4526 * @blk: hardware block 4527 * @idx: the index to release 4528 */ 4529 static enum ice_status 4530 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 4531 { 4532 /* Masks to invoke a never match entry */ 4533 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4534 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 4535 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 4536 enum ice_status status; 4537 4538 /* write the TCAM entry */ 4539 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 4540 dc_msk, nm_msk); 4541 if (status) 4542 return status; 4543 4544 /* release the TCAM entry */ 4545 status = ice_free_tcam_ent(hw, blk, idx); 4546 4547 return status; 4548 } 4549 4550 /** 4551 * ice_rem_prof_id - remove one profile from a VSIG 4552 * @hw: pointer to the HW struct 4553 * @blk: hardware block 4554 * @prof: pointer to profile structure to remove 4555 */ 4556 static enum ice_status 4557 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 4558 struct ice_vsig_prof *prof) 4559 { 4560 enum ice_status status; 4561 u16 i; 4562 4563 for (i = 0; i < prof->tcam_count; i++) 4564 if (prof->tcam[i].in_use) { 4565 prof->tcam[i].in_use = false; 4566 status = ice_rel_tcam_idx(hw, blk, 4567 prof->tcam[i].tcam_idx); 4568 if (status) 4569 return ICE_ERR_HW_TABLE; 4570 } 4571 4572 return ICE_SUCCESS; 4573 } 4574 4575 /** 4576 * ice_rem_vsig - remove VSIG 4577 * @hw: pointer to the HW struct 4578 * @blk: hardware block 4579 * @vsig: the VSIG to remove 4580 * @chg: the change list 4581 */ 4582 static enum ice_status 4583 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4584 struct LIST_HEAD_TYPE *chg) 4585 { 4586 u16 idx = vsig & ICE_VSIG_IDX_M; 4587 struct ice_vsig_vsi *vsi_cur; 4588 struct ice_vsig_prof *d, *t; 4589 enum ice_status status; 4590 4591 /* remove TCAM entries */ 4592 LIST_FOR_EACH_ENTRY_SAFE(d, t, 4593 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4594 ice_vsig_prof, list) { 4595 status = ice_rem_prof_id(hw, blk, d); 4596 if (status) 4597 return status; 4598 4599 LIST_DEL(&d->list); 4600 ice_free(hw, d); 4601 } 4602 4603 /* Move all VSIS associated with this VSIG to the default VSIG */ 4604 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4605 /* If the VSIG has at least 1 VSI then iterate through the list 4606 * and remove the VSIs before deleting the group. 4607 */ 4608 if (vsi_cur) 4609 do { 4610 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 4611 struct ice_chs_chg *p; 4612 4613 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 4614 if (!p) 4615 return ICE_ERR_NO_MEMORY; 4616 4617 p->type = ICE_VSIG_REM; 4618 p->orig_vsig = vsig; 4619 p->vsig = ICE_DEFAULT_VSIG; 4620 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 4621 4622 LIST_ADD(&p->list_entry, chg); 4623 4624 vsi_cur = tmp; 4625 } while (vsi_cur); 4626 4627 return ice_vsig_free(hw, blk, vsig); 4628 } 4629 4630 /** 4631 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 4632 * @hw: pointer to the HW struct 4633 * @blk: hardware block 4634 * @vsig: VSIG to remove the profile from 4635 * @hdl: profile handle indicating which profile to remove 4636 * @chg: list to receive a record of changes 4637 */ 4638 static enum ice_status 4639 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4640 struct LIST_HEAD_TYPE *chg) 4641 { 4642 u16 idx = vsig & ICE_VSIG_IDX_M; 4643 struct ice_vsig_prof *p, *t; 4644 enum ice_status status; 4645 4646 LIST_FOR_EACH_ENTRY_SAFE(p, t, 4647 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4648 ice_vsig_prof, list) 4649 if (p->profile_cookie == hdl) { 4650 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 4651 /* this is the last profile, remove the VSIG */ 4652 return ice_rem_vsig(hw, blk, vsig, chg); 4653 4654 status = ice_rem_prof_id(hw, blk, p); 4655 if (!status) { 4656 LIST_DEL(&p->list); 4657 ice_free(hw, p); 4658 } 4659 return status; 4660 } 4661 4662 return ICE_ERR_DOES_NOT_EXIST; 4663 } 4664 4665 /** 4666 * ice_rem_flow_all - remove all flows with a particular profile 4667 * @hw: pointer to the HW struct 4668 * @blk: hardware block 4669 * @id: profile tracking ID 4670 */ 4671 static enum ice_status 4672 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 4673 { 4674 struct ice_chs_chg *del, *tmp; 4675 enum ice_status status; 4676 