xref: /freebsd/sys/dev/ice/ice_common.c (revision 96190b4fef3b4a0cc3ca0606b0c4e3e69a5e6717)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2024, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "ice_common.h"
33 #include "ice_sched.h"
34 #include "ice_adminq_cmd.h"
35 
36 #include "ice_flow.h"
37 #include "ice_switch.h"
38 
39 #define ICE_PF_RESET_WAIT_COUNT	500
40 
41 static const char * const ice_link_mode_str_low[] = {
42 	ice_arr_elem_idx(0, "100BASE_TX"),
43 	ice_arr_elem_idx(1, "100M_SGMII"),
44 	ice_arr_elem_idx(2, "1000BASE_T"),
45 	ice_arr_elem_idx(3, "1000BASE_SX"),
46 	ice_arr_elem_idx(4, "1000BASE_LX"),
47 	ice_arr_elem_idx(5, "1000BASE_KX"),
48 	ice_arr_elem_idx(6, "1G_SGMII"),
49 	ice_arr_elem_idx(7, "2500BASE_T"),
50 	ice_arr_elem_idx(8, "2500BASE_X"),
51 	ice_arr_elem_idx(9, "2500BASE_KX"),
52 	ice_arr_elem_idx(10, "5GBASE_T"),
53 	ice_arr_elem_idx(11, "5GBASE_KR"),
54 	ice_arr_elem_idx(12, "10GBASE_T"),
55 	ice_arr_elem_idx(13, "10G_SFI_DA"),
56 	ice_arr_elem_idx(14, "10GBASE_SR"),
57 	ice_arr_elem_idx(15, "10GBASE_LR"),
58 	ice_arr_elem_idx(16, "10GBASE_KR_CR1"),
59 	ice_arr_elem_idx(17, "10G_SFI_AOC_ACC"),
60 	ice_arr_elem_idx(18, "10G_SFI_C2C"),
61 	ice_arr_elem_idx(19, "25GBASE_T"),
62 	ice_arr_elem_idx(20, "25GBASE_CR"),
63 	ice_arr_elem_idx(21, "25GBASE_CR_S"),
64 	ice_arr_elem_idx(22, "25GBASE_CR1"),
65 	ice_arr_elem_idx(23, "25GBASE_SR"),
66 	ice_arr_elem_idx(24, "25GBASE_LR"),
67 	ice_arr_elem_idx(25, "25GBASE_KR"),
68 	ice_arr_elem_idx(26, "25GBASE_KR_S"),
69 	ice_arr_elem_idx(27, "25GBASE_KR1"),
70 	ice_arr_elem_idx(28, "25G_AUI_AOC_ACC"),
71 	ice_arr_elem_idx(29, "25G_AUI_C2C"),
72 	ice_arr_elem_idx(30, "40GBASE_CR4"),
73 	ice_arr_elem_idx(31, "40GBASE_SR4"),
74 	ice_arr_elem_idx(32, "40GBASE_LR4"),
75 	ice_arr_elem_idx(33, "40GBASE_KR4"),
76 	ice_arr_elem_idx(34, "40G_XLAUI_AOC_ACC"),
77 	ice_arr_elem_idx(35, "40G_XLAUI"),
78 	ice_arr_elem_idx(36, "50GBASE_CR2"),
79 	ice_arr_elem_idx(37, "50GBASE_SR2"),
80 	ice_arr_elem_idx(38, "50GBASE_LR2"),
81 	ice_arr_elem_idx(39, "50GBASE_KR2"),
82 	ice_arr_elem_idx(40, "50G_LAUI2_AOC_ACC"),
83 	ice_arr_elem_idx(41, "50G_LAUI2"),
84 	ice_arr_elem_idx(42, "50G_AUI2_AOC_ACC"),
85 	ice_arr_elem_idx(43, "50G_AUI2"),
86 	ice_arr_elem_idx(44, "50GBASE_CP"),
87 	ice_arr_elem_idx(45, "50GBASE_SR"),
88 	ice_arr_elem_idx(46, "50GBASE_FR"),
89 	ice_arr_elem_idx(47, "50GBASE_LR"),
90 	ice_arr_elem_idx(48, "50GBASE_KR_PAM4"),
91 	ice_arr_elem_idx(49, "50G_AUI1_AOC_ACC"),
92 	ice_arr_elem_idx(50, "50G_AUI1"),
93 	ice_arr_elem_idx(51, "100GBASE_CR4"),
94 	ice_arr_elem_idx(52, "100GBASE_SR4"),
95 	ice_arr_elem_idx(53, "100GBASE_LR4"),
96 	ice_arr_elem_idx(54, "100GBASE_KR4"),
97 	ice_arr_elem_idx(55, "100G_CAUI4_AOC_ACC"),
98 	ice_arr_elem_idx(56, "100G_CAUI4"),
99 	ice_arr_elem_idx(57, "100G_AUI4_AOC_ACC"),
100 	ice_arr_elem_idx(58, "100G_AUI4"),
101 	ice_arr_elem_idx(59, "100GBASE_CR_PAM4"),
102 	ice_arr_elem_idx(60, "100GBASE_KR_PAM4"),
103 	ice_arr_elem_idx(61, "100GBASE_CP2"),
104 	ice_arr_elem_idx(62, "100GBASE_SR2"),
105 	ice_arr_elem_idx(63, "100GBASE_DR"),
106 };
107 
108 static const char * const ice_link_mode_str_high[] = {
109 	ice_arr_elem_idx(0, "100GBASE_KR2_PAM4"),
110 	ice_arr_elem_idx(1, "100G_CAUI2_AOC_ACC"),
111 	ice_arr_elem_idx(2, "100G_CAUI2"),
112 	ice_arr_elem_idx(3, "100G_AUI2_AOC_ACC"),
113 	ice_arr_elem_idx(4, "100G_AUI2"),
114 };
115 
116 /**
117  * ice_dump_phy_type - helper function to dump phy_type
118  * @hw: pointer to the HW structure
119  * @low: 64 bit value for phy_type_low
120  * @high: 64 bit value for phy_type_high
121  * @prefix: prefix string to differentiate multiple dumps
122  */
123 static void
124 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
125 {
126 	u32 i;
127 
128 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix,
129 		  (unsigned long long)low);
130 
131 	for (i = 0; i < ARRAY_SIZE(ice_link_mode_str_low); i++) {
132 		if (low & BIT_ULL(i))
133 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
134 				  prefix, i, ice_link_mode_str_low[i]);
135 	}
136 
137 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix,
138 		  (unsigned long long)high);
139 
140 	for (i = 0; i < ARRAY_SIZE(ice_link_mode_str_high); i++) {
141 		if (high & BIT_ULL(i))
142 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
143 				  prefix, i, ice_link_mode_str_high[i]);
144 	}
145 }
146 
147 /**
148  * ice_set_mac_type - Sets MAC type
149  * @hw: pointer to the HW structure
150  *
151  * This function sets the MAC type of the adapter based on the
152  * vendor ID and device ID stored in the HW structure.
153  */
154 enum ice_status ice_set_mac_type(struct ice_hw *hw)
155 {
156 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
157 
158 	if (hw->vendor_id != ICE_INTEL_VENDOR_ID)
159 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
160 
161 	switch (hw->device_id) {
162 	case ICE_DEV_ID_E810C_BACKPLANE:
163 	case ICE_DEV_ID_E810C_QSFP:
164 	case ICE_DEV_ID_E810C_SFP:
165 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
166 	case ICE_DEV_ID_E810_XXV_QSFP:
167 	case ICE_DEV_ID_E810_XXV_SFP:
168 		hw->mac_type = ICE_MAC_E810;
169 		break;
170 	case ICE_DEV_ID_E822C_10G_BASE_T:
171 	case ICE_DEV_ID_E822C_BACKPLANE:
172 	case ICE_DEV_ID_E822C_QSFP:
173 	case ICE_DEV_ID_E822C_SFP:
174 	case ICE_DEV_ID_E822C_SGMII:
175 	case ICE_DEV_ID_E822L_10G_BASE_T:
176 	case ICE_DEV_ID_E822L_BACKPLANE:
177 	case ICE_DEV_ID_E822L_SFP:
178 	case ICE_DEV_ID_E822L_SGMII:
179 	case ICE_DEV_ID_E823L_10G_BASE_T:
180 	case ICE_DEV_ID_E823L_1GBE:
181 	case ICE_DEV_ID_E823L_BACKPLANE:
182 	case ICE_DEV_ID_E823L_QSFP:
183 	case ICE_DEV_ID_E823L_SFP:
184 	case ICE_DEV_ID_E823C_10G_BASE_T:
185 	case ICE_DEV_ID_E823C_BACKPLANE:
186 	case ICE_DEV_ID_E823C_QSFP:
187 	case ICE_DEV_ID_E823C_SFP:
188 	case ICE_DEV_ID_E823C_SGMII:
189 		hw->mac_type = ICE_MAC_GENERIC;
190 		break;
191 	default:
192 		hw->mac_type = ICE_MAC_UNKNOWN;
193 		break;
194 	}
195 
196 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
197 	return ICE_SUCCESS;
198 }
199 
200 /**
201  * ice_is_e810
202  * @hw: pointer to the hardware structure
203  *
204  * returns true if the device is E810 based, false if not.
205  */
206 bool ice_is_e810(struct ice_hw *hw)
207 {
208 	return hw->mac_type == ICE_MAC_E810;
209 }
210 
211 /**
212  * ice_is_e810t
213  * @hw: pointer to the hardware structure
214  *
215  * returns true if the device is E810T based, false if not.
216  */
217 bool ice_is_e810t(struct ice_hw *hw)
218 {
219 	switch (hw->device_id) {
220 	case ICE_DEV_ID_E810C_SFP:
221 		switch (hw->subsystem_device_id) {
222 		case ICE_SUBDEV_ID_E810T:
223 		case ICE_SUBDEV_ID_E810T2:
224 		case ICE_SUBDEV_ID_E810T3:
225 		case ICE_SUBDEV_ID_E810T4:
226 		case ICE_SUBDEV_ID_E810T5:
227 		case ICE_SUBDEV_ID_E810T7:
228 			return true;
229 		}
230 		break;
231 	case ICE_DEV_ID_E810C_QSFP:
232 		switch (hw->subsystem_device_id) {
233 		case ICE_SUBDEV_ID_E810T2:
234 		case ICE_SUBDEV_ID_E810T5:
235 		case ICE_SUBDEV_ID_E810T6:
236 			return true;
237 		}
238 		break;
239 	default:
240 		break;
241 	}
242 
243 	return false;
244 }
245 
246 /**
247  * ice_is_e823
248  * @hw: pointer to the hardware structure
249  *
250  * returns true if the device is E823-L or E823-C based, false if not.
251  */
252 bool ice_is_e823(struct ice_hw *hw)
253 {
254 	switch (hw->device_id) {
255 	case ICE_DEV_ID_E823L_BACKPLANE:
256 	case ICE_DEV_ID_E823L_SFP:
257 	case ICE_DEV_ID_E823L_10G_BASE_T:
258 	case ICE_DEV_ID_E823L_1GBE:
259 	case ICE_DEV_ID_E823L_QSFP:
260 	case ICE_DEV_ID_E823C_BACKPLANE:
261 	case ICE_DEV_ID_E823C_QSFP:
262 	case ICE_DEV_ID_E823C_SFP:
263 	case ICE_DEV_ID_E823C_10G_BASE_T:
264 	case ICE_DEV_ID_E823C_SGMII:
265 		return true;
266 	default:
267 		return false;
268 	}
269 }
270 
271 /**
272  * ice_clear_pf_cfg - Clear PF configuration
273  * @hw: pointer to the hardware structure
274  *
275  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
276  * configuration, flow director filters, etc.).
277  */
278 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
279 {
280 	struct ice_aq_desc desc;
281 
282 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
283 
284 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
285 }
286 
287 /**
288  * ice_aq_manage_mac_read - manage MAC address read command
289  * @hw: pointer to the HW struct
290  * @buf: a virtual buffer to hold the manage MAC read response
291  * @buf_size: Size of the virtual buffer
292  * @cd: pointer to command details structure or NULL
293  *
294  * This function is used to return per PF station MAC address (0x0107).
295  * NOTE: Upon successful completion of this command, MAC address information
296  * is returned in user specified buffer. Please interpret user specified
297  * buffer as "manage_mac_read" response.
298  * Response such as various MAC addresses are stored in HW struct (port.mac)
299  * ice_discover_dev_caps is expected to be called before this function is
300  * called.
301  */
302 enum ice_status
303 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
304 		       struct ice_sq_cd *cd)
305 {
306 	struct ice_aqc_manage_mac_read_resp *resp;
307 	struct ice_aqc_manage_mac_read *cmd;
308 	struct ice_aq_desc desc;
309 	enum ice_status status;
310 	u16 flags;
311 	u8 i;
312 
313 	cmd = &desc.params.mac_read;
314 
315 	if (buf_size < sizeof(*resp))
316 		return ICE_ERR_BUF_TOO_SHORT;
317 
318 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
319 
320 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
321 	if (status)
322 		return status;
323 
324 	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
325 	flags = LE16_TO_CPU(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
326 
327 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
328 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
329 		return ICE_ERR_CFG;
330 	}
331 
332 	/* A single port can report up to two (LAN and WoL) addresses */
333 	for (i = 0; i < cmd->num_addr; i++)
334 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
335 			ice_memcpy(hw->port_info->mac.lan_addr,
336 				   resp[i].mac_addr, ETH_ALEN,
337 				   ICE_NONDMA_TO_NONDMA);
338 			ice_memcpy(hw->port_info->mac.perm_addr,
339 				   resp[i].mac_addr,
340 				   ETH_ALEN, ICE_NONDMA_TO_NONDMA);
341 			break;
342 		}
343 	return ICE_SUCCESS;
344 }
345 
346 /**
347  * ice_phy_maps_to_media
348  * @phy_type_low: PHY type low bits
349  * @phy_type_high: PHY type high bits
350  * @media_mask_low: media type PHY type low bitmask
351  * @media_mask_high: media type PHY type high bitmask
352  *
353  * Return true if PHY type [low|high] bits are only of media type PHY types
354  * [low|high] bitmask.
355  */
356 static bool
357 ice_phy_maps_to_media(u64 phy_type_low, u64 phy_type_high,
358 		      u64 media_mask_low, u64 media_mask_high)
359 {
360 	/* check if a PHY type exist for media type */
361 	if (!(phy_type_low & media_mask_low ||
362 	      phy_type_high & media_mask_high))
363 		return false;
364 
365 	/* check that PHY types are only of media type */
366 	if (!(phy_type_low & ~media_mask_low) &&
367 	    !(phy_type_high & ~media_mask_high))
368 		return true;
369 
370 	return false;
371 }
372 
373 /**
374  * ice_set_media_type - Sets media type
375  * @pi: port information structure
376  *
377  * Set ice_port_info PHY media type based on PHY type. This should be called
378  * from Get PHY caps with media.
379  */
380 static void ice_set_media_type(struct ice_port_info *pi)
381 {
382 	enum ice_media_type *media_type;
383 	u64 phy_type_high, phy_type_low;
384 
385 	phy_type_high = pi->phy.phy_type_high;
386 	phy_type_low = pi->phy.phy_type_low;
387 	media_type = &pi->phy.media_type;
388 
389 	/* if no media, then media type is NONE */
390 	if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
391 		*media_type = ICE_MEDIA_NONE;
392 	/* else if PHY types are only BASE-T, then media type is BASET */
393 	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
394 				       ICE_MEDIA_BASET_PHY_TYPE_LOW_M, 0))
395 		*media_type = ICE_MEDIA_BASET;
396 	/* else if any PHY type is BACKPLANE, then media type is BACKPLANE */
397 	else if (phy_type_low & ICE_MEDIA_BP_PHY_TYPE_LOW_M ||
398 		 phy_type_high & ICE_MEDIA_BP_PHY_TYPE_HIGH_M)
399 		*media_type = ICE_MEDIA_BACKPLANE;
400 	/* else if PHY types are only optical, or optical and C2M, then media
401 	 * type is FIBER
402 	 */
403 	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
404 				       ICE_MEDIA_OPT_PHY_TYPE_LOW_M, 0) ||
405 		 (phy_type_low & ICE_MEDIA_OPT_PHY_TYPE_LOW_M &&
406 		  phy_type_low & ICE_MEDIA_C2M_PHY_TYPE_LOW_M))
407 		*media_type = ICE_MEDIA_FIBER;
408 	/* else if PHY types are only DA, or DA and C2C, then media type DA */
409 	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
410 				       ICE_MEDIA_DAC_PHY_TYPE_LOW_M, 0) ||
411 		 (phy_type_low & ICE_MEDIA_DAC_PHY_TYPE_LOW_M &&
412 		 (phy_type_low & ICE_MEDIA_C2C_PHY_TYPE_LOW_M ||
413 		  phy_type_high & ICE_MEDIA_C2C_PHY_TYPE_HIGH_M)))
414 		*media_type = ICE_MEDIA_DA;
415 	/* else if PHY types are only C2M or only C2C, then media is AUI */
416 	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
417 				       ICE_MEDIA_C2M_PHY_TYPE_LOW_M,
418 				       ICE_MEDIA_C2M_PHY_TYPE_HIGH_M) ||
419 		 ice_phy_maps_to_media(phy_type_low, phy_type_high,
420 				       ICE_MEDIA_C2C_PHY_TYPE_LOW_M,
421 				       ICE_MEDIA_C2C_PHY_TYPE_HIGH_M))
422 		*media_type = ICE_MEDIA_AUI;
423 
424 	else
425 		*media_type = ICE_MEDIA_UNKNOWN;
426 }
427 
428 /**
429  * ice_aq_get_phy_caps - returns PHY capabilities
430  * @pi: port information structure
431  * @qual_mods: report qualified modules
432  * @report_mode: report mode capabilities
433  * @pcaps: structure for PHY capabilities to be filled
434  * @cd: pointer to command details structure or NULL
435  *
436  * Returns the various PHY capabilities supported on the Port (0x0600)
437  */
438 enum ice_status
439 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
440 		    struct ice_aqc_get_phy_caps_data *pcaps,
441 		    struct ice_sq_cd *cd)
442 {
443 	struct ice_aqc_get_phy_caps *cmd;
444 	u16 pcaps_size = sizeof(*pcaps);
445 	struct ice_aq_desc desc;
446 	enum ice_status status;
447 	const char *prefix;
448 	struct ice_hw *hw;
449 
450 	cmd = &desc.params.get_phy;
451 
452 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
453 		return ICE_ERR_PARAM;
454 	hw = pi->hw;
455 
456 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
457 	    !ice_fw_supports_report_dflt_cfg(hw))
458 		return ICE_ERR_PARAM;
459 
460 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
461 
462 	if (qual_mods)
463 		cmd->param0 |= CPU_TO_LE16(ICE_AQC_GET_PHY_RQM);
464 
465 	cmd->param0 |= CPU_TO_LE16(report_mode);
466 
467 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
468 
469 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
470 
471 	switch (report_mode) {
472 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
473 		prefix = "phy_caps_media";
474 		break;
475 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
476 		prefix = "phy_caps_no_media";
477 		break;
478 	case ICE_AQC_REPORT_ACTIVE_CFG:
479 		prefix = "phy_caps_active";
480 		break;
481 	case ICE_AQC_REPORT_DFLT_CFG:
482 		prefix = "phy_caps_default";
483 		break;
484 	default:
485 		prefix = "phy_caps_invalid";
486 	}
487 
488 	ice_dump_phy_type(hw, LE64_TO_CPU(pcaps->phy_type_low),
489 			  LE64_TO_CPU(pcaps->phy_type_high), prefix);
490 
491 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
492 		  prefix, report_mode);
493 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
494 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
495 		  pcaps->low_power_ctrl_an);
496 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
497 		  pcaps->eee_cap);
498 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
499 		  pcaps->eeer_value);
500 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
501 		  pcaps->link_fec_options);
502 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
503 		  prefix, pcaps->module_compliance_enforcement);
504 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
505 		  prefix, pcaps->extended_compliance_code);
506 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
507 		  pcaps->module_type[0]);
508 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
509 		  pcaps->module_type[1]);
510 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
511 		  pcaps->module_type[2]);
512 
513 	if (status == ICE_SUCCESS && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
514 		pi->phy.phy_type_low = LE64_TO_CPU(pcaps->phy_type_low);
515 		pi->phy.phy_type_high = LE64_TO_CPU(pcaps->phy_type_high);
516 		ice_memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
517 			   sizeof(pi->phy.link_info.module_type),
518 			   ICE_NONDMA_TO_NONDMA);
519 		ice_set_media_type(pi);
520 		ice_debug(hw, ICE_DBG_LINK, "%s: media_type = 0x%x\n", prefix,
521 			  pi->phy.media_type);
522 	}
523 
524 	return status;
525 }
526 
527 /**
528  * ice_aq_get_netlist_node
529  * @hw: pointer to the hw struct
530  * @cmd: get_link_topo AQ structure
531  * @node_part_number: output node part number if node found
532  * @node_handle: output node handle parameter if node found
533  */
534 enum ice_status
535 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
536 			u8 *node_part_number, u16 *node_handle)
537 {
538 	struct ice_aq_desc desc;
539 
540 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
541 	desc.params.get_link_topo = *cmd;
542 
543 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
544 		return ICE_ERR_NOT_SUPPORTED;
545 
546 	if (node_handle)
547 		*node_handle =
548 			LE16_TO_CPU(desc.params.get_link_topo.addr.handle);
549 	if (node_part_number)
550 		*node_part_number = desc.params.get_link_topo.node_part_num;
551 
552 	return ICE_SUCCESS;
553 }
554 
555 #define MAX_NETLIST_SIZE 10
556 /**
557  * ice_find_netlist_node
558  * @hw: pointer to the hw struct
559  * @node_type_ctx: type of netlist node to look for
560  * @node_part_number: node part number to look for
561  * @node_handle: output parameter if node found - optional
562  *
563  * Find and return the node handle for a given node type and part number in the
564  * netlist. When found ICE_SUCCESS is returned, ICE_ERR_DOES_NOT_EXIST
565  * otherwise. If node_handle provided, it would be set to found node handle.
