xref: /freebsd/sys/dev/ice/ice_common.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2024, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "ice_common.h"
33 #include "ice_sched.h"
34 #include "ice_adminq_cmd.h"
35 #include "ice_flow.h"
36 #include "ice_switch.h"
37 
38 #define ICE_PF_RESET_WAIT_COUNT	500
39 
40 static const char * const ice_link_mode_str_low[] = {
41 	ice_arr_elem_idx(0, "100BASE_TX"),
42 	ice_arr_elem_idx(1, "100M_SGMII"),
43 	ice_arr_elem_idx(2, "1000BASE_T"),
44 	ice_arr_elem_idx(3, "1000BASE_SX"),
45 	ice_arr_elem_idx(4, "1000BASE_LX"),
46 	ice_arr_elem_idx(5, "1000BASE_KX"),
47 	ice_arr_elem_idx(6, "1G_SGMII"),
48 	ice_arr_elem_idx(7, "2500BASE_T"),
49 	ice_arr_elem_idx(8, "2500BASE_X"),
50 	ice_arr_elem_idx(9, "2500BASE_KX"),
51 	ice_arr_elem_idx(10, "5GBASE_T"),
52 	ice_arr_elem_idx(11, "5GBASE_KR"),
53 	ice_arr_elem_idx(12, "10GBASE_T"),
54 	ice_arr_elem_idx(13, "10G_SFI_DA"),
55 	ice_arr_elem_idx(14, "10GBASE_SR"),
56 	ice_arr_elem_idx(15, "10GBASE_LR"),
57 	ice_arr_elem_idx(16, "10GBASE_KR_CR1"),
58 	ice_arr_elem_idx(17, "10G_SFI_AOC_ACC"),
59 	ice_arr_elem_idx(18, "10G_SFI_C2C"),
60 	ice_arr_elem_idx(19, "25GBASE_T"),
61 	ice_arr_elem_idx(20, "25GBASE_CR"),
62 	ice_arr_elem_idx(21, "25GBASE_CR_S"),
63 	ice_arr_elem_idx(22, "25GBASE_CR1"),
64 	ice_arr_elem_idx(23, "25GBASE_SR"),
65 	ice_arr_elem_idx(24, "25GBASE_LR"),
66 	ice_arr_elem_idx(25, "25GBASE_KR"),
67 	ice_arr_elem_idx(26, "25GBASE_KR_S"),
68 	ice_arr_elem_idx(27, "25GBASE_KR1"),
69 	ice_arr_elem_idx(28, "25G_AUI_AOC_ACC"),
70 	ice_arr_elem_idx(29, "25G_AUI_C2C"),
71 	ice_arr_elem_idx(30, "40GBASE_CR4"),
72 	ice_arr_elem_idx(31, "40GBASE_SR4"),
73 	ice_arr_elem_idx(32, "40GBASE_LR4"),
74 	ice_arr_elem_idx(33, "40GBASE_KR4"),
75 	ice_arr_elem_idx(34, "40G_XLAUI_AOC_ACC"),
76 	ice_arr_elem_idx(35, "40G_XLAUI"),
77 	ice_arr_elem_idx(36, "50GBASE_CR2"),
78 	ice_arr_elem_idx(37, "50GBASE_SR2"),
79 	ice_arr_elem_idx(38, "50GBASE_LR2"),
80 	ice_arr_elem_idx(39, "50GBASE_KR2"),
81 	ice_arr_elem_idx(40, "50G_LAUI2_AOC_ACC"),
82 	ice_arr_elem_idx(41, "50G_LAUI2"),
83 	ice_arr_elem_idx(42, "50G_AUI2_AOC_ACC"),
84 	ice_arr_elem_idx(43, "50G_AUI2"),
85 	ice_arr_elem_idx(44, "50GBASE_CP"),
86 	ice_arr_elem_idx(45, "50GBASE_SR"),
87 	ice_arr_elem_idx(46, "50GBASE_FR"),
88 	ice_arr_elem_idx(47, "50GBASE_LR"),
89 	ice_arr_elem_idx(48, "50GBASE_KR_PAM4"),
90 	ice_arr_elem_idx(49, "50G_AUI1_AOC_ACC"),
91 	ice_arr_elem_idx(50, "50G_AUI1"),
92 	ice_arr_elem_idx(51, "100GBASE_CR4"),
93 	ice_arr_elem_idx(52, "100GBASE_SR4"),
94 	ice_arr_elem_idx(53, "100GBASE_LR4"),
95 	ice_arr_elem_idx(54, "100GBASE_KR4"),
96 	ice_arr_elem_idx(55, "100G_CAUI4_AOC_ACC"),
97 	ice_arr_elem_idx(56, "100G_CAUI4"),
98 	ice_arr_elem_idx(57, "100G_AUI4_AOC_ACC"),
99 	ice_arr_elem_idx(58, "100G_AUI4"),
100 	ice_arr_elem_idx(59, "100GBASE_CR_PAM4"),
101 	ice_arr_elem_idx(60, "100GBASE_KR_PAM4"),
102 	ice_arr_elem_idx(61, "100GBASE_CP2"),
103 	ice_arr_elem_idx(62, "100GBASE_SR2"),
104 	ice_arr_elem_idx(63, "100GBASE_DR"),
105 };
106 
107 static const char * const ice_link_mode_str_high[] = {
108 	ice_arr_elem_idx(0, "100GBASE_KR2_PAM4"),
109 	ice_arr_elem_idx(1, "100G_CAUI2_AOC_ACC"),
110 	ice_arr_elem_idx(2, "100G_CAUI2"),
111 	ice_arr_elem_idx(3, "100G_AUI2_AOC_ACC"),
112 	ice_arr_elem_idx(4, "100G_AUI2"),
113 	ice_arr_elem_idx(5, "200G_CR4_PAM4"),
114 	ice_arr_elem_idx(6, "200G_SR4"),
115 	ice_arr_elem_idx(7, "200G_FR4"),
116 	ice_arr_elem_idx(8, "200G_LR4"),
117 	ice_arr_elem_idx(9, "200G_DR4"),
118 	ice_arr_elem_idx(10, "200G_KR4_PAM4"),
119 	ice_arr_elem_idx(11, "200G_AUI4_AOC_ACC"),
120 	ice_arr_elem_idx(12, "200G_AUI4"),
121 	ice_arr_elem_idx(13, "200G_AUI8_AOC_ACC"),
122 	ice_arr_elem_idx(14, "200G_AUI8"),
123 	ice_arr_elem_idx(15, "400GBASE_FR8"),
124 };
125 
126 /**
127  * ice_dump_phy_type - helper function to dump phy_type
128  * @hw: pointer to the HW structure
129  * @low: 64 bit value for phy_type_low
130  * @high: 64 bit value for phy_type_high
131  * @prefix: prefix string to differentiate multiple dumps
132  */
133 static void
134 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
135 {
136 	u32 i;
137 
138 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix,
139 		  (unsigned long long)low);
140 
141 	for (i = 0; i < ARRAY_SIZE(ice_link_mode_str_low); i++) {
142 		if (low & BIT_ULL(i))
143 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
144 				  prefix, i, ice_link_mode_str_low[i]);
145 	}
146 
147 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix,
148 		  (unsigned long long)high);
149 
150 	for (i = 0; i < ARRAY_SIZE(ice_link_mode_str_high); i++) {
151 		if (high & BIT_ULL(i))
152 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
153 				  prefix, i, ice_link_mode_str_high[i]);
154 	}
155 }
156 
157 /**
158  * ice_set_mac_type - Sets MAC type
159  * @hw: pointer to the HW structure
160  *
161  * This function sets the MAC type of the adapter based on the
162  * vendor ID and device ID stored in the HW structure.
163  */
164 int ice_set_mac_type(struct ice_hw *hw)
165 {
166 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
167 
168 	if (hw->vendor_id != ICE_INTEL_VENDOR_ID)
169 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
170 
171 	switch (hw->device_id) {
172 	case ICE_DEV_ID_E810C_BACKPLANE:
173 	case ICE_DEV_ID_E810C_QSFP:
174 	case ICE_DEV_ID_E810C_SFP:
175 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
176 	case ICE_DEV_ID_E810_XXV_QSFP:
177 	case ICE_DEV_ID_E810_XXV_SFP:
178 		hw->mac_type = ICE_MAC_E810;
179 		break;
180 	case ICE_DEV_ID_E822C_10G_BASE_T:
181 	case ICE_DEV_ID_E822C_BACKPLANE:
182 	case ICE_DEV_ID_E822C_QSFP:
183 	case ICE_DEV_ID_E822C_SFP:
184 	case ICE_DEV_ID_E822C_SGMII:
185 	case ICE_DEV_ID_E822L_10G_BASE_T:
186 	case ICE_DEV_ID_E822L_BACKPLANE:
187 	case ICE_DEV_ID_E822L_SFP:
188 	case ICE_DEV_ID_E822L_SGMII:
189 	case ICE_DEV_ID_E823L_10G_BASE_T:
190 	case ICE_DEV_ID_E823L_1GBE:
191 	case ICE_DEV_ID_E823L_BACKPLANE:
192 	case ICE_DEV_ID_E823L_QSFP:
193 	case ICE_DEV_ID_E823L_SFP:
194 	case ICE_DEV_ID_E823C_10G_BASE_T:
195 	case ICE_DEV_ID_E823C_BACKPLANE:
196 	case ICE_DEV_ID_E823C_QSFP:
197 	case ICE_DEV_ID_E823C_SFP:
198 	case ICE_DEV_ID_E823C_SGMII:
199 		hw->mac_type = ICE_MAC_GENERIC;
200 		break;
201 	case ICE_DEV_ID_E825C_BACKPLANE:
202 	case ICE_DEV_ID_E825C_QSFP:
203 	case ICE_DEV_ID_E825C_SFP:
204 	case ICE_DEV_ID_E825C_SGMII:
205 		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
206 		break;
207 	case ICE_DEV_ID_E830_BACKPLANE:
208 	case ICE_DEV_ID_E830_QSFP56:
209 	case ICE_DEV_ID_E830_SFP:
210 	case ICE_DEV_ID_E830C_BACKPLANE:
211 	case ICE_DEV_ID_E830_L_BACKPLANE:
212 	case ICE_DEV_ID_E830C_QSFP:
213 	case ICE_DEV_ID_E830_L_QSFP:
214 	case ICE_DEV_ID_E830C_SFP:
215 	case ICE_DEV_ID_E830_L_SFP:
216 		hw->mac_type = ICE_MAC_E830;
217 		break;
218 	default:
219 		hw->mac_type = ICE_MAC_UNKNOWN;
220 		break;
221 	}
222 
223 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
224 	return 0;
225 }
226 
227 /**
228  * ice_is_generic_mac
229  * @hw: pointer to the hardware structure
230  *
231  * returns true if mac_type is ICE_MAC_GENERIC, false if not
232  */
233 bool ice_is_generic_mac(struct ice_hw *hw)
234 {
235 	return (hw->mac_type == ICE_MAC_GENERIC ||
236 		hw->mac_type == ICE_MAC_GENERIC_3K ||
237 		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
238 }
239 
240 /**
241  * ice_is_e810
242  * @hw: pointer to the hardware structure
243  *
244  * returns true if the device is E810 based, false if not.
245  */
246 bool ice_is_e810(struct ice_hw *hw)
247 {
248 	return hw->mac_type == ICE_MAC_E810;
249 }
250 
251 /**
252  * ice_is_e810t
253  * @hw: pointer to the hardware structure
254  *
255  * returns true if the device is E810T based, false if not.
256  */
257 bool ice_is_e810t(struct ice_hw *hw)
258 {
259 	switch (hw->device_id) {
260 	case ICE_DEV_ID_E810C_SFP:
261 		switch (hw->subsystem_device_id) {
262 		case ICE_SUBDEV_ID_E810T:
263 		case ICE_SUBDEV_ID_E810T2:
264 		case ICE_SUBDEV_ID_E810T3:
265 		case ICE_SUBDEV_ID_E810T4:
266 		case ICE_SUBDEV_ID_E810T6:
267 		case ICE_SUBDEV_ID_E810T7:
268 			return true;
269 		}
270 		break;
271 	case ICE_DEV_ID_E810C_QSFP:
272 		switch (hw->subsystem_device_id) {
273 		case ICE_SUBDEV_ID_E810T2:
274 		case ICE_SUBDEV_ID_E810T3:
275 		case ICE_SUBDEV_ID_E810T5:
276 			return true;
277 		}
278 		break;
279 	default:
280 		break;
281 	}
282 
283 	return false;
284 }
285 
286 /**
287  * ice_is_e830
288  * @hw: pointer to the hardware structure
289  *
290  * returns true if the device is E830 based, false if not.
291  */
292 bool ice_is_e830(struct ice_hw *hw)
293 {
294 	return hw->mac_type == ICE_MAC_E830;
295 }
296 
297 /**
298  * ice_is_e823
299  * @hw: pointer to the hardware structure
300  *
301  * returns true if the device is E823-L or E823-C based, false if not.
302  */
303 bool ice_is_e823(struct ice_hw *hw)
304 {
305 	switch (hw->device_id) {
306 	case ICE_DEV_ID_E823L_BACKPLANE:
307 	case ICE_DEV_ID_E823L_SFP:
308 	case ICE_DEV_ID_E823L_10G_BASE_T:
309 	case ICE_DEV_ID_E823L_1GBE:
310 	case ICE_DEV_ID_E823L_QSFP:
311 	case ICE_DEV_ID_E823C_BACKPLANE:
312 	case ICE_DEV_ID_E823C_QSFP:
313 	case ICE_DEV_ID_E823C_SFP:
314 	case ICE_DEV_ID_E823C_10G_BASE_T:
315 	case ICE_DEV_ID_E823C_SGMII:
316 		return true;
317 	default:
318 		return false;
319 	}
320 }
321 
322 /**
323  * ice_is_e825c
324  * @hw: pointer to the hardware structure
325  *
326  * returns true if the device is E825-C based, false if not.
327  */
328 bool ice_is_e825c(struct ice_hw *hw)
329 {
330 	switch (hw->device_id) {
331 	case ICE_DEV_ID_E825C_BACKPLANE:
332 	case ICE_DEV_ID_E825C_QSFP:
333 	case ICE_DEV_ID_E825C_SFP:
334 	case ICE_DEV_ID_E825C_SGMII:
335 		return true;
336 	default:
337 		return false;
338 	}
339 }
340 
341 /**
342  * ice_clear_pf_cfg - Clear PF configuration
343  * @hw: pointer to the hardware structure
344  *
345  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
346  * configuration, flow director filters, etc.).
347  */
348 int ice_clear_pf_cfg(struct ice_hw *hw)
349 {
350 	struct ice_aq_desc desc;
351 
352 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
353 
354 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
355 }
356 
357 /**
358  * ice_aq_manage_mac_read - manage MAC address read command
359  * @hw: pointer to the HW struct
360  * @buf: a virtual buffer to hold the manage MAC read response
361  * @buf_size: Size of the virtual buffer
362  * @cd: pointer to command details structure or NULL
363  *
364  * This function is used to return per PF station MAC address (0x0107).
365  * NOTE: Upon successful completion of this command, MAC address information
366  * is returned in user specified buffer. Please interpret user specified
367  * buffer as "manage_mac_read" response.
368  * Response such as various MAC addresses are stored in HW struct (port.mac)
369  * ice_discover_dev_caps is expected to be called before this function is
370  * called.
371  */
372 int
373 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
374 		       struct ice_sq_cd *cd)
375 {
376 	struct ice_aqc_manage_mac_read_resp *resp;
377 	struct ice_aqc_manage_mac_read *cmd;
378 	struct ice_aq_desc desc;
379 	int status;
380 	u16 flags;
381 	u8 i;
382 
383 	cmd = &desc.params.mac_read;
384 
385 	if (buf_size < sizeof(*resp))
386 		return ICE_ERR_BUF_TOO_SHORT;
387 
388 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
389 
390 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
391 	if (status)
392 		return status;
393 
394 	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
395 	flags = LE16_TO_CPU(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
396 
397 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
398 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
399 		return ICE_ERR_CFG;
400 	}
401 
402 	/* A single port can report up to two (LAN and WoL) addresses */
403 	for (i = 0; i < cmd->num_addr; i++)
404 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
405 			ice_memcpy(hw->port_info->mac.lan_addr,
406 				   resp[i].mac_addr, ETH_ALEN,
407 				   ICE_NONDMA_TO_NONDMA);
408 			ice_memcpy(hw->port_info->mac.perm_addr,
409 				   resp[i].mac_addr,
410 				   ETH_ALEN, ICE_NONDMA_TO_NONDMA);
411 			break;
412 		}
413 	return 0;
414 }
415 
416 /**
417  * ice_phy_maps_to_media
418  * @phy_type_low: PHY type low bits
419  * @phy_type_high: PHY type high bits
420  * @media_mask_low: media type PHY type low bitmask
421  * @media_mask_high: media type PHY type high bitmask
422  *
423  * Return true if PHY type [low|high] bits are only of media type PHY types
424  * [low|high] bitmask.
425  */
426 static bool
427 ice_phy_maps_to_media(u64 phy_type_low, u64 phy_type_high,
428 		      u64 media_mask_low, u64 media_mask_high)
429 {
430 	/* check if a PHY type exist for media type */
431 	if (!(phy_type_low & media_mask_low ||
432 	      phy_type_high & media_mask_high))
433 		return false;
434 
435 	/* check that PHY types are only of media type */
436 	if (!(phy_type_low & ~media_mask_low) &&
437 	    !(phy_type_high & ~media_mask_high))
438 		return true;
439 
440 	return false;
441 }
442 
443 /**
444  * ice_set_media_type - Sets media type
445  * @pi: port information structure
446  *
447  * Set ice_port_info PHY media type based on PHY type. This should be called
448  * from Get PHY caps with media.
449  */
450 static void ice_set_media_type(struct ice_port_info *pi)
451 {
452 	enum ice_media_type *media_type;
453 	u64 phy_type_high, phy_type_low;
454 
455 	phy_type_high = pi->phy.phy_type_high;
456 	phy_type_low = pi->phy.phy_type_low;
457 	media_type = &pi->phy.media_type;
458 
459 	/* if no media, then media type is NONE */
460 	if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
461 		*media_type = ICE_MEDIA_NONE;
462 	/* else if PHY types are only BASE-T, then media type is BASET */
463 	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
464 				       ICE_MEDIA_BASET_PHY_TYPE_LOW_M, 0))
465 		*media_type = ICE_MEDIA_BASET;
466 	/* else if any PHY type is BACKPLANE, then media type is BACKPLANE */
467 	else if (phy_type_low & ICE_MEDIA_BP_PHY_TYPE_LOW_M ||
468 		 phy_type_high & ICE_MEDIA_BP_PHY_TYPE_HIGH_M)
469 		*media_type = ICE_MEDIA_BACKPLANE;
470 	/* else if PHY types are only optical, or optical and C2M, then media
471 	 * type is FIBER
472 	 */
473 	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
474 				       ICE_MEDIA_OPT_PHY_TYPE_LOW_M,
475 				       ICE_MEDIA_OPT_PHY_TYPE_HIGH_M) ||
476 		 ((phy_type_low & ICE_MEDIA_OPT_PHY_TYPE_LOW_M ||
477 		   phy_type_high & ICE_MEDIA_OPT_PHY_TYPE_HIGH_M) &&
478 		  (phy_type_low & ICE_MEDIA_C2M_PHY_TYPE_LOW_M ||
479 		   phy_type_high & ICE_MEDIA_C2C_PHY_TYPE_HIGH_M)))
480 		*media_type = ICE_MEDIA_FIBER;
481 	/* else if PHY types are only DA, or DA and C2C, then media type DA */
482 	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
483 				       ICE_MEDIA_DAC_PHY_TYPE_LOW_M,
484 				       ICE_MEDIA_DAC_PHY_TYPE_HIGH_M) ||
485 		 ((phy_type_low & ICE_MEDIA_DAC_PHY_TYPE_LOW_M ||
486 		   phy_type_high & ICE_MEDIA_DAC_PHY_TYPE_HIGH_M) &&
487 		  (phy_type_low & ICE_MEDIA_C2C_PHY_TYPE_LOW_M ||
488 		   phy_type_high & ICE_MEDIA_C2C_PHY_TYPE_HIGH_M)))
489 		*media_type = ICE_MEDIA_DA;
490 	/* else if PHY types are only C2M or only C2C, then media is AUI */
491 	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
492 				       ICE_MEDIA_C2M_PHY_TYPE_LOW_M,
493 				       ICE_MEDIA_C2M_PHY_TYPE_HIGH_M) ||
494 		 ice_phy_maps_to_media(phy_type_low, phy_type_high,
495 				       ICE_MEDIA_C2C_PHY_TYPE_LOW_M,
496 				       ICE_MEDIA_C2C_PHY_TYPE_HIGH_M))
497 		*media_type = ICE_MEDIA_AUI;
498 
499 	else
500 		*media_type = ICE_MEDIA_UNKNOWN;
501 }
502 
503 /**
504  * ice_aq_get_phy_caps - returns PHY capabilities
505  * @pi: port information structure
506  * @qual_mods: report qualified modules
507  * @report_mode: report mode capabilities
508  * @pcaps: structure for PHY capabilities to be filled
509  * @cd: pointer to command details structure or NULL
510  *
511  * Returns the various PHY capabilities supported on the Port (0x0600)
512  */
513 int
514 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
515 		    struct ice_aqc_get_phy_caps_data *pcaps,
516 		    struct ice_sq_cd *cd)
517 {
518 	struct ice_aqc_get_phy_caps *cmd;
519 	u16 pcaps_size = sizeof(*pcaps);
520 	struct ice_aq_desc desc;
521 	const char *prefix;
522 	struct ice_hw *hw;
523 	int status;
524 
525 	cmd = &desc.params.get_phy;
526 
527 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
528 		return ICE_ERR_PARAM;
529 	hw = pi->hw;
530 
531 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
532 	    !ice_fw_supports_report_dflt_cfg(hw))
533 		return ICE_ERR_PARAM;
534 
535 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
536 
537 	if (qual_mods)
538 		cmd->param0 |= CPU_TO_LE16(ICE_AQC_GET_PHY_RQM);
539 
540 	cmd->param0 |= CPU_TO_LE16(report_mode);
541 
542 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
543 
544 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
545 
546 	switch (report_mode) {
547 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
548 		prefix = "phy_caps_media";
549 		break;
550 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
551 		prefix = "phy_caps_no_media";
552 		break;
553 	case ICE_AQC_REPORT_ACTIVE_CFG:
554 		prefix = "phy_caps_active";
555 		break;
556 	case ICE_AQC_REPORT_DFLT_CFG:
557 		prefix = "phy_caps_default";
558 		break;
559 	default:
560 		prefix = "phy_caps_invalid";
561 	}
562 
563 	ice_dump_phy_type(hw, LE64_TO_CPU(pcaps->phy_type_low),
564 			  LE64_TO_CPU(pcaps->phy_type_high), prefix);
565 
566 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
567 		  prefix, report_mode);
568 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
569 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
570 		  pcaps->low_power_ctrl_an);
571 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
572 		  pcaps->eee_cap);
573 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
574 		  pcaps->eeer_value);
575 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
576 		  pcaps->link_fec_options);
577 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
578 		  prefix, pcaps->module_compliance_enforcement);
579 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
580 		  prefix, pcaps->extended_compliance_code);
581 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
582 		  pcaps->module_type[0]);
583 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
584 		  pcaps->module_type[1]);
585 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
586 		  pcaps->module_type[2]);
587 
588 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
589 		pi->phy.phy_type_low = LE64_TO_CPU(pcaps->phy_type_low);
590 		pi->phy.phy_type_high = LE64_TO_CPU(pcaps->phy_type_high);
591 		ice_memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
592 			   sizeof(pi->phy.link_info.module_type),
593 			   ICE_NONDMA_TO_NONDMA);
594 		ice_set_media_type(pi);
595 		ice_debug(hw, ICE_DBG_LINK, "%s: media_type = 0x%x\n", prefix,
596 			  pi->phy.media_type);
597 	}
598 
599 	return status;
600 }
601 
602 /**
603  * ice_aq_get_phy_equalization - function to read serdes equalizer value from
604  *                               firmware using admin queue command.
605  * @hw: pointer to the HW struct
606  * @data_in: represents the serdes equalization parameter requested
607  * @op_code: represents the serdes number and flag to represent tx or rx
608  * @serdes_num: represents the serdes number
609  * @output: pointer to the caller-supplied buffer to return serdes equalizer
610  *
611  * Returns 0 on success,
612  *	   non-zero status on error
613  */
614 int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
615 			    u8 serdes_num, int *output)
616 {
617 	struct ice_aqc_dnl_call_command *cmd;
618 	struct ice_aqc_dnl_call buf;
619 	struct ice_aq_desc desc;
620 	int err = 0;
621 
622 	if (!hw || !output)
623 		return (ICE_ERR_PARAM);
624 
625 	memset(&buf, 0, sizeof(buf));
626 	buf.sto.txrx_equa_reqs.data_in = CPU_TO_LE16(data_in);
627 	buf.sto.txrx_equa_reqs.op_code_serdes_sel =
628 		CPU_TO_LE16(op_code | (serdes_num & 0xF));
629 
630 	cmd = &desc.params.dnl_call;
631 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
632 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_BUF | ICE_AQ_FLAG_RD |
633 				  ICE_AQ_FLAG_SI);
634 	desc.datalen = CPU_TO_LE16(sizeof(struct ice_aqc_dnl_call));
635 	cmd->activity_id = CPU_TO_LE16(ICE_AQC_ACT_ID_DNL);
636 	cmd->ctx = 0;
637 
638 	err = ice_aq_send_cmd(hw, &desc, &buf,
639 			      sizeof(struct ice_aqc_dnl_call), NULL);
640 	if (!err)
641 		*output = buf.sto.txrx_equa_resp.val;
642 
643 	return err;
644 }
645 
646 #define ice_get_link_status_data_ver(hw) ((hw)->mac_type == ICE_MAC_E830 ? \
647 		ICE_GET_LINK_STATUS_DATA_V2 : ICE_GET_LINK_STATUS_DATA_V1)
648 
649 /**
650  * ice_get_link_status_datalen
651  * @hw: pointer to the HW struct
652  *
653  * return Get Link Status datalen
654  */
655 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
656 {
657 	return (ice_get_link_status_data_ver(hw) ==
658 		ICE_GET_LINK_STATUS_DATA_V1) ? ICE_GET_LINK_STATUS_DATALEN_V1 :
659 		ICE_GET_LINK_STATUS_DATALEN_V2;
660 }
661 
662 /**
663  * ice_aq_get_link_info
664  * @pi: port information structure
665  * @ena_lse: enable/disable LinkStatusEvent reporting
666  * @link: pointer to link status structure - optional
667  * @cd: pointer to command details structure or NULL
668  *
669  * Get Link Status (0x607). Returns the link status of the adapter.