struct LIST_HEAD_TYPE chg; 4677 u16 i; 4678 4679 INIT_LIST_HEAD(&chg); 4680 4681 for (i = 1; i < ICE_MAX_VSIGS; i++) 4682 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 4683 if (ice_has_prof_vsig(hw, blk, i, id)) { 4684 status = ice_rem_prof_id_vsig(hw, blk, i, id, 4685 &chg); 4686 if (status) 4687 goto err_ice_rem_flow_all; 4688 } 4689 } 4690 4691 status = ice_upd_prof_hw(hw, blk, &chg); 4692 4693 err_ice_rem_flow_all: 4694 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) { 4695 LIST_DEL(&del->list_entry); 4696 ice_free(hw, del); 4697 } 4698 4699 return status; 4700 } 4701 4702 /** 4703 * ice_rem_prof - remove profile 4704 * @hw: pointer to the HW struct 4705 * @blk: hardware block 4706 * @id: profile tracking ID 4707 * 4708 * This will remove the profile specified by the ID parameter, which was 4709 * previously created through ice_add_prof. If any existing entries 4710 * are associated with this profile, they will be removed as well. 4711 */ 4712 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 4713 { 4714 struct ice_prof_map *pmap; 4715 enum ice_status status; 4716 4717 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 4718 4719 pmap = ice_search_prof_id(hw, blk, id); 4720 if (!pmap) { 4721 status = ICE_ERR_DOES_NOT_EXIST; 4722 goto err_ice_rem_prof; 4723 } 4724 4725 /* remove all flows with this profile */ 4726 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 4727 if (status) 4728 goto err_ice_rem_prof; 4729 4730 /* dereference profile, and possibly remove */ 4731 ice_prof_dec_ref(hw, blk, pmap->prof_id); 4732 4733 LIST_DEL(&pmap->list); 4734 ice_free(hw, pmap); 4735 4736 err_ice_rem_prof: 4737 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 4738 return status; 4739 } 4740 4741 /** 4742 * ice_get_prof - get profile 4743 * @hw: pointer to the HW struct 4744 * @blk: hardware block 4745 * @hdl: profile handle 4746 * @chg: change list 4747 */ 4748 static enum ice_status 4749 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 4750 struct LIST_HEAD_TYPE *chg) 4751 { 4752 enum ice_status status = ICE_SUCCESS; 4753 struct ice_prof_map *map; 4754 struct ice_chs_chg *p; 4755 u16 i; 4756 4757 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 4758 /* Get the details on the profile specified by the handle ID */ 4759 map = ice_search_prof_id(hw, blk, hdl); 4760 if (!map) { 4761 status = ICE_ERR_DOES_NOT_EXIST; 4762 goto err_ice_get_prof; 4763 } 4764 4765 for (i = 0; i < map->ptg_cnt; i++) 4766 if (!hw->blk[blk].es.written[map->prof_id]) { 4767 /* add ES to change list */ 4768 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 4769 if (!p) { 4770 status = ICE_ERR_NO_MEMORY; 4771 goto err_ice_get_prof; 4772 } 4773 4774 p->type = ICE_PTG_ES_ADD; 4775 p->ptype = 0; 4776 p->ptg = map->ptg[i]; 4777 p->add_ptg = 0; 4778 4779 p->add_prof = 1; 4780 p->prof_id = map->prof_id; 4781 4782 hw->blk[blk].es.written[map->prof_id] = true; 4783 4784 LIST_ADD(&p->list_entry, chg); 4785 } 4786 4787 err_ice_get_prof: 4788 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 4789 /* let caller clean up the change list */ 4790 return status; 4791 } 4792 4793 /** 4794 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 4795 * @hw: pointer to the HW struct 4796 * @blk: hardware block 4797 * @vsig: VSIG from which to copy the list 4798 * @lst: output list 4799 * 4800 * This routine makes a copy of the list of profiles in the specified VSIG. 4801 */ 4802 static enum ice_status 4803 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4804 struct LIST_HEAD_TYPE *lst) 4805 { 4806 struct ice_vsig_prof *ent1, *ent2; 4807 u16 idx = vsig & ICE_VSIG_IDX_M; 4808 4809 LIST_FOR_EACH_ENTRY(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4810 ice_vsig_prof, list) { 4811 struct ice_vsig_prof *p; 4812 4813 /* copy to the input list */ 4814 p = (struct ice_vsig_prof *)ice_memdup(hw, ent1, sizeof(*p), 4815 ICE_NONDMA_TO_NONDMA); 4816 if (!p) 4817 goto err_ice_get_profs_vsig; 4818 4819 LIST_ADD_TAIL(&p->list, lst); 4820 } 4821 4822 return ICE_SUCCESS; 4823 4824 err_ice_get_profs_vsig: 4825 LIST_FOR_EACH_ENTRY_SAFE(ent1, ent2, lst, ice_vsig_prof, list) { 4826 LIST_DEL(&ent1->list); 4827 ice_free(hw, ent1); 4828 } 4829 4830 return ICE_ERR_NO_MEMORY; 4831 } 4832 4833 /** 4834 * ice_add_prof_to_lst - add profile entry to a list 4835 * @hw: pointer to the HW struct 4836 * @blk: hardware block 4837 * @lst: the list to be added to 4838 * @hdl: profile handle of entry to add 4839 */ 4840 static enum ice_status 4841 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 4842 struct LIST_HEAD_TYPE *lst, u64 hdl) 4843 { 4844 enum ice_status status = ICE_SUCCESS; 4845 struct ice_prof_map *map; 4846 struct ice_vsig_prof *p; 4847 u16 i; 4848 4849 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 4850 map = ice_search_prof_id(hw, blk, hdl); 4851 if (!map) { 4852 status = ICE_ERR_DOES_NOT_EXIST; 4853 goto err_ice_add_prof_to_lst; 4854 } 4855 4856 p = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*p)); 4857 if (!p) { 4858 status = ICE_ERR_NO_MEMORY; 4859 goto err_ice_add_prof_to_lst; 4860 } 4861 4862 p->profile_cookie = map->profile_cookie; 4863 p->prof_id = map->prof_id; 4864 p->tcam_count = map->ptg_cnt; 4865 4866 for (i = 0; i < map->ptg_cnt; i++) { 4867 p->tcam[i].prof_id = map->prof_id; 4868 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 4869 p->tcam[i].ptg = map->ptg[i]; 4870 } 4871 4872 LIST_ADD(&p->list, lst); 4873 4874 err_ice_add_prof_to_lst: 4875 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 4876 return status; 4877 } 4878 4879 /** 4880 * ice_move_vsi - move VSI to another VSIG 4881 * @hw: pointer to the HW struct 4882 * @blk: hardware block 4883 * @vsi: the VSI to move 4884 * @vsig: the VSIG to move the VSI to 4885 * @chg: the change list 4886 */ 4887 static enum ice_status 4888 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 4889 struct LIST_HEAD_TYPE *chg) 4890 { 4891 enum ice_status status; 4892 struct ice_chs_chg *p; 4893 u16 orig_vsig; 4894 4895 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 4896 if (!p) 4897 return ICE_ERR_NO_MEMORY; 4898 4899 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 4900 if (!status) 4901 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 4902 4903 if (status) { 4904 ice_free(hw, p); 4905 return status; 4906 } 4907 4908 p->type = ICE_VSI_MOVE; 4909 p->vsi = vsi; 4910 p->orig_vsig = orig_vsig; 4911 p->vsig = vsig; 4912 4913 LIST_ADD(&p->list_entry, chg); 4914 4915 return ICE_SUCCESS; 4916 } 4917 4918 /** 4919 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 4920 * @hw: pointer to the HW struct 4921 * @idx: the index of the TCAM entry to remove 4922 * @chg: the list of change structures to search 4923 */ 4924 static void 4925 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct LIST_HEAD_TYPE *chg) 4926 { 4927 struct ice_chs_chg *pos, *tmp; 4928 4929 LIST_FOR_EACH_ENTRY_SAFE(tmp, pos, chg, ice_chs_chg, list_entry) 4930 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 4931 LIST_DEL(&tmp->list_entry); 4932 ice_free(hw, tmp); 4933 } 4934 } 4935 4936 /** 4937 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 4938 * @hw: pointer to the HW struct 4939 * @blk: hardware block 4940 * @enable: true to enable, false to disable 4941 * @vsig: the VSIG of the TCAM entry 4942 * @tcam: pointer the TCAM info structure of the TCAM to disable 4943 * @chg: the change list 4944 * 4945 * This function appends an enable or disable TCAM entry in the change log 4946 */ 4947 static enum ice_status 4948 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 4949 u16 vsig, struct ice_tcam_inf *tcam, 4950 struct LIST_HEAD_TYPE *chg) 4951 { 4952 enum ice_status status; 4953 struct ice_chs_chg *p; 4954 4955 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4956 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 4957 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 4958 4959 /* if disabling, free the TCAM */ 4960 if (!enable) { 4961 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 4962 4963 /* if we have already created a change for this TCAM entry, then 4964 * we need to remove that entry, in order to prevent writing to 4965 * a TCAM entry we no longer will have ownership of. 4966 */ 4967 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 4968 tcam->tcam_idx = 0; 4969 tcam->in_use = 0; 4970 return status; 4971 } 4972 4973 /* for re-enabling, reallocate a TCAM */ 4974 status = ice_alloc_tcam_ent(hw, blk, true, &tcam->tcam_idx); 4975 if (status) 4976 return status; 4977 4978 /* add TCAM to