566  */
567 enum ice_status
568 ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx, u8 node_part_number,
569 		      u16 *node_handle)
570 {
571 	struct ice_aqc_get_link_topo cmd;
572 	u8 rec_node_part_number;
573 	u16 rec_node_handle;
574 	u8 idx;
575 
576 	for (idx = 0; idx < MAX_NETLIST_SIZE; idx++) {
577 		enum ice_status status;
578 
579 		memset(&cmd, 0, sizeof(cmd));
580 
581 		cmd.addr.topo_params.node_type_ctx =
582 			(node_type_ctx << ICE_AQC_LINK_TOPO_NODE_TYPE_S);
583 		cmd.addr.topo_params.index = idx;
584 
585 		status = ice_aq_get_netlist_node(hw, &cmd,
586 						 &rec_node_part_number,
587 						 &rec_node_handle);
588 		if (status)
589 			return status;
590 
591 		if (rec_node_part_number == node_part_number) {
592 			if (node_handle)
593 				*node_handle = rec_node_handle;
594 			return ICE_SUCCESS;
595 		}
596 	}
597 
598 	return ICE_ERR_DOES_NOT_EXIST;
599 }
600 
601 #define ice_get_link_status_datalen(hw)	ICE_GET_LINK_STATUS_DATALEN_V1
602 
603 /**
604  * ice_aq_get_link_info
605  * @pi: port information structure
606  * @ena_lse: enable/disable LinkStatusEvent reporting
607  * @link: pointer to link status structure - optional
608  * @cd: pointer to command details structure or NULL
609  *
610  * Get Link Status (0x607). Returns the link status of the adapter.
611  */
612 enum ice_status
613 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
614 		     struct ice_link_status *link, struct ice_sq_cd *cd)
615 {
616 	struct ice_aqc_get_link_status_data link_data = { 0 };
617 	struct ice_aqc_get_link_status *resp;
618 	struct ice_link_status *li_old, *li;
619 	struct ice_fc_info *hw_fc_info;
620 	bool tx_pause, rx_pause;
621 	struct ice_aq_desc desc;
622 	enum ice_status status;
623 	struct ice_hw *hw;
624 	u16 cmd_flags;
625 
626 	if (!pi)
627 		return ICE_ERR_PARAM;
628 	hw = pi->hw;
629 
630 	li_old = &pi->phy.link_info_old;
631 	li = &pi->phy.link_info;
632 	hw_fc_info = &pi->fc;
633 
634 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
635 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
636 	resp = &desc.params.get_link_status;
637 	resp->cmd_flags = CPU_TO_LE16(cmd_flags);
638 	resp->lport_num = pi->lport;
639 
640 	status = ice_aq_send_cmd(hw, &desc, &link_data,
641 				 ice_get_link_status_datalen(hw), cd);
642 	if (status != ICE_SUCCESS)
643 		return status;
644 
645 	/* save off old link status information */
646 	*li_old = *li;
647 
648 	/* update current link status information */
649 	li->link_speed = LE16_TO_CPU(link_data.link_speed);
650 	li->phy_type_low = LE64_TO_CPU(link_data.phy_type_low);
651 	li->phy_type_high = LE64_TO_CPU(link_data.phy_type_high);
652 	li->link_info = link_data.link_info;
653 	li->link_cfg_err = link_data.link_cfg_err;
654 	li->an_info = link_data.an_info;
655 	li->ext_info = link_data.ext_info;
656 	li->max_frame_size = LE16_TO_CPU(link_data.max_frame_size);
657 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
658 	li->topo_media_conflict = link_data.topo_media_conflict;
659 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
660 				      ICE_AQ_CFG_PACING_TYPE_M);
661 
662 	/* update fc info */
663 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
664 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
665 	if (tx_pause && rx_pause)
666 		hw_fc_info->current_mode = ICE_FC_FULL;
667 	else if (tx_pause)
668 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
669 	else if (rx_pause)
670 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
671 	else
672 		hw_fc_info->current_mode = ICE_FC_NONE;
673 
674 	li->lse_ena = !!(resp->cmd_flags & CPU_TO_LE16(ICE_AQ_LSE_IS_ENABLED));
675 
676 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
677 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
678 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
679 		  (unsigned long long)li->phy_type_low);
680 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
681 		  (unsigned long long)li->phy_type_high);
682 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
683 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
684 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
685 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
686 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
687 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
688 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
689 		  li->max_frame_size);
690 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
691 
692 	/* save link status information */
693 	if (link)
694 		*link = *li;
695 
696 	/* flag cleared so calling functions don't call AQ again */
697 	pi->phy.get_link_info = false;
698 
699 	return ICE_SUCCESS;
700 }
701 
702 /**
703  * ice_fill_tx_timer_and_fc_thresh
704  * @hw: pointer to the HW struct
705  * @cmd: pointer to MAC cfg structure
706  *
707  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
708  * descriptor
709  */
710 static void
711 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
712 				struct ice_aqc_set_mac_cfg *cmd)
713 {
714 	u16 fc_thres_val, tx_timer_val;
715 	u32 val;
716 
717 	/* We read back the transmit timer and fc threshold value of
718 	 * LFC. Thus, we will use index =
719 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
720 	 *
721 	 * Also, because we are operating on transmit timer and fc
722 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
723 	 */
724 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
725 
726 	/* Retrieve the transmit timer */
727 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
728 	tx_timer_val = val &
729 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
730 	cmd->tx_tmr_value = CPU_TO_LE16(tx_timer_val);
731 
732 	/* Retrieve the fc threshold */
733 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
734 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
735 
736 	cmd->fc_refresh_threshold = CPU_TO_LE16(fc_thres_val);
737 }
738 
739 /**
740  * ice_aq_set_mac_cfg
741  * @hw: pointer to the HW struct
742  * @max_frame_size: Maximum Frame Size to be supported
743  * @auto_drop: Tell HW to drop packets if TC queue is blocked
744  * @cd: pointer to command details structure or NULL
745  *
746  * Set MAC configuration (0x0603)
747  */
748 enum ice_status
749 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, bool auto_drop,
750 		   struct ice_sq_cd *cd)
751 {
752 	struct ice_aqc_set_mac_cfg *cmd;
753 	struct ice_aq_desc desc;
754 
755 	cmd = &desc.params.set_mac_cfg;
756 
757 	if (max_frame_size == 0)
758 		return ICE_ERR_PARAM;
759 
760 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
761 
762 	cmd->max_frame_size = CPU_TO_LE16(max_frame_size);
763 
764 	if (ice_is_fw_auto_drop_supported(hw) && auto_drop)
765 		cmd->drop_opts |= ICE_AQ_SET_MAC_AUTO_DROP_BLOCKING_PKTS;
766 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
767 
768 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
769 }
770 
771 /**
772  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
773  * @hw: pointer to the HW struct
774  */
775 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
776 {
777 	struct ice_switch_info *sw;
778 	enum ice_status status;
779 
780 	hw->switch_info = (struct ice_switch_info *)
781 			  ice_malloc(hw, sizeof(*hw->switch_info));
782 
783 	sw = hw->switch_info;
784 
785 	if (!sw)
786 		return ICE_ERR_NO_MEMORY;
787 
788 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
789 	sw->prof_res_bm_init = 0;
790 
791 	status = ice_init_def_sw_recp(hw, &hw->switch_info->recp_list);
792 	if (status) {
793 		ice_free(hw, hw->switch_info);
794 		return status;
795 	}
796 	return ICE_SUCCESS;
797 }
798 
799 /**
800  * ice_cleanup_fltr_mgmt_single - clears single filter mngt struct
801  * @hw: pointer to the HW struct
802  * @sw: pointer to switch info struct for which function clears filters
803  */
804 static void
805 ice_cleanup_fltr_mgmt_single(struct ice_hw *hw, struct ice_switch_info *sw)
806 {
807 	struct ice_vsi_list_map_info *v_pos_map;
808 	struct ice_vsi_list_map_info *v_tmp_map;
809 	struct ice_sw_recipe *recps;
810 	u8 i;
811 
812 	if (!sw)
813 		return;
814 
815 	LIST_FOR_EACH_ENTRY_SAFE(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
816 				 ice_vsi_list_map_info, list_entry) {
817 		LIST_DEL(&v_pos_map->list_entry);
818 		ice_free(hw, v_pos_map);
819 	}
820 	recps = sw->recp_list;
821 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
822 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
823 
824 		recps[i].root_rid = i;
825 		LIST_FOR_EACH_ENTRY_SAFE(rg_entry, tmprg_entry,
826 					 &recps[i].rg_list, ice_recp_grp_entry,
827 					 l_entry) {
828 			LIST_DEL(&rg_entry->l_entry);
829 			ice_free(hw, rg_entry);
830 		}
831 
832 		if (recps[i].adv_rule) {
833 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
834 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
835 
836 			ice_destroy_lock(&recps[i].filt_rule_lock);
837 			LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
838 						 &recps[i].filt_rules,
839 						 ice_adv_fltr_mgmt_list_entry,
840 						 list_entry) {
841 				LIST_DEL(&lst_itr->list_entry);
842 				ice_free(hw, lst_itr->lkups);
843 				ice_free(hw, lst_itr);
844 			}
845 		} else {
846 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
847 
848 			ice_destroy_lock(&recps[i].filt_rule_lock);
849 			LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
850 						 &recps[i].filt_rules,
851 						 ice_fltr_mgmt_list_entry,
852 						 list_entry) {
853 				LIST_DEL(&lst_itr->list_entry);
854 				ice_free(hw, lst_itr);
855 			}
856 		}
857 		if (recps[i].root_buf)
858 			ice_free(hw, recps[i].root_buf);
859 	}
860 	ice_rm_sw_replay_rule_info(hw, sw);
861 	ice_free(hw, sw->recp_list);
862 	ice_free(hw, sw);
863 }
864 
865 /**
866  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
867  * @hw: pointer to the HW struct
868  */
869 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
870 {
871 	ice_cleanup_fltr_mgmt_single(hw, hw->switch_info);
872 }
873 
874 /**
875  * ice_get_itr_intrl_gran
876  * @hw: pointer to the HW struct
877  *
878  * Determines the ITR/INTRL granularities based on the maximum aggregate
879  * bandwidth according to the device's configuration during power-on.
880  */
881 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
882 {
883 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
884 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
885 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
886 
887 	switch (max_agg_bw) {
888 	case ICE_MAX_AGG_BW_200G:
889 	case ICE_MAX_AGG_BW_100G:
890 	case ICE_MAX_AGG_BW_50G:
891 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
892 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
893 		break;
894 	case ICE_MAX_AGG_BW_25G:
895 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
896 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
897 		break;
898 	}
899 }
900 
901 /**
902  * ice_print_rollback_msg - print FW rollback message
903  * @hw: pointer to the hardware structure
904  */
905 void ice_print_rollback_msg(struct ice_hw *hw)
906 {
907 	char nvm_str[ICE_NVM_VER_LEN] = { 0 };
908 	struct ice_orom_info *orom;
909 	struct ice_nvm_info *nvm;
910 
911 	orom = &hw->flash.orom;
912 	nvm = &hw->flash.nvm;
913 
914 	SNPRINTF(nvm_str, sizeof(nvm_str), "%x.%02x 0x%x %d.%d.%d",
915 		 nvm->major, nvm->minor, nvm->eetrack, orom->major,
916 		 orom->build, orom->patch);
917 	ice_warn(hw,
918 		 "Firmware rollback mode detected. Current version is NVM: %s, FW: %d.%d. Device may exhibit limited functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware rollback mode\n",
919 		 nvm_str, hw->fw_maj_ver, hw->fw_min_ver);
920 }
921 
922 /**
923  * ice_set_umac_shared
924  * @hw: pointer to the hw struct
925  *
926  * Set boolean flag to allow unicast MAC sharing
927  */
928 void ice_set_umac_shared(struct ice_hw *hw)
929 {
930 	hw->umac_shared = true;
931 }
932 
933 /**
934  * ice_init_hw - main hardware initialization routine
935  * @hw: pointer to the hardware structure
936  */
937 enum ice_status ice_init_hw(struct ice_hw *hw)
938 {
939 	struct ice_aqc_get_phy_caps_data *pcaps;
940 	enum ice_status status;
941 	u16 mac_buf_len;
942 	void *mac_buf;
943 
944 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
945 
946 	/* Set MAC type based on DeviceID */
947 	status = ice_set_mac_type(hw);
948 	if (status)
949 		return status;
950 
951 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
952 			 PF_FUNC_RID_FUNCTION_NUMBER_M) >>
953 		PF_FUNC_RID_FUNCTION_NUMBER_S;
954 
955 	status = ice_reset(hw, ICE_RESET_PFR);
956 	if (status)
957 		return status;
958 	ice_get_itr_intrl_gran(hw);
959 
960 	status = ice_create_all_ctrlq(hw);
961 	if (status)
962 		goto err_unroll_cqinit;
963 
964 	ice_fwlog_set_support_ena(hw);
965 	status = ice_fwlog_set(hw, &hw->fwlog_cfg);
966 	if (status) {
967 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging, status %d.\n",
968 			  status);
969 	} else {
970 		if (hw->fwlog_cfg.options & ICE_FWLOG_OPTION_REGISTER_ON_INIT) {
971 			status = ice_fwlog_register(hw);
972 			if (status)
973 				ice_debug(hw, ICE_DBG_INIT, "Failed to register for FW logging events, status %d.\n",
974 					  status);
975 		} else {
976 			status = ice_fwlog_unregister(hw);
977 			if (status)
978 				ice_debug(hw, ICE_DBG_INIT, "Failed to unregister for FW logging events, status %d.\n",
979 					  status);
980 		}
981 	}
982 
983 	status = ice_init_nvm(hw);
984 	if (status)
985 		goto err_unroll_cqinit;
986 
987 	if (ice_get_fw_mode(hw) == ICE_FW_MODE_ROLLBACK)
988 		ice_print_rollback_msg(hw);
989 
990 	status = ice_clear_pf_cfg(hw);
991 	if (status)
992 		goto err_unroll_cqinit;
993 
994 	ice_clear_pxe_mode(hw);
995 
996 	status = ice_get_caps(hw);
997 	if (status)
998 		goto err_unroll_cqinit;
999 
1000 	if (!hw->port_info)
1001 		hw->port_info = (struct ice_port_info *)
1002 			ice_malloc(hw, sizeof(*hw->port_info));
1003 	if (!hw->port_info) {
1004 		status = ICE_ERR_NO_MEMORY;
1005 		goto err_unroll_cqinit;
1006 	}
1007 
1008 	/* set the back pointer to HW */
1009 	hw->port_info->hw = hw;
1010 
1011 	/* Initialize port_info struct with switch configuration data */
1012 	status = ice_get_initial_sw_cfg(hw);
1013 	if (status)
1014 		goto err_unroll_alloc;
1015 
1016 	hw->evb_veb = true;
1017 	/* Query the allocated resources for Tx scheduler */
1018 	status = ice_sched_query_res_alloc(hw);
1019 	if (status) {
1020 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1021 		goto err_unroll_alloc;
1022 	}
1023 	ice_sched_get_psm_clk_freq(hw);
1024 
1025 	/* Initialize port_info struct with scheduler data */
1026 	status = ice_sched_init_port(hw->port_info);
1027 	if (status)
1028 		goto err_unroll_sched;
1029 	pcaps = (struct ice_aqc_get_phy_caps_data *)
1030 		ice_malloc(hw, sizeof(*pcaps));
1031 	if (!pcaps) {
1032 		status = ICE_ERR_NO_MEMORY;
1033 		goto err_unroll_sched;
1034 	}
1035 
1036 	/* Initialize port_info struct with PHY capabilities */
1037 	status = ice_aq_get_phy_caps(hw->port_info, false,
1038 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, NULL);
1039 	ice_free(hw, pcaps);
1040 	if (status)
1041 		ice_warn(hw, "Get PHY capabilities failed status = %d, continuing anyway\n",
1042 			 status);
1043 
1044 	/* Initialize port_info struct with link information */
1045 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1046 	if (status)
1047 		goto err_unroll_sched;
1048 	/* need a valid SW entry point to build a Tx tree */
1049 	if (!hw->sw_entry_point_layer) {
1050 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1051 		status = ICE_ERR_CFG;
1052 		goto err_unroll_sched;
1053 	}
1054 	INIT_LIST_HEAD(&hw->agg_list);
1055 	/* Initialize max burst size */
1056 	if (!hw->max_burst_size)
1057 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1058 	status = ice_init_fltr_mgmt_struct(hw);
1059 	if (status)
1060 		goto err_unroll_sched;
1061 
1062 	/* Get MAC information */
1063 
1064 	/* A single port can report up to two (LAN and WoL) addresses */
1065 	mac_buf = ice_calloc(hw, 2,
1066 			     sizeof(struct ice_aqc_manage_mac_read_resp));
1067 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1068 
1069 	if (!mac_buf) {
1070 		status = ICE_ERR_NO_MEMORY;
1071 		goto err_unroll_fltr_mgmt_struct;
1072 	}
1073 
1074 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1075 	ice_free(hw, mac_buf);
1076 
1077 	if (status)
1078 		goto err_unroll_fltr_mgmt_struct;
1079 
1080 	/* enable jumbo frame support at MAC level */
1081 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, false,
1082 				    NULL);
1083 	if (status)
1084 		goto err_unroll_fltr_mgmt_struct;
1085 
1086 	status = ice_init_hw_tbls(hw);
1087 	if (status)
1088 		goto err_unroll_fltr_mgmt_struct;
1089 	ice_init_lock(&hw->tnl_lock);
1090 
1091 	return ICE_SUCCESS;
1092 
1093 err_unroll_fltr_mgmt_struct:
1094 	ice_cleanup_fltr_mgmt_struct(hw);
1095 err_unroll_sched:
1096 	ice_sched_cleanup_all(hw);
1097 err_unroll_alloc:
1098 	ice_free(hw, hw->port_info);
1099 	hw->port_info = NULL;
1100 err_unroll_cqinit:
1101 	ice_destroy_all_ctrlq(hw);
1102 	return status;
1103 }
1104 
1105 /**
1106  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1107  * @hw: pointer to the hardware structure
1108  *
1109  * This should be called only during nominal operation, not as a result of
1110  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1111  * applicable initializations if it fails for any reason.
1112  */
1113 void ice_deinit_hw(struct ice_hw *hw)
1114 {
1115 	ice_cleanup_fltr_mgmt_struct(hw);
1116 
1117 	ice_sched_cleanup_all(hw);
1118 	ice_sched_clear_agg(hw);
1119 	ice_free_seg(hw);
1120 	ice_free_hw_tbls(hw);
1121 	ice_destroy_lock(&hw->tnl_lock);
1122 
1123 	if (hw->port_info) {
1124 		ice_free(hw, hw->port_info);
1125 		hw->port_info = NULL;
1126 	}
1127 
1128 	ice_destroy_all_ctrlq(hw);
1129 
1130 	/* Clear VSI contexts if not already cleared */
1131 	ice_clear_all_vsi_ctx(hw);
1132 }
1133 
1134 /**
1135  * ice_check_reset - Check to see if a global reset is complete
1136  * @hw: pointer to the hardware structure
1137  */
1138 enum ice_status ice_check_reset(struct ice_hw *hw)
1139 {
1140 	u32 cnt, reg = 0, grst_timeout, uld_mask, reset_wait_cnt;
1141 
1142 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1143 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1144 	 * Add 1sec for outstanding AQ commands that can take a long time.
1145 	 */
1146 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1147 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1148 
1149 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1150 		ice_msec_delay(100, true);
1151 		reg = rd32(hw, GLGEN_RSTAT);
1152 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1153 			break;
1154 	}
1155 
1156 	if (cnt == grst_timeout) {
1157 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1158 		return ICE_ERR_RESET_FAILED;
1159 	}
1160 
1161 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1162 				 GLNVM_ULD_PCIER_DONE_1_M |\
1163 				 GLNVM_ULD_CORER_DONE_M |\
1164 				 GLNVM_ULD_GLOBR_DONE_M |\
1165 				 GLNVM_ULD_POR_DONE_M |\
1166 				 GLNVM_ULD_POR_DONE_1_M |\
1167 				 GLNVM_ULD_PCIER_DONE_2_M)
1168 
1169 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.iwarp ?