670  */
671 int
672 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
673 		     struct ice_link_status *link, struct ice_sq_cd *cd)
674 {
675 	struct ice_aqc_get_link_status_data link_data = { 0 };
676 	struct ice_aqc_get_link_status *resp;
677 	struct ice_link_status *li_old, *li;
678 	struct ice_fc_info *hw_fc_info;
679 	bool tx_pause, rx_pause;
680 	struct ice_aq_desc desc;
681 	struct ice_hw *hw;
682 	u16 cmd_flags;
683 	int status;
684 
685 	if (!pi)
686 		return ICE_ERR_PARAM;
687 	hw = pi->hw;
688 
689 	li_old = &pi->phy.link_info_old;
690 	li = &pi->phy.link_info;
691 	hw_fc_info = &pi->fc;
692 
693 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
694 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
695 	resp = &desc.params.get_link_status;
696 	resp->cmd_flags = CPU_TO_LE16(cmd_flags);
697 	resp->lport_num = pi->lport;
698 
699 	status = ice_aq_send_cmd(hw, &desc, &link_data,
700 				 ice_get_link_status_datalen(hw), cd);
701 	if (status)
702 		return status;
703 
704 	/* save off old link status information */
705 	*li_old = *li;
706 
707 	/* update current link status information */
708 	li->link_speed = LE16_TO_CPU(link_data.link_speed);
709 	li->phy_type_low = LE64_TO_CPU(link_data.phy_type_low);
710 	li->phy_type_high = LE64_TO_CPU(link_data.phy_type_high);
711 	li->link_info = link_data.link_info;
712 	li->link_cfg_err = link_data.link_cfg_err;
713 	li->an_info = link_data.an_info;
714 	li->ext_info = link_data.ext_info;
715 	li->max_frame_size = LE16_TO_CPU(link_data.max_frame_size);
716 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
717 	li->topo_media_conflict = link_data.topo_media_conflict;
718 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
719 				      ICE_AQ_CFG_PACING_TYPE_M);
720 
721 	/* update fc info */
722 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
723 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
724 	if (tx_pause && rx_pause)
725 		hw_fc_info->current_mode = ICE_FC_FULL;
726 	else if (tx_pause)
727 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
728 	else if (rx_pause)
729 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
730 	else
731 		hw_fc_info->current_mode = ICE_FC_NONE;
732 
733 	li->lse_ena = !!(resp->cmd_flags & CPU_TO_LE16(ICE_AQ_LSE_IS_ENABLED));
734 
735 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
736 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
737 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
738 		  (unsigned long long)li->phy_type_low);
739 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
740 		  (unsigned long long)li->phy_type_high);
741 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
742 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
743 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
744 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
745 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
746 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
747 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
748 		  li->max_frame_size);
749 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
750 
751 	/* save link status information */
752 	if (link)
753 		*link = *li;
754 
755 	/* flag cleared so calling functions don't call AQ again */
756 	pi->phy.get_link_info = false;
757 
758 	return 0;
759 }
760 
761 /**
762  * ice_fill_tx_timer_and_fc_thresh
763  * @hw: pointer to the HW struct
764  * @cmd: pointer to MAC cfg structure
765  *
766  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
767  * descriptor
768  */
769 static void
770 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
771 				struct ice_aqc_set_mac_cfg *cmd)
772 {
773 	u16 fc_thres_val, tx_timer_val;
774 	u32 val;
775 
776 	/* We read back the transmit timer and fc threshold value of
777 	 * LFC. Thus, we will use index =
778 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
779 	 *
780 	 * Also, because we are operating on transmit timer and fc
781 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
782 	 */
783 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
784 
785 	if ((hw)->mac_type == ICE_MAC_E830) {
786 		/* Retrieve the transmit timer */
787 		val = rd32(hw, E830_PRTMAC_CL01_PAUSE_QUANTA);
788 		tx_timer_val = val & E830_PRTMAC_CL01_PAUSE_QUANTA_CL0_PAUSE_QUANTA_M;
789 		cmd->tx_tmr_value = CPU_TO_LE16(tx_timer_val);
790 
791 		/* Retrieve the fc threshold */
792 		val = rd32(hw, E830_PRTMAC_CL01_QUANTA_THRESH);
793 		fc_thres_val = val & E830_PRTMAC_CL01_QUANTA_THRESH_CL0_QUANTA_THRESH_M;
794 	} else {
795 		/* Retrieve the transmit timer */
796 		val = rd32(hw, E800_PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(E800_IDX_OF_LFC));
797 		tx_timer_val = val &
798 			E800_PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
799 		cmd->tx_tmr_value = CPU_TO_LE16(tx_timer_val);
800 
801 		/* Retrieve the fc threshold */
802 		val = rd32(hw, E800_PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(E800_IDX_OF_LFC));
803 		fc_thres_val = val & E800_PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
804 	}
805 
806 	cmd->fc_refresh_threshold = CPU_TO_LE16(fc_thres_val);
807 }
808 
809 /**
810  * ice_aq_set_mac_cfg
811  * @hw: pointer to the HW struct
812  * @max_frame_size: Maximum Frame Size to be supported
813  * @auto_drop: Tell HW to drop packets if TC queue is blocked
814  * @cd: pointer to command details structure or NULL
815  *
816  * Set MAC configuration (0x0603)
817  */
818 int
819 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, bool auto_drop,
820 		   struct ice_sq_cd *cd)
821 {
822 	struct ice_aqc_set_mac_cfg *cmd;
823 	struct ice_aq_desc desc;
824 
825 	cmd = &desc.params.set_mac_cfg;
826 
827 	if (max_frame_size == 0)
828 		return ICE_ERR_PARAM;
829 
830 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
831 
832 	cmd->max_frame_size = CPU_TO_LE16(max_frame_size);
833 
834 	if (ice_is_fw_auto_drop_supported(hw) && auto_drop)
835 		cmd->drop_opts |= ICE_AQ_SET_MAC_AUTO_DROP_BLOCKING_PKTS;
836 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
837 
838 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
839 }
840 
841 /**
842  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
843  * @hw: pointer to the HW struct
844  */
845 int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
846 {
847 	struct ice_switch_info *sw;
848 	int status;
849 
850 	hw->switch_info = (struct ice_switch_info *)
851 			  ice_malloc(hw, sizeof(*hw->switch_info));
852 
853 	sw = hw->switch_info;
854 
855 	if (!sw)
856 		return ICE_ERR_NO_MEMORY;
857 
858 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
859 	sw->prof_res_bm_init = 0;
860 
861 	status = ice_init_def_sw_recp(hw, &hw->switch_info->recp_list);
862 	if (status) {
863 		ice_free(hw, hw->switch_info);
864 		return status;
865 	}
866 	return 0;
867 }
868 
869 /**
870  * ice_cleanup_fltr_mgmt_single - clears single filter mngt struct
871  * @hw: pointer to the HW struct
872  * @sw: pointer to switch info struct for which function clears filters
873  */
874 static void
875 ice_cleanup_fltr_mgmt_single(struct ice_hw *hw, struct ice_switch_info *sw)
876 {
877 	struct ice_vsi_list_map_info *v_pos_map;
878 	struct ice_vsi_list_map_info *v_tmp_map;
879 	struct ice_sw_recipe *recps;
880 	u8 i;
881 
882 	if (!sw)
883 		return;
884 
885 	LIST_FOR_EACH_ENTRY_SAFE(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
886 				 ice_vsi_list_map_info, list_entry) {
887 		LIST_DEL(&v_pos_map->list_entry);
888 		ice_free(hw, v_pos_map);
889 	}
890 	recps = sw->recp_list;
891 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
892 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
893 
894 		recps[i].root_rid = i;
895 		LIST_FOR_EACH_ENTRY_SAFE(rg_entry, tmprg_entry,
896 					 &recps[i].rg_list, ice_recp_grp_entry,
897 					 l_entry) {
898 			LIST_DEL(&rg_entry->l_entry);
899 			ice_free(hw, rg_entry);
900 		}
901 
902 		if (recps[i].adv_rule) {
903 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
904 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
905 
906 			ice_destroy_lock(&recps[i].filt_rule_lock);
907 			LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
908 						 &recps[i].filt_rules,
909 						 ice_adv_fltr_mgmt_list_entry,
910 						 list_entry) {
911 				LIST_DEL(&lst_itr->list_entry);
912 				ice_free(hw, lst_itr->lkups);
913 				ice_free(hw, lst_itr);
914 			}
915 		} else {
916 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
917 
918 			ice_destroy_lock(&recps[i].filt_rule_lock);
919 			LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
920 						 &recps[i].filt_rules,
921 						 ice_fltr_mgmt_list_entry,
922 						 list_entry) {
923 				LIST_DEL(&lst_itr->list_entry);
924 				ice_free(hw, lst_itr);
925 			}
926 		}
927 		if (recps[i].root_buf)
928 			ice_free(hw, recps[i].root_buf);
929 	}
930 	ice_rm_sw_replay_rule_info(hw, sw);
931 	ice_free(hw, sw->recp_list);
932 	ice_free(hw, sw);
933 }
934 
935 /**
936  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
937  * @hw: pointer to the HW struct
938  */
939 void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
940 {
941 	ice_cleanup_fltr_mgmt_single(hw, hw->switch_info);
942 }
943 
944 /**
945  * ice_get_itr_intrl_gran
946  * @hw: pointer to the HW struct
947  *
948  * Determines the ITR/INTRL granularities based on the maximum aggregate
949  * bandwidth according to the device's configuration during power-on.
950  */
951 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
952 {
953 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
954 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
955 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
956 
957 	switch (max_agg_bw) {
958 	case ICE_MAX_AGG_BW_200G:
959 	case ICE_MAX_AGG_BW_100G:
960 	case ICE_MAX_AGG_BW_50G:
961 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
962 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
963 		break;
964 	case ICE_MAX_AGG_BW_25G:
965 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
966 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
967 		break;
968 	}
969 }
970 
971 /**
972  * ice_print_rollback_msg - print FW rollback message
973  * @hw: pointer to the hardware structure
974  */
975 void ice_print_rollback_msg(struct ice_hw *hw)
976 {
977 	char nvm_str[ICE_NVM_VER_LEN] = { 0 };
978 	struct ice_orom_info *orom;
979 	struct ice_nvm_info *nvm;
980 
981 	orom = &hw->flash.orom;
982 	nvm = &hw->flash.nvm;
983 
984 	(void)SNPRINTF(nvm_str, sizeof(nvm_str), "%x.%02x 0x%x %d.%d.%d",
985 		 nvm->major, nvm->minor, nvm->eetrack, orom->major,
986 		 orom->build, orom->patch);
987 	ice_warn(hw,
988 		 "Firmware rollback mode detected. Current version is NVM: %s, FW: %d.%d. Device may exhibit limited functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware rollback mode\n",
989 		 nvm_str, hw->fw_maj_ver, hw->fw_min_ver);
990 }
991 
992 /**
993  * ice_set_umac_shared
994  * @hw: pointer to the hw struct
995  *
996  * Set boolean flag to allow unicast MAC sharing
997  */
998 void ice_set_umac_shared(struct ice_hw *hw)
999 {
1000 	hw->umac_shared = true;
1001 }
1002 
1003 /**
1004  * ice_init_hw - main hardware initialization routine
1005  * @hw: pointer to the hardware structure
1006  */
1007 int ice_init_hw(struct ice_hw *hw)
1008 {
1009 	struct ice_aqc_get_phy_caps_data *pcaps;
1010 	u16 mac_buf_len;
1011 	void *mac_buf;
1012 	int status;
1013 
1014 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1015 
1016 	/* Set MAC type based on DeviceID */
1017 	status = ice_set_mac_type(hw);
1018 	if (status)
1019 		return status;
1020 
1021 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
1022 			 PF_FUNC_RID_FUNCTION_NUMBER_M) >>
1023 		PF_FUNC_RID_FUNCTION_NUMBER_S;
1024 
1025 	status = ice_reset(hw, ICE_RESET_PFR);
1026 	if (status)
1027 		return status;
1028 	ice_get_itr_intrl_gran(hw);
1029 
1030 	hw->fw_vsi_num = ICE_DFLT_VSI_INVAL;
1031 
1032 	status = ice_create_all_ctrlq(hw);
1033 	if (status)
1034 		goto err_unroll_cqinit;
1035 
1036 	ice_fwlog_set_support_ena(hw);
1037 	status = ice_fwlog_set(hw, &hw->fwlog_cfg);
1038 	if (status) {
1039 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging, status %d.\n",
1040 			  status);
1041 	} else {
1042 		if (hw->fwlog_cfg.options & ICE_FWLOG_OPTION_REGISTER_ON_INIT) {
1043 			status = ice_fwlog_register(hw);
1044 			if (status)
1045 				ice_debug(hw, ICE_DBG_INIT, "Failed to register for FW logging events, status %d.\n",
1046 					  status);
1047 		} else {
1048 			status = ice_fwlog_unregister(hw);
1049 			if (status)
1050 				ice_debug(hw, ICE_DBG_INIT, "Failed to unregister for FW logging events, status %d.\n",
1051 					  status);
1052 		}
1053 	}
1054 
1055 	status = ice_init_nvm(hw);
1056 	if (status)
1057 		goto err_unroll_cqinit;
1058 
1059 	if (ice_get_fw_mode(hw) == ICE_FW_MODE_ROLLBACK)
1060 		ice_print_rollback_msg(hw);
1061 
1062 	if (!hw->skip_clear_pf) {
1063 		status = ice_clear_pf_cfg(hw);
1064 		if (status)
1065 			goto err_unroll_cqinit;
1066 	}
1067 
1068 	ice_clear_pxe_mode(hw);
1069 
1070 	status = ice_get_caps(hw);
1071 	if (status)
1072 		goto err_unroll_cqinit;
1073 
1074 	if (!hw->port_info)
1075 		hw->port_info = (struct ice_port_info *)
1076 			ice_malloc(hw, sizeof(*hw->port_info));
1077 	if (!hw->port_info) {
1078 		status = ICE_ERR_NO_MEMORY;
1079 		goto err_unroll_cqinit;
1080 	}
1081 
1082 	hw->port_info->loopback_mode = ICE_AQC_SET_P_PARAMS_LOOPBACK_MODE_NORMAL;
1083 
1084 	/* set the back pointer to HW */
1085 	hw->port_info->hw = hw;
1086 
1087 	/* Initialize port_info struct with switch configuration data */
1088 	status = ice_get_initial_sw_cfg(hw);
1089 	if (status)
1090 		goto err_unroll_alloc;
1091 
1092 	hw->evb_veb = true;
1093 	/* Query the allocated resources for Tx scheduler */
1094 	status = ice_sched_query_res_alloc(hw);
1095 	if (status) {
1096 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1097 		goto err_unroll_alloc;
1098 	}
1099 	ice_sched_get_psm_clk_freq(hw);
1100 
1101 	/* Initialize port_info struct with scheduler data */
1102 	status = ice_sched_init_port(hw->port_info);
1103 	if (status)
1104 		goto err_unroll_sched;
1105 	pcaps = (struct ice_aqc_get_phy_caps_data *)
1106 		ice_malloc(hw, sizeof(*pcaps));
1107 	if (!pcaps) {
1108 		status = ICE_ERR_NO_MEMORY;
1109 		goto err_unroll_sched;
1110 	}
1111 
1112 	/* Initialize port_info struct with PHY capabilities */
1113 	status = ice_aq_get_phy_caps(hw->port_info, false,
1114 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, NULL);
1115 	ice_free(hw, pcaps);
1116 	if (status)
1117 		ice_warn(hw, "Get PHY capabilities failed status = %d, continuing anyway\n",
1118 			 status);
1119 
1120 	/* Initialize port_info struct with link information */
1121 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1122 	if (status)
1123 		goto err_unroll_sched;
1124 	/* need a valid SW entry point to build a Tx tree */
1125 	if (!hw->sw_entry_point_layer) {
1126 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1127 		status = ICE_ERR_CFG;
1128 		goto err_unroll_sched;
1129 	}
1130 	INIT_LIST_HEAD(&hw->agg_list);
1131 	/* Initialize max burst size */
1132 	if (!hw->max_burst_size)
1133 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1134 	status = ice_init_fltr_mgmt_struct(hw);
1135 	if (status)
1136 		goto err_unroll_sched;
1137 
1138 	/* Get MAC information */
1139 
1140 	/* A single port can report up to two (LAN and WoL) addresses */
1141 	mac_buf = ice_calloc(hw, 2,
1142 			     sizeof(struct ice_aqc_manage_mac_read_resp));
1143 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1144 
1145 	if (!mac_buf) {
1146 		status = ICE_ERR_NO_MEMORY;
1147 		goto err_unroll_fltr_mgmt_struct;
1148 	}
1149 
1150 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1151 	ice_free(hw, mac_buf);
1152 
1153 	if (status)
1154 		goto err_unroll_fltr_mgmt_struct;
1155 
1156 	/* enable jumbo frame support at MAC level */
1157 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, false,
1158 				    NULL);
1159 	if (status)
1160 		goto err_unroll_fltr_mgmt_struct;
1161 
1162 	status = ice_init_hw_tbls(hw);
1163 	if (status)
1164 		goto err_unroll_fltr_mgmt_struct;
1165 	ice_init_lock(&hw->tnl_lock);
1166 
1167 	return 0;
1168 
1169 err_unroll_fltr_mgmt_struct:
1170 	ice_cleanup_fltr_mgmt_struct(hw);
1171 err_unroll_sched:
1172 	ice_sched_cleanup_all(hw);
1173 err_unroll_alloc:
1174 	ice_free(hw, hw->port_info);
1175 	hw->port_info = NULL;
1176 err_unroll_cqinit:
1177 	ice_destroy_all_ctrlq(hw);
1178 	return status;
1179 }
1180 
1181 /**
1182  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1183  * @hw: pointer to the hardware structure
1184  *
1185  * This should be called only during nominal operation, not as a result of
1186  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1187  * applicable initializations if it fails for any reason.
1188  */
1189 void ice_deinit_hw(struct ice_hw *hw)
1190 {
1191 	ice_cleanup_fltr_mgmt_struct(hw);
1192 
1193 	ice_sched_cleanup_all(hw);
1194 	ice_sched_clear_agg(hw);
1195 	ice_free_seg(hw);
1196 	ice_free_hw_tbls(hw);
1197 	ice_destroy_lock(&hw->tnl_lock);
1198 
1199 	if (hw->port_info) {
1200 		ice_free(hw, hw->port_info);
1201 		hw->port_info = NULL;
1202 	}
1203 
1204 	ice_destroy_all_ctrlq(hw);
1205 
1206 	/* Clear VSI contexts if not already cleared */
1207 	ice_clear_all_vsi_ctx(hw);
1208 }
1209 
1210 /**
1211  * ice_check_reset - Check to see if a global reset is complete
1212  * @hw: pointer to the hardware structure
1213  */
1214 int ice_check_reset(struct ice_hw *hw)
1215 {
1216 	u32 cnt, reg = 0, grst_timeout, uld_mask, reset_wait_cnt;
1217 
1218 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1219 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1220 	 * Add 1sec for outstanding AQ commands that can take a long time.
1221 	 */
1222 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1223 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1224 
1225 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1226 		ice_msec_delay(100, true);
1227 		reg = rd32(hw, GLGEN_RSTAT);
1228 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1229 			break;
1230 	}
1231 
1232 	if (cnt == grst_timeout) {
1233 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1234 		return ICE_ERR_RESET_FAILED;
1235 	}
1236 
1237 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1238 				 GLNVM_ULD_PCIER_DONE_1_M |\
1239 				 GLNVM_ULD_CORER_DONE_M |\
1240 				 GLNVM_ULD_GLOBR_DONE_M |\
1241 				 GLNVM_ULD_POR_DONE_M |\
1242 				 GLNVM_ULD_POR_DONE_1_M |\
1243 				 GLNVM_ULD_PCIER_DONE_2_M)
1244 
1245 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.iwarp ?
1246 					  GLNVM_ULD_PE_DONE_M : 0);
1247 
1248 	reset_wait_cnt = ICE_PF_RESET_WAIT_COUNT;
1249 
1250 	/* Device is Active; check Global Reset processes are done */
1251 	for (cnt = 0; cnt < reset_wait_cnt; cnt++) {
1252 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1253 		if (reg == uld_mask) {
1254 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1255 			break;
1256 		}
1257 		ice_msec_delay(10, true);
1258 	}
1259 
1260 	if (cnt == reset_wait_cnt) {
1261 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1262 			  reg);
1263 		return ICE_ERR_RESET_FAILED;
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 /**
1270  * ice_pf_reset - Reset the PF
1271  * @hw: pointer to the hardware structure
1272  *
1273  * If a global reset has been triggered, this function checks
1274  * for its completion and then issues the PF reset
1275  */
1276 static int ice_pf_reset(struct ice_hw *hw)
1277 {
1278 	u32 cnt, reg, reset_wait_cnt, cfg_lock_timeout;
1279 
1280 	/* If at function entry a global reset was already in progress, i.e.
1281 	 * state is not 'device active' or any of the reset done bits are not
1282 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1283 	 * global reset is done.
1284 	 */
1285 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1286 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1287 		/* poll on global reset currently in progress until done */
1288 		if (ice_check_reset(hw))
1289 			return ICE_ERR_RESET_FAILED;
1290 
1291 		return 0;
1292 	}
1293 
1294 	/* Reset the PF */
1295 	reg = rd32(hw, PFGEN_CTRL);
1296 
1297 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1298 
1299 	/* Wait for the PFR to complete. The wait time is the global config lock
1300 	 * timeout plus the PFR timeout which will account for a possible reset
1301 	 * that is occurring during a download package operation.
1302 	 */
1303 	reset_wait_cnt = ICE_PF_RESET_WAIT_COUNT;
1304 	cfg_lock_timeout = ICE_GLOBAL_CFG_LOCK_TIMEOUT;
1305 
1306 	for (cnt = 0; cnt < cfg_lock_timeout + reset_wait_cnt; cnt++) {
1307 		reg = rd32(hw, PFGEN_CTRL);
1308 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1309 			break;
1310 
1311 		ice_msec_delay(1, true);
1312 	}
1313 
1314 	if (cnt == cfg_lock_timeout + reset_wait_cnt) {
1315 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1316 		return ICE_ERR_RESET_FAILED;
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 /**
1323  * ice_reset - Perform different types of reset
1324  * @hw: pointer to the hardware structure
1325  * @req: reset request
1326  *
1327  * This function triggers a reset as specified by the req parameter.
1328  *
1329  * Note:
1330  * If anything other than a PF reset is triggered, PXE mode is restored.
1331  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1332  * interface has been restored in the rebuild flow.
1333  */
1334 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1335 {
1336 	u32 val = 0;
1337 
1338 	switch (req) {
1339 	case ICE_RESET_PFR:
1340 		return ice_pf_reset(hw);
1341 	case ICE_RESET_CORER:
1342 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1343 		val = GLGEN_RTRIG_CORER_M;
1344 		break;
1345 	case ICE_RESET_GLOBR:
1346 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1347 		val = GLGEN_RTRIG_GLOBR_M;
1348 		break;
1349 	default:
1350 		return ICE_ERR_PARAM;
1351 	}
1352 
1353 	val |= rd32(hw, GLGEN_RTRIG);
1354 	wr32(hw, GLGEN_RTRIG, val);
1355 	ice_flush(hw);
1356 
1357 	/* wait for the FW to be ready */
1358 	return ice_check_reset(hw);
1359 }
1360 
1361 /**
1362  * ice_copy_rxq_ctx_to_hw
1363  * @hw: pointer to the hardware structure
1364  * @ice_rxq_ctx: pointer to the rxq context
1365  * @rxq_index: the index of the Rx queue
1366  *
1367  * Copies rxq context from dense structure to HW register space
1368  */
1369 static int
1370 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1371 {
1372 	u8 i;
1373 
1374 	if (!ice_rxq_ctx)
1375 		return ICE_ERR_BAD_PTR;
1376 
1377 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1378 		return ICE_ERR_PARAM;
1379 
1380 	/* Copy each dword separately to HW */
1381 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1382 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1383 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1384 
1385 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1386 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 /**
1393  * ice_copy_rxq_ctx_from_hw - Copy rxq context register from HW
1394  * @hw: pointer to the hardware structure
1395  * @ice_rxq_ctx: pointer to the rxq context
1396  * @rxq_index: the index of the Rx queue
1397  *
1398  * Copies rxq context from HW register space to dense structure
1399  */
1400 static int
1401 ice_copy_rxq_ctx_from_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1402 {
1403 	u8 i;
1404 
1405 	if (!ice_rxq_ctx)
1406 		return ICE_ERR_BAD_PTR;
1407 
1408 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1409 		return ICE_ERR_PARAM;
1410 
1411 	/* Copy each dword separately from HW */
1412 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1413 		u32 *ctx = (u32 *)(ice_rxq_ctx + (i * sizeof(u32)));
1414 
1415 		*ctx = rd32(hw, QRX_CONTEXT(i, rxq_index));
1416 
1417 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, *ctx);
1418 	}
1419 
1420 	return 0;
1421 }
1422 
1423 /* LAN Rx Queue Context */
1424 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1425 	/* Field		Width	LSB */
1426 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1427 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1428 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1429 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1430 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1431 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1432 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1433 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1434 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1435 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1436 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1437 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1438 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1439 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1440 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1441 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1442 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1443 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1444 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1445 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1446 	{ 0 }
1447 };
1448 
1449 /**
1450  * ice_write_rxq_ctx
1451  * @hw: pointer to the hardware structure
1452  * @rlan_ctx: pointer to the rxq context
1453  * @rxq_index: the index of the Rx queue
1454  *
1455  * Converts rxq context from sparse to dense structure and then writes
1456  * it to HW register space and enables the hardware to prefetch descriptors
1457  * instead of only fetching them on demand
1458  */
1459 int
1460 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1461 		  u32 rxq_index)
1462 {
1463 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1464 
1465 	if (!rlan_ctx)
1466 		return ICE_ERR_BAD_PTR;
1467 
1468 	rlan_ctx->prefena = 1;
1469 
1470 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1471 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1472 }
1473 
1474 /**
1475  * ice_read_rxq_ctx - Read rxq context from HW
1476  * @hw: pointer to the hardware structure
1477  * @rlan_ctx: pointer to the rxq context
1478  * @rxq_index: the index of the Rx queue
1479  *
1480  * Read rxq context from HW register space and then converts it from dense
1481  * structure to sparse
1482  */
1483 int
1484 ice_read_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1485 		 u32 rxq_index)
1486 {
1487 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1488 	int status;
1489 
1490 	if (!rlan_ctx)
1491 		return ICE_ERR_BAD_PTR;
1492 
1493 	status = ice_copy_rxq_ctx_from_hw(hw, ctx_buf, rxq_index);
1494 	if (status)
1495 		return status;
1496 
1497 	return ice_get_ctx(ctx_buf, (u8 *)rlan_ctx, ice_rlan_ctx_info);
1498 }
1499 
1500 /**
1501  * ice_clear_rxq_ctx
1502  * @hw: pointer to the hardware structure
1503  * @rxq_index: the index of the Rx queue to clear
1504  *
1505  * Clears rxq context in HW register space
1506  */
1507 int ice_clear_rxq_ctx(struct ice_hw *hw, u32 rxq_index)
1508 {
1509 	u8 i;
1510 
1511 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1512 		return ICE_ERR_PARAM;
1513 
1514 	/* Clear each dword register separately */
1515 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++)
1516 		wr32(hw, QRX_CONTEXT(i, rxq_index), 0);
1517 
1518 	return 0;
1519 }
1520 
1521 /* LAN Tx Queue Context used for set Tx config by ice_aqc_opc_add_txqs,
1522  * Bit[0-175] is valid
1523  */
1524 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1525 				    /* Field			Width	LSB */
1526 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1527 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1528 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1529 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1530 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1531 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1532 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1533 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1534 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1535 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1536 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1537 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1538 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1539 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1540 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1541 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1542 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1543 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1544 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1545 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1546 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1547 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1548 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1549 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1550 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1551 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1552 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1553 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1554 	{ 0 }
1555 };
1556 
1557 /**
1558  * ice_copy_tx_cmpltnq_ctx_to_hw
1559  * @hw: pointer to the hardware structure
1560  * @ice_tx_cmpltnq_ctx: pointer to the Tx completion queue context
1561  * @tx_cmpltnq_index: the index of the completion queue
1562  *
1563  * Copies Tx completion queue context from dense structure to HW register space
1564  */
1565 static int
1566 ice_copy_tx_cmpltnq_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_cmpltnq_ctx,
1567 			      u32 tx_cmpltnq_index)
1568 {
1569 	u8 i;
1570 
1571 	if (!ice_tx_cmpltnq_ctx)
1572 		return ICE_ERR_BAD_PTR;
1573 
1574 	if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1575 		return ICE_ERR_PARAM;
1576 
1577 	/* Copy each dword separately to HW */
1578 	for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++) {
1579 		wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index),
1580 		     *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1581 
1582 		ice_debug(hw, ICE_DBG_QCTX, "cmpltnqdata[%d]: %08X\n", i,
1583 			  *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 /* LAN Tx Completion Queue Context */
1590 static const struct ice_ctx_ele ice_tx_cmpltnq_ctx_info[] = {
1591 				       /* Field			Width   LSB */
1592 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, base,			57,	0),
1593 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, q_len,		18,	64),
1594 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, generation,		1,	96),
1595 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, wrt_ptr,		22,	97),
1596 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, pf_num,		3,	128),
1597 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_num,		10,	131),
1598 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_type,		2,	141),
1599 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, tph_desc_wr,		1,	160),
1600 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cpuid,		8,	161),
1601 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cmpltn_cache,		512,	192),
1602 	{ 0 }
1603 };
1604 
1605 /**
1606  * ice_write_tx_cmpltnq_ctx
1607  * @hw: pointer to the hardware structure
1608  * @tx_cmpltnq_ctx: pointer to the completion queue context
1609  * @tx_cmpltnq_index: the index of the completion queue
1610  *
1611  * Converts completion queue context from sparse to dense structure and then
1612  * writes it to HW register space
1613  */
1614 int
1615 ice_write_tx_cmpltnq_ctx(struct ice_hw *hw,
1616 			 struct ice_tx_cmpltnq_ctx *tx_cmpltnq_ctx,
1617 			 u32 tx_cmpltnq_index)
1618 {
1619 	u8 ctx_buf[ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1620 
1621 	ice_set_ctx(hw, (u8 *)tx_cmpltnq_ctx, ctx_buf, ice_tx_cmpltnq_ctx_info);
1622 	return ice_copy_tx_cmpltnq_ctx_to_hw(hw, ctx_buf, tx_cmpltnq_index);
1623 }
1624 
1625 /**
1626  * ice_clear_tx_cmpltnq_ctx
1627  * @hw: pointer to the hardware structure
1628  * @tx_cmpltnq_index: the index of the completion queue to clear
1629  *
1630  * Clears Tx completion queue context in HW register space
1631  */
1632 int
1633 ice_clear_tx_cmpltnq_ctx(struct ice_hw *hw, u32 tx_cmpltnq_index)
1634 {
1635 	u8 i;
1636 
1637 	if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1638 		return ICE_ERR_PARAM;
1639 
1640 	/* Clear each dword register separately */
1641 	for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++)
1642 		wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index), 0);
1643 
1644 	return 0;
1645 }
1646 
1647 /**
1648  * ice_copy_tx_drbell_q_ctx_to_hw
1649  * @hw: pointer to the hardware structure
1650  * @ice_tx_drbell_q_ctx: pointer to the doorbell queue context
1651  * @tx_drbell_q_index: the index of the doorbell queue
1652  *
1653  * Copies doorbell queue context from dense structure to HW register space
1654  */
1655 static int
1656 ice_copy_tx_drbell_q_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_drbell_q_ctx,
1657 			       u32 tx_drbell_q_index)
1658 {
1659 	u8 i;
1660 
1661 	if (!ice_tx_drbell_q_ctx)
1662 		return ICE_ERR_BAD_PTR;
1663 
1664 	if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1665 		return ICE_ERR_PARAM;
1666 
1667 	/* Copy each dword separately to HW */
1668 	for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++) {
1669 		wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index),
1670 		     *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1671 
1672 		ice_debug(hw, ICE_DBG_QCTX, "tx_drbell_qdata[%d]: %08X\n", i,
1673 			  *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1674 	}
1675 
1676 	return 0;
1677 }
1678 
1679 /* LAN Tx Doorbell Queue Context info */
1680 static const struct ice_ctx_ele ice_tx_drbell_q_ctx_info[] = {
1681 					/* Field		Width   LSB */
1682 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, base,		57,	0),
1683 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, ring_len,		13,	64),
1684 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, pf_num,		3,	80),
1685 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, vf_num,		8,	84),
1686 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, vmvf_type,		2,	94),
1687 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, cpuid,		8,	96),
1688 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_rd,		1,	104),
1689 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_wr,		1,	108),
1690 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, db_q_en,		1,	112),
1691 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_head,		13,	128),
1692 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_tail,		13,	144),
1693 	{ 0 }
1694 };
1695 
1696 /**
1697  * ice_write_tx_drbell_q_ctx
1698  * @hw: pointer to the hardware structure
1699  * @tx_drbell_q_ctx: pointer to the doorbell queue context
1700  * @tx_drbell_q_index: the index of the doorbell queue
1701  *
1702  * Converts doorbell queue context from sparse to dense structure and then
1703  * writes it to HW register space
1704  */
1705 int
1706 ice_write_tx_drbell_q_ctx(struct ice_hw *hw,
1707 			  struct ice_tx_drbell_q_ctx *tx_drbell_q_ctx,
1708 			  u32 tx_drbell_q_index)
1709 {
1710 	u8 ctx_buf[ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1711 
1712 	ice_set_ctx(hw, (u8 *)tx_drbell_q_ctx, ctx_buf,
1713 		    ice_tx_drbell_q_ctx_info);
1714 	return ice_copy_tx_drbell_q_ctx_to_hw(hw, ctx_buf, tx_drbell_q_index);
1715 }
1716 
1717 /**
1718  * ice_clear_tx_drbell_q_ctx
1719  * @hw: pointer to the hardware structure
1720  * @tx_drbell_q_index: the index of the doorbell queue to clear
1721  *
1722  * Clears doorbell queue context in HW register space
1723  */
1724 int
1725 ice_clear_tx_drbell_q_ctx(struct ice_hw *hw, u32 tx_drbell_q_index)
1726 {
1727 	u8 i;
1728 
1729 	if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1730 		return ICE_ERR_PARAM;
1731 
1732 	/* Clear each dword register separately */
1733 	for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++)
1734 		wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index), 0);
1735 
1736 	return 0;
1737 }
1738 
1739 /* Sideband Queue command wrappers */
1740 
1741 /**
1742  * ice_get_sbq - returns the right control queue to use for sideband
1743  * @hw: pointer to the hardware structure
1744  */
1745 static struct ice_ctl_q_info *ice_get_sbq(struct ice_hw *hw)
1746 {
1747 	if (!ice_is_generic_mac(hw))
1748 		return &hw->adminq;
1749 	return &hw->sbq;
1750 }
1751 
1752 /**
1753  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1754  * @hw: pointer to the HW struct
1755  * @desc: descriptor describing the command
1756  * @buf: buffer to use for indirect commands (NULL for direct commands)
1757  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1758  * @cd: pointer to command details structure
1759  */
1760 static int
1761 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1762 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1763 {
1764 	return ice_sq_send_cmd(hw, ice_get_sbq(hw), (struct ice_aq_desc *)desc,
1765 			       buf, buf_size, cd);
1766 }
1767 
1768 /**
1769  * ice_sbq_send_cmd_nolock - send Sideband Queue command to Sideband Queue
1770  *                           but do not lock sq_lock
1771  * @hw: pointer to the HW struct
1772  * @desc: descriptor describing the command
1773  * @buf: buffer to use for indirect commands (NULL for direct commands)
1774  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1775  * @cd: pointer to command details structure
1776  */
1777 static int
1778 ice_sbq_send_cmd_nolock(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1779 			void *buf, u16 buf_size, struct ice_sq_cd *cd)
1780 {
1781 	return ice_sq_send_cmd_nolock(hw, ice_get_sbq(hw),
1782 				      (struct ice_aq_desc *)desc, buf,
1783 				      buf_size, cd);
1784 }
1785 
1786 /**
1787  * ice_sbq_rw_reg_lp - Fill Sideband Queue command, with lock parameter
1788  * @hw: pointer to the HW struct
1789  * @in: message info to be filled in descriptor
1790  * @flag: flag to fill desc structure
1791  * @lock: true to lock the sq_lock (the usual case); false if the sq_lock has
1792  *        already been locked at a higher level
1793  */
1794 int ice_sbq_rw_reg_lp(struct ice_hw *hw, struct ice_sbq_msg_input *in,
1795 		      u16 flag, bool lock)
1796 {
1797 	struct ice_sbq_cmd_desc desc = {0};
1798 	struct ice_sbq_msg_req msg = {0};
1799 	u16 msg_len;
1800 	int status;
1801 
1802 	msg_len = sizeof(msg);
1803 
1804 	msg.dest_dev = in->dest_dev;
1805 	msg.opcode = in->opcode;
1806 	msg.flags = ICE_SBQ_MSG_FLAGS;
1807 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1808 	msg.msg_addr_low = CPU_TO_LE16(in->msg_addr_low);
1809 	msg.msg_addr_high = CPU_TO_LE32(in->msg_addr_high);
1810 
1811 	if (in->opcode)
1812 		msg.data = CPU_TO_LE32(in->data);
1813 	else
1814 		/* data read comes back in completion, so shorten the struct by
1815 		 * sizeof(msg.data)
1816 		 */
1817 		msg_len -= sizeof(msg.data);
1818 
1819 	desc.flags = CPU_TO_LE16(flag);
1820 	desc.opcode = CPU_TO_LE16(ice_sbq_opc_neigh_dev_req);
1821 	desc.param0.cmd_len = CPU_TO_LE16(msg_len);
1822 	if (lock)
1823 		status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1824 	else
1825 		status = ice_sbq_send_cmd_nolock(hw, &desc, &msg, msg_len,
1826 						 NULL);
1827 	if (!status && !in->opcode)
1828 		in->data = LE32_TO_CPU
1829 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1830 	return status;
1831 }
1832 
1833 /**
1834  * ice_sbq_rw_reg - Fill Sideband Queue command
1835  * @hw: pointer to the HW struct
1836  * @in: message info to be filled in descriptor
1837  * @flag: flag to fill desc structure
1838  */
1839 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flag)
1840 {
1841 	return ice_sbq_rw_reg_lp(hw, in, flag, true);
1842 }
1843 
1844 /**
1845  * ice_sbq_lock - Lock the sideband queue's sq_lock
1846  * @hw: pointer to the HW struct
1847  */
1848 void ice_sbq_lock(struct ice_hw *hw)
1849 {
1850 	ice_acquire_lock(&ice_get_sbq(hw)->sq_lock);
1851 }
1852 
1853 /**
1854  * ice_sbq_unlock - Unlock the sideband queue's sq_lock
1855  * @hw: pointer to the HW struct
1856  */
1857 void ice_sbq_unlock(struct ice_hw *hw)
1858 {
1859 	ice_release_lock(&ice_get_sbq(hw)->sq_lock);
1860 }
1861 
1862 /* FW Admin Queue command wrappers */
1863 
1864 /**
1865  * ice_should_retry_sq_send_cmd
1866  * @opcode: AQ opcode
1867  *
1868  * Decide if we should retry the send command routine for the ATQ, depending
1869  * on the opcode.
