xref: /freebsd/sys/dev/ice/ice_common.c (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2020, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*$FreeBSD$*/
32 
33 #include "ice_common.h"
34 #include "ice_sched.h"
35 #include "ice_adminq_cmd.h"
36 
37 #include "ice_flow.h"
38 #include "ice_switch.h"
39 
40 #define ICE_PF_RESET_WAIT_COUNT	300
41 
42 /**
43  * ice_set_mac_type - Sets MAC type
44  * @hw: pointer to the HW structure
45  *
46  * This function sets the MAC type of the adapter based on the
47  * vendor ID and device ID stored in the HW structure.
48  */
49 enum ice_status ice_set_mac_type(struct ice_hw *hw)
50 {
51 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
52 
53 	if (hw->vendor_id != ICE_INTEL_VENDOR_ID)
54 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
55 
56 	switch (hw->device_id) {
57 	case ICE_DEV_ID_E810C_BACKPLANE:
58 	case ICE_DEV_ID_E810C_QSFP:
59 	case ICE_DEV_ID_E810C_SFP:
60 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
61 	case ICE_DEV_ID_E810_XXV_QSFP:
62 	case ICE_DEV_ID_E810_XXV_SFP:
63 		hw->mac_type = ICE_MAC_E810;
64 		break;
65 	case ICE_DEV_ID_E822C_10G_BASE_T:
66 	case ICE_DEV_ID_E822C_BACKPLANE:
67 	case ICE_DEV_ID_E822C_QSFP:
68 	case ICE_DEV_ID_E822C_SFP:
69 	case ICE_DEV_ID_E822C_SGMII:
70 	case ICE_DEV_ID_E822L_10G_BASE_T:
71 	case ICE_DEV_ID_E822L_BACKPLANE:
72 	case ICE_DEV_ID_E822L_SFP:
73 	case ICE_DEV_ID_E822L_SGMII:
74 	case ICE_DEV_ID_E823L_10G_BASE_T:
75 	case ICE_DEV_ID_E823L_1GBE:
76 	case ICE_DEV_ID_E823L_BACKPLANE:
77 	case ICE_DEV_ID_E823L_QSFP:
78 	case ICE_DEV_ID_E823L_SFP:
79 		hw->mac_type = ICE_MAC_GENERIC;
80 		break;
81 	default:
82 		hw->mac_type = ICE_MAC_UNKNOWN;
83 		break;
84 	}
85 
86 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
87 	return ICE_SUCCESS;
88 }
89 
90 /**
91  * ice_clear_pf_cfg - Clear PF configuration
92  * @hw: pointer to the hardware structure
93  *
94  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
95  * configuration, flow director filters, etc.).
96  */
97 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
98 {
99 	struct ice_aq_desc desc;
100 
101 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
102 
103 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
104 }
105 
106 /**
107  * ice_aq_manage_mac_read - manage MAC address read command
108  * @hw: pointer to the HW struct
109  * @buf: a virtual buffer to hold the manage MAC read response
110  * @buf_size: Size of the virtual buffer
111  * @cd: pointer to command details structure or NULL
112  *
113  * This function is used to return per PF station MAC address (0x0107).
114  * NOTE: Upon successful completion of this command, MAC address information
115  * is returned in user specified buffer. Please interpret user specified
116  * buffer as "manage_mac_read" response.
117  * Response such as various MAC addresses are stored in HW struct (port.mac)
118  * ice_discover_dev_caps is expected to be called before this function is
119  * called.
120  */
121 enum ice_status
122 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
123 		       struct ice_sq_cd *cd)
124 {
125 	struct ice_aqc_manage_mac_read_resp *resp;
126 	struct ice_aqc_manage_mac_read *cmd;
127 	struct ice_aq_desc desc;
128 	enum ice_status status;
129 	u16 flags;
130 	u8 i;
131 
132 	cmd = &desc.params.mac_read;
133 
134 	if (buf_size < sizeof(*resp))
135 		return ICE_ERR_BUF_TOO_SHORT;
136 
137 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
138 
139 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
140 	if (status)
141 		return status;
142 
143 	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
144 	flags = LE16_TO_CPU(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
145 
146 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
147 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
148 		return ICE_ERR_CFG;
149 	}
150 
151 	/* A single port can report up to two (LAN and WoL) addresses */
152 	for (i = 0; i < cmd->num_addr; i++)
153 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
154 			ice_memcpy(hw->port_info->mac.lan_addr,
155 				   resp[i].mac_addr, ETH_ALEN,
156 				   ICE_DMA_TO_NONDMA);
157 			ice_memcpy(hw->port_info->mac.perm_addr,
158 				   resp[i].mac_addr,
159 				   ETH_ALEN, ICE_DMA_TO_NONDMA);
160 			break;
161 		}
162 	return ICE_SUCCESS;
163 }
164 
165 /**
166  * ice_aq_get_phy_caps - returns PHY capabilities
167  * @pi: port information structure
168  * @qual_mods: report qualified modules
169  * @report_mode: report mode capabilities
170  * @pcaps: structure for PHY capabilities to be filled
171  * @cd: pointer to command details structure or NULL
172  *
173  * Returns the various PHY capabilities supported on the Port (0x0600)
174  */
175 enum ice_status
176 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
177 		    struct ice_aqc_get_phy_caps_data *pcaps,
178 		    struct ice_sq_cd *cd)
179 {
180 	struct ice_aqc_get_phy_caps *cmd;
181 	u16 pcaps_size = sizeof(*pcaps);
182 	struct ice_aq_desc desc;
183 	enum ice_status status;
184 	struct ice_hw *hw;
185 
186 	cmd = &desc.params.get_phy;
187 
188 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
189 		return ICE_ERR_PARAM;
190 	hw = pi->hw;
191 
192 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
193 
194 	if (qual_mods)
195 		cmd->param0 |= CPU_TO_LE16(ICE_AQC_GET_PHY_RQM);
196 
197 	cmd->param0 |= CPU_TO_LE16(report_mode);
198 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
199 
200 	ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
201 		  report_mode);
202 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
203 		  (unsigned long long)LE64_TO_CPU(pcaps->phy_type_low));
204 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
205 		  (unsigned long long)LE64_TO_CPU(pcaps->phy_type_high));
206 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", pcaps->caps);
207 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
208 		  pcaps->low_power_ctrl_an);
209 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", pcaps->eee_cap);
210 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n",
211 		  pcaps->eeer_value);
212 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_options = 0x%x\n",
213 		  pcaps->link_fec_options);
214 	ice_debug(hw, ICE_DBG_LINK, "	module_compliance_enforcement = 0x%x\n",
215 		  pcaps->module_compliance_enforcement);
216 	ice_debug(hw, ICE_DBG_LINK, "   extended_compliance_code = 0x%x\n",
217 		  pcaps->extended_compliance_code);
218 	ice_debug(hw, ICE_DBG_LINK, "   module_type[0] = 0x%x\n",
219 		  pcaps->module_type[0]);
220 	ice_debug(hw, ICE_DBG_LINK, "   module_type[1] = 0x%x\n",
221 		  pcaps->module_type[1]);
222 	ice_debug(hw, ICE_DBG_LINK, "   module_type[2] = 0x%x\n",
223 		  pcaps->module_type[2]);
224 
225 	if (status == ICE_SUCCESS && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
226 		pi->phy.phy_type_low = LE64_TO_CPU(pcaps->phy_type_low);
227 		pi->phy.phy_type_high = LE64_TO_CPU(pcaps->phy_type_high);
228 		ice_memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
229 			   sizeof(pi->phy.link_info.module_type),
230 			   ICE_NONDMA_TO_NONDMA);
231 	}
232 
233 	return status;
234 }
235 
236 /**
237  * ice_aq_get_link_topo_handle - get link topology node return status
238  * @pi: port information structure
239  * @node_type: requested node type
240  * @cd: pointer to command details structure or NULL
241  *
242  * Get link topology node return status for specified node type (0x06E0)
243  *
244  * Node type cage can be used to determine if cage is present. If AQC
245  * returns error (ENOENT), then no cage present. If no cage present, then
246  * connection type is backplane or BASE-T.
247  */
248 static enum ice_status
249 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
250 			    struct ice_sq_cd *cd)
251 {
252 	struct ice_aqc_get_link_topo *cmd;
253 	struct ice_aq_desc desc;
254 
255 	cmd = &desc.params.get_link_topo;
256 
257 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
258 
259 	cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
260 				   ICE_AQC_LINK_TOPO_NODE_CTX_S);
261 
262 	/* set node type */
263 	cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
264 
265 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
266 }
267 
268 /*
269  * ice_is_media_cage_present
270  * @pi: port information structure
271  *
272  * Returns true if media cage is present, else false. If no cage, then
273  * media type is backplane or BASE-T.
274  */
275 static bool ice_is_media_cage_present(struct ice_port_info *pi)
276 {
277 	/* Node type cage can be used to determine if cage is present. If AQC
278 	 * returns error (ENOENT), then no cage present. If no cage present then
279 	 * connection type is backplane or BASE-T.
280 	 */
281 	return !ice_aq_get_link_topo_handle(pi,
282 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
283 					    NULL);
284 }
285 
286 /**
287  * ice_get_media_type - Gets media type
288  * @pi: port information structure
289  */
290 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
291 {
292 	struct ice_link_status *hw_link_info;
293 
294 	if (!pi)
295 		return ICE_MEDIA_UNKNOWN;
296 
297 	hw_link_info = &pi->phy.link_info;
298 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
299 		/* If more than one media type is selected, report unknown */
300 		return ICE_MEDIA_UNKNOWN;
301 
302 	if (hw_link_info->phy_type_low) {
303 		/* 1G SGMII is a special case where some DA cable PHYs
304 		 * may show this as an option when it really shouldn't
305 		 * be since SGMII is meant to be between a MAC and a PHY
306 		 * in a backplane. Try to detect this case and handle it
307 		 */
308 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
309 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
310 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
311 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
312 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
313 			return ICE_MEDIA_DA;
314 
315 		switch (hw_link_info->phy_type_low) {
316 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
317 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
318 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
319 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
320 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
321 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
322 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
323 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
324 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
325 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
326 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
327 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
328 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
329 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
330 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
331 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
332 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
333 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
334 			return ICE_MEDIA_FIBER;
335 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
336 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
337 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
338 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
339 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
340 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
341 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
342 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
343 			return ICE_MEDIA_FIBER;
344 		case ICE_PHY_TYPE_LOW_100BASE_TX:
345 		case ICE_PHY_TYPE_LOW_1000BASE_T:
346 		case ICE_PHY_TYPE_LOW_2500BASE_T:
347 		case ICE_PHY_TYPE_LOW_5GBASE_T:
348 		case ICE_PHY_TYPE_LOW_10GBASE_T:
349 		case ICE_PHY_TYPE_LOW_25GBASE_T:
350 			return ICE_MEDIA_BASET;
351 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
352 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
353 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
354 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
355 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
356 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
357 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
358 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
359 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
360 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
361 			return ICE_MEDIA_DA;
362 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
363 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
364 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
365 		case ICE_PHY_TYPE_LOW_50G_AUI2:
366 		case ICE_PHY_TYPE_LOW_50G_AUI1:
367 		case ICE_PHY_TYPE_LOW_100G_AUI4:
368 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
369 			if (ice_is_media_cage_present(pi))
370 				return ICE_MEDIA_AUI;
371 			/* fall-through */
372 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
373 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
374 		case ICE_PHY_TYPE_LOW_2500BASE_X:
375 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
376 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
377 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
378 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
379 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
380 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
381 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
382 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
383 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
384 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
385 			return ICE_MEDIA_BACKPLANE;
386 		}
387 	} else {
388 		switch (hw_link_info->phy_type_high) {
389 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
390 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
391 			if (ice_is_media_cage_present(pi))
392 				return ICE_MEDIA_AUI;
393 			/* fall-through */
394 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
395 			return ICE_MEDIA_BACKPLANE;
396 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
397 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
398 			return ICE_MEDIA_FIBER;
399 		}
400 	}
401 	return ICE_MEDIA_UNKNOWN;
402 }
403 
404 /**
405  * ice_aq_get_link_info
406  * @pi: port information structure
407  * @ena_lse: enable/disable LinkStatusEvent reporting
408  * @link: pointer to link status structure - optional
409  * @cd: pointer to command details structure or NULL
410  *
411  * Get Link Status (0x607). Returns the link status of the adapter.
412  */
413 enum ice_status
414 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
415 		     struct ice_link_status *link, struct ice_sq_cd *cd)
416 {
417 	struct ice_aqc_get_link_status_data link_data = { 0 };
418 	struct ice_aqc_get_link_status *resp;
419 	struct ice_link_status *li_old, *li;
420 	enum ice_media_type *hw_media_type;
421 	struct ice_fc_info *hw_fc_info;
422 	bool tx_pause, rx_pause;
423 	struct ice_aq_desc desc;
424 	enum ice_status status;
425 	struct ice_hw *hw;
426 	u16 cmd_flags;
427 
428 	if (!pi)
429 		return ICE_ERR_PARAM;
430 	hw = pi->hw;
431 
432 	li_old = &pi->phy.link_info_old;
433 	hw_media_type = &pi->phy.media_type;
434 	li = &pi->phy.link_info;
435 	hw_fc_info = &pi->fc;
436 
437 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
438 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
439 	resp = &desc.params.get_link_status;
440 	resp->cmd_flags = CPU_TO_LE16(cmd_flags);
441 	resp->lport_num = pi->lport;
442 
443 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
444 
445 	if (status != ICE_SUCCESS)
446 		return status;
447 
448 	/* save off old link status information */
449 	*li_old = *li;
450 
451 	/* update current link status information */
452 	li->link_speed = LE16_TO_CPU(link_data.link_speed);
453 	li->phy_type_low = LE64_TO_CPU(link_data.phy_type_low);
454 	li->phy_type_high = LE64_TO_CPU(link_data.phy_type_high);
455 	*hw_media_type = ice_get_media_type(pi);
456 	li->link_info = link_data.link_info;
457 	li->an_info = link_data.an_info;
458 	li->ext_info = link_data.ext_info;
459 	li->max_frame_size = LE16_TO_CPU(link_data.max_frame_size);
460 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
461 	li->topo_media_conflict = link_data.topo_media_conflict;
462 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
463 				      ICE_AQ_CFG_PACING_TYPE_M);
464 
465 	/* update fc info */
466 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
467 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
468 	if (tx_pause && rx_pause)
469 		hw_fc_info->current_mode = ICE_FC_FULL;
470 	else if (tx_pause)
471 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
472 	else if (rx_pause)
473 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
474 	else
475 		hw_fc_info->current_mode = ICE_FC_NONE;
476 
477 	li->lse_ena = !!(resp->cmd_flags & CPU_TO_LE16(ICE_AQ_LSE_IS_ENABLED));
478 
479 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
480 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
481 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
482 		  (unsigned long long)li->phy_type_low);
483 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
484 		  (unsigned long long)li->phy_type_high);
485 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
486 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
487 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
488 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
489 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
490 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
491 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
492 		  li->max_frame_size);
493 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
494 
495 	/* save link status information */
496 	if (link)
497 		*link = *li;
498 
499 	/* flag cleared so calling functions don't call AQ again */
500 	pi->phy.get_link_info = false;
501 
502 	return ICE_SUCCESS;
503 }
504 
505 /**
506  * ice_fill_tx_timer_and_fc_thresh
507  * @hw: pointer to the HW struct
508  * @cmd: pointer to MAC cfg structure
509  *
510  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
511  * descriptor
512  */
513 static void
514 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
515 				struct ice_aqc_set_mac_cfg *cmd)
516 {
517 	u16 fc_thres_val, tx_timer_val;
518 	u32 val;
519 
520 	/* We read back the transmit timer and fc threshold value of
521 	 * LFC. Thus, we will use index =
522 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
523 	 *
524 	 * Also, because we are opearating on transmit timer and fc
525 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
526 	 */
527 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
528 
529 	/* Retrieve the transmit timer */
530 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
531 	tx_timer_val = val &
532 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
533 	cmd->tx_tmr_value = CPU_TO_LE16(tx_timer_val);
534 
535 	/* Retrieve the fc threshold */
536 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
537 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
538 
539 	cmd->fc_refresh_threshold = CPU_TO_LE16(fc_thres_val);
540 }
541 
542 /**
543  * ice_aq_set_mac_cfg
544  * @hw: pointer to the HW struct
545  * @max_frame_size: Maximum Frame Size to be supported
546  * @cd: pointer to command details structure or NULL
547  *
548  * Set MAC configuration (0x0603)
549  */
550 enum ice_status
551 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
552 {
553 	struct ice_aqc_set_mac_cfg *cmd;
554 	struct ice_aq_desc desc;
555 
556 	cmd = &desc.params.set_mac_cfg;
557 
558 	if (max_frame_size == 0)
559 		return ICE_ERR_PARAM;
560 
561 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
562 
563 	cmd->max_frame_size = CPU_TO_LE16(max_frame_size);
564 
565 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
566 
567 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
568 }
569 
570 /**
571  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
572  * @hw: pointer to the HW struct
573  */
574 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
575 {
576 	struct ice_switch_info *sw;
577 	enum ice_status status;
578 
579 	hw->switch_info = (struct ice_switch_info *)
580 			  ice_malloc(hw, sizeof(*hw->switch_info));
581 
582 	sw = hw->switch_info;
583 
584 	if (!sw)
585 		return ICE_ERR_NO_MEMORY;
586 
587 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
588 	sw->prof_res_bm_init = 0;
589 
590 	status = ice_init_def_sw_recp(hw, &hw->switch_info->recp_list);
591 	if (status) {
592 		ice_free(hw, hw->switch_info);
593 		return status;
594 	}
595 	return ICE_SUCCESS;
596 }
597 
598 /**
599  * ice_cleanup_fltr_mgmt_single - clears single filter mngt struct
600  * @hw: pointer to the HW struct
601  * @sw: pointer to switch info struct for which function clears filters
602  */
603 static void
604 ice_cleanup_fltr_mgmt_single(struct ice_hw *hw, struct ice_switch_info *sw)
605 {
606 	struct ice_vsi_list_map_info *v_pos_map;
607 	struct ice_vsi_list_map_info *v_tmp_map;
608 	struct ice_sw_recipe *recps;
609 	u8 i;
610 
611 	if (!sw)
612 		return;
613 
614 	LIST_FOR_EACH_ENTRY_SAFE(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
615 				 ice_vsi_list_map_info, list_entry) {
616 		LIST_DEL(&v_pos_map->list_entry);
617 		ice_free(hw, v_pos_map);
618 	}
619 	recps = sw->recp_list;
620 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
621 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
622 
623 		recps[i].root_rid = i;
624 		LIST_FOR_EACH_ENTRY_SAFE(rg_entry, tmprg_entry,
625 					 &recps[i].rg_list, ice_recp_grp_entry,
626 					 l_entry) {
627 			LIST_DEL(&rg_entry->l_entry);
628 			ice_free(hw, rg_entry);
629 		}
630 
631 		if (recps[i].adv_rule) {
632 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
633 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
634 
635 			ice_destroy_lock(&recps[i].filt_rule_lock);
636 			LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
637 						 &recps[i].filt_rules,
638 						 ice_adv_fltr_mgmt_list_entry,
639 						 list_entry) {
640 				LIST_DEL(&lst_itr->list_entry);
641 				ice_free(hw, lst_itr->lkups);
642 				ice_free(hw, lst_itr);
643 			}
644 		} else {
645 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
646 
647 			ice_destroy_lock(&recps[i].filt_rule_lock);
648 			LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
649 						 &recps[i].filt_rules,
650 						 ice_fltr_mgmt_list_entry,
651 						 list_entry) {
652 				LIST_DEL(&lst_itr->list_entry);
653 				ice_free(hw, lst_itr);
654 			}
655 		}
656 		if (recps[i].root_buf)
657 			ice_free(hw, recps[i].root_buf);
658 	}
659 	ice_rm_sw_replay_rule_info(hw, sw);
660 	ice_free(hw, sw->recp_list);
661 	ice_free(hw, sw);
662 }
663 
664 /**
665  * ice_cleanup_all_fltr_mgmt - cleanup filter management list and locks
666  * @hw: pointer to the HW struct
667  */
668 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
669 {
670 	ice_cleanup_fltr_mgmt_single(hw, hw->switch_info);
671 }
672 
673 /**
674  * ice_get_itr_intrl_gran
675  * @hw: pointer to the HW struct
676  *
677  * Determines the ITR/INTRL granularities based on the maximum aggregate
678  * bandwidth according to the device's configuration during power-on.
