xref: /freebsd/sys/dev/ice/ice_flex_pipe.c (revision 2ff63af9b88c7413b7d71715b5532625752a248e)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2023, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*$FreeBSD$*/
32 
33 #include "ice_common.h"
34 #include "ice_ddp_common.h"
35 #include "ice_flex_pipe.h"
36 #include "ice_protocol_type.h"
37 #include "ice_flow.h"
38 
39 static const struct ice_tunnel_type_scan tnls[] = {
40 	{ TNL_VXLAN,		"TNL_VXLAN_PF" },
41 	{ TNL_GENEVE,		"TNL_GENEVE_PF" },
42 	{ TNL_LAST,		"" }
43 };
44 
45 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
46 	/* SWITCH */
47 	{
48 		ICE_SID_XLT0_SW,
49 		ICE_SID_XLT_KEY_BUILDER_SW,
50 		ICE_SID_XLT1_SW,
51 		ICE_SID_XLT2_SW,
52 		ICE_SID_PROFID_TCAM_SW,
53 		ICE_SID_PROFID_REDIR_SW,
54 		ICE_SID_FLD_VEC_SW,
55 		ICE_SID_CDID_KEY_BUILDER_SW,
56 		ICE_SID_CDID_REDIR_SW
57 	},
58 
59 	/* ACL */
60 	{
61 		ICE_SID_XLT0_ACL,
62 		ICE_SID_XLT_KEY_BUILDER_ACL,
63 		ICE_SID_XLT1_ACL,
64 		ICE_SID_XLT2_ACL,
65 		ICE_SID_PROFID_TCAM_ACL,
66 		ICE_SID_PROFID_REDIR_ACL,
67 		ICE_SID_FLD_VEC_ACL,
68 		ICE_SID_CDID_KEY_BUILDER_ACL,
69 		ICE_SID_CDID_REDIR_ACL
70 	},
71 
72 	/* FD */
73 	{
74 		ICE_SID_XLT0_FD,
75 		ICE_SID_XLT_KEY_BUILDER_FD,
76 		ICE_SID_XLT1_FD,
77 		ICE_SID_XLT2_FD,
78 		ICE_SID_PROFID_TCAM_FD,
79 		ICE_SID_PROFID_REDIR_FD,
80 		ICE_SID_FLD_VEC_FD,
81 		ICE_SID_CDID_KEY_BUILDER_FD,
82 		ICE_SID_CDID_REDIR_FD
83 	},
84 
85 	/* RSS */
86 	{
87 		ICE_SID_XLT0_RSS,
88 		ICE_SID_XLT_KEY_BUILDER_RSS,
89 		ICE_SID_XLT1_RSS,
90 		ICE_SID_XLT2_RSS,
91 		ICE_SID_PROFID_TCAM_RSS,
92 		ICE_SID_PROFID_REDIR_RSS,
93 		ICE_SID_FLD_VEC_RSS,
94 		ICE_SID_CDID_KEY_BUILDER_RSS,
95 		ICE_SID_CDID_REDIR_RSS
96 	},
97 
98 	/* PE */
99 	{
100 		ICE_SID_XLT0_PE,
101 		ICE_SID_XLT_KEY_BUILDER_PE,
102 		ICE_SID_XLT1_PE,
103 		ICE_SID_XLT2_PE,
104 		ICE_SID_PROFID_TCAM_PE,
105 		ICE_SID_PROFID_REDIR_PE,
106 		ICE_SID_FLD_VEC_PE,
107 		ICE_SID_CDID_KEY_BUILDER_PE,
108 		ICE_SID_CDID_REDIR_PE
109 	}
110 };
111 
112 /**
113  * ice_sect_id - returns section ID
114  * @blk: block type
115  * @sect: section type
116  *
117  * This helper function returns the proper section ID given a block type and a
118  * section type.
119  */
120 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
121 {
122 	return ice_sect_lkup[blk][sect];
123 }
124 
125 /**
126  * ice_add_tunnel_hint
127  * @hw: pointer to the HW structure
128  * @label_name: label text
129  * @val: value of the tunnel port boost entry
130  */
131 void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val)
132 {
133 	if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
134 		u16 i;
135 
136 		for (i = 0; tnls[i].type != TNL_LAST; i++) {
137 			size_t len = strlen(tnls[i].label_prefix);
138 
139 			/* Look for matching label start, before continuing */
140 			if (strncmp(label_name, tnls[i].label_prefix, len))
141 				continue;
142 
143 			/* Make sure this label matches our PF. Note that the PF
144 			 * character ('0' - '7') will be located where our
145 			 * prefix string's null terminator is located.
146 			 */
147 			if ((label_name[len] - '0') == hw->pf_id) {
148 				hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
149 				hw->tnl.tbl[hw->tnl.count].valid = false;
150 				hw->tnl.tbl[hw->tnl.count].in_use = false;
151 				hw->tnl.tbl[hw->tnl.count].marked = false;
152 				hw->tnl.tbl[hw->tnl.count].boost_addr = val;
153 				hw->tnl.tbl[hw->tnl.count].port = 0;
154 				hw->tnl.count++;
155 				break;
156 			}
157 		}
158 	}
159 }
160 
161 /* Key creation */
162 
163 #define ICE_DC_KEY	0x1	/* don't care */
164 #define ICE_DC_KEYINV	0x1
165 #define ICE_NM_KEY	0x0	/* never match */
166 #define ICE_NM_KEYINV	0x0
167 #define ICE_0_KEY	0x1	/* match 0 */
168 #define ICE_0_KEYINV	0x0
169 #define ICE_1_KEY	0x0	/* match 1 */
170 #define ICE_1_KEYINV	0x1
171 
172 /**
173  * ice_gen_key_word - generate 16-bits of a key/mask word
174  * @val: the value
175  * @valid: valid bits mask (change only the valid bits)
176  * @dont_care: don't care mask
177  * @nvr_mtch: never match mask
178  * @key: pointer to an array of where the resulting key portion
179  * @key_inv: pointer to an array of where the resulting key invert portion
180  *
181  * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
182  * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
183  * of key and 8 bits of key invert.
184  *
185  *     '0' =    b01, always match a 0 bit
186  *     '1' =    b10, always match a 1 bit
187  *     '?' =    b11, don't care bit (always matches)
188  *     '~' =    b00, never match bit
189  *
190  * Input:
191  *          val:         b0  1  0  1  0  1
192  *          dont_care:   b0  0  1  1  0  0
193  *          never_mtch:  b0  0  0  0  1  1
194  *          ------------------------------
195  * Result:  key:        b01 10 11 11 00 00
196  */
197 static enum ice_status
198 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
199 		 u8 *key_inv)
200 {
201 	u8 in_key = *key, in_key_inv = *key_inv;
202 	u8 i;
203 
204 	/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
205 	if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
206 		return ICE_ERR_CFG;
207 
208 	*key = 0;
209 	*key_inv = 0;
210 
211 	/* encode the 8 bits into 8-bit key and 8-bit key invert */
212 	for (i = 0; i < 8; i++) {
213 		*key >>= 1;
214 		*key_inv >>= 1;
215 
216 		if (!(valid & 0x1)) { /* change only valid bits */
217 			*key |= (in_key & 0x1) << 7;
218 			*key_inv |= (in_key_inv & 0x1) << 7;
219 		} else if (dont_care & 0x1) { /* don't care bit */
220 			*key |= ICE_DC_KEY << 7;
221 			*key_inv |= ICE_DC_KEYINV << 7;
222 		} else if (nvr_mtch & 0x1) { /* never match bit */
223 			*key |= ICE_NM_KEY << 7;
224 			*key_inv |= ICE_NM_KEYINV << 7;
225 		} else if (val & 0x01) { /* exact 1 match */
226 			*key |= ICE_1_KEY << 7;
227 			*key_inv |= ICE_1_KEYINV << 7;
228 		} else { /* exact 0 match */
229 			*key |= ICE_0_KEY << 7;
230 			*key_inv |= ICE_0_KEYINV << 7;
231 		}
232 
233 		dont_care >>= 1;
234 		nvr_mtch >>= 1;
235 		valid >>= 1;
236 		val >>= 1;
237 		in_key >>= 1;
238 		in_key_inv >>= 1;
239 	}
240 
241 	return ICE_SUCCESS;
242 }
243 
244 /**
245  * ice_bits_max_set - determine if the number of bits set is within a maximum
246  * @mask: pointer to the byte array which is the mask
247  * @size: the number of bytes in the mask
248  * @max: the max number of set bits
249  *
250  * This function determines if there are at most 'max' number of bits set in an
251  * array. Returns true if the number for bits set is <= max or will return false
252  * otherwise.
253  */
254 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
255 {
256 	u16 count = 0;
257 	u16 i;
258 
259 	/* check each byte */
260 	for (i = 0; i < size; i++) {
261 		/* if 0, go to next byte */
262 		if (!mask[i])
263 			continue;
264 
265 		/* We know there is at least one set bit in this byte because of
266 		 * the above check; if we already have found 'max' number of
267 		 * bits set, then we can return failure now.
268 		 */
269 		if (count == max)
270 			return false;
271 
272 		/* count the bits in this byte, checking threshold */
273 		count += ice_hweight8(mask[i]);
274 		if (count > max)
275 			return false;
276 	}
277 
278 	return true;
279 }
280 
281 /**
282  * ice_set_key - generate a variable sized key with multiples of 16-bits
283  * @key: pointer to where the key will be stored
284  * @size: the size of the complete key in bytes (must be even)
285  * @val: array of 8-bit values that makes up the value portion of the key
286  * @upd: array of 8-bit masks that determine what key portion to update
287  * @dc: array of 8-bit masks that make up the don't care mask
288  * @nm: array of 8-bit masks that make up the never match mask
289  * @off: the offset of the first byte in the key to update
290  * @len: the number of bytes in the key update
291  *
292  * This function generates a key from a value, a don't care mask and a never
293  * match mask.
294  * upd, dc, and nm are optional parameters, and can be NULL:
295  *	upd == NULL --> upd mask is all 1's (update all bits)
296  *	dc == NULL --> dc mask is all 0's (no don't care bits)
297  *	nm == NULL --> nm mask is all 0's (no never match bits)
298  */
299 static enum ice_status
300 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
301 	    u16 len)
302 {
303 	u16 half_size;
304 	u16 i;
305 
306 	/* size must be a multiple of 2 bytes. */
307 	if (size % 2)
308 		return ICE_ERR_CFG;
309 	half_size = size / 2;
310 
311 	if (off + len > half_size)
312 		return ICE_ERR_CFG;
313 
314 	/* Make sure at most one bit is set in the never match mask. Having more
315 	 * than one never match mask bit set will cause HW to consume excessive
316 	 * power otherwise; this is a power management efficiency check.
317 	 */
318 #define ICE_NVR_MTCH_BITS_MAX	1
319 	if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
320 		return ICE_ERR_CFG;
321 
322 	for (i = 0; i < len; i++)
323 		if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
324 				     dc ? dc[i] : 0, nm ? nm[i] : 0,
325 				     key + off + i, key + half_size + off + i))
326 			return ICE_ERR_CFG;
327 
328 	return ICE_SUCCESS;
329 }
330 
331 /**
332  * ice_tunnel_port_in_use_hlpr - helper function to determine tunnel usage
333  * @hw: pointer to the HW structure
334  * @port: port to search for
335  * @index: optionally returns index
336  *
337  * Returns whether a port is already in use as a tunnel, and optionally its
338  * index
339  */
340 static bool ice_tunnel_port_in_use_hlpr(struct ice_hw *hw, u16 port, u16 *index)
341 {
342 	u16 i;
343 
344 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
345 		if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
346 			if (index)
347 				*index = i;
348 			return true;
349 		}
350 
351 	return false;
352 }
353 
354 /**
355  * ice_tunnel_port_in_use
356  * @hw: pointer to the HW structure
357  * @port: port to search for
358  * @index: optionally returns index
359  *
360  * Returns whether a port is already in use as a tunnel, and optionally its
361  * index
362  */
363 bool ice_tunnel_port_in_use(struct ice_hw *hw, u16 port, u16 *index)
364 {
365 	bool res;
366 
367 	ice_acquire_lock(&hw->tnl_lock);
368 	res = ice_tunnel_port_in_use_hlpr(hw, port, index);
369 	ice_release_lock(&hw->tnl_lock);
370 
371 	return res;
372 }
373 
374 /**
375  * ice_tunnel_get_type
376  * @hw: pointer to the HW structure
377  * @port: port to search for
378  * @type: returns tunnel index
379  *
380  * For a given port number, will return the type of tunnel.
381  */
382 bool
383 ice_tunnel_get_type(struct ice_hw *hw, u16 port, enum ice_tunnel_type *type)
384 {
385 	bool res = false;
386 	u16 i;
387 
388 	ice_acquire_lock(&hw->tnl_lock);
389 
390 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
391 		if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
392 			*type = hw->tnl.tbl[i].type;
393 			res = true;
394 			break;
395 		}
396 
397 	ice_release_lock(&hw->tnl_lock);
398 
399 	return res;
400 }
401 
402 /**
403  * ice_find_free_tunnel_entry
404  * @hw: pointer to the HW structure
405  * @type: tunnel type
406  * @index: optionally returns index
407  *
408  * Returns whether there is a free tunnel entry, and optionally its index
409  */
410 static bool
411 ice_find_free_tunnel_entry(struct ice_hw *hw, enum ice_tunnel_type type,
412 			   u16 *index)
413 {
414 	u16 i;
415 
416 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
417 		if (hw->tnl.tbl[i].valid && !hw->tnl.tbl[i].in_use &&
418 		    hw->tnl.tbl[i].type == type) {
419 			if (index)
420 				*index = i;
421 			return true;
422 		}
423 
424 	return false;
425 }
426 
427 /**
428  * ice_get_open_tunnel_port - retrieve an open tunnel port
429  * @hw: pointer to the HW structure
430  * @type: tunnel type (TNL_ALL will return any open port)
431  * @port: returns open port
432  */
433 bool
434 ice_get_open_tunnel_port(struct ice_hw *hw, enum ice_tunnel_type type,
435 			 u16 *port)
436 {
437 	bool res = false;
438 	u16 i;
439 
440 	ice_acquire_lock(&hw->tnl_lock);
441 
442 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
443 		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
444 		    (type == TNL_ALL || hw->tnl.tbl[i].type == type)) {
445 			*port = hw->tnl.tbl[i].port;
446 			res = true;
447 			break;
448 		}
449 
450 	ice_release_lock(&hw->tnl_lock);
451 
452 	return res;
453 }
454 
455 /**
456  * ice_create_tunnel
457  * @hw: pointer to the HW structure
458  * @type: type of tunnel
459  * @port: port of tunnel to create
460  *
461  * Create a tunnel by updating the parse graph in the parser. We do that by
462  * creating a package buffer with the tunnel info and issuing an update package
463  * command.
464  */
465 enum ice_status
466 ice_create_tunnel(struct ice_hw *hw, enum ice_tunnel_type type, u16 port)
467 {
468 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
469 	enum ice_status status = ICE_ERR_MAX_LIMIT;
470 	struct ice_buf_build *bld;
471 	u16 index;
472 
473 	ice_acquire_lock(&hw->tnl_lock);
474 
475 	if (ice_tunnel_port_in_use_hlpr(hw, port, &index)) {
476 		hw->tnl.tbl[index].ref++;
477 		status = ICE_SUCCESS;
478 		goto ice_create_tunnel_end;
479 	}
480 
481 	if (!ice_find_free_tunnel_entry(hw, type, &index)) {
482 		status = ICE_ERR_OUT_OF_RANGE;
483 		goto ice_create_tunnel_end;
484 	}
485 
486 	bld = ice_pkg_buf_alloc(hw);
487 	if (!bld) {
488 		status = ICE_ERR_NO_MEMORY;
489 		goto ice_create_tunnel_end;
490 	}
491 
492 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
493 	if (ice_pkg_buf_reserve_section(bld, 2))
494 		goto ice_create_tunnel_err;
495 
496 	sect_rx = (struct ice_boost_tcam_section *)
497 		ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
498 					  ice_struct_size(sect_rx, tcam, 1));
499 	if (!sect_rx)
500 		goto ice_create_tunnel_err;
501 	sect_rx->count = CPU_TO_LE16(1);
502 
503 	sect_tx = (struct ice_boost_tcam_section *)
504 		ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
505 					  ice_struct_size(sect_tx, tcam, 1));
506 	if (!sect_tx)
507 		goto ice_create_tunnel_err;
508 	sect_tx->count = CPU_TO_LE16(1);
509 
510 	/* copy original boost entry to update package buffer */
511 	ice_memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
512 		   sizeof(*sect_rx->tcam), ICE_NONDMA_TO_NONDMA);
513 
514 	/* over-write the never-match dest port key bits with the encoded port
515 	 * bits
516 	 */
517 	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
518 		    (u8 *)&port, NULL, NULL, NULL,
519 		    (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
520 		    sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
521 
522 	/* exact copy of entry to Tx section entry */
523 	ice_memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam),
524 		   ICE_NONDMA_TO_NONDMA);
525 
526 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
527 	if (!status) {
528 		hw->tnl.tbl[index].port = port;
529 		hw->tnl.tbl[index].in_use = true;
530 		hw->tnl.tbl[index].ref = 1;
531 	}
532 
533 ice_create_tunnel_err:
534 	ice_pkg_buf_free(hw, bld);
535 
536 ice_create_tunnel_end:
537 	ice_release_lock(&hw->tnl_lock);
538 
539 	return status;
540 }
541 
542 /**
543  * ice_destroy_tunnel
544  * @hw: pointer to the HW structure
545  * @port: port of tunnel to destroy (ignored if the all parameter is true)
546  * @all: flag that states to destroy all tunnels
547  *
548  * Destroys a tunnel or all tunnels by creating an update package buffer
549  * targeting the specific updates requested and then performing an update
550  * package.