1870  */
1871 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1872 {
1873 	switch (opcode) {
1874 	case ice_aqc_opc_dnl_get_status:
1875 	case ice_aqc_opc_dnl_run:
1876 	case ice_aqc_opc_dnl_call:
1877 	case ice_aqc_opc_dnl_read_sto:
1878 	case ice_aqc_opc_dnl_write_sto:
1879 	case ice_aqc_opc_dnl_set_breakpoints:
1880 	case ice_aqc_opc_dnl_read_log:
1881 	case ice_aqc_opc_get_link_topo:
1882 	case ice_aqc_opc_done_alt_write:
1883 	case ice_aqc_opc_lldp_stop:
1884 	case ice_aqc_opc_lldp_start:
1885 	case ice_aqc_opc_lldp_filter_ctrl:
1886 		return true;
1887 	}
1888 
1889 	return false;
1890 }
1891 
1892 /**
1893  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1894  * @hw: pointer to the HW struct
1895  * @cq: pointer to the specific Control queue
1896  * @desc: prefilled descriptor describing the command
1897  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1898  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1899  * @cd: pointer to command details structure
1900  *
1901  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1902  * Queue if the EBUSY AQ error is returned.
1903  */
1904 static int
1905 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1906 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1907 		      struct ice_sq_cd *cd)
1908 {
1909 	struct ice_aq_desc desc_cpy;
1910 	bool is_cmd_for_retry;
1911 	u8 *buf_cpy = NULL;
1912 	u8 idx = 0;
1913 	u16 opcode;
1914 	int status;
1915 
1916 	opcode = LE16_TO_CPU(desc->opcode);
1917 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1918 	ice_memset(&desc_cpy, 0, sizeof(desc_cpy), ICE_NONDMA_MEM);
1919 
1920 	if (is_cmd_for_retry) {
1921 		if (buf) {
1922 			buf_cpy = (u8 *)ice_malloc(hw, buf_size);
1923 			if (!buf_cpy)
1924 				return ICE_ERR_NO_MEMORY;
1925 		}
1926 
1927 		ice_memcpy(&desc_cpy, desc, sizeof(desc_cpy),
1928 			   ICE_NONDMA_TO_NONDMA);
1929 	}
1930 
1931 	do {
1932 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1933 
1934 		if (!is_cmd_for_retry || !status ||
1935 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1936 			break;
1937 
1938 		if (buf_cpy)
1939 			ice_memcpy(buf, buf_cpy, buf_size,
1940 				   ICE_NONDMA_TO_NONDMA);
1941 
1942 		ice_memcpy(desc, &desc_cpy, sizeof(desc_cpy),
1943 			   ICE_NONDMA_TO_NONDMA);
1944 
1945 		ice_msec_delay(ICE_SQ_SEND_DELAY_TIME_MS, false);
1946 
1947 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1948 
1949 	if (buf_cpy)
1950 		ice_free(hw, buf_cpy);
1951 
1952 	return status;
1953 }
1954 
1955 /**
1956  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1957  * @hw: pointer to the HW struct
1958  * @desc: descriptor describing the command
1959  * @buf: buffer to use for indirect commands (NULL for direct commands)
1960  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1961  * @cd: pointer to command details structure
1962  *
1963  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1964  */
1965 int
1966 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1967 		u16 buf_size, struct ice_sq_cd *cd)
1968 {
1969 	return ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1970 }
1971 
1972 /**
1973  * ice_aq_get_fw_ver
1974  * @hw: pointer to the HW struct
1975  * @cd: pointer to command details structure or NULL
1976  *
1977  * Get the firmware version (0x0001) from the admin queue commands
1978  */
1979 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1980 {
1981 	struct ice_aqc_get_ver *resp;
1982 	struct ice_aq_desc desc;
1983 	int status;
1984 
1985 	resp = &desc.params.get_ver;
1986 
1987 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1988 
1989 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1990 
1991 	if (!status) {
1992 		hw->fw_branch = resp->fw_branch;
1993 		hw->fw_maj_ver = resp->fw_major;
1994 		hw->fw_min_ver = resp->fw_minor;
1995 		hw->fw_patch = resp->fw_patch;
1996 		hw->fw_build = LE32_TO_CPU(resp->fw_build);
1997 		hw->api_branch = resp->api_branch;
1998 		hw->api_maj_ver = resp->api_major;
1999 		hw->api_min_ver = resp->api_minor;
2000 		hw->api_patch = resp->api_patch;
2001 	}
2002 
2003 	return status;
2004 }
2005 
2006 /**
2007  * ice_aq_send_driver_ver
2008  * @hw: pointer to the HW struct
2009  * @dv: driver's major, minor version
2010  * @cd: pointer to command details structure or NULL
2011  *
2012  * Send the driver version (0x0002) to the firmware
2013  */
2014 int
2015 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
2016 		       struct ice_sq_cd *cd)
2017 {
2018 	struct ice_aqc_driver_ver *cmd;
2019 	struct ice_aq_desc desc;
2020 	u16 len;
2021 
2022 	cmd = &desc.params.driver_ver;
2023 
2024 	if (!dv)
2025 		return ICE_ERR_PARAM;
2026 
2027 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
2028 
2029 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
2030 	cmd->major_ver = dv->major_ver;
2031 	cmd->minor_ver = dv->minor_ver;
2032 	cmd->build_ver = dv->build_ver;
2033 	cmd->subbuild_ver = dv->subbuild_ver;
2034 
2035 	len = 0;
2036 	while (len < sizeof(dv->driver_string) &&
2037 	       IS_ASCII(dv->driver_string[len]) && dv->driver_string[len])
2038 		len++;
2039 
2040 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
2041 }
2042 
2043 /**
2044  * ice_aq_q_shutdown
2045  * @hw: pointer to the HW struct
2046  * @unloading: is the driver unloading itself
2047  *
2048  * Tell the Firmware that we're shutting down the AdminQ and whether
2049  * or not the driver is unloading as well (0x0003).
2050  */
2051 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
2052 {
2053 	struct ice_aqc_q_shutdown *cmd;
2054 	struct ice_aq_desc desc;
2055 
2056 	cmd = &desc.params.q_shutdown;
2057 
2058 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
2059 
2060 	if (unloading)
2061 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
2062 
2063 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2064 }
2065 
2066 /**
2067  * ice_aq_req_res
2068  * @hw: pointer to the HW struct
2069  * @res: resource ID
2070  * @access: access type
2071  * @sdp_number: resource number
2072  * @timeout: the maximum time in ms that the driver may hold the resource
2073  * @cd: pointer to command details structure or NULL
2074  *
2075  * Requests common resource using the admin queue commands (0x0008).
2076  * When attempting to acquire the Global Config Lock, the driver can
2077  * learn of three states:
2078  *  1) 0 - acquired lock, and can perform download package
2079  *  2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
2080  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
2081  *                          successfully downloaded the package; the driver does
2082  *                          not have to download the package and can continue
2083  *                          loading
2084  *
2085  * Note that if the caller is in an acquire lock, perform action, release lock
2086  * phase of operation, it is possible that the FW may detect a timeout and issue
2087  * a CORER. In this case, the driver will receive a CORER interrupt and will
2088  * have to determine its cause. The calling thread that is handling this flow
2089  * will likely get an error propagated back to it indicating the Download
2090  * Package, Update Package or the Release Resource AQ commands timed out.
2091  */
2092 static int
2093 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2094 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
2095 	       struct ice_sq_cd *cd)
2096 {
2097 	struct ice_aqc_req_res *cmd_resp;
2098 	struct ice_aq_desc desc;
2099 	int status;
2100 
2101 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2102 
2103 	cmd_resp = &desc.params.res_owner;
2104 
2105 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
2106 
2107 	cmd_resp->res_id = CPU_TO_LE16(res);
2108 	cmd_resp->access_type = CPU_TO_LE16(access);
2109 	cmd_resp->res_number = CPU_TO_LE32(sdp_number);
2110 	cmd_resp->timeout = CPU_TO_LE32(*timeout);
2111 	*timeout = 0;
2112 
2113 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2114 
2115 	/* The completion specifies the maximum time in ms that the driver
2116 	 * may hold the resource in the Timeout field.
2117 	 */
2118 
2119 	/* Global config lock response utilizes an additional status field.
2120 	 *
2121 	 * If the Global config lock resource is held by some other driver, the
2122 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
2123 	 * and the timeout field indicates the maximum time the current owner
2124 	 * of the resource has to free it.
2125 	 */
2126 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
2127 		if (LE16_TO_CPU(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
2128 			*timeout = LE32_TO_CPU(cmd_resp->timeout);
2129 			return 0;
2130 		} else if (LE16_TO_CPU(cmd_resp->status) ==
2131 			   ICE_AQ_RES_GLBL_IN_PROG) {
2132 			*timeout = LE32_TO_CPU(cmd_resp->timeout);
2133 			return ICE_ERR_AQ_ERROR;
2134 		} else if (LE16_TO_CPU(cmd_resp->status) ==
2135 			   ICE_AQ_RES_GLBL_DONE) {
2136 			return ICE_ERR_AQ_NO_WORK;
2137 		}
2138 
2139 		/* invalid FW response, force a timeout immediately */
2140 		*timeout = 0;
2141 		return ICE_ERR_AQ_ERROR;
2142 	}
2143 
2144 	/* If the resource is held by some other driver, the command completes
2145 	 * with a busy return value and the timeout field indicates the maximum
2146 	 * time the current owner of the resource has to free it.
2147 	 */
2148 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
2149 		*timeout = LE32_TO_CPU(cmd_resp->timeout);
2150 
2151 	return status;
2152 }
2153 
2154 /**
2155  * ice_aq_release_res
2156  * @hw: pointer to the HW struct
2157  * @res: resource ID
2158  * @sdp_number: resource number
2159  * @cd: pointer to command details structure or NULL
2160  *
2161  * release common resource using the admin queue commands (0x0009)
2162  */
2163 static int
2164 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
2165 		   struct ice_sq_cd *cd)
2166 {
2167 	struct ice_aqc_req_res *cmd;
2168 	struct ice_aq_desc desc;
2169 
2170 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2171 
2172 	cmd = &desc.params.res_owner;
2173 
2174 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
2175 
2176 	cmd->res_id = CPU_TO_LE16(res);
2177 	cmd->res_number = CPU_TO_LE32(sdp_number);
2178 
2179 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2180 }
2181 
2182 /**
2183  * ice_acquire_res
2184  * @hw: pointer to the HW structure
2185  * @res: resource ID
2186  * @access: access type (read or write)
2187  * @timeout: timeout in milliseconds
2188  *
2189  * This function will attempt to acquire the ownership of a resource.
2190  */
2191 int
2192 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2193 		enum ice_aq_res_access_type access, u32 timeout)
2194 {
2195 #define ICE_RES_POLLING_DELAY_MS	10
2196 	u32 delay = ICE_RES_POLLING_DELAY_MS;
2197 	u32 time_left = timeout;
2198 	int status;
2199 
2200 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2201 
2202 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2203 
2204 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
2205 	 * previously acquired the resource and performed any necessary updates;
2206 	 * in this case the caller does not obtain the resource and has no
2207 	 * further work to do.
2208 	 */
2209 	if (status == ICE_ERR_AQ_NO_WORK)
2210 		goto ice_acquire_res_exit;
2211 
2212 	if (status)
2213 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
2214 
2215 	/* If necessary, poll until the current lock owner timeouts */
2216 	timeout = time_left;
2217 	while (status && timeout && time_left) {
2218 		ice_msec_delay(delay, true);
2219 		timeout = (timeout > delay) ? timeout - delay : 0;
2220 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2221 
2222 		if (status == ICE_ERR_AQ_NO_WORK)
2223 			/* lock free, but no work to do */
2224 			break;
2225 
2226 		if (!status)
2227 			/* lock acquired */
2228 			break;
2229 	}
2230 	if (status && status != ICE_ERR_AQ_NO_WORK)
2231 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
2232 
2233 ice_acquire_res_exit:
2234 	if (status == ICE_ERR_AQ_NO_WORK) {
2235 		if (access == ICE_RES_WRITE)
2236 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
2237 		else
2238 			ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
2239 	}
2240 	return status;
2241 }
2242 
2243 /**
2244  * ice_release_res
2245  * @hw: pointer to the HW structure
2246  * @res: resource ID
2247  *
2248  * This function will release a resource using the proper Admin Command.
2249  */
2250 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2251 {
2252 	u32 total_delay = 0;
2253 	int status;
2254 
2255 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2256 
2257 	status = ice_aq_release_res(hw, res, 0, NULL);
2258 
2259 	/* there are some rare cases when trying to release the resource
2260 	 * results in an admin queue timeout, so handle them correctly
2261 	 */
2262 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
2263 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
2264 		ice_msec_delay(1, true);
2265 		status = ice_aq_release_res(hw, res, 0, NULL);
2266 		total_delay++;
2267 	}
2268 }
2269 
2270 /**
2271  * ice_aq_alloc_free_res - command to allocate/free resources
2272  * @hw: pointer to the HW struct
2273  * @num_entries: number of resource entries in buffer
2274  * @buf: Indirect buffer to hold data parameters and response
2275  * @buf_size: size of buffer for indirect commands
2276  * @opc: pass in the command opcode
2277  * @cd: pointer to command details structure or NULL
2278  *
2279  * Helper function to allocate/free resources using the admin queue commands
2280  */
2281 int
2282 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
2283 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2284 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2285 {
2286 	struct ice_aqc_alloc_free_res_cmd *cmd;
2287 	struct ice_aq_desc desc;
2288 
2289 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2290 
2291 	cmd = &desc.params.sw_res_ctrl;
2292 
2293 	if (!buf)
2294 		return ICE_ERR_PARAM;
2295 
2296 	if (buf_size < FLEX_ARRAY_SIZE(buf, elem, num_entries))
2297 		return ICE_ERR_PARAM;
2298 
2299 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2300 
2301 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
2302 
2303 	cmd->num_entries = CPU_TO_LE16(num_entries);
2304 
2305 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2306 }
2307 
2308 /**
2309  * ice_alloc_hw_res - allocate resource
2310  * @hw: pointer to the HW struct
2311  * @type: type of resource
2312  * @num: number of resources to allocate
2313  * @btm: allocate from bottom
2314  * @res: pointer to array that will receive the resources
2315  */
2316 int
2317 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2318 {
2319 	struct ice_aqc_alloc_free_res_elem *buf;
2320 	u16 buf_len;
2321 	int status;
2322 
2323 	buf_len = ice_struct_size(buf, elem, num);
2324 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
2325 	if (!buf)
2326 		return ICE_ERR_NO_MEMORY;
2327 
2328 	/* Prepare buffer to allocate resource. */
2329 	buf->num_elems = CPU_TO_LE16(num);
2330 	buf->res_type = CPU_TO_LE16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2331 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2332 	if (btm)
2333 		buf->res_type |= CPU_TO_LE16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2334 
2335 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
2336 				       ice_aqc_opc_alloc_res, NULL);
2337 	if (status)
2338 		goto ice_alloc_res_exit;
2339 
2340 	ice_memcpy(res, buf->elem, sizeof(*buf->elem) * num,
2341 		   ICE_NONDMA_TO_NONDMA);
2342 
2343 ice_alloc_res_exit:
2344 	ice_free(hw, buf);
2345 	return status;
2346 }
2347 
2348 /**
2349  * ice_free_hw_res - free allocated HW resource
2350  * @hw: pointer to the HW struct
2351  * @type: type of resource to free
2352  * @num: number of resources
2353  * @res: pointer to array that contains the resources to free
2354  */
2355 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2356 {
2357 	struct ice_aqc_alloc_free_res_elem *buf;
2358 	u16 buf_len;
2359 	int status;
2360 
2361 	buf_len = ice_struct_size(buf, elem, num);
2362 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
2363 	if (!buf)
2364 		return ICE_ERR_NO_MEMORY;
2365 
2366 	/* Prepare buffer to free resource. */
2367 	buf->num_elems = CPU_TO_LE16(num);
2368 	buf->res_type = CPU_TO_LE16(type);
2369 	ice_memcpy(buf->elem, res, sizeof(*buf->elem) * num,
2370 		   ICE_NONDMA_TO_NONDMA);
2371 
2372 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
2373 				       ice_aqc_opc_free_res, NULL);
2374 	if (status)
2375 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2376 
2377 	ice_free(hw, buf);
2378 	return status;
2379 }
2380 
2381 /**
2382  * ice_get_num_per_func - determine number of resources per PF
2383  * @hw: pointer to the HW structure
2384  * @max: value to be evenly split between each PF
2385  *
2386  * Determine the number of valid functions by going through the bitmap returned
2387  * from parsing capabilities and use this to calculate the number of resources
2388  * per PF based on the max value passed in.
2389  */
2390 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2391 {
2392 	u8 funcs;
2393 
2394 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2395 	funcs = ice_hweight8(hw->dev_caps.common_cap.valid_functions &
2396 			     ICE_CAPS_VALID_FUNCS_M);
2397 
2398 	if (!funcs)
2399 		return 0;
2400 
2401 	return max / funcs;
2402 }
2403 
2404 /**
2405  * ice_print_led_caps - print LED capabilities
2406  * @hw: pointer to the ice_hw instance
2407  * @caps: pointer to common caps instance
2408  * @prefix: string to prefix when printing
2409  * @dbg: set to indicate debug print
2410  */
2411 static void
2412 ice_print_led_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2413 		   char const *prefix, bool dbg)
2414 {
2415 	u8 i;
2416 
2417 	if (dbg)
2418 		ice_debug(hw, ICE_DBG_INIT, "%s: led_pin_num = %u\n", prefix,
2419 			  caps->led_pin_num);
2420 	else
2421 		ice_info(hw, "%s: led_pin_num = %u\n", prefix,
2422 			 caps->led_pin_num);
2423 
2424 	for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_LED; i++) {
2425 		if (!caps->led[i])
2426 			continue;
2427 
2428 		if (dbg)
2429 			ice_debug(hw, ICE_DBG_INIT, "%s: led[%u] = %u\n",
2430 				  prefix, i, caps->led[i]);
2431 		else
2432 			ice_info(hw, "%s: led[%u] = %u\n", prefix, i,
2433 				 caps->led[i]);
2434 	}
2435 }
2436 
2437 /**
2438  * ice_print_sdp_caps - print SDP capabilities
2439  * @hw: pointer to the ice_hw instance
2440  * @caps: pointer to common caps instance
2441  * @prefix: string to prefix when printing
2442  * @dbg: set to indicate debug print
2443  */
2444 static void
2445 ice_print_sdp_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2446 		   char const *prefix, bool dbg)
2447 {
2448 	u8 i;
2449 
2450 	if (dbg)
2451 		ice_debug(hw, ICE_DBG_INIT, "%s: sdp_pin_num = %u\n", prefix,
2452 			  caps->sdp_pin_num);
2453 	else
2454 		ice_info(hw, "%s: sdp_pin_num = %u\n", prefix,
2455 			 caps->sdp_pin_num);
2456 
2457 	for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_SDP; i++) {
2458 		if (!caps->sdp[i])
2459 			continue;
2460 
2461 		if (dbg)
2462 			ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%u] = %u\n",
2463 				  prefix, i, caps->sdp[i]);
2464 		else
2465 			ice_info(hw, "%s: sdp[%u] = %u\n", prefix,
2466 				 i, caps->sdp[i]);
2467 	}
2468 }
2469 
2470 /**
2471  * ice_parse_common_caps - parse common device/function capabilities
2472  * @hw: pointer to the HW struct
2473  * @caps: pointer to common capabilities structure
2474  * @elem: the capability element to parse
2475  * @prefix: message prefix for tracing capabilities
2476  *
2477  * Given a capability element, extract relevant details into the common
2478  * capability structure.
2479  *
2480  * Returns: true if the capability matches one of the common capability ids,
2481  * false otherwise.