679  */
680 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
681 {
682 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
683 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
684 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
685 
686 	switch (max_agg_bw) {
687 	case ICE_MAX_AGG_BW_200G:
688 	case ICE_MAX_AGG_BW_100G:
689 	case ICE_MAX_AGG_BW_50G:
690 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
691 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
692 		break;
693 	case ICE_MAX_AGG_BW_25G:
694 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
695 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
696 		break;
697 	}
698 }
699 
700 /**
701  * ice_print_rollback_msg - print FW rollback message
702  * @hw: pointer to the hardware structure
703  */
704 void ice_print_rollback_msg(struct ice_hw *hw)
705 {
706 	char nvm_str[ICE_NVM_VER_LEN] = { 0 };
707 	struct ice_nvm_info *nvm = &hw->nvm;
708 	struct ice_orom_info *orom;
709 
710 	orom = &nvm->orom;
711 
712 	SNPRINTF(nvm_str, sizeof(nvm_str), "%x.%02x 0x%x %d.%d.%d",
713 		 nvm->major_ver, nvm->minor_ver, nvm->eetrack, orom->major,
714 		 orom->build, orom->patch);
715 	ice_warn(hw,
716 		 "Firmware rollback mode detected. Current version is NVM: %s, FW: %d.%d. Device may exhibit limited functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware rollback mode\n",
717 		 nvm_str, hw->fw_maj_ver, hw->fw_min_ver);
718 }
719 
720 /**
721  * ice_init_hw - main hardware initialization routine
722  * @hw: pointer to the hardware structure
723  */
724 enum ice_status ice_init_hw(struct ice_hw *hw)
725 {
726 	struct ice_aqc_get_phy_caps_data *pcaps;
727 	enum ice_status status;
728 	u16 mac_buf_len;
729 	void *mac_buf;
730 
731 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
732 
733 	/* Set MAC type based on DeviceID */
734 	status = ice_set_mac_type(hw);
735 	if (status)
736 		return status;
737 
738 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
739 			 PF_FUNC_RID_FUNCTION_NUMBER_M) >>
740 		PF_FUNC_RID_FUNCTION_NUMBER_S;
741 
742 	status = ice_reset(hw, ICE_RESET_PFR);
743 	if (status)
744 		return status;
745 	ice_get_itr_intrl_gran(hw);
746 
747 	status = ice_create_all_ctrlq(hw);
748 	if (status)
749 		goto err_unroll_cqinit;
750 
751 	status = ice_init_nvm(hw);
752 	if (status)
753 		goto err_unroll_cqinit;
754 
755 	if (ice_get_fw_mode(hw) == ICE_FW_MODE_ROLLBACK)
756 		ice_print_rollback_msg(hw);
757 
758 	status = ice_clear_pf_cfg(hw);
759 	if (status)
760 		goto err_unroll_cqinit;
761 
762 	ice_clear_pxe_mode(hw);
763 
764 	status = ice_get_caps(hw);
765 	if (status)
766 		goto err_unroll_cqinit;
767 
768 	hw->port_info = (struct ice_port_info *)
769 			ice_malloc(hw, sizeof(*hw->port_info));
770 	if (!hw->port_info) {
771 		status = ICE_ERR_NO_MEMORY;
772 		goto err_unroll_cqinit;
773 	}
774 
775 	/* set the back pointer to HW */
776 	hw->port_info->hw = hw;
777 
778 	/* Initialize port_info struct with switch configuration data */
779 	status = ice_get_initial_sw_cfg(hw);
780 	if (status)
781 		goto err_unroll_alloc;
782 
783 	hw->evb_veb = true;
784 	/* Query the allocated resources for Tx scheduler */
785 	status = ice_sched_query_res_alloc(hw);
786 	if (status) {
787 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
788 		goto err_unroll_alloc;
789 	}
790 	ice_sched_get_psm_clk_freq(hw);
791 
792 	/* Initialize port_info struct with scheduler data */
793 	status = ice_sched_init_port(hw->port_info);
794 	if (status)
795 		goto err_unroll_sched;
796 	pcaps = (struct ice_aqc_get_phy_caps_data *)
797 		ice_malloc(hw, sizeof(*pcaps));
798 	if (!pcaps) {
799 		status = ICE_ERR_NO_MEMORY;
800 		goto err_unroll_sched;
801 	}
802 
803 	/* Initialize port_info struct with PHY capabilities */
804 	status = ice_aq_get_phy_caps(hw->port_info, false,
805 				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
806 	ice_free(hw, pcaps);
807 	if (status)
808 		ice_debug(hw, ICE_DBG_PHY, "%s: Get PHY capabilities failed, continuing anyway\n",
809 			  __func__);
810 
811 	/* Initialize port_info struct with link information */
812 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
813 	if (status)
814 		goto err_unroll_sched;
815 	/* need a valid SW entry point to build a Tx tree */
816 	if (!hw->sw_entry_point_layer) {
817 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
818 		status = ICE_ERR_CFG;
819 		goto err_unroll_sched;
820 	}
821 	INIT_LIST_HEAD(&hw->agg_list);
822 	/* Initialize max burst size */
823 	if (!hw->max_burst_size)
824 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
825 	status = ice_init_fltr_mgmt_struct(hw);
826 	if (status)
827 		goto err_unroll_sched;
828 
829 	/* Get MAC information */
830 	/* A single port can report up to two (LAN and WoL) addresses */
831 	mac_buf = ice_calloc(hw, 2,
832 			     sizeof(struct ice_aqc_manage_mac_read_resp));
833 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
834 
835 	if (!mac_buf) {
836 		status = ICE_ERR_NO_MEMORY;
837 		goto err_unroll_fltr_mgmt_struct;
838 	}
839 
840 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
841 	ice_free(hw, mac_buf);
842 
843 	if (status)
844 		goto err_unroll_fltr_mgmt_struct;
845 	/* enable jumbo frame support at MAC level */
846 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
847 	if (status)
848 		goto err_unroll_fltr_mgmt_struct;
849 	status = ice_init_hw_tbls(hw);
850 	if (status)
851 		goto err_unroll_fltr_mgmt_struct;
852 	ice_init_lock(&hw->tnl_lock);
853 	return ICE_SUCCESS;
854 
855 err_unroll_fltr_mgmt_struct:
856 	ice_cleanup_fltr_mgmt_struct(hw);
857 err_unroll_sched:
858 	ice_sched_cleanup_all(hw);
859 err_unroll_alloc:
860 	ice_free(hw, hw->port_info);
861 	hw->port_info = NULL;
862 err_unroll_cqinit:
863 	ice_destroy_all_ctrlq(hw);
864 	return status;
865 }
866 
867 /**
868  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
869  * @hw: pointer to the hardware structure
870  *
871  * This should be called only during nominal operation, not as a result of
872  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
873  * applicable initializations if it fails for any reason.
874  */
875 void ice_deinit_hw(struct ice_hw *hw)
876 {
877 	ice_cleanup_fltr_mgmt_struct(hw);
878 
879 	ice_sched_cleanup_all(hw);
880 	ice_sched_clear_agg(hw);
881 	ice_free_seg(hw);
882 	ice_free_hw_tbls(hw);
883 	ice_destroy_lock(&hw->tnl_lock);
884 
885 	if (hw->port_info) {
886 		ice_free(hw, hw->port_info);
887 		hw->port_info = NULL;
888 	}
889 
890 	ice_destroy_all_ctrlq(hw);
891 
892 	/* Clear VSI contexts if not already cleared */
893 	ice_clear_all_vsi_ctx(hw);
894 }
895 
896 /**
897  * ice_check_reset - Check to see if a global reset is complete
898  * @hw: pointer to the hardware structure
899  */
900 enum ice_status ice_check_reset(struct ice_hw *hw)
901 {
902 	u32 cnt, reg = 0, grst_timeout, uld_mask;
903 
904 	/* Poll for Device Active state in case a recent CORER, GLOBR,
905 	 * or EMPR has occurred. The grst delay value is in 100ms units.
906 	 * Add 1sec for outstanding AQ commands that can take a long time.
907 	 */
908 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
909 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
910 
911 	for (cnt = 0; cnt < grst_timeout; cnt++) {
912 		ice_msec_delay(100, true);
913 		reg = rd32(hw, GLGEN_RSTAT);
914 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
915 			break;
916 	}
917 
918 	if (cnt == grst_timeout) {
919 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
920 		return ICE_ERR_RESET_FAILED;
921 	}
922 
923 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
924 				 GLNVM_ULD_PCIER_DONE_1_M |\
925 				 GLNVM_ULD_CORER_DONE_M |\
926 				 GLNVM_ULD_GLOBR_DONE_M |\
927 				 GLNVM_ULD_POR_DONE_M |\
928 				 GLNVM_ULD_POR_DONE_1_M |\
929 				 GLNVM_ULD_PCIER_DONE_2_M)
930 
931 	uld_mask = ICE_RESET_DONE_MASK;
932 
933 	/* Device is Active; check Global Reset processes are done */
934 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
935 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
936 		if (reg == uld_mask) {
937 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
938 			break;
939 		}
940 		ice_msec_delay(10, true);
941 	}
942 
943 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
944 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
945 			  reg);
946 		return ICE_ERR_RESET_FAILED;
947 	}
948 
949 	return ICE_SUCCESS;
950 }
951 
952 /**
953  * ice_pf_reset - Reset the PF
954  * @hw: pointer to the hardware structure
955  *
956  * If a global reset has been triggered, this function checks
957  * for its completion and then issues the PF reset
958  */
959 static enum ice_status ice_pf_reset(struct ice_hw *hw)
960 {
961 	u32 cnt, reg;
962 
963 	/* If at function entry a global reset was already in progress, i.e.
964 	 * state is not 'device active' or any of the reset done bits are not
965 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
966 	 * global reset is done.
967 	 */
968 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
969 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
970 		/* poll on global reset currently in progress until done */
971 		if (ice_check_reset(hw))
972 			return ICE_ERR_RESET_FAILED;
973 
974 		return ICE_SUCCESS;
975 	}
976 
977 	/* Reset the PF */
978 	reg = rd32(hw, PFGEN_CTRL);
979 
980 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
981 
982 	/* Wait for the PFR to complete. The wait time is the global config lock
983 	 * timeout plus the PFR timeout which will account for a possible reset
984 	 * that is occurring during a download package operation.
985 	 */
986 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
987 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
988 		reg = rd32(hw, PFGEN_CTRL);
989 		if (!(reg & PFGEN_CTRL_PFSWR_M))
990 			break;
991 
992 		ice_msec_delay(1, true);
993 	}
994 
995 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
996 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
997 		return ICE_ERR_RESET_FAILED;
998 	}
999 
1000 	return ICE_SUCCESS;
1001 }
1002 
1003 /**
1004  * ice_reset - Perform different types of reset
1005  * @hw: pointer to the hardware structure
1006  * @req: reset request
1007  *
1008  * This function triggers a reset as specified by the req parameter.
1009  *
1010  * Note:
1011  * If anything other than a PF reset is triggered, PXE mode is restored.
1012  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1013  * interface has been restored in the rebuild flow.
1014  */
1015 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1016 {
1017 	u32 val = 0;
1018 
1019 	switch (req) {
1020 	case ICE_RESET_PFR:
1021 		return ice_pf_reset(hw);
1022 	case ICE_RESET_CORER:
1023 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1024 		val = GLGEN_RTRIG_CORER_M;
1025 		break;
1026 	case ICE_RESET_GLOBR:
1027 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1028 		val = GLGEN_RTRIG_GLOBR_M;
1029 		break;
1030 	default:
1031 		return ICE_ERR_PARAM;
1032 	}
1033 
1034 	val |= rd32(hw, GLGEN_RTRIG);
1035 	wr32(hw, GLGEN_RTRIG, val);
1036 	ice_flush(hw);
1037 
1038 	/* wait for the FW to be ready */
1039 	return ice_check_reset(hw);
1040 }
1041 
1042 /**
1043  * ice_copy_rxq_ctx_to_hw
1044  * @hw: pointer to the hardware structure
1045  * @ice_rxq_ctx: pointer to the rxq context
1046  * @rxq_index: the index of the Rx queue
1047  *
1048  * Copies rxq context from dense structure to HW register space
1049  */
1050 static enum ice_status
1051 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1052 {
1053 	u8 i;
1054 
1055 	if (!ice_rxq_ctx)
1056 		return ICE_ERR_BAD_PTR;
1057 
1058 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1059 		return ICE_ERR_PARAM;
1060 
1061 	/* Copy each dword separately to HW */
1062 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1063 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1064 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1065 
1066 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1067 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1068 	}
1069 
1070 	return ICE_SUCCESS;
1071 }
1072 
1073 /* LAN Rx Queue Context */
1074 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1075 	/* Field		Width	LSB */
1076 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1077 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1078 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1079 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1080 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1081 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1082 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1083 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1084 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1085 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1086 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1087 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1088 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1089 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1090 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1091 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1092 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1093 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1094 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1095 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1096 	{ 0 }
1097 };
1098 
1099 /**
1100  * ice_write_rxq_ctx
1101  * @hw: pointer to the hardware structure
1102  * @rlan_ctx: pointer to the rxq context
1103  * @rxq_index: the index of the Rx queue
1104  *
1105  * Converts rxq context from sparse to dense structure and then writes
1106  * it to HW register space and enables the hardware to prefetch descriptors
1107  * instead of only fetching them on demand
1108  */
1109 enum ice_status
1110 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1111 		  u32 rxq_index)
1112 {
1113 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1114 
1115 	if (!rlan_ctx)
1116 		return ICE_ERR_BAD_PTR;
1117 
1118 	rlan_ctx->prefena = 1;
1119 
1120 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1121 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1122 }
1123 
1124 /**
1125  * ice_clear_rxq_ctx
1126  * @hw: pointer to the hardware structure
1127  * @rxq_index: the index of the Rx queue to clear
1128  *
1129  * Clears rxq context in HW register space
1130  */
1131 enum ice_status ice_clear_rxq_ctx(struct ice_hw *hw, u32 rxq_index)
1132 {
1133 	u8 i;
1134 
1135 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1136 		return ICE_ERR_PARAM;
1137 
1138 	/* Clear each dword register separately */
1139 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++)
1140 		wr32(hw, QRX_CONTEXT(i, rxq_index), 0);
1141 
1142 	return ICE_SUCCESS;
1143 }
1144 
1145 /* LAN Tx Queue Context */
1146 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1147 				    /* Field			Width	LSB */
1148 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1149 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1150 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1151 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1152 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1153 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1154 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1155 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1156 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1157 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1158 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1159 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1160 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1161 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1162 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1163 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1164 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1165 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1166 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1167 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1168 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1169 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1170 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1171 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1172 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1173 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1174 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1175 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1176 	{ 0 }
1177 };
1178 
1179 /**
1180  * ice_copy_tx_cmpltnq_ctx_to_hw
1181  * @hw: pointer to the hardware structure
1182  * @ice_tx_cmpltnq_ctx: pointer to the Tx completion queue context
1183  * @tx_cmpltnq_index: the index of the completion queue
1184  *
1185  * Copies Tx completion queue context from dense structure to HW register space
1186  */
1187 static enum ice_status
1188 ice_copy_tx_cmpltnq_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_cmpltnq_ctx,
1189 			      u32 tx_cmpltnq_index)
1190 {
1191 	u8 i;
1192 
1193 	if (!ice_tx_cmpltnq_ctx)
1194 		return ICE_ERR_BAD_PTR;
1195 
1196 	if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1197 		return ICE_ERR_PARAM;
1198 
1199 	/* Copy each dword separately to HW */
1200 	for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++) {
1201 		wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index),
1202 		     *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1203 
1204 		ice_debug(hw, ICE_DBG_QCTX, "cmpltnqdata[%d]: %08X\n", i,
1205 			  *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1206 	}
1207 
1208 	return ICE_SUCCESS;
1209 }
1210 
1211 /* LAN Tx Completion Queue Context */
1212 static const struct ice_ctx_ele ice_tx_cmpltnq_ctx_info[] = {
1213 				       /* Field			Width   LSB */
1214 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, base,			57,	0),
1215 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, q_len,		18,	64),
1216 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, generation,		1,	96),
1217 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, wrt_ptr,		22,	97),
1218 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, pf_num,		3,	128),
1219 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_num,		10,	131),
1220 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_type,		2,	141),
1221 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, tph_desc_wr,		1,	160),
1222 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cpuid,		8,	161),
1223 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cmpltn_cache,		512,	192),
1224 	{ 0 }
1225 };
1226 
1227 /**
1228  * ice_write_tx_cmpltnq_ctx
1229  * @hw: pointer to the hardware structure
1230  * @tx_cmpltnq_ctx: pointer to the completion queue context
1231  * @tx_cmpltnq_index: the index of the completion queue
1232  *
1233  * Converts completion queue context from sparse to dense structure and then
1234  * writes it to HW register space
1235  */
1236 enum ice_status
1237 ice_write_tx_cmpltnq_ctx(struct ice_hw *hw,
1238 			 struct ice_tx_cmpltnq_ctx *tx_cmpltnq_ctx,
1239 			 u32 tx_cmpltnq_index)
1240 {
1241 	u8 ctx_buf[ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1242 
1243 	ice_set_ctx(hw, (u8 *)tx_cmpltnq_ctx, ctx_buf, ice_tx_cmpltnq_ctx_info);
1244 	return ice_copy_tx_cmpltnq_ctx_to_hw(hw, ctx_buf, tx_cmpltnq_index);
1245 }
1246 
1247 /**
1248  * ice_clear_tx_cmpltnq_ctx
1249  * @hw: pointer to the hardware structure
1250  * @tx_cmpltnq_index: the index of the completion queue to clear
1251  *
1252  * Clears Tx completion queue context in HW register space
1253  */
1254 enum ice_status
1255 ice_clear_tx_cmpltnq_ctx(struct ice_hw *hw, u32 tx_cmpltnq_index)
1256 {
1257 	u8 i;
1258 
1259 	if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1260 		return ICE_ERR_PARAM;
1261 
1262 	/* Clear each dword register separately */
1263 	for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++)
1264 		wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index), 0);
1265 
1266 	return ICE_SUCCESS;
1267 }
1268 
1269 /**
1270  * ice_copy_tx_drbell_q_ctx_to_hw
1271  * @hw: pointer to the hardware structure
1272  * @ice_tx_drbell_q_ctx: pointer to the doorbell queue context
1273  * @tx_drbell_q_index: the index of the doorbell queue
1274  *
1275  * Copies doorbell queue context from dense structure to HW register space
1276  */
1277 static enum ice_status
1278 ice_copy_tx_drbell_q_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_drbell_q_ctx,
1279 			       u32 tx_drbell_q_index)
1280 {
1281 	u8 i;
1282 
1283 	if (!ice_tx_drbell_q_ctx)
1284 		return ICE_ERR_BAD_PTR;
1285 
1286 	if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1287 		return ICE_ERR_PARAM;
1288 
1289 	/* Copy each dword separately to HW */
1290 	for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++) {
1291 		wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index),
1292 		     *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1293 
1294 		ice_debug(hw, ICE_DBG_QCTX, "tx_drbell_qdata[%d]: %08X\n", i,
1295 			  *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1296 	}
1297 
1298 	return ICE_SUCCESS;
1299 }
1300 
1301 /* LAN Tx Doorbell Queue Context info */
1302 static const struct ice_ctx_ele ice_tx_drbell_q_ctx_info[] = {
1303 					/* Field		Width   LSB */
1304 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, base,		57,	0),
1305 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, ring_len,		13,	64),
1306 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, pf_num,		3,	80),
1307 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, vf_num,		8,	84),
1308 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, vmvf_type,		2,	94),
1309 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, cpuid,		8,	96),
1310 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_rd,		1,	104),
1311 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_wr,		1,	108),
1312 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, db_q_en,		1,	112),
1313 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_head,		13,	128),
1314 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_tail,		13,	144),
1315 	{ 0 }
1316 };
1317 
1318 /**
1319  * ice_write_tx_drbell_q_ctx
1320  * @hw: pointer to the hardware structure
1321  * @tx_drbell_q_ctx: pointer to the doorbell queue context
1322  * @tx_drbell_q_index: the index of the doorbell queue
1323  *
1324  * Converts doorbell queue context from sparse to dense structure and then
1325  * writes it to HW register space
1326  */
1327 enum ice_status
1328 ice_write_tx_drbell_q_ctx(struct ice_hw *hw,
1329 			  struct ice_tx_drbell_q_ctx *tx_drbell_q_ctx,
1330 			  u32 tx_drbell_q_index)
1331 {
1332 	u8 ctx_buf[ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1333 
1334 	ice_set_ctx(hw, (u8 *)tx_drbell_q_ctx, ctx_buf,
1335 		    ice_tx_drbell_q_ctx_info);
1336 	return ice_copy_tx_drbell_q_ctx_to_hw(hw, ctx_buf, tx_drbell_q_index);
1337 }
1338 
1339 /**
1340  * ice_clear_tx_drbell_q_ctx
1341  * @hw: pointer to the hardware structure
1342  * @tx_drbell_q_index: the index of the doorbell queue to clear
1343  *
1344  * Clears doorbell queue context in HW register space
1345  */
1346 enum ice_status
1347 ice_clear_tx_drbell_q_ctx(struct ice_hw *hw, u32 tx_drbell_q_index)
1348 {
1349 	u8 i;
1350 
1351 	if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1352 		return ICE_ERR_PARAM;
1353 
1354 	/* Clear each dword register separately */
1355 	for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++)
1356 		wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index), 0);
1357 
1358 	return ICE_SUCCESS;
1359 }
1360 
1361 /* FW Admin Queue command wrappers */
1362 
1363 /**
1364  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1365  * @hw: pointer to the HW struct
1366  * @desc: descriptor describing the command
1367  * @buf: buffer to use for indirect commands (NULL for direct commands)
1368  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1369  * @cd: pointer to command details structure
1370  *
1371  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1372  */
1373 enum ice_status
1374 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1375 		u16 buf_size, struct ice_sq_cd *cd)
1376 {
1377 	return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1378 }
1379 
1380 /**
1381  * ice_aq_get_fw_ver
1382  * @hw: pointer to the HW struct
1383  * @cd: pointer to command details structure or NULL
1384  *
1385  * Get the firmware version (0x0001) from the admin queue commands
1386  */
1387 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1388 {
1389 	struct ice_aqc_get_ver *resp;
1390 	struct ice_aq_desc desc;
1391 	enum ice_status status;
1392 
1393 	resp = &desc.params.get_ver;
1394 
1395 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1396 
1397 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1398 
1399 	if (!status) {
1400 		hw->fw_branch = resp->fw_branch;
1401 		hw->fw_maj_ver = resp->fw_major;
1402 		hw->fw_min_ver = resp->fw_minor;
1403 		hw->fw_patch = resp->fw_patch;
1404 		hw->fw_build = LE32_TO_CPU(resp->fw_build);
1405 		hw->api_branch = resp->api_branch;
1406 		hw->api_maj_ver = resp->api_major;
1407 		hw->api_min_ver = resp->api_minor;
1408 		hw->api_patch = resp->api_patch;
1409 	}
1410 
1411 	return status;
1412 }
1413 
1414 /**
1415  * ice_aq_send_driver_ver
1416  * @hw: pointer to the HW struct
1417  * @dv: driver's major, minor version
1418  * @cd: pointer to command details structure or NULL
1419  *
1420  * Send the driver version (0x0002) to the firmware
1421  */
1422 enum ice_status
1423 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1424 		       struct ice_sq_cd *cd)
1425 {
1426 	struct ice_aqc_driver_ver *cmd;
1427 	struct ice_aq_desc desc;
1428 	u16 len;
1429 
1430 	cmd = &desc.params.driver_ver;
1431 
1432 	if (!dv)
1433 		return ICE_ERR_PARAM;
1434 
1435 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1436 
1437 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1438 	cmd->major_ver = dv->major_ver;
1439 	cmd->minor_ver = dv->minor_ver;
1440 	cmd->build_ver = dv->build_ver;
1441 	cmd->subbuild_ver = dv->subbuild_ver;
1442 
1443 	len = 0;
1444 	while (len < sizeof(dv->driver_string) &&
1445 	       IS_ASCII(dv->driver_string[len]) && dv->driver_string[len])
1446 		len++;
1447 
1448 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1449 }
1450 
1451 /**
1452  * ice_aq_q_shutdown
1453  * @hw: pointer to the HW struct
1454  * @unloading: is the driver unloading itself
1455  *
1456  * Tell the Firmware that we're shutting down the AdminQ and whether
1457  * or not the driver is unloading as well (0x0003).