1170 					  GLNVM_ULD_PE_DONE_M : 0);
1171 
1172 	reset_wait_cnt = ICE_PF_RESET_WAIT_COUNT;
1173 
1174 	/* Device is Active; check Global Reset processes are done */
1175 	for (cnt = 0; cnt < reset_wait_cnt; cnt++) {
1176 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1177 		if (reg == uld_mask) {
1178 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1179 			break;
1180 		}
1181 		ice_msec_delay(10, true);
1182 	}
1183 
1184 	if (cnt == reset_wait_cnt) {
1185 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1186 			  reg);
1187 		return ICE_ERR_RESET_FAILED;
1188 	}
1189 
1190 	return ICE_SUCCESS;
1191 }
1192 
1193 /**
1194  * ice_pf_reset - Reset the PF
1195  * @hw: pointer to the hardware structure
1196  *
1197  * If a global reset has been triggered, this function checks
1198  * for its completion and then issues the PF reset
1199  */
1200 static enum ice_status ice_pf_reset(struct ice_hw *hw)
1201 {
1202 	u32 cnt, reg, reset_wait_cnt, cfg_lock_timeout;
1203 
1204 	/* If at function entry a global reset was already in progress, i.e.
1205 	 * state is not 'device active' or any of the reset done bits are not
1206 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1207 	 * global reset is done.
1208 	 */
1209 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1210 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1211 		/* poll on global reset currently in progress until done */
1212 		if (ice_check_reset(hw))
1213 			return ICE_ERR_RESET_FAILED;
1214 
1215 		return ICE_SUCCESS;
1216 	}
1217 
1218 	/* Reset the PF */
1219 	reg = rd32(hw, PFGEN_CTRL);
1220 
1221 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1222 
1223 	/* Wait for the PFR to complete. The wait time is the global config lock
1224 	 * timeout plus the PFR timeout which will account for a possible reset
1225 	 * that is occurring during a download package operation.
1226 	 */
1227 	reset_wait_cnt = ICE_PF_RESET_WAIT_COUNT;
1228 	cfg_lock_timeout = ICE_GLOBAL_CFG_LOCK_TIMEOUT;
1229 
1230 	for (cnt = 0; cnt < cfg_lock_timeout + reset_wait_cnt; cnt++) {
1231 		reg = rd32(hw, PFGEN_CTRL);
1232 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1233 			break;
1234 
1235 		ice_msec_delay(1, true);
1236 	}
1237 
1238 	if (cnt == cfg_lock_timeout + reset_wait_cnt) {
1239 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1240 		return ICE_ERR_RESET_FAILED;
1241 	}
1242 
1243 	return ICE_SUCCESS;
1244 }
1245 
1246 /**
1247  * ice_reset - Perform different types of reset
1248  * @hw: pointer to the hardware structure
1249  * @req: reset request
1250  *
1251  * This function triggers a reset as specified by the req parameter.
1252  *
1253  * Note:
1254  * If anything other than a PF reset is triggered, PXE mode is restored.
1255  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1256  * interface has been restored in the rebuild flow.
1257  */
1258 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1259 {
1260 	u32 val = 0;
1261 
1262 	switch (req) {
1263 	case ICE_RESET_PFR:
1264 		return ice_pf_reset(hw);
1265 	case ICE_RESET_CORER:
1266 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1267 		val = GLGEN_RTRIG_CORER_M;
1268 		break;
1269 	case ICE_RESET_GLOBR:
1270 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1271 		val = GLGEN_RTRIG_GLOBR_M;
1272 		break;
1273 	default:
1274 		return ICE_ERR_PARAM;
1275 	}
1276 
1277 	val |= rd32(hw, GLGEN_RTRIG);
1278 	wr32(hw, GLGEN_RTRIG, val);
1279 	ice_flush(hw);
1280 
1281 	/* wait for the FW to be ready */
1282 	return ice_check_reset(hw);
1283 }
1284 
1285 /**
1286  * ice_copy_rxq_ctx_to_hw
1287  * @hw: pointer to the hardware structure
1288  * @ice_rxq_ctx: pointer to the rxq context
1289  * @rxq_index: the index of the Rx queue
1290  *
1291  * Copies rxq context from dense structure to HW register space
1292  */
1293 static enum ice_status
1294 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1295 {
1296 	u8 i;
1297 
1298 	if (!ice_rxq_ctx)
1299 		return ICE_ERR_BAD_PTR;
1300 
1301 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1302 		return ICE_ERR_PARAM;
1303 
1304 	/* Copy each dword separately to HW */
1305 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1306 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1307 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1308 
1309 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1310 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1311 	}
1312 
1313 	return ICE_SUCCESS;
1314 }
1315 
1316 /**
1317  * ice_copy_rxq_ctx_from_hw - Copy rxq context register from HW
1318  * @hw: pointer to the hardware structure
1319  * @ice_rxq_ctx: pointer to the rxq context
1320  * @rxq_index: the index of the Rx queue
1321  *
1322  * Copies rxq context from HW register space to dense structure
1323  */
1324 static enum ice_status
1325 ice_copy_rxq_ctx_from_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1326 {
1327 	u8 i;
1328 
1329 	if (!ice_rxq_ctx)
1330 		return ICE_ERR_BAD_PTR;
1331 
1332 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1333 		return ICE_ERR_PARAM;
1334 
1335 	/* Copy each dword separately from HW */
1336 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1337 		u32 *ctx = (u32 *)(ice_rxq_ctx + (i * sizeof(u32)));
1338 
1339 		*ctx = rd32(hw, QRX_CONTEXT(i, rxq_index));
1340 
1341 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, *ctx);
1342 	}
1343 
1344 	return ICE_SUCCESS;
1345 }
1346 
1347 /* LAN Rx Queue Context */
1348 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1349 	/* Field		Width	LSB */
1350 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1351 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1352 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1353 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1354 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1355 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1356 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1357 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1358 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1359 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1360 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1361 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1362 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1363 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1364 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1365 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1366 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1367 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1368 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1369 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1370 	{ 0 }
1371 };
1372 
1373 /**
1374  * ice_write_rxq_ctx
1375  * @hw: pointer to the hardware structure
1376  * @rlan_ctx: pointer to the rxq context
1377  * @rxq_index: the index of the Rx queue
1378  *
1379  * Converts rxq context from sparse to dense structure and then writes
1380  * it to HW register space and enables the hardware to prefetch descriptors
1381  * instead of only fetching them on demand
1382  */
1383 enum ice_status
1384 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1385 		  u32 rxq_index)
1386 {
1387 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1388 
1389 	if (!rlan_ctx)
1390 		return ICE_ERR_BAD_PTR;
1391 
1392 	rlan_ctx->prefena = 1;
1393 
1394 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1395 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1396 }
1397 
1398 /**
1399  * ice_read_rxq_ctx - Read rxq context from HW
1400  * @hw: pointer to the hardware structure
1401  * @rlan_ctx: pointer to the rxq context
1402  * @rxq_index: the index of the Rx queue
1403  *
1404  * Read rxq context from HW register space and then converts it from dense
1405  * structure to sparse
1406  */
1407 enum ice_status
1408 ice_read_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1409 		 u32 rxq_index)
1410 {
1411 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1412 	enum ice_status status;
1413 
1414 	if (!rlan_ctx)
1415 		return ICE_ERR_BAD_PTR;
1416 
1417 	status = ice_copy_rxq_ctx_from_hw(hw, ctx_buf, rxq_index);
1418 	if (status)
1419 		return status;
1420 
1421 	return ice_get_ctx(ctx_buf, (u8 *)rlan_ctx, ice_rlan_ctx_info);
1422 }
1423 
1424 /**
1425  * ice_clear_rxq_ctx
1426  * @hw: pointer to the hardware structure
1427  * @rxq_index: the index of the Rx queue to clear
1428  *
1429  * Clears rxq context in HW register space
1430  */
1431 enum ice_status ice_clear_rxq_ctx(struct ice_hw *hw, u32 rxq_index)
1432 {
1433 	u8 i;
1434 
1435 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1436 		return ICE_ERR_PARAM;
1437 
1438 	/* Clear each dword register separately */
1439 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++)
1440 		wr32(hw, QRX_CONTEXT(i, rxq_index), 0);
1441 
1442 	return ICE_SUCCESS;
1443 }
1444 
1445 /* LAN Tx Queue Context used for set Tx config by ice_aqc_opc_add_txqs,
1446  * Bit[0-175] is valid
1447  */
1448 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1449 				    /* Field			Width	LSB */
1450 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1451 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1452 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1453 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1454 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1455 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1456 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1457 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1458 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1459 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1460 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1461 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1462 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1463 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1464 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1465 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1466 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1467 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1468 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1469 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1470 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1471 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1472 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1473 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1474 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1475 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1476 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1477 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1478 	{ 0 }
1479 };
1480 
1481 /**
1482  * ice_copy_tx_cmpltnq_ctx_to_hw
1483  * @hw: pointer to the hardware structure
1484  * @ice_tx_cmpltnq_ctx: pointer to the Tx completion queue context
1485  * @tx_cmpltnq_index: the index of the completion queue
1486  *
1487  * Copies Tx completion queue context from dense structure to HW register space
1488  */
1489 static enum ice_status
1490 ice_copy_tx_cmpltnq_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_cmpltnq_ctx,
1491 			      u32 tx_cmpltnq_index)
1492 {
1493 	u8 i;
1494 
1495 	if (!ice_tx_cmpltnq_ctx)
1496 		return ICE_ERR_BAD_PTR;
1497 
1498 	if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1499 		return ICE_ERR_PARAM;
1500 
1501 	/* Copy each dword separately to HW */
1502 	for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++) {
1503 		wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index),
1504 		     *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1505 
1506 		ice_debug(hw, ICE_DBG_QCTX, "cmpltnqdata[%d]: %08X\n", i,
1507 			  *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1508 	}
1509 
1510 	return ICE_SUCCESS;
1511 }
1512 
1513 /* LAN Tx Completion Queue Context */
1514 static const struct ice_ctx_ele ice_tx_cmpltnq_ctx_info[] = {
1515 				       /* Field			Width   LSB */
1516 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, base,			57,	0),
1517 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, q_len,		18,	64),
1518 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, generation,		1,	96),
1519 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, wrt_ptr,		22,	97),
1520 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, pf_num,		3,	128),
1521 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_num,		10,	131),
1522 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_type,		2,	141),
1523 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, tph_desc_wr,		1,	160),
1524 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cpuid,		8,	161),
1525 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cmpltn_cache,		512,	192),
1526 	{ 0 }
1527 };
1528 
1529 /**
1530  * ice_write_tx_cmpltnq_ctx
1531  * @hw: pointer to the hardware structure
1532  * @tx_cmpltnq_ctx: pointer to the completion queue context
1533  * @tx_cmpltnq_index: the index of the completion queue
1534  *
1535  * Converts completion queue context from sparse to dense structure and then
1536  * writes it to HW register space
1537  */
1538 enum ice_status
1539 ice_write_tx_cmpltnq_ctx(struct ice_hw *hw,
1540 			 struct ice_tx_cmpltnq_ctx *tx_cmpltnq_ctx,
1541 			 u32 tx_cmpltnq_index)
1542 {
1543 	u8 ctx_buf[ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1544 
1545 	ice_set_ctx(hw, (u8 *)tx_cmpltnq_ctx, ctx_buf, ice_tx_cmpltnq_ctx_info);
1546 	return ice_copy_tx_cmpltnq_ctx_to_hw(hw, ctx_buf, tx_cmpltnq_index);
1547 }
1548 
1549 /**
1550  * ice_clear_tx_cmpltnq_ctx
1551  * @hw: pointer to the hardware structure
1552  * @tx_cmpltnq_index: the index of the completion queue to clear
1553  *
1554  * Clears Tx completion queue context in HW register space
1555  */
1556 enum ice_status
1557 ice_clear_tx_cmpltnq_ctx(struct ice_hw *hw, u32 tx_cmpltnq_index)
1558 {
1559 	u8 i;
1560 
1561 	if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1562 		return ICE_ERR_PARAM;
1563 
1564 	/* Clear each dword register separately */
1565 	for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++)
1566 		wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index), 0);
1567 
1568 	return ICE_SUCCESS;
1569 }
1570 
1571 /**
1572  * ice_copy_tx_drbell_q_ctx_to_hw
1573  * @hw: pointer to the hardware structure
1574  * @ice_tx_drbell_q_ctx: pointer to the doorbell queue context
1575  * @tx_drbell_q_index: the index of the doorbell queue
1576  *
1577  * Copies doorbell queue context from dense structure to HW register space
1578  */
1579 static enum ice_status
1580 ice_copy_tx_drbell_q_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_drbell_q_ctx,
1581 			       u32 tx_drbell_q_index)
1582 {
1583 	u8 i;
1584 
1585 	if (!ice_tx_drbell_q_ctx)
1586 		return ICE_ERR_BAD_PTR;
1587 
1588 	if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1589 		return ICE_ERR_PARAM;
1590 
1591 	/* Copy each dword separately to HW */
1592 	for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++) {
1593 		wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index),
1594 		     *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1595 
1596 		ice_debug(hw, ICE_DBG_QCTX, "tx_drbell_qdata[%d]: %08X\n", i,
1597 			  *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1598 	}
1599 
1600 	return ICE_SUCCESS;
1601 }
1602 
1603 /* LAN Tx Doorbell Queue Context info */
1604 static const struct ice_ctx_ele ice_tx_drbell_q_ctx_info[] = {
1605 					/* Field		Width   LSB */
1606 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, base,		57,	0),
1607 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, ring_len,		13,	64),
1608 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, pf_num,		3,	80),
1609 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, vf_num,		8,	84),
1610 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, vmvf_type,		2,	94),
1611 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, cpuid,		8,	96),
1612 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_rd,		1,	104),
1613 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_wr,		1,	108),
1614 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, db_q_en,		1,	112),
1615 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_head,		13,	128),
1616 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_tail,		13,	144),
1617 	{ 0 }
1618 };
1619 
1620 /**
1621  * ice_write_tx_drbell_q_ctx
1622  * @hw: pointer to the hardware structure
1623  * @tx_drbell_q_ctx: pointer to the doorbell queue context
1624  * @tx_drbell_q_index: the index of the doorbell queue
1625  *
1626  * Converts doorbell queue context from sparse to dense structure and then
1627  * writes it to HW register space
1628  */
1629 enum ice_status
1630 ice_write_tx_drbell_q_ctx(struct ice_hw *hw,
1631 			  struct ice_tx_drbell_q_ctx *tx_drbell_q_ctx,
1632 			  u32 tx_drbell_q_index)
1633 {
1634 	u8 ctx_buf[ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1635 
1636 	ice_set_ctx(hw, (u8 *)tx_drbell_q_ctx, ctx_buf,
1637 		    ice_tx_drbell_q_ctx_info);
1638 	return ice_copy_tx_drbell_q_ctx_to_hw(hw, ctx_buf, tx_drbell_q_index);
1639 }
1640 
1641 /**
1642  * ice_clear_tx_drbell_q_ctx
1643  * @hw: pointer to the hardware structure
1644  * @tx_drbell_q_index: the index of the doorbell queue to clear
1645  *
1646  * Clears doorbell queue context in HW register space
1647  */
1648 enum ice_status
1649 ice_clear_tx_drbell_q_ctx(struct ice_hw *hw, u32 tx_drbell_q_index)
1650 {
1651 	u8 i;
1652 
1653 	if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1654 		return ICE_ERR_PARAM;
1655 
1656 	/* Clear each dword register separately */
1657 	for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++)
1658 		wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index), 0);
1659 
1660 	return ICE_SUCCESS;
1661 }
1662 
1663 /* FW Admin Queue command wrappers */
1664 
1665 /**
1666  * ice_should_retry_sq_send_cmd
1667  * @opcode: AQ opcode
1668  *
1669  * Decide if we should retry the send command routine for the ATQ, depending
1670  * on the opcode.
1671  */
1672 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1673 {
1674 	switch (opcode) {
1675 	case ice_aqc_opc_dnl_get_status:
1676 	case ice_aqc_opc_dnl_run:
1677 	case ice_aqc_opc_dnl_call:
1678 	case ice_aqc_opc_dnl_read_sto:
1679 	case ice_aqc_opc_dnl_write_sto:
1680 	case ice_aqc_opc_dnl_set_breakpoints:
1681 	case ice_aqc_opc_dnl_read_log:
1682 	case ice_aqc_opc_get_link_topo:
1683 	case ice_aqc_opc_done_alt_write:
1684 	case ice_aqc_opc_lldp_stop:
1685 	case ice_aqc_opc_lldp_start:
1686 	case ice_aqc_opc_lldp_filter_ctrl:
1687 		return true;
1688 	}
1689 
1690 	return false;
1691 }
1692 
1693 /**
1694  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1695  * @hw: pointer to the HW struct
1696  * @cq: pointer to the specific Control queue
1697  * @desc: prefilled descriptor describing the command
1698  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1699  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1700  * @cd: pointer to command details structure
1701  *
1702  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1703  * Queue if the EBUSY AQ error is returned.
1704  */
1705 static enum ice_status
1706 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1707 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1708 		      struct ice_sq_cd *cd)
1709 {
1710 	struct ice_aq_desc desc_cpy;
1711 	enum ice_status status;
1712 	bool is_cmd_for_retry;
1713 	u8 *buf_cpy = NULL;
1714 	u8 idx = 0;
1715 	u16 opcode;
1716 
1717 	opcode = LE16_TO_CPU(desc->opcode);
1718 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1719 	ice_memset(&desc_cpy, 0, sizeof(desc_cpy), ICE_NONDMA_MEM);
1720 
1721 	if (is_cmd_for_retry) {
1722 		if (buf) {
1723 			buf_cpy = (u8 *)ice_malloc(hw, buf_size);
1724 			if (!buf_cpy)
1725 				return ICE_ERR_NO_MEMORY;
1726 		}
1727 
1728 		ice_memcpy(&desc_cpy, desc, sizeof(desc_cpy),
1729 			   ICE_NONDMA_TO_NONDMA);
1730 	}
1731 
1732 	do {
1733 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1734 
1735 		if (!is_cmd_for_retry || status == ICE_SUCCESS ||
1736 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1737 			break;
1738 
1739 		if (buf_cpy)
1740 			ice_memcpy(buf, buf_cpy, buf_size,
1741 				   ICE_NONDMA_TO_NONDMA);
1742 
1743 		ice_memcpy(desc, &desc_cpy, sizeof(desc_cpy),
1744 			   ICE_NONDMA_TO_NONDMA);
1745 
1746 		ice_msec_delay(ICE_SQ_SEND_DELAY_TIME_MS, false);
1747 
1748 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1749 
1750 	if (buf_cpy)
1751 		ice_free(hw, buf_cpy);
1752 
1753 	return status;
1754 }
1755 
1756 /**
1757  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1758  * @hw: pointer to the HW struct
1759  * @desc: descriptor describing the command
1760  * @buf: buffer to use for indirect commands (NULL for direct commands)
1761  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1762  * @cd: pointer to command details structure
1763  *
1764  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1765  */
1766 enum ice_status
1767 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1768 		u16 buf_size, struct ice_sq_cd *cd)
1769 {
1770 	return ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1771 }
1772 
1773 /**
1774  * ice_aq_get_fw_ver
1775  * @hw: pointer to the HW struct
1776  * @cd: pointer to command details structure or NULL
1777  *
1778  * Get the firmware version (0x0001) from the admin queue commands
1779  */
1780 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1781 {
1782 	struct ice_aqc_get_ver *resp;
1783 	struct ice_aq_desc desc;
1784 	enum ice_status status;
1785 
1786 	resp = &desc.params.get_ver;
1787 
1788 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1789 
1790 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1791 
1792 	if (!status) {
1793 		hw->fw_branch = resp->fw_branch;
1794 		hw->fw_maj_ver = resp->fw_major;
1795 		hw->fw_min_ver = resp->fw_minor;
1796 		hw->fw_patch = resp->fw_patch;
1797 		hw->fw_build = LE32_TO_CPU(resp->fw_build);
1798 		hw->api_branch = resp->api_branch;
1799 		hw->api_maj_ver = resp->api_major;
1800 		hw->api_min_ver = resp->api_minor;
1801 		hw->api_patch = resp->api_patch;
1802 	}
1803 
1804 	return status;
1805 }
1806 
1807 /**
1808  * ice_aq_send_driver_ver
1809  * @hw: pointer to the HW struct
1810  * @dv: driver's major, minor version
1811  * @cd: pointer to command details structure or NULL
1812  *
1813  * Send the driver version (0x0002) to the firmware
1814  */
1815 enum ice_status
1816 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1817 		       struct ice_sq_cd *cd)
1818 {
1819 	struct ice_aqc_driver_ver *cmd;
1820 	struct ice_aq_desc desc;
1821 	u16 len;
1822 
1823 	cmd = &desc.params.driver_ver;
1824 
1825 	if (!dv)
1826 		return ICE_ERR_PARAM;
1827 
1828 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1829 
1830 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1831 	cmd->major_ver = dv->major_ver;
1832 	cmd->minor_ver = dv->minor_ver;
1833 	cmd->build_ver = dv->build_ver;
1834 	cmd->subbuild_ver = dv->subbuild_ver;
1835 
1836 	len = 0;
1837 	while (len < sizeof(dv->driver_string) &&
1838 	       IS_ASCII(dv->driver_string[len]) && dv->driver_string[len])
1839 		len++;
1840 
1841 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1842 }
1843 
1844 /**
1845  * ice_aq_q_shutdown
1846  * @hw: pointer to the HW struct
1847  * @unloading: is the driver unloading itself
1848  *
1849  * Tell the Firmware that we're shutting down the AdminQ and whether
1850  * or not the driver is unloading as well (0x0003).