551  */
552 enum ice_status ice_destroy_tunnel(struct ice_hw *hw, u16 port, bool all)
553 {
554 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
555 	enum ice_status status = ICE_ERR_MAX_LIMIT;
556 	struct ice_buf_build *bld;
557 	u16 count = 0;
558 	u16 index;
559 	u16 size;
560 	u16 i, j;
561 
562 	ice_acquire_lock(&hw->tnl_lock);
563 
564 	if (!all && ice_tunnel_port_in_use_hlpr(hw, port, &index))
565 		if (hw->tnl.tbl[index].ref > 1) {
566 			hw->tnl.tbl[index].ref--;
567 			status = ICE_SUCCESS;
568 			goto ice_destroy_tunnel_end;
569 		}
570 
571 	/* determine count */
572 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
573 		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
574 		    (all || hw->tnl.tbl[i].port == port))
575 			count++;
576 
577 	if (!count) {
578 		status = ICE_ERR_PARAM;
579 		goto ice_destroy_tunnel_end;
580 	}
581 
582 	/* size of section - there is at least one entry */
583 	size = ice_struct_size(sect_rx, tcam, count);
584 
585 	bld = ice_pkg_buf_alloc(hw);
586 	if (!bld) {
587 		status = ICE_ERR_NO_MEMORY;
588 		goto ice_destroy_tunnel_end;
589 	}
590 
591 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
592 	if (ice_pkg_buf_reserve_section(bld, 2))
593 		goto ice_destroy_tunnel_err;
594 
595 	sect_rx = (struct ice_boost_tcam_section *)
596 		ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
597 					  size);
598 	if (!sect_rx)
599 		goto ice_destroy_tunnel_err;
600 	sect_rx->count = CPU_TO_LE16(count);
601 
602 	sect_tx = (struct ice_boost_tcam_section *)
603 		ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
604 					  size);
605 	if (!sect_tx)
606 		goto ice_destroy_tunnel_err;
607 	sect_tx->count = CPU_TO_LE16(count);
608 
609 	/* copy original boost entry to update package buffer, one copy to Rx
610 	 * section, another copy to the Tx section
611 	 */
612 	for (i = 0, j = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
613 		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
614 		    (all || hw->tnl.tbl[i].port == port)) {
615 			ice_memcpy(sect_rx->tcam + j,
616 				   hw->tnl.tbl[i].boost_entry,
617 				   sizeof(*sect_rx->tcam),
618 				   ICE_NONDMA_TO_NONDMA);
619 			ice_memcpy(sect_tx->tcam + j,
620 				   hw->tnl.tbl[i].boost_entry,
621 				   sizeof(*sect_tx->tcam),
622 				   ICE_NONDMA_TO_NONDMA);
623 			hw->tnl.tbl[i].marked = true;
624 			j++;
625 		}
626 
627 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
628 	if (!status)
629 		for (i = 0; i < hw->tnl.count &&
630 		     i < ICE_TUNNEL_MAX_ENTRIES; i++)
631 			if (hw->tnl.tbl[i].marked) {
632 				hw->tnl.tbl[i].ref = 0;
633 				hw->tnl.tbl[i].port = 0;
634 				hw->tnl.tbl[i].in_use = false;
635 				hw->tnl.tbl[i].marked = false;
636 			}
637 
638 ice_destroy_tunnel_err:
639 	ice_pkg_buf_free(hw, bld);
640 
641 ice_destroy_tunnel_end:
642 	ice_release_lock(&hw->tnl_lock);
643 
644 	return status;
645 }
646 
647 /**
648  * ice_replay_tunnels
649  * @hw: pointer to the HW structure
650  *
651  * Replays all tunnels
652  */
653 enum ice_status ice_replay_tunnels(struct ice_hw *hw)
654 {
655 	enum ice_status status = ICE_SUCCESS;
656 	u16 i;
657 
658 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
659 
660 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) {
661 		enum ice_tunnel_type type = hw->tnl.tbl[i].type;
662 		u16 refs = hw->tnl.tbl[i].ref;
663 		u16 port = hw->tnl.tbl[i].port;
664 
665 		if (!hw->tnl.tbl[i].in_use)
666 			continue;
667 
668 		/* Replay tunnels one at a time by destroying them, then
669 		 * recreating them
670 		 */
671 		hw->tnl.tbl[i].ref = 1; /* make sure to destroy in one call */
672 		status = ice_destroy_tunnel(hw, port, false);
673 		if (status) {
674 			ice_debug(hw, ICE_DBG_PKG, "ERR: 0x%x - destroy tunnel port 0x%x\n",
675 				  status, port);
676 			break;
677 		}
678 
679 		status = ice_create_tunnel(hw, type, port);
680 		if (status) {
681 			ice_debug(hw, ICE_DBG_PKG, "ERR: 0x%x - create tunnel port 0x%x\n",
682 				  status, port);
683 			break;
684 		}
685 
686 		/* reset to original ref count */
687 		hw->tnl.tbl[i].ref = refs;
688 	}
689 
690 	return status;
691 }
692 
693 /**
694  * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
695  * @hw: pointer to the hardware structure
696  * @blk: hardware block
697  * @prof: profile ID
698  * @fv_idx: field vector word index
699  * @prot: variable to receive the protocol ID
700  * @off: variable to receive the protocol offset
701  */
702 enum ice_status
703 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
704 		  u8 *prot, u16 *off)
705 {
706 	struct ice_fv_word *fv_ext;
707 
708 	if (prof >= hw->blk[blk].es.count)
709 		return ICE_ERR_PARAM;
710 
711 	if (fv_idx >= hw->blk[blk].es.fvw)
712 		return ICE_ERR_PARAM;
713 
714 	fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
715 
716 	*prot = fv_ext[fv_idx].prot_id;
717 	*off = fv_ext[fv_idx].off;
718 
719 	return ICE_SUCCESS;
720 }
721 
722 /* PTG Management */
723 
724 /**
725  * ice_ptg_update_xlt1 - Updates packet type groups in HW via XLT1 table
726  * @hw: pointer to the hardware structure
727  * @blk: HW block
728  *
729  * This function will update the XLT1 hardware table to reflect the new
730  * packet type group configuration.
731  */
732 enum ice_status ice_ptg_update_xlt1(struct ice_hw *hw, enum ice_block blk)
733 {
734 	struct ice_xlt1_section *sect;
735 	struct ice_buf_build *bld;
736 	enum ice_status status;
737 	u16 index;
738 
739 	bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT1),
740 					       ice_struct_size(sect, value,
741 							       ICE_XLT1_CNT),
742 					       (void **)&sect);
743 	if (!bld)
744 		return ICE_ERR_NO_MEMORY;
745 
746 	sect->count = CPU_TO_LE16(ICE_XLT1_CNT);
747 	sect->offset = CPU_TO_LE16(0);
748 	for (index = 0; index < ICE_XLT1_CNT; index++)
749 		sect->value[index] = hw->blk[blk].xlt1.ptypes[index].ptg;
750 
751 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
752 
753 	ice_pkg_buf_free(hw, bld);
754 
755 	return status;
756 }
757 
758 /**
759  * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
760  * @hw: pointer to the hardware structure
761  * @blk: HW block
762  * @ptype: the ptype to search for
763  * @ptg: pointer to variable that receives the PTG
764  *
765  * This function will search the PTGs for a particular ptype, returning the
766  * PTG ID that contains it through the PTG parameter, with the value of
767  * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
768  */
769 static enum ice_status
770 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
771 {
772 	if (ptype >= ICE_XLT1_CNT || !ptg)
773 		return ICE_ERR_PARAM;
774 
775 	*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
776 	return ICE_SUCCESS;
777 }
778 
779 /**
780  * ice_ptg_alloc_val - Allocates a new packet type group ID by value
781  * @hw: pointer to the hardware structure
782  * @blk: HW block
783  * @ptg: the PTG to allocate
784  *
785  * This function allocates a given packet type group ID specified by the PTG
786  * parameter.
787  */
788 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
789 {
790 	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
791 }
792 
793 /**
794  * ice_ptg_free - Frees a packet type group
795  * @hw: pointer to the hardware structure
796  * @blk: HW block
797  * @ptg: the PTG ID to free
798  *
799  * This function frees a packet type group, and returns all the current ptypes
800  * within it to the default PTG.
801  */
802 void ice_ptg_free(struct ice_hw *hw, enum ice_block blk, u8 ptg)
803 {
804 	struct ice_ptg_ptype *p, *temp;
805 
806 	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = false;
807 	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
808 	while (p) {
809 		p->ptg = ICE_DEFAULT_PTG;
810 		temp = p->next_ptype;
811 		p->next_ptype = NULL;
812 		p = temp;
813 	}
814 
815 	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = NULL;
816 }
817 
818 /**
819  * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
820  * @hw: pointer to the hardware structure
821  * @blk: HW block
822  * @ptype: the ptype to remove
823  * @ptg: the PTG to remove the ptype from
824  *
825  * This function will remove the ptype from the specific PTG, and move it to
826  * the default PTG (ICE_DEFAULT_PTG).
827  */
828 static enum ice_status
829 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
830 {
831 	struct ice_ptg_ptype **ch;
832 	struct ice_ptg_ptype *p;
833 
834 	if (ptype > ICE_XLT1_CNT - 1)
835 		return ICE_ERR_PARAM;
836 
837 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
838 		return ICE_ERR_DOES_NOT_EXIST;
839 
840 	/* Should not happen if .in_use is set, bad config */
841 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
842 		return ICE_ERR_CFG;
843 
844 	/* find the ptype within this PTG, and bypass the link over it */
845 	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
846 	ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
847 	while (p) {
848 		if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
849 			*ch = p->next_ptype;
850 			break;
851 		}
852 
853 		ch = &p->next_ptype;
854 		p = p->next_ptype;
855 	}
856 
857 	hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
858 	hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
859 
860 	return ICE_SUCCESS;
861 }
862 
863 /**
864  * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
865  * @hw: pointer to the hardware structure
866  * @blk: HW block
867  * @ptype: the ptype to add or move
868  * @ptg: the PTG to add or move the ptype to
869  *
870  * This function will either add or move a ptype to a particular PTG depending
871  * on if the ptype is already part of another group. Note that using a
872  * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
873  * default PTG.
874  */
875 static enum ice_status
876 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
877 {
878 	enum ice_status status;
879 	u8 original_ptg;
880 
881 	if (ptype > ICE_XLT1_CNT - 1)
882 		return ICE_ERR_PARAM;
883 
884 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
885 		return ICE_ERR_DOES_NOT_EXIST;
886 
887 	status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
888 	if (status)
889 		return status;
890 
891 	/* Is ptype already in the correct PTG? */
892 	if (original_ptg == ptg)
893 		return ICE_SUCCESS;
894 
895 	/* Remove from original PTG and move back to the default PTG */
896 	if (original_ptg != ICE_DEFAULT_PTG)
897 		ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
898 
899 	/* Moving to default PTG? Then we're done with this request */
900 	if (ptg == ICE_DEFAULT_PTG)
901 		return ICE_SUCCESS;
902 
903 	/* Add ptype to PTG at beginning of list */
904 	hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
905 		hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
906 	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
907 		&hw->blk[blk].xlt1.ptypes[ptype];
908 
909 	hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
910 	hw->blk[blk].xlt1.t[ptype] = ptg;
911 
912 	return ICE_SUCCESS;
913 }
914 
915 /* Block / table size info */
916 struct ice_blk_size_details {
917 	u16 xlt1;			/* # XLT1 entries */
918 	u16 xlt2;			/* # XLT2 entries */
919 	u16 prof_tcam;			/* # profile ID TCAM entries */
920 	u16 prof_id;			/* # profile IDs */
921 	u8 prof_cdid_bits;		/* # CDID one-hot bits used in key */
922 	u16 prof_redir;			/* # profile redirection entries */
923 	u16 es;				/* # extraction sequence entries */
924 	u16 fvw;			/* # field vector words */
925 	u8 overwrite;			/* overwrite existing entries allowed */
926 	u8 reverse;			/* reverse FV order */
927 };
928 
929 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
930 	/**
931 	 * Table Definitions
932 	 * XLT1 - Number of entries in XLT1 table
933 	 * XLT2 - Number of entries in XLT2 table
934 	 * TCAM - Number of entries Profile ID TCAM table
935 	 * CDID - Control Domain ID of the hardware block
936 	 * PRED - Number of entries in the Profile Redirection Table
937 	 * FV   - Number of entries in the Field Vector
938 	 * FVW  - Width (in WORDs) of the Field Vector
939 	 * OVR  - Overwrite existing table entries
940 	 * REV  - Reverse FV
941 	 */
942 	/*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
943 	/*          Overwrite   , Reverse FV */
944 	/* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
945 		    false, false },
946 	/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
947 		    false, false },
948 	/* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
949 		    false, true  },
950 	/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
951 		    true,  true  },
952 	/* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
953 		    false, false },
954 };
955 
956 enum ice_sid_all {
957 	ICE_SID_XLT1_OFF = 0,
958 	ICE_SID_XLT2_OFF,
959 	ICE_SID_PR_OFF,
960 	ICE_SID_PR_REDIR_OFF,
961 	ICE_SID_ES_OFF,
962 	ICE_SID_OFF_COUNT,
963 };
964 
965 /* Characteristic handling */
966 
967 /**
968  * ice_match_prop_lst - determine if properties of two lists match
969  * @list1: first properties list
970  * @list2: second properties list
971  *
972  * Count, cookies and the order must match in order to be considered equivalent.
973  */
974 static bool
975 ice_match_prop_lst(struct LIST_HEAD_TYPE *list1, struct LIST_HEAD_TYPE *list2)
976 {
977 	struct ice_vsig_prof *tmp1;
978 	struct ice_vsig_prof *tmp2;
979 	u16 chk_count = 0;
980 	u16 count = 0;
981 
982 	/* compare counts */
983 	LIST_FOR_EACH_ENTRY(tmp1, list1, ice_vsig_prof, list)
984 		count++;
985 	LIST_FOR_EACH_ENTRY(tmp2, list2, ice_vsig_prof, list)
986 		chk_count++;
987 	if (!count || count != chk_count)
988 		return false;
989 
990 	tmp1 = LIST_FIRST_ENTRY(list1, struct ice_vsig_prof, list);
991 	tmp2 = LIST_FIRST_ENTRY(list2, struct ice_vsig_prof, list);
992 
993 	/* profile cookies must compare, and in the exact same order to take
994 	 * into account priority
995 	 */
996 	while (count--) {
997 		if (tmp2->profile_cookie != tmp1->profile_cookie)
998 			return false;
999 
1000 		tmp1 = LIST_NEXT_ENTRY(tmp1, struct ice_vsig_prof, list);
1001 		tmp2 = LIST_NEXT_ENTRY(tmp2, struct ice_vsig_prof, list);
1002 	}
1003 
1004 	return true;
1005 }
1006 
1007 /* VSIG Management */
1008 
1009 /**
1010  * ice_vsig_update_xlt2_sect - update one section of XLT2 table
1011  * @hw: pointer to the hardware structure
1012  * @blk: HW block
1013  * @vsi: HW VSI number to program
1014  * @vsig: VSIG for the VSI
1015  *
1016  * This function will update the XLT2 hardware table with the input VSI
1017  * group configuration.