1458  */
1459 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1460 {
1461 	struct ice_aqc_q_shutdown *cmd;
1462 	struct ice_aq_desc desc;
1463 
1464 	cmd = &desc.params.q_shutdown;
1465 
1466 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1467 
1468 	if (unloading)
1469 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1470 
1471 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1472 }
1473 
1474 /**
1475  * ice_aq_req_res
1476  * @hw: pointer to the HW struct
1477  * @res: resource ID
1478  * @access: access type
1479  * @sdp_number: resource number
1480  * @timeout: the maximum time in ms that the driver may hold the resource
1481  * @cd: pointer to command details structure or NULL
1482  *
1483  * Requests common resource using the admin queue commands (0x0008).
1484  * When attempting to acquire the Global Config Lock, the driver can
1485  * learn of three states:
1486  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1487  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1488  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1489  *                          successfully downloaded the package; the driver does
1490  *                          not have to download the package and can continue
1491  *                          loading
1492  *
1493  * Note that if the caller is in an acquire lock, perform action, release lock
1494  * phase of operation, it is possible that the FW may detect a timeout and issue
1495  * a CORER. In this case, the driver will receive a CORER interrupt and will
1496  * have to determine its cause. The calling thread that is handling this flow
1497  * will likely get an error propagated back to it indicating the Download
1498  * Package, Update Package or the Release Resource AQ commands timed out.
1499  */
1500 static enum ice_status
1501 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1502 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1503 	       struct ice_sq_cd *cd)
1504 {
1505 	struct ice_aqc_req_res *cmd_resp;
1506 	struct ice_aq_desc desc;
1507 	enum ice_status status;
1508 
1509 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1510 
1511 	cmd_resp = &desc.params.res_owner;
1512 
1513 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1514 
1515 	cmd_resp->res_id = CPU_TO_LE16(res);
1516 	cmd_resp->access_type = CPU_TO_LE16(access);
1517 	cmd_resp->res_number = CPU_TO_LE32(sdp_number);
1518 	cmd_resp->timeout = CPU_TO_LE32(*timeout);
1519 	*timeout = 0;
1520 
1521 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1522 
1523 	/* The completion specifies the maximum time in ms that the driver
1524 	 * may hold the resource in the Timeout field.
1525 	 */
1526 
1527 	/* Global config lock response utilizes an additional status field.
1528 	 *
1529 	 * If the Global config lock resource is held by some other driver, the
1530 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1531 	 * and the timeout field indicates the maximum time the current owner
1532 	 * of the resource has to free it.
1533 	 */
1534 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1535 		if (LE16_TO_CPU(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1536 			*timeout = LE32_TO_CPU(cmd_resp->timeout);
1537 			return ICE_SUCCESS;
1538 		} else if (LE16_TO_CPU(cmd_resp->status) ==
1539 			   ICE_AQ_RES_GLBL_IN_PROG) {
1540 			*timeout = LE32_TO_CPU(cmd_resp->timeout);
1541 			return ICE_ERR_AQ_ERROR;
1542 		} else if (LE16_TO_CPU(cmd_resp->status) ==
1543 			   ICE_AQ_RES_GLBL_DONE) {
1544 			return ICE_ERR_AQ_NO_WORK;
1545 		}
1546 
1547 		/* invalid FW response, force a timeout immediately */
1548 		*timeout = 0;
1549 		return ICE_ERR_AQ_ERROR;
1550 	}
1551 
1552 	/* If the resource is held by some other driver, the command completes
1553 	 * with a busy return value and the timeout field indicates the maximum
1554 	 * time the current owner of the resource has to free it.
1555 	 */
1556 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1557 		*timeout = LE32_TO_CPU(cmd_resp->timeout);
1558 
1559 	return status;
1560 }
1561 
1562 /**
1563  * ice_aq_release_res
1564  * @hw: pointer to the HW struct
1565  * @res: resource ID
1566  * @sdp_number: resource number
1567  * @cd: pointer to command details structure or NULL
1568  *
1569  * release common resource using the admin queue commands (0x0009)
1570  */
1571 static enum ice_status
1572 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1573 		   struct ice_sq_cd *cd)
1574 {
1575 	struct ice_aqc_req_res *cmd;
1576 	struct ice_aq_desc desc;
1577 
1578 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1579 
1580 	cmd = &desc.params.res_owner;
1581 
1582 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1583 
1584 	cmd->res_id = CPU_TO_LE16(res);
1585 	cmd->res_number = CPU_TO_LE32(sdp_number);
1586 
1587 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1588 }
1589 
1590 /**
1591  * ice_acquire_res
1592  * @hw: pointer to the HW structure
1593  * @res: resource ID
1594  * @access: access type (read or write)
1595  * @timeout: timeout in milliseconds
1596  *
1597  * This function will attempt to acquire the ownership of a resource.
1598  */
1599 enum ice_status
1600 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1601 		enum ice_aq_res_access_type access, u32 timeout)
1602 {
1603 #define ICE_RES_POLLING_DELAY_MS	10
1604 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1605 	u32 time_left = timeout;
1606 	enum ice_status status;
1607 
1608 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1609 
1610 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1611 
1612 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1613 	 * previously acquired the resource and performed any necessary updates;
1614 	 * in this case the caller does not obtain the resource and has no
1615 	 * further work to do.
1616 	 */
1617 	if (status == ICE_ERR_AQ_NO_WORK)
1618 		goto ice_acquire_res_exit;
1619 
1620 	if (status)
1621 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1622 
1623 	/* If necessary, poll until the current lock owner timeouts */
1624 	timeout = time_left;
1625 	while (status && timeout && time_left) {
1626 		ice_msec_delay(delay, true);
1627 		timeout = (timeout > delay) ? timeout - delay : 0;
1628 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1629 
1630 		if (status == ICE_ERR_AQ_NO_WORK)
1631 			/* lock free, but no work to do */
1632 			break;
1633 
1634 		if (!status)
1635 			/* lock acquired */
1636 			break;
1637 	}
1638 	if (status && status != ICE_ERR_AQ_NO_WORK)
1639 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1640 
1641 ice_acquire_res_exit:
1642 	if (status == ICE_ERR_AQ_NO_WORK) {
1643 		if (access == ICE_RES_WRITE)
1644 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1645 		else
1646 			ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1647 	}
1648 	return status;
1649 }
1650 
1651 /**
1652  * ice_release_res
1653  * @hw: pointer to the HW structure
1654  * @res: resource ID
1655  *
1656  * This function will release a resource using the proper Admin Command.
1657  */
1658 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1659 {
1660 	enum ice_status status;
1661 	u32 total_delay = 0;
1662 
1663 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1664 
1665 	status = ice_aq_release_res(hw, res, 0, NULL);
1666 
1667 	/* there are some rare cases when trying to release the resource
1668 	 * results in an admin queue timeout, so handle them correctly
1669 	 */
1670 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1671 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1672 		ice_msec_delay(1, true);
1673 		status = ice_aq_release_res(hw, res, 0, NULL);
1674 		total_delay++;
1675 	}
1676 }
1677 
1678 /**
1679  * ice_aq_alloc_free_res - command to allocate/free resources
1680  * @hw: pointer to the HW struct
1681  * @num_entries: number of resource entries in buffer
1682  * @buf: Indirect buffer to hold data parameters and response
1683  * @buf_size: size of buffer for indirect commands
1684  * @opc: pass in the command opcode
1685  * @cd: pointer to command details structure or NULL
1686  *
1687  * Helper function to allocate/free resources using the admin queue commands
1688  */
1689 enum ice_status
1690 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1691 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1692 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1693 {
1694 	struct ice_aqc_alloc_free_res_cmd *cmd;
1695 	struct ice_aq_desc desc;
1696 
1697 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1698 
1699 	cmd = &desc.params.sw_res_ctrl;
1700 
1701 	if (!buf)
1702 		return ICE_ERR_PARAM;
1703 
1704 	if (buf_size < (num_entries * sizeof(buf->elem[0])))
1705 		return ICE_ERR_PARAM;
1706 
1707 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1708 
1709 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1710 
1711 	cmd->num_entries = CPU_TO_LE16(num_entries);
1712 
1713 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1714 }
1715 
1716 /**
1717  * ice_alloc_hw_res - allocate resource
1718  * @hw: pointer to the HW struct
1719  * @type: type of resource
1720  * @num: number of resources to allocate
1721  * @btm: allocate from bottom
1722  * @res: pointer to array that will receive the resources
1723  */
1724 enum ice_status
1725 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1726 {
1727 	struct ice_aqc_alloc_free_res_elem *buf;
1728 	enum ice_status status;
1729 	u16 buf_len;
1730 
1731 	buf_len = ice_struct_size(buf, elem, num);
1732 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
1733 	if (!buf)
1734 		return ICE_ERR_NO_MEMORY;
1735 
1736 	/* Prepare buffer to allocate resource. */
1737 	buf->num_elems = CPU_TO_LE16(num);
1738 	buf->res_type = CPU_TO_LE16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1739 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1740 	if (btm)
1741 		buf->res_type |= CPU_TO_LE16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1742 
1743 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1744 				       ice_aqc_opc_alloc_res, NULL);
1745 	if (status)
1746 		goto ice_alloc_res_exit;
1747 
1748 	ice_memcpy(res, buf->elem, sizeof(*buf->elem) * num,
1749 		   ICE_NONDMA_TO_NONDMA);
1750 
1751 ice_alloc_res_exit:
1752 	ice_free(hw, buf);
1753 	return status;
1754 }
1755 
1756 /**
1757  * ice_free_hw_res - free allocated HW resource
1758  * @hw: pointer to the HW struct
1759  * @type: type of resource to free
1760  * @num: number of resources
1761  * @res: pointer to array that contains the resources to free
1762  */
1763 enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1764 {
1765 	struct ice_aqc_alloc_free_res_elem *buf;
1766 	enum ice_status status;
1767 	u16 buf_len;
1768 
1769 	buf_len = ice_struct_size(buf, elem, num);
1770 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
1771 	if (!buf)
1772 		return ICE_ERR_NO_MEMORY;
1773 
1774 	/* Prepare buffer to free resource. */
1775 	buf->num_elems = CPU_TO_LE16(num);
1776 	buf->res_type = CPU_TO_LE16(type);
1777 	ice_memcpy(buf->elem, res, sizeof(*buf->elem) * num,
1778 		   ICE_NONDMA_TO_NONDMA);
1779 
1780 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1781 				       ice_aqc_opc_free_res, NULL);
1782 	if (status)
1783 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1784 
1785 	ice_free(hw, buf);
1786 	return status;
1787 }
1788 
1789 /**
1790  * ice_get_num_per_func - determine number of resources per PF
1791  * @hw: pointer to the HW structure
1792  * @max: value to be evenly split between each PF
1793  *
1794  * Determine the number of valid functions by going through the bitmap returned
1795  * from parsing capabilities and use this to calculate the number of resources
1796  * per PF based on the max value passed in.
1797  */
1798 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1799 {
1800 	u8 funcs;
1801 
1802 #define ICE_CAPS_VALID_FUNCS_M	0xFF
1803 	funcs = ice_hweight8(hw->dev_caps.common_cap.valid_functions &
1804 			     ICE_CAPS_VALID_FUNCS_M);
1805 
1806 	if (!funcs)
1807 		return 0;
1808 
1809 	return max / funcs;
1810 }
1811 
1812 /**
1813  * ice_print_led_caps - print LED capabilities
1814  * @hw: pointer to the ice_hw instance
1815  * @caps: pointer to common caps instance
1816  * @prefix: string to prefix when printing
1817  * @debug: set to indicate debug print
1818  */
1819 static void
1820 ice_print_led_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1821 		   char const *prefix, bool debug)
1822 {
1823 	u8 i;
1824 
1825 	if (debug)
1826 		ice_debug(hw, ICE_DBG_INIT, "%s: led_pin_num = %d\n", prefix,
1827 			  caps->led_pin_num);
1828 	else
1829 		ice_info(hw, "%s: led_pin_num = %d\n", prefix,
1830 			 caps->led_pin_num);
1831 
1832 	for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_LED; i++) {
1833 		if (!caps->led[i])
1834 			continue;
1835 
1836 		if (debug)
1837 			ice_debug(hw, ICE_DBG_INIT, "%s: led[%d] = %d\n",
1838 				  prefix, i, caps->led[i]);
1839 		else
1840 			ice_info(hw, "%s: led[%d] = %d\n", prefix, i,
1841 				 caps->led[i]);
1842 	}
1843 }
1844 
1845 /**
1846  * ice_print_sdp_caps - print SDP capabilities
1847  * @hw: pointer to the ice_hw instance
1848  * @caps: pointer to common caps instance
1849  * @prefix: string to prefix when printing
1850  * @debug: set to indicate debug print
1851  */
1852 static void
1853 ice_print_sdp_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1854 		   char const *prefix, bool debug)
1855 {
1856 	u8 i;
1857 
1858 	if (debug)
1859 		ice_debug(hw, ICE_DBG_INIT, "%s: sdp_pin_num = %d\n", prefix,
1860 			  caps->sdp_pin_num);
1861 	else
1862 		ice_info(hw, "%s: sdp_pin_num = %d\n", prefix,
1863 			 caps->sdp_pin_num);
1864 
1865 	for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_SDP; i++) {
1866 		if (!caps->sdp[i])
1867 			continue;
1868 
1869 		if (debug)
1870 			ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%d] = %d\n",
1871 				  prefix, i, caps->sdp[i]);
1872 		else
1873 			ice_info(hw, "%s: sdp[%d] = %d\n", prefix,
1874 				 i, caps->sdp[i]);
1875 	}
1876 }
1877 
1878 /**
1879  * ice_parse_common_caps - parse common device/function capabilities
1880  * @hw: pointer to the HW struct
1881  * @caps: pointer to common capabilities structure
1882  * @elem: the capability element to parse
1883  * @prefix: message prefix for tracing capabilities
1884  *
1885  * Given a capability element, extract relevant details into the common
1886  * capability structure.
1887  *
1888  * Returns: true if the capability matches one of the common capability ids,
1889  * false otherwise.