1851  */
1852 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1853 {
1854 	struct ice_aqc_q_shutdown *cmd;
1855 	struct ice_aq_desc desc;
1856 
1857 	cmd = &desc.params.q_shutdown;
1858 
1859 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1860 
1861 	if (unloading)
1862 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1863 
1864 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1865 }
1866 
1867 /**
1868  * ice_aq_req_res
1869  * @hw: pointer to the HW struct
1870  * @res: resource ID
1871  * @access: access type
1872  * @sdp_number: resource number
1873  * @timeout: the maximum time in ms that the driver may hold the resource
1874  * @cd: pointer to command details structure or NULL
1875  *
1876  * Requests common resource using the admin queue commands (0x0008).
1877  * When attempting to acquire the Global Config Lock, the driver can
1878  * learn of three states:
1879  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1880  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1881  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1882  *                          successfully downloaded the package; the driver does
1883  *                          not have to download the package and can continue
1884  *                          loading
1885  *
1886  * Note that if the caller is in an acquire lock, perform action, release lock
1887  * phase of operation, it is possible that the FW may detect a timeout and issue
1888  * a CORER. In this case, the driver will receive a CORER interrupt and will
1889  * have to determine its cause. The calling thread that is handling this flow
1890  * will likely get an error propagated back to it indicating the Download
1891  * Package, Update Package or the Release Resource AQ commands timed out.
1892  */
1893 static enum ice_status
1894 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1895 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1896 	       struct ice_sq_cd *cd)
1897 {
1898 	struct ice_aqc_req_res *cmd_resp;
1899 	struct ice_aq_desc desc;
1900 	enum ice_status status;
1901 
1902 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1903 
1904 	cmd_resp = &desc.params.res_owner;
1905 
1906 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1907 
1908 	cmd_resp->res_id = CPU_TO_LE16(res);
1909 	cmd_resp->access_type = CPU_TO_LE16(access);
1910 	cmd_resp->res_number = CPU_TO_LE32(sdp_number);
1911 	cmd_resp->timeout = CPU_TO_LE32(*timeout);
1912 	*timeout = 0;
1913 
1914 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1915 
1916 	/* The completion specifies the maximum time in ms that the driver
1917 	 * may hold the resource in the Timeout field.
1918 	 */
1919 
1920 	/* Global config lock response utilizes an additional status field.
1921 	 *
1922 	 * If the Global config lock resource is held by some other driver, the
1923 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1924 	 * and the timeout field indicates the maximum time the current owner
1925 	 * of the resource has to free it.
1926 	 */
1927 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1928 		if (LE16_TO_CPU(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1929 			*timeout = LE32_TO_CPU(cmd_resp->timeout);
1930 			return ICE_SUCCESS;
1931 		} else if (LE16_TO_CPU(cmd_resp->status) ==
1932 			   ICE_AQ_RES_GLBL_IN_PROG) {
1933 			*timeout = LE32_TO_CPU(cmd_resp->timeout);
1934 			return ICE_ERR_AQ_ERROR;
1935 		} else if (LE16_TO_CPU(cmd_resp->status) ==
1936 			   ICE_AQ_RES_GLBL_DONE) {
1937 			return ICE_ERR_AQ_NO_WORK;
1938 		}
1939 
1940 		/* invalid FW response, force a timeout immediately */
1941 		*timeout = 0;
1942 		return ICE_ERR_AQ_ERROR;
1943 	}
1944 
1945 	/* If the resource is held by some other driver, the command completes
1946 	 * with a busy return value and the timeout field indicates the maximum
1947 	 * time the current owner of the resource has to free it.
1948 	 */
1949 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1950 		*timeout = LE32_TO_CPU(cmd_resp->timeout);
1951 
1952 	return status;
1953 }
1954 
1955 /**
1956  * ice_aq_release_res
1957  * @hw: pointer to the HW struct
1958  * @res: resource ID
1959  * @sdp_number: resource number
1960  * @cd: pointer to command details structure or NULL
1961  *
1962  * release common resource using the admin queue commands (0x0009)
1963  */
1964 static enum ice_status
1965 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1966 		   struct ice_sq_cd *cd)
1967 {
1968 	struct ice_aqc_req_res *cmd;
1969 	struct ice_aq_desc desc;
1970 
1971 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1972 
1973 	cmd = &desc.params.res_owner;
1974 
1975 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1976 
1977 	cmd->res_id = CPU_TO_LE16(res);
1978 	cmd->res_number = CPU_TO_LE32(sdp_number);
1979 
1980 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1981 }
1982 
1983 /**
1984  * ice_acquire_res
1985  * @hw: pointer to the HW structure
1986  * @res: resource ID
1987  * @access: access type (read or write)
1988  * @timeout: timeout in milliseconds
1989  *
1990  * This function will attempt to acquire the ownership of a resource.
1991  */
1992 enum ice_status
1993 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1994 		enum ice_aq_res_access_type access, u32 timeout)
1995 {
1996 #define ICE_RES_POLLING_DELAY_MS	10
1997 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1998 	u32 time_left = timeout;
1999 	enum ice_status status;
2000 
2001 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2002 
2003 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2004 
2005 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
2006 	 * previously acquired the resource and performed any necessary updates;
2007 	 * in this case the caller does not obtain the resource and has no
2008 	 * further work to do.
2009 	 */
2010 	if (status == ICE_ERR_AQ_NO_WORK)
2011 		goto ice_acquire_res_exit;
2012 
2013 	if (status)
2014 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
2015 
2016 	/* If necessary, poll until the current lock owner timeouts */
2017 	timeout = time_left;
2018 	while (status && timeout && time_left) {
2019 		ice_msec_delay(delay, true);
2020 		timeout = (timeout > delay) ? timeout - delay : 0;
2021 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2022 
2023 		if (status == ICE_ERR_AQ_NO_WORK)
2024 			/* lock free, but no work to do */
2025 			break;
2026 
2027 		if (!status)
2028 			/* lock acquired */
2029 			break;
2030 	}
2031 	if (status && status != ICE_ERR_AQ_NO_WORK)
2032 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
2033 
2034 ice_acquire_res_exit:
2035 	if (status == ICE_ERR_AQ_NO_WORK) {
2036 		if (access == ICE_RES_WRITE)
2037 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
2038 		else
2039 			ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
2040 	}
2041 	return status;
2042 }
2043 
2044 /**
2045  * ice_release_res
2046  * @hw: pointer to the HW structure
2047  * @res: resource ID
2048  *
2049  * This function will release a resource using the proper Admin Command.
2050  */
2051 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2052 {
2053 	enum ice_status status;
2054 	u32 total_delay = 0;
2055 
2056 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2057 
2058 	status = ice_aq_release_res(hw, res, 0, NULL);
2059 
2060 	/* there are some rare cases when trying to release the resource
2061 	 * results in an admin queue timeout, so handle them correctly
2062 	 */
2063 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
2064 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
2065 		ice_msec_delay(1, true);
2066 		status = ice_aq_release_res(hw, res, 0, NULL);
2067 		total_delay++;
2068 	}
2069 }
2070 
2071 /**
2072  * ice_aq_alloc_free_res - command to allocate/free resources
2073  * @hw: pointer to the HW struct
2074  * @num_entries: number of resource entries in buffer
2075  * @buf: Indirect buffer to hold data parameters and response
2076  * @buf_size: size of buffer for indirect commands
2077  * @opc: pass in the command opcode
2078  * @cd: pointer to command details structure or NULL
2079  *
2080  * Helper function to allocate/free resources using the admin queue commands
2081  */
2082 enum ice_status
2083 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
2084 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2085 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2086 {
2087 	struct ice_aqc_alloc_free_res_cmd *cmd;
2088 	struct ice_aq_desc desc;
2089 
2090 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2091 
2092 	cmd = &desc.params.sw_res_ctrl;
2093 
2094 	if (!buf)
2095 		return ICE_ERR_PARAM;
2096 
2097 	if (buf_size < FLEX_ARRAY_SIZE(buf, elem, num_entries))
2098 		return ICE_ERR_PARAM;
2099 
2100 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2101 
2102 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
2103 
2104 	cmd->num_entries = CPU_TO_LE16(num_entries);
2105 
2106 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2107 }
2108 
2109 /**
2110  * ice_alloc_hw_res - allocate resource
2111  * @hw: pointer to the HW struct
2112  * @type: type of resource
2113  * @num: number of resources to allocate
2114  * @btm: allocate from bottom
2115  * @res: pointer to array that will receive the resources
2116  */
2117 enum ice_status
2118 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2119 {
2120 	struct ice_aqc_alloc_free_res_elem *buf;
2121 	enum ice_status status;
2122 	u16 buf_len;
2123 
2124 	buf_len = ice_struct_size(buf, elem, num);
2125 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
2126 	if (!buf)
2127 		return ICE_ERR_NO_MEMORY;
2128 
2129 	/* Prepare buffer to allocate resource. */
2130 	buf->num_elems = CPU_TO_LE16(num);
2131 	buf->res_type = CPU_TO_LE16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2132 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2133 	if (btm)
2134 		buf->res_type |= CPU_TO_LE16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2135 
2136 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
2137 				       ice_aqc_opc_alloc_res, NULL);
2138 	if (status)
2139 		goto ice_alloc_res_exit;
2140 
2141 	ice_memcpy(res, buf->elem, sizeof(*buf->elem) * num,
2142 		   ICE_NONDMA_TO_NONDMA);
2143 
2144 ice_alloc_res_exit:
2145 	ice_free(hw, buf);
2146 	return status;
2147 }
2148 
2149 /**
2150  * ice_free_hw_res - free allocated HW resource
2151  * @hw: pointer to the HW struct
2152  * @type: type of resource to free
2153  * @num: number of resources
2154  * @res: pointer to array that contains the resources to free
2155  */
2156 enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2157 {
2158 	struct ice_aqc_alloc_free_res_elem *buf;
2159 	enum ice_status status;
2160 	u16 buf_len;
2161 
2162 	buf_len = ice_struct_size(buf, elem, num);
2163 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
2164 	if (!buf)
2165 		return ICE_ERR_NO_MEMORY;
2166 
2167 	/* Prepare buffer to free resource. */
2168 	buf->num_elems = CPU_TO_LE16(num);
2169 	buf->res_type = CPU_TO_LE16(type);
2170 	ice_memcpy(buf->elem, res, sizeof(*buf->elem) * num,
2171 		   ICE_NONDMA_TO_NONDMA);
2172 
2173 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
2174 				       ice_aqc_opc_free_res, NULL);
2175 	if (status)
2176 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2177 
2178 	ice_free(hw, buf);
2179 	return status;
2180 }
2181 
2182 /**
2183  * ice_get_num_per_func - determine number of resources per PF
2184  * @hw: pointer to the HW structure
2185  * @max: value to be evenly split between each PF
2186  *
2187  * Determine the number of valid functions by going through the bitmap returned
2188  * from parsing capabilities and use this to calculate the number of resources
2189  * per PF based on the max value passed in.
2190  */
2191 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2192 {
2193 	u8 funcs;
2194 
2195 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2196 	funcs = ice_hweight8(hw->dev_caps.common_cap.valid_functions &
2197 			     ICE_CAPS_VALID_FUNCS_M);
2198 
2199 	if (!funcs)
2200 		return 0;
2201 
2202 	return max / funcs;
2203 }
2204 
2205 /**
2206  * ice_print_led_caps - print LED capabilities
2207  * @hw: pointer to the ice_hw instance
2208  * @caps: pointer to common caps instance
2209  * @prefix: string to prefix when printing
2210  * @dbg: set to indicate debug print
2211  */
2212 static void
2213 ice_print_led_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2214 		   char const *prefix, bool dbg)
2215 {
2216 	u8 i;
2217 
2218 	if (dbg)
2219 		ice_debug(hw, ICE_DBG_INIT, "%s: led_pin_num = %d\n", prefix,
2220 			  caps->led_pin_num);
2221 	else
2222 		ice_info(hw, "%s: led_pin_num = %d\n", prefix,
2223 			 caps->led_pin_num);
2224 
2225 	for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_LED; i++) {
2226 		if (!caps->led[i])
2227 			continue;
2228 
2229 		if (dbg)
2230 			ice_debug(hw, ICE_DBG_INIT, "%s: led[%d] = %d\n",
2231 				  prefix, i, caps->led[i]);
2232 		else
2233 			ice_info(hw, "%s: led[%d] = %d\n", prefix, i,
2234 				 caps->led[i]);
2235 	}
2236 }
2237 
2238 /**
2239  * ice_print_sdp_caps - print SDP capabilities
2240  * @hw: pointer to the ice_hw instance
2241  * @caps: pointer to common caps instance
2242  * @prefix: string to prefix when printing
2243  * @dbg: set to indicate debug print
2244  */
2245 static void
2246 ice_print_sdp_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2247 		   char const *prefix, bool dbg)
2248 {
2249 	u8 i;
2250 
2251 	if (dbg)
2252 		ice_debug(hw, ICE_DBG_INIT, "%s: sdp_pin_num = %d\n", prefix,
2253 			  caps->sdp_pin_num);
2254 	else
2255 		ice_info(hw, "%s: sdp_pin_num = %d\n", prefix,
2256 			 caps->sdp_pin_num);
2257 
2258 	for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_SDP; i++) {
2259 		if (!caps->sdp[i])
2260 			continue;
2261 
2262 		if (dbg)
2263 			ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%d] = %d\n",
2264 				  prefix, i, caps->sdp[i]);
2265 		else
2266 			ice_info(hw, "%s: sdp[%d] = %d\n", prefix,
2267 				 i, caps->sdp[i]);
2268 	}
2269 }
2270 
2271 /**
2272  * ice_parse_common_caps - parse common device/function capabilities
2273  * @hw: pointer to the HW struct
2274  * @caps: pointer to common capabilities structure
2275  * @elem: the capability element to parse
2276  * @prefix: message prefix for tracing capabilities
2277  *
2278  * Given a capability element, extract relevant details into the common
2279  * capability structure.
2280  *
2281  * Returns: true if the capability matches one of the common capability ids,
2282  * false otherwise.
2283  */
2284 static bool
2285 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2286 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2287 {
2288 	u32 logical_id = LE32_TO_CPU(elem->logical_id);
2289 	u32 phys_id = LE32_TO_CPU(elem->phys_id);
2290 	u32 number = LE32_TO_CPU(elem->number);
2291 	u16 cap = LE16_TO_CPU(elem->cap);
2292 	bool found = true;
2293 
2294 	switch (cap) {
2295 	case ICE_AQC_CAPS_SWITCHING_MODE:
2296 		caps->switching_mode = number;
2297 		ice_debug(hw, ICE_DBG_INIT, "%s: switching_mode = %d\n", prefix,
2298 			  caps->switching_mode);
2299 		break;
2300 	case ICE_AQC_CAPS_MANAGEABILITY_MODE:
2301 		caps->mgmt_mode = number;
2302 		caps->mgmt_protocols_mctp = logical_id;
2303 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_mode = %d\n", prefix,
2304 			  caps->mgmt_mode);
2305 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_protocols_mctp = %d\n", prefix,
2306 			  caps->mgmt_protocols_mctp);
2307 		break;
2308 	case ICE_AQC_CAPS_OS2BMC:
2309 		caps->os2bmc = number;
2310 		ice_debug(hw, ICE_DBG_INIT, "%s: os2bmc = %d\n", prefix, caps->os2bmc);
2311 		break;
2312 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2313 		caps->valid_functions = number;
2314 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2315 			  caps->valid_functions);
2316 		break;
2317 	case ICE_AQC_CAPS_SRIOV:
2318 		caps->sr_iov_1_1 = (number == 1);
2319 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2320 			  caps->sr_iov_1_1);
2321 		break;
2322 	case ICE_AQC_CAPS_VMDQ:
2323 		caps->vmdq = (number == 1);
2324 		ice_debug(hw, ICE_DBG_INIT, "%s: vmdq = %d\n", prefix, caps->vmdq);
2325 		break;
2326 	case ICE_AQC_CAPS_802_1QBG:
2327 		caps->evb_802_1_qbg = (number == 1);
2328 		ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbg = %d\n", prefix, number);
2329 		break;
2330 	case ICE_AQC_CAPS_802_1BR:
2331 		caps->evb_802_1_qbh = (number == 1);
2332 		ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbh = %d\n", prefix, number);
2333 		break;
2334 	case ICE_AQC_CAPS_DCB:
2335 		caps->dcb = (number == 1);
2336 		caps->active_tc_bitmap = logical_id;
2337 		caps->maxtc = phys_id;
2338 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2339 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2340 			  caps->active_tc_bitmap);
2341 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2342 		break;
2343 	case ICE_AQC_CAPS_ISCSI:
2344 		caps->iscsi = (number == 1);
2345 		ice_debug(hw, ICE_DBG_INIT, "%s: iscsi = %d\n", prefix, caps->iscsi);
2346 		break;
2347 	case ICE_AQC_CAPS_RSS:
2348 		caps->rss_table_size = number;
2349 		caps->rss_table_entry_width = logical_id;
2350 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2351 			  caps->rss_table_size);
2352 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2353 			  caps->rss_table_entry_width);
2354 		break;
2355 	case ICE_AQC_CAPS_RXQS:
2356 		caps->num_rxq = number;
2357 		caps->rxq_first_id = phys_id;
2358 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2359 			  caps->num_rxq);
2360 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2361 			  caps->rxq_first_id);
2362 		break;
2363 	case ICE_AQC_CAPS_TXQS:
2364 		caps->num_txq = number;
2365 		caps->txq_first_id = phys_id;
2366 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2367 			  caps->num_txq);
2368 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2369 			  caps->txq_first_id);
2370 		break;
2371 	case ICE_AQC_CAPS_MSIX:
2372 		caps->num_msix_vectors = number;
2373 		caps->msix_vector_first_id = phys_id;
2374 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2375 			  caps->num_msix_vectors);
2376 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2377 			  caps->msix_vector_first_id);
2378 		break;
2379 	case ICE_AQC_CAPS_NVM_MGMT:
2380 		caps->sec_rev_disabled =
2381 			(number & ICE_NVM_MGMT_SEC_REV_DISABLED) ?
2382 			true : false;
2383 		ice_debug(hw, ICE_DBG_INIT, "%s: sec_rev_disabled = %d\n", prefix,
2384 			  caps->sec_rev_disabled);
2385 		caps->update_disabled =
2386 			(number & ICE_NVM_MGMT_UPDATE_DISABLED) ?
2387 			true : false;
2388 		ice_debug(hw, ICE_DBG_INIT, "%s: update_disabled = %d\n", prefix,
2389 			  caps->update_disabled);
2390 		caps->nvm_unified_update =
2391 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2392 			true : false;
2393 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2394 			  caps->nvm_unified_update);
2395 		caps->netlist_auth =
2396 			(number & ICE_NVM_MGMT_NETLIST_AUTH_SUPPORT) ?