2482  */
2483 static bool
2484 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2485 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2486 {
2487 	u32 logical_id = LE32_TO_CPU(elem->logical_id);
2488 	u32 phys_id = LE32_TO_CPU(elem->phys_id);
2489 	u32 number = LE32_TO_CPU(elem->number);
2490 	u16 cap = LE16_TO_CPU(elem->cap);
2491 	bool found = true;
2492 
2493 	switch (cap) {
2494 	case ICE_AQC_CAPS_SWITCHING_MODE:
2495 		caps->switching_mode = number;
2496 		ice_debug(hw, ICE_DBG_INIT, "%s: switching_mode = %u\n", prefix,
2497 			  caps->switching_mode);
2498 		break;
2499 	case ICE_AQC_CAPS_MANAGEABILITY_MODE:
2500 		caps->mgmt_mode = number;
2501 		caps->mgmt_protocols_mctp = logical_id;
2502 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_mode = %u\n", prefix,
2503 			  caps->mgmt_mode);
2504 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_protocols_mctp = %u\n", prefix,
2505 			  caps->mgmt_protocols_mctp);
2506 		break;
2507 	case ICE_AQC_CAPS_OS2BMC:
2508 		caps->os2bmc = number;
2509 		ice_debug(hw, ICE_DBG_INIT, "%s: os2bmc = %u\n", prefix, caps->os2bmc);
2510 		break;
2511 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2512 		caps->valid_functions = number;
2513 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = 0x%x\n", prefix,
2514 			  caps->valid_functions);
2515 		break;
2516 	case ICE_AQC_CAPS_SRIOV:
2517 		caps->sr_iov_1_1 = (number == 1);
2518 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %u\n", prefix,
2519 			  caps->sr_iov_1_1);
2520 		break;
2521 	case ICE_AQC_CAPS_VMDQ:
2522 		caps->vmdq = (number == 1);
2523 		ice_debug(hw, ICE_DBG_INIT, "%s: vmdq = %u\n", prefix, caps->vmdq);
2524 		break;
2525 	case ICE_AQC_CAPS_802_1QBG:
2526 		caps->evb_802_1_qbg = (number == 1);
2527 		ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbg = %u\n", prefix, number);
2528 		break;
2529 	case ICE_AQC_CAPS_802_1BR:
2530 		caps->evb_802_1_qbh = (number == 1);
2531 		ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbh = %u\n", prefix, number);
2532 		break;
2533 	case ICE_AQC_CAPS_DCB:
2534 		caps->dcb = (number == 1);
2535 		caps->active_tc_bitmap = logical_id;
2536 		caps->maxtc = phys_id;
2537 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %u\n", prefix, caps->dcb);
2538 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = 0x%x\n", prefix,
2539 			  caps->active_tc_bitmap);
2540 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %u\n", prefix, caps->maxtc);
2541 		break;
2542 	case ICE_AQC_CAPS_ISCSI:
2543 		caps->iscsi = (number == 1);
2544 		ice_debug(hw, ICE_DBG_INIT, "%s: iscsi = %u\n", prefix, caps->iscsi);
2545 		break;
2546 	case ICE_AQC_CAPS_RSS:
2547 		caps->rss_table_size = number;
2548 		caps->rss_table_entry_width = logical_id;
2549 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %u\n", prefix,
2550 			  caps->rss_table_size);
2551 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %u\n", prefix,
2552 			  caps->rss_table_entry_width);
2553 		break;
2554 	case ICE_AQC_CAPS_RXQS:
2555 		caps->num_rxq = number;
2556 		caps->rxq_first_id = phys_id;
2557 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %u\n", prefix,
2558 			  caps->num_rxq);
2559 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %u\n", prefix,
2560 			  caps->rxq_first_id);
2561 		break;
2562 	case ICE_AQC_CAPS_TXQS:
2563 		caps->num_txq = number;
2564 		caps->txq_first_id = phys_id;
2565 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %u\n", prefix,
2566 			  caps->num_txq);
2567 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %u\n", prefix,
2568 			  caps->txq_first_id);
2569 		break;
2570 	case ICE_AQC_CAPS_MSIX:
2571 		caps->num_msix_vectors = number;
2572 		caps->msix_vector_first_id = phys_id;
2573 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %u\n", prefix,
2574 			  caps->num_msix_vectors);
2575 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %u\n", prefix,
2576 			  caps->msix_vector_first_id);
2577 		break;
2578 	case ICE_AQC_CAPS_NVM_MGMT:
2579 		caps->sec_rev_disabled =
2580 			(number & ICE_NVM_MGMT_SEC_REV_DISABLED) ?
2581 			true : false;
2582 		ice_debug(hw, ICE_DBG_INIT, "%s: sec_rev_disabled = %d\n", prefix,
2583 			  caps->sec_rev_disabled);
2584 		caps->update_disabled =
2585 			(number & ICE_NVM_MGMT_UPDATE_DISABLED) ?
2586 			true : false;
2587 		ice_debug(hw, ICE_DBG_INIT, "%s: update_disabled = %d\n", prefix,
2588 			  caps->update_disabled);
2589 		caps->nvm_unified_update =
2590 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2591 			true : false;
2592 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2593 			  caps->nvm_unified_update);
2594 		caps->netlist_auth =
2595 			(number & ICE_NVM_MGMT_NETLIST_AUTH_SUPPORT) ?
2596 			true : false;
2597 		ice_debug(hw, ICE_DBG_INIT, "%s: netlist_auth = %d\n", prefix,
2598 			  caps->netlist_auth);
2599 		break;
2600 	case ICE_AQC_CAPS_CEM:
2601 		caps->mgmt_cem = (number == 1);
2602 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_cem = %u\n", prefix,
2603 			  caps->mgmt_cem);
2604 		break;
2605 	case ICE_AQC_CAPS_IWARP:
2606 		caps->iwarp = (number == 1);
2607 		ice_debug(hw, ICE_DBG_INIT, "%s: iwarp = %u\n", prefix, caps->iwarp);
2608 		break;
2609 	case ICE_AQC_CAPS_ROCEV2_LAG:
2610 		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2611 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2612 			  prefix, caps->roce_lag);
2613 		break;
2614 	case ICE_AQC_CAPS_LED:
2615 		if (phys_id < ICE_MAX_SUPPORTED_GPIO_LED) {
2616 			caps->led[phys_id] = true;
2617 			caps->led_pin_num++;
2618 			ice_debug(hw, ICE_DBG_INIT, "%s: led[%u] = 1\n", prefix, phys_id);
2619 		}
2620 		break;
2621 	case ICE_AQC_CAPS_SDP:
2622 		if (phys_id < ICE_MAX_SUPPORTED_GPIO_SDP) {
2623 			caps->sdp[phys_id] = true;
2624 			caps->sdp_pin_num++;
2625 			ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%u] = 1\n", prefix, phys_id);
2626 		}
2627 		break;
2628 	case ICE_AQC_CAPS_WR_CSR_PROT:
2629 		caps->wr_csr_prot = number;
2630 		caps->wr_csr_prot |= (u64)logical_id << 32;
2631 		ice_debug(hw, ICE_DBG_INIT, "%s: wr_csr_prot = 0x%llX\n", prefix,
2632 			  (unsigned long long)caps->wr_csr_prot);
2633 		break;
2634 	case ICE_AQC_CAPS_WOL_PROXY:
2635 		caps->num_wol_proxy_fltr = number;
2636 		caps->wol_proxy_vsi_seid = logical_id;
2637 		caps->apm_wol_support = !!(phys_id & ICE_WOL_SUPPORT_M);
2638 		caps->acpi_prog_mthd = !!(phys_id &
2639 					  ICE_ACPI_PROG_MTHD_M);
2640 		caps->proxy_support = !!(phys_id & ICE_PROXY_SUPPORT_M);
2641 		ice_debug(hw, ICE_DBG_INIT, "%s: num_wol_proxy_fltr = %u\n", prefix,
2642 			  caps->num_wol_proxy_fltr);
2643 		ice_debug(hw, ICE_DBG_INIT, "%s: wol_proxy_vsi_seid = %u\n", prefix,
2644 			  caps->wol_proxy_vsi_seid);
2645 		ice_debug(hw, ICE_DBG_INIT, "%s: apm_wol_support = %u\n",
2646 			  prefix, caps->apm_wol_support);
2647 		break;
2648 	case ICE_AQC_CAPS_MAX_MTU:
2649 		caps->max_mtu = number;
2650 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %u\n",
2651 			  prefix, caps->max_mtu);
2652 		break;
2653 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2654 		caps->pcie_reset_avoidance = (number > 0);
2655 		ice_debug(hw, ICE_DBG_INIT,
2656 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2657 			  caps->pcie_reset_avoidance);
2658 		break;
2659 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2660 		caps->reset_restrict_support = (number == 1);
2661 		ice_debug(hw, ICE_DBG_INIT,
2662 			  "%s: reset_restrict_support = %d\n", prefix,
2663 			  caps->reset_restrict_support);
2664 		break;
2665 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG0:
2666 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG1:
2667 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG2:
2668 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG3:
2669 	{
2670 		u8 index = (u8)(cap - ICE_AQC_CAPS_EXT_TOPO_DEV_IMG0);
2671 
2672 		caps->ext_topo_dev_img_ver_high[index] = number;
2673 		caps->ext_topo_dev_img_ver_low[index] = logical_id;
2674 		caps->ext_topo_dev_img_part_num[index] =
2675 			(phys_id & ICE_EXT_TOPO_DEV_IMG_PART_NUM_M) >>
2676 			ICE_EXT_TOPO_DEV_IMG_PART_NUM_S;
2677 		caps->ext_topo_dev_img_load_en[index] =
2678 			(phys_id & ICE_EXT_TOPO_DEV_IMG_LOAD_EN) != 0;
2679 		caps->ext_topo_dev_img_prog_en[index] =
2680 			(phys_id & ICE_EXT_TOPO_DEV_IMG_PROG_EN) != 0;
2681 		caps->ext_topo_dev_img_ver_schema[index] =
2682 			(phys_id & ICE_EXT_TOPO_DEV_IMG_VER_SCHEMA) != 0;
2683 		ice_debug(hw, ICE_DBG_INIT,
2684 			  "%s: ext_topo_dev_img_ver_high[%d] = %u\n",
2685 			  prefix, index,
2686 			  caps->ext_topo_dev_img_ver_high[index]);
2687 		ice_debug(hw, ICE_DBG_INIT,
2688 			  "%s: ext_topo_dev_img_ver_low[%d] = %u\n",
2689 			  prefix, index,
2690 			  caps->ext_topo_dev_img_ver_low[index]);
2691 		ice_debug(hw, ICE_DBG_INIT,
2692 			  "%s: ext_topo_dev_img_part_num[%d] = %u\n",
2693 			  prefix, index,
2694 			  caps->ext_topo_dev_img_part_num[index]);
2695 		ice_debug(hw, ICE_DBG_INIT,
2696 			  "%s: ext_topo_dev_img_load_en[%d] = %d\n",
2697 			  prefix, index,
2698 			  caps->ext_topo_dev_img_load_en[index]);
2699 		ice_debug(hw, ICE_DBG_INIT,
2700 			  "%s: ext_topo_dev_img_prog_en[%d] = %d\n",
2701 			  prefix, index,
2702 			  caps->ext_topo_dev_img_prog_en[index]);
2703 		ice_debug(hw, ICE_DBG_INIT,
2704 			  "%s: ext_topo_dev_img_ver_schema[%d] = %d\n",
2705 			  prefix, index,
2706 			  caps->ext_topo_dev_img_ver_schema[index]);
2707 		break;
2708 	}
2709 	case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2710 		caps->tx_sched_topo_comp_mode_en = (number == 1);
2711 		break;
2712 	case ICE_AQC_CAPS_DYN_FLATTENING:
2713 		caps->dyn_flattening_en = (number == 1);
2714 		ice_debug(hw, ICE_DBG_INIT, "%s: dyn_flattening_en = %d\n",
2715 			  prefix, caps->dyn_flattening_en);
2716 		break;
2717 	case ICE_AQC_CAPS_OROM_RECOVERY_UPDATE:
2718 		caps->orom_recovery_update = (number == 1);
2719 		ice_debug(hw, ICE_DBG_INIT, "%s: orom_recovery_update = %d\n",
2720 			  prefix, caps->orom_recovery_update);
2721 		break;
2722 	case ICE_AQC_CAPS_NEXT_CLUSTER_ID:
2723 		caps->next_cluster_id_support = (number == 1);
2724 		ice_debug(hw, ICE_DBG_INIT, "%s: next_cluster_id_support = %d\n",
2725 			  prefix, caps->next_cluster_id_support);
2726 		break;
2727 	default:
2728 		/* Not one of the recognized common capabilities */
2729 		found = false;
2730 	}
2731 
2732 	return found;
2733 }
2734 
2735 /**
2736  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2737  * @hw: pointer to the HW structure
2738  * @caps: pointer to capabilities structure to fix
2739  *
2740  * Re-calculate the capabilities that are dependent on the number of physical
2741  * ports; i.e. some features are not supported or function differently on
2742  * devices with more than 4 ports.
2743  */
2744 static void
2745 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2746 {
2747 	/* This assumes device capabilities are always scanned before function
2748 	 * capabilities during the initialization flow.
2749 	 */
2750 	if (hw->dev_caps.num_funcs > 4) {
2751 		/* Max 4 TCs per port */
2752 		caps->maxtc = 4;
2753 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %u (based on #ports)\n",
2754 			  caps->maxtc);
2755 		if (caps->iwarp) {
2756 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2757 			caps->iwarp = 0;
2758 		}
2759 
2760 		/* print message only when processing device capabilities
2761 		 * during initialization.
2762 		 */
2763 		if (caps == &hw->dev_caps.common_cap)
2764 			ice_info(hw, "RDMA functionality is not available with the current device configuration.\n");
2765 	}
2766 }
2767 
2768 /**
2769  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2770  * @hw: pointer to the HW struct
2771  * @func_p: pointer to function capabilities structure
2772  * @cap: pointer to the capability element to parse
2773  *
2774  * Extract function capabilities for ICE_AQC_CAPS_VF.
2775  */
2776 static void
2777 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2778 		       struct ice_aqc_list_caps_elem *cap)
2779 {
2780 	u32 number = LE32_TO_CPU(cap->number);
2781 	u32 logical_id = LE32_TO_CPU(cap->logical_id);
2782 
2783 	func_p->num_allocd_vfs = number;
2784 	func_p->vf_base_id = logical_id;
2785 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %u\n",
2786 		  func_p->num_allocd_vfs);
2787 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %u\n",
2788 		  func_p->vf_base_id);
2789 }
2790 
2791 /**
2792  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2793  * @hw: pointer to the HW struct
2794  * @func_p: pointer to function capabilities structure
2795  * @cap: pointer to the capability element to parse
2796  *
2797  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2798  */
2799 static void
2800 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2801 			struct ice_aqc_list_caps_elem *cap)
2802 {
2803 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2804 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %u\n",
2805 		  LE32_TO_CPU(cap->number));
2806 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %u\n",
2807 		  func_p->guar_num_vsi);
2808 }
2809 
2810 /**
2811  * ice_parse_func_caps - Parse function capabilities
2812  * @hw: pointer to the HW struct
2813  * @func_p: pointer to function capabilities structure
2814  * @buf: buffer containing the function capability records
2815  * @cap_count: the number of capabilities
2816  *
2817  * Helper function to parse function (0x000A) capabilities list. For
2818  * capabilities shared between device and function, this relies on
2819  * ice_parse_common_caps.
2820  *
2821  * Loop through the list of provided capabilities and extract the relevant
2822  * data into the function capabilities structured.
2823  */
2824 static void
2825 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2826 		    void *buf, u32 cap_count)
2827 {
2828 	struct ice_aqc_list_caps_elem *cap_resp;
2829 	u32 i;
2830 
2831 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2832 
2833 	ice_memset(func_p, 0, sizeof(*func_p), ICE_NONDMA_MEM);
2834 
2835 	for (i = 0; i < cap_count; i++) {
2836 		u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2837 		bool found;
2838 
2839 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2840 					      &cap_resp[i], "func caps");
2841 
2842 		switch (cap) {
2843 		case ICE_AQC_CAPS_VF:
2844 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2845 			break;
2846 		case ICE_AQC_CAPS_VSI:
2847 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2848 			break;
2849 		default:
2850 			/* Don't list common capabilities as unknown */
2851 			if (!found)
2852 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2853 					  i, cap);
2854 			break;
2855 		}
2856 	}
2857 
2858 	ice_print_led_caps(hw, &func_p->common_cap, "func caps", true);
2859 	ice_print_sdp_caps(hw, &func_p->common_cap, "func caps", true);
2860 
2861 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2862 }
2863 
2864 /**
2865  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2866  * @hw: pointer to the HW struct
2867  * @dev_p: pointer to device capabilities structure
2868  * @cap: capability element to parse
2869  *
2870  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2871  */
2872 static void
2873 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2874 			      struct ice_aqc_list_caps_elem *cap)
2875 {
2876 	u32 number = LE32_TO_CPU(cap->number);
2877 
2878 	dev_p->num_funcs = ice_hweight32(number);
2879 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %u\n",
2880 		  dev_p->num_funcs);
2881 
2882 }
2883 
2884 /**
2885  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2886  * @hw: pointer to the HW struct
2887  * @dev_p: pointer to device capabilities structure
2888  * @cap: capability element to parse
2889  *
2890  * Parse ICE_AQC_CAPS_VF for device capabilities.
2891  */
2892 static void
2893 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2894 		      struct ice_aqc_list_caps_elem *cap)
2895 {
2896 	u32 number = LE32_TO_CPU(cap->number);
2897 
2898 	dev_p->num_vfs_exposed = number;
2899 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %u\n",
2900 		  dev_p->num_vfs_exposed);
2901 }
2902 
2903 /**
2904  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2905  * @hw: pointer to the HW struct
2906  * @dev_p: pointer to device capabilities structure
2907  * @cap: capability element to parse
2908  *
2909  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2910  */
2911 static void
2912 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2913 		       struct ice_aqc_list_caps_elem *cap)
2914 {
2915 	u32 number = LE32_TO_CPU(cap->number);
2916 
2917 	dev_p->num_vsi_allocd_to_host = number;
2918 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %u\n",
2919 		  dev_p->num_vsi_allocd_to_host);
2920 }
2921 
2922 /**
2923  * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2924  * @hw: pointer to the HW struct
2925  * @dev_p: pointer to device capabilities structure
2926  * @cap: capability element to parse
2927  *
2928  * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2929  */
2930 static void
2931 ice_parse_nac_topo_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2932 			    struct ice_aqc_list_caps_elem *cap)
2933 {
2934 	dev_p->nac_topo.mode = LE32_TO_CPU(cap->number);
2935 	dev_p->nac_topo.id = LE32_TO_CPU(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2936 
2937 	ice_info(hw, "PF is configured in %s mode with IP instance ID %u\n",
2938 		 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2939 		 "primary" : "secondary", dev_p->nac_topo.id);
2940 
2941 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2942 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2943 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2944 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2945 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %u\n",
2946 		  dev_p->nac_topo.id);
2947 }
2948 
2949 /**
2950  * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2951  * @hw: pointer to the HW struct
2952  * @dev_p: pointer to device capabilities structure
2953  * @cap: capability element to parse
2954  *
2955  * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2956  * enabled sensors.
2957  */
2958 static void
2959 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2960 			     struct ice_aqc_list_caps_elem *cap)
2961 {
2962 	dev_p->supported_sensors = LE32_TO_CPU(cap->number);
2963 
2964 	ice_debug(hw, ICE_DBG_INIT,
2965 		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2966 		  dev_p->supported_sensors);
2967 }
2968 
2969 /**
2970  * ice_parse_dev_caps - Parse device capabilities
2971  * @hw: pointer to the HW struct
2972  * @dev_p: pointer to device capabilities structure
2973  * @buf: buffer containing the device capability records
2974  * @cap_count: the number of capabilities
2975  *
2976  * Helper device to parse device (0x000B) capabilities list. For
2977  * capabilities shared between device and function, this relies on
2978  * ice_parse_common_caps.
2979  *
2980  * Loop through the list of provided capabilities and extract the relevant
2981  * data into the device capabilities structured.
2982  */
2983 static void
2984 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2985 		   void *buf, u32 cap_count)
2986 {
2987 	struct ice_aqc_list_caps_elem *cap_resp;
2988 	u32 i;
2989 
2990 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2991 
2992 	ice_memset(dev_p, 0, sizeof(*dev_p), ICE_NONDMA_MEM);
2993 
2994 	for (i = 0; i < cap_count; i++) {
2995 		u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2996 		bool found;
2997 
2998 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2999 					      &cap_resp[i], "dev caps");
3000 
3001 		switch (cap) {
3002 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
3003 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
3004 			break;
3005 		case ICE_AQC_CAPS_VF:
3006 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
3007 			break;
3008 		case ICE_AQC_CAPS_VSI:
3009 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
3010 			break;
3011 		case ICE_AQC_CAPS_NAC_TOPOLOGY:
3012 			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
3013 			break;
3014 		case ICE_AQC_CAPS_SENSOR_READING:
3015 			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
3016 			break;
3017 		default:
3018 			/* Don't list common capabilities as unknown */
3019 			if (!found)
3020 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%u]: 0x%x\n",
3021 					  i, cap);
3022 			break;
3023 		}
3024 	}
3025 
3026 	ice_print_led_caps(hw, &dev_p->common_cap, "dev caps", true);
3027 	ice_print_sdp_caps(hw, &dev_p->common_cap, "dev caps", true);
3028 
3029 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
3030 }
3031 
3032 /**
3033  * ice_aq_get_netlist_node
3034  * @hw: pointer to the hw struct
3035  * @cmd: get_link_topo AQ structure
3036  * @node_part_number: output node part number if node found
3037  * @node_handle: output node handle parameter if node found
3038  */
3039 int
3040 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
3041 			u8 *node_part_number, u16 *node_handle)
3042 {
3043 	struct ice_aq_desc desc;
3044 
3045 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
3046 	desc.params.get_link_topo = *cmd;
3047 
3048 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
3049 		return ICE_ERR_NOT_SUPPORTED;
3050 
3051 	if (node_handle)
3052 		*node_handle =
3053 			LE16_TO_CPU(desc.params.get_link_topo.addr.handle);
3054 	if (node_part_number)
3055 		*node_part_number = desc.params.get_link_topo.node_part_num;
3056 
3057 	return 0;
3058 }
3059 
3060 #define MAX_NETLIST_SIZE 10
3061 /**
3062  * ice_find_netlist_node
3063  * @hw: pointer to the hw struct
3064  * @node_type_ctx: type of netlist node to look for
3065  * @node_part_number: node part number to look for
3066  * @node_handle: output parameter if node found - optional
3067  *
3068  * Scan the netlist for a node handle of the given node type and part number.
3069  *
3070  * If node_handle is non-NULL it will be modified on function exit. It is only
3071  * valid if the function returns zero, and should be ignored on any non-zero
3072  * return value.
3073  *
3074  * Returns: 0 if the node is found, ICE_ERR_DOES_NOT_EXIST if no handle was
3075  * found, and an error code on failure to access the AQ.
3076  */
3077 int
3078 ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx, u8 node_part_number,
3079 		      u16 *node_handle)
3080 {
3081 	u8 idx;
3082 
3083 	for (idx = 0; idx < MAX_NETLIST_SIZE; idx++) {
3084 		struct ice_aqc_get_link_topo cmd;
3085 		u8 rec_node_part_number;
3086 		int status;
3087 
3088 		memset(&cmd, 0, sizeof(cmd));
3089 
3090 		cmd.addr.topo_params.node_type_ctx =
3091 			(node_type_ctx << ICE_AQC_LINK_TOPO_NODE_TYPE_S);
3092 		cmd.addr.topo_params.index = idx;
3093 
3094 		status = ice_aq_get_netlist_node(hw, &cmd,
3095 						 &rec_node_part_number,
3096 						 node_handle);
3097 		if (status)
3098 			return status;
3099 
3100 		if (rec_node_part_number == node_part_number)
3101 			return 0;
3102 	}
3103 
3104 	return ICE_ERR_DOES_NOT_EXIST;
3105 }
3106 
3107 /**
3108  * ice_aq_list_caps - query function/device capabilities
3109  * @hw: pointer to the HW struct
3110  * @buf: a buffer to hold the capabilities
3111  * @buf_size: size of the buffer
3112  * @cap_count: if not NULL, set to the number of capabilities reported
3113  * @opc: capabilities type to discover, device or function
3114  * @cd: pointer to command details structure or NULL
3115  *
3116  * Get the function (0x000A) or device (0x000B) capabilities description from
3117  * firmware and store it in the buffer.
3118  *
3119  * If the cap_count pointer is not NULL, then it is set to the number of
3120  * capabilities firmware will report. Note that if the buffer size is too
3121  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
3122  * cap_count will still be updated in this case. It is recommended that the
3123  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
3124  * firmware could return) to avoid this.
3125  */
3126 static int
3127 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
3128 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
3129 {
3130 	struct ice_aqc_list_caps *cmd;
3131 	struct ice_aq_desc desc;
3132 	int status;
3133 
3134 	cmd = &desc.params.get_cap;
3135 
3136 	if (opc != ice_aqc_opc_list_func_caps &&
3137 	    opc != ice_aqc_opc_list_dev_caps)
3138 		return ICE_ERR_PARAM;
3139 
3140 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
3141 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
3142 
3143 	if (cap_count)
3144 		*cap_count = LE32_TO_CPU(cmd->count);
3145 
3146 	return status;
3147 }
3148 
3149 /**
3150  * ice_discover_dev_caps - Read and extract device capabilities
3151  * @hw: pointer to the hardware structure
3152  * @dev_caps: pointer to device capabilities structure
3153  *
3154  * Read the device capabilities and extract them into the dev_caps structure
3155  * for later use.
3156  */
3157 static int
3158 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
3159 {
3160 	u32 cap_count = 0;
3161 	void *cbuf;
3162 	int status;
3163 
3164 	cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
3165 	if (!cbuf)
3166 		return ICE_ERR_NO_MEMORY;
3167 
3168 	/* Although the driver doesn't know the number of capabilities the
3169 	 * device will return, we can simply send a 4KB buffer, the maximum
3170 	 * possible size that firmware can return.
3171 	 */
3172 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
3173 
3174 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3175 				  ice_aqc_opc_list_dev_caps, NULL);
3176 	if (!status)
3177 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
3178 	ice_free(hw, cbuf);
3179 
3180 	return status;
3181 }
3182 
3183 /**
3184  * ice_discover_func_caps - Read and extract function capabilities
3185  * @hw: pointer to the hardware structure
3186  * @func_caps: pointer to function capabilities structure
3187  *
3188  * Read the function capabilities and extract them into the func_caps structure
3189  * for later use.
3190  */
3191 static int
3192 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
3193 {
3194 	u32 cap_count = 0;
3195 	void *cbuf;
3196 	int status;
3197 
3198 	cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
3199 	if (!cbuf)
3200 		return ICE_ERR_NO_MEMORY;
3201 
3202 	/* Although the driver doesn't know the number of capabilities the
3203 	 * device will return, we can simply send a 4KB buffer, the maximum
3204 	 * possible size that firmware can return.
3205 	 */
3206 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
3207 
3208 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3209 				  ice_aqc_opc_list_func_caps, NULL);
3210 	if (!status)
3211 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
3212 	ice_free(hw, cbuf);
3213 
3214 	return status;
3215 }
3216 
3217 /**
3218  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
3219  * @hw: pointer to the hardware structure
3220  */
3221 void ice_set_safe_mode_caps(struct ice_hw *hw)
3222 {
3223 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
3224 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
3225 	struct ice_hw_common_caps cached_caps;
3226 	u32 num_funcs;
3227 
3228 	/* cache some func_caps values that should be restored after memset */
3229 	cached_caps = func_caps->common_cap;
3230 
3231 	/* unset func capabilities */
3232 	memset(func_caps, 0, sizeof(*func_caps));
3233 
3234 #define ICE_RESTORE_FUNC_CAP(name) \
3235 	func_caps->common_cap.name = cached_caps.name
3236 
3237 	/* restore cached values */
3238 	ICE_RESTORE_FUNC_CAP(valid_functions);
3239 	ICE_RESTORE_FUNC_CAP(txq_first_id);
3240 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
3241 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
3242 	ICE_RESTORE_FUNC_CAP(max_mtu);
3243 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
3244 
3245 	/* one Tx and one Rx queue in safe mode */
3246 	func_caps->common_cap.num_rxq = 1;
3247 	func_caps->common_cap.num_txq = 1;
3248 
3249 	/* two MSIX vectors, one for traffic and one for misc causes */
3250 	func_caps->common_cap.num_msix_vectors = 2;
3251 	func_caps->guar_num_vsi = 1;
3252 
3253 	/* cache some dev_caps values that should be restored after memset */
3254 	cached_caps = dev_caps->common_cap;
3255 	num_funcs = dev_caps->num_funcs;
3256 
3257 	/* unset dev capabilities */
3258 	memset(dev_caps, 0, sizeof(*dev_caps));
3259 
3260 #define ICE_RESTORE_DEV_CAP(name) \
3261 	dev_caps->common_cap.name = cached_caps.name
3262 
3263 	/* restore cached values */
3264 	ICE_RESTORE_DEV_CAP(valid_functions);
3265 	ICE_RESTORE_DEV_CAP(txq_first_id);
3266 	ICE_RESTORE_DEV_CAP(rxq_first_id);
3267 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
3268 	ICE_RESTORE_DEV_CAP(max_mtu);
3269 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
3270 	dev_caps->num_funcs = num_funcs;
3271 
3272 	/* one Tx and one Rx queue per function in safe mode */
3273 	dev_caps->common_cap.num_rxq = num_funcs;
3274 	dev_caps->common_cap.num_txq = num_funcs;
3275 
3276 	/* two MSIX vectors per function */
3277 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
3278 }
3279 
3280 /**
3281  * ice_get_caps - get info about the HW
3282  * @hw: pointer to the hardware structure
3283  */
3284 int ice_get_caps(struct ice_hw *hw)
3285 {
3286 	int status;
3287 
3288 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
3289 	if (status)
3290 		return status;
3291 
3292 	return ice_discover_func_caps(hw, &hw->func_caps);
3293 }
3294 
3295 /**
3296  * ice_aq_manage_mac_write - manage MAC address write command
3297  * @hw: pointer to the HW struct
3298  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3299  * @flags: flags to control write behavior
3300  * @cd: pointer to command details structure or NULL
3301  *
3302  * This function is used to write MAC address to the NVM (0x0108).