1890  */
1891 static bool
1892 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1893 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
1894 {
1895 	u32 logical_id = LE32_TO_CPU(elem->logical_id);
1896 	u32 phys_id = LE32_TO_CPU(elem->phys_id);
1897 	u32 number = LE32_TO_CPU(elem->number);
1898 	u16 cap = LE16_TO_CPU(elem->cap);
1899 	bool found = true;
1900 
1901 	switch (cap) {
1902 	case ICE_AQC_CAPS_SWITCHING_MODE:
1903 		caps->switching_mode = number;
1904 		ice_debug(hw, ICE_DBG_INIT, "%s: switching_mode = %d\n", prefix,
1905 			  caps->switching_mode);
1906 		break;
1907 	case ICE_AQC_CAPS_MANAGEABILITY_MODE:
1908 		caps->mgmt_mode = number;
1909 		caps->mgmt_protocols_mctp = logical_id;
1910 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_mode = %d\n", prefix,
1911 			  caps->mgmt_mode);
1912 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_protocols_mctp = %d\n", prefix,
1913 			  caps->mgmt_protocols_mctp);
1914 		break;
1915 	case ICE_AQC_CAPS_OS2BMC:
1916 		caps->os2bmc = number;
1917 		ice_debug(hw, ICE_DBG_INIT, "%s: os2bmc = %d\n", prefix, caps->os2bmc);
1918 		break;
1919 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
1920 		caps->valid_functions = number;
1921 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
1922 			  caps->valid_functions);
1923 		break;
1924 	case ICE_AQC_CAPS_SRIOV:
1925 		caps->sr_iov_1_1 = (number == 1);
1926 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
1927 			  caps->sr_iov_1_1);
1928 		break;
1929 	case ICE_AQC_CAPS_802_1QBG:
1930 		caps->evb_802_1_qbg = (number == 1);
1931 		ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbg = %d\n", prefix, number);
1932 		break;
1933 	case ICE_AQC_CAPS_802_1BR:
1934 		caps->evb_802_1_qbh = (number == 1);
1935 		ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbh = %d\n", prefix, number);
1936 		break;
1937 	case ICE_AQC_CAPS_DCB:
1938 		caps->dcb = (number == 1);
1939 		caps->active_tc_bitmap = logical_id;
1940 		caps->maxtc = phys_id;
1941 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
1942 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
1943 			  caps->active_tc_bitmap);
1944 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
1945 		break;
1946 	case ICE_AQC_CAPS_ISCSI:
1947 		caps->iscsi = (number == 1);
1948 		ice_debug(hw, ICE_DBG_INIT, "%s: iscsi = %d\n", prefix, caps->iscsi);
1949 		break;
1950 	case ICE_AQC_CAPS_RSS:
1951 		caps->rss_table_size = number;
1952 		caps->rss_table_entry_width = logical_id;
1953 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
1954 			  caps->rss_table_size);
1955 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
1956 			  caps->rss_table_entry_width);
1957 		break;
1958 	case ICE_AQC_CAPS_RXQS:
1959 		caps->num_rxq = number;
1960 		caps->rxq_first_id = phys_id;
1961 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
1962 			  caps->num_rxq);
1963 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
1964 			  caps->rxq_first_id);
1965 		break;
1966 	case ICE_AQC_CAPS_TXQS:
1967 		caps->num_txq = number;
1968 		caps->txq_first_id = phys_id;
1969 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
1970 			  caps->num_txq);
1971 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
1972 			  caps->txq_first_id);
1973 		break;
1974 	case ICE_AQC_CAPS_MSIX:
1975 		caps->num_msix_vectors = number;
1976 		caps->msix_vector_first_id = phys_id;
1977 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
1978 			  caps->num_msix_vectors);
1979 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
1980 			  caps->msix_vector_first_id);
1981 		break;
1982 	case ICE_AQC_CAPS_NVM_VER:
1983 		break;
1984 	case ICE_AQC_CAPS_NVM_MGMT:
1985 		caps->nvm_unified_update =
1986 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
1987 			true : false;
1988 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
1989 			  caps->nvm_unified_update);
1990 		break;
1991 	case ICE_AQC_CAPS_CEM:
1992 		caps->mgmt_cem = (number == 1);
1993 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_cem = %d\n", prefix,
1994 			  caps->mgmt_cem);
1995 		break;
1996 	case ICE_AQC_CAPS_LED:
1997 		if (phys_id < ICE_MAX_SUPPORTED_GPIO_LED) {
1998 			caps->led[phys_id] = true;
1999 			caps->led_pin_num++;
2000 			ice_debug(hw, ICE_DBG_INIT, "%s: led[%d] = 1\n", prefix, phys_id);
2001 		}
2002 		break;
2003 	case ICE_AQC_CAPS_SDP:
2004 		if (phys_id < ICE_MAX_SUPPORTED_GPIO_SDP) {
2005 			caps->sdp[phys_id] = true;
2006 			caps->sdp_pin_num++;
2007 			ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%d] = 1\n", prefix, phys_id);
2008 		}
2009 		break;
2010 	case ICE_AQC_CAPS_WR_CSR_PROT:
2011 		caps->wr_csr_prot = number;
2012 		caps->wr_csr_prot |= (u64)logical_id << 32;
2013 		ice_debug(hw, ICE_DBG_INIT, "%s: wr_csr_prot = 0x%llX\n", prefix,
2014 			  (unsigned long long)caps->wr_csr_prot);
2015 		break;
2016 	case ICE_AQC_CAPS_WOL_PROXY:
2017 		caps->num_wol_proxy_fltr = number;
2018 		caps->wol_proxy_vsi_seid = logical_id;
2019 		caps->apm_wol_support = !!(phys_id & ICE_WOL_SUPPORT_M);
2020 		caps->acpi_prog_mthd = !!(phys_id &
2021 					  ICE_ACPI_PROG_MTHD_M);
2022 		caps->proxy_support = !!(phys_id & ICE_PROXY_SUPPORT_M);
2023 		ice_debug(hw, ICE_DBG_INIT, "%s: num_wol_proxy_fltr = %d\n", prefix,
2024 			  caps->num_wol_proxy_fltr);
2025 		ice_debug(hw, ICE_DBG_INIT, "%s: wol_proxy_vsi_seid = %d\n", prefix,
2026 			  caps->wol_proxy_vsi_seid);
2027 		break;
2028 	case ICE_AQC_CAPS_MAX_MTU:
2029 		caps->max_mtu = number;
2030 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2031 			  prefix, caps->max_mtu);
2032 		break;
2033 	default:
2034 		/* Not one of the recognized common capabilities */
2035 		found = false;
2036 	}
2037 
2038 	return found;
2039 }
2040 
2041 /**
2042  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2043  * @hw: pointer to the HW structure
2044  * @caps: pointer to capabilities structure to fix
2045  *
2046  * Re-calculate the capabilities that are dependent on the number of physical
2047  * ports; i.e. some features are not supported or function differently on
2048  * devices with more than 4 ports.
2049  */
2050 static void
2051 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2052 {
2053 	/* This assumes device capabilities are always scanned before function
2054 	 * capabilities during the initialization flow.
2055 	 */
2056 	if (hw->dev_caps.num_funcs > 4) {
2057 		/* Max 4 TCs per port */
2058 		caps->maxtc = 4;
2059 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2060 			  caps->maxtc);
2061 	}
2062 }
2063 
2064 /**
2065  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2066  * @hw: pointer to the HW struct
2067  * @func_p: pointer to function capabilities structure
2068  * @cap: pointer to the capability element to parse
2069  *
2070  * Extract function capabilities for ICE_AQC_CAPS_VF.
2071  */
2072 static void
2073 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2074 		       struct ice_aqc_list_caps_elem *cap)
2075 {
2076 	u32 number = LE32_TO_CPU(cap->number);
2077 	u32 logical_id = LE32_TO_CPU(cap->logical_id);
2078 
2079 	func_p->num_allocd_vfs = number;
2080 	func_p->vf_base_id = logical_id;
2081 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2082 		  func_p->num_allocd_vfs);
2083 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2084 		  func_p->vf_base_id);
2085 }
2086 
2087 /**
2088  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2089  * @hw: pointer to the HW struct
2090  * @func_p: pointer to function capabilities structure
2091  * @cap: pointer to the capability element to parse
2092  *
2093  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2094  */
2095 static void
2096 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2097 			struct ice_aqc_list_caps_elem *cap)
2098 {
2099 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2100 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2101 		  LE32_TO_CPU(cap->number));
2102 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2103 		  func_p->guar_num_vsi);
2104 }
2105 
2106 /**
2107  * ice_parse_func_caps - Parse function capabilities
2108  * @hw: pointer to the HW struct
2109  * @func_p: pointer to function capabilities structure
2110  * @buf: buffer containing the function capability records
2111  * @cap_count: the number of capabilities
2112  *
2113  * Helper function to parse function (0x000A) capabilities list. For
2114  * capabilities shared between device and function, this relies on
2115  * ice_parse_common_caps.
2116  *
2117  * Loop through the list of provided capabilities and extract the relevant
2118  * data into the function capabilities structured.
2119  */
2120 static void
2121 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2122 		    void *buf, u32 cap_count)
2123 {
2124 	struct ice_aqc_list_caps_elem *cap_resp;
2125 	u32 i;
2126 
2127 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2128 
2129 	ice_memset(func_p, 0, sizeof(*func_p), ICE_NONDMA_MEM);
2130 
2131 	for (i = 0; i < cap_count; i++) {
2132 		u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2133 		bool found;
2134 
2135 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2136 					      &cap_resp[i], "func caps");
2137 
2138 		switch (cap) {
2139 		case ICE_AQC_CAPS_VF:
2140 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2141 			break;
2142 		case ICE_AQC_CAPS_VSI:
2143 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2144 			break;
2145 		default:
2146 			/* Don't list common capabilities as unknown */
2147 			if (!found)
2148 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2149 					  i, cap);
2150 			break;
2151 		}
2152 	}
2153 
2154 	ice_print_led_caps(hw, &func_p->common_cap, "func caps", true);
2155 	ice_print_sdp_caps(hw, &func_p->common_cap, "func caps", true);
2156 
2157 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2158 }
2159 
2160 /**
2161  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2162  * @hw: pointer to the HW struct
2163  * @dev_p: pointer to device capabilities structure
2164  * @cap: capability element to parse
2165  *
2166  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2167  */
2168 static void
2169 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2170 			      struct ice_aqc_list_caps_elem *cap)
2171 {
2172 	u32 number = LE32_TO_CPU(cap->number);
2173 
2174 	dev_p->num_funcs = ice_hweight32(number);
2175 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2176 		  dev_p->num_funcs);
2177 }
2178 
2179 /**
2180  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2181  * @hw: pointer to the HW struct
2182  * @dev_p: pointer to device capabilities structure
2183  * @cap: capability element to parse
2184  *
2185  * Parse ICE_AQC_CAPS_VF for device capabilities.
2186  */
2187 static void
2188 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2189 		      struct ice_aqc_list_caps_elem *cap)
2190 {
2191 	u32 number = LE32_TO_CPU(cap->number);
2192 
2193 	dev_p->num_vfs_exposed = number;
2194 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2195 		  dev_p->num_vfs_exposed);
2196 }
2197 
2198 /**
2199  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2200  * @hw: pointer to the HW struct
2201  * @dev_p: pointer to device capabilities structure
2202  * @cap: capability element to parse
2203  *
2204  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2205  */
2206 static void
2207 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2208 		       struct ice_aqc_list_caps_elem *cap)
2209 {
2210 	u32 number = LE32_TO_CPU(cap->number);
2211 
2212 	dev_p->num_vsi_allocd_to_host = number;
2213 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2214 		  dev_p->num_vsi_allocd_to_host);
2215 }
2216 
2217 /**
2218  * ice_parse_dev_caps - Parse device capabilities
2219  * @hw: pointer to the HW struct
2220  * @dev_p: pointer to device capabilities structure
2221  * @buf: buffer containing the device capability records
2222  * @cap_count: the number of capabilities
2223  *
2224  * Helper device to parse device (0x000B) capabilities list. For
2225  * capabilities shared between device and function, this relies on
2226  * ice_parse_common_caps.
2227  *
2228  * Loop through the list of provided capabilities and extract the relevant
2229  * data into the device capabilities structured.
2230  */
2231 static void
2232 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2233 		   void *buf, u32 cap_count)
2234 {
2235 	struct ice_aqc_list_caps_elem *cap_resp;
2236 	u32 i;
2237 
2238 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2239 
2240 	ice_memset(dev_p, 0, sizeof(*dev_p), ICE_NONDMA_MEM);
2241 
2242 	for (i = 0; i < cap_count; i++) {
2243 		u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2244 		bool found;
2245 
2246 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2247 					      &cap_resp[i], "dev caps");
2248 
2249 		switch (cap) {
2250 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2251 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2252 			break;
2253 		case ICE_AQC_CAPS_VF:
2254 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2255 			break;
2256 		case ICE_AQC_CAPS_VSI:
2257 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2258 			break;
2259 		default:
2260 			/* Don't list common capabilities as unknown */
2261 			if (!found)
2262 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2263 					  i, cap);
2264 			break;
2265 		}
2266 	}
2267 
2268 	ice_print_led_caps(hw, &dev_p->common_cap, "dev caps", true);
2269 	ice_print_sdp_caps(hw, &dev_p->common_cap, "dev caps", true);
2270 
2271 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2272 }
2273 
2274 /**
2275  * ice_aq_list_caps - query function/device capabilities
2276  * @hw: pointer to the HW struct
2277  * @buf: a buffer to hold the capabilities
2278  * @buf_size: size of the buffer
2279  * @cap_count: if not NULL, set to the number of capabilities reported
2280  * @opc: capabilities type to discover, device or function
2281  * @cd: pointer to command details structure or NULL
2282  *
2283  * Get the function (0x000A) or device (0x000B) capabilities description from
2284  * firmware and store it in the buffer.
2285  *
2286  * If the cap_count pointer is not NULL, then it is set to the number of
2287  * capabilities firmware will report. Note that if the buffer size is too
2288  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2289  * cap_count will still be updated in this case. It is recommended that the
2290  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2291  * firmware could return) to avoid this.
2292  */
2293 static enum ice_status
2294 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2295 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2296 {
2297 	struct ice_aqc_list_caps *cmd;
2298 	struct ice_aq_desc desc;
2299 	enum ice_status status;
2300 
2301 	cmd = &desc.params.get_cap;
2302 
2303 	if (opc != ice_aqc_opc_list_func_caps &&
2304 	    opc != ice_aqc_opc_list_dev_caps)
2305 		return ICE_ERR_PARAM;
2306 
2307 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2308 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2309 
2310 	if (cap_count)
2311 		*cap_count = LE32_TO_CPU(cmd->count);
2312 
2313 	return status;
2314 }
2315 
2316 /**
2317  * ice_discover_dev_caps - Read and extract device capabilities
2318  * @hw: pointer to the hardware structure
2319  * @dev_caps: pointer to device capabilities structure
2320  *
2321  * Read the device capabilities and extract them into the dev_caps structure
2322  * for later use.
2323  */
2324 static enum ice_status
2325 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2326 {
2327 	enum ice_status status;
2328 	u32 cap_count = 0;
2329 	void *cbuf;
2330 
2331 	cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
2332 	if (!cbuf)
2333 		return ICE_ERR_NO_MEMORY;
2334 
2335 	/* Although the driver doesn't know the number of capabilities the
2336 	 * device will return, we can simply send a 4KB buffer, the maximum
2337 	 * possible size that firmware can return.
2338 	 */
2339 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2340 
2341 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2342 				  ice_aqc_opc_list_dev_caps, NULL);
2343 	if (!status)
2344 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2345 	ice_free(hw, cbuf);
2346 
2347 	return status;
2348 }
2349 
2350 /**
2351  * ice_discover_func_caps - Read and extract function capabilities
2352  * @hw: pointer to the hardware structure
2353  * @func_caps: pointer to function capabilities structure
2354  *
2355  * Read the function capabilities and extract them into the func_caps structure
2356  * for later use.
2357  */
2358 static enum ice_status
2359 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2360 {
2361 	enum ice_status status;
2362 	u32 cap_count = 0;
2363 	void *cbuf;
2364 
2365 	cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
2366 	if (!cbuf)
2367 		return ICE_ERR_NO_MEMORY;
2368 
2369 	/* Although the driver doesn't know the number of capabilities the
2370 	 * device will return, we can simply send a 4KB buffer, the maximum
2371 	 * possible size that firmware can return.
2372 	 */
2373 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2374 
2375 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2376 				  ice_aqc_opc_list_func_caps, NULL);
2377 	if (!status)
2378 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2379 	ice_free(hw, cbuf);
2380 
2381 	return status;
2382 }
2383 
2384 /**
2385  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2386  * @hw: pointer to the hardware structure
2387  */
2388 void ice_set_safe_mode_caps(struct ice_hw *hw)
2389 {
2390 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2391 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2392 	u32 valid_func, rxq_first_id, txq_first_id;
2393 	u32 msix_vector_first_id, max_mtu;
2394 	u32 num_funcs;
2395 
2396 	/* cache some func_caps values that should be restored after memset */
2397 	valid_func = func_caps->common_cap.valid_functions;
2398 	txq_first_id = func_caps->common_cap.txq_first_id;
2399 	rxq_first_id = func_caps->common_cap.rxq_first_id;
2400 	msix_vector_first_id = func_caps->common_cap.msix_vector_first_id;
2401 	max_mtu = func_caps->common_cap.max_mtu;
2402 
2403 	/* unset func capabilities */
2404 	memset(func_caps, 0, sizeof(*func_caps));
2405 
2406 	/* restore cached values */
2407 	func_caps->common_cap.valid_functions = valid_func;
2408 	func_caps->common_cap.txq_first_id = txq_first_id;
2409 	func_caps->common_cap.rxq_first_id = rxq_first_id;
2410 	func_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
2411 	func_caps->common_cap.max_mtu = max_mtu;
2412 
2413 	/* one Tx and one Rx queue in safe mode */
2414 	func_caps->common_cap.num_rxq = 1;
2415 	func_caps->common_cap.num_txq = 1;
2416 
2417 	/* two MSIX vectors, one for traffic and one for misc causes */
2418 	func_caps->common_cap.num_msix_vectors = 2;
2419 	func_caps->guar_num_vsi = 1;
2420 
2421 	/* cache some dev_caps values that should be restored after memset */
2422 	valid_func = dev_caps->common_cap.valid_functions;
2423 	txq_first_id = dev_caps->common_cap.txq_first_id;
2424 	rxq_first_id = dev_caps->common_cap.rxq_first_id;
2425 	msix_vector_first_id = dev_caps->common_cap.msix_vector_first_id;
2426 	max_mtu = dev_caps->common_cap.max_mtu;
2427 	num_funcs = dev_caps->num_funcs;
2428 
2429 	/* unset dev capabilities */
2430 	memset(dev_caps, 0, sizeof(*dev_caps));
2431 
2432 	/* restore cached values */
2433 	dev_caps->common_cap.valid_functions = valid_func;
2434 	dev_caps->common_cap.txq_first_id = txq_first_id;
2435 	dev_caps->common_cap.rxq_first_id = rxq_first_id;
2436 	dev_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
2437 	dev_caps->common_cap.max_mtu = max_mtu;
2438 	dev_caps->num_funcs = num_funcs;
2439 
2440 	/* one Tx and one Rx queue per function in safe mode */
2441 	dev_caps->common_cap.num_rxq = num_funcs;
2442 	dev_caps->common_cap.num_txq = num_funcs;
2443 
2444 	/* two MSIX vectors per function */
2445 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2446 }
2447 
2448 /**
2449  * ice_get_caps - get info about the HW
2450  * @hw: pointer to the hardware structure
2451  */
2452 enum ice_status ice_get_caps(struct ice_hw *hw)
2453 {
2454 	enum ice_status status;
2455 
2456 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2457 	if (status)
2458 		return status;
2459 
2460 	return ice_discover_func_caps(hw, &hw->func_caps);
2461 }
2462 
2463 /**
2464  * ice_aq_manage_mac_write - manage MAC address write command
2465  * @hw: pointer to the HW struct
2466  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2467  * @flags: flags to control write behavior
2468  * @cd: pointer to command details structure or NULL
2469  *
2470  * This function is used to write MAC address to the NVM (0x0108).
2471  */
2472 enum ice_status
2473 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2474 			struct ice_sq_cd *cd)
2475 {
2476 	struct ice_aqc_manage_mac_write *cmd;
2477 	struct ice_aq_desc desc;
2478 
2479 	cmd = &desc.params.mac_write;
2480 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2481 
2482 	cmd->flags = flags;
2483 	ice_memcpy(cmd->mac_addr, mac_addr, ETH_ALEN, ICE_NONDMA_TO_DMA);
2484 
2485 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2486 }
2487 
2488 /**
2489  * ice_aq_clear_pxe_mode
2490  * @hw: pointer to the HW struct
2491  *
2492  * Tell the firmware that the driver is taking over from PXE (0x0110).
2493  */
2494 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
2495 {
2496 	struct ice_aq_desc desc;
2497 
2498 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2499 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2500 
2501 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2502 }
2503 
2504 /**
2505  * ice_clear_pxe_mode - clear pxe operations mode
2506  * @hw: pointer to the HW struct
2507  *
2508  * Make sure all PXE mode settings are cleared, including things
2509  * like descriptor fetch/write-back mode.
2510  */
2511 void ice_clear_pxe_mode(struct ice_hw *hw)
2512 {
2513 	if (ice_check_sq_alive(hw, &hw->adminq))
2514 		ice_aq_clear_pxe_mode(hw);
2515 }
2516 
2517 /**
2518  * ice_aq_set_port_params - set physical port parameters.
2519  * @pi: pointer to the port info struct
2520  * @bad_frame_vsi: defines the VSI to which bad frames are forwarded
2521  * @save_bad_pac: if set packets with errors are forwarded to the bad frames VSI
2522  * @pad_short_pac: if set transmit packets smaller than 60 bytes are padded
2523  * @double_vlan: if set double VLAN is enabled
2524  * @cd: pointer to command details structure or NULL
2525  *
2526  * Set Physical port parameters (0x0203)
2527  */
2528 enum ice_status
2529 ice_aq_set_port_params(struct ice_port_info *pi, u16 bad_frame_vsi,
2530 		       bool save_bad_pac, bool pad_short_pac, bool double_vlan,
2531 		       struct ice_sq_cd *cd)
2532 
2533 {
2534 	struct ice_aqc_set_port_params *cmd;
2535 	struct ice_hw *hw = pi->hw;
2536 	struct ice_aq_desc desc;
2537 	u16 cmd_flags = 0;
2538 
2539 	cmd = &desc.params.set_port_params;
2540 
2541 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2542 	cmd->bad_frame_vsi = CPU_TO_LE16(bad_frame_vsi);
2543 	if (save_bad_pac)
2544 		cmd_flags |= ICE_AQC_SET_P_PARAMS_SAVE_BAD_PACKETS;
2545 	if (pad_short_pac)
2546 		cmd_flags |= ICE_AQC_SET_P_PARAMS_PAD_SHORT_PACKETS;
2547 	if (double_vlan)
2548 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2549 	cmd->cmd_flags = CPU_TO_LE16(cmd_flags);
2550 
2551 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2552 }
2553 
2554 /**
2555  * ice_get_link_speed_based_on_phy_type - returns link speed
2556  * @phy_type_low: lower part of phy_type
2557  * @phy_type_high: higher part of phy_type
2558  *
2559  * This helper function will convert an entry in PHY type structure
2560  * [phy_type_low, phy_type_high] to its corresponding link speed.
2561  * Note: In the structure of [phy_type_low, phy_type_high], there should
2562  * be one bit set, as this function will convert one PHY type to its
2563  * speed.