1018  */
1019 static enum ice_status
1020 ice_vsig_update_xlt2_sect(struct ice_hw *hw, enum ice_block blk, u16 vsi,
1021 			  u16 vsig)
1022 {
1023 	struct ice_xlt2_section *sect;
1024 	struct ice_buf_build *bld;
1025 	enum ice_status status;
1026 
1027 	bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT2),
1028 					       ice_struct_size(sect, value, 1),
1029 					       (void **)&sect);
1030 	if (!bld)
1031 		return ICE_ERR_NO_MEMORY;
1032 
1033 	sect->count = CPU_TO_LE16(1);
1034 	sect->offset = CPU_TO_LE16(vsi);
1035 	sect->value[0] = CPU_TO_LE16(vsig);
1036 
1037 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
1038 
1039 	ice_pkg_buf_free(hw, bld);
1040 
1041 	return status;
1042 }
1043 
1044 /**
1045  * ice_vsig_update_xlt2 - update XLT2 table with VSIG configuration
1046  * @hw: pointer to the hardware structure
1047  * @blk: HW block
1048  *
1049  * This function will update the XLT2 hardware table with the input VSI
1050  * group configuration of used vsis.
1051  */
1052 enum ice_status ice_vsig_update_xlt2(struct ice_hw *hw, enum ice_block blk)
1053 {
1054 	u16 vsi;
1055 
1056 	for (vsi = 0; vsi < ICE_MAX_VSI; vsi++) {
1057 		/* update only vsis that have been changed */
1058 		if (hw->blk[blk].xlt2.vsis[vsi].changed) {
1059 			enum ice_status status;
1060 			u16 vsig;
1061 
1062 			vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
1063 			status = ice_vsig_update_xlt2_sect(hw, blk, vsi, vsig);
1064 			if (status)
1065 				return status;
1066 
1067 			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
1068 		}
1069 	}
1070 
1071 	return ICE_SUCCESS;
1072 }
1073 
1074 /**
1075  * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
1076  * @hw: pointer to the hardware structure
1077  * @blk: HW block
1078  * @vsi: VSI of interest
1079  * @vsig: pointer to receive the VSI group
1080  *
1081  * This function will lookup the VSI entry in the XLT2 list and return
1082  * the VSI group its associated with.
1083  */
1084 enum ice_status
1085 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
1086 {
1087 	if (!vsig || vsi >= ICE_MAX_VSI)
1088 		return ICE_ERR_PARAM;
1089 
1090 	/* As long as there's a default or valid VSIG associated with the input
1091 	 * VSI, the functions returns a success. Any handling of VSIG will be
1092 	 * done by the following add, update or remove functions.
1093 	 */
1094 	*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
1095 
1096 	return ICE_SUCCESS;
1097 }
1098 
1099 /**
1100  * ice_vsig_alloc_val - allocate a new VSIG by value
1101  * @hw: pointer to the hardware structure
1102  * @blk: HW block
1103  * @vsig: the VSIG to allocate
1104  *
1105  * This function will allocate a given VSIG specified by the VSIG parameter.
1106  */
1107 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
1108 {
1109 	u16 idx = vsig & ICE_VSIG_IDX_M;
1110 
1111 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
1112 		INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
1113 		hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
1114 	}
1115 
1116 	return ICE_VSIG_VALUE(idx, hw->pf_id);
1117 }
1118 
1119 /**
1120  * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
1121  * @hw: pointer to the hardware structure
1122  * @blk: HW block
1123  *
1124  * This function will iterate through the VSIG list and mark the first
1125  * unused entry for the new VSIG entry as used and return that value.
1126  */
1127 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
1128 {
1129 	u16 i;
1130 
1131 	for (i = 1; i < ICE_MAX_VSIGS; i++)
1132 		if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
1133 			return ice_vsig_alloc_val(hw, blk, i);
1134 
1135 	return ICE_DEFAULT_VSIG;
1136 }
1137 
1138 /**
1139  * ice_find_dup_props_vsig - find VSI group with a specified set of properties
1140  * @hw: pointer to the hardware structure
1141  * @blk: HW block
1142  * @chs: characteristic list
1143  * @vsig: returns the VSIG with the matching profiles, if found
1144  *
1145  * Each VSIG is associated with a characteristic set; i.e. all VSIs under
1146  * a group have the same characteristic set. To check if there exists a VSIG
1147  * which has the same characteristics as the input characteristics; this
1148  * function will iterate through the XLT2 list and return the VSIG that has a
1149  * matching configuration. In order to make sure that priorities are accounted
1150  * for, the list must match exactly, including the order in which the
1151  * characteristics are listed.
1152  */
1153 static enum ice_status
1154 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
1155 			struct LIST_HEAD_TYPE *chs, u16 *vsig)
1156 {
1157 	struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
1158 	u16 i;
1159 
1160 	for (i = 0; i < xlt2->count; i++)
1161 		if (xlt2->vsig_tbl[i].in_use &&
1162 		    ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
1163 			*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
1164 			return ICE_SUCCESS;
1165 		}
1166 
1167 	return ICE_ERR_DOES_NOT_EXIST;
1168 }
1169 
1170 /**
1171  * ice_vsig_free - free VSI group
1172  * @hw: pointer to the hardware structure
1173  * @blk: HW block
1174  * @vsig: VSIG to remove
1175  *
1176  * The function will remove all VSIs associated with the input VSIG and move
1177  * them to the DEFAULT_VSIG and mark the VSIG available.
1178  */
1179 static enum ice_status
1180 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
1181 {
1182 	struct ice_vsig_prof *dtmp, *del;
1183 	struct ice_vsig_vsi *vsi_cur;
1184 	u16 idx;
1185 
1186 	idx = vsig & ICE_VSIG_IDX_M;
1187 	if (idx >= ICE_MAX_VSIGS)
1188 		return ICE_ERR_PARAM;
1189 
1190 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
1191 		return ICE_ERR_DOES_NOT_EXIST;
1192 
1193 	hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
1194 
1195 	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1196 	/* If the VSIG has at least 1 VSI then iterate through the
1197 	 * list and remove the VSIs before deleting the group.
1198 	 */
1199 	if (vsi_cur) {
1200 		/* remove all vsis associated with this VSIG XLT2 entry */
1201 		do {
1202 			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
1203 
1204 			vsi_cur->vsig = ICE_DEFAULT_VSIG;
1205 			vsi_cur->changed = 1;
1206 			vsi_cur->next_vsi = NULL;
1207 			vsi_cur = tmp;
1208 		} while (vsi_cur);
1209 
1210 		/* NULL terminate head of VSI list */
1211 		hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
1212 	}
1213 
1214 	/* free characteristic list */
1215 	LIST_FOR_EACH_ENTRY_SAFE(del, dtmp,
1216 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
1217 				 ice_vsig_prof, list) {
1218 		LIST_DEL(&del->list);
1219 		ice_free(hw, del);
1220 	}
1221 
1222 	/* if VSIG characteristic list was cleared for reset
1223 	 * re-initialize the list head
1224 	 */
1225 	INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
1226 
1227 	return ICE_SUCCESS;
1228 }
1229 
1230 /**
1231  * ice_vsig_remove_vsi - remove VSI from VSIG
1232  * @hw: pointer to the hardware structure
1233  * @blk: HW block
1234  * @vsi: VSI to remove
1235  * @vsig: VSI group to remove from
1236  *
1237  * The function will remove the input VSI from its VSI group and move it
1238  * to the DEFAULT_VSIG.
1239  */
1240 static enum ice_status
1241 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1242 {
1243 	struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
1244 	u16 idx;
1245 
1246 	idx = vsig & ICE_VSIG_IDX_M;
1247 
1248 	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1249 		return ICE_ERR_PARAM;
1250 
1251 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
1252 		return ICE_ERR_DOES_NOT_EXIST;
1253 
1254 	/* entry already in default VSIG, don't have to remove */
1255 	if (idx == ICE_DEFAULT_VSIG)
1256 		return ICE_SUCCESS;
1257 
1258 	vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1259 	if (!(*vsi_head))
1260 		return ICE_ERR_CFG;
1261 
1262 	vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
1263 	vsi_cur = (*vsi_head);
1264 
1265 	/* iterate the VSI list, skip over the entry to be removed */
1266 	while (vsi_cur) {
1267 		if (vsi_tgt == vsi_cur) {
1268 			(*vsi_head) = vsi_cur->next_vsi;
1269 			break;
1270 		}
1271 		vsi_head = &vsi_cur->next_vsi;
1272 		vsi_cur = vsi_cur->next_vsi;
1273 	}
1274 
1275 	/* verify if VSI was removed from group list */
1276 	if (!vsi_cur)
1277 		return ICE_ERR_DOES_NOT_EXIST;
1278 
1279 	vsi_cur->vsig = ICE_DEFAULT_VSIG;
1280 	vsi_cur->changed = 1;
1281 	vsi_cur->next_vsi = NULL;
1282 
1283 	return ICE_SUCCESS;
1284 }
1285 
1286 /**
1287  * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
1288  * @hw: pointer to the hardware structure
1289  * @blk: HW block
1290  * @vsi: VSI to move
1291  * @vsig: destination VSI group
1292  *
1293  * This function will move or add the input VSI to the target VSIG.
1294  * The function will find the original VSIG the VSI belongs to and
1295  * move the entry to the DEFAULT_VSIG, update the original VSIG and
1296  * then move entry to the new VSIG.
1297  */
1298 static enum ice_status
1299 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1300 {
1301 	struct ice_vsig_vsi *tmp;
1302 	enum ice_status status;
1303 	u16 orig_vsig, idx;
1304 
1305 	idx = vsig & ICE_VSIG_IDX_M;
1306 
1307 	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1308 		return ICE_ERR_PARAM;
1309 
1310 	/* if VSIG not in use and VSIG is not default type this VSIG
1311 	 * doesn't exist.
1312 	 */
1313 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
1314 	    vsig != ICE_DEFAULT_VSIG)
1315 		return ICE_ERR_DOES_NOT_EXIST;
1316 
1317 	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
1318 	if (status)
1319 		return status;
1320 
1321 	/* no update required if vsigs match */
1322 	if (orig_vsig == vsig)
1323 		return ICE_SUCCESS;
1324 
1325 	if (orig_vsig != ICE_DEFAULT_VSIG) {
1326 		/* remove entry from orig_vsig and add to default VSIG */
1327 		status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
1328 		if (status)
1329 			return status;
1330 	}
1331 
1332 	if (idx == ICE_DEFAULT_VSIG)
1333 		return ICE_SUCCESS;
1334 
1335 	/* Create VSI entry and add VSIG and prop_mask values */
1336 	hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
1337 	hw->blk[blk].xlt2.vsis[vsi].changed = 1;
1338 
1339 	/* Add new entry to the head of the VSIG list */
1340 	tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1341 	hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
1342 		&hw->blk[blk].xlt2.vsis[vsi];
1343 	hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
1344 	hw->blk[blk].xlt2.t[vsi] = vsig;
1345 
1346 	return ICE_SUCCESS;
1347 }
1348 
1349 /**
1350  * ice_find_prof_id - find profile ID for a given field vector
1351  * @hw: pointer to the hardware structure
1352  * @blk: HW block
1353  * @fv: field vector to search for
1354  * @prof_id: receives the profile ID
1355  */
1356 static enum ice_status
1357 ice_find_prof_id(struct ice_hw *hw, enum ice_block blk,
1358 		 struct ice_fv_word *fv, u8 *prof_id)
1359 {
1360 	struct ice_es *es = &hw->blk[blk].es;
1361 	u16 off;
1362 	u8 i;
1363 
1364 	for (i = 0; i < (u8)es->count; i++) {
1365 		off = i * es->fvw;
1366 
1367 		if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
1368 			continue;
1369 
1370 		*prof_id = i;
1371 		return ICE_SUCCESS;
1372 	}
1373 
1374 	return ICE_ERR_DOES_NOT_EXIST;
1375 }
1376 
1377 /**
1378  * ice_prof_id_rsrc_type - get profile ID resource type for a block type
1379  * @blk: the block type
1380  * @rsrc_type: pointer to variable to receive the resource type
1381  */
1382 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1383 {
1384 	switch (blk) {
1385 	case ICE_BLK_RSS:
1386 		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
1387 		break;
1388 	case ICE_BLK_PE:
1389 		*rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_PROFID;
1390 		break;
1391 	default:
1392 		return false;
1393 	}
1394 	return true;
1395 }
1396 
1397 /**
1398  * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
1399  * @blk: the block type
1400  * @rsrc_type: pointer to variable to receive the resource type
1401  */
1402 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1403 {
1404 	switch (blk) {
1405 	case ICE_BLK_RSS:
1406 		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
1407 		break;
1408 	case ICE_BLK_PE:
1409 		*rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_TCAM;
1410 		break;
1411 	default:
1412 		return false;
1413 	}
1414 	return true;
1415 }
1416 
1417 /**
1418  * ice_alloc_tcam_ent - allocate hardware TCAM entry
1419  * @hw: pointer to the HW struct
1420  * @blk: the block to allocate the TCAM for
1421  * @btm: true to allocate from bottom of table, false to allocate from top
1422  * @tcam_idx: pointer to variable to receive the TCAM entry
1423  *
1424  * This function allocates a new entry in a Profile ID TCAM for a specific
1425  * block.
1426  */
1427 static enum ice_status
1428 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
1429 		   u16 *tcam_idx)
1430 {
1431 	u16 res_type;
1432 
1433 	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1434 		return ICE_ERR_PARAM;
1435 
1436 	return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
1437 }
1438 
1439 /**
1440  * ice_free_tcam_ent - free hardware TCAM entry
1441  * @hw: pointer to the HW struct
1442  * @blk: the block from which to free the TCAM entry
1443  * @tcam_idx: the TCAM entry to free
1444  *
1445  * This function frees an entry in a Profile ID TCAM for a specific block.
1446  */
1447 static enum ice_status
1448 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
1449 {
1450 	u16 res_type;
1451 
1452 	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1453 		return ICE_ERR_PARAM;
1454 
1455 	return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
1456 }
1457 
1458 /**
1459  * ice_alloc_prof_id - allocate profile ID
1460  * @hw: pointer to the HW struct
1461  * @blk: the block to allocate the profile ID for
1462  * @prof_id: pointer to variable to receive the profile ID
1463  *
1464  * This function allocates a new profile ID, which also corresponds to a Field
1465  * Vector (Extraction Sequence) entry.
1466  */
1467 static enum ice_status
1468 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
1469 {
1470 	enum ice_status status;
1471 	u16 res_type;
1472 	u16 get_prof;
1473 
1474 	if (!ice_prof_id_rsrc_type(blk, &res_type))
1475 		return ICE_ERR_PARAM;
1476 
1477 	status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
1478 	if (!status)
1479 		*prof_id = (u8)get_prof;
1480 
1481 	return status;
1482 }
1483 
1484 /**
1485  * ice_free_prof_id - free profile ID
1486  * @hw: pointer to the HW struct
1487  * @blk: the block from which to free the profile ID
1488  * @prof_id: the profile ID to free
1489  *
1490  * This function frees a profile ID, which also corresponds to a Field Vector.