2397 			true : false;
2398 		ice_debug(hw, ICE_DBG_INIT, "%s: netlist_auth = %d\n", prefix,
2399 			  caps->netlist_auth);
2400 		break;
2401 	case ICE_AQC_CAPS_CEM:
2402 		caps->mgmt_cem = (number == 1);
2403 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_cem = %d\n", prefix,
2404 			  caps->mgmt_cem);
2405 		break;
2406 	case ICE_AQC_CAPS_IWARP:
2407 		caps->iwarp = (number == 1);
2408 		ice_debug(hw, ICE_DBG_INIT, "%s: iwarp = %d\n", prefix, caps->iwarp);
2409 		break;
2410 	case ICE_AQC_CAPS_ROCEV2_LAG:
2411 		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2412 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %d\n",
2413 			  prefix, caps->roce_lag);
2414 		break;
2415 	case ICE_AQC_CAPS_LED:
2416 		if (phys_id < ICE_MAX_SUPPORTED_GPIO_LED) {
2417 			caps->led[phys_id] = true;
2418 			caps->led_pin_num++;
2419 			ice_debug(hw, ICE_DBG_INIT, "%s: led[%d] = 1\n", prefix, phys_id);
2420 		}
2421 		break;
2422 	case ICE_AQC_CAPS_SDP:
2423 		if (phys_id < ICE_MAX_SUPPORTED_GPIO_SDP) {
2424 			caps->sdp[phys_id] = true;
2425 			caps->sdp_pin_num++;
2426 			ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%d] = 1\n", prefix, phys_id);
2427 		}
2428 		break;
2429 	case ICE_AQC_CAPS_WR_CSR_PROT:
2430 		caps->wr_csr_prot = number;
2431 		caps->wr_csr_prot |= (u64)logical_id << 32;
2432 		ice_debug(hw, ICE_DBG_INIT, "%s: wr_csr_prot = 0x%llX\n", prefix,
2433 			  (unsigned long long)caps->wr_csr_prot);
2434 		break;
2435 	case ICE_AQC_CAPS_WOL_PROXY:
2436 		caps->num_wol_proxy_fltr = number;
2437 		caps->wol_proxy_vsi_seid = logical_id;
2438 		caps->apm_wol_support = !!(phys_id & ICE_WOL_SUPPORT_M);
2439 		caps->acpi_prog_mthd = !!(phys_id &
2440 					  ICE_ACPI_PROG_MTHD_M);
2441 		caps->proxy_support = !!(phys_id & ICE_PROXY_SUPPORT_M);
2442 		ice_debug(hw, ICE_DBG_INIT, "%s: num_wol_proxy_fltr = %d\n", prefix,
2443 			  caps->num_wol_proxy_fltr);
2444 		ice_debug(hw, ICE_DBG_INIT, "%s: wol_proxy_vsi_seid = %d\n", prefix,
2445 			  caps->wol_proxy_vsi_seid);
2446 		ice_debug(hw, ICE_DBG_INIT, "%s: apm_wol_support = %d\n",
2447 			  prefix, caps->apm_wol_support);
2448 		break;
2449 	case ICE_AQC_CAPS_MAX_MTU:
2450 		caps->max_mtu = number;
2451 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2452 			  prefix, caps->max_mtu);
2453 		break;
2454 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2455 		caps->pcie_reset_avoidance = (number > 0);
2456 		ice_debug(hw, ICE_DBG_INIT,
2457 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2458 			  caps->pcie_reset_avoidance);
2459 		break;
2460 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2461 		caps->reset_restrict_support = (number == 1);
2462 		ice_debug(hw, ICE_DBG_INIT,
2463 			  "%s: reset_restrict_support = %d\n", prefix,
2464 			  caps->reset_restrict_support);
2465 		break;
2466 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG0:
2467 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG1:
2468 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG2:
2469 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG3:
2470 	{
2471 		u8 index = (u8)(cap - ICE_AQC_CAPS_EXT_TOPO_DEV_IMG0);
2472 
2473 		caps->ext_topo_dev_img_ver_high[index] = number;
2474 		caps->ext_topo_dev_img_ver_low[index] = logical_id;
2475 		caps->ext_topo_dev_img_part_num[index] =
2476 			(phys_id & ICE_EXT_TOPO_DEV_IMG_PART_NUM_M) >>
2477 			ICE_EXT_TOPO_DEV_IMG_PART_NUM_S;
2478 		caps->ext_topo_dev_img_load_en[index] =
2479 			(phys_id & ICE_EXT_TOPO_DEV_IMG_LOAD_EN) != 0;
2480 		caps->ext_topo_dev_img_prog_en[index] =
2481 			(phys_id & ICE_EXT_TOPO_DEV_IMG_PROG_EN) != 0;
2482 		caps->ext_topo_dev_img_ver_schema[index] =
2483 			(phys_id & ICE_EXT_TOPO_DEV_IMG_VER_SCHEMA) != 0;
2484 		ice_debug(hw, ICE_DBG_INIT,
2485 			  "%s: ext_topo_dev_img_ver_high[%d] = %d\n",
2486 			  prefix, index,
2487 			  caps->ext_topo_dev_img_ver_high[index]);
2488 		ice_debug(hw, ICE_DBG_INIT,
2489 			  "%s: ext_topo_dev_img_ver_low[%d] = %d\n",
2490 			  prefix, index,
2491 			  caps->ext_topo_dev_img_ver_low[index]);
2492 		ice_debug(hw, ICE_DBG_INIT,
2493 			  "%s: ext_topo_dev_img_part_num[%d] = %d\n",
2494 			  prefix, index,
2495 			  caps->ext_topo_dev_img_part_num[index]);
2496 		ice_debug(hw, ICE_DBG_INIT,
2497 			  "%s: ext_topo_dev_img_load_en[%d] = %d\n",
2498 			  prefix, index,
2499 			  caps->ext_topo_dev_img_load_en[index]);
2500 		ice_debug(hw, ICE_DBG_INIT,
2501 			  "%s: ext_topo_dev_img_prog_en[%d] = %d\n",
2502 			  prefix, index,
2503 			  caps->ext_topo_dev_img_prog_en[index]);
2504 		ice_debug(hw, ICE_DBG_INIT,
2505 			  "%s: ext_topo_dev_img_ver_schema[%d] = %d\n",
2506 			  prefix, index,
2507 			  caps->ext_topo_dev_img_ver_schema[index]);
2508 		break;
2509 	}
2510 	case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2511 		caps->tx_sched_topo_comp_mode_en = (number == 1);
2512 		break;
2513 	case ICE_AQC_CAPS_DYN_FLATTENING:
2514 		caps->dyn_flattening_en = (number == 1);
2515 		ice_debug(hw, ICE_DBG_INIT, "%s: dyn_flattening_en = %d\n",
2516 			  prefix, caps->dyn_flattening_en);
2517 		break;
2518 	case ICE_AQC_CAPS_OROM_RECOVERY_UPDATE:
2519 		caps->orom_recovery_update = (number == 1);
2520 		ice_debug(hw, ICE_DBG_INIT, "%s: orom_recovery_update = %d\n",
2521 			  prefix, caps->orom_recovery_update);
2522 		break;
2523 	default:
2524 		/* Not one of the recognized common capabilities */
2525 		found = false;
2526 	}
2527 
2528 	return found;
2529 }
2530 
2531 /**
2532  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2533  * @hw: pointer to the HW structure
2534  * @caps: pointer to capabilities structure to fix
2535  *
2536  * Re-calculate the capabilities that are dependent on the number of physical
2537  * ports; i.e. some features are not supported or function differently on
2538  * devices with more than 4 ports.
2539  */
2540 static void
2541 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2542 {
2543 	/* This assumes device capabilities are always scanned before function
2544 	 * capabilities during the initialization flow.
2545 	 */
2546 	if (hw->dev_caps.num_funcs > 4) {
2547 		/* Max 4 TCs per port */
2548 		caps->maxtc = 4;
2549 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2550 			  caps->maxtc);
2551 		if (caps->iwarp) {
2552 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2553 			caps->iwarp = 0;
2554 		}
2555 
2556 		/* print message only when processing device capabilities
2557 		 * during initialization.
2558 		 */
2559 		if (caps == &hw->dev_caps.common_cap)
2560 			ice_info(hw, "RDMA functionality is not available with the current device configuration.\n");
2561 	}
2562 }
2563 
2564 /**
2565  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2566  * @hw: pointer to the HW struct
2567  * @func_p: pointer to function capabilities structure
2568  * @cap: pointer to the capability element to parse
2569  *
2570  * Extract function capabilities for ICE_AQC_CAPS_VF.
2571  */
2572 static void
2573 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2574 		       struct ice_aqc_list_caps_elem *cap)
2575 {
2576 	u32 number = LE32_TO_CPU(cap->number);
2577 	u32 logical_id = LE32_TO_CPU(cap->logical_id);
2578 
2579 	func_p->num_allocd_vfs = number;
2580 	func_p->vf_base_id = logical_id;
2581 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2582 		  func_p->num_allocd_vfs);
2583 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2584 		  func_p->vf_base_id);
2585 }
2586 
2587 /**
2588  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2589  * @hw: pointer to the HW struct
2590  * @func_p: pointer to function capabilities structure
2591  * @cap: pointer to the capability element to parse
2592  *
2593  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2594  */
2595 static void
2596 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2597 			struct ice_aqc_list_caps_elem *cap)
2598 {
2599 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2600 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2601 		  LE32_TO_CPU(cap->number));
2602 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2603 		  func_p->guar_num_vsi);
2604 }
2605 
2606 /**
2607  * ice_parse_func_caps - Parse function capabilities
2608  * @hw: pointer to the HW struct
2609  * @func_p: pointer to function capabilities structure
2610  * @buf: buffer containing the function capability records
2611  * @cap_count: the number of capabilities
2612  *
2613  * Helper function to parse function (0x000A) capabilities list. For
2614  * capabilities shared between device and function, this relies on
2615  * ice_parse_common_caps.
2616  *
2617  * Loop through the list of provided capabilities and extract the relevant
2618  * data into the function capabilities structured.
2619  */
2620 static void
2621 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2622 		    void *buf, u32 cap_count)
2623 {
2624 	struct ice_aqc_list_caps_elem *cap_resp;
2625 	u32 i;
2626 
2627 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2628 
2629 	ice_memset(func_p, 0, sizeof(*func_p), ICE_NONDMA_MEM);
2630 
2631 	for (i = 0; i < cap_count; i++) {
2632 		u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2633 		bool found;
2634 
2635 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2636 					      &cap_resp[i], "func caps");
2637 
2638 		switch (cap) {
2639 		case ICE_AQC_CAPS_VF:
2640 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2641 			break;
2642 		case ICE_AQC_CAPS_VSI:
2643 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2644 			break;
2645 		default:
2646 			/* Don't list common capabilities as unknown */
2647 			if (!found)
2648 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2649 					  i, cap);
2650 			break;
2651 		}
2652 	}
2653 
2654 	ice_print_led_caps(hw, &func_p->common_cap, "func caps", true);
2655 	ice_print_sdp_caps(hw, &func_p->common_cap, "func caps", true);
2656 
2657 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2658 }
2659 
2660 /**
2661  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2662  * @hw: pointer to the HW struct
2663  * @dev_p: pointer to device capabilities structure
2664  * @cap: capability element to parse
2665  *
2666  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2667  */
2668 static void
2669 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2670 			      struct ice_aqc_list_caps_elem *cap)
2671 {
2672 	u32 number = LE32_TO_CPU(cap->number);
2673 
2674 	dev_p->num_funcs = ice_hweight32(number);
2675 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2676 		  dev_p->num_funcs);
2677 
2678 }
2679 
2680 /**
2681  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2682  * @hw: pointer to the HW struct
2683  * @dev_p: pointer to device capabilities structure
2684  * @cap: capability element to parse
2685  *
2686  * Parse ICE_AQC_CAPS_VF for device capabilities.
2687  */
2688 static void
2689 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2690 		      struct ice_aqc_list_caps_elem *cap)
2691 {
2692 	u32 number = LE32_TO_CPU(cap->number);
2693 
2694 	dev_p->num_vfs_exposed = number;
2695 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2696 		  dev_p->num_vfs_exposed);
2697 }
2698 
2699 /**
2700  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2701  * @hw: pointer to the HW struct
2702  * @dev_p: pointer to device capabilities structure
2703  * @cap: capability element to parse
2704  *
2705  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2706  */
2707 static void
2708 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2709 		       struct ice_aqc_list_caps_elem *cap)
2710 {
2711 	u32 number = LE32_TO_CPU(cap->number);
2712 
2713 	dev_p->num_vsi_allocd_to_host = number;
2714 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2715 		  dev_p->num_vsi_allocd_to_host);
2716 }
2717 
2718 /**
2719  * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2720  * @hw: pointer to the HW struct
2721  * @dev_p: pointer to device capabilities structure
2722  * @cap: capability element to parse
2723  *
2724  * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2725  */
2726 static void
2727 ice_parse_nac_topo_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2728 			    struct ice_aqc_list_caps_elem *cap)
2729 {
2730 	dev_p->nac_topo.mode = LE32_TO_CPU(cap->number);
2731 	dev_p->nac_topo.id = LE32_TO_CPU(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2732 
2733 	ice_info(hw, "PF is configured in %s mode with IP instance ID %d\n",
2734 		 (dev_p->nac_topo.mode == 0) ? "primary" : "secondary",
2735 		 dev_p->nac_topo.id);
2736 
2737 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2738 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2739 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2740 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2741 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2742 		  dev_p->nac_topo.id);
2743 }
2744 
2745 /**
2746  * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2747  * @hw: pointer to the HW struct
2748  * @dev_p: pointer to device capabilities structure
2749  * @cap: capability element to parse
2750  *
2751  * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2752  * enabled sensors.
2753  */
2754 static void
2755 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2756 			     struct ice_aqc_list_caps_elem *cap)
2757 {
2758 	dev_p->supported_sensors = LE32_TO_CPU(cap->number);
2759 
2760 	ice_debug(hw, ICE_DBG_INIT,
2761 		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2762 		  dev_p->supported_sensors);
2763 }
2764 
2765 /**
2766  * ice_parse_dev_caps - Parse device capabilities
2767  * @hw: pointer to the HW struct
2768  * @dev_p: pointer to device capabilities structure
2769  * @buf: buffer containing the device capability records
2770  * @cap_count: the number of capabilities
2771  *
2772  * Helper device to parse device (0x000B) capabilities list. For
2773  * capabilities shared between device and function, this relies on
2774  * ice_parse_common_caps.
2775  *
2776  * Loop through the list of provided capabilities and extract the relevant
2777  * data into the device capabilities structured.
2778  */
2779 static void
2780 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2781 		   void *buf, u32 cap_count)
2782 {
2783 	struct ice_aqc_list_caps_elem *cap_resp;
2784 	u32 i;
2785 
2786 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2787 
2788 	ice_memset(dev_p, 0, sizeof(*dev_p), ICE_NONDMA_MEM);
2789 
2790 	for (i = 0; i < cap_count; i++) {
2791 		u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2792 		bool found;
2793 
2794 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2795 					      &cap_resp[i], "dev caps");
2796 
2797 		switch (cap) {
2798 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2799 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2800 			break;
2801 		case ICE_AQC_CAPS_VF:
2802 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2803 			break;
2804 		case ICE_AQC_CAPS_VSI:
2805 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2806 			break;
2807 		case ICE_AQC_CAPS_NAC_TOPOLOGY:
2808 			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
2809 			break;
2810 		case ICE_AQC_CAPS_SENSOR_READING:
2811 			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2812 			break;
2813 		default:
2814 			/* Don't list common capabilities as unknown */
2815 			if (!found)
2816 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2817 					  i, cap);
2818 			break;
2819 		}
2820 	}
2821 
2822 	ice_print_led_caps(hw, &dev_p->common_cap, "dev caps", true);
2823 	ice_print_sdp_caps(hw, &dev_p->common_cap, "dev caps", true);
2824 
2825 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2826 }
2827 
2828 /**
2829  * ice_aq_list_caps - query function/device capabilities
2830  * @hw: pointer to the HW struct
2831  * @buf: a buffer to hold the capabilities
2832  * @buf_size: size of the buffer
2833  * @cap_count: if not NULL, set to the number of capabilities reported
2834  * @opc: capabilities type to discover, device or function
2835  * @cd: pointer to command details structure or NULL
2836  *
2837  * Get the function (0x000A) or device (0x000B) capabilities description from
2838  * firmware and store it in the buffer.
2839  *
2840  * If the cap_count pointer is not NULL, then it is set to the number of
2841  * capabilities firmware will report. Note that if the buffer size is too
2842  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2843  * cap_count will still be updated in this case. It is recommended that the
2844  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2845  * firmware could return) to avoid this.
2846  */
2847 static enum ice_status
2848 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2849 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2850 {
2851 	struct ice_aqc_list_caps *cmd;
2852 	struct ice_aq_desc desc;
2853 	enum ice_status status;
2854 
2855 	cmd = &desc.params.get_cap;
2856 
2857 	if (opc != ice_aqc_opc_list_func_caps &&
2858 	    opc != ice_aqc_opc_list_dev_caps)
2859 		return ICE_ERR_PARAM;
2860 
2861 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2862 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2863 
2864 	if (cap_count)
2865 		*cap_count = LE32_TO_CPU(cmd->count);
2866 
2867 	return status;
2868 }
2869 
2870 /**
2871  * ice_discover_dev_caps - Read and extract device capabilities
2872  * @hw: pointer to the hardware structure
2873  * @dev_caps: pointer to device capabilities structure
2874  *
2875  * Read the device capabilities and extract them into the dev_caps structure
2876  * for later use.
2877  */
2878 static enum ice_status
2879 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2880 {
2881 	enum ice_status status;
2882 	u32 cap_count = 0;
2883 	void *cbuf;
2884 
2885 	cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
2886 	if (!cbuf)
2887 		return ICE_ERR_NO_MEMORY;
2888 
2889 	/* Although the driver doesn't know the number of capabilities the
2890 	 * device will return, we can simply send a 4KB buffer, the maximum
2891 	 * possible size that firmware can return.
2892 	 */
2893 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2894 
2895 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2896 				  ice_aqc_opc_list_dev_caps, NULL);
2897 	if (!status)
2898 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2899 	ice_free(hw, cbuf);
2900 
2901 	return status;
2902 }
2903 
2904 /**
2905  * ice_discover_func_caps - Read and extract function capabilities
2906  * @hw: pointer to the hardware structure
2907  * @func_caps: pointer to function capabilities structure
2908  *
2909  * Read the function capabilities and extract them into the func_caps structure
2910  * for later use.
2911  */
2912 static enum ice_status
2913 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2914 {
2915 	enum ice_status status;
2916 	u32 cap_count = 0;
2917 	void *cbuf;
2918 
2919 	cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
2920 	if (!cbuf)
2921 		return ICE_ERR_NO_MEMORY;
2922 
2923 	/* Although the driver doesn't know the number of capabilities the
2924 	 * device will return, we can simply send a 4KB buffer, the maximum
2925 	 * possible size that firmware can return.
2926 	 */
2927 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2928 
2929 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2930 				  ice_aqc_opc_list_func_caps, NULL);
2931 	if (!status)
2932 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2933 	ice_free(hw, cbuf);
2934 
2935 	return status;
2936 }
2937 
2938 /**
2939  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2940  * @hw: pointer to the hardware structure
2941  */
2942 void ice_set_safe_mode_caps(struct ice_hw *hw)
2943 {
2944 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2945 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2946 	struct ice_hw_common_caps cached_caps;
2947 	u32 num_funcs;
2948 
2949 	/* cache some func_caps values that should be restored after memset */
2950 	cached_caps = func_caps->common_cap;
2951 
2952 	/* unset func capabilities */
2953 	memset(func_caps, 0, sizeof(*func_caps));
2954 
2955 #define ICE_RESTORE_FUNC_CAP(name) \
2956 	func_caps->common_cap.name = cached_caps.name
2957 
2958 	/* restore cached values */
2959 	ICE_RESTORE_FUNC_CAP(valid_functions);
2960 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2961 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2962 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2963 	ICE_RESTORE_FUNC_CAP(max_mtu);
2964 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2965 
2966 	/* one Tx and one Rx queue in safe mode */
2967 	func_caps->common_cap.num_rxq = 1;
2968 	func_caps->common_cap.num_txq = 1;
2969 
2970 	/* two MSIX vectors, one for traffic and one for misc causes */
2971 	func_caps->common_cap.num_msix_vectors = 2;
2972 	func_caps->guar_num_vsi = 1;
2973 
2974 	/* cache some dev_caps values that should be restored after memset */
2975 	cached_caps = dev_caps->common_cap;
2976 	num_funcs = dev_caps->num_funcs;
2977 
2978 	/* unset dev capabilities */
2979 	memset(dev_caps, 0, sizeof(*dev_caps));
2980 
2981 #define ICE_RESTORE_DEV_CAP(name) \
2982 	dev_caps->common_cap.name = cached_caps.name
2983 
2984 	/* restore cached values */
2985 	ICE_RESTORE_DEV_CAP(valid_functions);
2986 	ICE_RESTORE_DEV_CAP(txq_first_id);
2987 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2988 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2989 	ICE_RESTORE_DEV_CAP(max_mtu);
2990 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2991 	dev_caps->num_funcs = num_funcs;
2992 
2993 	/* one Tx and one Rx queue per function in safe mode */
2994 	dev_caps->common_cap.num_rxq = num_funcs;
2995 	dev_caps->common_cap.num_txq = num_funcs;
2996 
2997 	/* two MSIX vectors per function */
2998 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2999 }
3000 
3001 /**
3002  * ice_get_caps - get info about the HW
3003  * @hw: pointer to the hardware structure
3004  */
3005 enum ice_status ice_get_caps(struct ice_hw *hw)
3006 {
3007 	enum ice_status status;
3008 
3009 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
3010 	if (status)
3011 		return status;
3012 
3013 	return ice_discover_func_caps(hw, &hw->func_caps);
3014 }
3015 
3016 /**
3017  * ice_aq_manage_mac_write - manage MAC address write command
3018  * @hw: pointer to the HW struct
3019  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3020  * @flags: flags to control write behavior
3021  * @cd: pointer to command details structure or NULL
3022  *
3023  * This function is used to write MAC address to the NVM (0x0108).