3303  */
3304 int
3305 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3306 			struct ice_sq_cd *cd)
3307 {
3308 	struct ice_aqc_manage_mac_write *cmd;
3309 	struct ice_aq_desc desc;
3310 
3311 	cmd = &desc.params.mac_write;
3312 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3313 
3314 	cmd->flags = flags;
3315 	ice_memcpy(cmd->mac_addr, mac_addr, ETH_ALEN, ICE_NONDMA_TO_NONDMA);
3316 
3317 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3318 }
3319 
3320 /**
3321  * ice_aq_clear_pxe_mode
3322  * @hw: pointer to the HW struct
3323  *
3324  * Tell the firmware that the driver is taking over from PXE (0x0110).
3325  */
3326 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3327 {
3328 	struct ice_aq_desc desc;
3329 
3330 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3331 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3332 
3333 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3334 }
3335 
3336 /**
3337  * ice_clear_pxe_mode - clear pxe operations mode
3338  * @hw: pointer to the HW struct
3339  *
3340  * Make sure all PXE mode settings are cleared, including things
3341  * like descriptor fetch/write-back mode.
3342  */
3343 void ice_clear_pxe_mode(struct ice_hw *hw)
3344 {
3345 	if (ice_check_sq_alive(hw, &hw->adminq))
3346 		ice_aq_clear_pxe_mode(hw);
3347 }
3348 
3349 /**
3350  * ice_aq_set_port_params - set physical port parameters
3351  * @pi: pointer to the port info struct
3352  * @bad_frame_vsi: defines the VSI to which bad frames are forwarded
3353  * @save_bad_pac: if set packets with errors are forwarded to the bad frames VSI
3354  * @pad_short_pac: if set transmit packets smaller than 60 bytes are padded
3355  * @double_vlan: if set double VLAN is enabled
3356  * @cd: pointer to command details structure or NULL
3357  *
3358  * Set Physical port parameters (0x0203)
3359  */
3360 int
3361 ice_aq_set_port_params(struct ice_port_info *pi, u16 bad_frame_vsi,
3362 		       bool save_bad_pac, bool pad_short_pac, bool double_vlan,
3363 		       struct ice_sq_cd *cd)
3364 {
3365 	struct ice_aqc_set_port_params *cmd;
3366 	struct ice_hw *hw = pi->hw;
3367 	struct ice_aq_desc desc;
3368 	u16 cmd_flags = 0;
3369 
3370 	cmd = &desc.params.set_port_params;
3371 
3372 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3373 	cmd->lb_mode = pi->loopback_mode |
3374 	               ICE_AQC_SET_P_PARAMS_LOOPBACK_MODE_VALID;
3375 	cmd->bad_frame_vsi = CPU_TO_LE16(bad_frame_vsi);
3376 	if (save_bad_pac)
3377 		cmd_flags |= ICE_AQC_SET_P_PARAMS_SAVE_BAD_PACKETS;
3378 	if (pad_short_pac)
3379 		cmd_flags |= ICE_AQC_SET_P_PARAMS_PAD_SHORT_PACKETS;
3380 	if (double_vlan)
3381 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3382 	cmd->cmd_flags = CPU_TO_LE16(cmd_flags);
3383 
3384 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3385 }
3386 
3387 /**
3388  * ice_is_100m_speed_supported
3389  * @hw: pointer to the HW struct
3390  *
3391  * returns true if 100M speeds are supported by the device,
3392  * false otherwise.
3393  */
3394 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3395 {
3396 	switch (hw->device_id) {
3397 	case ICE_DEV_ID_E822C_SGMII:
3398 	case ICE_DEV_ID_E822L_SGMII:
3399 	case ICE_DEV_ID_E823L_1GBE:
3400 	case ICE_DEV_ID_E823C_SGMII:
3401 		return true;
3402 	default:
3403 		return false;
3404 	}
3405 }
3406 
3407 /**
3408  * ice_get_link_speed_based_on_phy_type - returns link speed
3409  * @phy_type_low: lower part of phy_type
3410  * @phy_type_high: higher part of phy_type
3411  *
3412  * This helper function will convert an entry in PHY type structure
3413  * [phy_type_low, phy_type_high] to its corresponding link speed.
3414  * Note: In the structure of [phy_type_low, phy_type_high], there should
3415  * be one bit set, as this function will convert one PHY type to its
3416  * speed.
3417  * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3418  * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3419  */
3420 static u16
3421 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3422 {
3423 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3424 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3425 
3426 	switch (phy_type_low) {
3427 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3428 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3429 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3430 		break;
3431 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3432 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3433 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3434 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3435 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3436 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3437 		break;
3438 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3439 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3440 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3441 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3442 		break;
3443 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3444 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3445 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3446 		break;
3447 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3448 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3449 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3450 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3451 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3452 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3453 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3454 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3455 		break;
3456 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3457 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3458 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3459 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3460 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3461 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3462 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3463 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3464 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3465 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3466 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3467 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3468 		break;
3469 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3470 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3471 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3472 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3473 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3474 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3475 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3476 		break;
3477 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3478 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3479 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3480 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3481 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3482 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3483 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3484 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3485 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3486 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3487 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3488 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3489 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3490 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3491 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3492 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3493 		break;
3494 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3495 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3496 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3497 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3498 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3499 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3500 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3501 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3502 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3503 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3504 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3505 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3506 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3507 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3508 		break;
3509 	default:
3510 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3511 		break;
3512 	}
3513 
3514 	switch (phy_type_high) {
3515 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3516 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3517 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3518 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3519 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3520 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3521 		break;
3522 	case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3523 	case ICE_PHY_TYPE_HIGH_200G_SR4:
3524 	case ICE_PHY_TYPE_HIGH_200G_FR4:
3525 	case ICE_PHY_TYPE_HIGH_200G_LR4:
3526 	case ICE_PHY_TYPE_HIGH_200G_DR4:
3527 	case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3528 	case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3529 	case ICE_PHY_TYPE_HIGH_200G_AUI4:
3530 	case ICE_PHY_TYPE_HIGH_200G_AUI8_AOC_ACC:
3531 	case ICE_PHY_TYPE_HIGH_200G_AUI8:
3532 		speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3533 		break;
3534 	default:
3535 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3536 		break;
3537 	}
3538 
3539 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3540 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3541 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3542 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3543 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3544 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3545 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3546 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3547 		return speed_phy_type_low;
3548 	else
3549 		return speed_phy_type_high;
3550 }
3551 
3552 /**
3553  * ice_update_phy_type
3554  * @phy_type_low: pointer to the lower part of phy_type
3555  * @phy_type_high: pointer to the higher part of phy_type
3556  * @link_speeds_bitmap: targeted link speeds bitmap
3557  *
3558  * Note: For the link_speeds_bitmap structure, you can check it at
3559  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3560  * link_speeds_bitmap include multiple speeds.
3561  *
3562  * Each entry in this [phy_type_low, phy_type_high] structure will
3563  * present a certain link speed. This helper function will turn on bits
3564  * in [phy_type_low, phy_type_high] structure based on the value of
3565  * link_speeds_bitmap input parameter.
3566  */
3567 void
3568 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3569 		    u16 link_speeds_bitmap)
3570 {
3571 	u64 pt_high;
3572 	u64 pt_low;
3573 	int index;
3574 	u16 speed;
3575 
3576 	/* We first check with low part of phy_type */
3577 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3578 		pt_low = BIT_ULL(index);
3579 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3580 
3581 		if (link_speeds_bitmap & speed)
3582 			*phy_type_low |= BIT_ULL(index);
3583 	}
3584 
3585 	/* We then check with high part of phy_type */
3586 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3587 		pt_high = BIT_ULL(index);
3588 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3589 
3590 		if (link_speeds_bitmap & speed)
3591 			*phy_type_high |= BIT_ULL(index);
3592 	}
3593 }
3594 
3595 /**
3596  * ice_aq_set_phy_cfg
3597  * @hw: pointer to the HW struct
3598  * @pi: port info structure of the interested logical port
3599  * @cfg: structure with PHY configuration data to be set
3600  * @cd: pointer to command details structure or NULL
3601  *
3602  * Set the various PHY configuration parameters supported on the Port.
3603  * One or more of the Set PHY config parameters may be ignored in an MFP
3604  * mode as the PF may not have the privilege to set some of the PHY Config
3605  * parameters. This status will be indicated by the command response (0x0601).
3606  */
3607 int
3608 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3609 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3610 {
3611 	struct ice_aq_desc desc;
3612 	int status;
3613 
3614 	if (!cfg)
3615 		return ICE_ERR_PARAM;
3616 
3617 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3618 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3619 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3620 			  cfg->caps);
3621 
3622 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3623 	}
3624 
3625 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3626 	desc.params.set_phy.lport_num = pi->lport;
3627 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3628 
3629 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3630 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3631 		  (unsigned long long)LE64_TO_CPU(cfg->phy_type_low));
3632 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3633 		  (unsigned long long)LE64_TO_CPU(cfg->phy_type_high));
3634 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3635 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3636 		  cfg->low_power_ctrl_an);
3637 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3638 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3639 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3640 		  cfg->link_fec_opt);
3641 
3642 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3643 
3644 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3645 		status = 0;
3646 
3647 	if (!status)
3648 		pi->phy.curr_user_phy_cfg = *cfg;
3649 
3650 	return status;
3651 }
3652 
3653 /**
3654  * ice_update_link_info - update status of the HW network link
3655  * @pi: port info structure of the interested logical port
3656  */
3657 int ice_update_link_info(struct ice_port_info *pi)
3658 {
3659 	struct ice_link_status *li;
3660 	int status;
3661 
3662 	if (!pi)
3663 		return ICE_ERR_PARAM;
3664 
3665 	li = &pi->phy.link_info;
3666 
3667 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3668 	if (status)
3669 		return status;
3670 
3671 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3672 		struct ice_aqc_get_phy_caps_data *pcaps;
3673 		struct ice_hw *hw;
3674 
3675 		hw = pi->hw;
3676 		pcaps = (struct ice_aqc_get_phy_caps_data *)
3677 			ice_malloc(hw, sizeof(*pcaps));
3678 		if (!pcaps)
3679 			return ICE_ERR_NO_MEMORY;
3680 
3681 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3682 					     pcaps, NULL);
3683 
3684 		if (!status)
3685 			ice_memcpy(li->module_type, &pcaps->module_type,
3686 				   sizeof(li->module_type),
3687 				   ICE_NONDMA_TO_NONDMA);
3688 
3689 		ice_free(hw, pcaps);
3690 	}
3691 
3692 	return status;
3693 }
3694 
3695 /**
3696  * ice_cache_phy_user_req
3697  * @pi: port information structure
3698  * @cache_data: PHY logging data
3699  * @cache_mode: PHY logging mode
3700  *
3701  * Log the user request on (FC, FEC, SPEED) for later user.
3702  */
3703 static void
3704 ice_cache_phy_user_req(struct ice_port_info *pi,
3705 		       struct ice_phy_cache_mode_data cache_data,
3706 		       enum ice_phy_cache_mode cache_mode)
3707 {
3708 	if (!pi)
3709 		return;
3710 
3711 	switch (cache_mode) {
3712 	case ICE_FC_MODE:
3713 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3714 		break;
3715 	case ICE_SPEED_MODE:
3716 		pi->phy.curr_user_speed_req =
3717 			cache_data.data.curr_user_speed_req;
3718 		break;
3719 	case ICE_FEC_MODE:
3720 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3721 		break;
3722 	default:
3723 		break;
3724 	}
3725 }
3726 
3727 /**
3728  * ice_caps_to_fc_mode
3729  * @caps: PHY capabilities
3730  *
3731  * Convert PHY FC capabilities to ice FC mode
3732  */
3733 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3734 {
3735 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3736 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3737 		return ICE_FC_FULL;
3738 
3739 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3740 		return ICE_FC_TX_PAUSE;
3741 
3742 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3743 		return ICE_FC_RX_PAUSE;
3744 
3745 	return ICE_FC_NONE;
3746 }
3747 
3748 /**
3749  * ice_caps_to_fec_mode
3750  * @caps: PHY capabilities
3751  * @fec_options: Link FEC options
3752  *
3753  * Convert PHY FEC capabilities to ice FEC mode
3754  */
3755 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3756 {
3757 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC) {
3758 		if (fec_options & ICE_AQC_PHY_FEC_DIS)
3759 			return ICE_FEC_DIS_AUTO;
3760 		else
3761 			return ICE_FEC_AUTO;
3762 	}
3763 
3764 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3765 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3766 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3767 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3768 		return ICE_FEC_BASER;
3769 
3770 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3771 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3772 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3773 		return ICE_FEC_RS;
3774 
3775 	return ICE_FEC_NONE;
3776 }
3777 
3778 /**
3779  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3780  * @pi: port information structure
3781  * @cfg: PHY configuration data to set FC mode
3782  * @req_mode: FC mode to configure
3783  */
3784 static int
3785 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3786 	       enum ice_fc_mode req_mode)
3787 {
3788 	struct ice_phy_cache_mode_data cache_data;
3789 	u8 pause_mask = 0x0;
3790 
3791 	if (!pi || !cfg)
3792 		return ICE_ERR_BAD_PTR;
3793 	switch (req_mode) {
3794 	case ICE_FC_AUTO:
3795 	{
3796 		struct ice_aqc_get_phy_caps_data *pcaps;
3797 		int status;
3798 
3799 		pcaps = (struct ice_aqc_get_phy_caps_data *)
3800 			ice_malloc(pi->hw, sizeof(*pcaps));
3801 		if (!pcaps)
3802 			return ICE_ERR_NO_MEMORY;
3803 		/* Query the value of FC that both the NIC and attached media
3804 		 * can do.
3805 		 */
3806 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3807 					     pcaps, NULL);
3808 		if (status) {
3809 			ice_free(pi->hw, pcaps);
3810 			return status;
3811 		}
3812 
3813 		pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3814 		pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3815 
3816 		ice_free(pi->hw, pcaps);
3817 		break;
3818 	}
3819 	case ICE_FC_FULL:
3820 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3821 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3822 		break;
3823 	case ICE_FC_RX_PAUSE:
3824 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3825 		break;
3826 	case ICE_FC_TX_PAUSE:
3827 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3828 		break;
3829 	default:
3830 		break;
3831 	}
3832 
3833 	/* clear the old pause settings */
3834 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3835 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3836 
3837 	/* set the new capabilities */
3838 	cfg->caps |= pause_mask;
3839 
3840 	/* Cache user FC request */
3841 	cache_data.data.curr_user_fc_req = req_mode;
3842 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3843 
3844 	return 0;
3845 }
3846 
3847 /**
3848  * ice_set_fc
3849  * @pi: port information structure
3850  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3851  * @ena_auto_link_update: enable automatic link update
3852  *
3853  * Set the requested flow control mode.
3854  */
3855 int
3856 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3857 {
3858 	struct ice_aqc_set_phy_cfg_data  cfg = { 0 };
3859 	struct ice_aqc_get_phy_caps_data *pcaps;
3860 	struct ice_hw *hw;
3861 	int status;
3862 
3863 	if (!pi || !aq_failures)
3864 		return ICE_ERR_BAD_PTR;
3865 
3866 	*aq_failures = 0;
3867 	hw = pi->hw;
3868 
3869 	pcaps = (struct ice_aqc_get_phy_caps_data *)
3870 		ice_malloc(hw, sizeof(*pcaps));
3871 	if (!pcaps)
3872 		return ICE_ERR_NO_MEMORY;
3873 
3874 	/* Get the current PHY config */
3875 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3876 				     pcaps, NULL);
3877 
3878 	if (status) {
3879 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3880 		goto out;
3881 	}
3882 
3883 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3884 
3885 	/* Configure the set PHY data */
3886 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3887 	if (status) {
3888 		if (status != ICE_ERR_BAD_PTR)
3889 			*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3890 
3891 		goto out;
3892 	}
3893 
3894 	/* If the capabilities have changed, then set the new config */
3895 	if (cfg.caps != pcaps->caps) {
3896 		int retry_count, retry_max = 10;
3897 
3898 		/* Auto restart link so settings take effect */
3899 		if (ena_auto_link_update)
3900 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3901 
3902 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3903 		if (status) {
3904 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3905 			goto out;
3906 		}
3907 
3908 		/* Update the link info
3909 		 * It sometimes takes a really long time for link to
3910 		 * come back from the atomic reset. Thus, we wait a
3911 		 * little bit.
3912 		 */
3913 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3914 			status = ice_update_link_info(pi);
3915 
3916 			if (!status)
3917 				break;
3918 
3919 			ice_msec_delay(100, true);
3920 		}
3921 
3922 		if (status)
3923 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3924 	}
3925 
3926 out:
3927 	ice_free(hw, pcaps);
3928 	return status;
3929 }
3930 
3931 /**
3932  * ice_phy_caps_equals_cfg
3933  * @phy_caps: PHY capabilities
3934  * @phy_cfg: PHY configuration
3935  *
3936  * Helper function to determine if PHY capabilities matches PHY
3937  * configuration
3938  */
3939 bool
3940 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3941 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3942 {
3943 	u8 caps_mask, cfg_mask;
3944 
3945 	if (!phy_caps || !phy_cfg)
3946 		return false;
3947 
3948 	/* These bits are not common between capabilities and configuration.
3949 	 * Do not use them to determine equality.
3950 	 */
3951 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3952 					      ICE_AQC_PHY_EN_MOD_QUAL);
3953 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3954 
3955 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3956 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3957 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3958 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3959 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3960 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3961 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3962 		return false;
3963 
3964 	return true;
3965 }
3966 
3967 /**
3968  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3969  * @pi: port information structure
3970  * @caps: PHY ability structure to copy data from
3971  * @cfg: PHY configuration structure to copy data to
3972  *
3973  * Helper function to copy AQC PHY get ability data to PHY set configuration
3974  * data structure
3975  */
3976 void
3977 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3978 			 struct ice_aqc_get_phy_caps_data *caps,
3979 			 struct ice_aqc_set_phy_cfg_data *cfg)
3980 {
3981 	if (!pi || !caps || !cfg)
3982 		return;
3983 
3984 	ice_memset(cfg, 0, sizeof(*cfg), ICE_NONDMA_MEM);
3985 	cfg->phy_type_low = caps->phy_type_low;
3986 	cfg->phy_type_high = caps->phy_type_high;
3987 	cfg->caps = caps->caps;
3988 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3989 	cfg->eee_cap = caps->eee_cap;
3990 	cfg->eeer_value = caps->eeer_value;
3991 	cfg->link_fec_opt = caps->link_fec_options;
3992 	cfg->module_compliance_enforcement =
3993 		caps->module_compliance_enforcement;
3994 }
3995 
3996 /**
3997  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3998  * @pi: port information structure
3999  * @cfg: PHY configuration data to set FEC mode
4000  * @fec: FEC mode to configure
4001  */
4002 int
4003 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
4004 		enum ice_fec_mode fec)
4005 {
4006 	struct ice_aqc_get_phy_caps_data *pcaps;
4007 	struct ice_hw *hw;
4008 	int status = 0;
4009 
4010 	if (!pi || !cfg)
4011 		return ICE_ERR_BAD_PTR;
4012 
4013 	hw = pi->hw;
4014 
4015 	pcaps = (struct ice_aqc_get_phy_caps_data *)
4016 		ice_malloc(hw, sizeof(*pcaps));
4017 	if (!pcaps)
4018 		return ICE_ERR_NO_MEMORY;
4019 
4020 	status = ice_aq_get_phy_caps(pi, false,
4021 				     (ice_fw_supports_report_dflt_cfg(hw) ?
4022 				      ICE_AQC_REPORT_DFLT_CFG :
4023 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
4024 
4025 	if (status)
4026 		goto out;
4027 
4028 	cfg->caps |= (pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC);
4029 	cfg->link_fec_opt = pcaps->link_fec_options;
4030 
4031 	switch (fec) {
4032 	case ICE_FEC_BASER:
4033 		/* Clear RS bits, and AND BASE-R ability
4034 		 * bits and OR request bits.
4035 		 */
4036 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
4037 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
4038 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
4039 			ICE_AQC_PHY_FEC_25G_KR_REQ;
4040 		break;
4041 	case ICE_FEC_RS:
4042 		/* Clear BASE-R bits, and AND RS ability
4043 		 * bits and OR request bits.
4044 		 */
4045 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
4046 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
4047 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
4048 		break;
4049 	case ICE_FEC_NONE:
4050 		/* Clear all FEC option bits. */
4051 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
4052 		break;
4053 	case ICE_FEC_DIS_AUTO:
4054 		/* Set No FEC and auto FEC */
4055 		if (!ice_fw_supports_fec_dis_auto(hw)) {
4056 			status = ICE_ERR_NOT_SUPPORTED;
4057 			goto out;
4058 		}
4059 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_DIS;
4060 		/* fall-through */
4061 	case ICE_FEC_AUTO:
4062 		/* AND auto FEC bit, and all caps bits. */
4063 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
4064 		cfg->link_fec_opt |= pcaps->link_fec_options;
4065 		break;
4066 	default:
4067 		status = ICE_ERR_PARAM;
4068 		break;
4069 	}
4070 
4071 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw) &&
4072 	    !ice_fw_supports_report_dflt_cfg(pi->hw)) {
4073 		struct ice_link_default_override_tlv tlv;
4074 
4075 		if (ice_get_link_default_override(&tlv, pi))
4076 			goto out;
4077 
4078 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
4079 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
4080 			cfg->link_fec_opt = tlv.fec_options;
4081 	}
4082 
4083 out:
4084 	ice_free(hw, pcaps);
4085 
4086 	return status;
4087 }
4088 
4089 /**
4090  * ice_get_link_status - get status of the HW network link
4091  * @pi: port information structure
4092  * @link_up: pointer to bool (true/false = linkup/linkdown)
4093  *
4094  * Variable link_up is true if link is up, false if link is down.
4095  * The variable link_up is invalid if status is non zero. As a
4096  * result of this call, link status reporting becomes enabled
4097  */
4098 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
4099 {
4100 	struct ice_phy_info *phy_info;
4101 	int status = 0;
4102 
4103 	if (!pi || !link_up)
4104 		return ICE_ERR_PARAM;
4105 
4106 	phy_info = &pi->phy;
4107 
4108 	if (phy_info->get_link_info) {
4109 		status = ice_update_link_info(pi);
4110 
4111 		if (status)
4112 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
4113 				  status);
4114 	}
4115 
4116 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
4117 
4118 	return status;
4119 }
4120 
4121 /**
4122  * ice_aq_set_link_restart_an
4123  * @pi: pointer to the port information structure
4124  * @ena_link: if true: enable link, if false: disable link
4125  * @cd: pointer to command details structure or NULL
4126  *
4127  * Sets up the link and restarts the Auto-Negotiation over the link.
4128  */
4129 int
4130 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
4131 			   struct ice_sq_cd *cd)
4132 {
4133 	int status = ICE_ERR_AQ_ERROR;
4134 	struct ice_aqc_restart_an *cmd;
4135 	struct ice_aq_desc desc;
4136 
4137 	cmd = &desc.params.restart_an;
4138 
4139 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
4140 
4141 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
4142 	cmd->lport_num = pi->lport;
4143 	if (ena_link)
4144 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
4145 	else
4146 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
4147 
4148 	status = ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
4149 	if (status)
4150 		return status;
4151 
4152 	if (ena_link)
4153 		pi->phy.curr_user_phy_cfg.caps |= ICE_AQC_PHY_EN_LINK;
4154 	else
4155 		pi->phy.curr_user_phy_cfg.caps &= ~ICE_AQC_PHY_EN_LINK;
4156 
4157 	return 0;
4158 }
4159 
4160 /**
4161  * ice_aq_set_event_mask
4162  * @hw: pointer to the HW struct
4163  * @port_num: port number of the physical function
4164  * @mask: event mask to be set
4165  * @cd: pointer to command details structure or NULL
4166  *
4167  * Set event mask (0x0613)
4168  */
4169 int
4170 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
4171 		      struct ice_sq_cd *cd)
4172 {
4173 	struct ice_aqc_set_event_mask *cmd;
4174 	struct ice_aq_desc desc;
4175 
4176 	cmd = &desc.params.set_event_mask;
4177 
4178 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
4179 
4180 	cmd->lport_num = port_num;
4181 
4182 	cmd->event_mask = CPU_TO_LE16(mask);
4183 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4184 }
4185 
4186 /**
4187  * ice_aq_set_mac_loopback
4188  * @hw: pointer to the HW struct
4189  * @ena_lpbk: Enable or Disable loopback
4190  * @cd: pointer to command details structure or NULL
4191  *
4192  * Enable/disable loopback on a given port
4193  */
4194 int
4195 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
4196 {
4197 	struct ice_aqc_set_mac_lb *cmd;
4198 	struct ice_aq_desc desc;
4199 
4200 	cmd = &desc.params.set_mac_lb;
4201 
4202 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
4203 	if (ena_lpbk)
4204 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
4205 
4206 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4207 }
4208 
4209 /**
4210  * ice_aq_set_port_id_led
4211  * @pi: pointer to the port information
4212  * @is_orig_mode: is this LED set to original mode (by the net-list)
4213  * @cd: pointer to command details structure or NULL
4214  *
4215  * Set LED value for the given port (0x06e9)
4216  */
4217 int
4218 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
4219 		       struct ice_sq_cd *cd)
4220 {
4221 	struct ice_aqc_set_port_id_led *cmd;
4222 	struct ice_hw *hw = pi->hw;
4223 	struct ice_aq_desc desc;
4224 
4225 	cmd = &desc.params.set_port_id_led;
4226 
4227 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
4228 
4229 	if (is_orig_mode)
4230 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
4231 	else
4232 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
4233 
4234 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4235 }
4236 
4237 /**
4238  * ice_aq_sff_eeprom
4239  * @hw: pointer to the HW struct
4240  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4241  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4242  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4243  * @page: QSFP page
4244  * @set_page: set or ignore the page
4245  * @data: pointer to data buffer to be read/written to the I2C device.
4246  * @length: 1-16 for read, 1 for write.
4247  * @write: 0 read, 1 for write.