1491  */
1492 static enum ice_status
1493 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1494 {
1495 	u16 tmp_prof_id = (u16)prof_id;
1496 	u16 res_type;
1497 
1498 	if (!ice_prof_id_rsrc_type(blk, &res_type))
1499 		return ICE_ERR_PARAM;
1500 
1501 	return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
1502 }
1503 
1504 /**
1505  * ice_prof_inc_ref - increment reference count for profile
1506  * @hw: pointer to the HW struct
1507  * @blk: the block from which to free the profile ID
1508  * @prof_id: the profile ID for which to increment the reference count
1509  */
1510 static enum ice_status
1511 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1512 {
1513 	if (prof_id > hw->blk[blk].es.count)
1514 		return ICE_ERR_PARAM;
1515 
1516 	hw->blk[blk].es.ref_count[prof_id]++;
1517 
1518 	return ICE_SUCCESS;
1519 }
1520 
1521 /**
1522  * ice_write_es - write an extraction sequence to hardware
1523  * @hw: pointer to the HW struct
1524  * @blk: the block in which to write the extraction sequence
1525  * @prof_id: the profile ID to write
1526  * @fv: pointer to the extraction sequence to write - NULL to clear extraction
1527  */
1528 static void
1529 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
1530 	     struct ice_fv_word *fv)
1531 {
1532 	u16 off;
1533 
1534 	off = prof_id * hw->blk[blk].es.fvw;
1535 	if (!fv) {
1536 		ice_memset(&hw->blk[blk].es.t[off], 0, hw->blk[blk].es.fvw *
1537 			   sizeof(*fv), ICE_NONDMA_MEM);
1538 		hw->blk[blk].es.written[prof_id] = false;
1539 	} else {
1540 		ice_memcpy(&hw->blk[blk].es.t[off], fv, hw->blk[blk].es.fvw *
1541 			   sizeof(*fv), ICE_NONDMA_TO_NONDMA);
1542 	}
1543 }
1544 
1545 /**
1546  * ice_prof_dec_ref - decrement reference count for profile
1547  * @hw: pointer to the HW struct
1548  * @blk: the block from which to free the profile ID
1549  * @prof_id: the profile ID for which to decrement the reference count
1550  */
1551 static enum ice_status
1552 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1553 {
1554 	if (prof_id > hw->blk[blk].es.count)
1555 		return ICE_ERR_PARAM;
1556 
1557 	if (hw->blk[blk].es.ref_count[prof_id] > 0) {
1558 		if (!--hw->blk[blk].es.ref_count[prof_id]) {
1559 			ice_write_es(hw, blk, prof_id, NULL);
1560 			return ice_free_prof_id(hw, blk, prof_id);
1561 		}
1562 	}
1563 
1564 	return ICE_SUCCESS;
1565 }
1566 
1567 /* Block / table section IDs */
1568 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
1569 	/* SWITCH */
1570 	{	ICE_SID_XLT1_SW,
1571 		ICE_SID_XLT2_SW,
1572 		ICE_SID_PROFID_TCAM_SW,
1573 		ICE_SID_PROFID_REDIR_SW,
1574 		ICE_SID_FLD_VEC_SW
1575 	},
1576 
1577 	/* ACL */
1578 	{	ICE_SID_XLT1_ACL,
1579 		ICE_SID_XLT2_ACL,
1580 		ICE_SID_PROFID_TCAM_ACL,
1581 		ICE_SID_PROFID_REDIR_ACL,
1582 		ICE_SID_FLD_VEC_ACL
1583 	},
1584 
1585 	/* FD */
1586 	{	ICE_SID_XLT1_FD,
1587 		ICE_SID_XLT2_FD,
1588 		ICE_SID_PROFID_TCAM_FD,
1589 		ICE_SID_PROFID_REDIR_FD,
1590 		ICE_SID_FLD_VEC_FD
1591 	},
1592 
1593 	/* RSS */
1594 	{	ICE_SID_XLT1_RSS,
1595 		ICE_SID_XLT2_RSS,
1596 		ICE_SID_PROFID_TCAM_RSS,
1597 		ICE_SID_PROFID_REDIR_RSS,
1598 		ICE_SID_FLD_VEC_RSS
1599 	},
1600 
1601 	/* PE */
1602 	{	ICE_SID_XLT1_PE,
1603 		ICE_SID_XLT2_PE,
1604 		ICE_SID_PROFID_TCAM_PE,
1605 		ICE_SID_PROFID_REDIR_PE,
1606 		ICE_SID_FLD_VEC_PE
1607 	}
1608 };
1609 
1610 /**
1611  * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
1612  * @hw: pointer to the hardware structure
1613  * @blk: the HW block to initialize
1614  */
1615 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
1616 {
1617 	u16 pt;
1618 
1619 	for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
1620 		u8 ptg;
1621 
1622 		ptg = hw->blk[blk].xlt1.t[pt];
1623 		if (ptg != ICE_DEFAULT_PTG) {
1624 			ice_ptg_alloc_val(hw, blk, ptg);
1625 			ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
1626 		}
1627 	}
1628 }
1629 
1630 /**
1631  * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
1632  * @hw: pointer to the hardware structure
1633  * @blk: the HW block to initialize
1634  */
1635 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
1636 {
1637 	u16 vsi;
1638 
1639 	for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
1640 		u16 vsig;
1641 
1642 		vsig = hw->blk[blk].xlt2.t[vsi];
1643 		if (vsig) {
1644 			ice_vsig_alloc_val(hw, blk, vsig);
1645 			ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
1646 			/* no changes at this time, since this has been
1647 			 * initialized from the original package
1648 			 */
1649 			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
1650 		}
1651 	}
1652 }
1653 
1654 /**
1655  * ice_init_sw_db - init software database from HW tables
1656  * @hw: pointer to the hardware structure
1657  */
1658 static void ice_init_sw_db(struct ice_hw *hw)
1659 {
1660 	u16 i;
1661 
1662 	for (i = 0; i < ICE_BLK_COUNT; i++) {
1663 		ice_init_sw_xlt1_db(hw, (enum ice_block)i);
1664 		ice_init_sw_xlt2_db(hw, (enum ice_block)i);
1665 	}
1666 }
1667 
1668 /**
1669  * ice_fill_tbl - Reads content of a single table type into database
1670  * @hw: pointer to the hardware structure
1671  * @block_id: Block ID of the table to copy
1672  * @sid: Section ID of the table to copy
1673  *
1674  * Will attempt to read the entire content of a given table of a single block
1675  * into the driver database. We assume that the buffer will always
1676  * be as large or larger than the data contained in the package. If
1677  * this condition is not met, there is most likely an error in the package
1678  * contents.
1679  */
1680 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
1681 {
1682 	u32 dst_len, sect_len, offset = 0;
1683 	struct ice_prof_redir_section *pr;
1684 	struct ice_prof_id_section *pid;
1685 	struct ice_xlt1_section *xlt1;
1686 	struct ice_xlt2_section *xlt2;
1687 	struct ice_sw_fv_section *es;
1688 	struct ice_pkg_enum state;
1689 	u8 *src, *dst;
1690 	void *sect;
1691 
1692 	/* if the HW segment pointer is null then the first iteration of
1693 	 * ice_pkg_enum_section() will fail. In this case the HW tables will
1694 	 * not be filled and return success.
1695 	 */
1696 	if (!hw->seg) {
1697 		ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
1698 		return;
1699 	}
1700 
1701 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1702 
1703 	sect = ice_pkg_enum_section(hw->seg, &state, sid);
1704 
1705 	while (sect) {
1706 		switch (sid) {
1707 		case ICE_SID_XLT1_SW:
1708 		case ICE_SID_XLT1_FD:
1709 		case ICE_SID_XLT1_RSS:
1710 		case ICE_SID_XLT1_ACL:
1711 		case ICE_SID_XLT1_PE:
1712 			xlt1 = (struct ice_xlt1_section *)sect;
1713 			src = xlt1->value;
1714 			sect_len = LE16_TO_CPU(xlt1->count) *
1715 				sizeof(*hw->blk[block_id].xlt1.t);
1716 			dst = hw->blk[block_id].xlt1.t;
1717 			dst_len = hw->blk[block_id].xlt1.count *
1718 				sizeof(*hw->blk[block_id].xlt1.t);
1719 			break;
1720 		case ICE_SID_XLT2_SW:
1721 		case ICE_SID_XLT2_FD:
1722 		case ICE_SID_XLT2_RSS:
1723 		case ICE_SID_XLT2_ACL:
1724 		case ICE_SID_XLT2_PE:
1725 			xlt2 = (struct ice_xlt2_section *)sect;
1726 			src = (_FORCE_ u8 *)xlt2->value;
1727 			sect_len = LE16_TO_CPU(xlt2->count) *
1728 				sizeof(*hw->blk[block_id].xlt2.t);
1729 			dst = (u8 *)hw->blk[block_id].xlt2.t;
1730 			dst_len = hw->blk[block_id].xlt2.count *
1731 				sizeof(*hw->blk[block_id].xlt2.t);
1732 			break;
1733 		case ICE_SID_PROFID_TCAM_SW:
1734 		case ICE_SID_PROFID_TCAM_FD:
1735 		case ICE_SID_PROFID_TCAM_RSS:
1736 		case ICE_SID_PROFID_TCAM_ACL:
1737 		case ICE_SID_PROFID_TCAM_PE:
1738 			pid = (struct ice_prof_id_section *)sect;
1739 			src = (u8 *)pid->entry;
1740 			sect_len = LE16_TO_CPU(pid->count) *
1741 				sizeof(*hw->blk[block_id].prof.t);
1742 			dst = (u8 *)hw->blk[block_id].prof.t;
1743 			dst_len = hw->blk[block_id].prof.count *
1744 				sizeof(*hw->blk[block_id].prof.t);
1745 			break;
1746 		case ICE_SID_PROFID_REDIR_SW:
1747 		case ICE_SID_PROFID_REDIR_FD:
1748 		case ICE_SID_PROFID_REDIR_RSS:
1749 		case ICE_SID_PROFID_REDIR_ACL:
1750 		case ICE_SID_PROFID_REDIR_PE:
1751 			pr = (struct ice_prof_redir_section *)sect;
1752 			src = pr->redir_value;
1753 			sect_len = LE16_TO_CPU(pr->count) *
1754 				sizeof(*hw->blk[block_id].prof_redir.t);
1755 			dst = hw->blk[block_id].prof_redir.t;
1756 			dst_len = hw->blk[block_id].prof_redir.count *
1757 				sizeof(*hw->blk[block_id].prof_redir.t);
1758 			break;
1759 		case ICE_SID_FLD_VEC_SW:
1760 		case ICE_SID_FLD_VEC_FD:
1761 		case ICE_SID_FLD_VEC_RSS:
1762 		case ICE_SID_FLD_VEC_ACL:
1763 		case ICE_SID_FLD_VEC_PE:
1764 			es = (struct ice_sw_fv_section *)sect;
1765 			src = (u8 *)es->fv;
1766 			sect_len = (u32)(LE16_TO_CPU(es->count) *
1767 					 hw->blk[block_id].es.fvw) *
1768 				sizeof(*hw->blk[block_id].es.t);
1769 			dst = (u8 *)hw->blk[block_id].es.t;
1770 			dst_len = (u32)(hw->blk[block_id].es.count *
1771 					hw->blk[block_id].es.fvw) *
1772 				sizeof(*hw->blk[block_id].es.t);
1773 			break;
1774 		default:
1775 			return;
1776 		}
1777 
1778 		/* if the section offset exceeds destination length, terminate
1779 		 * table fill.
1780 		 */
1781 		if (offset > dst_len)
1782 			return;
1783 
1784 		/* if the sum of section size and offset exceed destination size
1785 		 * then we are out of bounds of the HW table size for that PF.
1786 		 * Changing section length to fill the remaining table space
1787 		 * of that PF.
1788 		 */
1789 		if ((offset + sect_len) > dst_len)
1790 			sect_len = dst_len - offset;
1791 
1792 		ice_memcpy(dst + offset, src, sect_len, ICE_NONDMA_TO_NONDMA);
1793 		offset += sect_len;
1794 		sect = ice_pkg_enum_section(NULL, &state, sid);
1795 	}
1796 }
1797 
1798 /**
1799  * ice_init_flow_profs - init flow profile locks and list heads
1800  * @hw: pointer to the hardware structure
1801  * @blk_idx: HW block index
1802  */
1803 static
1804 void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
1805 {
1806 	ice_init_lock(&hw->fl_profs_locks[blk_idx]);
1807 	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
1808 }
1809 
1810 /**
1811  * ice_init_hw_tbls - init hardware table memory
1812  * @hw: pointer to the hardware structure
1813  */
1814 enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
1815 {
1816 	u8 i;
1817 
1818 	ice_init_lock(&hw->rss_locks);
1819 	INIT_LIST_HEAD(&hw->rss_list_head);
1820 	for (i = 0; i < ICE_BLK_COUNT; i++) {
1821 		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
1822 		struct ice_prof_tcam *prof = &hw->blk[i].prof;
1823 		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
1824 		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
1825 		struct ice_es *es = &hw->blk[i].es;
1826 		u16 j;
1827 
1828 		if (hw->blk[i].is_list_init)
1829 			continue;
1830 
1831 		ice_init_flow_profs(hw, i);
1832 		ice_init_lock(&es->prof_map_lock);
1833 		INIT_LIST_HEAD(&es->prof_map);
1834 		hw->blk[i].is_list_init = true;
1835 
1836 		hw->blk[i].overwrite = blk_sizes[i].overwrite;
1837 		es->reverse = blk_sizes[i].reverse;
1838 
1839 		xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
1840 		xlt1->count = blk_sizes[i].xlt1;
1841 
1842 		xlt1->ptypes = (struct ice_ptg_ptype *)
1843 			ice_calloc(hw, xlt1->count, sizeof(*xlt1->ptypes));
1844 
1845 		if (!xlt1->ptypes)
1846 			goto err;
1847 
1848 		xlt1->ptg_tbl = (struct ice_ptg_entry *)
1849 			ice_calloc(hw, ICE_MAX_PTGS, sizeof(*xlt1->ptg_tbl));
1850 
1851 		if (!xlt1->ptg_tbl)
1852 			goto err;
1853 
1854 		xlt1->t = (u8 *)ice_calloc(hw, xlt1->count, sizeof(*xlt1->t));
1855 		if (!xlt1->t)
1856 			goto err;
1857 
1858 		xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
1859 		xlt2->count = blk_sizes[i].xlt2;
1860 
1861 		xlt2->vsis = (struct ice_vsig_vsi *)
1862 			ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsis));
1863 
1864 		if (!xlt2->vsis)
1865 			goto err;
1866 
1867 		xlt2->vsig_tbl = (struct ice_vsig_entry *)
1868 			ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsig_tbl));
1869 		if (!xlt2->vsig_tbl)
1870 			goto err;
1871 
1872 		for (j = 0; j < xlt2->count; j++)
1873 			INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
1874 
1875 		xlt2->t = (u16 *)ice_calloc(hw, xlt2->count, sizeof(*xlt2->t));
1876 		if (!xlt2->t)
1877 			goto err;
1878 
1879 		prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
1880 		prof->count = blk_sizes[i].prof_tcam;
1881 		prof->max_prof_id = blk_sizes[i].prof_id;
1882 		prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
1883 		prof->t = (struct ice_prof_tcam_entry *)
1884 			ice_calloc(hw, prof->count, sizeof(*prof->t));
1885 
1886 		if (!prof->t)
1887 			goto err;
1888 
1889 		prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
1890 		prof_redir->count = blk_sizes[i].prof_redir;
1891 		prof_redir->t = (u8 *)ice_calloc(hw, prof_redir->count,
1892 						 sizeof(*prof_redir->t));
1893 
1894 		if (!prof_redir->t)
1895 			goto err;
1896 
1897 		es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
1898 		es->count = blk_sizes[i].es;
1899 		es->fvw = blk_sizes[i].fvw;
1900 		es->t = (struct ice_fv_word *)
1901 			ice_calloc(hw, (u32)(es->count * es->fvw),
1902 				   sizeof(*es->t));
1903 		if (!es->t)
1904 			goto err;
1905 
1906 		es->ref_count = (u16 *)
1907 			ice_calloc(hw, es->count, sizeof(*es->ref_count));
1908 
1909 		if (!es->ref_count)
1910 			goto err;
1911 
1912 		es->written = (u8 *)
1913 			ice_calloc(hw, es->count, sizeof(*es->written));
1914 
1915 		if (!es->written)
1916 			goto err;
1917 
1918 	}
1919 	return ICE_SUCCESS;
1920 
1921 err:
1922 	ice_free_hw_tbls(hw);
1923 	return ICE_ERR_NO_MEMORY;
1924 }
1925 
1926 /**
1927  * ice_fill_blk_tbls - Read package context for tables
1928  * @hw: pointer to the hardware structure
1929  *
1930  * Reads the current package contents and populates the driver
1931  * database with the data iteratively for all advanced feature
1932  * blocks. Assume that the HW tables have been allocated.