3024  */
3025 enum ice_status
3026 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3027 			struct ice_sq_cd *cd)
3028 {
3029 	struct ice_aqc_manage_mac_write *cmd;
3030 	struct ice_aq_desc desc;
3031 
3032 	cmd = &desc.params.mac_write;
3033 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3034 
3035 	cmd->flags = flags;
3036 	ice_memcpy(cmd->mac_addr, mac_addr, ETH_ALEN, ICE_NONDMA_TO_NONDMA);
3037 
3038 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3039 }
3040 
3041 /**
3042  * ice_aq_clear_pxe_mode
3043  * @hw: pointer to the HW struct
3044  *
3045  * Tell the firmware that the driver is taking over from PXE (0x0110).
3046  */
3047 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
3048 {
3049 	struct ice_aq_desc desc;
3050 
3051 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3052 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3053 
3054 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3055 }
3056 
3057 /**
3058  * ice_clear_pxe_mode - clear pxe operations mode
3059  * @hw: pointer to the HW struct
3060  *
3061  * Make sure all PXE mode settings are cleared, including things
3062  * like descriptor fetch/write-back mode.
3063  */
3064 void ice_clear_pxe_mode(struct ice_hw *hw)
3065 {
3066 	if (ice_check_sq_alive(hw, &hw->adminq))
3067 		ice_aq_clear_pxe_mode(hw);
3068 }
3069 
3070 /**
3071  * ice_aq_set_port_params - set physical port parameters
3072  * @pi: pointer to the port info struct
3073  * @bad_frame_vsi: defines the VSI to which bad frames are forwarded
3074  * @save_bad_pac: if set packets with errors are forwarded to the bad frames VSI
3075  * @pad_short_pac: if set transmit packets smaller than 60 bytes are padded
3076  * @double_vlan: if set double VLAN is enabled
3077  * @cd: pointer to command details structure or NULL
3078  *
3079  * Set Physical port parameters (0x0203)
3080  */
3081 enum ice_status
3082 ice_aq_set_port_params(struct ice_port_info *pi, u16 bad_frame_vsi,
3083 		       bool save_bad_pac, bool pad_short_pac, bool double_vlan,
3084 		       struct ice_sq_cd *cd)
3085 {
3086 	struct ice_aqc_set_port_params *cmd;
3087 	struct ice_hw *hw = pi->hw;
3088 	struct ice_aq_desc desc;
3089 	u16 cmd_flags = 0;
3090 
3091 	cmd = &desc.params.set_port_params;
3092 
3093 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3094 	cmd->bad_frame_vsi = CPU_TO_LE16(bad_frame_vsi);
3095 	if (save_bad_pac)
3096 		cmd_flags |= ICE_AQC_SET_P_PARAMS_SAVE_BAD_PACKETS;
3097 	if (pad_short_pac)
3098 		cmd_flags |= ICE_AQC_SET_P_PARAMS_PAD_SHORT_PACKETS;
3099 	if (double_vlan)
3100 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3101 	cmd->cmd_flags = CPU_TO_LE16(cmd_flags);
3102 
3103 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3104 }
3105 
3106 /**
3107  * ice_is_100m_speed_supported
3108  * @hw: pointer to the HW struct
3109  *
3110  * returns true if 100M speeds are supported by the device,
3111  * false otherwise.
3112  */
3113 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3114 {
3115 	switch (hw->device_id) {
3116 	case ICE_DEV_ID_E822C_SGMII:
3117 	case ICE_DEV_ID_E822L_SGMII:
3118 	case ICE_DEV_ID_E823L_1GBE:
3119 	case ICE_DEV_ID_E823C_SGMII:
3120 		return true;
3121 	default:
3122 		return false;
3123 	}
3124 }
3125 
3126 /**
3127  * ice_get_link_speed_based_on_phy_type - returns link speed
3128  * @phy_type_low: lower part of phy_type
3129  * @phy_type_high: higher part of phy_type
3130  *
3131  * This helper function will convert an entry in PHY type structure
3132  * [phy_type_low, phy_type_high] to its corresponding link speed.
3133  * Note: In the structure of [phy_type_low, phy_type_high], there should
3134  * be one bit set, as this function will convert one PHY type to its
3135  * speed.
3136  * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3137  * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3138  */
3139 static u16
3140 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3141 {
3142 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3143 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3144 
3145 	switch (phy_type_low) {
3146 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3147 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3148 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3149 		break;
3150 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3151 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3152 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3153 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3154 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3155 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3156 		break;
3157 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3158 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3159 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3160 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3161 		break;
3162 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3163 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3164 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3165 		break;
3166 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3167 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3168 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3169 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3170 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3171 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3172 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3173 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3174 		break;
3175 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3176 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3177 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3178 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3179 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3180 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3181 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3182 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3183 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3184 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3185 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3186 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3187 		break;
3188 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3189 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3190 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3191 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3192 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3193 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3194 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3195 		break;
3196 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3197 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3198 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3199 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3200 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3201 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3202 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3203 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3204 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3205 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3206 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3207 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3208 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3209 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3210 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3211 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3212 		break;
3213 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3214 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3215 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3216 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3217 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3218 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3219 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3220 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3221 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3222 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3223 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3224 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3225 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3226 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3227 		break;
3228 	default:
3229 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3230 		break;
3231 	}
3232 
3233 	switch (phy_type_high) {
3234 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3235 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3236 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3237 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3238 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3239 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3240 		break;
3241 	default:
3242 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3243 		break;
3244 	}
3245 
3246 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3247 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3248 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3249 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3250 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3251 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3252 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3253 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3254 		return speed_phy_type_low;
3255 	else
3256 		return speed_phy_type_high;
3257 }
3258 
3259 /**
3260  * ice_update_phy_type
3261  * @phy_type_low: pointer to the lower part of phy_type
3262  * @phy_type_high: pointer to the higher part of phy_type
3263  * @link_speeds_bitmap: targeted link speeds bitmap
3264  *
3265  * Note: For the link_speeds_bitmap structure, you can check it at
3266  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3267  * link_speeds_bitmap include multiple speeds.
3268  *
3269  * Each entry in this [phy_type_low, phy_type_high] structure will
3270  * present a certain link speed. This helper function will turn on bits
3271  * in [phy_type_low, phy_type_high] structure based on the value of
3272  * link_speeds_bitmap input parameter.
3273  */
3274 void
3275 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3276 		    u16 link_speeds_bitmap)
3277 {
3278 	u64 pt_high;
3279 	u64 pt_low;
3280 	int index;
3281 	u16 speed;
3282 
3283 	/* We first check with low part of phy_type */
3284 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3285 		pt_low = BIT_ULL(index);
3286 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3287 
3288 		if (link_speeds_bitmap & speed)
3289 			*phy_type_low |= BIT_ULL(index);
3290 	}
3291 
3292 	/* We then check with high part of phy_type */
3293 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3294 		pt_high = BIT_ULL(index);
3295 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3296 
3297 		if (link_speeds_bitmap & speed)
3298 			*phy_type_high |= BIT_ULL(index);
3299 	}
3300 }
3301 
3302 /**
3303  * ice_aq_set_phy_cfg
3304  * @hw: pointer to the HW struct
3305  * @pi: port info structure of the interested logical port
3306  * @cfg: structure with PHY configuration data to be set
3307  * @cd: pointer to command details structure or NULL
3308  *
3309  * Set the various PHY configuration parameters supported on the Port.
3310  * One or more of the Set PHY config parameters may be ignored in an MFP
3311  * mode as the PF may not have the privilege to set some of the PHY Config
3312  * parameters. This status will be indicated by the command response (0x0601).
3313  */
3314 enum ice_status
3315 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3316 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3317 {
3318 	struct ice_aq_desc desc;
3319 	enum ice_status status;
3320 
3321 	if (!cfg)
3322 		return ICE_ERR_PARAM;
3323 
3324 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3325 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3326 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3327 			  cfg->caps);
3328 
3329 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3330 	}
3331 
3332 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3333 	desc.params.set_phy.lport_num = pi->lport;
3334 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3335 
3336 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3337 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3338 		  (unsigned long long)LE64_TO_CPU(cfg->phy_type_low));
3339 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3340 		  (unsigned long long)LE64_TO_CPU(cfg->phy_type_high));
3341 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3342 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3343 		  cfg->low_power_ctrl_an);
3344 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3345 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3346 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3347 		  cfg->link_fec_opt);
3348 
3349 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3350 
3351 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3352 		status = ICE_SUCCESS;
3353 
3354 	if (!status)
3355 		pi->phy.curr_user_phy_cfg = *cfg;
3356 
3357 	return status;
3358 }
3359 
3360 /**
3361  * ice_update_link_info - update status of the HW network link
3362  * @pi: port info structure of the interested logical port
3363  */
3364 enum ice_status ice_update_link_info(struct ice_port_info *pi)
3365 {
3366 	struct ice_link_status *li;
3367 	enum ice_status status;
3368 
3369 	if (!pi)
3370 		return ICE_ERR_PARAM;
3371 
3372 	li = &pi->phy.link_info;
3373 
3374 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3375 	if (status)
3376 		return status;
3377 
3378 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3379 		struct ice_aqc_get_phy_caps_data *pcaps;
3380 		struct ice_hw *hw;
3381 
3382 		hw = pi->hw;
3383 		pcaps = (struct ice_aqc_get_phy_caps_data *)
3384 			ice_malloc(hw, sizeof(*pcaps));
3385 		if (!pcaps)
3386 			return ICE_ERR_NO_MEMORY;
3387 
3388 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3389 					     pcaps, NULL);
3390 
3391 		if (status == ICE_SUCCESS)
3392 			ice_memcpy(li->module_type, &pcaps->module_type,
3393 				   sizeof(li->module_type),
3394 				   ICE_NONDMA_TO_NONDMA);
3395 
3396 		ice_free(hw, pcaps);
3397 	}
3398 
3399 	return status;
3400 }
3401 
3402 /**
3403  * ice_cache_phy_user_req
3404  * @pi: port information structure
3405  * @cache_data: PHY logging data
3406  * @cache_mode: PHY logging mode
3407  *
3408  * Log the user request on (FC, FEC, SPEED) for later user.
3409  */
3410 static void
3411 ice_cache_phy_user_req(struct ice_port_info *pi,
3412 		       struct ice_phy_cache_mode_data cache_data,
3413 		       enum ice_phy_cache_mode cache_mode)
3414 {
3415 	if (!pi)
3416 		return;
3417 
3418 	switch (cache_mode) {
3419 	case ICE_FC_MODE:
3420 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3421 		break;
3422 	case ICE_SPEED_MODE:
3423 		pi->phy.curr_user_speed_req =
3424 			cache_data.data.curr_user_speed_req;
3425 		break;
3426 	case ICE_FEC_MODE:
3427 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3428 		break;
3429 	default:
3430 		break;
3431 	}
3432 }
3433 
3434 /**
3435  * ice_caps_to_fc_mode
3436  * @caps: PHY capabilities
3437  *
3438  * Convert PHY FC capabilities to ice FC mode
3439  */
3440 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3441 {
3442 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3443 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3444 		return ICE_FC_FULL;
3445 
3446 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3447 		return ICE_FC_TX_PAUSE;
3448 
3449 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3450 		return ICE_FC_RX_PAUSE;
3451 
3452 	return ICE_FC_NONE;
3453 }
3454 
3455 /**
3456  * ice_caps_to_fec_mode
3457  * @caps: PHY capabilities
3458  * @fec_options: Link FEC options
3459  *
3460  * Convert PHY FEC capabilities to ice FEC mode
3461  */
3462 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3463 {
3464 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC) {
3465 		if (fec_options & ICE_AQC_PHY_FEC_DIS)
3466 			return ICE_FEC_DIS_AUTO;
3467 		else
3468 			return ICE_FEC_AUTO;
3469 	}
3470 
3471 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3472 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3473 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3474 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3475 		return ICE_FEC_BASER;
3476 
3477 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3478 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3479 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3480 		return ICE_FEC_RS;
3481 
3482 	return ICE_FEC_NONE;
3483 }
3484 
3485 /**
3486  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3487  * @pi: port information structure
3488  * @cfg: PHY configuration data to set FC mode
3489  * @req_mode: FC mode to configure
3490  */
3491 static enum ice_status
3492 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3493 	       enum ice_fc_mode req_mode)
3494 {
3495 	struct ice_phy_cache_mode_data cache_data;
3496 	u8 pause_mask = 0x0;
3497 
3498 	if (!pi || !cfg)
3499 		return ICE_ERR_BAD_PTR;
3500 	switch (req_mode) {
3501 	case ICE_FC_AUTO:
3502 	{
3503 		struct ice_aqc_get_phy_caps_data *pcaps;
3504 		enum ice_status status;
3505 
3506 		pcaps = (struct ice_aqc_get_phy_caps_data *)
3507 			ice_malloc(pi->hw, sizeof(*pcaps));
3508 		if (!pcaps)
3509 			return ICE_ERR_NO_MEMORY;
3510 		/* Query the value of FC that both the NIC and attached media
3511 		 * can do.
3512 		 */
3513 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3514 					     pcaps, NULL);
3515 		if (status) {
3516 			ice_free(pi->hw, pcaps);
3517 			return status;
3518 		}
3519 
3520 		pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3521 		pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3522 
3523 		ice_free(pi->hw, pcaps);
3524 		break;
3525 	}
3526 	case ICE_FC_FULL:
3527 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3528 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3529 		break;
3530 	case ICE_FC_RX_PAUSE:
3531 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3532 		break;
3533 	case ICE_FC_TX_PAUSE:
3534 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3535 		break;
3536 	default:
3537 		break;
3538 	}
3539 
3540 	/* clear the old pause settings */
3541 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3542 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3543 
3544 	/* set the new capabilities */
3545 	cfg->caps |= pause_mask;
3546 
3547 	/* Cache user FC request */
3548 	cache_data.data.curr_user_fc_req = req_mode;
3549 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3550 
3551 	return ICE_SUCCESS;
3552 }
3553 
3554 /**
3555  * ice_set_fc
3556  * @pi: port information structure
3557  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3558  * @ena_auto_link_update: enable automatic link update
3559  *
3560  * Set the requested flow control mode.
3561  */
3562 enum ice_status
3563 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3564 {
3565 	struct ice_aqc_set_phy_cfg_data  cfg = { 0 };
3566 	struct ice_aqc_get_phy_caps_data *pcaps;
3567 	enum ice_status status;
3568 	struct ice_hw *hw;
3569 
3570 	if (!pi || !aq_failures)
3571 		return ICE_ERR_BAD_PTR;
3572 
3573 	*aq_failures = 0;
3574 	hw = pi->hw;
3575 
3576 	pcaps = (struct ice_aqc_get_phy_caps_data *)
3577 		ice_malloc(hw, sizeof(*pcaps));
3578 	if (!pcaps)
3579 		return ICE_ERR_NO_MEMORY;
3580 
3581 	/* Get the current PHY config */
3582 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3583 				     pcaps, NULL);
3584 
3585 	if (status) {
3586 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3587 		goto out;
3588 	}
3589 
3590 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3591 
3592 	/* Configure the set PHY data */
3593 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3594 	if (status) {
3595 		if (status != ICE_ERR_BAD_PTR)
3596 			*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3597 
3598 		goto out;
3599 	}
3600 
3601 	/* If the capabilities have changed, then set the new config */
3602 	if (cfg.caps != pcaps->caps) {
3603 		int retry_count, retry_max = 10;
3604 
3605 		/* Auto restart link so settings take effect */
3606 		if (ena_auto_link_update)
3607 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3608 
3609 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3610 		if (status) {
3611 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3612 			goto out;
3613 		}
3614 
3615 		/* Update the link info
3616 		 * It sometimes takes a really long time for link to
3617 		 * come back from the atomic reset. Thus, we wait a
3618 		 * little bit.
3619 		 */
3620 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3621 			status = ice_update_link_info(pi);
3622 
3623 			if (status == ICE_SUCCESS)
3624 				break;
3625 
3626 			ice_msec_delay(100, true);
3627 		}
3628 
3629 		if (status)
3630 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3631 	}
3632 
3633 out:
3634 	ice_free(hw, pcaps);
3635 	return status;
3636 }
3637 
3638 /**
3639  * ice_phy_caps_equals_cfg
3640  * @phy_caps: PHY capabilities
3641  * @phy_cfg: PHY configuration
3642  *
3643  * Helper function to determine if PHY capabilities matches PHY
3644  * configuration
3645  */
3646 bool
3647 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3648 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3649 {
3650 	u8 caps_mask, cfg_mask;
3651 
3652 	if (!phy_caps || !phy_cfg)
3653 		return false;
3654 
3655 	/* These bits are not common between capabilities and configuration.
3656 	 * Do not use them to determine equality.
3657 	 */
3658 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3659 					      ICE_AQC_PHY_EN_MOD_QUAL);
3660 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3661 
3662 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3663 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3664 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3665 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3666 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3667 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3668 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3669 		return false;
3670 
3671 	return true;
3672 }
3673 
3674 /**
3675  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3676  * @pi: port information structure
3677  * @caps: PHY ability structure to copy data from
3678  * @cfg: PHY configuration structure to copy data to
3679  *
3680  * Helper function to copy AQC PHY get ability data to PHY set configuration
3681  * data structure
3682  */
3683 void
3684 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3685 			 struct ice_aqc_get_phy_caps_data *caps,
3686 			 struct ice_aqc_set_phy_cfg_data *cfg)
3687 {
3688 	if (!pi || !caps || !cfg)
3689 		return;
3690 
3691 	ice_memset(cfg, 0, sizeof(*cfg), ICE_NONDMA_MEM);
3692 	cfg->phy_type_low = caps->phy_type_low;
3693 	cfg->phy_type_high = caps->phy_type_high;
3694 	cfg->caps = caps->caps;
3695 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3696 	cfg->eee_cap = caps->eee_cap;
3697 	cfg->eeer_value = caps->eeer_value;
3698 	cfg->link_fec_opt = caps->link_fec_options;
3699 	cfg->module_compliance_enforcement =
3700 		caps->module_compliance_enforcement;
3701 }
3702 
3703 /**
3704  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3705  * @pi: port information structure
3706  * @cfg: PHY configuration data to set FEC mode
3707  * @fec: FEC mode to configure
3708  */
3709 enum ice_status
3710 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3711 		enum ice_fec_mode fec)
3712 {
3713 	struct ice_aqc_get_phy_caps_data *pcaps;
3714 	enum ice_status status = ICE_SUCCESS;
3715 	struct ice_hw *hw;
3716 
3717 	if (!pi || !cfg)
3718 		return ICE_ERR_BAD_PTR;
3719 
3720 	hw = pi->hw;
3721 
3722 	pcaps = (struct ice_aqc_get_phy_caps_data *)
3723 		ice_malloc(hw, sizeof(*pcaps));
3724 	if (!pcaps)
3725 		return ICE_ERR_NO_MEMORY;
3726 
3727 	status = ice_aq_get_phy_caps(pi, false,
3728 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3729 				      ICE_AQC_REPORT_DFLT_CFG :
3730 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3731 
3732 	if (status)
3733 		goto out;
3734 
3735 	cfg->caps |= (pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC);
3736 	cfg->link_fec_opt = pcaps->link_fec_options;
3737 
3738 	switch (fec) {
3739 	case ICE_FEC_BASER:
3740 		/* Clear RS bits, and AND BASE-R ability
3741 		 * bits and OR request bits.
3742 		 */
3743 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3744 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3745 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3746 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3747 		break;
3748 	case ICE_FEC_RS:
3749 		/* Clear BASE-R bits, and AND RS ability
3750 		 * bits and OR request bits.
3751 		 */
3752 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3753 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3754 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3755 		break;
3756 	case ICE_FEC_NONE:
3757 		/* Clear all FEC option bits. */
3758 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3759 		break;
3760 	case ICE_FEC_DIS_AUTO:
3761 		/* Set No FEC and auto FEC */
3762 		if (!ice_fw_supports_fec_dis_auto(hw)) {
3763 			status = ICE_ERR_NOT_SUPPORTED;
3764 			goto out;
3765 		}
3766 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_DIS;
3767 		/* fall-through */
3768 	case ICE_FEC_AUTO:
3769 		/* AND auto FEC bit, and all caps bits. */
3770 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3771 		cfg->link_fec_opt |= pcaps->link_fec_options;
3772 		break;
3773 	default:
3774 		status = ICE_ERR_PARAM;
3775 		break;
3776 	}
3777 
3778 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw) &&
3779 	    !ice_fw_supports_report_dflt_cfg(pi->hw)) {
3780 		struct ice_link_default_override_tlv tlv;
3781 
3782 		if (ice_get_link_default_override(&tlv, pi))
3783 			goto out;
3784 
3785 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3786 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3787 			cfg->link_fec_opt = tlv.fec_options;
3788 	}
3789 
3790 out:
3791 	ice_free(hw, pcaps);
3792 
3793 	return status;
3794 }
3795 
3796 /**
3797  * ice_get_link_status - get status of the HW network link
3798  * @pi: port information structure
3799  * @link_up: pointer to bool (true/false = linkup/linkdown)
3800  *
3801  * Variable link_up is true if link is up, false if link is down.