change list */ 4979 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 4980 if (!p) 4981 return ICE_ERR_NO_MEMORY; 4982 4983 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 4984 tcam->ptg, vsig, 0, 0, vl_msk, dc_msk, 4985 nm_msk); 4986 if (status) 4987 goto err_ice_prof_tcam_ena_dis; 4988 4989 tcam->in_use = 1; 4990 4991 p->type = ICE_TCAM_ADD; 4992 p->add_tcam_idx = true; 4993 p->prof_id = tcam->prof_id; 4994 p->ptg = tcam->ptg; 4995 p->vsig = 0; 4996 p->tcam_idx = tcam->tcam_idx; 4997 4998 /* log change */ 4999 LIST_ADD(&p->list_entry, chg); 5000 5001 return ICE_SUCCESS; 5002 5003 err_ice_prof_tcam_ena_dis: 5004 ice_free(hw, p); 5005 return status; 5006 } 5007 5008 /** 5009 * ice_adj_prof_priorities - adjust profile based on priorities 5010 * @hw: pointer to the HW struct 5011 * @blk: hardware block 5012 * @vsig: the VSIG for which to adjust profile priorities 5013 * @chg: the change list 5014 */ 5015 static enum ice_status 5016 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5017 struct LIST_HEAD_TYPE *chg) 5018 { 5019 ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT); 5020 enum ice_status status = ICE_SUCCESS; 5021 struct ice_vsig_prof *t; 5022 u16 idx; 5023 5024 ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT); 5025 idx = vsig & ICE_VSIG_IDX_M; 5026 5027 /* Priority is based on the order in which the profiles are added. The 5028 * newest added profile has highest priority and the oldest added 5029 * profile has the lowest priority. Since the profile property list for 5030 * a VSIG is sorted from newest to oldest, this code traverses the list 5031 * in order and enables the first of each PTG that it finds (that is not 5032 * already enabled); it also disables any duplicate PTGs that it finds 5033 * in the older profiles (that are currently enabled). 5034 */ 5035 5036 LIST_FOR_EACH_ENTRY(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5037 ice_vsig_prof, list) { 5038 u16 i; 5039 5040 for (i = 0; i < t->tcam_count; i++) { 5041 bool used; 5042 5043 /* Scan the priorities from newest to oldest. 5044 * Make sure that the newest profiles take priority. 5045 */ 5046 used = ice_is_bit_set(ptgs_used, t->tcam[i].ptg); 5047 5048 if (used && t->tcam[i].in_use) { 5049 /* need to mark this PTG as never match, as it 5050 * was already in use and therefore duplicate 5051 * (and lower priority) 5052 */ 5053 status = ice_prof_tcam_ena_dis(hw, blk, false, 5054 vsig, 5055 &t->tcam[i], 5056 chg); 5057 if (status) 5058 return status; 5059 } else if (!used && !t->tcam[i].in_use) { 5060 /* need to enable this PTG, as it in not in use 5061 * and not enabled (highest priority) 5062 */ 5063 status = ice_prof_tcam_ena_dis(hw, blk, true, 5064 vsig, 5065 &t->tcam[i], 5066 chg); 5067 if (status) 5068 return status; 5069 } 5070 5071 /* keep track of used ptgs */ 5072 ice_set_bit(t->tcam[i].ptg, ptgs_used); 5073 } 5074 } 5075 5076 return status; 5077 } 5078 5079 /** 5080 * ice_add_prof_id_vsig - add profile to VSIG 5081 * @hw: pointer to the HW struct 5082 * @blk: hardware block 5083 * @vsig: the VSIG to which this profile is to be added 5084 * @hdl: the profile handle indicating the profile to add 5085 * @rev: true to add entries to the end of the list 5086 * @chg: the change list 5087 */ 5088 static enum ice_status 5089 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 5090 bool rev, struct LIST_HEAD_TYPE *chg) 5091 { 5092 /* Masks that ignore flags */ 5093 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5094 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5095 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5096 enum ice_status status = ICE_SUCCESS; 5097 struct ice_prof_map *map; 5098 struct ice_vsig_prof *t; 5099 struct ice_chs_chg *p; 5100 u16 vsig_idx, i; 5101 5102 /* Error, if this VSIG already has this profile */ 5103 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 5104 return ICE_ERR_ALREADY_EXISTS; 5105 5106 /* new VSIG profile structure */ 5107 t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t)); 5108 if (!t) 5109 return ICE_ERR_NO_MEMORY; 5110 5111 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 5112 /* Get the details on the profile specified by the handle ID */ 5113 map = ice_search_prof_id(hw, blk, hdl); 5114 if (!map) { 5115 