1933  */
1934 void ice_fill_blk_tbls(struct ice_hw *hw)
1935 {
1936 	u8 i;
1937 
1938 	for (i = 0; i < ICE_BLK_COUNT; i++) {
1939 		enum ice_block blk_id = (enum ice_block)i;
1940 
1941 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
1942 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
1943 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
1944 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
1945 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
1946 	}
1947 
1948 	ice_init_sw_db(hw);
1949 }
1950 
1951 /**
1952  * ice_free_prof_map - free profile map
1953  * @hw: pointer to the hardware structure
1954  * @blk_idx: HW block index
1955  */
1956 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
1957 {
1958 	struct ice_es *es = &hw->blk[blk_idx].es;
1959 	struct ice_prof_map *del, *tmp;
1960 
1961 	ice_acquire_lock(&es->prof_map_lock);
1962 	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &es->prof_map,
1963 				 ice_prof_map, list) {
1964 		LIST_DEL(&del->list);
1965 		ice_free(hw, del);
1966 	}
1967 	INIT_LIST_HEAD(&es->prof_map);
1968 	ice_release_lock(&es->prof_map_lock);
1969 }
1970 
1971 /**
1972  * ice_free_flow_profs - free flow profile entries
1973  * @hw: pointer to the hardware structure
1974  * @blk_idx: HW block index
1975  */
1976 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
1977 {
1978 	struct ice_flow_prof *p, *tmp;
1979 
1980 	ice_acquire_lock(&hw->fl_profs_locks[blk_idx]);
1981 	LIST_FOR_EACH_ENTRY_SAFE(p, tmp, &hw->fl_profs[blk_idx],
1982 				 ice_flow_prof, l_entry) {
1983 		LIST_DEL(&p->l_entry);
1984 
1985 		ice_free(hw, p);
1986 	}
1987 	ice_release_lock(&hw->fl_profs_locks[blk_idx]);
1988 
1989 	/* if driver is in reset and tables are being cleared
1990 	 * re-initialize the flow profile list heads
1991 	 */
1992 	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
1993 }
1994 
1995 /**
1996  * ice_free_vsig_tbl - free complete VSIG table entries
1997  * @hw: pointer to the hardware structure
1998  * @blk: the HW block on which to free the VSIG table entries
1999  */
2000 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
2001 {
2002 	u16 i;
2003 
2004 	if (!hw->blk[blk].xlt2.vsig_tbl)
2005 		return;
2006 
2007 	for (i = 1; i < ICE_MAX_VSIGS; i++)
2008 		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2009 			ice_vsig_free(hw, blk, i);
2010 }
2011 
2012 /**
2013  * ice_free_hw_tbls - free hardware table memory
2014  * @hw: pointer to the hardware structure
2015  */
2016 void ice_free_hw_tbls(struct ice_hw *hw)
2017 {
2018 	struct ice_rss_cfg *r, *rt;
2019 	u8 i;
2020 
2021 	for (i = 0; i < ICE_BLK_COUNT; i++) {
2022 		if (hw->blk[i].is_list_init) {
2023 			struct ice_es *es = &hw->blk[i].es;
2024 
2025 			ice_free_prof_map(hw, i);
2026 			ice_destroy_lock(&es->prof_map_lock);
2027 
2028 			ice_free_flow_profs(hw, i);
2029 			ice_destroy_lock(&hw->fl_profs_locks[i]);
2030 
2031 			hw->blk[i].is_list_init = false;
2032 		}
2033 		ice_free_vsig_tbl(hw, (enum ice_block)i);
2034 		ice_free(hw, hw->blk[i].xlt1.ptypes);
2035 		ice_free(hw, hw->blk[i].xlt1.ptg_tbl);
2036 		ice_free(hw, hw->blk[i].xlt1.t);
2037 		ice_free(hw, hw->blk[i].xlt2.t);
2038 		ice_free(hw, hw->blk[i].xlt2.vsig_tbl);
2039 		ice_free(hw, hw->blk[i].xlt2.vsis);
2040 		ice_free(hw, hw->blk[i].prof.t);
2041 		ice_free(hw, hw->blk[i].prof_redir.t);
2042 		ice_free(hw, hw->blk[i].es.t);
2043 		ice_free(hw, hw->blk[i].es.ref_count);
2044 		ice_free(hw, hw->blk[i].es.written);
2045 	}
2046 
2047 	LIST_FOR_EACH_ENTRY_SAFE(r, rt, &hw->rss_list_head,
2048 				 ice_rss_cfg, l_entry) {
2049 		LIST_DEL(&r->l_entry);
2050 		ice_free(hw, r);
2051 	}
2052 	ice_destroy_lock(&hw->rss_locks);
2053 	ice_memset(hw->blk, 0, sizeof(hw->blk), ICE_NONDMA_MEM);
2054 }
2055 
2056 /**
2057  * ice_clear_hw_tbls - clear HW tables and flow profiles
2058  * @hw: pointer to the hardware structure
2059  */
2060 void ice_clear_hw_tbls(struct ice_hw *hw)
2061 {
2062 	u8 i;
2063 
2064 	for (i = 0; i < ICE_BLK_COUNT; i++) {
2065 		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2066 		struct ice_prof_tcam *prof = &hw->blk[i].prof;
2067 		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2068 		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2069 		struct ice_es *es = &hw->blk[i].es;
2070 
2071 		if (hw->blk[i].is_list_init) {
2072 			ice_free_prof_map(hw, i);
2073 			ice_free_flow_profs(hw, i);
2074 		}
2075 
2076 		ice_free_vsig_tbl(hw, (enum ice_block)i);
2077 
2078 		if (xlt1->ptypes)
2079 			ice_memset(xlt1->ptypes, 0,
2080 				   xlt1->count * sizeof(*xlt1->ptypes),
2081 				   ICE_NONDMA_MEM);
2082 
2083 		if (xlt1->ptg_tbl)
2084 			ice_memset(xlt1->ptg_tbl, 0,
2085 				   ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl),
2086 				   ICE_NONDMA_MEM);
2087 
2088 		if (xlt1->t)
2089 			ice_memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t),
2090 				   ICE_NONDMA_MEM);
2091 
2092 		if (xlt2->vsis)
2093 			ice_memset(xlt2->vsis, 0,
2094 				   xlt2->count * sizeof(*xlt2->vsis),
2095 				   ICE_NONDMA_MEM);
2096 
2097 		if (xlt2->vsig_tbl)
2098 			ice_memset(xlt2->vsig_tbl, 0,
2099 				   xlt2->count * sizeof(*xlt2->vsig_tbl),
2100 				   ICE_NONDMA_MEM);
2101 
2102 		if (xlt2->t)
2103 			ice_memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t),
2104 				   ICE_NONDMA_MEM);
2105 
2106 		if (prof->t)
2107 			ice_memset(prof->t, 0, prof->count * sizeof(*prof->t),
2108 				   ICE_NONDMA_MEM);
2109 
2110 		if (prof_redir->t)
2111 			ice_memset(prof_redir->t, 0,
2112 				   prof_redir->count * sizeof(*prof_redir->t),
2113 				   ICE_NONDMA_MEM);
2114 
2115 		if (es->t)
2116 			ice_memset(es->t, 0,
2117 				   es->count * sizeof(*es->t) * es->fvw,
2118 				   ICE_NONDMA_MEM);
2119 
2120 		if (es->ref_count)
2121 			ice_memset(es->ref_count, 0,
2122 				   es->count * sizeof(*es->ref_count),
2123 				   ICE_NONDMA_MEM);
2124 
2125 		if (es->written)
2126 			ice_memset(es->written, 0,
2127 				   es->count * sizeof(*es->written),
2128 				   ICE_NONDMA_MEM);
2129 
2130 	}
2131 }
2132 
2133 /**
2134  * ice_prof_gen_key - generate profile ID key
2135  * @hw: pointer to the HW struct
2136  * @blk: the block in which to write profile ID to
2137  * @ptg: packet type group (PTG) portion of key
2138  * @vsig: VSIG portion of key
2139  * @cdid: CDID portion of key
2140  * @flags: flag portion of key
2141  * @vl_msk: valid mask
2142  * @dc_msk: don't care mask
2143  * @nm_msk: never match mask
2144  * @key: output of profile ID key
2145  */
2146 static enum ice_status
2147 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
2148 		 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2149 		 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
2150 		 u8 key[ICE_TCAM_KEY_SZ])
2151 {
2152 	struct ice_prof_id_key inkey;
2153 
2154 	inkey.xlt1 = ptg;
2155 	inkey.xlt2_cdid = CPU_TO_LE16(vsig);
2156 	inkey.flags = CPU_TO_LE16(flags);
2157 
2158 	switch (hw->blk[blk].prof.cdid_bits) {
2159 	case 0:
2160 		break;
2161 	case 2:
2162 #define ICE_CD_2_M 0xC000U
2163 #define ICE_CD_2_S 14
2164 		inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_2_M);
2165 		inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_2_S);
2166 		break;
2167 	case 4:
2168 #define ICE_CD_4_M 0xF000U
2169 #define ICE_CD_4_S 12
2170 		inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_4_M);
2171 		inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_4_S);
2172 		break;
2173 	case 8:
2174 #define ICE_CD_8_M 0xFF00U
2175 #define ICE_CD_8_S 16
2176 		inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_8_M);
2177 		inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_8_S);
2178 		break;
2179 	default:
2180 		ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
2181 		break;
2182 	}
2183 
2184 	return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
2185 			   nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
2186 }
2187 
2188 /**
2189  * ice_tcam_write_entry - write TCAM entry
2190  * @hw: pointer to the HW struct
2191  * @blk: the block in which to write profile ID to
2192  * @idx: the entry index to write to
2193  * @prof_id: profile ID
2194  * @ptg: packet type group (PTG) portion of key
2195  * @vsig: VSIG portion of key
2196  * @cdid: CDID portion of key
2197  * @flags: flag portion of key
2198  * @vl_msk: valid mask
2199  * @dc_msk: don't care mask
2200  * @nm_msk: never match mask
2201  */
2202 static enum ice_status
2203 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
2204 		     u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
2205 		     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2206 		     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
2207 		     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
2208 {
2209 	struct ice_prof_tcam_entry;
2210 	enum ice_status status;
2211 
2212 	status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
2213 				  dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
2214 	if (!status) {
2215 		hw->blk[blk].prof.t[idx].addr = CPU_TO_LE16(idx);
2216 		hw->blk[blk].prof.t[idx].prof_id = prof_id;
2217 	}
2218 
2219 	return status;
2220 }
2221 
2222 /**
2223  * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
2224  * @hw: pointer to the hardware structure
2225  * @blk: HW block
2226  * @vsig: VSIG to query
2227  * @refs: pointer to variable to receive the reference count
2228  */
2229 static enum ice_status
2230 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
2231 {
2232 	u16 idx = vsig & ICE_VSIG_IDX_M;
2233 	struct ice_vsig_vsi *ptr;
2234 
2235 	*refs = 0;
2236 
2237 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2238 		return ICE_ERR_DOES_NOT_EXIST;
2239 
2240 	ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2241 	while (ptr) {
2242 		(*refs)++;
2243 		ptr = ptr->next_vsi;
2244 	}
2245 
2246 	return ICE_SUCCESS;
2247 }
2248 
2249 /**
2250  * ice_has_prof_vsig - check to see if VSIG has a specific profile
2251  * @hw: pointer to the hardware structure
2252  * @blk: HW block
2253  * @vsig: VSIG to check against
2254  * @hdl: profile handle
2255  */
2256 static bool
2257 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
2258 {
2259 	u16 idx = vsig & ICE_VSIG_IDX_M;
2260 	struct ice_vsig_prof *ent;
2261 
2262 	LIST_FOR_EACH_ENTRY(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2263 			    ice_vsig_prof, list)
2264 		if (ent->profile_cookie == hdl)
2265 			return true;
2266 
2267 	ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
2268 		  vsig);
2269 	return false;
2270 }
2271 
2272 /**
2273  * ice_prof_bld_es - build profile ID extraction sequence changes
2274  * @hw: pointer to the HW struct
2275  * @blk: hardware block
2276  * @bld: the update package buffer build to add to
2277  * @chgs: the list of changes to make in hardware
2278  */
2279 static enum ice_status
2280 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
2281 		struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
2282 {
2283 	u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
2284 	struct ice_chs_chg *tmp;
2285 
2286 	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
2287 		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
2288 			u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
2289 			struct ice_pkg_es *p;
2290 			u32 id;
2291 
2292 			id = ice_sect_id(blk, ICE_VEC_TBL);
2293 			p = (struct ice_pkg_es *)
2294 				ice_pkg_buf_alloc_section(bld, id,
2295 							  ice_struct_size(p, es,
2296 									  1) +
2297 							  vec_size -
2298 							  sizeof(p->es[0]));
2299 
2300 			if (!p)
2301 				return ICE_ERR_MAX_LIMIT;
2302 
2303 			p->count = CPU_TO_LE16(1);
2304 			p->offset = CPU_TO_LE16(tmp->prof_id);
2305 
2306 			ice_memcpy(p->es, &hw->blk[blk].es.t[off], vec_size,
2307 				   ICE_NONDMA_TO_NONDMA);
2308 		}
2309 
2310 	return ICE_SUCCESS;
2311 }
2312 
2313 /**
2314  * ice_prof_bld_tcam - build profile ID TCAM changes
2315  * @hw: pointer to the HW struct
2316  * @blk: hardware block
2317  * @bld: the update package buffer build to add to
2318  * @chgs: the list of changes to make in hardware
2319  */
2320 static enum ice_status
2321 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
2322 		  struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
2323 {
2324 	struct ice_chs_chg *tmp;
2325 
2326 	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
2327 		if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
2328 			struct ice_prof_id_section *p;
2329 			u32 id;
2330 
2331 			id = ice_sect_id(blk, ICE_PROF_TCAM);
2332 			p = (struct ice_prof_id_section *)
2333 				ice_pkg_buf_alloc_section(bld, id,
2334 							  ice_struct_size(p,
2335 									  entry,
2336 									  1));
2337 
2338 			if (!p)
2339 				return ICE_ERR_MAX_LIMIT;
2340 
2341 			p->count = CPU_TO_LE16(1);
2342 			p->entry[0].addr = CPU_TO_LE16(tmp->tcam_idx);
2343 			p->entry[0].prof_id = tmp->prof_id;
2344 
2345 			ice_memcpy(p->entry[0].key,
2346 				   &hw->blk[blk].prof.t[tmp->tcam_idx].key,
2347 				   sizeof(hw->blk[blk].prof.t->key),
2348 				   ICE_NONDMA_TO_NONDMA);
2349 		}
2350 
2351 	return ICE_SUCCESS;
2352 }
2353 
2354 /**
2355  * ice_prof_bld_xlt1 - build XLT1 changes
2356  * @blk: hardware block
2357  * @bld: the update package buffer build to add to
2358  * @chgs: the list of changes to make in hardware
2359  */
2360 static enum ice_status
2361 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
2362 		  struct LIST_HEAD_TYPE *chgs)
2363 {
2364 	struct ice_chs_chg *tmp;
2365 
2366 	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
2367 		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
2368 			struct ice_xlt1_section *p;
2369 			u32 id;
2370 
2371 			id = ice_sect_id(blk, ICE_XLT1);
2372 			p = (struct ice_xlt1_section *)
2373 				ice_pkg_buf_alloc_section(bld, id,
2374 							  ice_struct_size(p,
2375 									  value,
2376 									  1));
2377 
2378 			if (!p)
2379 				return ICE_ERR_MAX_LIMIT;
2380 
2381 			p->count = CPU_TO_LE16(1);
2382 			p->offset = CPU_TO_LE16(tmp->ptype);
2383 			p->value[0] = tmp->ptg;
2384 		}
2385 
2386 	return ICE_SUCCESS;
2387 }
2388 
2389 /**
2390  * ice_prof_bld_xlt2 - build XLT2 changes
2391  * @blk: hardware block
2392  * @bld: the update package buffer build to add to
2393  * @chgs: the list of changes to make in hardware
2394  */
2395 static enum ice_status
2396 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
2397 		  struct LIST_HEAD_TYPE *chgs)
2398 {
2399 	struct ice_chs_chg *tmp;
2400 
2401 	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
2402 		struct ice_xlt2_section *p;
2403 		u32 id;
2404 
2405 		switch (tmp->type) {
2406 		case ICE_VSIG_ADD:
2407 		case ICE_VSI_MOVE:
2408 		case ICE_VSIG_REM:
2409 			id = ice_sect_id(blk, ICE_XLT2);
2410 			p = (struct ice_xlt2_section *)
2411 				ice_pkg_buf_alloc_section(bld, id,
2412 							  ice_struct_size(p,
2413 									  value,
2414 									  1));
2415 
2416 			if (!p)
2417 				return ICE_ERR_MAX_LIMIT;
2418 
2419 			p->count = CPU_TO_LE16(1);
2420 			p->offset = CPU_TO_LE16(tmp->vsi);
2421 			p->value[0] = CPU_TO_LE16(tmp->vsig);
2422 			break;
2423 		default:
2424 			break;
2425 		}
2426 	}
2427 
2428 	return ICE_SUCCESS;
2429 }
2430 
2431 /**
2432  * ice_upd_prof_hw - update hardware using the change list
2433  * @hw: pointer to the HW struct
2434  * @blk: hardware block
2435  * @chgs: the list of changes to make in hardware
2436  */
2437 static enum ice_status
2438 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
2439 		struct LIST_HEAD_TYPE *chgs)
2440 {
2441 	struct ice_buf_build *b;
2442 	struct ice_chs_chg *tmp;
2443 	enum ice_status status;
2444 	u16 pkg_sects;
2445 	u16 xlt1 = 0;
2446 	u16 xlt2 = 0;
2447 	u16 tcam = 0;
2448 	u16 es = 0;
2449 	u16 sects;
2450 
2451 	/* count number of sections we need */
2452 	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
2453 		switch (tmp->type) {
2454 		case ICE_PTG_ES_ADD:
2455 			if (tmp->add_ptg)
2456 				xlt1++;
2457 			if (tmp->add_prof)
2458 				es++;
2459 			break;
2460 		case ICE_TCAM_ADD:
2461 			tcam++;
2462 			break;
2463 		case ICE_VSIG_ADD:
2464 		case ICE_VSI_MOVE:
2465 		case ICE_VSIG_REM:
2466 			xlt2++;
2467 			break;
2468 		default:
2469 			break;
2470 		}
2471 	}
2472 	sects = xlt1 + xlt2 + tcam + es;
2473 
2474 	if (!sects)
2475 		return ICE_SUCCESS;
2476 
2477 	/* Build update package buffer */
2478 	b = ice_pkg_buf_alloc(hw);
2479 	if (!b)
2480 		return ICE_ERR_NO_MEMORY;
2481 
2482 	status = ice_pkg_buf_reserve_section(b, sects);
2483 	if (status)
2484 		goto error_tmp;
2485 
2486 	/* Preserve order of table update: ES, TCAM, PTG, VSIG */
2487 	if (es) {
2488 		status = ice_prof_bld_es(hw, blk, b, chgs);
2489 		if (status)
2490 			goto error_tmp;
2491 	}
2492 
2493 	if (tcam) {
2494 		status = ice_prof_bld_tcam(hw, blk, b, chgs);
2495 		if (status)
2496 			goto error_tmp;
2497 	}
2498 
2499 	if (xlt1) {
2500 		status = ice_prof_bld_xlt1(blk, b, chgs);
2501 		if (status)
2502 			goto error_tmp;
2503 	}
2504 
2505 	if (xlt2) {
2506 		status = ice_prof_bld_xlt2(blk, b, chgs);
2507 		if (status)
2508 			goto error_tmp;
2509 	}
2510 
2511 	/* After package buffer build check if the section count in buffer is
2512 	 * non-zero and matches the number of sections detected for package
2513 	 * update.