3802  * The variable link_up is invalid if status is non zero. As a
3803  * result of this call, link status reporting becomes enabled
3804  */
3805 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3806 {
3807 	struct ice_phy_info *phy_info;
3808 	enum ice_status status = ICE_SUCCESS;
3809 
3810 	if (!pi || !link_up)
3811 		return ICE_ERR_PARAM;
3812 
3813 	phy_info = &pi->phy;
3814 
3815 	if (phy_info->get_link_info) {
3816 		status = ice_update_link_info(pi);
3817 
3818 		if (status)
3819 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3820 				  status);
3821 	}
3822 
3823 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3824 
3825 	return status;
3826 }
3827 
3828 /**
3829  * ice_aq_set_link_restart_an
3830  * @pi: pointer to the port information structure
3831  * @ena_link: if true: enable link, if false: disable link
3832  * @cd: pointer to command details structure or NULL
3833  *
3834  * Sets up the link and restarts the Auto-Negotiation over the link.
3835  */
3836 enum ice_status
3837 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3838 			   struct ice_sq_cd *cd)
3839 {
3840 	enum ice_status status = ICE_ERR_AQ_ERROR;
3841 	struct ice_aqc_restart_an *cmd;
3842 	struct ice_aq_desc desc;
3843 
3844 	cmd = &desc.params.restart_an;
3845 
3846 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3847 
3848 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3849 	cmd->lport_num = pi->lport;
3850 	if (ena_link)
3851 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3852 	else
3853 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3854 
3855 	status = ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3856 	if (status)
3857 		return status;
3858 
3859 	if (ena_link)
3860 		pi->phy.curr_user_phy_cfg.caps |= ICE_AQC_PHY_EN_LINK;
3861 	else
3862 		pi->phy.curr_user_phy_cfg.caps &= ~ICE_AQC_PHY_EN_LINK;
3863 
3864 	return ICE_SUCCESS;
3865 }
3866 
3867 /**
3868  * ice_aq_set_event_mask
3869  * @hw: pointer to the HW struct
3870  * @port_num: port number of the physical function
3871  * @mask: event mask to be set
3872  * @cd: pointer to command details structure or NULL
3873  *
3874  * Set event mask (0x0613)
3875  */
3876 enum ice_status
3877 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3878 		      struct ice_sq_cd *cd)
3879 {
3880 	struct ice_aqc_set_event_mask *cmd;
3881 	struct ice_aq_desc desc;
3882 
3883 	cmd = &desc.params.set_event_mask;
3884 
3885 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3886 
3887 	cmd->lport_num = port_num;
3888 
3889 	cmd->event_mask = CPU_TO_LE16(mask);
3890 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3891 }
3892 
3893 /**
3894  * ice_aq_set_mac_loopback
3895  * @hw: pointer to the HW struct
3896  * @ena_lpbk: Enable or Disable loopback
3897  * @cd: pointer to command details structure or NULL
3898  *
3899  * Enable/disable loopback on a given port
3900  */
3901 enum ice_status
3902 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3903 {
3904 	struct ice_aqc_set_mac_lb *cmd;
3905 	struct ice_aq_desc desc;
3906 
3907 	cmd = &desc.params.set_mac_lb;
3908 
3909 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3910 	if (ena_lpbk)
3911 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3912 
3913 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3914 }
3915 
3916 /**
3917  * ice_aq_set_port_id_led
3918  * @pi: pointer to the port information
3919  * @is_orig_mode: is this LED set to original mode (by the net-list)
3920  * @cd: pointer to command details structure or NULL
3921  *
3922  * Set LED value for the given port (0x06e9)
3923  */
3924 enum ice_status
3925 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3926 		       struct ice_sq_cd *cd)
3927 {
3928 	struct ice_aqc_set_port_id_led *cmd;
3929 	struct ice_hw *hw = pi->hw;
3930 	struct ice_aq_desc desc;
3931 
3932 	cmd = &desc.params.set_port_id_led;
3933 
3934 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3935 
3936 	if (is_orig_mode)
3937 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3938 	else
3939 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3940 
3941 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3942 }
3943 
3944 /**
3945  * ice_aq_sff_eeprom
3946  * @hw: pointer to the HW struct
3947  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3948  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3949  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3950  * @page: QSFP page
3951  * @set_page: set or ignore the page
3952  * @data: pointer to data buffer to be read/written to the I2C device.
3953  * @length: 1-16 for read, 1 for write.
3954  * @write: 0 read, 1 for write.
3955  * @cd: pointer to command details structure or NULL
3956  *
3957  * Read/Write SFF EEPROM (0x06EE)
3958  */
3959 enum ice_status
3960 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3961 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3962 		  bool write, struct ice_sq_cd *cd)
3963 {
3964 	struct ice_aqc_sff_eeprom *cmd;
3965 	struct ice_aq_desc desc;
3966 	enum ice_status status;
3967 
3968 	if (!data || (mem_addr & 0xff00))
3969 		return ICE_ERR_PARAM;
3970 
3971 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3972 	cmd = &desc.params.read_write_sff_param;
3973 	desc.flags = CPU_TO_LE16(ICE_AQ_FLAG_RD);
3974 	cmd->lport_num = (u8)(lport & 0xff);
3975 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3976 	cmd->i2c_bus_addr = CPU_TO_LE16(((bus_addr >> 1) &
3977 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3978 					((set_page <<
3979 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3980 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3981 	cmd->i2c_mem_addr = CPU_TO_LE16(mem_addr & 0xff);
3982 	cmd->eeprom_page = CPU_TO_LE16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3983 	if (write)
3984 		cmd->i2c_bus_addr |= CPU_TO_LE16(ICE_AQC_SFF_IS_WRITE);
3985 
3986 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3987 	return status;
3988 }
3989 
3990 /**
3991  * ice_aq_prog_topo_dev_nvm
3992  * @hw: pointer to the hardware structure
3993  * @topo_params: pointer to structure storing topology parameters for a device
3994  * @cd: pointer to command details structure or NULL
3995  *
3996  * Program Topology Device NVM (0x06F2)
3997  *
3998  */
3999 enum ice_status
4000 ice_aq_prog_topo_dev_nvm(struct ice_hw *hw,
4001 			 struct ice_aqc_link_topo_params *topo_params,
4002 			 struct ice_sq_cd *cd)
4003 {
4004 	struct ice_aqc_prog_topo_dev_nvm *cmd;
4005 	struct ice_aq_desc desc;
4006 
4007 	cmd = &desc.params.prog_topo_dev_nvm;
4008 
4009 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_prog_topo_dev_nvm);
4010 
4011 	ice_memcpy(&cmd->topo_params, topo_params, sizeof(*topo_params),
4012 		   ICE_NONDMA_TO_NONDMA);
4013 
4014 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4015 }
4016 
4017 /**
4018  * ice_aq_read_topo_dev_nvm
4019  * @hw: pointer to the hardware structure
4020  * @topo_params: pointer to structure storing topology parameters for a device
4021  * @start_address: byte offset in the topology device NVM
4022  * @data: pointer to data buffer
4023  * @data_size: number of bytes to be read from the topology device NVM
4024  * @cd: pointer to command details structure or NULL
4025  * Read Topology Device NVM (0x06F3)
4026  *
4027  */
4028 enum ice_status
4029 ice_aq_read_topo_dev_nvm(struct ice_hw *hw,
4030 			 struct ice_aqc_link_topo_params *topo_params,
4031 			 u32 start_address, u8 *data, u8 data_size,
4032 			 struct ice_sq_cd *cd)
4033 {
4034 	struct ice_aqc_read_topo_dev_nvm *cmd;
4035 	struct ice_aq_desc desc;
4036 	enum ice_status status;
4037 
4038 	if (!data || data_size == 0 ||
4039 	    data_size > ICE_AQC_READ_TOPO_DEV_NVM_DATA_READ_SIZE)
4040 		return ICE_ERR_PARAM;
4041 
4042 	cmd = &desc.params.read_topo_dev_nvm;
4043 
4044 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_topo_dev_nvm);
4045 
4046 	desc.datalen = CPU_TO_LE16(data_size);
4047 	ice_memcpy(&cmd->topo_params, topo_params, sizeof(*topo_params),
4048 		   ICE_NONDMA_TO_NONDMA);
4049 	cmd->start_address = CPU_TO_LE32(start_address);
4050 
4051 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4052 	if (status)
4053 		return status;
4054 
4055 	ice_memcpy(data, cmd->data_read, data_size, ICE_NONDMA_TO_NONDMA);
4056 
4057 	return ICE_SUCCESS;
4058 }
4059 
4060 static u16 ice_lut_type_to_size(u16 lut_type)
4061 {
4062 	switch (lut_type) {
4063 	case ICE_LUT_VSI:
4064 		return ICE_LUT_VSI_SIZE;
4065 	case ICE_LUT_GLOBAL:
4066 		return ICE_LUT_GLOBAL_SIZE;
4067 	case ICE_LUT_PF:
4068 		return ICE_LUT_PF_SIZE;
4069 	case ICE_LUT_PF_SMALL:
4070 		return ICE_LUT_PF_SMALL_SIZE;
4071 	default:
4072 		return 0;
4073 	}
4074 }
4075 
4076 static u16 ice_lut_size_to_flag(u16 lut_size)
4077 {
4078 	u16 f = 0;
4079 
4080 	switch (lut_size) {
4081 	case ICE_LUT_GLOBAL_SIZE:
4082 		f = ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG;
4083 		break;
4084 	case ICE_LUT_PF_SIZE:
4085 		f = ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG;
4086 		break;
4087 	default:
4088 		break;
4089 	}
4090 	return f << ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S;
4091 }
4092 
4093 int ice_lut_size_to_type(int lut_size)
4094 {
4095 	switch (lut_size) {
4096 	case ICE_LUT_VSI_SIZE:
4097 		return ICE_LUT_VSI;
4098 	case ICE_LUT_GLOBAL_SIZE:
4099 		return ICE_LUT_GLOBAL;
4100 	case ICE_LUT_PF_SIZE:
4101 		return ICE_LUT_PF;
4102 	case ICE_LUT_PF_SMALL_SIZE:
4103 		return ICE_LUT_PF_SMALL;
4104 	default:
4105 		return -1;
4106 	}
4107 }
4108 
4109 /**
4110  * __ice_aq_get_set_rss_lut
4111  * @hw: pointer to the hardware structure
4112  * @params: RSS LUT parameters
4113  * @set: set true to set the table, false to get the table
4114  *
4115  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4116  */
4117 static enum ice_status
4118 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
4119 {
4120 	u16 flags, vsi_id, lut_type, lut_size, glob_lut_idx = 0, vsi_handle;
4121 	struct ice_aqc_get_set_rss_lut *cmd_resp;
4122 	struct ice_aq_desc desc;
4123 	enum ice_status status;
4124 	u8 *lut;
4125 
4126 	if (!params)
4127 		return ICE_ERR_PARAM;
4128 
4129 	vsi_handle = params->vsi_handle;
4130 	lut = params->lut;
4131 	lut_size = ice_lut_type_to_size(params->lut_type);
4132 	lut_type = params->lut_type & ICE_LUT_TYPE_MASK;
4133 	cmd_resp = &desc.params.get_set_rss_lut;
4134 	if (lut_type == ICE_LUT_GLOBAL)
4135 		glob_lut_idx = params->global_lut_id;
4136 
4137 	if (!lut || !lut_size || !ice_is_vsi_valid(hw, vsi_handle))
4138 		return ICE_ERR_PARAM;
4139 
4140 	if (lut_size > params->lut_size)
4141 		return ICE_ERR_INVAL_SIZE;
4142 
4143 	if (set && lut_size != params->lut_size)
4144 		return ICE_ERR_PARAM;
4145 
4146 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4147 
4148 	if (set) {
4149 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
4150 		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4151 	} else {
4152 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
4153 	}
4154 
4155 	cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
4156 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
4157 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
4158 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
4159 
4160 	flags = ice_lut_size_to_flag(lut_size) |
4161 		 ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
4162 		  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M) |
4163 		 ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
4164 		  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
4165 
4166 	cmd_resp->flags = CPU_TO_LE16(flags);
4167 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4168 	params->lut_size = LE16_TO_CPU(desc.datalen);
4169 	return status;
4170 }
4171 
4172 /**
4173  * ice_aq_get_rss_lut
4174  * @hw: pointer to the hardware structure
4175  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4176  *
4177  * get the RSS lookup table, PF or VSI type
4178  */
4179 enum ice_status
4180 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4181 {
4182 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4183 }
4184 
4185 /**
4186  * ice_aq_set_rss_lut
4187  * @hw: pointer to the hardware structure
4188  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4189  *
4190  * set the RSS lookup table, PF or VSI type
4191  */
4192 enum ice_status
4193 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4194 {
4195 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4196 }
4197 
4198 /**
4199  * __ice_aq_get_set_rss_key
4200  * @hw: pointer to the HW struct
4201  * @vsi_id: VSI FW index
4202  * @key: pointer to key info struct
4203  * @set: set true to set the key, false to get the key
4204  *
4205  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4206  */
4207 static enum
4208 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4209 				    struct ice_aqc_get_set_rss_keys *key,
4210 				    bool set)
4211 {
4212 	struct ice_aqc_get_set_rss_key *cmd_resp;
4213 	u16 key_size = sizeof(*key);
4214 	struct ice_aq_desc desc;
4215 
4216 	cmd_resp = &desc.params.get_set_rss_key;
4217 
4218 	if (set) {
4219 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4220 		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4221 	} else {
4222 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4223 	}
4224 
4225 	cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
4226 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
4227 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
4228 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
4229 
4230 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4231 }
4232 
4233 /**
4234  * ice_aq_get_rss_key
4235  * @hw: pointer to the HW struct
4236  * @vsi_handle: software VSI handle
4237  * @key: pointer to key info struct
4238  *
4239  * get the RSS key per VSI
4240  */
4241 enum ice_status
4242 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4243 		   struct ice_aqc_get_set_rss_keys *key)
4244 {
4245 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4246 		return ICE_ERR_PARAM;
4247 
4248 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4249 					key, false);
4250 }
4251 
4252 /**
4253  * ice_aq_set_rss_key
4254  * @hw: pointer to the HW struct
4255  * @vsi_handle: software VSI handle
4256  * @keys: pointer to key info struct
4257  *
4258  * set the RSS key per VSI
4259  */
4260 enum ice_status
4261 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4262 		   struct ice_aqc_get_set_rss_keys *keys)
4263 {
4264 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4265 		return ICE_ERR_PARAM;
4266 
4267 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4268 					keys, true);
4269 }
4270 
4271 /**
4272  * ice_aq_add_lan_txq
4273  * @hw: pointer to the hardware structure
4274  * @num_qgrps: Number of added queue groups
4275  * @qg_list: list of queue groups to be added
4276  * @buf_size: size of buffer for indirect command
4277  * @cd: pointer to command details structure or NULL
4278  *
4279  * Add Tx LAN queue (0x0C30)
4280  *
4281  * NOTE:
4282  * Prior to calling add Tx LAN queue:
4283  * Initialize the following as part of the Tx queue context:
4284  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4285  * Cache profile and Packet shaper profile.
4286  *
4287  * After add Tx LAN queue AQ command is completed:
4288  * Interrupts should be associated with specific queues,
4289  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4290  * flow.