4248  * @cd: pointer to command details structure or NULL
4249  *
4250  * Read/Write SFF EEPROM (0x06EE)
4251  */
4252 int
4253 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4254 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4255 		  bool write, struct ice_sq_cd *cd)
4256 {
4257 	struct ice_aqc_sff_eeprom *cmd;
4258 	struct ice_aq_desc desc;
4259 	int status;
4260 
4261 	if (!data || (mem_addr & 0xff00))
4262 		return ICE_ERR_PARAM;
4263 
4264 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4265 	cmd = &desc.params.read_write_sff_param;
4266 	desc.flags = CPU_TO_LE16(ICE_AQ_FLAG_RD);
4267 	cmd->lport_num = (u8)(lport & 0xff);
4268 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4269 	cmd->i2c_bus_addr = CPU_TO_LE16(((bus_addr >> 1) &
4270 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
4271 					((set_page <<
4272 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
4273 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
4274 	cmd->i2c_mem_addr = CPU_TO_LE16(mem_addr & 0xff);
4275 	cmd->eeprom_page = CPU_TO_LE16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
4276 	if (write)
4277 		cmd->i2c_bus_addr |= CPU_TO_LE16(ICE_AQC_SFF_IS_WRITE);
4278 
4279 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4280 	return status;
4281 }
4282 
4283 /**
4284  * ice_aq_prog_topo_dev_nvm
4285  * @hw: pointer to the hardware structure
4286  * @topo_params: pointer to structure storing topology parameters for a device
4287  * @cd: pointer to command details structure or NULL
4288  *
4289  * Program Topology Device NVM (0x06F2)
4290  *
4291  */
4292 int
4293 ice_aq_prog_topo_dev_nvm(struct ice_hw *hw,
4294 			 struct ice_aqc_link_topo_params *topo_params,
4295 			 struct ice_sq_cd *cd)
4296 {
4297 	struct ice_aqc_prog_topo_dev_nvm *cmd;
4298 	struct ice_aq_desc desc;
4299 
4300 	cmd = &desc.params.prog_topo_dev_nvm;
4301 
4302 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_prog_topo_dev_nvm);
4303 
4304 	ice_memcpy(&cmd->topo_params, topo_params, sizeof(*topo_params),
4305 		   ICE_NONDMA_TO_NONDMA);
4306 
4307 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4308 }
4309 
4310 /**
4311  * ice_aq_read_topo_dev_nvm
4312  * @hw: pointer to the hardware structure
4313  * @topo_params: pointer to structure storing topology parameters for a device
4314  * @start_address: byte offset in the topology device NVM
4315  * @data: pointer to data buffer
4316  * @data_size: number of bytes to be read from the topology device NVM
4317  * @cd: pointer to command details structure or NULL
4318  * Read Topology Device NVM (0x06F3)
4319  *
4320  */
4321 int
4322 ice_aq_read_topo_dev_nvm(struct ice_hw *hw,
4323 			 struct ice_aqc_link_topo_params *topo_params,
4324 			 u32 start_address, u8 *data, u8 data_size,
4325 			 struct ice_sq_cd *cd)
4326 {
4327 	struct ice_aqc_read_topo_dev_nvm *cmd;
4328 	struct ice_aq_desc desc;
4329 	int status;
4330 
4331 	if (!data || data_size == 0 ||
4332 	    data_size > ICE_AQC_READ_TOPO_DEV_NVM_DATA_READ_SIZE)
4333 		return ICE_ERR_PARAM;
4334 
4335 	cmd = &desc.params.read_topo_dev_nvm;
4336 
4337 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_topo_dev_nvm);
4338 
4339 	desc.datalen = CPU_TO_LE16(data_size);
4340 	ice_memcpy(&cmd->topo_params, topo_params, sizeof(*topo_params),
4341 		   ICE_NONDMA_TO_NONDMA);
4342 	cmd->start_address = CPU_TO_LE32(start_address);
4343 
4344 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4345 	if (status)
4346 		return status;
4347 
4348 	ice_memcpy(data, cmd->data_read, data_size, ICE_NONDMA_TO_NONDMA);
4349 
4350 	return 0;
4351 }
4352 
4353 static u16 ice_lut_type_to_size(u16 lut_type)
4354 {
4355 	switch (lut_type) {
4356 	case ICE_LUT_VSI:
4357 		return ICE_LUT_VSI_SIZE;
4358 	case ICE_LUT_GLOBAL:
4359 		return ICE_LUT_GLOBAL_SIZE;
4360 	case ICE_LUT_PF:
4361 		return ICE_LUT_PF_SIZE;
4362 	case ICE_LUT_PF_SMALL:
4363 		return ICE_LUT_PF_SMALL_SIZE;
4364 	default:
4365 		return 0;
4366 	}
4367 }
4368 
4369 static u16 ice_lut_size_to_flag(u16 lut_size)
4370 {
4371 	u16 f = 0;
4372 
4373 	switch (lut_size) {
4374 	case ICE_LUT_GLOBAL_SIZE:
4375 		f = ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG;
4376 		break;
4377 	case ICE_LUT_PF_SIZE:
4378 		f = ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG;
4379 		break;
4380 	default:
4381 		break;
4382 	}
4383 	return f << ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S;
4384 }
4385 
4386 int ice_lut_size_to_type(int lut_size)
4387 {
4388 	switch (lut_size) {
4389 	case ICE_LUT_VSI_SIZE:
4390 		return ICE_LUT_VSI;
4391 	case ICE_LUT_GLOBAL_SIZE:
4392 		return ICE_LUT_GLOBAL;
4393 	case ICE_LUT_PF_SIZE:
4394 		return ICE_LUT_PF;
4395 	case ICE_LUT_PF_SMALL_SIZE:
4396 		return ICE_LUT_PF_SMALL;
4397 	default:
4398 		return -1;
4399 	}
4400 }
4401 
4402 /**
4403  * __ice_aq_get_set_rss_lut
4404  * @hw: pointer to the hardware structure
4405  * @params: RSS LUT parameters
4406  * @set: set true to set the table, false to get the table
4407  *
4408  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4409  */
4410 static int
4411 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
4412 {
4413 	u16 flags, vsi_id, lut_type, lut_size, glob_lut_idx = 0, vsi_handle;
4414 	struct ice_aqc_get_set_rss_lut *cmd_resp;
4415 	struct ice_aq_desc desc;
4416 	int status;
4417 	u8 *lut;
4418 
4419 	if (!params)
4420 		return ICE_ERR_PARAM;
4421 
4422 	vsi_handle = params->vsi_handle;
4423 	lut = params->lut;
4424 	lut_size = ice_lut_type_to_size(params->lut_type);
4425 	lut_type = params->lut_type & ICE_LUT_TYPE_MASK;
4426 	cmd_resp = &desc.params.get_set_rss_lut;
4427 	if (lut_type == ICE_LUT_GLOBAL)
4428 		glob_lut_idx = params->global_lut_id;
4429 
4430 	if (!lut || !lut_size || !ice_is_vsi_valid(hw, vsi_handle))
4431 		return ICE_ERR_PARAM;
4432 
4433 	if (lut_size > params->lut_size)
4434 		return ICE_ERR_INVAL_SIZE;
4435 
4436 	if (set && lut_size != params->lut_size)
4437 		return ICE_ERR_PARAM;
4438 
4439 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4440 
4441 	if (set) {
4442 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
4443 		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4444 	} else {
4445 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
4446 	}
4447 
4448 	cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
4449 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
4450 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
4451 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
4452 
4453 	flags = ice_lut_size_to_flag(lut_size) |
4454 		 ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
4455 		  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M) |
4456 		 ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
4457 		  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
4458 
4459 	cmd_resp->flags = CPU_TO_LE16(flags);
4460 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4461 	params->lut_size = LE16_TO_CPU(desc.datalen);
4462 	return status;
4463 }
4464 
4465 /**
4466  * ice_aq_get_rss_lut
4467  * @hw: pointer to the hardware structure
4468  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4469  *
4470  * get the RSS lookup table, PF or VSI type
4471  */
4472 int
4473 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4474 {
4475 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4476 }
4477 
4478 /**
4479  * ice_aq_set_rss_lut
4480  * @hw: pointer to the hardware structure
4481  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4482  *
4483  * set the RSS lookup table, PF or VSI type
4484  */
4485 int
4486 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4487 {
4488 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4489 }
4490 
4491 /**
4492  * __ice_aq_get_set_rss_key
4493  * @hw: pointer to the HW struct
4494  * @vsi_id: VSI FW index
4495  * @key: pointer to key info struct
4496  * @set: set true to set the key, false to get the key
4497  *
4498  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4499  */
4500 static int __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4501 				    struct ice_aqc_get_set_rss_keys *key,
4502 				    bool set)
4503 {
4504 	struct ice_aqc_get_set_rss_key *cmd_resp;
4505 	u16 key_size = sizeof(*key);
4506 	struct ice_aq_desc desc;
4507 
4508 	cmd_resp = &desc.params.get_set_rss_key;
4509 
4510 	if (set) {
4511 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4512 		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4513 	} else {
4514 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4515 	}
4516 
4517 	cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
4518 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
4519 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
4520 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
4521 
4522 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4523 }
4524 
4525 /**
4526  * ice_aq_get_rss_key
4527  * @hw: pointer to the HW struct
4528  * @vsi_handle: software VSI handle
4529  * @key: pointer to key info struct
4530  *
4531  * get the RSS key per VSI
4532  */
4533 int
4534 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4535 		   struct ice_aqc_get_set_rss_keys *key)
4536 {
4537 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4538 		return ICE_ERR_PARAM;
4539 
4540 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4541 					key, false);
4542 }
4543 
4544 /**
4545  * ice_aq_set_rss_key
4546  * @hw: pointer to the HW struct
4547  * @vsi_handle: software VSI handle
4548  * @keys: pointer to key info struct
4549  *
4550  * set the RSS key per VSI
4551  */
4552 int
4553 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4554 		   struct ice_aqc_get_set_rss_keys *keys)
4555 {
4556 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4557 		return ICE_ERR_PARAM;
4558 
4559 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4560 					keys, true);
4561 }
4562 
4563 /**
4564  * ice_aq_add_lan_txq
4565  * @hw: pointer to the hardware structure
4566  * @num_qgrps: Number of added queue groups
4567  * @qg_list: list of queue groups to be added
4568  * @buf_size: size of buffer for indirect command
4569  * @cd: pointer to command details structure or NULL
4570  *
4571  * Add Tx LAN queue (0x0C30)
4572  *
4573  * NOTE:
4574  * Prior to calling add Tx LAN queue:
4575  * Initialize the following as part of the Tx queue context:
4576  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4577  * Cache profile and Packet shaper profile.
4578  *
4579  * After add Tx LAN queue AQ command is completed:
4580  * Interrupts should be associated with specific queues,
4581  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4582  * flow.
4583  */
4584 int
4585 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4586 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4587 		   struct ice_sq_cd *cd)
4588 {
4589 	struct ice_aqc_add_tx_qgrp *list;
4590 	struct ice_aqc_add_txqs *cmd;
4591 	struct ice_aq_desc desc;
4592 	u16 i, sum_size = 0;
4593 
4594 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
4595 
4596 	cmd = &desc.params.add_txqs;
4597 
4598 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4599 
4600 	if (!qg_list)
4601 		return ICE_ERR_PARAM;
4602 
4603 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4604 		return ICE_ERR_PARAM;
4605 
4606 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4607 		sum_size += ice_struct_size(list, txqs, list->num_txqs);
4608 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4609 						      list->num_txqs);
4610 	}
4611 
4612 	if (buf_size != sum_size)
4613 		return ICE_ERR_PARAM;
4614 
4615 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4616 
4617 	cmd->num_qgrps = num_qgrps;
4618 
4619 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4620 }
4621 
4622 /**
4623  * ice_aq_dis_lan_txq
4624  * @hw: pointer to the hardware structure
4625  * @num_qgrps: number of groups in the list
4626  * @qg_list: the list of groups to disable
4627  * @buf_size: the total size of the qg_list buffer in bytes
4628  * @rst_src: if called due to reset, specifies the reset source
4629  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4630  * @cd: pointer to command details structure or NULL
4631  *
4632  * Disable LAN Tx queue (0x0C31)
4633  */
4634 static int
4635 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4636 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4637 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4638 		   struct ice_sq_cd *cd)
4639 {
4640 	struct ice_aqc_dis_txq_item *item;
4641 	struct ice_aqc_dis_txqs *cmd;
4642 	struct ice_aq_desc desc;
4643 	int status;
4644 	u16 i, sz = 0;
4645 
4646 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
4647 	cmd = &desc.params.dis_txqs;
4648 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4649 
4650 	/* qg_list can be NULL only in VM/VF reset flow */
4651 	if (!qg_list && !rst_src)
4652 		return ICE_ERR_PARAM;
4653 
4654 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4655 		return ICE_ERR_PARAM;
4656 
4657 	cmd->num_entries = num_qgrps;
4658 
4659 	cmd->vmvf_and_timeout = CPU_TO_LE16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
4660 					    ICE_AQC_Q_DIS_TIMEOUT_M);
4661 
4662 	switch (rst_src) {
4663 	case ICE_VM_RESET:
4664 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4665 		cmd->vmvf_and_timeout |=
4666 			CPU_TO_LE16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
4667 		break;
4668 	case ICE_VF_RESET:
4669 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4670 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4671 		cmd->vmvf_and_timeout |=
4672 			CPU_TO_LE16((vmvf_num + hw->func_caps.vf_base_id) &
4673 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
4674 		break;
4675 	case ICE_NO_RESET:
4676 	default:
4677 		break;
4678 	}
4679 
4680 	/* flush pipe on time out */
4681 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4682 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4683 	if (!qg_list)
4684 		goto do_aq;
4685 
4686 	/* set RD bit to indicate that command buffer is provided by the driver
4687 	 * and it needs to be read by the firmware
4688 	 */
4689 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4690 
4691 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4692 		u16 item_size = ice_struct_size(item, q_id, item->num_qs);
4693 
4694 		/* If the num of queues is even, add 2 bytes of padding */
4695 		if ((item->num_qs % 2) == 0)
4696 			item_size += 2;
4697 
4698 		sz += item_size;
4699 
4700 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4701 	}
4702 
4703 	if (buf_size != sz)
4704 		return ICE_ERR_PARAM;
4705 
4706 do_aq:
4707 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4708 	if (status) {
4709 		if (!qg_list)
4710 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4711 				  vmvf_num, hw->adminq.sq_last_status);
4712 		else
4713 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4714 				  LE16_TO_CPU(qg_list[0].q_id[0]),
4715 				  hw->adminq.sq_last_status);
4716 	}
4717 	return status;
4718 }
4719 
4720 /**
4721  * ice_aq_move_recfg_lan_txq
4722  * @hw: pointer to the hardware structure
4723  * @num_qs: number of queues to move/reconfigure
4724  * @is_move: true if this operation involves node movement
4725  * @is_tc_change: true if this operation involves a TC change
4726  * @subseq_call: true if this operation is a subsequent call
4727  * @flush_pipe: on timeout, true to flush pipe, false to return EAGAIN
4728  * @timeout: timeout in units of 100 usec (valid values 0-50)
4729  * @blocked_cgds: out param, bitmap of CGDs that timed out if returning EAGAIN
4730  * @buf: struct containing src/dest TEID and per-queue info
4731  * @buf_size: size of buffer for indirect command
4732  * @txqs_moved: out param, number of queues successfully moved
4733  * @cd: pointer to command details structure or NULL
4734  *
4735  * Move / Reconfigure Tx LAN queues (0x0C32)
4736  */
4737 int
4738 ice_aq_move_recfg_lan_txq(struct ice_hw *hw, u8 num_qs, bool is_move,
4739 			  bool is_tc_change, bool subseq_call, bool flush_pipe,
4740 			  u8 timeout, u32 *blocked_cgds,
4741 			  struct ice_aqc_move_txqs_data *buf, u16 buf_size,
4742 			  u8 *txqs_moved, struct ice_sq_cd *cd)
4743 {
4744 	struct ice_aqc_move_txqs *cmd;
4745 	struct ice_aq_desc desc;
4746 	int status;
4747 
4748 	cmd = &desc.params.move_txqs;
4749 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_move_recfg_txqs);
4750 
4751 #define ICE_LAN_TXQ_MOVE_TIMEOUT_MAX 50
4752 	if (timeout > ICE_LAN_TXQ_MOVE_TIMEOUT_MAX)
4753 		return ICE_ERR_PARAM;
4754 
4755 	if (is_tc_change && !flush_pipe && !blocked_cgds)
4756 		return ICE_ERR_PARAM;
4757 
4758 	if (!is_move && !is_tc_change)
4759 		return ICE_ERR_PARAM;
4760 
4761 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4762 
4763 	if (is_move)
4764 		cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_MOVE;
4765 
4766 	if (is_tc_change)
4767 		cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_TC_CHANGE;
4768 
4769 	if (subseq_call)
4770 		cmd->cmd_type |= ICE_AQC_Q_CMD_SUBSEQ_CALL;
4771 
4772 	if (flush_pipe)
4773 		cmd->cmd_type |= ICE_AQC_Q_CMD_FLUSH_PIPE;
4774 
4775 	cmd->num_qs = num_qs;
4776 	cmd->timeout = ((timeout << ICE_AQC_Q_CMD_TIMEOUT_S) &
4777 			ICE_AQC_Q_CMD_TIMEOUT_M);
4778 
4779 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4780 
4781 	if (!status && txqs_moved)
4782 		*txqs_moved = cmd->num_qs;
4783 
4784 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EAGAIN &&
4785 	    is_tc_change && !flush_pipe)
4786 		*blocked_cgds = LE32_TO_CPU(cmd->blocked_cgds);
4787 
4788 	return status;
4789 }
4790 
4791 /**
4792  * ice_aq_add_rdma_qsets
4793  * @hw: pointer to the hardware structure
4794  * @num_qset_grps: Number of RDMA Qset groups
4795  * @qset_list: list of qset groups to be added
4796  * @buf_size: size of buffer for indirect command
4797  * @cd: pointer to command details structure or NULL
4798  *
4799  * Add Tx RDMA Qsets (0x0C33)
4800  */
4801 int
4802 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4803 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4804 		      u16 buf_size, struct ice_sq_cd *cd)
4805 {
4806 	struct ice_aqc_add_rdma_qset_data *list;
4807 	struct ice_aqc_add_rdma_qset *cmd;
4808 	struct ice_aq_desc desc;
4809 	u16 i, sum_size = 0;
4810 
4811 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
4812 
4813 	cmd = &desc.params.add_rdma_qset;
4814 
4815 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4816 
4817 	if (!qset_list)
4818 		return ICE_ERR_PARAM;
4819 
4820 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4821 		return ICE_ERR_PARAM;
4822 
4823 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4824 		u16 num_qsets = LE16_TO_CPU(list->num_qsets);
4825 
4826 		sum_size += ice_struct_size(list, rdma_qsets, num_qsets);
4827 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4828 							     num_qsets);
4829 	}
4830 
4831 	if (buf_size != sum_size)
4832 		return ICE_ERR_PARAM;
4833 
4834 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4835 
4836 	cmd->num_qset_grps = num_qset_grps;
4837 
4838 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4839 }
4840 
4841 /* End of FW Admin Queue command wrappers */
4842 
4843 /**
4844  * ice_write_byte - write a byte to a packed context structure
4845  * @src_ctx:  the context structure to read from
4846  * @dest_ctx: the context to be written to
4847  * @ce_info:  a description of the struct to be filled
4848  */
4849 static void
4850 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4851 {
4852 	u8 src_byte, dest_byte, mask;
4853 	u8 *from, *dest;
4854 	u16 shift_width;
4855 
4856 	/* copy from the next struct field */
4857 	from = src_ctx + ce_info->offset;
4858 
4859 	/* prepare the bits and mask */
4860 	shift_width = ce_info->lsb % 8;
4861 	mask = (u8)(BIT(ce_info->width) - 1);
4862 
4863 	src_byte = *from;
4864 	src_byte &= mask;
4865 
4866 	/* shift to correct alignment */
4867 	mask <<= shift_width;
4868 	src_byte <<= shift_width;
4869 
4870 	/* get the current bits from the target bit string */
4871 	dest = dest_ctx + (ce_info->lsb / 8);
4872 
4873 	ice_memcpy(&dest_byte, dest, sizeof(dest_byte), ICE_NONDMA_TO_NONDMA);
4874 
4875 	dest_byte &= ~mask;	/* get the bits not changing */
4876 	dest_byte |= src_byte;	/* add in the new bits */
4877 
4878 	/* put it all back */
4879 	ice_memcpy(dest, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_NONDMA);
4880 }
4881 
4882 /**
4883  * ice_write_word - write a word to a packed context structure
4884  * @src_ctx:  the context structure to read from
4885  * @dest_ctx: the context to be written to
4886  * @ce_info:  a description of the struct to be filled
4887  */
4888 static void
4889 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4890 {
4891 	u16 src_word, mask;
4892 	__le16 dest_word;
4893 	u8 *from, *dest;
4894 	u16 shift_width;
4895 
4896 	/* copy from the next struct field */
4897 	from = src_ctx + ce_info->offset;
4898 
4899 	/* prepare the bits and mask */
4900 	shift_width = ce_info->lsb % 8;
4901 	mask = BIT(ce_info->width) - 1;
4902 
4903 	/* don't swizzle the bits until after the mask because the mask bits
4904 	 * will be in a different bit position on big endian machines
4905 	 */
4906 	src_word = *(u16 *)from;
4907 	src_word &= mask;
4908 
4909 	/* shift to correct alignment */
4910 	mask <<= shift_width;
4911 	src_word <<= shift_width;
4912 
4913 	/* get the current bits from the target bit string */
4914 	dest = dest_ctx + (ce_info->lsb / 8);
4915 
4916 	ice_memcpy(&dest_word, dest, sizeof(dest_word), ICE_NONDMA_TO_NONDMA);
4917 
4918 	dest_word &= ~(CPU_TO_LE16(mask));	/* get the bits not changing */
4919 	dest_word |= CPU_TO_LE16(src_word);	/* add in the new bits */
4920 
4921 	/* put it all back */
4922 	ice_memcpy(dest, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_NONDMA);
4923 }
4924 
4925 /**
4926  * ice_write_dword - write a dword to a packed context structure
4927  * @src_ctx:  the context structure to read from
4928  * @dest_ctx: the context to be written to
4929  * @ce_info:  a description of the struct to be filled
4930  */
4931 static void
4932 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4933 {
4934 	u32 src_dword, mask;
4935 	__le32 dest_dword;
4936 	u8 *from, *dest;
4937 	u16 shift_width;
4938 
4939 	/* copy from the next struct field */
4940 	from = src_ctx + ce_info->offset;
4941 
4942 	/* prepare the bits and mask */
4943 	shift_width = ce_info->lsb % 8;
4944 
4945 	/* if the field width is exactly 32 on an x86 machine, then the shift
4946 	 * operation will not work because the SHL instructions count is masked
4947 	 * to 5 bits so the shift will do nothing
4948 	 */
4949 	if (ce_info->width < 32)
4950 		mask = BIT(ce_info->width) - 1;
4951 	else
4952 		mask = (u32)~0;
4953 
4954 	/* don't swizzle the bits until after the mask because the mask bits
4955 	 * will be in a different bit position on big endian machines
4956 	 */
4957 	src_dword = *(u32 *)from;
4958 	src_dword &= mask;
4959 
4960 	/* shift to correct alignment */
4961 	mask <<= shift_width;
4962 	src_dword <<= shift_width;
4963 
4964 	/* get the current bits from the target bit string */
4965 	dest = dest_ctx + (ce_info->lsb / 8);
4966 
4967 	ice_memcpy(&dest_dword, dest, sizeof(dest_dword), ICE_NONDMA_TO_NONDMA);
4968 
4969 	dest_dword &= ~(CPU_TO_LE32(mask));	/* get the bits not changing */
4970 	dest_dword |= CPU_TO_LE32(src_dword);	/* add in the new bits */
4971 
4972 	/* put it all back */
4973 	ice_memcpy(dest, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_NONDMA);
4974 }
4975 
4976 /**
4977  * ice_write_qword - write a qword to a packed context structure
4978  * @src_ctx:  the context structure to read from
4979  * @dest_ctx: the context to be written to
4980  * @ce_info:  a description of the struct to be filled
4981  */
4982 static void
4983 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4984 {
4985 	u64 src_qword, mask;
4986 	__le64 dest_qword;
4987 	u8 *from, *dest;
4988 	u16 shift_width;
4989 
4990 	/* copy from the next struct field */
4991 	from = src_ctx + ce_info->offset;
4992 
4993 	/* prepare the bits and mask */
4994 	shift_width = ce_info->lsb % 8;
4995 
4996 	/* if the field width is exactly 64 on an x86 machine, then the shift
4997 	 * operation will not work because the SHL instructions count is masked
4998 	 * to 6 bits so the shift will do nothing
4999 	 */
5000 	if (ce_info->width < 64)
5001 		mask = BIT_ULL(ce_info->width) - 1;
5002 	else
5003 		mask = (u64)~0;
5004 
5005 	/* don't swizzle the bits until after the mask because the mask bits
5006 	 * will be in a different bit position on big endian machines
5007 	 */
5008 	src_qword = *(u64 *)from;
5009 	src_qword &= mask;
5010 
5011 	/* shift to correct alignment */
5012 	mask <<= shift_width;
5013 	src_qword <<= shift_width;
5014 
5015 	/* get the current bits from the target bit string */
5016 	dest = dest_ctx + (ce_info->lsb / 8);
5017 
5018 	ice_memcpy(&dest_qword, dest, sizeof(dest_qword), ICE_NONDMA_TO_NONDMA);
5019 
5020 	dest_qword &= ~(CPU_TO_LE64(mask));	/* get the bits not changing */
5021 	dest_qword |= CPU_TO_LE64(src_qword);	/* add in the new bits */
5022 
5023 	/* put it all back */
5024 	ice_memcpy(dest, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_NONDMA);
5025 }
5026 
5027 /**
5028  * ice_set_ctx - set context bits in packed structure
5029  * @hw: pointer to the hardware structure
5030  * @src_ctx:  pointer to a generic non-packed context structure
5031  * @dest_ctx: pointer to memory for the packed structure
5032  * @ce_info:  a description of the structure to be transformed
5033  */
5034 int
5035 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
5036 	    const struct ice_ctx_ele *ce_info)
5037 {
5038 	int f;
5039 
5040 	for (f = 0; ce_info[f].width; f++) {
5041 		/* We have to deal with each element of the FW response
5042 		 * using the correct size so that we are correct regardless
5043 		 * of the endianness of the machine.
5044 		 */
5045 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
5046 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
5047 				  f, ce_info[f].width, ce_info[f].size_of);
5048 			continue;
5049 		}
5050 		switch (ce_info[f].size_of) {
5051 		case sizeof(u8):
5052 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
5053 			break;
5054 		case sizeof(u16):
5055 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
5056 			break;
5057 		case sizeof(u32):
5058 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
5059 			break;
5060 		case sizeof(u64):
5061 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
5062 			break;
5063 		default:
5064 			return ICE_ERR_INVAL_SIZE;
5065 		}
5066 	}
5067 
5068 	return 0;
5069 }
5070 
5071 /**
5072  * ice_aq_get_internal_data
5073  * @hw: pointer to the hardware structure
5074  * @cluster_id: specific cluster to dump
5075  * @table_id: table ID within cluster
5076  * @start: index of line in the block to read
5077  * @buf: dump buffer
5078  * @buf_size: dump buffer size
5079  * @ret_buf_size: return buffer size (returned by FW)
5080  * @ret_next_cluster: next cluster to read (returned by FW)
5081  * @ret_next_table: next block to read (returned by FW)
5082  * @ret_next_index: next index to read (returned by FW)
5083  * @cd: pointer to command details structure
5084  *
5085  * Get internal FW/HW data (0xFF08) for debug purposes.