2564  * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2565  * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2566  */
2567 static u16
2568 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2569 {
2570 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2571 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2572 
2573 	switch (phy_type_low) {
2574 	case ICE_PHY_TYPE_LOW_100BASE_TX:
2575 	case ICE_PHY_TYPE_LOW_100M_SGMII:
2576 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2577 		break;
2578 	case ICE_PHY_TYPE_LOW_1000BASE_T:
2579 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2580 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2581 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2582 	case ICE_PHY_TYPE_LOW_1G_SGMII:
2583 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2584 		break;
2585 	case ICE_PHY_TYPE_LOW_2500BASE_T:
2586 	case ICE_PHY_TYPE_LOW_2500BASE_X:
2587 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2588 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2589 		break;
2590 	case ICE_PHY_TYPE_LOW_5GBASE_T:
2591 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2592 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2593 		break;
2594 	case ICE_PHY_TYPE_LOW_10GBASE_T:
2595 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2596 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2597 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2598 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2599 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2600 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2601 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2602 		break;
2603 	case ICE_PHY_TYPE_LOW_25GBASE_T:
2604 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2605 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2606 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2607 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2608 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2609 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2610 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2611 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2612 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2613 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2614 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2615 		break;
2616 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2617 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2618 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2619 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2620 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2621 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
2622 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2623 		break;
2624 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2625 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2626 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2627 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2628 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2629 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
2630 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2631 	case ICE_PHY_TYPE_LOW_50G_AUI2:
2632 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
2633 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
2634 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
2635 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
2636 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2637 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2638 	case ICE_PHY_TYPE_LOW_50G_AUI1:
2639 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2640 		break;
2641 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2642 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2643 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2644 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2645 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2646 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
2647 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2648 	case ICE_PHY_TYPE_LOW_100G_AUI4:
2649 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2650 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2651 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2652 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2653 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
2654 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2655 		break;
2656 	default:
2657 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2658 		break;
2659 	}
2660 
2661 	switch (phy_type_high) {
2662 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2663 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2664 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2665 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2666 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
2667 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2668 		break;
2669 	default:
2670 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2671 		break;
2672 	}
2673 
2674 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2675 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2676 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2677 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2678 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2679 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2680 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2681 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2682 		return speed_phy_type_low;
2683 	else
2684 		return speed_phy_type_high;
2685 }
2686 
2687 /**
2688  * ice_update_phy_type
2689  * @phy_type_low: pointer to the lower part of phy_type
2690  * @phy_type_high: pointer to the higher part of phy_type
2691  * @link_speeds_bitmap: targeted link speeds bitmap
2692  *
2693  * Note: For the link_speeds_bitmap structure, you can check it at
2694  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2695  * link_speeds_bitmap include multiple speeds.
2696  *
2697  * Each entry in this [phy_type_low, phy_type_high] structure will
2698  * present a certain link speed. This helper function will turn on bits
2699  * in [phy_type_low, phy_type_high] structure based on the value of
2700  * link_speeds_bitmap input parameter.
2701  */
2702 void
2703 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2704 		    u16 link_speeds_bitmap)
2705 {
2706 	u64 pt_high;
2707 	u64 pt_low;
2708 	int index;
2709 	u16 speed;
2710 
2711 	/* We first check with low part of phy_type */
2712 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2713 		pt_low = BIT_ULL(index);
2714 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2715 
2716 		if (link_speeds_bitmap & speed)
2717 			*phy_type_low |= BIT_ULL(index);
2718 	}
2719 
2720 	/* We then check with high part of phy_type */
2721 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2722 		pt_high = BIT_ULL(index);
2723 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2724 
2725 		if (link_speeds_bitmap & speed)
2726 			*phy_type_high |= BIT_ULL(index);
2727 	}
2728 }
2729 
2730 /**
2731  * ice_aq_set_phy_cfg
2732  * @hw: pointer to the HW struct
2733  * @pi: port info structure of the interested logical port
2734  * @cfg: structure with PHY configuration data to be set
2735  * @cd: pointer to command details structure or NULL
2736  *
2737  * Set the various PHY configuration parameters supported on the Port.
2738  * One or more of the Set PHY config parameters may be ignored in an MFP
2739  * mode as the PF may not have the privilege to set some of the PHY Config
2740  * parameters. This status will be indicated by the command response (0x0601).
2741  */
2742 enum ice_status
2743 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2744 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2745 {
2746 	struct ice_aq_desc desc;
2747 	enum ice_status status;
2748 
2749 	if (!cfg)
2750 		return ICE_ERR_PARAM;
2751 
2752 	/* Ensure that only valid bits of cfg->caps can be turned on. */
2753 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2754 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2755 			  cfg->caps);
2756 
2757 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2758 	}
2759 
2760 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2761 	desc.params.set_phy.lport_num = pi->lport;
2762 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
2763 
2764 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2765 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
2766 		  (unsigned long long)LE64_TO_CPU(cfg->phy_type_low));
2767 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
2768 		  (unsigned long long)LE64_TO_CPU(cfg->phy_type_high));
2769 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
2770 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
2771 		  cfg->low_power_ctrl_an);
2772 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
2773 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
2774 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
2775 		  cfg->link_fec_opt);
2776 
2777 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2778 
2779 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
2780 		status = ICE_SUCCESS;
2781 
2782 	if (!status)
2783 		pi->phy.curr_user_phy_cfg = *cfg;
2784 
2785 	return status;
2786 }
2787 
2788 /**
2789  * ice_update_link_info - update status of the HW network link
2790  * @pi: port info structure of the interested logical port
2791  */
2792 enum ice_status ice_update_link_info(struct ice_port_info *pi)
2793 {
2794 	struct ice_link_status *li;
2795 	enum ice_status status;
2796 
2797 	if (!pi)
2798 		return ICE_ERR_PARAM;
2799 
2800 	li = &pi->phy.link_info;
2801 
2802 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
2803 	if (status)
2804 		return status;
2805 
2806 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2807 		struct ice_aqc_get_phy_caps_data *pcaps;
2808 		struct ice_hw *hw;
2809 
2810 		hw = pi->hw;
2811 		pcaps = (struct ice_aqc_get_phy_caps_data *)
2812 			ice_malloc(hw, sizeof(*pcaps));
2813 		if (!pcaps)
2814 			return ICE_ERR_NO_MEMORY;
2815 
2816 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
2817 					     pcaps, NULL);
2818 
2819 		ice_free(hw, pcaps);
2820 	}
2821 
2822 	return status;
2823 }
2824 
2825 /**
2826  * ice_cache_phy_user_req
2827  * @pi: port information structure
2828  * @cache_data: PHY logging data
2829  * @cache_mode: PHY logging mode
2830  *
2831  * Log the user request on (FC, FEC, SPEED) for later user.
2832  */
2833 static void
2834 ice_cache_phy_user_req(struct ice_port_info *pi,
2835 		       struct ice_phy_cache_mode_data cache_data,
2836 		       enum ice_phy_cache_mode cache_mode)
2837 {
2838 	if (!pi)
2839 		return;
2840 
2841 	switch (cache_mode) {
2842 	case ICE_FC_MODE:
2843 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
2844 		break;
2845 	case ICE_SPEED_MODE:
2846 		pi->phy.curr_user_speed_req =
2847 			cache_data.data.curr_user_speed_req;
2848 		break;
2849 	case ICE_FEC_MODE:
2850 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
2851 		break;
2852 	default:
2853 		break;
2854 	}
2855 }
2856 
2857 /**
2858  * ice_caps_to_fc_mode
2859  * @caps: PHY capabilities
2860  *
2861  * Convert PHY FC capabilities to ice FC mode
2862  */
2863 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
2864 {
2865 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
2866 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2867 		return ICE_FC_FULL;
2868 
2869 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
2870 		return ICE_FC_TX_PAUSE;
2871 
2872 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2873 		return ICE_FC_RX_PAUSE;
2874 
2875 	return ICE_FC_NONE;
2876 }
2877 
2878 /**
2879  * ice_caps_to_fec_mode
2880  * @caps: PHY capabilities
2881  * @fec_options: Link FEC options
2882  *
2883  * Convert PHY FEC capabilities to ice FEC mode
2884  */
2885 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
2886 {
2887 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
2888 		return ICE_FEC_AUTO;
2889 
2890 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2891 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2892 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
2893 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
2894 		return ICE_FEC_BASER;
2895 
2896 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2897 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
2898 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
2899 		return ICE_FEC_RS;
2900 
2901 	return ICE_FEC_NONE;
2902 }
2903 
2904 /**
2905  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
2906  * @pi: port information structure
2907  * @cfg: PHY configuration data to set FC mode
2908  * @req_mode: FC mode to configure
2909  */
2910 static enum ice_status
2911 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
2912 	       enum ice_fc_mode req_mode)
2913 {
2914 	struct ice_phy_cache_mode_data cache_data;
2915 	u8 pause_mask = 0x0;
2916 
2917 	if (!pi || !cfg)
2918 		return ICE_ERR_BAD_PTR;
2919 
2920 	switch (req_mode) {
2921 	case ICE_FC_AUTO:
2922 	{
2923 		struct ice_aqc_get_phy_caps_data *pcaps;
2924 		enum ice_status status;
2925 
2926 		pcaps = (struct ice_aqc_get_phy_caps_data *)
2927 			ice_malloc(pi->hw, sizeof(*pcaps));
2928 		if (!pcaps)
2929 			return ICE_ERR_NO_MEMORY;
2930 
2931 		/* Query the value of FC that both the NIC and attached media
2932 		 * can do.
2933 		 */
2934 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
2935 					     pcaps, NULL);
2936 		if (status) {
2937 			ice_free(pi->hw, pcaps);
2938 			return status;
2939 		}
2940 
2941 		pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2942 		pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2943 
2944 		ice_free(pi->hw, pcaps);
2945 		break;
2946 	}
2947 	case ICE_FC_FULL:
2948 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2949 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2950 		break;
2951 	case ICE_FC_RX_PAUSE:
2952 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2953 		break;
2954 	case ICE_FC_TX_PAUSE:
2955 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2956 		break;
2957 	default:
2958 		break;
2959 	}
2960 
2961 	/* clear the old pause settings */
2962 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2963 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2964 
2965 	/* set the new capabilities */
2966 	cfg->caps |= pause_mask;
2967 
2968 	/* Cache user FC request */
2969 	cache_data.data.curr_user_fc_req = req_mode;
2970 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
2971 
2972 	return ICE_SUCCESS;
2973 }
2974 
2975 /**
2976  * ice_set_fc
2977  * @pi: port information structure
2978  * @aq_failures: pointer to status code, specific to ice_set_fc routine
2979  * @ena_auto_link_update: enable automatic link update
2980  *
2981  * Set the requested flow control mode.
2982  */
2983 enum ice_status
2984 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
2985 {
2986 	struct ice_aqc_set_phy_cfg_data  cfg = { 0 };
2987 	struct ice_aqc_get_phy_caps_data *pcaps;
2988 	enum ice_status status;
2989 	struct ice_hw *hw;
2990 
2991 	if (!pi || !aq_failures)
2992 		return ICE_ERR_BAD_PTR;
2993 
2994 	*aq_failures = 0;
2995 	hw = pi->hw;
2996 
2997 	pcaps = (struct ice_aqc_get_phy_caps_data *)
2998 		ice_malloc(hw, sizeof(*pcaps));
2999 	if (!pcaps)
3000 		return ICE_ERR_NO_MEMORY;
3001 
3002 	/* Get the current PHY config */
3003 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
3004 				     NULL);
3005 	if (status) {
3006 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3007 		goto out;
3008 	}
3009 
3010 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3011 
3012 	/* Configure the set PHY data */
3013 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3014 	if (status) {
3015 		if (status != ICE_ERR_BAD_PTR)
3016 			*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3017 
3018 		goto out;
3019 	}
3020 
3021 	/* If the capabilities have changed, then set the new config */
3022 	if (cfg.caps != pcaps->caps) {
3023 		int retry_count, retry_max = 10;
3024 
3025 		/* Auto restart link so settings take effect */
3026 		if (ena_auto_link_update)
3027 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3028 
3029 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3030 		if (status) {
3031 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3032 			goto out;
3033 		}
3034 
3035 		/* Update the link info
3036 		 * It sometimes takes a really long time for link to
3037 		 * come back from the atomic reset. Thus, we wait a
3038 		 * little bit.
3039 		 */
3040 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3041 			status = ice_update_link_info(pi);
3042 
3043 			if (status == ICE_SUCCESS)
3044 				break;
3045 
3046 			ice_msec_delay(100, true);
3047 		}
3048 
3049 		if (status)
3050 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3051 	}
3052 
3053 out:
3054 	ice_free(hw, pcaps);
3055 	return status;
3056 }
3057 
3058 /**
3059  * ice_phy_caps_equals_cfg
3060  * @phy_caps: PHY capabilities
3061  * @phy_cfg: PHY configuration
3062  *
3063  * Helper function to determine if PHY capabilities matches PHY
3064  * configuration
3065  */
3066 bool
3067 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3068 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3069 {
3070 	u8 caps_mask, cfg_mask;
3071 
3072 	if (!phy_caps || !phy_cfg)
3073 		return false;
3074 
3075 	/* These bits are not common between capabilities and configuration.
3076 	 * Do not use them to determine equality.
3077 	 */
3078 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3079 					      ICE_AQC_PHY_EN_MOD_QUAL);
3080 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3081 
3082 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3083 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3084 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3085 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3086 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3087 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3088 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3089 		return false;
3090 
3091 	return true;
3092 }
3093 
3094 /**
3095  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3096  * @pi: port information structure
3097  * @caps: PHY ability structure to copy date from
3098  * @cfg: PHY configuration structure to copy data to
3099  *
3100  * Helper function to copy AQC PHY get ability data to PHY set configuration
3101  * data structure
3102  */
3103 void
3104 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3105 			 struct ice_aqc_get_phy_caps_data *caps,
3106 			 struct ice_aqc_set_phy_cfg_data *cfg)
3107 {
3108 	if (!pi || !caps || !cfg)
3109 		return;
3110 
3111 	ice_memset(cfg, 0, sizeof(*cfg), ICE_NONDMA_MEM);
3112 	cfg->phy_type_low = caps->phy_type_low;
3113 	cfg->phy_type_high = caps->phy_type_high;
3114 	cfg->caps = caps->caps;
3115 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3116 	cfg->eee_cap = caps->eee_cap;
3117 	cfg->eeer_value = caps->eeer_value;
3118 	cfg->link_fec_opt = caps->link_fec_options;
3119 	cfg->module_compliance_enforcement =
3120 		caps->module_compliance_enforcement;
3121 
3122 	if (ice_fw_supports_link_override(pi->hw)) {
3123 		struct ice_link_default_override_tlv tlv;
3124 
3125 		if (ice_get_link_default_override(&tlv, pi))
3126 			return;
3127 
3128 		if (tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE)
3129 			cfg->module_compliance_enforcement |=
3130 				ICE_LINK_OVERRIDE_STRICT_MODE;
3131 	}
3132 }
3133 
3134 /**
3135  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3136  * @pi: port information structure
3137  * @cfg: PHY configuration data to set FEC mode
3138  * @fec: FEC mode to configure
3139  */
3140 enum ice_status
3141 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3142 		enum ice_fec_mode fec)
3143 {
3144 	struct ice_aqc_get_phy_caps_data *pcaps;
3145 	enum ice_status status = ICE_SUCCESS;
3146 	struct ice_hw *hw;
3147 
3148 	if (!pi || !cfg)
3149 		return ICE_ERR_BAD_PTR;
3150 
3151 	hw = pi->hw;
3152 
3153 	pcaps = (struct ice_aqc_get_phy_caps_data *)
3154 		ice_malloc(hw, sizeof(*pcaps));
3155 	if (!pcaps)
3156 		return ICE_ERR_NO_MEMORY;
3157 
3158 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
3159 				     NULL);
3160 	if (status)
3161 		goto out;
3162 
3163 	cfg->caps |= (pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC);
3164 	cfg->link_fec_opt = pcaps->link_fec_options;
3165 
3166 	switch (fec) {
3167 	case ICE_FEC_BASER:
3168 		/* Clear RS bits, and AND BASE-R ability
3169 		 * bits and OR request bits.
3170 		 */
3171 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3172 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3173 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3174 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3175 		break;
3176 	case ICE_FEC_RS:
3177 		/* Clear BASE-R bits, and AND RS ability
3178 		 * bits and OR request bits.
3179 		 */
3180 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3181 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3182 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3183 		break;
3184 	case ICE_FEC_NONE:
3185 		/* Clear all FEC option bits. */
3186 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3187 		break;
3188 	case ICE_FEC_AUTO:
3189 		/* AND auto FEC bit, and all caps bits. */
3190 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3191 		cfg->link_fec_opt |= pcaps->link_fec_options;
3192 		break;
3193 	default:
3194 		status = ICE_ERR_PARAM;
3195 		break;
3196 	}
3197 
3198 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw)) {
3199 		struct ice_link_default_override_tlv tlv;
3200 
3201 		if (ice_get_link_default_override(&tlv, pi))
3202 			goto out;
3203 
3204 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3205 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3206 			cfg->link_fec_opt = tlv.fec_options;
3207 	}
3208 
3209 out:
3210 	ice_free(hw, pcaps);
3211 
3212 	return status;
3213 }
3214 
3215 /**
3216  * ice_get_link_status - get status of the HW network link
3217  * @pi: port information structure
3218  * @link_up: pointer to bool (true/false = linkup/linkdown)
3219  *
3220  * Variable link_up is true if link is up, false if link is down.
3221  * The variable link_up is invalid if status is non zero. As a
3222  * result of this call, link status reporting becomes enabled
3223  */
3224 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3225 {
3226 	struct ice_phy_info *phy_info;
3227 	enum ice_status status = ICE_SUCCESS;
3228 
3229 	if (!pi || !link_up)
3230 		return ICE_ERR_PARAM;
3231 
3232 	phy_info = &pi->phy;
3233 
3234 	if (phy_info->get_link_info) {
3235 		status = ice_update_link_info(pi);
3236 
3237 		if (status)
3238 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3239 				  status);
3240 	}
3241 
3242 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3243 
3244 	return status;
3245 }
3246 
3247 /**
3248  * ice_aq_set_link_restart_an
3249  * @pi: pointer to the port information structure
3250  * @ena_link: if true: enable link, if false: disable link
3251  * @cd: pointer to command details structure or NULL
3252  *
3253  * Sets up the link and restarts the Auto-Negotiation over the link.
3254  */
3255 enum ice_status
3256 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3257 			   struct ice_sq_cd *cd)
3258 {
3259 	struct ice_aqc_restart_an *cmd;
3260 	struct ice_aq_desc desc;
3261 
3262 	cmd = &desc.params.restart_an;
3263 
3264 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3265 
3266 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3267 	cmd->lport_num = pi->lport;
3268 	if (ena_link)
3269 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3270 	else
3271 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3272 
3273 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3274 }
3275 
3276 /**
3277  * ice_aq_set_event_mask
3278  * @hw: pointer to the HW struct
3279  * @port_num: port number of the physical function
3280  * @mask: event mask to be set
3281  * @cd: pointer to command details structure or NULL
3282  *
3283  * Set event mask (0x0613)
3284  */
3285 enum ice_status
3286 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3287 		      struct ice_sq_cd *cd)
3288 {
3289 	struct ice_aqc_set_event_mask *cmd;
3290 	struct ice_aq_desc desc;
3291 
3292 	cmd = &desc.params.set_event_mask;
3293 
3294 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3295 
3296 	cmd->lport_num = port_num;
3297 
3298 	cmd->event_mask = CPU_TO_LE16(mask);
3299 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3300 }
3301 
3302 /**
3303  * ice_aq_set_mac_loopback
3304  * @hw: pointer to the HW struct
3305  * @ena_lpbk: Enable or Disable loopback
3306  * @cd: pointer to command details structure or NULL
3307  *
3308  * Enable/disable loopback on a given port
3309  */
3310 enum ice_status
3311 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3312 {
3313 	struct ice_aqc_set_mac_lb *cmd;
3314 	struct ice_aq_desc desc;
3315 
3316 	cmd = &desc.params.set_mac_lb;
3317 
3318 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3319 	if (ena_lpbk)
3320 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3321 
3322 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3323 }
3324 
3325 /**
3326  * ice_aq_set_port_id_led
3327  * @pi: pointer to the port information
3328  * @is_orig_mode: is this LED set to original mode (by the net-list)
3329  * @cd: pointer to command details structure or NULL
3330  *
3331  * Set LED value for the given port (0x06e9)
3332  */
3333 enum ice_status
3334 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3335 		       struct ice_sq_cd *cd)
3336 {
3337 	struct ice_aqc_set_port_id_led *cmd;
3338 	struct ice_hw *hw = pi->hw;
3339 	struct ice_aq_desc desc;
3340 
3341 	cmd = &desc.params.set_port_id_led;
3342 
3343 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3344 
3345 	if (is_orig_mode)
3346 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3347 	else
3348 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3349 
3350 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3351 }
3352 
3353 /**
3354  * ice_aq_sff_eeprom
3355  * @hw: pointer to the HW struct
3356  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3357  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3358  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3359  * @page: QSFP page
3360  * @set_page: set or ignore the page
3361  * @data: pointer to data buffer to be read/written to the I2C device.