2514 	 */
2515 	pkg_sects = ice_pkg_buf_get_active_sections(b);
2516 	if (!pkg_sects || pkg_sects != sects) {
2517 		status = ICE_ERR_INVAL_SIZE;
2518 		goto error_tmp;
2519 	}
2520 
2521 	/* update package */
2522 	status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
2523 	if (status == ICE_ERR_AQ_ERROR)
2524 		ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
2525 
2526 error_tmp:
2527 	ice_pkg_buf_free(hw, b);
2528 	return status;
2529 }
2530 
2531 /**
2532  * ice_add_prof - add profile
2533  * @hw: pointer to the HW struct
2534  * @blk: hardware block
2535  * @id: profile tracking ID
2536  * @ptypes: bitmap indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
2537  * @es: extraction sequence (length of array is determined by the block)
2538  *
2539  * This function registers a profile, which matches a set of PTGs with a
2540  * particular extraction sequence. While the hardware profile is allocated
2541  * it will not be written until the first call to ice_add_flow that specifies
2542  * the ID value used here.
2543  */
2544 enum ice_status
2545 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id,
2546 	     ice_bitmap_t *ptypes, struct ice_fv_word *es)
2547 {
2548 	ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
2549 	struct ice_prof_map *prof;
2550 	enum ice_status status;
2551 	u8 prof_id;
2552 	u16 ptype;
2553 
2554 	ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT);
2555 
2556 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
2557 
2558 	/* search for existing profile */
2559 	status = ice_find_prof_id(hw, blk, es, &prof_id);
2560 	if (status) {
2561 		/* allocate profile ID */
2562 		status = ice_alloc_prof_id(hw, blk, &prof_id);
2563 		if (status)
2564 			goto err_ice_add_prof;
2565 
2566 		/* and write new es */
2567 		ice_write_es(hw, blk, prof_id, es);
2568 	}
2569 
2570 	ice_prof_inc_ref(hw, blk, prof_id);
2571 
2572 	/* add profile info */
2573 
2574 	prof = (struct ice_prof_map *)ice_malloc(hw, sizeof(*prof));
2575 	if (!prof)
2576 		goto err_ice_add_prof;
2577 
2578 	prof->profile_cookie = id;
2579 	prof->prof_id = prof_id;
2580 	prof->ptg_cnt = 0;
2581 	prof->context = 0;
2582 
2583 	/* build list of ptgs */
2584 	ice_for_each_set_bit(ptype, ptypes, ICE_FLOW_PTYPE_MAX) {
2585 		u8 ptg;
2586 
2587 		/* The package should place all ptypes in a non-zero
2588 		 * PTG, so the following call should never fail.
2589 		 */
2590 		if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
2591 			continue;
2592 
2593 		/* If PTG is already added, skip and continue */
2594 		if (ice_is_bit_set(ptgs_used, ptg))
2595 			continue;
2596 
2597 		ice_set_bit(ptg, ptgs_used);
2598 		prof->ptg[prof->ptg_cnt] = ptg;
2599 
2600 		if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
2601 			break;
2602 	}
2603 
2604 	LIST_ADD(&prof->list, &hw->blk[blk].es.prof_map);
2605 	status = ICE_SUCCESS;
2606 
2607 err_ice_add_prof:
2608 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
2609 	return status;
2610 }
2611 
2612 /**
2613  * ice_search_prof_id - Search for a profile tracking ID
2614  * @hw: pointer to the HW struct
2615  * @blk: hardware block
2616  * @id: profile tracking ID
2617  *
2618  * This will search for a profile tracking ID which was previously added.
2619  * The profile map lock should be held before calling this function.
2620  */
2621 struct ice_prof_map *
2622 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
2623 {
2624 	struct ice_prof_map *entry = NULL;
2625 	struct ice_prof_map *map;
2626 
2627 	LIST_FOR_EACH_ENTRY(map, &hw->blk[blk].es.prof_map, ice_prof_map, list)
2628 		if (map->profile_cookie == id) {
2629 			entry = map;
2630 			break;
2631 		}
2632 
2633 	return entry;
2634 }
2635 
2636 /**
2637  * ice_set_prof_context - Set context for a given profile
2638  * @hw: pointer to the HW struct
2639  * @blk: hardware block
2640  * @id: profile tracking ID
2641  * @cntxt: context
2642  */
2643 enum ice_status
2644 ice_set_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 cntxt)
2645 {
2646 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
2647 	struct ice_prof_map *entry;
2648 
2649 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
2650 	entry = ice_search_prof_id(hw, blk, id);
2651 	if (entry) {
2652 		entry->context = cntxt;
2653 		status = ICE_SUCCESS;
2654 	}
2655 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
2656 	return status;
2657 }
2658 
2659 /**
2660  * ice_get_prof_context - Get context for a given profile
2661  * @hw: pointer to the HW struct
2662  * @blk: hardware block
2663  * @id: profile tracking ID
2664  * @cntxt: pointer to variable to receive the context
2665  */
2666 enum ice_status
2667 ice_get_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 *cntxt)
2668 {
2669 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
2670 	struct ice_prof_map *entry;
2671 
2672 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
2673 	entry = ice_search_prof_id(hw, blk, id);
2674 	if (entry) {
2675 		*cntxt = entry->context;
2676 		status = ICE_SUCCESS;
2677 	}
2678 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
2679 	return status;
2680 }
2681 
2682 /**
2683  * ice_vsig_prof_id_count - count profiles in a VSIG
2684  * @hw: pointer to the HW struct
2685  * @blk: hardware block
2686  * @vsig: VSIG to remove the profile from
2687  */
2688 static u16
2689 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2690 {
2691 	u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
2692 	struct ice_vsig_prof *p;
2693 
2694 	LIST_FOR_EACH_ENTRY(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2695 			    ice_vsig_prof, list)
2696 		count++;
2697 
2698 	return count;
2699 }
2700 
2701 /**
2702  * ice_rel_tcam_idx - release a TCAM index
2703  * @hw: pointer to the HW struct
2704  * @blk: hardware block
2705  * @idx: the index to release
2706  */
2707 static enum ice_status
2708 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
2709 {
2710 	/* Masks to invoke a never match entry */
2711 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
2712 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
2713 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
2714 	enum ice_status status;
2715 
2716 	/* write the TCAM entry */
2717 	status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
2718 				      dc_msk, nm_msk);
2719 	if (status)
2720 		return status;
2721 
2722 	/* release the TCAM entry */
2723 	status = ice_free_tcam_ent(hw, blk, idx);
2724 
2725 	return status;
2726 }
2727 
2728 /**
2729  * ice_rem_prof_id - remove one profile from a VSIG
2730  * @hw: pointer to the HW struct
2731  * @blk: hardware block
2732  * @prof: pointer to profile structure to remove
2733  */
2734 static enum ice_status
2735 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
2736 		struct ice_vsig_prof *prof)
2737 {
2738 	enum ice_status status;
2739 	u16 i;
2740 
2741 	for (i = 0; i < prof->tcam_count; i++)
2742 		if (prof->tcam[i].in_use) {
2743 			prof->tcam[i].in_use = false;
2744 			status = ice_rel_tcam_idx(hw, blk,
2745 						  prof->tcam[i].tcam_idx);
2746 			if (status)
2747 				return ICE_ERR_HW_TABLE;
2748 		}
2749 
2750 	return ICE_SUCCESS;
2751 }
2752 
2753 /**
2754  * ice_rem_vsig - remove VSIG
2755  * @hw: pointer to the HW struct
2756  * @blk: hardware block
2757  * @vsig: the VSIG to remove
2758  * @chg: the change list
2759  */
2760 static enum ice_status
2761 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
2762 	     struct LIST_HEAD_TYPE *chg)
2763 {
2764 	u16 idx = vsig & ICE_VSIG_IDX_M;
2765 	struct ice_vsig_vsi *vsi_cur;
2766 	struct ice_vsig_prof *d, *t;
2767 
2768 	/* remove TCAM entries */
2769 	LIST_FOR_EACH_ENTRY_SAFE(d, t,
2770 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2771 				 ice_vsig_prof, list) {
2772 		enum ice_status status;
2773 
2774 		status = ice_rem_prof_id(hw, blk, d);
2775 		if (status)
2776 			return status;
2777 
2778 		LIST_DEL(&d->list);
2779 		ice_free(hw, d);
2780 	}
2781 
2782 	/* Move all VSIS associated with this VSIG to the default VSIG */
2783 	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2784 	/* If the VSIG has at least 1 VSI then iterate through the list
2785 	 * and remove the VSIs before deleting the group.
2786 	 */
2787 	if (vsi_cur)
2788 		do {
2789 			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2790 			struct ice_chs_chg *p;
2791 
2792 			p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
2793 			if (!p)
2794 				return ICE_ERR_NO_MEMORY;
2795 
2796 			p->type = ICE_VSIG_REM;
2797 			p->orig_vsig = vsig;
2798 			p->vsig = ICE_DEFAULT_VSIG;
2799 			p->vsi = (u16)(vsi_cur - hw->blk[blk].xlt2.vsis);
2800 
2801 			LIST_ADD(&p->list_entry, chg);
2802 
2803 			vsi_cur = tmp;
2804 		} while (vsi_cur);
2805 
2806 	return ice_vsig_free(hw, blk, vsig);
2807 }
2808 
2809 /**
2810  * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
2811  * @hw: pointer to the HW struct
2812  * @blk: hardware block
2813  * @vsig: VSIG to remove the profile from
2814  * @hdl: profile handle indicating which profile to remove
2815  * @chg: list to receive a record of changes
2816  */
2817 static enum ice_status
2818 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
2819 		     struct LIST_HEAD_TYPE *chg)
2820 {
2821 	u16 idx = vsig & ICE_VSIG_IDX_M;
2822 	struct ice_vsig_prof *p, *t;
2823 
2824 	LIST_FOR_EACH_ENTRY_SAFE(p, t,
2825 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2826 				 ice_vsig_prof, list)
2827 		if (p->profile_cookie == hdl) {
2828 			enum ice_status status;
2829 
2830 			if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
2831 				/* this is the last profile, remove the VSIG */
2832 				return ice_rem_vsig(hw, blk, vsig, chg);
2833 
2834 			status = ice_rem_prof_id(hw, blk, p);
2835 			if (!status) {
2836 				LIST_DEL(&p->list);
2837 				ice_free(hw, p);
2838 			}
2839 			return status;
2840 		}
2841 
2842 	return ICE_ERR_DOES_NOT_EXIST;
2843 }
2844 
2845 /**
2846  * ice_rem_flow_all - remove all flows with a particular profile
2847  * @hw: pointer to the HW struct
2848  * @blk: hardware block
2849  * @id: profile tracking ID
2850  */
2851 static enum ice_status
2852 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
2853 {
2854 	struct ice_chs_chg *del, *tmp;
2855 	enum ice_status status;
2856 	struct LIST_HEAD_TYPE chg;
2857 	u16 i;
2858 
2859 	INIT_LIST_HEAD(&chg);
2860 
2861 	for (i = 1; i < ICE_MAX_VSIGS; i++)
2862 		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
2863 			if (ice_has_prof_vsig(hw, blk, i, id)) {
2864 				status = ice_rem_prof_id_vsig(hw, blk, i, id,
2865 							      &chg);
2866 				if (status)
2867 					goto err_ice_rem_flow_all;
2868 			}
2869 		}
2870 
2871 	status = ice_upd_prof_hw(hw, blk, &chg);
2872 
2873 err_ice_rem_flow_all:
2874 	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
2875 		LIST_DEL(&del->list_entry);
2876 		ice_free(hw, del);
2877 	}
2878 
2879 	return status;
2880 }
2881 
2882 /**
2883  * ice_rem_prof - remove profile
2884  * @hw: pointer to the HW struct
2885  * @blk: hardware block
2886  * @id: profile tracking ID
2887  *
2888  * This will remove the profile specified by the ID parameter, which was
2889  * previously created through ice_add_prof. If any existing entries
2890  * are associated with this profile, they will be removed as well.