status = ICE_ERR_DOES_NOT_EXIST; 5116 goto err_ice_add_prof_id_vsig; 5117 } 5118 5119 t->profile_cookie = map->profile_cookie; 5120 t->prof_id = map->prof_id; 5121 t->tcam_count = map->ptg_cnt; 5122 5123 /* create TCAM entries */ 5124 for (i = 0; i < map->ptg_cnt; i++) { 5125 u16 tcam_idx; 5126 5127 /* add TCAM to change list */ 5128 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 5129 if (!p) { 5130 status = ICE_ERR_NO_MEMORY; 5131 goto err_ice_add_prof_id_vsig; 5132 } 5133 5134 /* allocate the TCAM entry index */ 5135 status = ice_alloc_tcam_ent(hw, blk, true, &tcam_idx); 5136 if (status) { 5137 ice_free(hw, p); 5138 goto err_ice_add_prof_id_vsig; 5139 } 5140 5141 t->tcam[i].ptg = map->ptg[i]; 5142 t->tcam[i].prof_id = map->prof_id; 5143 t->tcam[i].tcam_idx = tcam_idx; 5144 t->tcam[i].in_use = true; 5145 5146 p->type = ICE_TCAM_ADD; 5147 p->add_tcam_idx = true; 5148 p->prof_id = t->tcam[i].prof_id; 5149 p->ptg = t->tcam[i].ptg; 5150 p->vsig = vsig; 5151 p->tcam_idx = t->tcam[i].tcam_idx; 5152 5153 /* write the TCAM entry */ 5154 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 5155 t->tcam[i].prof_id, 5156 t->tcam[i].ptg, vsig, 0, 0, 5157 vl_msk, dc_msk, nm_msk); 5158 if (status) { 5159 ice_free(hw, p); 5160 goto err_ice_add_prof_id_vsig; 5161 } 5162 5163 /* log change */ 5164 LIST_ADD(&p->list_entry, chg); 5165 } 5166 5167 /* add profile to VSIG */ 5168 vsig_idx = vsig & ICE_VSIG_IDX_M; 5169 if (rev) 5170 LIST_ADD_TAIL(&t->list, 5171 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5172 else 5173 LIST_ADD(&t->list, 5174 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5175 5176 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 5177 return status; 5178 5179 err_ice_add_prof_id_vsig: 5180 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 5181 /* let caller clean up the change list */ 5182 ice_free(hw, t); 5183 return status; 5184 } 5185 5186 /** 5187 * ice_create_prof_id_vsig - add a new VSIG with a single profile 5188 * @hw: pointer to the HW struct 5189 * @blk: hardware block 5190 * @vsi: the initial VSI that will be in VSIG 5191 * @hdl: the profile handle of the profile that will be added to the VSIG 5192 * @chg: the change list 5193 */ 5194 static enum ice_status 5195 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 5196 struct LIST_HEAD_TYPE *chg) 5197 { 5198 enum ice_status status; 5199 struct ice_chs_chg *p; 5200 u16 new_vsig; 5201 5202 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 5203 if (!p) 5204 return ICE_ERR_NO_MEMORY; 5205 5206 new_vsig = ice_vsig_alloc(hw, blk); 5207 if (!new_vsig) { 5208 status = ICE_ERR_HW_TABLE; 5209 goto err_ice_create_prof_id_vsig; 5210 } 5211 5212 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 5213 if (status) 5214 goto err_ice_create_prof_id_vsig; 5215 5216 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 5217 if (status) 5218 goto err_ice_create_prof_id_vsig; 5219 5220 p->type = ICE_VSIG_ADD; 5221 p->vsi = vsi; 5222 p->orig_vsig = ICE_DEFAULT_VSIG; 5223 p->vsig = new_vsig; 5224 5225 LIST_ADD(&p->list_entry, chg); 5226 5227 return ICE_SUCCESS; 5228 5229 err_ice_create_prof_id_vsig: 5230 /* let caller clean up the change list */ 5231 ice_free(hw, p); 5232 return status; 5233 } 5234 5235 /** 5236 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 5237 * @hw: pointer to the HW struct 5238 * @blk: hardware block 5239 * @vsi: the initial VSI that will be in VSIG 5240 * @lst: the list of profile that will be added to the VSIG 5241 * @new_vsig: return of new VSIG 5242 * @chg: the change list 5243 */ 5244 static enum ice_status 5245 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 5246 struct LIST_HEAD_TYPE *lst, u16 *new_vsig, 5247 struct LIST_HEAD_TYPE *chg) 5248 { 5249 struct ice_vsig_prof *t; 5250 enum ice_status status; 5251 u16 vsig; 5252 5253 vsig = ice_vsig_alloc(hw, blk); 5254 if (!vsig) 5255 return ICE_ERR_HW_TABLE; 5256 5257 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 5258 if (status) 5259 return status; 5260 5261 LIST_FOR_EACH_ENTRY(t, lst, ice_vsig_prof, list) { 5262 /* Reverse the order here since we are copying the list */ 5263 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 5264 true, chg); 5265 if (status) 5266 return status; 5267 } 5268 5269 *new_vsig = vsig; 