3362  * @length: 1-16 for read, 1 for write.
3363  * @write: 0 read, 1 for write.
3364  * @cd: pointer to command details structure or NULL
3365  *
3366  * Read/Write SFF EEPROM (0x06EE)
3367  */
3368 enum ice_status
3369 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3370 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3371 		  bool write, struct ice_sq_cd *cd)
3372 {
3373 	struct ice_aqc_sff_eeprom *cmd;
3374 	struct ice_aq_desc desc;
3375 	enum ice_status status;
3376 
3377 	if (!data || (mem_addr & 0xff00))
3378 		return ICE_ERR_PARAM;
3379 
3380 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3381 	cmd = &desc.params.read_write_sff_param;
3382 	desc.flags = CPU_TO_LE16(ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF);
3383 	cmd->lport_num = (u8)(lport & 0xff);
3384 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3385 	cmd->i2c_bus_addr = CPU_TO_LE16(((bus_addr >> 1) &
3386 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3387 					((set_page <<
3388 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3389 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3390 	cmd->i2c_mem_addr = CPU_TO_LE16(mem_addr & 0xff);
3391 	cmd->eeprom_page = CPU_TO_LE16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3392 	if (write)
3393 		cmd->i2c_bus_addr |= CPU_TO_LE16(ICE_AQC_SFF_IS_WRITE);
3394 
3395 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3396 	return status;
3397 }
3398 
3399 /**
3400  * __ice_aq_get_set_rss_lut
3401  * @hw: pointer to the hardware structure
3402  * @vsi_id: VSI FW index
3403  * @lut_type: LUT table type
3404  * @lut: pointer to the LUT buffer provided by the caller
3405  * @lut_size: size of the LUT buffer
3406  * @glob_lut_idx: global LUT index
3407  * @set: set true to set the table, false to get the table
3408  *
3409  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3410  */
3411 static enum ice_status
3412 __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
3413 			 u16 lut_size, u8 glob_lut_idx, bool set)
3414 {
3415 	struct ice_aqc_get_set_rss_lut *cmd_resp;
3416 	struct ice_aq_desc desc;
3417 	enum ice_status status;
3418 	u16 flags = 0;
3419 
3420 	cmd_resp = &desc.params.get_set_rss_lut;
3421 
3422 	if (set) {
3423 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3424 		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3425 	} else {
3426 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3427 	}
3428 
3429 	cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
3430 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3431 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3432 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3433 
3434 	switch (lut_type) {
3435 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3436 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3437 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3438 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3439 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3440 		break;
3441 	default:
3442 		status = ICE_ERR_PARAM;
3443 		goto ice_aq_get_set_rss_lut_exit;
3444 	}
3445 
3446 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3447 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3448 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3449 
3450 		if (!set)
3451 			goto ice_aq_get_set_rss_lut_send;
3452 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3453 		if (!set)
3454 			goto ice_aq_get_set_rss_lut_send;
3455 	} else {
3456 		goto ice_aq_get_set_rss_lut_send;
3457 	}
3458 
3459 	/* LUT size is only valid for Global and PF table types */
3460 	switch (lut_size) {
3461 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3462 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128_FLAG <<
3463 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3464 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3465 		break;
3466 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3467 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3468 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3469 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3470 		break;
3471 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3472 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3473 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3474 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3475 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3476 			break;
3477 		}
3478 		/* fall-through */
3479 	default:
3480 		status = ICE_ERR_PARAM;
3481 		goto ice_aq_get_set_rss_lut_exit;
3482 	}
3483 
3484 ice_aq_get_set_rss_lut_send:
3485 	cmd_resp->flags = CPU_TO_LE16(flags);
3486 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3487 
3488 ice_aq_get_set_rss_lut_exit:
3489 	return status;
3490 }
3491 
3492 /**
3493  * ice_aq_get_rss_lut
3494  * @hw: pointer to the hardware structure
3495  * @vsi_handle: software VSI handle
3496  * @lut_type: LUT table type
3497  * @lut: pointer to the LUT buffer provided by the caller
3498  * @lut_size: size of the LUT buffer
3499  *
3500  * get the RSS lookup table, PF or VSI type
3501  */
3502 enum ice_status
3503 ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
3504 		   u8 *lut, u16 lut_size)
3505 {
3506 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3507 		return ICE_ERR_PARAM;
3508 
3509 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3510 					lut_type, lut, lut_size, 0, false);
3511 }
3512 
3513 /**
3514  * ice_aq_set_rss_lut
3515  * @hw: pointer to the hardware structure
3516  * @vsi_handle: software VSI handle
3517  * @lut_type: LUT table type
3518  * @lut: pointer to the LUT buffer provided by the caller
3519  * @lut_size: size of the LUT buffer
3520  *
3521  * set the RSS lookup table, PF or VSI type
3522  */
3523 enum ice_status
3524 ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
3525 		   u8 *lut, u16 lut_size)
3526 {
3527 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3528 		return ICE_ERR_PARAM;
3529 
3530 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3531 					lut_type, lut, lut_size, 0, true);
3532 }
3533 
3534 /**
3535  * __ice_aq_get_set_rss_key
3536  * @hw: pointer to the HW struct
3537  * @vsi_id: VSI FW index
3538  * @key: pointer to key info struct
3539  * @set: set true to set the key, false to get the key
3540  *
3541  * get (0x0B04) or set (0x0B02) the RSS key per VSI
3542  */
3543 static enum
3544 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3545 				    struct ice_aqc_get_set_rss_keys *key,
3546 				    bool set)
3547 {
3548 	struct ice_aqc_get_set_rss_key *cmd_resp;
3549 	u16 key_size = sizeof(*key);
3550 	struct ice_aq_desc desc;
3551 
3552 	cmd_resp = &desc.params.get_set_rss_key;
3553 
3554 	if (set) {
3555 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3556 		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3557 	} else {
3558 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3559 	}
3560 
3561 	cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
3562 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3563 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3564 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3565 
3566 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3567 }
3568 
3569 /**
3570  * ice_aq_get_rss_key
3571  * @hw: pointer to the HW struct
3572  * @vsi_handle: software VSI handle
3573  * @key: pointer to key info struct
3574  *
3575  * get the RSS key per VSI
3576  */
3577 enum ice_status
3578 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3579 		   struct ice_aqc_get_set_rss_keys *key)
3580 {
3581 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3582 		return ICE_ERR_PARAM;
3583 
3584 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3585 					key, false);
3586 }
3587 
3588 /**
3589  * ice_aq_set_rss_key
3590  * @hw: pointer to the HW struct
3591  * @vsi_handle: software VSI handle
3592  * @keys: pointer to key info struct
3593  *
3594  * set the RSS key per VSI
3595  */
3596 enum ice_status
3597 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3598 		   struct ice_aqc_get_set_rss_keys *keys)
3599 {
3600 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3601 		return ICE_ERR_PARAM;
3602 
3603 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3604 					keys, true);
3605 }
3606 
3607 /**
3608  * ice_aq_add_lan_txq
3609  * @hw: pointer to the hardware structure
3610  * @num_qgrps: Number of added queue groups
3611  * @qg_list: list of queue groups to be added
3612  * @buf_size: size of buffer for indirect command
3613  * @cd: pointer to command details structure or NULL
3614  *
3615  * Add Tx LAN queue (0x0C30)
3616  *
3617  * NOTE:
3618  * Prior to calling add Tx LAN queue:
3619  * Initialize the following as part of the Tx queue context:
3620  * Completion queue ID if the queue uses Completion queue, Quanta profile,
3621  * Cache profile and Packet shaper profile.
3622  *
3623  * After add Tx LAN queue AQ command is completed:
3624  * Interrupts should be associated with specific queues,
3625  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3626  * flow.
3627  */
3628 enum ice_status
3629 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3630 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3631 		   struct ice_sq_cd *cd)
3632 {
3633 	struct ice_aqc_add_tx_qgrp *list;
3634 	struct ice_aqc_add_txqs *cmd;
3635 	struct ice_aq_desc desc;
3636 	u16 i, sum_size = 0;
3637 
3638 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3639 
3640 	cmd = &desc.params.add_txqs;
3641 
3642 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3643 
3644 	if (!qg_list)
3645 		return ICE_ERR_PARAM;
3646 
3647 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3648 		return ICE_ERR_PARAM;
3649 
3650 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
3651 		sum_size += ice_struct_size(list, txqs, list->num_txqs);
3652 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3653 						      list->num_txqs);
3654 	}
3655 
3656 	if (buf_size != sum_size)
3657 		return ICE_ERR_PARAM;
3658 
3659 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3660 
3661 	cmd->num_qgrps = num_qgrps;
3662 
3663 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3664 }
3665 
3666 /**
3667  * ice_aq_dis_lan_txq
3668  * @hw: pointer to the hardware structure
3669  * @num_qgrps: number of groups in the list
3670  * @qg_list: the list of groups to disable
3671  * @buf_size: the total size of the qg_list buffer in bytes
3672  * @rst_src: if called due to reset, specifies the reset source
3673  * @vmvf_num: the relative VM or VF number that is undergoing the reset
3674  * @cd: pointer to command details structure or NULL
3675  *
3676  * Disable LAN Tx queue (0x0C31)
3677  */
3678 static enum ice_status
3679 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3680 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3681 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
3682 		   struct ice_sq_cd *cd)
3683 {
3684 	struct ice_aqc_dis_txq_item *item;
3685 	struct ice_aqc_dis_txqs *cmd;
3686 	struct ice_aq_desc desc;
3687 	enum ice_status status;
3688 	u16 i, sz = 0;
3689 
3690 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3691 	cmd = &desc.params.dis_txqs;
3692 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3693 
3694 	/* qg_list can be NULL only in VM/VF reset flow */
3695 	if (!qg_list && !rst_src)
3696 		return ICE_ERR_PARAM;
3697 
3698 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3699 		return ICE_ERR_PARAM;
3700 
3701 	cmd->num_entries = num_qgrps;
3702 
3703 	cmd->vmvf_and_timeout = CPU_TO_LE16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3704 					    ICE_AQC_Q_DIS_TIMEOUT_M);
3705 
3706 	switch (rst_src) {
3707 	case ICE_VM_RESET:
3708 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3709 		cmd->vmvf_and_timeout |=
3710 			CPU_TO_LE16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3711 		break;
3712 	case ICE_VF_RESET:
3713 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3714 		/* In this case, FW expects vmvf_num to be absolute VF ID */
3715 		cmd->vmvf_and_timeout |=
3716 			CPU_TO_LE16((vmvf_num + hw->func_caps.vf_base_id) &
3717 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
3718 		break;
3719 	case ICE_NO_RESET:
3720 	default:
3721 		break;
3722 	}
3723 
3724 	/* flush pipe on time out */
3725 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3726 	/* If no queue group info, we are in a reset flow. Issue the AQ */
3727 	if (!qg_list)
3728 		goto do_aq;
3729 
3730 	/* set RD bit to indicate that command buffer is provided by the driver
3731 	 * and it needs to be read by the firmware
3732 	 */
3733 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3734 
3735 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
3736 		u16 item_size = ice_struct_size(item, q_id, item->num_qs);
3737 
3738 		/* If the num of queues is even, add 2 bytes of padding */
3739 		if ((item->num_qs % 2) == 0)
3740 			item_size += 2;
3741 
3742 		sz += item_size;
3743 
3744 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3745 	}
3746 
3747 	if (buf_size != sz)
3748 		return ICE_ERR_PARAM;
3749 
3750 do_aq:
3751 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3752 	if (status) {
3753 		if (!qg_list)
3754 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3755 				  vmvf_num, hw->adminq.sq_last_status);
3756 		else
3757 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3758 				  LE16_TO_CPU(qg_list[0].q_id[0]),
3759 				  hw->adminq.sq_last_status);
3760 	}
3761 	return status;
3762 }
3763 
3764 /**
3765  * ice_aq_move_recfg_lan_txq
3766  * @hw: pointer to the hardware structure
3767  * @num_qs: number of queues to move/reconfigure
3768  * @is_move: true if this operation involves node movement
3769  * @is_tc_change: true if this operation involves a TC change
3770  * @subseq_call: true if this operation is a subsequent call
3771  * @flush_pipe: on timeout, true to flush pipe, false to return EAGAIN
3772  * @timeout: timeout in units of 100 usec (valid values 0-50)
3773  * @blocked_cgds: out param, bitmap of CGDs that timed out if returning EAGAIN
3774  * @buf: struct containing src/dest TEID and per-queue info
3775  * @buf_size: size of buffer for indirect command
3776  * @txqs_moved: out param, number of queues successfully moved
3777  * @cd: pointer to command details structure or NULL
3778  *
3779  * Move / Reconfigure Tx LAN queues (0x0C32)
3780  */
3781 enum ice_status
3782 ice_aq_move_recfg_lan_txq(struct ice_hw *hw, u8 num_qs, bool is_move,
3783 			  bool is_tc_change, bool subseq_call, bool flush_pipe,
3784 			  u8 timeout, u32 *blocked_cgds,
3785 			  struct ice_aqc_move_txqs_data *buf, u16 buf_size,
3786 			  u8 *txqs_moved, struct ice_sq_cd *cd)
3787 {
3788 	struct ice_aqc_move_txqs *cmd;
3789 	struct ice_aq_desc desc;
3790 	enum ice_status status;
3791 
3792 	cmd = &desc.params.move_txqs;
3793 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_move_recfg_txqs);
3794 
3795 #define ICE_LAN_TXQ_MOVE_TIMEOUT_MAX 50
3796 	if (timeout > ICE_LAN_TXQ_MOVE_TIMEOUT_MAX)
3797 		return ICE_ERR_PARAM;
3798 
3799 	if (is_tc_change && !flush_pipe && !blocked_cgds)
3800 		return ICE_ERR_PARAM;
3801 
3802 	if (!is_move && !is_tc_change)
3803 		return ICE_ERR_PARAM;
3804 
3805 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3806 
3807 	if (is_move)
3808 		cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_MOVE;
3809 
3810 	if (is_tc_change)
3811 		cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_TC_CHANGE;
3812 
3813 	if (subseq_call)
3814 		cmd->cmd_type |= ICE_AQC_Q_CMD_SUBSEQ_CALL;
3815 
3816 	if (flush_pipe)
3817 		cmd->cmd_type |= ICE_AQC_Q_CMD_FLUSH_PIPE;
3818 
3819 	cmd->num_qs = num_qs;
3820 	cmd->timeout = ((timeout << ICE_AQC_Q_CMD_TIMEOUT_S) &
3821 			ICE_AQC_Q_CMD_TIMEOUT_M);
3822 
3823 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
3824 
3825 	if (!status && txqs_moved)
3826 		*txqs_moved = cmd->num_qs;
3827 
3828 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EAGAIN &&
3829 	    is_tc_change && !flush_pipe)
3830 		*blocked_cgds = LE32_TO_CPU(cmd->blocked_cgds);
3831 
3832 	return status;
3833 }
3834 
3835 /* End of FW Admin Queue command wrappers */
3836 
3837 /**
3838  * ice_write_byte - write a byte to a packed context structure
3839  * @src_ctx:  the context structure to read from
3840  * @dest_ctx: the context to be written to
3841  * @ce_info:  a description of the struct to be filled
3842  */
3843 static void
3844 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3845 {
3846 	u8 src_byte, dest_byte, mask;
3847 	u8 *from, *dest;
3848 	u16 shift_width;
3849 
3850 	/* copy from the next struct field */
3851 	from = src_ctx + ce_info->offset;
3852 
3853 	/* prepare the bits and mask */
3854 	shift_width = ce_info->lsb % 8;
3855 	mask = (u8)(BIT(ce_info->width) - 1);
3856 
3857 	src_byte = *from;
3858 	src_byte &= mask;
3859 
3860 	/* shift to correct alignment */
3861 	mask <<= shift_width;
3862 	src_byte <<= shift_width;
3863 
3864 	/* get the current bits from the target bit string */
3865 	dest = dest_ctx + (ce_info->lsb / 8);
3866 
3867 	ice_memcpy(&dest_byte, dest, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
3868 
3869 	dest_byte &= ~mask;	/* get the bits not changing */
3870 	dest_byte |= src_byte;	/* add in the new bits */
3871 
3872 	/* put it all back */
3873 	ice_memcpy(dest, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
3874 }
3875 
3876 /**
3877  * ice_write_word - write a word to a packed context structure
3878  * @src_ctx:  the context structure to read from
3879  * @dest_ctx: the context to be written to
3880  * @ce_info:  a description of the struct to be filled
3881  */
3882 static void
3883 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3884 {
3885 	u16 src_word, mask;
3886 	__le16 dest_word;
3887 	u8 *from, *dest;
3888 	u16 shift_width;
3889 
3890 	/* copy from the next struct field */
3891 	from = src_ctx + ce_info->offset;
3892 
3893 	/* prepare the bits and mask */
3894 	shift_width = ce_info->lsb % 8;
3895 	mask = BIT(ce_info->width) - 1;
3896 
3897 	/* don't swizzle the bits until after the mask because the mask bits
3898 	 * will be in a different bit position on big endian machines
3899 	 */
3900 	src_word = *(u16 *)from;
3901 	src_word &= mask;
3902 
3903 	/* shift to correct alignment */
3904 	mask <<= shift_width;
3905 	src_word <<= shift_width;
3906 
3907 	/* get the current bits from the target bit string */
3908 	dest = dest_ctx + (ce_info->lsb / 8);
3909 
3910 	ice_memcpy(&dest_word, dest, sizeof(dest_word), ICE_DMA_TO_NONDMA);
3911 
3912 	dest_word &= ~(CPU_TO_LE16(mask));	/* get the bits not changing */
3913 	dest_word |= CPU_TO_LE16(src_word);	/* add in the new bits */
3914 
3915 	/* put it all back */
3916 	ice_memcpy(dest, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
3917 }
3918 
3919 /**
3920  * ice_write_dword - write a dword to a packed context structure
3921  * @src_ctx:  the context structure to read from
3922  * @dest_ctx: the context to be written to
3923  * @ce_info:  a description of the struct to be filled
3924  */
3925 static void
3926 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3927 {
3928 	u32 src_dword, mask;
3929 	__le32 dest_dword;
3930 	u8 *from, *dest;
3931 	u16 shift_width;
3932 
3933 	/* copy from the next struct field */
3934 	from = src_ctx + ce_info->offset;
3935 
3936 	/* prepare the bits and mask */
3937 	shift_width = ce_info->lsb % 8;
3938 
3939 	/* if the field width is exactly 32 on an x86 machine, then the shift
3940 	 * operation will not work because the SHL instructions count is masked
3941 	 * to 5 bits so the shift will do nothing
3942 	 */
3943 	if (ce_info->width < 32)
3944 		mask = BIT(ce_info->width) - 1;
3945 	else
3946 		mask = (u32)~0;
3947 
3948 	/* don't swizzle the bits until after the mask because the mask bits
3949 	 * will be in a different bit position on big endian machines
3950 	 */
3951 	src_dword = *(u32 *)from;
3952 	src_dword &= mask;
3953 
3954 	/* shift to correct alignment */
3955 	mask <<= shift_width;
3956 	src_dword <<= shift_width;
3957 
3958 	/* get the current bits from the target bit string */
3959 	dest = dest_ctx + (ce_info->lsb / 8);
3960 
3961 	ice_memcpy(&dest_dword, dest, sizeof(dest_dword), ICE_DMA_TO_NONDMA);
3962 
3963 	dest_dword &= ~(CPU_TO_LE32(mask));	/* get the bits not changing */
3964 	dest_dword |= CPU_TO_LE32(src_dword);	/* add in the new bits */
3965 
3966 	/* put it all back */
3967 	ice_memcpy(dest, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
3968 }
3969 
3970 /**
3971  * ice_write_qword - write a qword to a packed context structure
3972  * @src_ctx:  the context structure to read from
3973  * @dest_ctx: the context to be written to
3974  * @ce_info:  a description of the struct to be filled
3975  */
3976 static void
3977 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3978 {
3979 	u64 src_qword, mask;
3980 	__le64 dest_qword;
3981 	u8 *from, *dest;
3982 	u16 shift_width;
3983 
3984 	/* copy from the next struct field */
3985 	from = src_ctx + ce_info->offset;
3986 
3987 	/* prepare the bits and mask */
3988 	shift_width = ce_info->lsb % 8;
3989 
3990 	/* if the field width is exactly 64 on an x86 machine, then the shift
3991 	 * operation will not work because the SHL instructions count is masked
3992 	 * to 6 bits so the shift will do nothing
3993 	 */
3994 	if (ce_info->width < 64)
3995 		mask = BIT_ULL(ce_info->width) - 1;
3996 	else
3997 		mask = (u64)~0;
3998 
3999 	/* don't swizzle the bits until after the mask because the mask bits
4000 	 * will be in a different bit position on big endian machines
4001 	 */
4002 	src_qword = *(u64 *)from;
4003 	src_qword &= mask;
4004 
4005 	/* shift to correct alignment */
4006 	mask <<= shift_width;
4007 	src_qword <<= shift_width;
4008 
4009 	/* get the current bits from the target bit string */
4010 	dest = dest_ctx + (ce_info->lsb / 8);
4011 
4012 	ice_memcpy(&dest_qword, dest, sizeof(dest_qword), ICE_DMA_TO_NONDMA);
4013 
4014 	dest_qword &= ~(CPU_TO_LE64(mask));	/* get the bits not changing */
4015 	dest_qword |= CPU_TO_LE64(src_qword);	/* add in the new bits */
4016 
4017 	/* put it all back */
4018 	ice_memcpy(dest, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
4019 }
4020 
4021 /**
4022  * ice_set_ctx - set context bits in packed structure
4023  * @hw: pointer to the hardware structure
4024  * @src_ctx:  pointer to a generic non-packed context structure
4025  * @dest_ctx: pointer to memory for the packed structure
4026  * @ce_info:  a description of the structure to be transformed
4027  */
4028 enum ice_status
4029 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4030 	    const struct ice_ctx_ele *ce_info)
4031 {
4032 	int f;
4033 
4034 	for (f = 0; ce_info[f].width; f++) {
4035 		/* We have to deal with each element of the FW response
4036 		 * using the correct size so that we are correct regardless
4037 		 * of the endianness of the machine.