2891  */
2892 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
2893 {
2894 	struct ice_prof_map *pmap;
2895 	enum ice_status status;
2896 
2897 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
2898 
2899 	pmap = ice_search_prof_id(hw, blk, id);
2900 	if (!pmap) {
2901 		status = ICE_ERR_DOES_NOT_EXIST;
2902 		goto err_ice_rem_prof;
2903 	}
2904 
2905 	/* remove all flows with this profile */
2906 	status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
2907 	if (status)
2908 		goto err_ice_rem_prof;
2909 
2910 	/* dereference profile, and possibly remove */
2911 	ice_prof_dec_ref(hw, blk, pmap->prof_id);
2912 
2913 	LIST_DEL(&pmap->list);
2914 	ice_free(hw, pmap);
2915 
2916 err_ice_rem_prof:
2917 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
2918 	return status;
2919 }
2920 
2921 /**
2922  * ice_get_prof - get profile
2923  * @hw: pointer to the HW struct
2924  * @blk: hardware block
2925  * @hdl: profile handle
2926  * @chg: change list
2927  */
2928 static enum ice_status
2929 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
2930 	     struct LIST_HEAD_TYPE *chg)
2931 {
2932 	enum ice_status status = ICE_SUCCESS;
2933 	struct ice_prof_map *map;
2934 	struct ice_chs_chg *p;
2935 	u16 i;
2936 
2937 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
2938 	/* Get the details on the profile specified by the handle ID */
2939 	map = ice_search_prof_id(hw, blk, hdl);
2940 	if (!map) {
2941 		status = ICE_ERR_DOES_NOT_EXIST;
2942 		goto err_ice_get_prof;
2943 	}
2944 
2945 	for (i = 0; i < map->ptg_cnt; i++)
2946 		if (!hw->blk[blk].es.written[map->prof_id]) {
2947 			/* add ES to change list */
2948 			p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
2949 			if (!p) {
2950 				status = ICE_ERR_NO_MEMORY;
2951 				goto err_ice_get_prof;
2952 			}
2953 
2954 			p->type = ICE_PTG_ES_ADD;
2955 			p->ptype = 0;
2956 			p->ptg = map->ptg[i];
2957 			p->add_ptg = 0;
2958 
2959 			p->add_prof = 1;
2960 			p->prof_id = map->prof_id;
2961 
2962 			hw->blk[blk].es.written[map->prof_id] = true;
2963 
2964 			LIST_ADD(&p->list_entry, chg);
2965 		}
2966 
2967 err_ice_get_prof:
2968 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
2969 	/* let caller clean up the change list */
2970 	return status;
2971 }
2972 
2973 /**
2974  * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
2975  * @hw: pointer to the HW struct
2976  * @blk: hardware block
2977  * @vsig: VSIG from which to copy the list
2978  * @lst: output list
2979  *
2980  * This routine makes a copy of the list of profiles in the specified VSIG.
2981  */
2982 static enum ice_status
2983 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
2984 		   struct LIST_HEAD_TYPE *lst)
2985 {
2986 	struct ice_vsig_prof *ent1, *ent2;
2987 	u16 idx = vsig & ICE_VSIG_IDX_M;
2988 
2989 	LIST_FOR_EACH_ENTRY(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2990 			    ice_vsig_prof, list) {
2991 		struct ice_vsig_prof *p;
2992 
2993 		/* copy to the input list */
2994 		p = (struct ice_vsig_prof *)ice_memdup(hw, ent1, sizeof(*p),
2995 						       ICE_NONDMA_TO_NONDMA);
2996 		if (!p)
2997 			goto err_ice_get_profs_vsig;
2998 
2999 		LIST_ADD_TAIL(&p->list, lst);
3000 	}
3001 
3002 	return ICE_SUCCESS;
3003 
3004 err_ice_get_profs_vsig:
3005 	LIST_FOR_EACH_ENTRY_SAFE(ent1, ent2, lst, ice_vsig_prof, list) {
3006 		LIST_DEL(&ent1->list);
3007 		ice_free(hw, ent1);
3008 	}
3009 
3010 	return ICE_ERR_NO_MEMORY;
3011 }
3012 
3013 /**
3014  * ice_add_prof_to_lst - add profile entry to a list
3015  * @hw: pointer to the HW struct
3016  * @blk: hardware block
3017  * @lst: the list to be added to
3018  * @hdl: profile handle of entry to add
3019  */
3020 static enum ice_status
3021 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
3022 		    struct LIST_HEAD_TYPE *lst, u64 hdl)
3023 {
3024 	enum ice_status status = ICE_SUCCESS;
3025 	struct ice_prof_map *map;
3026 	struct ice_vsig_prof *p;
3027 	u16 i;
3028 
3029 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
3030 	map = ice_search_prof_id(hw, blk, hdl);
3031 	if (!map) {
3032 		status = ICE_ERR_DOES_NOT_EXIST;
3033 		goto err_ice_add_prof_to_lst;
3034 	}
3035 
3036 	p = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*p));
3037 	if (!p) {
3038 		status = ICE_ERR_NO_MEMORY;
3039 		goto err_ice_add_prof_to_lst;
3040 	}
3041 
3042 	p->profile_cookie = map->profile_cookie;
3043 	p->prof_id = map->prof_id;
3044 	p->tcam_count = map->ptg_cnt;
3045 
3046 	for (i = 0; i < map->ptg_cnt; i++) {
3047 		p->tcam[i].prof_id = map->prof_id;
3048 		p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
3049 		p->tcam[i].ptg = map->ptg[i];
3050 	}
3051 
3052 	LIST_ADD(&p->list, lst);
3053 
3054 err_ice_add_prof_to_lst:
3055 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
3056 	return status;
3057 }
3058 
3059 /**
3060  * ice_move_vsi - move VSI to another VSIG
3061  * @hw: pointer to the HW struct
3062  * @blk: hardware block
3063  * @vsi: the VSI to move
3064  * @vsig: the VSIG to move the VSI to
3065  * @chg: the change list
3066  */
3067 static enum ice_status
3068 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
3069 	     struct LIST_HEAD_TYPE *chg)
3070 {
3071 	enum ice_status status;
3072 	struct ice_chs_chg *p;
3073 	u16 orig_vsig;
3074 
3075 	p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
3076 	if (!p)
3077 		return ICE_ERR_NO_MEMORY;
3078 
3079 	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3080 	if (!status)
3081 		status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3082 
3083 	if (status) {
3084 		ice_free(hw, p);
3085 		return status;
3086 	}
3087 
3088 	p->type = ICE_VSI_MOVE;
3089 	p->vsi = vsi;
3090 	p->orig_vsig = orig_vsig;
3091 	p->vsig = vsig;
3092 
3093 	LIST_ADD(&p->list_entry, chg);
3094 
3095 	return ICE_SUCCESS;
3096 }
3097 
3098 /**
3099  * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
3100  * @hw: pointer to the HW struct
3101  * @idx: the index of the TCAM entry to remove
3102  * @chg: the list of change structures to search
3103  */
3104 static void
3105 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct LIST_HEAD_TYPE *chg)
3106 {
3107 	struct ice_chs_chg *pos, *tmp;
3108 
3109 	LIST_FOR_EACH_ENTRY_SAFE(tmp, pos, chg, ice_chs_chg, list_entry)
3110 		if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
3111 			LIST_DEL(&tmp->list_entry);
3112 			ice_free(hw, tmp);
3113 		}
3114 }
3115 
3116 /**
3117  * ice_prof_tcam_ena_dis - add enable or disable TCAM change
3118  * @hw: pointer to the HW struct
3119  * @blk: hardware block
3120  * @enable: true to enable, false to disable
3121  * @vsig: the VSIG of the TCAM entry
3122  * @tcam: pointer the TCAM info structure of the TCAM to disable
3123  * @chg: the change list
3124  *
3125  * This function appends an enable or disable TCAM entry in the change log
3126  */
3127 static enum ice_status
3128 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
3129 		      u16 vsig, struct ice_tcam_inf *tcam,
3130 		      struct LIST_HEAD_TYPE *chg)
3131 {
3132 	enum ice_status status;
3133 	struct ice_chs_chg *p;
3134 
3135 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3136 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3137 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3138 
3139 	/* if disabling, free the TCAM */
3140 	if (!enable) {
3141 		status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
3142 
3143 		/* if we have already created a change for this TCAM entry, then
3144 		 * we need to remove that entry, in order to prevent writing to
3145 		 * a TCAM entry we no longer will have ownership of.
3146 		 */
3147 		ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
3148 		tcam->tcam_idx = 0;
3149 		tcam->in_use = 0;
3150 		return status;
3151 	}
3152 
3153 	/* for re-enabling, reallocate a TCAM */
3154 	status = ice_alloc_tcam_ent(hw, blk, true, &tcam->tcam_idx);
3155 	if (status)
3156 		return status;
3157 
3158 	/* add TCAM to change list */
3159 	p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
3160 	if (!p)
3161 		return ICE_ERR_NO_MEMORY;
3162 
3163 	status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
3164 				      tcam->ptg, vsig, 0, 0, vl_msk, dc_msk,
3165 				      nm_msk);
3166 	if (status)
3167 		goto err_ice_prof_tcam_ena_dis;
3168 
3169 	tcam->in_use = 1;
3170 
3171 	p->type = ICE_TCAM_ADD;
3172 	p->add_tcam_idx = true;
3173 	p->prof_id = tcam->prof_id;
3174 	p->ptg = tcam->ptg;
3175 	p->vsig = 0;
3176 	p->tcam_idx = tcam->tcam_idx;
3177 
3178 	/* log change */
3179 	LIST_ADD(&p->list_entry, chg);
3180 
3181 	return ICE_SUCCESS;
3182 
3183 err_ice_prof_tcam_ena_dis:
3184 	ice_free(hw, p);
3185 	return status;
3186 }
3187 
3188 /**
3189  * ice_adj_prof_priorities - adjust profile based on priorities
3190  * @hw: pointer to the HW struct
3191  * @blk: hardware block
3192  * @vsig: the VSIG for which to adjust profile priorities
3193  * @chg: the change list
3194  */
3195 static enum ice_status
3196 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3197 			struct LIST_HEAD_TYPE *chg)
3198 {
3199 	ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
3200 	enum ice_status status = ICE_SUCCESS;
3201 	struct ice_vsig_prof *t;
3202 	u16 idx;
3203 
3204 	ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT);
3205 	idx = vsig & ICE_VSIG_IDX_M;
3206 
3207 	/* Priority is based on the order in which the profiles are added. The
3208 	 * newest added profile has highest priority and the oldest added
3209 	 * profile has the lowest priority. Since the profile property list for
3210 	 * a VSIG is sorted from newest to oldest, this code traverses the list
3211 	 * in order and enables the first of each PTG that it finds (that is not
3212 	 * already enabled); it also disables any duplicate PTGs that it finds
3213 	 * in the older profiles (that are currently enabled).
3214 	 */
3215 
3216 	LIST_FOR_EACH_ENTRY(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3217 			    ice_vsig_prof, list) {
3218 		u16 i;
3219 
3220 		for (i = 0; i < t->tcam_count; i++) {
3221 			bool used;
3222 
3223 			/* Scan the priorities from newest to oldest.
3224 			 * Make sure that the newest profiles take priority.
3225 			 */
3226 			used = ice_is_bit_set(ptgs_used, t->tcam[i].ptg);
3227 
3228 			if (used && t->tcam[i].in_use) {
3229 				/* need to mark this PTG as never match, as it
3230 				 * was already in use and therefore duplicate
3231 				 * (and lower priority)
3232 				 */
3233 				status = ice_prof_tcam_ena_dis(hw, blk, false,
3234 							       vsig,
3235 							       &t->tcam[i],
3236 							       chg);
3237 				if (status)
3238 					return status;
3239 			} else if (!used && !t->tcam[i].in_use) {
3240 				/* need to enable this PTG, as it in not in use
3241 				 * and not enabled (highest priority)
3242 				 */
3243 				status = ice_prof_tcam_ena_dis(hw, blk, true,
3244 							       vsig,
3245 							       &t->tcam[i],
3246 							       chg);
3247 				if (status)
3248 					return status;
3249 			}
3250 
3251 			/* keep track of used ptgs */
3252 			ice_set_bit(t->tcam[i].ptg, ptgs_used);
3253 		}
3254 	}
3255 
3256 	return status;
3257 }
3258 
3259 /**
3260  * ice_add_prof_id_vsig - add profile to VSIG
3261  * @hw: pointer to the HW struct
3262  * @blk: hardware block
3263  * @vsig: the VSIG to which this profile is to be added
3264  * @hdl: the profile handle indicating the profile to add
3265  * @rev: true to add entries to the end of the list
3266  * @chg: the change list
3267  */
3268 static enum ice_status
3269 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
3270 		     bool rev, struct LIST_HEAD_TYPE *chg)
3271 {
3272 	/* Masks that ignore flags */
3273 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3274 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3275 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3276 	enum ice_status status = ICE_SUCCESS;
3277 	struct ice_prof_map *map;
3278 	struct ice_vsig_prof *t;
3279 	struct ice_chs_chg *p;
3280 	u16 vsig_idx, i;
3281 
3282 	/* Error, if this VSIG already has this profile */
3283 	if (ice_has_prof_vsig(hw, blk, vsig, hdl))
3284 		return ICE_ERR_ALREADY_EXISTS;
3285 
3286 	/* new VSIG profile structure */
3287 	t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
3288 	if (!t)
3289 		return ICE_ERR_NO_MEMORY;
3290 
3291 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
3292 	/* Get the details on the profile specified by the handle ID */
3293 	map = ice_search_prof_id(hw, blk, hdl);
3294 	if (!map) {
3295 		status = ICE_ERR_DOES_NOT_EXIST;
3296 		goto err_ice_add_prof_id_vsig;
3297 	}
3298 
3299 	t->profile_cookie = map->profile_cookie;
3300 	t->prof_id = map->prof_id;
3301 	t->tcam_count = map->ptg_cnt;
3302 
3303 	/* create TCAM entries */
3304 	for (i = 0; i < map->ptg_cnt; i++) {
3305 		u16 tcam_idx;
3306 
3307 		/* add TCAM to change list */
3308 		p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
3309 		if (!p) {
3310 			status = ICE_ERR_NO_MEMORY;
3311 			goto err_ice_add_prof_id_vsig;
3312 		}
3313 
3314 		/* allocate the TCAM entry index */
3315 		status = ice_alloc_tcam_ent(hw, blk, true, &tcam_idx);
3316 		if (status) {
3317 			ice_free(hw, p);
3318 			goto err_ice_add_prof_id_vsig;
3319 		}
3320 
3321 		t->tcam[i].ptg = map->ptg[i];
3322 		t->tcam[i].prof_id = map->prof_id;
3323 		t->tcam[i].tcam_idx = tcam_idx;
3324 		t->tcam[i].in_use = true;
3325 
3326 		p->type = ICE_TCAM_ADD;
3327 		p->add_tcam_idx = true;
3328 		p->prof_id = t->tcam[i].prof_id;
3329 		p->ptg = t->tcam[i].ptg;
3330 		p->vsig = vsig;
3331 		p->tcam_idx = t->tcam[i].tcam_idx;
3332 
3333 		/* write the TCAM entry */
3334 		status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
3335 					      t->tcam[i].prof_id,
3336 					      t->tcam[i].ptg, vsig, 0, 0,
3337 					      vl_msk, dc_msk, nm_msk);
3338 		if (status) {
3339 			ice_free(hw, p);
3340 			goto err_ice_add_prof_id_vsig;
3341 		}
3342 
3343 		/* log change */
3344 		LIST_ADD(&p->list_entry, chg);
3345 	}
3346 
3347 	/* add profile to VSIG */
3348 	vsig_idx = vsig & ICE_VSIG_IDX_M;
3349 	if (rev)
3350 		LIST_ADD_TAIL(&t->list,
3351 			      &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3352 	else
3353 		LIST_ADD(&t->list,
3354 			 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3355 
3356 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
3357 	return status;
3358 
3359 err_ice_add_prof_id_vsig:
3360 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
3361 	/* let caller clean up the change list */
3362 	ice_free(hw, t);
3363 	return status;
3364 }
3365 
3366 /**
3367  * ice_create_prof_id_vsig - add a new VSIG with a single profile
3368  * @hw: pointer to the HW struct
3369  * @blk: hardware block
3370  * @vsi: the initial VSI that will be in VSIG
3371  * @hdl: the profile handle of the profile that will be added to the VSIG
3372  * @chg: the change list
3373  */
3374 static enum ice_status
3375 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
3376 			struct LIST_HEAD_TYPE *chg)
3377 {
3378 	enum ice_status status;
3379 	struct ice_chs_chg *p;
3380 	u16 new_vsig;
3381 
3382 	p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
3383 	if (!p)
3384 		return ICE_ERR_NO_MEMORY;
3385 
3386 	new_vsig = ice_vsig_alloc(hw, blk);
3387 	if (!new_vsig) {
3388 		status = ICE_ERR_HW_TABLE;
3389 		goto err_ice_create_prof_id_vsig;
3390 	}
3391 
3392 	status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
3393 	if (status)
3394 		goto err_ice_create_prof_id_vsig;
3395 
3396 	status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
3397 	if (status)
3398 		goto err_ice_create_prof_id_vsig;
3399 
3400 	p->type = ICE_VSIG_ADD;
3401 	p->vsi = vsi;
3402 	p->orig_vsig = ICE_DEFAULT_VSIG;
3403 	p->vsig = new_vsig;
3404 
3405 	LIST_ADD(&p->list_entry, chg);
3406 
3407 	return ICE_SUCCESS;
3408 
3409 err_ice_create_prof_id_vsig:
3410 	/* let caller clean up the change list */
3411 	ice_free(hw, p);
3412 	return status;
3413 }
3414 
3415 /**
3416  * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
3417  * @hw: pointer to the HW struct
3418  * @blk: hardware block
3419  * @vsi: the initial VSI that will be in VSIG
3420  * @lst: the list of profile that will be added to the VSIG
3421  * @new_vsig: return of new VSIG
3422  * @chg: the change list
3423  */
3424 static enum ice_status
3425 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
3426 			 struct LIST_HEAD_TYPE *lst, u16 *new_vsig,
3427 			 struct LIST_HEAD_TYPE *chg)
3428 {
3429 	struct ice_vsig_prof *t;
3430 	enum ice_status status;
3431 	u16 vsig;
3432 
3433 	vsig = ice_vsig_alloc(hw, blk);
3434 	if (!vsig)
3435 		return ICE_ERR_HW_TABLE;
3436 
3437 	status = ice_move_vsi(hw, blk, vsi, vsig, chg);
3438 	if (status)
3439 		return status;
3440 
3441 	LIST_FOR_EACH_ENTRY(t, lst, ice_vsig_prof, list) {
3442 		/* Reverse the order here since we are copying the list */
3443 		status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
3444 					      true, chg);
3445 		if (status)
3446 			return status;
3447 	}
3448 
3449 	*new_vsig = vsig;
3450 
3451 	return ICE_SUCCESS;
3452 }
3453 
3454 /**
3455  * ice_find_prof_vsig - find a VSIG with a specific profile handle
3456  * @hw: pointer to the HW struct
3457  * @blk: hardware block
3458  * @hdl: the profile handle of the profile to search for
3459  * @vsig: returns the VSIG with the matching profile
3460  */
3461 static bool
3462 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
3463 {
3464 	struct ice_vsig_prof *t;
3465 	enum ice_status status;
3466 	struct LIST_HEAD_TYPE lst;
3467 
3468 	INIT_LIST_HEAD(&lst);
3469 
3470 	t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
3471 	if (!t)
3472 		return false;
3473 
3474 	t->profile_cookie = hdl;
3475 	LIST_ADD(&t->list, &lst);
3476 
3477 	status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
3478 
3479 	LIST_DEL(&t->list);
3480 	ice_free(hw, t);
3481 
3482 	return status == ICE_SUCCESS;
3483 }
3484 
3485 /**
3486  * ice_add_vsi_flow - add VSI flow
3487  * @hw: pointer to the HW struct
3488  * @blk: hardware block
3489  * @vsi: input VSI
3490  * @vsig: target VSIG to include the input VSI
3491  *
3492  * Calling this function will add the VSI to a given VSIG and
3493  * update the HW tables accordingly. This call can be used to
3494  * add multiple VSIs to a VSIG if we know beforehand that those
3495  * VSIs have the same characteristics of the VSIG. This will
3496  * save time in generating a new VSIG and TCAMs till a match is
3497  * found and subsequent rollback when a matching VSIG is found.