5270 5271 return ICE_SUCCESS; 5272 } 5273 5274 /** 5275 * ice_find_prof_vsig - find a VSIG with a specific profile handle 5276 * @hw: pointer to the HW struct 5277 * @blk: hardware block 5278 * @hdl: the profile handle of the profile to search for 5279 * @vsig: returns the VSIG with the matching profile 5280 */ 5281 static bool 5282 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 5283 { 5284 struct ice_vsig_prof *t; 5285 enum ice_status status; 5286 struct LIST_HEAD_TYPE lst; 5287 5288 INIT_LIST_HEAD(&lst); 5289 5290 t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t)); 5291 if (!t) 5292 return false; 5293 5294 t->profile_cookie = hdl; 5295 LIST_ADD(&t->list, &lst); 5296 5297 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 5298 5299 LIST_DEL(&t->list); 5300 ice_free(hw, t); 5301 5302 return status == ICE_SUCCESS; 5303 } 5304 5305 /** 5306 * ice_add_vsi_flow - add VSI flow 5307 * @hw: pointer to the HW struct 5308 * @blk: hardware block 5309 * @vsi: input VSI 5310 * @vsig: target VSIG to include the input VSI 5311 * 5312 * Calling this function will add the VSI to a given VSIG and 5313 * update the HW tables accordingly. This call can be used to 5314 * add multiple VSIs to a VSIG if we know beforehand that those 5315 * VSIs have the same characteristics of the VSIG. This will 5316 * save time in generating a new VSIG and TCAMs till a match is 5317 * found and subsequent rollback when a matching VSIG is found. 5318 */ 5319 enum ice_status 5320 ice_add_vsi_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 5321 { 5322 struct ice_chs_chg *tmp, *del; 5323 struct LIST_HEAD_TYPE chg; 5324 enum ice_status status; 5325 5326 /* if target VSIG is default the move is invalid */ 5327 if ((vsig & ICE_VSIG_IDX_M) == ICE_DEFAULT_VSIG) 5328 return ICE_ERR_PARAM; 5329 5330 INIT_LIST_HEAD(&chg); 5331 5332 /* move VSI to the VSIG that matches */ 5333 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5334 /* update hardware if success */ 5335 if (!status) 5336 status = ice_upd_prof_hw(hw, blk, &chg); 5337 5338 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) { 5339 LIST_DEL(&del->list_entry); 5340 ice_free(hw, del); 5341 } 5342 5343 return status; 5344 } 5345 5346 /** 5347 * ice_add_prof_id_flow - add profile flow 5348 * @hw: pointer to the HW struct 5349 * @blk: hardware block 5350 * @vsi: the VSI to enable with the profile specified by ID 5351 * @hdl: profile handle 5352 * 5353 * Calling this function will update the hardware tables to enable the 5354 * profile indicated by the ID parameter for the VSIs specified in the VSI 5355 * array. Once successfully called, the flow will be enabled. 5356 */ 5357 enum ice_status 5358 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5359 { 5360 struct ice_vsig_prof *tmp1, *del1; 5361 struct ice_chs_chg *tmp, *del; 5362 struct LIST_HEAD_TYPE union_lst; 5363 enum ice_status status; 5364 struct LIST_HEAD_TYPE chg; 5365 u16 vsig; 5366 5367 INIT_LIST_HEAD(&union_lst); 5368 INIT_LIST_HEAD(&chg); 5369 5370 /* Get profile */ 5371 status = ice_get_prof(hw, blk, hdl, &chg); 5372 if (status) 5373 return status; 5374 5375 /* determine if VSI is already part of a VSIG */ 5376 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5377 if (!status && vsig) { 5378 bool only_vsi; 5379 u16 or_vsig; 5380 u16 ref; 5381 5382 /* found in VSIG */ 5383 or_vsig = vsig; 5384 5385 /* make sure that there is no overlap/conflict between the new 5386 * characteristics and the existing ones; we don't support that 5387 * scenario 5388 */ 5389 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 5390 status = ICE_ERR_ALREADY_EXISTS; 5391 goto err_ice_add_prof_id_flow; 5392 } 5393 5394 /* last VSI in the VSIG? */ 5395 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5396 if (status) 5397 goto err_ice_add_prof_id_flow; 5398 only_vsi = (ref == 1); 5399 5400 /* create a union of the current profiles and the one being 5401 * added 5402 */ 5403 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 5404 if (status) 5405 goto err_ice_add_prof_id_flow; 5406 5407 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 5408 if (status) 5409 goto err_ice_add_prof_id_flow; 5410 5411 /* search for an existing VSIG with an exact charc match */ 5412 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 5413 if (!status) { 5414 /* move VSI to the VSIG that matches */ 5415 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5416 if (status) 5417 goto err_ice_add_prof_id_flow; 5418 5419 /* VSI has been moved out of or_vsig. If the or_vsig had 5420 * only that VSI it is now empty and can be removed. 