4038 		 */
4039 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4040 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4041 				  f, ce_info[f].width, ce_info[f].size_of);
4042 			continue;
4043 		}
4044 		switch (ce_info[f].size_of) {
4045 		case sizeof(u8):
4046 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4047 			break;
4048 		case sizeof(u16):
4049 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4050 			break;
4051 		case sizeof(u32):
4052 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4053 			break;
4054 		case sizeof(u64):
4055 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4056 			break;
4057 		default:
4058 			return ICE_ERR_INVAL_SIZE;
4059 		}
4060 	}
4061 
4062 	return ICE_SUCCESS;
4063 }
4064 
4065 /**
4066  * ice_read_byte - read context byte into struct
4067  * @src_ctx:  the context structure to read from
4068  * @dest_ctx: the context to be written to
4069  * @ce_info:  a description of the struct to be filled
4070  */
4071 static void
4072 ice_read_byte(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4073 {
4074 	u8 dest_byte, mask;
4075 	u8 *src, *target;
4076 	u16 shift_width;
4077 
4078 	/* prepare the bits and mask */
4079 	shift_width = ce_info->lsb % 8;
4080 	mask = (u8)(BIT(ce_info->width) - 1);
4081 
4082 	/* shift to correct alignment */
4083 	mask <<= shift_width;
4084 
4085 	/* get the current bits from the src bit string */
4086 	src = src_ctx + (ce_info->lsb / 8);
4087 
4088 	ice_memcpy(&dest_byte, src, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
4089 
4090 	dest_byte &= ~(mask);
4091 
4092 	dest_byte >>= shift_width;
4093 
4094 	/* get the address from the struct field */
4095 	target = dest_ctx + ce_info->offset;
4096 
4097 	/* put it back in the struct */
4098 	ice_memcpy(target, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
4099 }
4100 
4101 /**
4102  * ice_read_word - read context word into struct
4103  * @src_ctx:  the context structure to read from
4104  * @dest_ctx: the context to be written to
4105  * @ce_info:  a description of the struct to be filled
4106  */
4107 static void
4108 ice_read_word(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4109 {
4110 	u16 dest_word, mask;
4111 	u8 *src, *target;
4112 	__le16 src_word;
4113 	u16 shift_width;
4114 
4115 	/* prepare the bits and mask */
4116 	shift_width = ce_info->lsb % 8;
4117 	mask = BIT(ce_info->width) - 1;
4118 
4119 	/* shift to correct alignment */
4120 	mask <<= shift_width;
4121 
4122 	/* get the current bits from the src bit string */
4123 	src = src_ctx + (ce_info->lsb / 8);
4124 
4125 	ice_memcpy(&src_word, src, sizeof(src_word), ICE_DMA_TO_NONDMA);
4126 
4127 	/* the data in the memory is stored as little endian so mask it
4128 	 * correctly
4129 	 */
4130 	src_word &= ~(CPU_TO_LE16(mask));
4131 
4132 	/* get the data back into host order before shifting */
4133 	dest_word = LE16_TO_CPU(src_word);
4134 
4135 	dest_word >>= shift_width;
4136 
4137 	/* get the address from the struct field */
4138 	target = dest_ctx + ce_info->offset;
4139 
4140 	/* put it back in the struct */
4141 	ice_memcpy(target, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
4142 }
4143 
4144 /**
4145  * ice_read_dword - read context dword into struct
4146  * @src_ctx:  the context structure to read from
4147  * @dest_ctx: the context to be written to
4148  * @ce_info:  a description of the struct to be filled
4149  */
4150 static void
4151 ice_read_dword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4152 {
4153 	u32 dest_dword, mask;
4154 	__le32 src_dword;
4155 	u8 *src, *target;
4156 	u16 shift_width;
4157 
4158 	/* prepare the bits and mask */
4159 	shift_width = ce_info->lsb % 8;
4160 
4161 	/* if the field width is exactly 32 on an x86 machine, then the shift
4162 	 * operation will not work because the SHL instructions count is masked
4163 	 * to 5 bits so the shift will do nothing
4164 	 */
4165 	if (ce_info->width < 32)
4166 		mask = BIT(ce_info->width) - 1;
4167 	else
4168 		mask = (u32)~0;
4169 
4170 	/* shift to correct alignment */
4171 	mask <<= shift_width;
4172 
4173 	/* get the current bits from the src bit string */
4174 	src = src_ctx + (ce_info->lsb / 8);
4175 
4176 	ice_memcpy(&src_dword, src, sizeof(src_dword), ICE_DMA_TO_NONDMA);
4177 
4178 	/* the data in the memory is stored as little endian so mask it
4179 	 * correctly
4180 	 */
4181 	src_dword &= ~(CPU_TO_LE32(mask));
4182 
4183 	/* get the data back into host order before shifting */
4184 	dest_dword = LE32_TO_CPU(src_dword);
4185 
4186 	dest_dword >>= shift_width;
4187 
4188 	/* get the address from the struct field */
4189 	target = dest_ctx + ce_info->offset;
4190 
4191 	/* put it back in the struct */
4192 	ice_memcpy(target, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
4193 }
4194 
4195 /**
4196  * ice_read_qword - read context qword into struct
4197  * @src_ctx:  the context structure to read from
4198  * @dest_ctx: the context to be written to
4199  * @ce_info:  a description of the struct to be filled
4200  */
4201 static void
4202 ice_read_qword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4203 {
4204 	u64 dest_qword, mask;
4205 	__le64 src_qword;
4206 	u8 *src, *target;
4207 	u16 shift_width;
4208 
4209 	/* prepare the bits and mask */
4210 	shift_width = ce_info->lsb % 8;
4211 
4212 	/* if the field width is exactly 64 on an x86 machine, then the shift
4213 	 * operation will not work because the SHL instructions count is masked
4214 	 * to 6 bits so the shift will do nothing
4215 	 */
4216 	if (ce_info->width < 64)
4217 		mask = BIT_ULL(ce_info->width) - 1;
4218 	else
4219 		mask = (u64)~0;
4220 
4221 	/* shift to correct alignment */
4222 	mask <<= shift_width;
4223 
4224 	/* get the current bits from the src bit string */
4225 	src = src_ctx + (ce_info->lsb / 8);
4226 
4227 	ice_memcpy(&src_qword, src, sizeof(src_qword), ICE_DMA_TO_NONDMA);
4228 
4229 	/* the data in the memory is stored as little endian so mask it
4230 	 * correctly
4231 	 */
4232 	src_qword &= ~(CPU_TO_LE64(mask));
4233 
4234 	/* get the data back into host order before shifting */
4235 	dest_qword = LE64_TO_CPU(src_qword);
4236 
4237 	dest_qword >>= shift_width;
4238 
4239 	/* get the address from the struct field */
4240 	target = dest_ctx + ce_info->offset;
4241 
4242 	/* put it back in the struct */
4243 	ice_memcpy(target, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
4244 }
4245 
4246 /**
4247  * ice_get_ctx - extract context bits from a packed structure
4248  * @src_ctx:  pointer to a generic packed context structure
4249  * @dest_ctx: pointer to a generic non-packed context structure
4250  * @ce_info:  a description of the structure to be read from
4251  */
4252 enum ice_status
4253 ice_get_ctx(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4254 {
4255 	int f;
4256 
4257 	for (f = 0; ce_info[f].width; f++) {
4258 		switch (ce_info[f].size_of) {
4259 		case 1:
4260 			ice_read_byte(src_ctx, dest_ctx, &ce_info[f]);
4261 			break;
4262 		case 2:
4263 			ice_read_word(src_ctx, dest_ctx, &ce_info[f]);
4264 			break;
4265 		case 4:
4266 			ice_read_dword(src_ctx, dest_ctx, &ce_info[f]);
4267 			break;
4268 		case 8:
4269 			ice_read_qword(src_ctx, dest_ctx, &ce_info[f]);
4270 			break;
4271 		default:
4272 			/* nothing to do, just keep going */
4273 			break;
4274 		}
4275 	}
4276 
4277 	return ICE_SUCCESS;
4278 }
4279 
4280 /**
4281  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4282  * @hw: pointer to the HW struct
4283  * @vsi_handle: software VSI handle
4284  * @tc: TC number
4285  * @q_handle: software queue handle
4286  */
4287 struct ice_q_ctx *
4288 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4289 {
4290 	struct ice_vsi_ctx *vsi;
4291 	struct ice_q_ctx *q_ctx;
4292 
4293 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4294 	if (!vsi)
4295 		return NULL;
4296 	if (q_handle >= vsi->num_lan_q_entries[tc])
4297 		return NULL;
4298 	if (!vsi->lan_q_ctx[tc])
4299 		return NULL;
4300 	q_ctx = vsi->lan_q_ctx[tc];
4301 	return &q_ctx[q_handle];
4302 }
4303 
4304 /**
4305  * ice_ena_vsi_txq
4306  * @pi: port information structure
4307  * @vsi_handle: software VSI handle
4308  * @tc: TC number
4309  * @q_handle: software queue handle
4310  * @num_qgrps: Number of added queue groups
4311  * @buf: list of queue groups to be added
4312  * @buf_size: size of buffer for indirect command
4313  * @cd: pointer to command details structure or NULL
4314  *
4315  * This function adds one LAN queue
4316  */
4317 enum ice_status
4318 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4319 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4320 		struct ice_sq_cd *cd)
4321 {
4322 	struct ice_aqc_txsched_elem_data node = { 0 };
4323 	struct ice_sched_node *parent;
4324 	struct ice_q_ctx *q_ctx;
4325 	enum ice_status status;
4326 	struct ice_hw *hw;
4327 
4328 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4329 		return ICE_ERR_CFG;
4330 
4331 	if (num_qgrps > 1 || buf->num_txqs > 1)
4332 		return ICE_ERR_MAX_LIMIT;
4333 
4334 	hw = pi->hw;
4335 
4336 	if (!ice_is_vsi_valid(hw, vsi_handle))
4337 		return ICE_ERR_PARAM;
4338 
4339 	ice_acquire_lock(&pi->sched_lock);
4340 
4341 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4342 	if (!q_ctx) {
4343 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4344 			  q_handle);
4345 		status = ICE_ERR_PARAM;
4346 		goto ena_txq_exit;
4347 	}
4348 
4349 	/* find a parent node */
4350 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4351 					    ICE_SCHED_NODE_OWNER_LAN);
4352 	if (!parent) {
4353 		status = ICE_ERR_PARAM;
4354 		goto ena_txq_exit;
4355 	}
4356 
4357 	buf->parent_teid = parent->info.node_teid;
4358 	node.parent_teid = parent->info.node_teid;
4359 	/* Mark that the values in the "generic" section as valid. The default
4360 	 * value in the "generic" section is zero. This means that :
4361 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4362 	 * - 0 priority among siblings, indicated by Bit 1-3.
4363 	 * - WFQ, indicated by Bit 4.
4364 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4365 	 * Bit 5-6.
4366 	 * - Bit 7 is reserved.
4367 	 * Without setting the generic section as valid in valid_sections, the
4368 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4369 	 */
4370 	buf->txqs[0].info.valid_sections =
4371 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4372 		ICE_AQC_ELEM_VALID_EIR;
4373 	buf->txqs[0].info.generic = 0;
4374 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4375 		CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
4376 	buf->txqs[0].info.cir_bw.bw_alloc =
4377 		CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
4378 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4379 		CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
4380 	buf->txqs[0].info.eir_bw.bw_alloc =
4381 		CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
4382 
4383 	/* add the LAN queue */
4384 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4385 	if (status != ICE_SUCCESS) {
4386 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4387 			  LE16_TO_CPU(buf->txqs[0].txq_id),
4388 			  hw->adminq.sq_last_status);
4389 		goto ena_txq_exit;
4390 	}
4391 
4392 	node.node_teid = buf->txqs[0].q_teid;
4393 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4394 	q_ctx->q_handle = q_handle;
4395 	q_ctx->q_teid = LE32_TO_CPU(node.node_teid);
4396 
4397 	/* add a leaf node into scheduler tree queue layer */
4398 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
4399 	if (!status)
4400 		status = ice_sched_replay_q_bw(pi, q_ctx);
4401 
4402 ena_txq_exit:
4403 	ice_release_lock(&pi->sched_lock);
4404 	return status;
4405 }
4406 
4407 /**
4408  * ice_dis_vsi_txq
4409  * @pi: port information structure
4410  * @vsi_handle: software VSI handle
4411  * @tc: TC number
4412  * @num_queues: number of queues
4413  * @q_handles: pointer to software queue handle array
4414  * @q_ids: pointer to the q_id array
4415  * @q_teids: pointer to queue node teids
4416  * @rst_src: if called due to reset, specifies the reset source
4417  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4418  * @cd: pointer to command details structure or NULL
4419  *
4420  * This function removes queues and their corresponding nodes in SW DB
4421  */
4422 enum ice_status
4423 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4424 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4425 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4426 		struct ice_sq_cd *cd)
4427 {
4428 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4429 	struct ice_aqc_dis_txq_item *qg_list;
4430 	struct ice_q_ctx *q_ctx;
4431 	struct ice_hw *hw;
4432 	u16 i, buf_size;
4433 
4434 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4435 		return ICE_ERR_CFG;
4436 
4437 	hw = pi->hw;
4438 
4439 	if (!num_queues) {
4440 		/* if queue is disabled already yet the disable queue command
4441 		 * has to be sent to complete the VF reset, then call
4442 		 * ice_aq_dis_lan_txq without any queue information
4443 		 */
4444 		if (rst_src)
4445 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4446 						  vmvf_num, NULL);
4447 		return ICE_ERR_CFG;
4448 	}
4449 
4450 	buf_size = ice_struct_size(qg_list, q_id, 1);
4451 	qg_list = (struct ice_aqc_dis_txq_item *)ice_malloc(hw, buf_size);
4452 	if (!qg_list)
4453 		return ICE_ERR_NO_MEMORY;
4454 
4455 	ice_acquire_lock(&pi->sched_lock);
4456 
4457 	for (i = 0; i < num_queues; i++) {
4458 		struct ice_sched_node *node;
4459 
4460 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4461 		if (!node)
4462 			continue;
4463 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4464 		if (!q_ctx) {
4465 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4466 				  q_handles[i]);
4467 			continue;
4468 		}
4469 		if (q_ctx->q_handle != q_handles[i]) {
4470 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4471 				  q_ctx->q_handle, q_handles[i]);
4472 			continue;
4473 		}
4474 		qg_list->parent_teid = node->info.parent_teid;
4475 		qg_list->num_qs = 1;
4476 		qg_list->q_id[0] = CPU_TO_LE16(q_ids[i]);
4477 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4478 					    vmvf_num, cd);
4479 
4480 		if (status != ICE_SUCCESS)
4481 			break;
4482 		ice_free_sched_node(pi, node);
4483 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4484 	}
4485 	ice_release_lock(&pi->sched_lock);
4486 	ice_free(hw, qg_list);
4487 	return status;
4488 }
4489 
4490 /**
4491  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4492  * @pi: port information structure
4493  * @vsi_handle: software VSI handle
4494  * @tc_bitmap: TC bitmap
4495  * @maxqs: max queues array per TC
4496  * @owner: LAN or RDMA
4497  *
4498  * This function adds/updates the VSI queues per TC.
4499  */
4500 static enum ice_status
4501 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4502 	       u16 *maxqs, u8 owner)
4503 {
4504 	enum ice_status status = ICE_SUCCESS;
4505 	u8 i;
4506 
4507 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4508 		return ICE_ERR_CFG;
4509 
4510 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4511 		return ICE_ERR_PARAM;
4512 
4513 	ice_acquire_lock(&pi->sched_lock);
4514 
4515 	ice_for_each_traffic_class(i) {
4516 		/* configuration is possible only if TC node is present */
4517 		if (!ice_sched_get_tc_node(pi, i))
4518 			continue;
4519 
4520 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4521 					   ice_is_tc_ena(tc_bitmap, i));
4522 		if (status)
4523 			break;
4524 	}
4525 
4526 	ice_release_lock(&pi->sched_lock);
4527 	return status;
4528 }
4529 
4530 /**
4531  * ice_cfg_vsi_lan - configure VSI LAN queues
4532  * @pi: port information structure
4533  * @vsi_handle: software VSI handle
4534  * @tc_bitmap: TC bitmap
4535  * @max_lanqs: max LAN queues array per TC
4536  *
4537  * This function adds/updates the VSI LAN queues per TC.
4538  */
4539 enum ice_status
4540 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4541 		u16 *max_lanqs)
4542 {
4543 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4544 			      ICE_SCHED_NODE_OWNER_LAN);
4545 }
4546 
4547 /**
4548  * ice_is_main_vsi - checks whether the VSI is main VSI
4549  * @hw: pointer to the HW struct
4550  * @vsi_handle: VSI handle
4551  *
4552  * Checks whether the VSI is the main VSI (the first PF VSI created on
4553  * given PF).
4554  */
4555 static bool ice_is_main_vsi(struct ice_hw *hw, u16 vsi_handle)
4556 {
4557 	return vsi_handle == ICE_MAIN_VSI_HANDLE && hw->vsi_ctx[vsi_handle];
4558 }
4559 
4560 /**
4561  * ice_replay_pre_init - replay pre initialization
4562  * @hw: pointer to the HW struct
4563  * @sw: pointer to switch info struct for which function initializes filters
4564  *
4565  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4566  */
4567 static enum ice_status
4568 ice_replay_pre_init(struct ice_hw *hw, struct ice_switch_info *sw)
4569 {
4570 	enum ice_status status;
4571 	u8 i;
4572 
4573 	/* Delete old entries from replay filter list head if there is any */
4574 	ice_rm_sw_replay_rule_info(hw, sw);
4575 	/* In start of replay, move entries into replay_rules list, it
4576 	 * will allow adding rules entries back to filt_rules list,
4577 	 * which is operational list.
4578 	 */
4579 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
4580 		LIST_REPLACE_INIT(&sw->recp_list[i].filt_rules,
4581 				  &sw->recp_list[i].filt_replay_rules);
4582 	ice_sched_replay_agg_vsi_preinit(hw);
4583 
4584 	status = ice_sched_replay_root_node_bw(hw->port_info);
4585 	if (status)
4586 		return status;
4587 
4588 	return ice_sched_replay_tc_node_bw(hw->port_info);
4589 }
4590 
4591 /**
4592  * ice_replay_vsi - replay VSI configuration
4593  * @hw: pointer to the HW struct
4594  * @vsi_handle: driver VSI handle
4595  *
4596  * Restore all VSI configuration after reset. It is required to call this
4597  * function with main VSI first.