3498  */
3499 enum ice_status
3500 ice_add_vsi_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
3501 {
3502 	struct ice_chs_chg *tmp, *del;
3503 	struct LIST_HEAD_TYPE chg;
3504 	enum ice_status status;
3505 
3506 	/* if target VSIG is default the move is invalid */
3507 	if ((vsig & ICE_VSIG_IDX_M) == ICE_DEFAULT_VSIG)
3508 		return ICE_ERR_PARAM;
3509 
3510 	INIT_LIST_HEAD(&chg);
3511 
3512 	/* move VSI to the VSIG that matches */
3513 	status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
3514 	/* update hardware if success */
3515 	if (!status)
3516 		status = ice_upd_prof_hw(hw, blk, &chg);
3517 
3518 	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
3519 		LIST_DEL(&del->list_entry);
3520 		ice_free(hw, del);
3521 	}
3522 
3523 	return status;
3524 }
3525 
3526 /**
3527  * ice_add_prof_id_flow - add profile flow
3528  * @hw: pointer to the HW struct
3529  * @blk: hardware block
3530  * @vsi: the VSI to enable with the profile specified by ID
3531  * @hdl: profile handle
3532  *
3533  * Calling this function will update the hardware tables to enable the
3534  * profile indicated by the ID parameter for the VSIs specified in the VSI
3535  * array. Once successfully called, the flow will be enabled.
3536  */
3537 enum ice_status
3538 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
3539 {
3540 	struct ice_vsig_prof *tmp1, *del1;
3541 	struct ice_chs_chg *tmp, *del;
3542 	struct LIST_HEAD_TYPE union_lst;
3543 	enum ice_status status;
3544 	struct LIST_HEAD_TYPE chg;
3545 	u16 vsig;
3546 
3547 	INIT_LIST_HEAD(&union_lst);
3548 	INIT_LIST_HEAD(&chg);
3549 
3550 	/* Get profile */
3551 	status = ice_get_prof(hw, blk, hdl, &chg);
3552 	if (status)
3553 		return status;
3554 
3555 	/* determine if VSI is already part of a VSIG */
3556 	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
3557 	if (!status && vsig) {
3558 		bool only_vsi;
3559 		u16 or_vsig;
3560 		u16 ref;
3561 
3562 		/* found in VSIG */
3563 		or_vsig = vsig;
3564 
3565 		/* make sure that there is no overlap/conflict between the new
3566 		 * characteristics and the existing ones; we don't support that
3567 		 * scenario
3568 		 */
3569 		if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
3570 			status = ICE_ERR_ALREADY_EXISTS;
3571 			goto err_ice_add_prof_id_flow;
3572 		}
3573 
3574 		/* last VSI in the VSIG? */
3575 		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
3576 		if (status)
3577 			goto err_ice_add_prof_id_flow;
3578 		only_vsi = (ref == 1);
3579 
3580 		/* create a union of the current profiles and the one being
3581 		 * added
3582 		 */
3583 		status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
3584 		if (status)
3585 			goto err_ice_add_prof_id_flow;
3586 
3587 		status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
3588 		if (status)
3589 			goto err_ice_add_prof_id_flow;
3590 
3591 		/* search for an existing VSIG with an exact charc match */
3592 		status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
3593 		if (!status) {
3594 			/* move VSI to the VSIG that matches */
3595 			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
3596 			if (status)
3597 				goto err_ice_add_prof_id_flow;
3598 
3599 			/* VSI has been moved out of or_vsig. If the or_vsig had
3600 			 * only that VSI it is now empty and can be removed.
3601 			 */
3602 			if (only_vsi) {
3603 				status = ice_rem_vsig(hw, blk, or_vsig, &chg);
3604 				if (status)
3605 					goto err_ice_add_prof_id_flow;
3606 			}
3607 		} else if (only_vsi) {
3608 			/* If the original VSIG only contains one VSI, then it
3609 			 * will be the requesting VSI. In this case the VSI is
3610 			 * not sharing entries and we can simply add the new
3611 			 * profile to the VSIG.
3612 			 */
3613 			status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
3614 						      &chg);
3615 			if (status)
3616 				goto err_ice_add_prof_id_flow;
3617 
3618 			/* Adjust priorities */
3619 			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
3620 			if (status)
3621 				goto err_ice_add_prof_id_flow;
3622 		} else {
3623 			/* No match, so we need a new VSIG */
3624 			status = ice_create_vsig_from_lst(hw, blk, vsi,
3625 							  &union_lst, &vsig,
3626 							  &chg);
3627 			if (status)
3628 				goto err_ice_add_prof_id_flow;
3629 
3630 			/* Adjust priorities */
3631 			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
3632 			if (status)
3633 				goto err_ice_add_prof_id_flow;
3634 		}
3635 	} else {
3636 		/* need to find or add a VSIG */
3637 		/* search for an existing VSIG with an exact charc match */
3638 		if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
3639 			/* found an exact match */
3640 			/* add or move VSI to the VSIG that matches */
3641 			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
3642 			if (status)
3643 				goto err_ice_add_prof_id_flow;
3644 		} else {
3645 			/* we did not find an exact match */
3646 			/* we need to add a VSIG */
3647 			status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
3648 							 &chg);
3649 			if (status)
3650 				goto err_ice_add_prof_id_flow;
3651 		}
3652 	}
3653 
3654 	/* update hardware */
3655 	if (!status)
3656 		status = ice_upd_prof_hw(hw, blk, &chg);
3657 
3658 err_ice_add_prof_id_flow:
3659 	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
3660 		LIST_DEL(&del->list_entry);
3661 		ice_free(hw, del);
3662 	}
3663 
3664 	LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &union_lst, ice_vsig_prof, list) {
3665 		LIST_DEL(&del1->list);
3666 		ice_free(hw, del1);
3667 	}
3668 
3669 	return status;
3670 }
3671 
3672 /**
3673  * ice_add_flow - add flow
3674  * @hw: pointer to the HW struct
3675  * @blk: hardware block
3676  * @vsi: array of VSIs to enable with the profile specified by ID
3677  * @count: number of elements in the VSI array
3678  * @id: profile tracking ID
3679  *
3680  * Calling this function will update the hardware tables to enable the
3681  * profile indicated by the ID parameter for the VSIs specified in the VSI
3682  * array. Once successfully called, the flow will be enabled.
3683  */
3684 enum ice_status
3685 ice_add_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count,
3686 	     u64 id)
3687 {
3688 	u16 i;
3689 
3690 	for (i = 0; i < count; i++) {
3691 		enum ice_status status;
3692 
3693 		status = ice_add_prof_id_flow(hw, blk, vsi[i], id);
3694 		if (status)
3695 			return status;
3696 	}
3697 
3698 	return ICE_SUCCESS;
3699 }
3700 
3701 /**
3702  * ice_rem_prof_from_list - remove a profile from list
3703  * @hw: pointer to the HW struct
3704  * @lst: list to remove the profile from
3705  * @hdl: the profile handle indicating the profile to remove
3706  */
3707 static enum ice_status
3708 ice_rem_prof_from_list(struct ice_hw *hw, struct LIST_HEAD_TYPE *lst, u64 hdl)
3709 {
3710 	struct ice_vsig_prof *ent, *tmp;
3711 
3712 	LIST_FOR_EACH_ENTRY_SAFE(ent, tmp, lst, ice_vsig_prof, list)
3713 		if (ent->profile_cookie == hdl) {
3714 			LIST_DEL(&ent->list);
3715 			ice_free(hw, ent);
3716 			return ICE_SUCCESS;
3717 		}
3718 
3719 	return ICE_ERR_DOES_NOT_EXIST;
3720 }
3721 
3722 /**
3723  * ice_rem_prof_id_flow - remove flow
3724  * @hw: pointer to the HW struct
3725  * @blk: hardware block
3726  * @vsi: the VSI from which to remove the profile specified by ID
3727  * @hdl: profile tracking handle
3728  *
3729  * Calling this function will update the hardware tables to remove the
3730  * profile indicated by the ID parameter for the VSIs specified in the VSI
3731  * array. Once successfully called, the flow will be disabled.
3732  */
3733 enum ice_status
3734 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
3735 {
3736 	struct ice_vsig_prof *tmp1, *del1;
3737 	struct ice_chs_chg *tmp, *del;
3738 	struct LIST_HEAD_TYPE chg, copy;
3739 	enum ice_status status;
3740 	u16 vsig;
3741 
3742 	INIT_LIST_HEAD(&copy);
3743 	INIT_LIST_HEAD(&chg);
3744 
3745 	/* determine if VSI is already part of a VSIG */
3746 	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
3747 	if (!status && vsig) {
3748 		bool last_profile;
3749 		bool only_vsi;
3750 		u16 ref;
3751 
3752 		/* found in VSIG */
3753 		last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
3754 		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
3755 		if (status)
3756 			goto err_ice_rem_prof_id_flow;
3757 		only_vsi = (ref == 1);
3758 
3759 		if (only_vsi) {
3760 			/* If the original VSIG only contains one reference,
3761 			 * which will be the requesting VSI, then the VSI is not
3762 			 * sharing entries and we can simply remove the specific
3763 			 * characteristics from the VSIG.
3764 			 */
3765 
3766 			if (last_profile) {
3767 				/* If there are no profiles left for this VSIG,
3768 				 * then simply remove the VSIG.
3769 				 */
3770 				status = ice_rem_vsig(hw, blk, vsig, &chg);
3771 				if (status)
3772 					goto err_ice_rem_prof_id_flow;
3773 			} else {
3774 				status = ice_rem_prof_id_vsig(hw, blk, vsig,
3775 							      hdl, &chg);
3776 				if (status)
3777 					goto err_ice_rem_prof_id_flow;
3778 
3779 				/* Adjust priorities */
3780 				status = ice_adj_prof_priorities(hw, blk, vsig,
3781 								 &chg);
3782 				if (status)
3783 					goto err_ice_rem_prof_id_flow;
3784 			}
3785 
3786 		} else {
3787 			/* Make a copy of the VSIG's list of Profiles */
3788 			status = ice_get_profs_vsig(hw, blk, vsig, &copy);
3789 			if (status)
3790 				goto err_ice_rem_prof_id_flow;
3791 
3792 			/* Remove specified profile entry from the list */
3793 			status = ice_rem_prof_from_list(hw, &copy, hdl);
3794 			if (status)
3795 				goto err_ice_rem_prof_id_flow;
3796 
3797 			if (LIST_EMPTY(&copy)) {
3798 				status = ice_move_vsi(hw, blk, vsi,
3799 						      ICE_DEFAULT_VSIG, &chg);
3800 				if (status)
3801 					goto err_ice_rem_prof_id_flow;
3802 
3803 			} else if (!ice_find_dup_props_vsig(hw, blk, &copy,
3804 							    &vsig)) {
3805 				/* found an exact match */
3806 				/* add or move VSI to the VSIG that matches */
3807 				/* Search for a VSIG with a matching profile
3808 				 * list
3809 				 */
3810 
3811 				/* Found match, move VSI to the matching VSIG */
3812 				status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
3813 				if (status)
3814 					goto err_ice_rem_prof_id_flow;
3815 			} else {
3816 				/* since no existing VSIG supports this
3817 				 * characteristic pattern, we need to create a
3818 				 * new VSIG and TCAM entries
3819 				 */
3820 				status = ice_create_vsig_from_lst(hw, blk, vsi,
3821 								  &copy, &vsig,
3822 								  &chg);
3823 				if (status)
3824 					goto err_ice_rem_prof_id_flow;
3825 
3826 				/* Adjust priorities */
3827 				status = ice_adj_prof_priorities(hw, blk, vsig,
3828 								 &chg);
3829 				if (status)
3830 					goto err_ice_rem_prof_id_flow;
3831 			}
3832 		}
3833 	} else {
3834 		status = ICE_ERR_DOES_NOT_EXIST;
3835 	}
3836 
3837 	/* update hardware tables */
3838 	if (!status)
3839 		status = ice_upd_prof_hw(hw, blk, &chg);
3840 
3841 err_ice_rem_prof_id_flow:
3842 	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
3843 		LIST_DEL(&del->list_entry);
3844 		ice_free(hw, del);
3845 	}
3846 
3847 	LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &copy, ice_vsig_prof, list) {
3848 		LIST_DEL(&del1->list);
3849 		ice_free(hw, del1);
3850 	}
3851 
3852 	return status;
3853 }
3854 
3855 /**
3856  * ice_rem_flow - remove flow
3857  * @hw: pointer to the HW struct
3858  * @blk: hardware block
3859  * @vsi: array of VSIs from which to remove the profile specified by ID
3860  * @count: number of elements in the VSI array
3861  * @id: profile tracking ID
3862  *
3863  * The function will remove flows from the specified VSIs that were enabled
3864  * using ice_add_flow. The ID value will indicated which profile will be
3865  * removed. Once successfully called, the flow will be disabled.
3866  */
3867 enum ice_status
3868 ice_rem_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count,
3869 	     u64 id)
3870 {
3871 	u16 i;
3872 
3873 	for (i = 0; i < count; i++) {
3874 		enum ice_status status;
3875 
3876 		status = ice_rem_prof_id_flow(hw, blk, vsi[i], id);
3877 		if (status)
3878 			return status;
3879 	}
3880 
3881 	return ICE_SUCCESS;
3882 }
3883