5421 */ 5422 if (only_vsi) { 5423 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 5424 if (status) 5425 goto err_ice_add_prof_id_flow; 5426 } 5427 } else if (only_vsi) { 5428 /* If the original VSIG only contains one VSI, then it 5429 * will be the requesting VSI. In this case the VSI is 5430 * not sharing entries and we can simply add the new 5431 * profile to the VSIG. 5432 */ 5433 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 5434 &chg); 5435 if (status) 5436 goto err_ice_add_prof_id_flow; 5437 5438 /* Adjust priorities */ 5439 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5440 if (status) 5441 goto err_ice_add_prof_id_flow; 5442 } else { 5443 /* No match, so we need a new VSIG */ 5444 status = ice_create_vsig_from_lst(hw, blk, vsi, 5445 &union_lst, &vsig, 5446 &chg); 5447 if (status) 5448 goto err_ice_add_prof_id_flow; 5449 5450 /* Adjust priorities */ 5451 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5452 if (status) 5453 goto err_ice_add_prof_id_flow; 5454 } 5455 } else { 5456 /* need to find or add a VSIG */ 5457 /* search for an existing VSIG with an exact charc match */ 5458 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 5459 /* found an exact match */ 5460 /* add or move VSI to the VSIG that matches */ 5461 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5462 if (status) 5463 goto err_ice_add_prof_id_flow; 5464 } else { 5465 /* we did not find an exact match */ 5466 /* we need to add a VSIG */ 5467 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 5468 &chg); 5469 if (status) 5470 goto err_ice_add_prof_id_flow; 5471 } 5472 } 5473 5474 /* update hardware */ 5475 if (!status) 5476 status = ice_upd_prof_hw(hw, blk, &chg); 5477 5478 err_ice_add_prof_id_flow: 5479 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) { 5480 LIST_DEL(&del->list_entry); 5481 ice_free(hw, del); 5482 } 5483 5484 LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &union_lst, ice_vsig_prof, list) { 5485 LIST_DEL(&del1->list); 5486 ice_free(hw, del1); 5487 } 5488 5489 return status; 5490 } 5491 5492 /** 5493 * ice_add_flow - add flow 5494 * @hw: pointer to the HW struct 5495 * @blk: hardware block 5496 * @vsi: array of VSIs to enable with the profile specified by ID 5497 * @count: number of elements in the VSI array 5498 * @id: profile tracking ID 5499 * 5500 * Calling this function will update the hardware tables to enable the 5501 * profile indicated by the ID parameter for the VSIs specified in the VSI 5502 * array. Once successfully called, the flow will be enabled. 5503 */ 5504 enum ice_status 5505 ice_add_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count, 5506 u64 id) 5507 { 5508 enum ice_status status; 5509 u16 i; 5510 5511 for (i = 0; i < count; i++) { 5512 status = ice_add_prof_id_flow(hw, blk, vsi[i], id); 5513 if (status) 5514 return status; 5515 } 5516 5517 return ICE_SUCCESS; 5518 } 5519 5520 /** 5521 * ice_rem_prof_from_list - remove a profile from list 5522 * @hw: pointer to the HW struct 5523 * @lst: list to remove the profile from 5524 * @hdl: the profile handle indicating the profile to remove 5525 */ 5526 static enum ice_status 5527 ice_rem_prof_from_list(struct ice_hw *hw, struct LIST_HEAD_TYPE *lst, u64 hdl) 5528 { 5529 struct ice_vsig_prof *ent, *tmp; 5530 5531 LIST_FOR_EACH_ENTRY_SAFE(ent, tmp, lst, ice_vsig_prof, list) 5532 if (ent->profile_cookie == hdl) { 5533 LIST_DEL(&ent->list); 5534 ice_free(hw, ent); 5535 return ICE_SUCCESS; 5536 } 5537 5538 return ICE_ERR_DOES_NOT_EXIST; 5539 } 5540 5541 /** 5542 * ice_rem_prof_id_flow - remove flow 5543 * @hw: pointer to the HW struct 5544 * @blk: hardware block 5545 * @vsi: the VSI from which to remove the profile specified by ID 5546 * @hdl: profile tracking handle 5547 * 5548 * Calling this function will update the hardware tables to remove the 5549 * profile indicated by the ID parameter for the VSIs specified in the VSI 5550 * array. Once successfully called, the flow will be disabled. 