5086  */
5087 int
5088 ice_aq_get_internal_data(struct ice_hw *hw, u16 cluster_id, u16 table_id,
5089 			 u32 start, void *buf, u16 buf_size, u16 *ret_buf_size,
5090 			 u16 *ret_next_cluster, u16 *ret_next_table,
5091 			 u32 *ret_next_index, struct ice_sq_cd *cd)
5092 {
5093 	struct ice_aqc_debug_dump_internals *cmd;
5094 	struct ice_aq_desc desc;
5095 	int status;
5096 
5097 	cmd = &desc.params.debug_dump;
5098 
5099 	if (buf_size == 0 || !buf)
5100 		return ICE_ERR_PARAM;
5101 
5102 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_debug_dump_internals);
5103 
5104 	cmd->cluster_id = CPU_TO_LE16(cluster_id);
5105 	cmd->table_id = CPU_TO_LE16(table_id);
5106 	cmd->idx = CPU_TO_LE32(start);
5107 
5108 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5109 
5110 	if (!status) {
5111 		if (ret_buf_size)
5112 			*ret_buf_size = LE16_TO_CPU(desc.datalen);
5113 		if (ret_next_cluster)
5114 			*ret_next_cluster = LE16_TO_CPU(cmd->cluster_id);
5115 		if (ret_next_table)
5116 			*ret_next_table = LE16_TO_CPU(cmd->table_id);
5117 		if (ret_next_index)
5118 			*ret_next_index = LE32_TO_CPU(cmd->idx);
5119 	}
5120 
5121 	return status;
5122 }
5123 
5124 /**
5125  * ice_read_byte - read context byte into struct
5126  * @src_ctx:  the context structure to read from
5127  * @dest_ctx: the context to be written to
5128  * @ce_info:  a description of the struct to be filled
5129  */
5130 static void
5131 ice_read_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
5132 {
5133 	u8 dest_byte, mask;
5134 	u8 *src, *target;
5135 	u16 shift_width;
5136 
5137 	/* prepare the bits and mask */
5138 	shift_width = ce_info->lsb % 8;
5139 	mask = (u8)(BIT(ce_info->width) - 1);
5140 
5141 	/* shift to correct alignment */
5142 	mask <<= shift_width;
5143 
5144 	/* get the current bits from the src bit string */
5145 	src = src_ctx + (ce_info->lsb / 8);
5146 
5147 	ice_memcpy(&dest_byte, src, sizeof(dest_byte), ICE_NONDMA_TO_NONDMA);
5148 
5149 	dest_byte &= mask;
5150 
5151 	dest_byte >>= shift_width;
5152 
5153 	/* get the address from the struct field */
5154 	target = dest_ctx + ce_info->offset;
5155 
5156 	/* put it back in the struct */
5157 	ice_memcpy(target, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_NONDMA);
5158 }
5159 
5160 /**
5161  * ice_read_word - read context word into struct
5162  * @src_ctx:  the context structure to read from
5163  * @dest_ctx: the context to be written to
5164  * @ce_info:  a description of the struct to be filled
5165  */
5166 static void
5167 ice_read_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
5168 {
5169 	u16 dest_word, mask;
5170 	u8 *src, *target;
5171 	__le16 src_word;
5172 	u16 shift_width;
5173 
5174 	/* prepare the bits and mask */
5175 	shift_width = ce_info->lsb % 8;
5176 	mask = BIT(ce_info->width) - 1;
5177 
5178 	/* shift to correct alignment */
5179 	mask <<= shift_width;
5180 
5181 	/* get the current bits from the src bit string */
5182 	src = src_ctx + (ce_info->lsb / 8);
5183 
5184 	ice_memcpy(&src_word, src, sizeof(src_word), ICE_NONDMA_TO_NONDMA);
5185 
5186 	/* the data in the memory is stored as little endian so mask it
5187 	 * correctly
5188 	 */
5189 	src_word &= CPU_TO_LE16(mask);
5190 
5191 	/* get the data back into host order before shifting */
5192 	dest_word = LE16_TO_CPU(src_word);
5193 
5194 	dest_word >>= shift_width;
5195 
5196 	/* get the address from the struct field */
5197 	target = dest_ctx + ce_info->offset;
5198 
5199 	/* put it back in the struct */
5200 	ice_memcpy(target, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_NONDMA);
5201 }
5202 
5203 /**
5204  * ice_read_dword - read context dword into struct
5205  * @src_ctx:  the context structure to read from
5206  * @dest_ctx: the context to be written to
5207  * @ce_info:  a description of the struct to be filled
5208  */
5209 static void
5210 ice_read_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
5211 {
5212 	u32 dest_dword, mask;
5213 	__le32 src_dword;
5214 	u8 *src, *target;
5215 	u16 shift_width;
5216 
5217 	/* prepare the bits and mask */
5218 	shift_width = ce_info->lsb % 8;
5219 
5220 	/* if the field width is exactly 32 on an x86 machine, then the shift
5221 	 * operation will not work because the SHL instructions count is masked
5222 	 * to 5 bits so the shift will do nothing
5223 	 */
5224 	if (ce_info->width < 32)
5225 		mask = BIT(ce_info->width) - 1;
5226 	else
5227 		mask = (u32)~0;
5228 
5229 	/* shift to correct alignment */
5230 	mask <<= shift_width;
5231 
5232 	/* get the current bits from the src bit string */
5233 	src = src_ctx + (ce_info->lsb / 8);
5234 
5235 	ice_memcpy(&src_dword, src, sizeof(src_dword), ICE_NONDMA_TO_NONDMA);
5236 
5237 	/* the data in the memory is stored as little endian so mask it
5238 	 * correctly
5239 	 */
5240 	src_dword &= CPU_TO_LE32(mask);
5241 
5242 	/* get the data back into host order before shifting */
5243 	dest_dword = LE32_TO_CPU(src_dword);
5244 
5245 	dest_dword >>= shift_width;
5246 
5247 	/* get the address from the struct field */
5248 	target = dest_ctx + ce_info->offset;
5249 
5250 	/* put it back in the struct */
5251 	ice_memcpy(target, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_NONDMA);
5252 }
5253 
5254 /**
5255  * ice_read_qword - read context qword into struct
5256  * @src_ctx:  the context structure to read from
5257  * @dest_ctx: the context to be written to
5258  * @ce_info:  a description of the struct to be filled
5259  */
5260 static void
5261 ice_read_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
5262 {
5263 	u64 dest_qword, mask;
5264 	__le64 src_qword;
5265 	u8 *src, *target;
5266 	u16 shift_width;
5267 
5268 	/* prepare the bits and mask */
5269 	shift_width = ce_info->lsb % 8;
5270 
5271 	/* if the field width is exactly 64 on an x86 machine, then the shift
5272 	 * operation will not work because the SHL instructions count is masked
5273 	 * to 6 bits so the shift will do nothing
5274 	 */
5275 	if (ce_info->width < 64)
5276 		mask = BIT_ULL(ce_info->width) - 1;
5277 	else
5278 		mask = (u64)~0;
5279 
5280 	/* shift to correct alignment */
5281 	mask <<= shift_width;
5282 
5283 	/* get the current bits from the src bit string */
5284 	src = src_ctx + (ce_info->lsb / 8);
5285 
5286 	ice_memcpy(&src_qword, src, sizeof(src_qword), ICE_NONDMA_TO_NONDMA);
5287 
5288 	/* the data in the memory is stored as little endian so mask it
5289 	 * correctly
5290 	 */
5291 	src_qword &= CPU_TO_LE64(mask);
5292 
5293 	/* get the data back into host order before shifting */
5294 	dest_qword = LE64_TO_CPU(src_qword);
5295 
5296 	dest_qword >>= shift_width;
5297 
5298 	/* get the address from the struct field */
5299 	target = dest_ctx + ce_info->offset;
5300 
5301 	/* put it back in the struct */
5302 	ice_memcpy(target, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_NONDMA);
5303 }
5304 
5305 /**
5306  * ice_get_ctx - extract context bits from a packed structure
5307  * @src_ctx:  pointer to a generic packed context structure
5308  * @dest_ctx: pointer to a generic non-packed context structure
5309  * @ce_info:  a description of the structure to be read from
5310  */
5311 int
5312 ice_get_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
5313 {
5314 	int f;
5315 
5316 	for (f = 0; ce_info[f].width; f++) {
5317 		switch (ce_info[f].size_of) {
5318 		case 1:
5319 			ice_read_byte(src_ctx, dest_ctx, &ce_info[f]);
5320 			break;
5321 		case 2:
5322 			ice_read_word(src_ctx, dest_ctx, &ce_info[f]);
5323 			break;
5324 		case 4:
5325 			ice_read_dword(src_ctx, dest_ctx, &ce_info[f]);
5326 			break;
5327 		case 8:
5328 			ice_read_qword(src_ctx, dest_ctx, &ce_info[f]);
5329 			break;
5330 		default:
5331 			/* nothing to do, just keep going */
5332 			break;
5333 		}
5334 	}
5335 
5336 	return 0;
5337 }
5338 
5339 /**
5340  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
5341  * @hw: pointer to the HW struct
5342  * @vsi_handle: software VSI handle
5343  * @tc: TC number
5344  * @q_handle: software queue handle
5345  */
5346 struct ice_q_ctx *
5347 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
5348 {
5349 	struct ice_vsi_ctx *vsi;
5350 	struct ice_q_ctx *q_ctx;
5351 
5352 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
5353 	if (!vsi)
5354 		return NULL;
5355 	if (q_handle >= vsi->num_lan_q_entries[tc])
5356 		return NULL;
5357 	if (!vsi->lan_q_ctx[tc])
5358 		return NULL;
5359 	q_ctx = vsi->lan_q_ctx[tc];
5360 	return &q_ctx[q_handle];
5361 }
5362 
5363 /**
5364  * ice_ena_vsi_txq
5365  * @pi: port information structure
5366  * @vsi_handle: software VSI handle
5367  * @tc: TC number
5368  * @q_handle: software queue handle
5369  * @num_qgrps: Number of added queue groups
5370  * @buf: list of queue groups to be added
5371  * @buf_size: size of buffer for indirect command
5372  * @cd: pointer to command details structure or NULL
5373  *
5374  * This function adds one LAN queue
5375  */
5376 int
5377 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
5378 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
5379 		struct ice_sq_cd *cd)
5380 {
5381 	struct ice_aqc_txsched_elem_data node = { 0 };
5382 	struct ice_sched_node *parent;
5383 	struct ice_q_ctx *q_ctx;
5384 	struct ice_hw *hw;
5385 	int status;
5386 
5387 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5388 		return ICE_ERR_CFG;
5389 
5390 	if (num_qgrps > 1 || buf->num_txqs > 1)
5391 		return ICE_ERR_MAX_LIMIT;
5392 
5393 	hw = pi->hw;
5394 
5395 	if (!ice_is_vsi_valid(hw, vsi_handle))
5396 		return ICE_ERR_PARAM;
5397 
5398 	ice_acquire_lock(&pi->sched_lock);
5399 
5400 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
5401 	if (!q_ctx) {
5402 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
5403 			  q_handle);
5404 		status = ICE_ERR_PARAM;
5405 		goto ena_txq_exit;
5406 	}
5407 
5408 	/* find a parent node */
5409 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5410 					    ICE_SCHED_NODE_OWNER_LAN);
5411 	if (!parent) {
5412 		status = ICE_ERR_PARAM;
5413 		goto ena_txq_exit;
5414 	}
5415 
5416 	buf->parent_teid = parent->info.node_teid;
5417 	node.parent_teid = parent->info.node_teid;
5418 	/* Mark that the values in the "generic" section as valid. The default
5419 	 * value in the "generic" section is zero. This means that :
5420 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
5421 	 * - 0 priority among siblings, indicated by Bit 1-3.
5422 	 * - WFQ, indicated by Bit 4.
5423 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
5424 	 * Bit 5-6.
5425 	 * - Bit 7 is reserved.
5426 	 * Without setting the generic section as valid in valid_sections, the
5427 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
5428 	 */
5429 	buf->txqs[0].info.valid_sections =
5430 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5431 		ICE_AQC_ELEM_VALID_EIR;
5432 	buf->txqs[0].info.generic = 0;
5433 	buf->txqs[0].info.cir_bw.bw_profile_idx =
5434 		CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5435 	buf->txqs[0].info.cir_bw.bw_alloc =
5436 		CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5437 	buf->txqs[0].info.eir_bw.bw_profile_idx =
5438 		CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5439 	buf->txqs[0].info.eir_bw.bw_alloc =
5440 		CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5441 
5442 	/* add the LAN queue */
5443 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
5444 	if (status) {
5445 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
5446 			  LE16_TO_CPU(buf->txqs[0].txq_id),
5447 			  hw->adminq.sq_last_status);
5448 		goto ena_txq_exit;
5449 	}
5450 
5451 	node.node_teid = buf->txqs[0].q_teid;
5452 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5453 	q_ctx->q_handle = q_handle;
5454 	q_ctx->q_teid = LE32_TO_CPU(node.node_teid);
5455 
5456 	/* add a leaf node into scheduler tree queue layer */
5457 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
5458 	if (!status)
5459 		status = ice_sched_replay_q_bw(pi, q_ctx);
5460 
5461 ena_txq_exit:
5462 	ice_release_lock(&pi->sched_lock);
5463 	return status;
5464 }
5465 
5466 /**
5467  * ice_dis_vsi_txq
5468  * @pi: port information structure
5469  * @vsi_handle: software VSI handle
5470  * @tc: TC number
5471  * @num_queues: number of queues
5472  * @q_handles: pointer to software queue handle array
5473  * @q_ids: pointer to the q_id array
5474  * @q_teids: pointer to queue node teids
5475  * @rst_src: if called due to reset, specifies the reset source
5476  * @vmvf_num: the relative VM or VF number that is undergoing the reset
5477  * @cd: pointer to command details structure or NULL
5478  *
5479  * This function removes queues and their corresponding nodes in SW DB
5480  */
5481 int
5482 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
5483 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
5484 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
5485 		struct ice_sq_cd *cd)
5486 {
5487 	struct ice_aqc_dis_txq_item *qg_list;
5488 	struct ice_q_ctx *q_ctx;
5489 	int status = ICE_ERR_DOES_NOT_EXIST;
5490 	struct ice_hw *hw;
5491 	u16 i, buf_size;
5492 
5493 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5494 		return ICE_ERR_CFG;
5495 
5496 	hw = pi->hw;
5497 
5498 	if (!num_queues) {
5499 		/* if queue is disabled already yet the disable queue command
5500 		 * has to be sent to complete the VF reset, then call
5501 		 * ice_aq_dis_lan_txq without any queue information
5502 		 */
5503 		if (rst_src)
5504 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
5505 						  vmvf_num, NULL);
5506 		return ICE_ERR_CFG;
5507 	}
5508 
5509 	buf_size = ice_struct_size(qg_list, q_id, 1);
5510 	qg_list = (struct ice_aqc_dis_txq_item *)ice_malloc(hw, buf_size);
5511 	if (!qg_list)
5512 		return ICE_ERR_NO_MEMORY;
5513 
5514 	ice_acquire_lock(&pi->sched_lock);
5515 
5516 	for (i = 0; i < num_queues; i++) {
5517 		struct ice_sched_node *node;
5518 
5519 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
5520 		if (!node)
5521 			continue;
5522 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
5523 		if (!q_ctx) {
5524 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
5525 				  q_handles[i]);
5526 			continue;
5527 		}
5528 		if (q_ctx->q_handle != q_handles[i]) {
5529 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
5530 				  q_ctx->q_handle, q_handles[i]);
5531 			continue;
5532 		}
5533 		qg_list->parent_teid = node->info.parent_teid;
5534 		qg_list->num_qs = 1;
5535 		qg_list->q_id[0] = CPU_TO_LE16(q_ids[i]);
5536 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
5537 					    vmvf_num, cd);
5538 
5539 		if (status)
5540 			break;
5541 		ice_free_sched_node(pi, node);
5542 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
5543 	}
5544 	ice_release_lock(&pi->sched_lock);
5545 	ice_free(hw, qg_list);
5546 	return status;
5547 }
5548 
5549 /**
5550  * ice_cfg_vsi_qs - configure the new/existing VSI queues
5551  * @pi: port information structure
5552  * @vsi_handle: software VSI handle
5553  * @tc_bitmap: TC bitmap
5554  * @maxqs: max queues array per TC
5555  * @owner: LAN or RDMA
5556  *
5557  * This function adds/updates the VSI queues per TC.
5558  */
5559 static int
5560 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5561 	       u16 *maxqs, u8 owner)
5562 {
5563 	int status = 0;
5564 	u8 i;
5565 
5566 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5567 		return ICE_ERR_CFG;
5568 
5569 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5570 		return ICE_ERR_PARAM;
5571 
5572 	ice_acquire_lock(&pi->sched_lock);
5573 
5574 	ice_for_each_traffic_class(i) {
5575 		/* configuration is possible only if TC node is present */
5576 		if (!ice_sched_get_tc_node(pi, i))
5577 			continue;
5578 
5579 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5580 					   ice_is_tc_ena(tc_bitmap, i));
5581 		if (status)
5582 			break;
5583 	}
5584 
5585 	ice_release_lock(&pi->sched_lock);
5586 	return status;
5587 }
5588 
5589 /**
5590  * ice_cfg_vsi_lan - configure VSI LAN queues
5591  * @pi: port information structure
5592  * @vsi_handle: software VSI handle
5593  * @tc_bitmap: TC bitmap
5594  * @max_lanqs: max LAN queues array per TC
5595  *
5596  * This function adds/updates the VSI LAN queues per TC.
5597  */
5598 int
5599 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5600 		u16 *max_lanqs)
5601 {
5602 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5603 			      ICE_SCHED_NODE_OWNER_LAN);
5604 }
5605 
5606 /**
5607  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5608  * @pi: port information structure
5609  * @vsi_handle: software VSI handle
5610  * @tc_bitmap: TC bitmap
5611  * @max_rdmaqs: max RDMA queues array per TC
5612  *
5613  * This function adds/updates the VSI RDMA queues per TC.
5614  */
5615 int
5616 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5617 		 u16 *max_rdmaqs)
5618 {
5619 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5620 			      ICE_SCHED_NODE_OWNER_RDMA);
5621 }
5622 
5623 /**
5624  * ice_ena_vsi_rdma_qset
5625  * @pi: port information structure
5626  * @vsi_handle: software VSI handle
5627  * @tc: TC number
5628  * @rdma_qset: pointer to RDMA qset
5629  * @num_qsets: number of RDMA qsets
5630  * @qset_teid: pointer to qset node teids
5631  *
5632  * This function adds RDMA qset
5633  */
5634 int
5635 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5636 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5637 {
5638 	struct ice_aqc_txsched_elem_data node = { 0 };
5639 	struct ice_aqc_add_rdma_qset_data *buf;
5640 	struct ice_sched_node *parent;
5641 	struct ice_hw *hw;
5642 	u16 i, buf_size;
5643 	int status;
5644 
5645 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5646 		return ICE_ERR_CFG;
5647 	hw = pi->hw;
5648 
5649 	if (!ice_is_vsi_valid(hw, vsi_handle))
5650 		return ICE_ERR_PARAM;
5651 
5652 	buf_size = ice_struct_size(buf, rdma_qsets, num_qsets);
5653 	buf = (struct ice_aqc_add_rdma_qset_data *)ice_malloc(hw, buf_size);
5654 	if (!buf)
5655 		return ICE_ERR_NO_MEMORY;
5656 	ice_acquire_lock(&pi->sched_lock);
5657 
5658 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5659 					    ICE_SCHED_NODE_OWNER_RDMA);
5660 	if (!parent) {
5661 		status = ICE_ERR_PARAM;
5662 		goto rdma_error_exit;
5663 	}
5664 	buf->parent_teid = parent->info.node_teid;
5665 	node.parent_teid = parent->info.node_teid;
5666 
5667 	buf->num_qsets = CPU_TO_LE16(num_qsets);
5668 	for (i = 0; i < num_qsets; i++) {
5669 		buf->rdma_qsets[i].tx_qset_id = CPU_TO_LE16(rdma_qset[i]);
5670 		buf->rdma_qsets[i].info.valid_sections =
5671 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5672 			ICE_AQC_ELEM_VALID_EIR;
5673 		buf->rdma_qsets[i].info.generic = 0;
5674 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5675 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5676 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5677 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5678 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5679 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5680 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5681 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5682 	}
5683 	status = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5684 	if (status) {
5685 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5686 		goto rdma_error_exit;
5687 	}
5688 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5689 	for (i = 0; i < num_qsets; i++) {
5690 		node.node_teid = buf->rdma_qsets[i].qset_teid;
5691 		status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5692 					    &node, NULL);
5693 		if (status)
5694 			break;
5695 		qset_teid[i] = LE32_TO_CPU(node.node_teid);
5696 	}
5697 rdma_error_exit:
5698 	ice_release_lock(&pi->sched_lock);
5699 	ice_free(hw, buf);
5700 	return status;
5701 }
5702 
5703 /**
5704  * ice_dis_vsi_rdma_qset - free RDMA resources
5705  * @pi: port_info struct
5706  * @count: number of RDMA qsets to free
5707  * @qset_teid: TEID of qset node
5708  * @q_id: list of queue IDs being disabled
5709  */
5710 int
5711 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5712 		      u16 *q_id)
5713 {
5714 	struct ice_aqc_dis_txq_item *qg_list;
5715 	struct ice_hw *hw;
5716 	int status = 0;
5717 	u16 qg_size;
5718 	int i;
5719 
5720 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5721 		return ICE_ERR_CFG;
5722 
5723 	hw = pi->hw;
5724 
5725 	qg_size = ice_struct_size(qg_list, q_id, 1);
5726 	qg_list = (struct ice_aqc_dis_txq_item *)ice_malloc(hw, qg_size);
5727 	if (!qg_list)
5728 		return ICE_ERR_NO_MEMORY;
5729 
5730 	ice_acquire_lock(&pi->sched_lock);
5731 
5732 	for (i = 0; i < count; i++) {
5733 		struct ice_sched_node *node;
5734 
5735 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5736 		if (!node)
5737 			continue;
5738 
5739 		qg_list->parent_teid = node->info.parent_teid;
5740 		qg_list->num_qs = 1;
5741 		qg_list->q_id[0] =
5742 			CPU_TO_LE16(q_id[i] |
5743 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5744 
5745 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5746 					    ICE_NO_RESET, 0, NULL);
5747 		if (status)
5748 			break;
5749 
5750 		ice_free_sched_node(pi, node);
5751 	}
5752 
5753 	ice_release_lock(&pi->sched_lock);
5754 	ice_free(hw, qg_list);
5755 	return status;
5756 }
5757 
5758 /**
5759  * ice_aq_get_sensor_reading
5760  * @hw: pointer to the HW struct
5761  * @sensor: sensor type
5762  * @format: requested response format
5763  * @data: pointer to data to be read from the sensor
5764  * @cd: pointer to command details structure or NULL
5765  *
5766  * Get sensor reading (0x0632)
5767  */
5768 int
5769 ice_aq_get_sensor_reading(struct ice_hw *hw, u8 sensor, u8 format,
5770 			  struct ice_aqc_get_sensor_reading_resp *data,
5771 			  struct ice_sq_cd *cd)
5772 {
5773 	struct ice_aqc_get_sensor_reading *cmd;
5774 	struct ice_aq_desc desc;
5775 	int status;
5776 
5777 	if (!data)
5778 		return ICE_ERR_PARAM;
5779 
5780 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5781 	cmd = &desc.params.get_sensor_reading;
5782 	cmd->sensor = sensor;
5783 	cmd->format = format;
5784 
5785 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5786 
5787 	if (!status)
5788 		ice_memcpy(data, &desc.params.get_sensor_reading_resp,
5789 			   sizeof(*data), ICE_NONDMA_TO_NONDMA);
5790 
5791 	return status;
5792 }
5793 
5794 /**
5795  * ice_is_main_vsi - checks whether the VSI is main VSI
5796  * @hw: pointer to the HW struct
5797  * @vsi_handle: VSI handle
5798  *
5799  * Checks whether the VSI is the main VSI (the first PF VSI created on
5800  * given PF).
5801  */
5802 static bool ice_is_main_vsi(struct ice_hw *hw, u16 vsi_handle)
5803 {
5804 	return vsi_handle == ICE_MAIN_VSI_HANDLE && hw->vsi_ctx[vsi_handle];
5805 }
5806 
5807 /**
5808  * ice_replay_pre_init - replay pre initialization
5809  * @hw: pointer to the HW struct
5810  * @sw: pointer to switch info struct for which function initializes filters
5811  *
5812  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5813  */
5814 int
5815 ice_replay_pre_init(struct ice_hw *hw, struct ice_switch_info *sw)
5816 {
5817 	int status;
5818 	u8 i;
5819 
5820 	/* Delete old entries from replay filter list head if there is any */
5821 	ice_rm_sw_replay_rule_info(hw, sw);
5822 	/* In start of replay, move entries into replay_rules list, it
5823 	 * will allow adding rules entries back to filt_rules list,
5824 	 * which is operational list.
5825 	 */
5826 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5827 		LIST_REPLACE_INIT(&sw->recp_list[i].filt_rules,
5828 				  &sw->recp_list[i].filt_replay_rules);
5829 	ice_sched_replay_agg_vsi_preinit(hw);
5830 
5831 	status = ice_sched_replay_root_node_bw(hw->port_info);
5832 	if (status)
5833 		return status;
5834 
5835 	return ice_sched_replay_tc_node_bw(hw->port_info);
5836 }
5837 
5838 /**
5839  * ice_replay_vsi - replay VSI configuration
5840  * @hw: pointer to the HW struct
5841  * @vsi_handle: driver VSI handle
5842  *
5843  * Restore all VSI configuration after reset. It is required to call this
5844  * function with main VSI first.
5845  */
5846 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5847 {
5848 	struct ice_switch_info *sw = hw->switch_info;
5849 	struct ice_port_info *pi = hw->port_info;
5850 	int status;
5851 
5852 	if (!ice_is_vsi_valid(hw, vsi_handle))
5853 		return ICE_ERR_PARAM;
5854 
5855 	/* Replay pre-initialization if there is any */
5856 	if (ice_is_main_vsi(hw, vsi_handle)) {
5857 		status = ice_replay_pre_init(hw, sw);
5858 		if (status)
5859 			return status;
5860 	}
5861 	/* Replay per VSI all RSS configurations */
5862 	status = ice_replay_rss_cfg(hw, vsi_handle);
5863 	if (status)
5864 		return status;
5865 	/* Replay per VSI all filters */
5866 	status = ice_replay_vsi_all_fltr(hw, pi, vsi_handle);
5867 	if (!status)
5868 		status = ice_replay_vsi_agg(hw, vsi_handle);
5869 	return status;
5870 }
5871 
5872 /**
5873  * ice_replay_post - post replay configuration cleanup
5874  * @hw: pointer to the HW struct
5875  *
5876  * Post replay cleanup.
5877  */
5878 void ice_replay_post(struct ice_hw *hw)
5879 {
5880 	/* Delete old entries from replay filter list head */
5881 	ice_rm_all_sw_replay_rule_info(hw);
5882 	ice_sched_replay_agg(hw);
5883 }
5884 
5885 /**
5886  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5887  * @hw: ptr to the hardware info
5888  * @reg: offset of 64 bit HW register to read from
5889  * @prev_stat_loaded: bool to specify if previous stats are loaded
5890  * @prev_stat: ptr to previous loaded stat value
5891  * @cur_stat: ptr to current stat value
5892  */
5893 void
5894 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5895 		  u64 *prev_stat, u64 *cur_stat)
5896 {
5897 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5898 
5899 	/* device stats are not reset at PFR, they likely will not be zeroed
5900 	 * when the driver starts. Thus, save the value from the first read
5901 	 * without adding to the statistic value so that we report stats which
5902 	 * count up from zero.
5903 	 */
5904 	if (!prev_stat_loaded) {
5905 		*prev_stat = new_data;
5906 		return;
5907 	}
5908 
5909 	/* Calculate the difference between the new and old values, and then
5910 	 * add it to the software stat value.
5911 	 */
5912 	if (new_data >= *prev_stat)
5913 		*cur_stat += new_data - *prev_stat;
5914 	else
5915 		/* to manage the potential roll-over */
5916 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5917 
5918 	/* Update the previously stored value to prepare for next read */
5919 	*prev_stat = new_data;
5920 }
5921 
5922 /**
5923  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5924  * @hw: ptr to the hardware info
5925  * @reg: offset of HW register to read from
5926  * @prev_stat_loaded: bool to specify if previous stats are loaded
5927  * @prev_stat: ptr to previous loaded stat value
5928  * @cur_stat: ptr to current stat value
5929  */
5930 void
5931 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5932 		  u64 *prev_stat, u64 *cur_stat)
5933 {
5934 	u32 new_data;
5935 
5936 	new_data = rd32(hw, reg);
5937 
5938 	/* device stats are not reset at PFR, they likely will not be zeroed
5939 	 * when the driver starts. Thus, save the value from the first read
5940 	 * without adding to the statistic value so that we report stats which
5941 	 * count up from zero.
5942 	 */
5943 	if (!prev_stat_loaded) {
5944 		*prev_stat = new_data;
5945 		return;
5946 	}
5947 
5948 	/* Calculate the difference between the new and old values, and then
5949 	 * add it to the software stat value.
5950 	 */
5951 	if (new_data >= *prev_stat)
5952 		*cur_stat += new_data - *prev_stat;
5953 	else
5954 		/* to manage the potential roll-over */
5955 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5956 
5957 	/* Update the previously stored value to prepare for next read */
5958 	*prev_stat = new_data;
5959 }
5960 
5961 /**
5962  * ice_stat_update_repc - read GLV_REPC stats from chip and update stat values
5963  * @hw: ptr to the hardware info
5964  * @vsi_handle: VSI handle
5965  * @prev_stat_loaded: bool to specify if the previous stat values are loaded
5966  * @cur_stats: ptr to current stats structure
5967  *
5968  * The GLV_REPC statistic register actually tracks two 16bit statistics, and
5969  * thus cannot be read using the normal ice_stat_update32 function.
5970  *
5971  * Read the GLV_REPC register associated with the given VSI, and update the
5972  * rx_no_desc and rx_error values in the ice_eth_stats structure.
5973  *
5974  * Because the statistics in GLV_REPC stick at 0xFFFF, the register must be
5975  * cleared each time it's read.
5976  *
5977  * Note that the GLV_RDPC register also counts the causes that would trigger
5978  * GLV_REPC. However, it does not give the finer grained detail about why the
5979  * packets are being dropped. The GLV_REPC values can be used to distinguish
5980  * whether Rx packets are dropped due to errors or due to no available
5981  * descriptors.
5982  */
5983 void
5984 ice_stat_update_repc(struct ice_hw *hw, u16 vsi_handle, bool prev_stat_loaded,
5985 		     struct ice_eth_stats *cur_stats)
5986 {
5987 	u16 vsi_num, no_desc, error_cnt;
5988 	u32 repc;
5989 
5990 	if (!ice_is_vsi_valid(hw, vsi_handle))
5991 		return;
5992 
5993 	vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
5994 
5995 	/* If we haven't loaded stats yet, just clear the current value */
5996 	if (!prev_stat_loaded) {
5997 		wr32(hw, GLV_REPC(vsi_num), 0);
5998 		return;
5999 	}
6000 
6001 	repc = rd32(hw, GLV_REPC(vsi_num));
6002 	no_desc = (repc & GLV_REPC_NO_DESC_CNT_M) >> GLV_REPC_NO_DESC_CNT_S;
6003 	error_cnt = (repc & GLV_REPC_ERROR_CNT_M) >> GLV_REPC_ERROR_CNT_S;
6004 
6005 	/* Clear the count by writing to the stats register */
6006 	wr32(hw, GLV_REPC(vsi_num), 0);
6007 
6008 	cur_stats->rx_no_desc += no_desc;
6009 	cur_stats->rx_errors += error_cnt;
6010 }
6011 
6012 /**
6013  * ice_aq_alternate_write
6014  * @hw: pointer to the hardware structure
6015  * @reg_addr0: address of first dword to be written
6016  * @reg_val0: value to be written under 'reg_addr0'
6017  * @reg_addr1: address of second dword to be written
6018  * @reg_val1: value to be written under 'reg_addr1'
6019  *
6020  * Write one or two dwords to alternate structure. Fields are indicated
6021  * by 'reg_addr0' and 'reg_addr1' register numbers.
6022  */
6023 int
6024 ice_aq_alternate_write(struct ice_hw *hw, u32 reg_addr0, u32 reg_val0,
6025 		       u32 reg_addr1, u32 reg_val1)
6026 {
6027 	struct ice_aqc_read_write_alt_direct *cmd;
6028 	struct ice_aq_desc desc;
6029 	int status;
6030 
6031 	cmd = &desc.params.read_write_alt_direct;
6032 
6033 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_alt_direct);
6034 	cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
6035 	cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
6036 	cmd->dword0_value = CPU_TO_LE32(reg_val0);
6037 	cmd->dword1_value = CPU_TO_LE32(reg_val1);
6038 
6039 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6040 
6041 	return status;
6042 }
6043 
6044 /**
6045  * ice_aq_alternate_read
6046  * @hw: pointer to the hardware structure
6047  * @reg_addr0: address of first dword to be read
6048  * @reg_val0: pointer for data read from 'reg_addr0'
6049  * @reg_addr1: address of second dword to be read
6050  * @reg_val1: pointer for data read from 'reg_addr1'
6051  *
6052  * Read one or two dwords from alternate structure. Fields are indicated
6053  * by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer
6054  * is not passed then only register at 'reg_addr0' is read.