4598  */
4599 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4600 {
4601 	struct ice_switch_info *sw = hw->switch_info;
4602 	struct ice_port_info *pi = hw->port_info;
4603 	enum ice_status status;
4604 
4605 	if (!ice_is_vsi_valid(hw, vsi_handle))
4606 		return ICE_ERR_PARAM;
4607 
4608 	/* Replay pre-initialization if there is any */
4609 	if (ice_is_main_vsi(hw, vsi_handle)) {
4610 		status = ice_replay_pre_init(hw, sw);
4611 		if (status)
4612 			return status;
4613 	}
4614 	/* Replay per VSI all RSS configurations */
4615 	status = ice_replay_rss_cfg(hw, vsi_handle);
4616 	if (status)
4617 		return status;
4618 	/* Replay per VSI all filters */
4619 	status = ice_replay_vsi_all_fltr(hw, pi, vsi_handle);
4620 	if (!status)
4621 		status = ice_replay_vsi_agg(hw, vsi_handle);
4622 	return status;
4623 }
4624 
4625 /**
4626  * ice_replay_post - post replay configuration cleanup
4627  * @hw: pointer to the HW struct
4628  *
4629  * Post replay cleanup.
4630  */
4631 void ice_replay_post(struct ice_hw *hw)
4632 {
4633 	/* Delete old entries from replay filter list head */
4634 	ice_rm_all_sw_replay_rule_info(hw);
4635 	ice_sched_replay_agg(hw);
4636 }
4637 
4638 /**
4639  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4640  * @hw: ptr to the hardware info
4641  * @reg: offset of 64 bit HW register to read from
4642  * @prev_stat_loaded: bool to specify if previous stats are loaded
4643  * @prev_stat: ptr to previous loaded stat value
4644  * @cur_stat: ptr to current stat value
4645  */
4646 void
4647 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4648 		  u64 *prev_stat, u64 *cur_stat)
4649 {
4650 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4651 
4652 	/* device stats are not reset at PFR, they likely will not be zeroed
4653 	 * when the driver starts. Thus, save the value from the first read
4654 	 * without adding to the statistic value so that we report stats which
4655 	 * count up from zero.
4656 	 */
4657 	if (!prev_stat_loaded) {
4658 		*prev_stat = new_data;
4659 		return;
4660 	}
4661 
4662 	/* Calculate the difference between the new and old values, and then
4663 	 * add it to the software stat value.
4664 	 */
4665 	if (new_data >= *prev_stat)
4666 		*cur_stat += new_data - *prev_stat;
4667 	else
4668 		/* to manage the potential roll-over */
4669 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4670 
4671 	/* Update the previously stored value to prepare for next read */
4672 	*prev_stat = new_data;
4673 }
4674 
4675 /**
4676  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4677  * @hw: ptr to the hardware info
4678  * @reg: offset of HW register to read from
4679  * @prev_stat_loaded: bool to specify if previous stats are loaded
4680  * @prev_stat: ptr to previous loaded stat value
4681  * @cur_stat: ptr to current stat value
4682  */
4683 void
4684 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4685 		  u64 *prev_stat, u64 *cur_stat)
4686 {
4687 	u32 new_data;
4688 
4689 	new_data = rd32(hw, reg);
4690 
4691 	/* device stats are not reset at PFR, they likely will not be zeroed
4692 	 * when the driver starts. Thus, save the value from the first read
4693 	 * without adding to the statistic value so that we report stats which
4694 	 * count up from zero.
4695 	 */
4696 	if (!prev_stat_loaded) {
4697 		*prev_stat = new_data;
4698 		return;
4699 	}
4700 
4701 	/* Calculate the difference between the new and old values, and then
4702 	 * add it to the software stat value.
4703 	 */
4704 	if (new_data >= *prev_stat)
4705 		*cur_stat += new_data - *prev_stat;
4706 	else
4707 		/* to manage the potential roll-over */
4708 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4709 
4710 	/* Update the previously stored value to prepare for next read */
4711 	*prev_stat = new_data;
4712 }
4713 
4714 /**
4715  * ice_stat_update_repc - read GLV_REPC stats from chip and update stat values
4716  * @hw: ptr to the hardware info
4717  * @vsi_handle: VSI handle
4718  * @prev_stat_loaded: bool to specify if the previous stat values are loaded
4719  * @cur_stats: ptr to current stats structure
4720  *
4721  * The GLV_REPC statistic register actually tracks two 16bit statistics, and
4722  * thus cannot be read using the normal ice_stat_update32 function.
4723  *
4724  * Read the GLV_REPC register associated with the given VSI, and update the
4725  * rx_no_desc and rx_error values in the ice_eth_stats structure.
4726  *
4727  * Because the statistics in GLV_REPC stick at 0xFFFF, the register must be
4728  * cleared each time it's read.
4729  *
4730  * Note that the GLV_RDPC register also counts the causes that would trigger
4731  * GLV_REPC. However, it does not give the finer grained detail about why the
4732  * packets are being dropped. The GLV_REPC values can be used to distinguish
4733  * whether Rx packets are dropped due to errors or due to no available
4734  * descriptors.
4735  */
4736 void
4737 ice_stat_update_repc(struct ice_hw *hw, u16 vsi_handle, bool prev_stat_loaded,
4738 		     struct ice_eth_stats *cur_stats)
4739 {
4740 	u16 vsi_num, no_desc, error_cnt;
4741 	u32 repc;
4742 
4743 	if (!ice_is_vsi_valid(hw, vsi_handle))
4744 		return;
4745 
4746 	vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
4747 
4748 	/* If we haven't loaded stats yet, just clear the current value */
4749 	if (!prev_stat_loaded) {
4750 		wr32(hw, GLV_REPC(vsi_num), 0);
4751 		return;
4752 	}
4753 
4754 	repc = rd32(hw, GLV_REPC(vsi_num));
4755 	no_desc = (repc & GLV_REPC_NO_DESC_CNT_M) >> GLV_REPC_NO_DESC_CNT_S;
4756 	error_cnt = (repc & GLV_REPC_ERROR_CNT_M) >> GLV_REPC_ERROR_CNT_S;
4757 
4758 	/* Clear the count by writing to the stats register */
4759 	wr32(hw, GLV_REPC(vsi_num), 0);
4760 
4761 	cur_stats->rx_no_desc += no_desc;
4762 	cur_stats->rx_errors += error_cnt;
4763 }
4764 
4765 /**
4766  * ice_aq_alternate_write
4767  * @hw: pointer to the hardware structure
4768  * @reg_addr0: address of first dword to be written
4769  * @reg_val0: value to be written under 'reg_addr0'
4770  * @reg_addr1: address of second dword to be written
4771  * @reg_val1: value to be written under 'reg_addr1'
4772  *
4773  * Write one or two dwords to alternate structure. Fields are indicated
4774  * by 'reg_addr0' and 'reg_addr1' register numbers.
4775  */
4776 enum ice_status
4777 ice_aq_alternate_write(struct ice_hw *hw, u32 reg_addr0, u32 reg_val0,
4778 		       u32 reg_addr1, u32 reg_val1)
4779 {
4780 	struct ice_aqc_read_write_alt_direct *cmd;
4781 	struct ice_aq_desc desc;
4782 	enum ice_status status;
4783 
4784 	cmd = &desc.params.read_write_alt_direct;
4785 
4786 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_alt_direct);
4787 	cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
4788 	cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
4789 	cmd->dword0_value = CPU_TO_LE32(reg_val0);
4790 	cmd->dword1_value = CPU_TO_LE32(reg_val1);
4791 
4792 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4793 
4794 	return status;
4795 }
4796 
4797 /**
4798  * ice_aq_alternate_read
4799  * @hw: pointer to the hardware structure
4800  * @reg_addr0: address of first dword to be read
4801  * @reg_val0: pointer for data read from 'reg_addr0'
4802  * @reg_addr1: address of second dword to be read
4803  * @reg_val1: pointer for data read from 'reg_addr1'
4804  *
4805  * Read one or two dwords from alternate structure. Fields are indicated
4806  * by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer
4807  * is not passed then only register at 'reg_addr0' is read.
4808  */
4809 enum ice_status
4810 ice_aq_alternate_read(struct ice_hw *hw, u32 reg_addr0, u32 *reg_val0,
4811 		      u32 reg_addr1, u32 *reg_val1)
4812 {
4813 	struct ice_aqc_read_write_alt_direct *cmd;
4814 	struct ice_aq_desc desc;
4815 	enum ice_status status;
4816 
4817 	cmd = &desc.params.read_write_alt_direct;
4818 
4819 	if (!reg_val0)
4820 		return ICE_ERR_PARAM;
4821 
4822 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_alt_direct);
4823 	cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
4824 	cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
4825 
4826 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4827 
4828 	if (status == ICE_SUCCESS) {
4829 		*reg_val0 = LE32_TO_CPU(cmd->dword0_value);
4830 
4831 		if (reg_val1)
4832 			*reg_val1 = LE32_TO_CPU(cmd->dword1_value);
4833 	}
4834 
4835 	return status;
4836 }
4837 
4838 /**
4839  *  ice_aq_alternate_write_done
4840  *  @hw: pointer to the HW structure.
4841  *  @bios_mode: indicates whether the command is executed by UEFI or legacy BIOS
4842  *  @reset_needed: indicates the SW should trigger GLOBAL reset
4843  *
4844  *  Indicates to the FW that alternate structures have been changed.
4845  */
4846 enum ice_status
4847 ice_aq_alternate_write_done(struct ice_hw *hw, u8 bios_mode, bool *reset_needed)
4848 {
4849 	struct ice_aqc_done_alt_write *cmd;
4850 	struct ice_aq_desc desc;
4851 	enum ice_status status;
4852 
4853 	cmd = &desc.params.done_alt_write;
4854 
4855 	if (!reset_needed)
4856 		return ICE_ERR_PARAM;
4857 
4858 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_done_alt_write);
4859 	cmd->flags = bios_mode;
4860 
4861 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4862 	if (!status)
4863 		*reset_needed = (LE16_TO_CPU(cmd->flags) &
4864 				 ICE_AQC_RESP_RESET_NEEDED) != 0;
4865 
4866 	return status;
4867 }
4868 
4869 /**
4870  *  ice_aq_alternate_clear
4871  *  @hw: pointer to the HW structure.
4872  *
4873  *  Clear the alternate structures of the port from which the function
4874  *  is called.
4875  */
4876 enum ice_status ice_aq_alternate_clear(struct ice_hw *hw)
4877 {
4878 	struct ice_aq_desc desc;
4879 	enum ice_status status;
4880 
4881 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_port_alt_write);
4882 
4883 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4884 
4885 	return status;
4886 }
4887 
4888 /**
4889  * ice_sched_query_elem - query element information from HW
4890  * @hw: pointer to the HW struct
4891  * @node_teid: node TEID to be queried
4892  * @buf: buffer to element information
4893  *
4894  * This function queries HW element information
4895  */
4896 enum ice_status
4897 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4898 		     struct ice_aqc_txsched_elem_data *buf)
4899 {
4900 	u16 buf_size, num_elem_ret = 0;
4901 	enum ice_status status;
4902 
4903 	buf_size = sizeof(*buf);
4904 	ice_memset(buf, 0, buf_size, ICE_NONDMA_MEM);
4905 	buf->node_teid = CPU_TO_LE32(node_teid);
4906 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4907 					  NULL);
4908 	if (status != ICE_SUCCESS || num_elem_ret != 1)
4909 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4910 	return status;
4911 }
4912 
4913 /**
4914  * ice_get_fw_mode - returns FW mode
4915  * @hw: pointer to the HW struct
4916  */
4917 enum ice_fw_modes ice_get_fw_mode(struct ice_hw *hw)
4918 {
4919 #define ICE_FW_MODE_DBG_M BIT(0)
4920 #define ICE_FW_MODE_REC_M BIT(1)
4921 #define ICE_FW_MODE_ROLLBACK_M BIT(2)
4922 	u32 fw_mode;
4923 
4924 	/* check the current FW mode */
4925 	fw_mode = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_MODES_M;
4926 
4927 	if (fw_mode & ICE_FW_MODE_DBG_M)
4928 		return ICE_FW_MODE_DBG;
4929 	else if (fw_mode & ICE_FW_MODE_REC_M)
4930 		return ICE_FW_MODE_REC;
4931 	else if (fw_mode & ICE_FW_MODE_ROLLBACK_M)
4932 		return ICE_FW_MODE_ROLLBACK;
4933 	else
4934 		return ICE_FW_MODE_NORMAL;
4935 }
4936 
4937 /**
4938  * ice_cfg_get_cur_lldp_persist_status
4939  * @hw: pointer to the HW struct
4940  * @lldp_status: return value of LLDP persistent status
4941  *
4942  * Get the current status of LLDP persistent
4943  */
4944 enum ice_status
4945 ice_get_cur_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
4946 {
4947 	struct ice_port_info *pi = hw->port_info;
4948 	enum ice_status ret;
4949 	__le32 raw_data;
4950 	u32 data, mask;
4951 
4952 	if (!lldp_status)
4953 		return ICE_ERR_BAD_PTR;
4954 
4955 	ret = ice_acquire_nvm(hw, ICE_RES_READ);
4956 	if (ret)
4957 		return ret;
4958 
4959 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LLDP_PRESERVED_MOD_ID,
4960 			      ICE_AQC_NVM_CUR_LLDP_PERSIST_RD_OFFSET,
4961 			      ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data,
4962 			      false, true, NULL);
4963 	if (!ret) {
4964 		data = LE32_TO_CPU(raw_data);
4965 		mask = ICE_AQC_NVM_LLDP_STATUS_M <<
4966 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
4967 		data = data & mask;
4968 		*lldp_status = data >>
4969 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
4970 	}
4971 
4972 	ice_release_nvm(hw);
4973 
4974 	return ret;
4975 }
4976 
4977 /**
4978  * ice_get_dflt_lldp_persist_status
4979  * @hw: pointer to the HW struct
4980  * @lldp_status: return value of LLDP persistent status
4981  *
4982  * Get the default status of LLDP persistent
4983  */
4984 enum ice_status
4985 ice_get_dflt_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
4986 {
4987 	struct ice_port_info *pi = hw->port_info;
4988 	u32 data, mask, loc_data, loc_data_tmp;
4989 	enum ice_status ret;
4990 	__le16 loc_raw_data;
4991 	__le32 raw_data;
4992 
4993 	if (!lldp_status)
4994 		return ICE_ERR_BAD_PTR;
4995 
4996 	ret = ice_acquire_nvm(hw, ICE_RES_READ);
4997 	if (ret)
4998 		return ret;
4999 
5000 	/* Read the offset of EMP_SR_PTR */
5001 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
5002 			      ICE_AQC_NVM_EMP_SR_PTR_OFFSET,
5003 			      ICE_AQC_NVM_EMP_SR_PTR_RD_LEN,
5004 			      &loc_raw_data, false, true, NULL);
5005 	if (ret)
5006 		goto exit;
5007 
5008 	loc_data = LE16_TO_CPU(loc_raw_data);
5009 	if (loc_data & ICE_AQC_NVM_EMP_SR_PTR_TYPE_M) {
5010 		loc_data &= ICE_AQC_NVM_EMP_SR_PTR_M;
5011 		loc_data *= ICE_AQC_NVM_SECTOR_UNIT;
5012 	} else {
5013 		loc_data *= ICE_AQC_NVM_WORD_UNIT;
5014 	}
5015 
5016 	/* Read the offset of LLDP configuration pointer */
5017 	loc_data += ICE_AQC_NVM_LLDP_CFG_PTR_OFFSET;
5018 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
5019 			      ICE_AQC_NVM_LLDP_CFG_PTR_RD_LEN, &loc_raw_data,
5020 			      false, true, NULL);
5021 	if (ret)
5022 		goto exit;
5023 
5024 	loc_data_tmp = LE16_TO_CPU(loc_raw_data);
5025 	loc_data_tmp *= ICE_AQC_NVM_WORD_UNIT;
5026 	loc_data += loc_data_tmp;
5027 
5028 	/* We need to skip LLDP configuration section length (2 bytes) */
5029 	loc_data += ICE_AQC_NVM_LLDP_CFG_HEADER_LEN;
5030 
5031 	/* Read the LLDP Default Configure */
5032 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
5033 			      ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data, false,
5034 			      true, NULL);
5035 	if (!ret) {
5036 		data = LE32_TO_CPU(raw_data);
5037 		mask = ICE_AQC_NVM_LLDP_STATUS_M <<
5038 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5039 		data = data & mask;
5040 		*lldp_status = data >>
5041 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5042 	}
5043 
5044 exit:
5045 	ice_release_nvm(hw);
5046 
5047 	return ret;
5048 }
5049 
5050 /**
5051  * ice_fw_supports_link_override
5052  * @hw: pointer to the hardware structure
5053  *
5054  * Checks if the firmware supports link override
5055  */
5056 bool ice_fw_supports_link_override(struct ice_hw *hw)
5057 {
5058 	if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
5059 		if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
5060 			return true;
5061 		if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
5062 		    hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
5063 			return true;
5064 	} else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
5065 		return true;
5066 	}
5067 
5068 	return false;
5069 }
5070 
5071 /**
5072  * ice_get_link_default_override
5073  * @ldo: pointer to the link default override struct
5074  * @pi: pointer to the port info struct
5075  *
5076  * Gets the link default override for a port
5077  */
5078 enum ice_status
5079 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5080 			      struct ice_port_info *pi)
5081 {
5082 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5083 	struct ice_hw *hw = pi->hw;
5084 	enum ice_status status;
5085 
5086 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5087 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5088 	if (status) {
5089 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5090 		return status;
5091 	}
5092 
5093 	/* Each port has its own config; calculate for our port */
5094 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5095 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5096 
5097 	/* link options first */
5098 	status = ice_read_sr_word(hw, tlv_start, &buf);
5099 	if (status) {
5100 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5101 		return status;
5102 	}
5103 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
5104 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5105 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5106 
5107 	/* link PHY config */
5108 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5109 	status = ice_read_sr_word(hw, offset, &buf);
5110 	if (status) {
5111 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5112 		return status;
5113 	}
5114 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5115 
5116 	/* PHY types low */
5117 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5118 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5119 		status = ice_read_sr_word(hw, (offset + i), &buf);
5120 		if (status) {
5121 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5122 			return status;
5123 		}
5124 		/* shift 16 bits at a time to fill 64 bits */
5125 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5126 	}
5127 
5128 	/* PHY types high */
5129 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5130 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5131 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5132 		status = ice_read_sr_word(hw, (offset + i), &buf);
5133 		if (status) {
5134 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5135 			return status;
5136 		}
5137 		/* shift 16 bits at a time to fill 64 bits */
5138 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5139 	}
5140 
5141 	return status;
5142 }
5143 
5144 /**
5145  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5146  * @caps: get PHY capability data
5147  */
5148 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5149 {
5150 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5151 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5152 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5153 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5154 		return true;
5155 
5156 	return false;
5157 }
5158 
5159 /**
5160  * ice_aq_set_lldp_mib - Set the LLDP MIB
5161  * @hw: pointer to the HW struct
5162  * @mib_type: Local, Remote or both Local and Remote MIBs
5163  * @buf: pointer to the caller-supplied buffer to store the MIB block
5164  * @buf_size: size of the buffer (in bytes)
5165  * @cd: pointer to command details structure or NULL
5166  *
5167  * Set the LLDP MIB. (0x0A08)
5168  */
5169 enum ice_status
5170 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5171 		    struct ice_sq_cd *cd)
5172 {
5173 	struct ice_aqc_lldp_set_local_mib *cmd;
5174 	struct ice_aq_desc desc;
5175 
5176 	cmd = &desc.params.lldp_set_mib;
5177 
5178 	if (buf_size == 0 || !buf)
5179 		return ICE_ERR_PARAM;
5180 
5181 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5182 
5183 	desc.flags |= CPU_TO_LE16((u16)ICE_AQ_FLAG_RD);
5184 	desc.datalen = CPU_TO_LE16(buf_size);
5185 
5186 	cmd->type = mib_type;
5187 	cmd->length = CPU_TO_LE16(buf_size);
5188 
5189 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5190 }
5191 
5192 /**
5193  * ice_fw_supports_lldp_fltr - check NVM version supports lldp_fltr_ctrl
5194  * @hw: pointer to HW struct
5195  */
5196 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5197 {
5198 	if (hw->mac_type != ICE_MAC_E810)
5199 		return false;
5200 
5201 	if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
5202 		if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
5203 			return true;
5204 		if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
5205 		    hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
5206 			return true;
5207 	} else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
5208 		return true;
5209 	}
5210 	return false;
5211 }
5212 
5213 /**
5214  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5215  * @hw: pointer to HW struct
5216  * @vsi_num: absolute HW index for VSI
5217  * @add: boolean for if adding or removing a filter
5218  */
5219 enum ice_status
5220 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5221 {
5222 	struct ice_aqc_lldp_filter_ctrl *cmd;
5223 	struct ice_aq_desc desc;
5224 
5225 	cmd = &desc.params.lldp_filter_ctrl;
5226 
5227 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5228 
5229 	if (add)
5230 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5231 	else
5232 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5233 
5234 	cmd->vsi_num = CPU_TO_LE16(vsi_num);
5235 
5236 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5237 }
5238