5551 */ 5552 enum ice_status 5553 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5554 { 5555 struct ice_vsig_prof *tmp1, *del1; 5556 struct ice_chs_chg *tmp, *del; 5557 struct LIST_HEAD_TYPE chg, copy; 5558 enum ice_status status; 5559 u16 vsig; 5560 5561 INIT_LIST_HEAD(©); 5562 INIT_LIST_HEAD(&chg); 5563 5564 /* determine if VSI is already part of a VSIG */ 5565 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5566 if (!status && vsig) { 5567 bool last_profile; 5568 bool only_vsi; 5569 u16 ref; 5570 5571 /* found in VSIG */ 5572 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 5573 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5574 if (status) 5575 goto err_ice_rem_prof_id_flow; 5576 only_vsi = (ref == 1); 5577 5578 if (only_vsi) { 5579 /* If the original VSIG only contains one reference, 5580 * which will be the requesting VSI, then the VSI is not 5581 * sharing entries and we can simply remove the specific 5582 * characteristics from the VSIG. 5583 */ 5584 5585 if (last_profile) { 5586 /* If there are no profiles left for this VSIG, 5587 * then simply remove the VSIG. 5588 */ 5589 status = ice_rem_vsig(hw, blk, vsig, &chg); 5590 if (status) 5591 goto err_ice_rem_prof_id_flow; 5592 } else { 5593 status = ice_rem_prof_id_vsig(hw, blk, vsig, 5594 hdl, &chg); 5595 if (status) 5596 goto err_ice_rem_prof_id_flow; 5597 5598 /* Adjust priorities */ 5599 status = ice_adj_prof_priorities(hw, blk, vsig, 5600 &chg); 5601 if (status) 5602 goto err_ice_rem_prof_id_flow; 5603 } 5604 5605 } else { 5606 /* Make a copy of the VSIG's list of Profiles */ 5607 status = ice_get_profs_vsig(hw, blk, vsig, ©); 5608 if (status) 5609 goto err_ice_rem_prof_id_flow; 5610 5611 /* Remove specified profile entry from the list */ 5612 status = ice_rem_prof_from_list(hw, ©, hdl); 5613 if (status) 5614 goto err_ice_rem_prof_id_flow; 5615 5616 if (LIST_EMPTY(©)) { 5617 status = ice_move_vsi(hw, blk, vsi, 5618 ICE_DEFAULT_VSIG, &chg); 5619 if (status) 5620 goto err_ice_rem_prof_id_flow; 5621 5622 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 5623 &vsig)) { 5624 /* found an exact match */ 5625 /* add or move VSI to the VSIG that matches */ 5626 /* Search for a VSIG with a matching profile 5627 * list 5628 */ 5629 5630 /* Found match, move VSI to the matching VSIG */ 5631 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5632 if (status) 5633 goto err_ice_rem_prof_id_flow; 5634 } else { 5635 /* since no existing VSIG supports this 5636 * characteristic pattern, we need to create a 5637 * new VSIG and TCAM entries 5638 */ 5639 status = ice_create_vsig_from_lst(hw, blk, vsi, 5640 ©, &vsig, 5641 &chg); 5642 if (status) 5643 goto err_ice_rem_prof_id_flow; 5644 5645 /* Adjust priorities */ 5646 status = ice_adj_prof_priorities(hw, blk, vsig, 5647 &chg); 5648 if (status) 5649 goto err_ice_rem_prof_id_flow; 5650 } 5651 } 5652 } else { 5653 status = ICE_ERR_DOES_NOT_EXIST; 5654 } 5655 5656 /* update hardware tables */ 5657 if (!status) 5658 status = ice_upd_prof_hw(hw, blk, &chg); 5659 5660 err_ice_rem_prof_id_flow: 5661 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) { 5662 LIST_DEL(&del->list_entry); 5663 ice_free(hw, del); 5664 } 5665 5666 LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, ©, ice_vsig_prof, list) { 5667 LIST_DEL(&del1->list); 5668 ice_free(hw, del1); 5669 } 5670 5671 return status; 5672 } 5673 5674 /** 5675 * ice_rem_flow - remove flow 5676 * @hw: pointer to the HW struct 5677 * @blk: hardware block 5678 * @vsi: array of VSIs from which to remove the profile specified by ID 5679 * @count: number of elements in the VSI array 5680 * @id: profile tracking ID 5681 * 5682 * The function will remove flows from the specified VSIs that were enabled 5683 * using ice_add_flow. The ID value will indicated which profile will be 5684 * removed. Once successfully called, the flow will be disabled. 5685 */ 5686 enum ice_status 5687 ice_rem_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count, 5688 u64 id) 5689 { 5690 enum ice_status status; 5691 u16 i; 5692 5693 for (i = 0; i < count; i++) { 5694 status = ice_rem_prof_id_flow(hw, blk, vsi[i], id); 5695 if (status) 5696 return status; 5697 } 5698 5699 return ICE_SUCCESS; 5700 } 5701