6055  */
6056 int
6057 ice_aq_alternate_read(struct ice_hw *hw, u32 reg_addr0, u32 *reg_val0,
6058 		      u32 reg_addr1, u32 *reg_val1)
6059 {
6060 	struct ice_aqc_read_write_alt_direct *cmd;
6061 	struct ice_aq_desc desc;
6062 	int status;
6063 
6064 	cmd = &desc.params.read_write_alt_direct;
6065 
6066 	if (!reg_val0)
6067 		return ICE_ERR_PARAM;
6068 
6069 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_alt_direct);
6070 	cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
6071 	cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
6072 
6073 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6074 
6075 	if (!status) {
6076 		*reg_val0 = LE32_TO_CPU(cmd->dword0_value);
6077 
6078 		if (reg_val1)
6079 			*reg_val1 = LE32_TO_CPU(cmd->dword1_value);
6080 	}
6081 
6082 	return status;
6083 }
6084 
6085 /**
6086  *  ice_aq_alternate_write_done
6087  *  @hw: pointer to the HW structure.
6088  *  @bios_mode: indicates whether the command is executed by UEFI or legacy BIOS
6089  *  @reset_needed: indicates the SW should trigger GLOBAL reset
6090  *
6091  *  Indicates to the FW that alternate structures have been changed.
6092  */
6093 int
6094 ice_aq_alternate_write_done(struct ice_hw *hw, u8 bios_mode, bool *reset_needed)
6095 {
6096 	struct ice_aqc_done_alt_write *cmd;
6097 	struct ice_aq_desc desc;
6098 	int status;
6099 
6100 	cmd = &desc.params.done_alt_write;
6101 
6102 	if (!reset_needed)
6103 		return ICE_ERR_PARAM;
6104 
6105 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_done_alt_write);
6106 	cmd->flags = bios_mode;
6107 
6108 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6109 	if (!status)
6110 		*reset_needed = (LE16_TO_CPU(cmd->flags) &
6111 				 ICE_AQC_RESP_RESET_NEEDED) != 0;
6112 
6113 	return status;
6114 }
6115 
6116 /**
6117  *  ice_aq_alternate_clear
6118  *  @hw: pointer to the HW structure.
6119  *
6120  *  Clear the alternate structures of the port from which the function
6121  *  is called.
6122  */
6123 int ice_aq_alternate_clear(struct ice_hw *hw)
6124 {
6125 	struct ice_aq_desc desc;
6126 	int status;
6127 
6128 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_port_alt_write);
6129 
6130 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6131 
6132 	return status;
6133 }
6134 
6135 /**
6136  * ice_sched_query_elem - query element information from HW
6137  * @hw: pointer to the HW struct
6138  * @node_teid: node TEID to be queried
6139  * @buf: buffer to element information
6140  *
6141  * This function queries HW element information
6142  */
6143 int
6144 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
6145 		     struct ice_aqc_txsched_elem_data *buf)
6146 {
6147 	u16 buf_size, num_elem_ret = 0;
6148 	int status;
6149 
6150 	buf_size = sizeof(*buf);
6151 	ice_memset(buf, 0, buf_size, ICE_NONDMA_MEM);
6152 	buf->node_teid = CPU_TO_LE32(node_teid);
6153 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
6154 					  NULL);
6155 	if (status || num_elem_ret != 1)
6156 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
6157 	return status;
6158 }
6159 
6160 /**
6161  * ice_get_fw_mode - returns FW mode
6162  * @hw: pointer to the HW struct
6163  */
6164 enum ice_fw_modes ice_get_fw_mode(struct ice_hw *hw)
6165 {
6166 #define ICE_FW_MODE_DBG_M BIT(0)
6167 #define ICE_FW_MODE_REC_M BIT(1)
6168 #define ICE_FW_MODE_ROLLBACK_M BIT(2)
6169 	u32 fw_mode;
6170 
6171 	/* check the current FW mode */
6172 	fw_mode = rd32(hw, GL_MNG_FWSM) & E800_GL_MNG_FWSM_FW_MODES_M;
6173 	if (fw_mode & ICE_FW_MODE_DBG_M)
6174 		return ICE_FW_MODE_DBG;
6175 	else if (fw_mode & ICE_FW_MODE_REC_M)
6176 		return ICE_FW_MODE_REC;
6177 	else if (fw_mode & ICE_FW_MODE_ROLLBACK_M)
6178 		return ICE_FW_MODE_ROLLBACK;
6179 	else
6180 		return ICE_FW_MODE_NORMAL;
6181 }
6182 
6183 /**
6184  * ice_get_cur_lldp_persist_status
6185  * @hw: pointer to the HW struct
6186  * @lldp_status: return value of LLDP persistent status
6187  *
6188  * Get the current status of LLDP persistent
6189  */
6190 int
6191 ice_get_cur_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
6192 {
6193 	struct ice_port_info *pi = hw->port_info;
6194 	__le32 raw_data;
6195 	u32 data, mask;
6196 	int ret;
6197 
6198 	if (!lldp_status)
6199 		return ICE_ERR_BAD_PTR;
6200 
6201 	ret = ice_acquire_nvm(hw, ICE_RES_READ);
6202 	if (ret)
6203 		return ret;
6204 
6205 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LLDP_PRESERVED_MOD_ID,
6206 			      ICE_AQC_NVM_CUR_LLDP_PERSIST_RD_OFFSET,
6207 			      ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data,
6208 			      false, true, NULL);
6209 	if (!ret) {
6210 		data = LE32_TO_CPU(raw_data);
6211 		mask = ICE_AQC_NVM_LLDP_STATUS_M <<
6212 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
6213 		data = data & mask;
6214 		*lldp_status = data >>
6215 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
6216 	}
6217 
6218 	ice_release_nvm(hw);
6219 
6220 	return ret;
6221 }
6222 
6223 /**
6224  * ice_get_dflt_lldp_persist_status
6225  * @hw: pointer to the HW struct
6226  * @lldp_status: return value of LLDP persistent status
6227  *
6228  * Get the default status of LLDP persistent
6229  */
6230 int
6231 ice_get_dflt_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
6232 {
6233 	struct ice_port_info *pi = hw->port_info;
6234 	u32 data, mask, loc_data, loc_data_tmp;
6235 	__le16 loc_raw_data;
6236 	__le32 raw_data;
6237 	int ret;
6238 
6239 	if (!lldp_status)
6240 		return ICE_ERR_BAD_PTR;
6241 
6242 	ret = ice_acquire_nvm(hw, ICE_RES_READ);
6243 	if (ret)
6244 		return ret;
6245 
6246 	/* Read the offset of EMP_SR_PTR */
6247 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
6248 			      ICE_AQC_NVM_EMP_SR_PTR_OFFSET,
6249 			      ICE_AQC_NVM_EMP_SR_PTR_RD_LEN,
6250 			      &loc_raw_data, false, true, NULL);
6251 	if (ret)
6252 		goto exit;
6253 
6254 	loc_data = LE16_TO_CPU(loc_raw_data);
6255 	if (loc_data & ICE_AQC_NVM_EMP_SR_PTR_TYPE_M) {
6256 		loc_data &= ICE_AQC_NVM_EMP_SR_PTR_M;
6257 		loc_data *= ICE_AQC_NVM_SECTOR_UNIT;
6258 	} else {
6259 		loc_data *= ICE_AQC_NVM_WORD_UNIT;
6260 	}
6261 
6262 	/* Read the offset of LLDP configuration pointer */
6263 	loc_data += ICE_AQC_NVM_LLDP_CFG_PTR_OFFSET;
6264 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
6265 			      ICE_AQC_NVM_LLDP_CFG_PTR_RD_LEN, &loc_raw_data,
6266 			      false, true, NULL);
6267 	if (ret)
6268 		goto exit;
6269 
6270 	loc_data_tmp = LE16_TO_CPU(loc_raw_data);
6271 	loc_data_tmp *= ICE_AQC_NVM_WORD_UNIT;
6272 	loc_data += loc_data_tmp;
6273 
6274 	/* We need to skip LLDP configuration section length (2 bytes) */
6275 	loc_data += ICE_AQC_NVM_LLDP_CFG_HEADER_LEN;
6276 
6277 	/* Read the LLDP Default Configure */
6278 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
6279 			      ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data, false,
6280 			      true, NULL);
6281 	if (!ret) {
6282 		data = LE32_TO_CPU(raw_data);
6283 		mask = ICE_AQC_NVM_LLDP_STATUS_M <<
6284 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
6285 		data = data & mask;
6286 		*lldp_status = data >>
6287 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
6288 	}
6289 
6290 exit:
6291 	ice_release_nvm(hw);
6292 
6293 	return ret;
6294 }
6295 
6296 /**
6297  * ice_aq_read_i2c
6298  * @hw: pointer to the hw struct
6299  * @topo_addr: topology address for a device to communicate with
6300  * @bus_addr: 7-bit I2C bus address
6301  * @addr: I2C memory address (I2C offset) with up to 16 bits
6302  * @params: I2C parameters: bit [7] - Repeated start, bits [6:5] data offset size,
6303  *			    bit [4] - I2C address type, bits [3:0] - data size to read (0-16 bytes)
6304  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
6305  * @cd: pointer to command details structure or NULL
6306  *
6307  * Read I2C (0x06E2)
6308  */
6309 int
6310 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
6311 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
6312 		struct ice_sq_cd *cd)
6313 {
6314 	struct ice_aq_desc desc = { 0 };
6315 	struct ice_aqc_i2c *cmd;
6316 	u8 data_size;
6317 	int status;
6318 
6319 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
6320 	cmd = &desc.params.read_write_i2c;
6321 
6322 	if (!data)
6323 		return ICE_ERR_PARAM;
6324 
6325 	data_size = (params & ICE_AQC_I2C_DATA_SIZE_M) >> ICE_AQC_I2C_DATA_SIZE_S;
6326 
6327 	cmd->i2c_bus_addr = CPU_TO_LE16(bus_addr);
6328 	cmd->topo_addr = topo_addr;
6329 	cmd->i2c_params = params;
6330 	cmd->i2c_addr = addr;
6331 
6332 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6333 	if (!status) {
6334 		struct ice_aqc_read_i2c_resp *resp;
6335 		u8 i;
6336 
6337 		resp = &desc.params.read_i2c_resp;
6338 		for (i = 0; i < data_size; i++) {
6339 			*data = resp->i2c_data[i];
6340 			data++;
6341 		}
6342 	}
6343 
6344 	return status;
6345 }
6346 
6347 /**
6348  * ice_aq_write_i2c
6349  * @hw: pointer to the hw struct
6350  * @topo_addr: topology address for a device to communicate with
6351  * @bus_addr: 7-bit I2C bus address
6352  * @addr: I2C memory address (I2C offset) with up to 16 bits
6353  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
6354  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
6355  * @cd: pointer to command details structure or NULL
6356  *
6357  * Write I2C (0x06E3)
6358  */
6359 int
6360 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
6361 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
6362 		 struct ice_sq_cd *cd)
6363 {
6364 	struct ice_aq_desc desc = { 0 };
6365 	struct ice_aqc_i2c *cmd;
6366 	u8 i, data_size;
6367 
6368 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
6369 	cmd = &desc.params.read_write_i2c;
6370 
6371 	data_size = (params & ICE_AQC_I2C_DATA_SIZE_M) >> ICE_AQC_I2C_DATA_SIZE_S;
6372 
6373 	/* data_size limited to 4 */
6374 	if (data_size > 4)
6375 		return ICE_ERR_PARAM;
6376 
6377 	cmd->i2c_bus_addr = CPU_TO_LE16(bus_addr);
6378 	cmd->topo_addr = topo_addr;
6379 	cmd->i2c_params = params;
6380 	cmd->i2c_addr = addr;
6381 
6382 	for (i = 0; i < data_size; i++) {
6383 		cmd->i2c_data[i] = *data;
6384 		data++;
6385 	}
6386 
6387 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6388 }
6389 
6390 /**
6391  * ice_aq_set_gpio
6392  * @hw: pointer to the hw struct
6393  * @gpio_ctrl_handle: GPIO controller node handle
6394  * @pin_idx: IO Number of the GPIO that needs to be set
6395  * @value: SW provide IO value to set in the LSB
6396  * @cd: pointer to command details structure or NULL
6397  *
6398  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
6399  */
6400 int
6401 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
6402 		struct ice_sq_cd *cd)
6403 {
6404 	struct ice_aqc_gpio *cmd;
6405 	struct ice_aq_desc desc;
6406 
6407 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
6408 	cmd = &desc.params.read_write_gpio;
6409 	cmd->gpio_ctrl_handle = CPU_TO_LE16(gpio_ctrl_handle);
6410 	cmd->gpio_num = pin_idx;
6411 	cmd->gpio_val = value ? 1 : 0;
6412 
6413 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6414 }
6415 
6416 /**
6417  * ice_aq_get_gpio
6418  * @hw: pointer to the hw struct
6419  * @gpio_ctrl_handle: GPIO controller node handle
6420  * @pin_idx: IO Number of the GPIO that needs to be set
6421  * @value: IO value read
6422  * @cd: pointer to command details structure or NULL
6423  *
6424  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
6425  * the topology
6426  */
6427 int
6428 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
6429 		bool *value, struct ice_sq_cd *cd)
6430 {
6431 	struct ice_aqc_gpio *cmd;
6432 	struct ice_aq_desc desc;
6433 	int status;
6434 
6435 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
6436 	cmd = &desc.params.read_write_gpio;
6437 	cmd->gpio_ctrl_handle = CPU_TO_LE16(gpio_ctrl_handle);
6438 	cmd->gpio_num = pin_idx;
6439 
6440 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6441 	if (status)
6442 		return status;
6443 
6444 	*value = !!cmd->gpio_val;
6445 	return 0;
6446 }
6447 
6448 /**
6449  * ice_is_fw_api_min_ver
6450  * @hw: pointer to the hardware structure
6451  * @maj: major version
6452  * @min: minor version
6453  * @patch: patch version
6454  *
6455  * Checks if the firmware is minimum version
6456  */
6457 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
6458 {
6459 	if (hw->api_maj_ver == maj) {
6460 		if (hw->api_min_ver > min)
6461 			return true;
6462 		if (hw->api_min_ver == min && hw->api_patch >= patch)
6463 			return true;
6464 	} else if (hw->api_maj_ver > maj) {
6465 		return true;
6466 	}
6467 
6468 	return false;
6469 }
6470 
6471 /**
6472  * ice_is_fw_min_ver
6473  * @hw: pointer to the hardware structure
6474  * @branch: branch version
6475  * @maj: major version
6476  * @min: minor version
6477  * @patch: patch version
6478  *
6479  * Checks if the firmware is minimum version
6480  */
6481 static bool ice_is_fw_min_ver(struct ice_hw *hw, u8 branch, u8 maj, u8 min,
6482 			      u8 patch)
6483 {
6484 	if (hw->fw_branch == branch) {
6485 		if (hw->fw_maj_ver > maj)
6486 			return true;
6487 		if (hw->fw_maj_ver == maj) {
6488 			if (hw->fw_min_ver > min)
6489 				return true;
6490 			if (hw->fw_min_ver == min && hw->fw_patch >= patch)
6491 				return true;
6492 		}
6493 	}
6494 
6495 	return false;
6496 }
6497 
6498 /**
6499  * ice_fw_supports_link_override
6500  * @hw: pointer to the hardware structure
6501  *
6502  * Checks if the firmware supports link override
6503  */
6504 bool ice_fw_supports_link_override(struct ice_hw *hw)
6505 {
6506 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
6507 				     ICE_FW_API_LINK_OVERRIDE_MIN,
6508 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
6509 }
6510 
6511 /**
6512  * ice_get_link_default_override
6513  * @ldo: pointer to the link default override struct
6514  * @pi: pointer to the port info struct
6515  *
6516  * Gets the link default override for a port
6517  */
6518 int
6519 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
6520 			      struct ice_port_info *pi)
6521 {
6522 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
6523 	struct ice_hw *hw = pi->hw;
6524 	int status;
6525 
6526 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
6527 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
6528 	if (status) {
6529 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
6530 		return status;
6531 	}
6532 
6533 	/* Each port has its own config; calculate for our port */
6534 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
6535 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
6536 
6537 	/* link options first */
6538 	status = ice_read_sr_word(hw, tlv_start, &buf);
6539 	if (status) {
6540 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6541 		return status;
6542 	}
6543 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
6544 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
6545 		ICE_LINK_OVERRIDE_PHY_CFG_S;
6546 
6547 	/* link PHY config */
6548 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
6549 	status = ice_read_sr_word(hw, offset, &buf);
6550 	if (status) {
6551 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
6552 		return status;
6553 	}
6554 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
6555 
6556 	/* PHY types low */
6557 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
6558 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6559 		status = ice_read_sr_word(hw, (offset + i), &buf);
6560 		if (status) {
6561 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6562 			return status;
6563 		}
6564 		/* shift 16 bits at a time to fill 64 bits */
6565 		ldo->phy_type_low |= ((u64)buf << (i * 16));
6566 	}
6567 
6568 	/* PHY types high */
6569 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
6570 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
6571 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6572 		status = ice_read_sr_word(hw, (offset + i), &buf);
6573 		if (status) {
6574 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6575 			return status;
6576 		}
6577 		/* shift 16 bits at a time to fill 64 bits */
6578 		ldo->phy_type_high |= ((u64)buf << (i * 16));
6579 	}
6580 
6581 	return status;
6582 }
6583 
6584 /**
6585  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
6586  * @caps: get PHY capability data
6587  */
6588 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
6589 {
6590 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
6591 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
6592 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
6593 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
6594 		return true;
6595 
6596 	return false;
6597 }
6598 
6599 /**
6600  * ice_is_fw_health_report_supported
6601  * @hw: pointer to the hardware structure
6602  *
6603  * Return true if firmware supports health status reports,
6604  * false otherwise
6605  */
6606 bool ice_is_fw_health_report_supported(struct ice_hw *hw)
6607 {
6608 	if (hw->api_maj_ver > ICE_FW_API_HEALTH_REPORT_MAJ)
6609 		return true;
6610 
6611 	if (hw->api_maj_ver == ICE_FW_API_HEALTH_REPORT_MAJ) {
6612 		if (hw->api_min_ver > ICE_FW_API_HEALTH_REPORT_MIN)
6613 			return true;
6614 		if (hw->api_min_ver == ICE_FW_API_HEALTH_REPORT_MIN &&
6615 		    hw->api_patch >= ICE_FW_API_HEALTH_REPORT_PATCH)
6616 			return true;
6617 	}
6618 
6619 	return false;
6620 }
6621 
6622 /**
6623  * ice_aq_set_health_status_config - Configure FW health events
6624  * @hw: pointer to the HW struct
6625  * @event_source: type of diagnostic events to enable
6626  * @cd: pointer to command details structure or NULL
6627  *
6628  * Configure the health status event types that the firmware will send to this
6629  * PF. The supported event types are: PF-specific, all PFs, and global
6630  */
6631 int
6632 ice_aq_set_health_status_config(struct ice_hw *hw, u8 event_source,
6633 				struct ice_sq_cd *cd)
6634 {
6635 	struct ice_aqc_set_health_status_config *cmd;
6636 	struct ice_aq_desc desc;
6637 
6638 	cmd = &desc.params.set_health_status_config;
6639 
6640 	ice_fill_dflt_direct_cmd_desc(&desc,
6641 				      ice_aqc_opc_set_health_status_config);
6642 
6643 	cmd->event_source = event_source;
6644 
6645 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6646 }
6647 
6648 /**
6649  * ice_aq_get_port_options
6650  * @hw: pointer to the hw struct
6651  * @options: buffer for the resultant port options
6652  * @option_count: input - size of the buffer in port options structures,
6653  *                output - number of returned port options
6654  * @lport: logical port to call the command with (optional)
6655  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
6656  *               when PF owns more than 1 port it must be true
6657  * @active_option_idx: index of active port option in returned buffer
6658  * @active_option_valid: active option in returned buffer is valid
6659  * @pending_option_idx: index of pending port option in returned buffer
6660  * @pending_option_valid: pending option in returned buffer is valid
6661  *
6662  * Calls Get Port Options AQC (0x06ea) and verifies result.
6663  */
6664 int
6665 ice_aq_get_port_options(struct ice_hw *hw,
6666 			struct ice_aqc_get_port_options_elem *options,
6667 			u8 *option_count, u8 lport, bool lport_valid,
6668 			u8 *active_option_idx, bool *active_option_valid,
6669 			u8 *pending_option_idx, bool *pending_option_valid)
6670 {
6671 	struct ice_aqc_get_port_options *cmd;
6672 	struct ice_aq_desc desc;
6673 	int status;
6674 	u8 i;
6675 
6676 	/* options buffer shall be able to hold max returned options */
6677 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
6678 		return ICE_ERR_PARAM;
6679 
6680 	cmd = &desc.params.get_port_options;
6681 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
6682 
6683 	cmd->lport_num = lport;
6684 	cmd->lport_num_valid = lport_valid;
6685 
6686 	status = ice_aq_send_cmd(hw, &desc, options,
6687 				 *option_count * sizeof(*options), NULL);
6688 	if (status)
6689 		return status;
6690 
6691 	/* verify direct FW response & set output parameters */
6692 	*option_count = cmd->port_options_count & ICE_AQC_PORT_OPT_COUNT_M;
6693 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
6694 	*active_option_valid = cmd->port_options & ICE_AQC_PORT_OPT_VALID;
6695 	if (*active_option_valid) {
6696 		*active_option_idx = cmd->port_options &
6697 				     ICE_AQC_PORT_OPT_ACTIVE_M;
6698 		if (*active_option_idx > (*option_count - 1))
6699 			return ICE_ERR_OUT_OF_RANGE;
6700 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
6701 			  *active_option_idx);
6702 	}
6703 
6704 	*pending_option_valid = cmd->pending_port_option_status &
6705 				ICE_AQC_PENDING_PORT_OPT_VALID;
6706 	if (*pending_option_valid) {
6707 		*pending_option_idx = cmd->pending_port_option_status &
6708 				      ICE_AQC_PENDING_PORT_OPT_IDX_M;
6709 		if (*pending_option_idx > (*option_count - 1))
6710 			return ICE_ERR_OUT_OF_RANGE;
6711 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
6712 			  *pending_option_idx);
6713 	}
6714 
6715 	/* mask output options fields */
6716 	for (i = 0; i < *option_count; i++) {
6717 		options[i].pmd &= ICE_AQC_PORT_OPT_PMD_COUNT_M;
6718 		options[i].max_lane_speed &= ICE_AQC_PORT_OPT_MAX_LANE_M;
6719 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
6720 			  options[i].pmd, options[i].max_lane_speed);
6721 	}
6722 
6723 	return 0;
6724 }
6725 
6726 /**
6727  * ice_aq_set_port_option
6728  * @hw: pointer to the hw struct
6729  * @lport: logical port to call the command with
6730  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
6731  *               when PF owns more than 1 port it must be true
6732  * @new_option: new port option to be written
6733  *
6734  * Calls Set Port Options AQC (0x06eb).
6735  */
6736 int
6737 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
6738 		       u8 new_option)
6739 {
6740 	struct ice_aqc_set_port_option *cmd;
6741 	struct ice_aq_desc desc;
6742 
6743 	if (new_option >= ICE_AQC_PORT_OPT_COUNT_M)
6744 		return ICE_ERR_PARAM;
6745 
6746 	cmd = &desc.params.set_port_option;
6747 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
6748 
6749 	cmd->lport_num = lport;
6750 
6751 	cmd->lport_num_valid = lport_valid;
6752 	cmd->selected_port_option = new_option;
6753 
6754 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6755 }
6756 
6757 /**
6758  * ice_aq_set_lldp_mib - Set the LLDP MIB
6759  * @hw: pointer to the HW struct
6760  * @mib_type: Local, Remote or both Local and Remote MIBs
6761  * @buf: pointer to the caller-supplied buffer to store the MIB block
6762  * @buf_size: size of the buffer (in bytes)
6763  * @cd: pointer to command details structure or NULL
6764  *
6765  * Set the LLDP MIB. (0x0A08)
6766  */
6767 int
6768 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6769 		    struct ice_sq_cd *cd)
6770 {
6771 	struct ice_aqc_lldp_set_local_mib *cmd;
6772 	struct ice_aq_desc desc;
6773 
6774 	cmd = &desc.params.lldp_set_mib;
6775 
6776 	if (buf_size == 0 || !buf)
6777 		return ICE_ERR_PARAM;
6778 
6779 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6780 
6781 	desc.flags |= CPU_TO_LE16((u16)ICE_AQ_FLAG_RD);
6782 	desc.datalen = CPU_TO_LE16(buf_size);
6783 
6784 	cmd->type = mib_type;
6785 	cmd->length = CPU_TO_LE16(buf_size);
6786 
6787 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6788 }
6789 
6790 /**
6791  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6792  * @hw: pointer to HW struct
6793  */
6794 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6795 {
6796 	if (hw->mac_type != ICE_MAC_E810 && hw->mac_type != ICE_MAC_GENERIC)
6797 		return false;
6798 
6799 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6800 				     ICE_FW_API_LLDP_FLTR_MIN,
6801 				     ICE_FW_API_LLDP_FLTR_PATCH);
6802 }
6803 
6804 /**
6805  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6806  * @hw: pointer to HW struct
6807  * @vsi_num: absolute HW index for VSI
6808  * @add: boolean for if adding or removing a filter
6809  */
6810 int
6811 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
6812 {
6813 	struct ice_aqc_lldp_filter_ctrl *cmd;
6814 	struct ice_aq_desc desc;
6815 
6816 	cmd = &desc.params.lldp_filter_ctrl;
6817 
6818 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6819 
6820 	if (add)
6821 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6822 	else
6823 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6824 
6825 	cmd->vsi_num = CPU_TO_LE16(vsi_num);
6826 
6827 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6828 }
6829 
6830 /**
6831  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6832  * @hw: pointer to HW struct
6833  */
6834 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6835 {
6836 	struct ice_aq_desc desc;
6837 
6838 	ice_fill_dflt_direct_cmd_desc(&desc, ice_execute_pending_lldp_mib);
6839 
6840 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6841 }
6842 
6843 /**
6844  * ice_fw_supports_report_dflt_cfg
6845  * @hw: pointer to the hardware structure
6846  *
6847  * Checks if the firmware supports report default configuration
6848  */
6849 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6850 {
6851 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6852 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6853 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6854 }
6855 
6856 /* each of the indexes into the following array match the speed of a return
6857  * value from the list of AQ returned speeds like the range:
6858  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6859  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) The array is defined as 15
6860  * elements long because the link_speed returned by the firmware is a 16 bit
6861  * value, but is indexed by [fls(speed) - 1]
6862  */
6863 static const u32 ice_aq_to_link_speed[] = {
6864 	ICE_LINK_SPEED_10MBPS,	/* BIT(0) */
6865 	ICE_LINK_SPEED_100MBPS,
6866 	ICE_LINK_SPEED_1000MBPS,
6867 	ICE_LINK_SPEED_2500MBPS,
6868 	ICE_LINK_SPEED_5000MBPS,
6869 	ICE_LINK_SPEED_10000MBPS,
6870 	ICE_LINK_SPEED_20000MBPS,
6871 	ICE_LINK_SPEED_25000MBPS,
6872 	ICE_LINK_SPEED_40000MBPS,
6873 	ICE_LINK_SPEED_50000MBPS,
6874 	ICE_LINK_SPEED_100000MBPS,	/* BIT(10) */
6875 	ICE_LINK_SPEED_200000MBPS,
6876 };
6877 
6878 /**
6879  * ice_get_link_speed - get integer speed from table
6880  * @index: array index from fls(aq speed) - 1
6881  *
6882  * Returns: u32 value containing integer speed
6883  */
6884 u32 ice_get_link_speed(u16 index)
6885 {
6886 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6887 		return ICE_LINK_SPEED_UNKNOWN;
6888 
6889 	return ice_aq_to_link_speed[index];
6890 }
6891 
6892 /**
6893  * ice_fw_supports_fec_dis_auto
6894  * @hw: pointer to the hardware structure
6895  *
6896  * Checks if the firmware supports FEC disable in Auto FEC mode
6897  */
6898 bool ice_fw_supports_fec_dis_auto(struct ice_hw *hw)
6899 {
6900 	if (ice_is_e830(hw))
6901 		return true;
6902 	return ice_is_fw_min_ver(hw, ICE_FW_VER_BRANCH_E810,
6903 				 ICE_FW_FEC_DIS_AUTO_MAJ,
6904 				 ICE_FW_FEC_DIS_AUTO_MIN,
6905 				 ICE_FW_FEC_DIS_AUTO_PATCH) ||
6906 	       ice_is_fw_min_ver(hw, ICE_FW_VER_BRANCH_E82X,
6907 				 ICE_FW_FEC_DIS_AUTO_MAJ_E82X,
6908 				 ICE_FW_FEC_DIS_AUTO_MIN_E82X,
6909 				 ICE_FW_FEC_DIS_AUTO_PATCH_E82X);
6910 }
6911 
6912 /**
6913  * ice_is_fw_auto_drop_supported
6914  * @hw: pointer to the hardware structure
6915  *
6916  * Checks if the firmware supports auto drop feature
6917  */
6918 bool ice_is_fw_auto_drop_supported(struct ice_hw *hw)
6919 {
6920 	if (hw->api_maj_ver >= ICE_FW_API_AUTO_DROP_MAJ &&
6921 	    hw->api_min_ver >= ICE_FW_API_AUTO_DROP_MIN)
6922 		return true;
6923 	return false;
6924 }
6925 
6926