4291  */
4292 enum ice_status
4293 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4294 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4295 		   struct ice_sq_cd *cd)
4296 {
4297 	struct ice_aqc_add_tx_qgrp *list;
4298 	struct ice_aqc_add_txqs *cmd;
4299 	struct ice_aq_desc desc;
4300 	u16 i, sum_size = 0;
4301 
4302 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
4303 
4304 	cmd = &desc.params.add_txqs;
4305 
4306 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4307 
4308 	if (!qg_list)
4309 		return ICE_ERR_PARAM;
4310 
4311 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4312 		return ICE_ERR_PARAM;
4313 
4314 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4315 		sum_size += ice_struct_size(list, txqs, list->num_txqs);
4316 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4317 						      list->num_txqs);
4318 	}
4319 
4320 	if (buf_size != sum_size)
4321 		return ICE_ERR_PARAM;
4322 
4323 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4324 
4325 	cmd->num_qgrps = num_qgrps;
4326 
4327 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4328 }
4329 
4330 /**
4331  * ice_aq_dis_lan_txq
4332  * @hw: pointer to the hardware structure
4333  * @num_qgrps: number of groups in the list
4334  * @qg_list: the list of groups to disable
4335  * @buf_size: the total size of the qg_list buffer in bytes
4336  * @rst_src: if called due to reset, specifies the reset source
4337  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4338  * @cd: pointer to command details structure or NULL
4339  *
4340  * Disable LAN Tx queue (0x0C31)
4341  */
4342 static enum ice_status
4343 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4344 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4345 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4346 		   struct ice_sq_cd *cd)
4347 {
4348 	struct ice_aqc_dis_txq_item *item;
4349 	struct ice_aqc_dis_txqs *cmd;
4350 	struct ice_aq_desc desc;
4351 	enum ice_status status;
4352 	u16 i, sz = 0;
4353 
4354 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
4355 	cmd = &desc.params.dis_txqs;
4356 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4357 
4358 	/* qg_list can be NULL only in VM/VF reset flow */
4359 	if (!qg_list && !rst_src)
4360 		return ICE_ERR_PARAM;
4361 
4362 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4363 		return ICE_ERR_PARAM;
4364 
4365 	cmd->num_entries = num_qgrps;
4366 
4367 	cmd->vmvf_and_timeout = CPU_TO_LE16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
4368 					    ICE_AQC_Q_DIS_TIMEOUT_M);
4369 
4370 	switch (rst_src) {
4371 	case ICE_VM_RESET:
4372 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4373 		cmd->vmvf_and_timeout |=
4374 			CPU_TO_LE16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
4375 		break;
4376 	case ICE_VF_RESET:
4377 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4378 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4379 		cmd->vmvf_and_timeout |=
4380 			CPU_TO_LE16((vmvf_num + hw->func_caps.vf_base_id) &
4381 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
4382 		break;
4383 	case ICE_NO_RESET:
4384 	default:
4385 		break;
4386 	}
4387 
4388 	/* flush pipe on time out */
4389 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4390 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4391 	if (!qg_list)
4392 		goto do_aq;
4393 
4394 	/* set RD bit to indicate that command buffer is provided by the driver
4395 	 * and it needs to be read by the firmware
4396 	 */
4397 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4398 
4399 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4400 		u16 item_size = ice_struct_size(item, q_id, item->num_qs);
4401 
4402 		/* If the num of queues is even, add 2 bytes of padding */
4403 		if ((item->num_qs % 2) == 0)
4404 			item_size += 2;
4405 
4406 		sz += item_size;
4407 
4408 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4409 	}
4410 
4411 	if (buf_size != sz)
4412 		return ICE_ERR_PARAM;
4413 
4414 do_aq:
4415 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4416 	if (status) {
4417 		if (!qg_list)
4418 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4419 				  vmvf_num, hw->adminq.sq_last_status);
4420 		else
4421 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4422 				  LE16_TO_CPU(qg_list[0].q_id[0]),
4423 				  hw->adminq.sq_last_status);
4424 	}
4425 	return status;
4426 }
4427 
4428 /**
4429  * ice_aq_move_recfg_lan_txq
4430  * @hw: pointer to the hardware structure
4431  * @num_qs: number of queues to move/reconfigure
4432  * @is_move: true if this operation involves node movement
4433  * @is_tc_change: true if this operation involves a TC change
4434  * @subseq_call: true if this operation is a subsequent call
4435  * @flush_pipe: on timeout, true to flush pipe, false to return EAGAIN
4436  * @timeout: timeout in units of 100 usec (valid values 0-50)
4437  * @blocked_cgds: out param, bitmap of CGDs that timed out if returning EAGAIN
4438  * @buf: struct containing src/dest TEID and per-queue info
4439  * @buf_size: size of buffer for indirect command
4440  * @txqs_moved: out param, number of queues successfully moved
4441  * @cd: pointer to command details structure or NULL
4442  *
4443  * Move / Reconfigure Tx LAN queues (0x0C32)
4444  */
4445 enum ice_status
4446 ice_aq_move_recfg_lan_txq(struct ice_hw *hw, u8 num_qs, bool is_move,
4447 			  bool is_tc_change, bool subseq_call, bool flush_pipe,
4448 			  u8 timeout, u32 *blocked_cgds,
4449 			  struct ice_aqc_move_txqs_data *buf, u16 buf_size,
4450 			  u8 *txqs_moved, struct ice_sq_cd *cd)
4451 {
4452 	struct ice_aqc_move_txqs *cmd;
4453 	struct ice_aq_desc desc;
4454 	enum ice_status status;
4455 
4456 	cmd = &desc.params.move_txqs;
4457 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_move_recfg_txqs);
4458 
4459 #define ICE_LAN_TXQ_MOVE_TIMEOUT_MAX 50
4460 	if (timeout > ICE_LAN_TXQ_MOVE_TIMEOUT_MAX)
4461 		return ICE_ERR_PARAM;
4462 
4463 	if (is_tc_change && !flush_pipe && !blocked_cgds)
4464 		return ICE_ERR_PARAM;
4465 
4466 	if (!is_move && !is_tc_change)
4467 		return ICE_ERR_PARAM;
4468 
4469 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4470 
4471 	if (is_move)
4472 		cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_MOVE;
4473 
4474 	if (is_tc_change)
4475 		cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_TC_CHANGE;
4476 
4477 	if (subseq_call)
4478 		cmd->cmd_type |= ICE_AQC_Q_CMD_SUBSEQ_CALL;
4479 
4480 	if (flush_pipe)
4481 		cmd->cmd_type |= ICE_AQC_Q_CMD_FLUSH_PIPE;
4482 
4483 	cmd->num_qs = num_qs;
4484 	cmd->timeout = ((timeout << ICE_AQC_Q_CMD_TIMEOUT_S) &
4485 			ICE_AQC_Q_CMD_TIMEOUT_M);
4486 
4487 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4488 
4489 	if (!status && txqs_moved)
4490 		*txqs_moved = cmd->num_qs;
4491 
4492 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EAGAIN &&
4493 	    is_tc_change && !flush_pipe)
4494 		*blocked_cgds = LE32_TO_CPU(cmd->blocked_cgds);
4495 
4496 	return status;
4497 }
4498 
4499 /**
4500  * ice_aq_add_rdma_qsets
4501  * @hw: pointer to the hardware structure
4502  * @num_qset_grps: Number of RDMA Qset groups
4503  * @qset_list: list of qset groups to be added
4504  * @buf_size: size of buffer for indirect command
4505  * @cd: pointer to command details structure or NULL
4506  *
4507  * Add Tx RDMA Qsets (0x0C33)
4508  */
4509 enum ice_status
4510 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4511 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4512 		      u16 buf_size, struct ice_sq_cd *cd)
4513 {
4514 	struct ice_aqc_add_rdma_qset_data *list;
4515 	struct ice_aqc_add_rdma_qset *cmd;
4516 	struct ice_aq_desc desc;
4517 	u16 i, sum_size = 0;
4518 
4519 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
4520 
4521 	cmd = &desc.params.add_rdma_qset;
4522 
4523 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4524 
4525 	if (!qset_list)
4526 		return ICE_ERR_PARAM;
4527 
4528 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4529 		return ICE_ERR_PARAM;
4530 
4531 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4532 		u16 num_qsets = LE16_TO_CPU(list->num_qsets);
4533 
4534 		sum_size += ice_struct_size(list, rdma_qsets, num_qsets);
4535 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4536 							     num_qsets);
4537 	}
4538 
4539 	if (buf_size != sum_size)
4540 		return ICE_ERR_PARAM;
4541 
4542 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4543 
4544 	cmd->num_qset_grps = num_qset_grps;
4545 
4546 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4547 }
4548 
4549 /* End of FW Admin Queue command wrappers */
4550 
4551 /**
4552  * ice_write_byte - write a byte to a packed context structure
4553  * @src_ctx:  the context structure to read from
4554  * @dest_ctx: the context to be written to
4555  * @ce_info:  a description of the struct to be filled
4556  */
4557 static void
4558 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4559 {
4560 	u8 src_byte, dest_byte, mask;
4561 	u8 *from, *dest;
4562 	u16 shift_width;
4563 
4564 	/* copy from the next struct field */
4565 	from = src_ctx + ce_info->offset;
4566 
4567 	/* prepare the bits and mask */
4568 	shift_width = ce_info->lsb % 8;
4569 	mask = (u8)(BIT(ce_info->width) - 1);
4570 
4571 	src_byte = *from;
4572 	src_byte &= mask;
4573 
4574 	/* shift to correct alignment */
4575 	mask <<= shift_width;
4576 	src_byte <<= shift_width;
4577 
4578 	/* get the current bits from the target bit string */
4579 	dest = dest_ctx + (ce_info->lsb / 8);
4580 
4581 	ice_memcpy(&dest_byte, dest, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
4582 
4583 	dest_byte &= ~mask;	/* get the bits not changing */
4584 	dest_byte |= src_byte;	/* add in the new bits */
4585 
4586 	/* put it all back */
4587 	ice_memcpy(dest, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
4588 }
4589 
4590 /**
4591  * ice_write_word - write a word to a packed context structure
4592  * @src_ctx:  the context structure to read from
4593  * @dest_ctx: the context to be written to
4594  * @ce_info:  a description of the struct to be filled
4595  */
4596 static void
4597 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4598 {
4599 	u16 src_word, mask;
4600 	__le16 dest_word;
4601 	u8 *from, *dest;
4602 	u16 shift_width;
4603 
4604 	/* copy from the next struct field */
4605 	from = src_ctx + ce_info->offset;
4606 
4607 	/* prepare the bits and mask */
4608 	shift_width = ce_info->lsb % 8;
4609 	mask = BIT(ce_info->width) - 1;
4610 
4611 	/* don't swizzle the bits until after the mask because the mask bits
4612 	 * will be in a different bit position on big endian machines
4613 	 */
4614 	src_word = *(u16 *)from;
4615 	src_word &= mask;
4616 
4617 	/* shift to correct alignment */
4618 	mask <<= shift_width;
4619 	src_word <<= shift_width;
4620 
4621 	/* get the current bits from the target bit string */
4622 	dest = dest_ctx + (ce_info->lsb / 8);
4623 
4624 	ice_memcpy(&dest_word, dest, sizeof(dest_word), ICE_DMA_TO_NONDMA);
4625 
4626 	dest_word &= ~(CPU_TO_LE16(mask));	/* get the bits not changing */
4627 	dest_word |= CPU_TO_LE16(src_word);	/* add in the new bits */
4628 
4629 	/* put it all back */
4630 	ice_memcpy(dest, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
4631 }
4632 
4633 /**
4634  * ice_write_dword - write a dword to a packed context structure
4635  * @src_ctx:  the context structure to read from
4636  * @dest_ctx: the context to be written to
4637  * @ce_info:  a description of the struct to be filled
4638  */
4639 static void
4640 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4641 {
4642 	u32 src_dword, mask;
4643 	__le32 dest_dword;
4644 	u8 *from, *dest;
4645 	u16 shift_width;
4646 
4647 	/* copy from the next struct field */
4648 	from = src_ctx + ce_info->offset;
4649 
4650 	/* prepare the bits and mask */
4651 	shift_width = ce_info->lsb % 8;
4652 
4653 	/* if the field width is exactly 32 on an x86 machine, then the shift
4654 	 * operation will not work because the SHL instructions count is masked
4655 	 * to 5 bits so the shift will do nothing
4656 	 */
4657 	if (ce_info->width < 32)
4658 		mask = BIT(ce_info->width) - 1;
4659 	else
4660 		mask = (u32)~0;
4661 
4662 	/* don't swizzle the bits until after the mask because the mask bits
4663 	 * will be in a different bit position on big endian machines
4664 	 */
4665 	src_dword = *(u32 *)from;
4666 	src_dword &= mask;
4667 
4668 	/* shift to correct alignment */
4669 	mask <<= shift_width;
4670 	src_dword <<= shift_width;
4671 
4672 	/* get the current bits from the target bit string */
4673 	dest = dest_ctx + (ce_info->lsb / 8);
4674 
4675 	ice_memcpy(&dest_dword, dest, sizeof(dest_dword), ICE_DMA_TO_NONDMA);
4676 
4677 	dest_dword &= ~(CPU_TO_LE32(mask));	/* get the bits not changing */
4678 	dest_dword |= CPU_TO_LE32(src_dword);	/* add in the new bits */
4679 
4680 	/* put it all back */
4681 	ice_memcpy(dest, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
4682 }
4683 
4684 /**
4685  * ice_write_qword - write a qword to a packed context structure
4686  * @src_ctx:  the context structure to read from
4687  * @dest_ctx: the context to be written to
4688  * @ce_info:  a description of the struct to be filled
4689  */
4690 static void
4691 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4692 {
4693 	u64 src_qword, mask;
4694 	__le64 dest_qword;
4695 	u8 *from, *dest;
4696 	u16 shift_width;
4697 
4698 	/* copy from the next struct field */
4699 	from = src_ctx + ce_info->offset;
4700 
4701 	/* prepare the bits and mask */
4702 	shift_width = ce_info->lsb % 8;
4703 
4704 	/* if the field width is exactly 64 on an x86 machine, then the shift
4705 	 * operation will not work because the SHL instructions count is masked
4706 	 * to 6 bits so the shift will do nothing
4707 	 */
4708 	if (ce_info->width < 64)
4709 		mask = BIT_ULL(ce_info->width) - 1;
4710 	else
4711 		mask = (u64)~0;
4712 
4713 	/* don't swizzle the bits until after the mask because the mask bits
4714 	 * will be in a different bit position on big endian machines
4715 	 */
4716 	src_qword = *(u64 *)from;
4717 	src_qword &= mask;
4718 
4719 	/* shift to correct alignment */
4720 	mask <<= shift_width;
4721 	src_qword <<= shift_width;
4722 
4723 	/* get the current bits from the target bit string */
4724 	dest = dest_ctx + (ce_info->lsb / 8);
4725 
4726 	ice_memcpy(&dest_qword, dest, sizeof(dest_qword), ICE_DMA_TO_NONDMA);
4727 
4728 	dest_qword &= ~(CPU_TO_LE64(mask));	/* get the bits not changing */
4729 	dest_qword |= CPU_TO_LE64(src_qword);	/* add in the new bits */
4730 
4731 	/* put it all back */
4732 	ice_memcpy(dest, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
4733 }
4734 
4735 /**
4736  * ice_set_ctx - set context bits in packed structure
4737  * @hw: pointer to the hardware structure
4738  * @src_ctx:  pointer to a generic non-packed context structure
4739  * @dest_ctx: pointer to memory for the packed structure
4740  * @ce_info:  a description of the structure to be transformed
4741  */
4742 enum ice_status
4743 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4744 	    const struct ice_ctx_ele *ce_info)
4745 {
4746 	int f;
4747 
4748 	for (f = 0; ce_info[f].width; f++) {
4749 		/* We have to deal with each element of the FW response
4750 		 * using the correct size so that we are correct regardless
4751 		 * of the endianness of the machine.
4752 		 */
4753 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4754 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4755 				  f, ce_info[f].width, ce_info[f].size_of);
4756 			continue;
4757 		}
4758 		switch (ce_info[f].size_of) {
4759 		case sizeof(u8):
4760 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4761 			break;
4762 		case sizeof(u16):
4763 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4764 			break;
4765 		case sizeof(u32):
4766 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4767 			break;
4768 		case sizeof(u64):
4769 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4770 			break;
4771 		default:
4772 			return ICE_ERR_INVAL_SIZE;
4773 		}
4774 	}
4775 
4776 	return ICE_SUCCESS;
4777 }
4778 
4779 /**
4780  * ice_aq_get_internal_data
4781  * @hw: pointer to the hardware structure
4782  * @cluster_id: specific cluster to dump
4783  * @table_id: table ID within cluster
4784  * @start: index of line in the block to read
4785  * @buf: dump buffer
4786  * @buf_size: dump buffer size
4787  * @ret_buf_size: return buffer size (returned by FW)
4788  * @ret_next_cluster: next cluster to read (returned by FW)
4789  * @ret_next_table: next block to read (returned by FW)
4790  * @ret_next_index: next index to read (returned by FW)
4791  * @cd: pointer to command details structure
4792  *
4793  * Get internal FW/HW data (0xFF08) for debug purposes.
4794  */
4795 enum ice_status
4796 ice_aq_get_internal_data(struct ice_hw *hw, u16 cluster_id, u16 table_id,
4797 			 u32 start, void *buf, u16 buf_size, u16 *ret_buf_size,
4798 			 u16 *ret_next_cluster, u16 *ret_next_table,
4799 			 u32 *ret_next_index, struct ice_sq_cd *cd)
4800 {
4801 	struct ice_aqc_debug_dump_internals *cmd;
4802 	struct ice_aq_desc desc;
4803 	enum ice_status status;
4804 
4805 	cmd = &desc.params.debug_dump;
4806 
4807 	if (buf_size == 0 || !buf)
4808 		return ICE_ERR_PARAM;
4809 
4810 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_debug_dump_internals);
4811 
4812 	cmd->cluster_id = CPU_TO_LE16(cluster_id);
4813 	cmd->table_id = CPU_TO_LE16(table_id);
4814 	cmd->idx = CPU_TO_LE32(start);
4815 
4816 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4817 
4818 	if (!status) {
4819 		if (ret_buf_size)
4820 			*ret_buf_size = LE16_TO_CPU(desc.datalen);
4821 		if (ret_next_cluster)
4822 			*ret_next_cluster = LE16_TO_CPU(cmd->cluster_id);
4823 		if (ret_next_table)
4824 			*ret_next_table = LE16_TO_CPU(cmd->table_id);
4825 		if (ret_next_index)
4826 			*ret_next_index = LE32_TO_CPU(cmd->idx);
4827 	}
4828 
4829 	return status;
4830 }
4831 
4832 /**
4833  * ice_read_byte - read context byte into struct
4834  * @src_ctx:  the context structure to read from
4835  * @dest_ctx: the context to be written to
4836  * @ce_info:  a description of the struct to be filled
4837  */
4838 static void
4839 ice_read_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4840 {
4841 	u8 dest_byte, mask;
4842 	u8 *src, *target;
4843 	u16 shift_width;
4844 
4845 	/* prepare the bits and mask */
4846 	shift_width = ce_info->lsb % 8;
4847 	mask = (u8)(BIT(ce_info->width) - 1);
4848 
4849 	/* shift to correct alignment */
4850 	mask <<= shift_width;
4851 
4852 	/* get the current bits from the src bit string */
4853 	src = src_ctx + (ce_info->lsb / 8);
4854 
4855 	ice_memcpy(&dest_byte, src, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
4856 
4857 	dest_byte &= mask;
4858 
4859 	dest_byte >>= shift_width;
4860 
4861 	/* get the address from the struct field */
4862 	target = dest_ctx + ce_info->offset;
4863 
4864 	/* put it back in the struct */
4865 	ice_memcpy(target, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
4866 }
4867 
4868 /**
4869  * ice_read_word - read context word into struct
4870  * @src_ctx:  the context structure to read from
4871  * @dest_ctx: the context to be written to
4872  * @ce_info:  a description of the struct to be filled
4873  */
4874 static void
4875 ice_read_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4876 {
4877 	u16 dest_word, mask;
4878 	u8 *src, *target;
4879 	__le16 src_word;
4880 	u16 shift_width;
4881 
4882 	/* prepare the bits and mask */
4883 	shift_width = ce_info->lsb % 8;
4884 	mask = BIT(ce_info->width) - 1;
4885 
4886 	/* shift to correct alignment */
4887 	mask <<= shift_width;
4888 
4889 	/* get the current bits from the src bit string */
4890 	src = src_ctx + (ce_info->lsb / 8);
4891 
4892 	ice_memcpy(&src_word, src, sizeof(src_word), ICE_DMA_TO_NONDMA);
4893 
4894 	/* the data in the memory is stored as little endian so mask it
4895 	 * correctly
4896 	 */
4897 	src_word &= CPU_TO_LE16(mask);
4898 
4899 	/* get the data back into host order before shifting */
4900 	dest_word = LE16_TO_CPU(src_word);
4901 
4902 	dest_word >>= shift_width;
4903 
4904 	/* get the address from the struct field */
4905 	target = dest_ctx + ce_info->offset;
4906 
4907 	/* put it back in the struct */
4908 	ice_memcpy(target, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
4909 }
4910 
4911 /**
4912  * ice_read_dword - read context dword into struct
4913  * @src_ctx:  the context structure to read from
4914  * @dest_ctx: the context to be written to
4915  * @ce_info:  a description of the struct to be filled
4916  */
4917 static void
4918 ice_read_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4919 {
4920 	u32 dest_dword, mask;
4921 	__le32 src_dword;
4922 	u8 *src, *target;
4923 	u16 shift_width;
4924 
4925 	/* prepare the bits and mask */
4926 	shift_width = ce_info->lsb % 8;
4927 
4928 	/* if the field width is exactly 32 on an x86 machine, then the shift
4929 	 * operation will not work because the SHL instructions count is masked
4930 	 * to 5 bits so the shift will do nothing
4931 	 */
4932 	if (ce_info->width < 32)
4933 		mask = BIT(ce_info->width) - 1;
4934 	else
4935 		mask = (u32)~0;
4936 
4937 	/* shift to correct alignment */
4938 	mask <<= shift_width;
4939 
4940 	/* get the current bits from the src bit string */
4941 	src = src_ctx + (ce_info->lsb / 8);
4942 
4943 	ice_memcpy(&src_dword, src, sizeof(src_dword), ICE_DMA_TO_NONDMA);
4944 
4945 	/* the data in the memory is stored as little endian so mask it
4946 	 * correctly
4947 	 */
4948 	src_dword &= CPU_TO_LE32(mask);
4949 
4950 	/* get the data back into host order before shifting */
4951 	dest_dword = LE32_TO_CPU(src_dword);
4952 
4953 	dest_dword >>= shift_width;
4954 
4955 	/* get the address from the struct field */
4956 	target = dest_ctx + ce_info->offset;
4957 
4958 	/* put it back in the struct */
4959 	ice_memcpy(target, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
4960 }
4961 
4962 /**
4963  * ice_read_qword - read context qword into struct
4964  * @src_ctx:  the context structure to read from
4965  * @dest_ctx: the context to be written to
4966  * @ce_info:  a description of the struct to be filled
4967  */
4968 static void
4969 ice_read_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4970 {
4971 	u64 dest_qword, mask;
4972 	__le64 src_qword;
4973 	u8 *src, *target;
4974 	u16 shift_width;
4975 
4976 	/* prepare the bits and mask */
4977 	shift_width = ce_info->lsb % 8;
4978 
4979 	/* if the field width is exactly 64 on an x86 machine, then the shift
4980 	 * operation will not work because the SHL instructions count is masked
4981 	 * to 6 bits so the shift will do nothing
4982 	 */
4983 	if (ce_info->width < 64)
4984 		mask = BIT_ULL(ce_info->width) - 1;
4985 	else
4986 		mask = (u64)~0;
4987 
4988 	/* shift to correct alignment */
4989 	mask <<= shift_width;
4990 
4991 	/* get the current bits from the src bit string */
4992 	src = src_ctx + (ce_info->lsb / 8);
4993 
4994 	ice_memcpy(&src_qword, src, sizeof(src_qword), ICE_DMA_TO_NONDMA);
4995 
4996 	/* the data in the memory is stored as little endian so mask it
4997 	 * correctly
4998 	 */
4999 	src_qword &= CPU_TO_LE64(mask);
5000 
5001 	/* get the data back into host order before shifting */
5002 	dest_qword = LE64_TO_CPU(src_qword);
5003 
5004 	dest_qword >>= shift_width;
5005 
5006 	/* get the address from the struct field */
5007 	target = dest_ctx + ce_info->offset;
5008 
5009 	/* put it back in the struct */
5010 	ice_memcpy(target, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
5011 }
5012 
5013 /**
5014  * ice_get_ctx - extract context bits from a packed structure
5015  * @src_ctx:  pointer to a generic packed context structure
5016  * @dest_ctx: pointer to a generic non-packed context structure
5017  * @ce_info:  a description of the structure to be read from
5018  */
5019 enum ice_status
5020 ice_get_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
5021 {
5022 	int f;
5023 
5024 	for (f = 0; ce_info[f].width; f++) {
5025 		switch (ce_info[f].size_of) {
5026 		case 1:
5027 			ice_read_byte(src_ctx, dest_ctx, &ce_info[f]);
5028 			break;
5029 		case 2:
5030 			ice_read_word(src_ctx, dest_ctx, &ce_info[f]);
5031 			break;
5032 		case 4:
5033 			ice_read_dword(src_ctx, dest_ctx, &ce_info[f]);
5034 			break;
5035 		case 8:
5036 			ice_read_qword(src_ctx, dest_ctx, &ce_info[f]);
5037 			break;
5038 		default:
5039 			/* nothing to do, just keep going */
5040 			break;
5041 		}
5042 	}
5043 
5044 	return ICE_SUCCESS;
5045 }
5046 
5047 /**
5048  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
5049  * @hw: pointer to the HW struct
5050  * @vsi_handle: software VSI handle
5051  * @tc: TC number
5052  * @q_handle: software queue handle
5053  */
5054 struct ice_q_ctx *
5055 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
5056 {
5057 	struct ice_vsi_ctx *vsi;
5058 	struct ice_q_ctx *q_ctx;
5059 
5060 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
5061 	if (!vsi)
5062 		return NULL;
5063 	if (q_handle >= vsi->num_lan_q_entries[tc])
5064 		return NULL;
5065 	if (!vsi->lan_q_ctx[tc])
5066 		return NULL;
5067 	q_ctx = vsi->lan_q_ctx[tc];
5068 	return &q_ctx[q_handle];
5069 }
5070 
5071 /**
5072  * ice_ena_vsi_txq
5073  * @pi: port information structure
5074  * @vsi_handle: software VSI handle
5075  * @tc: TC number
5076  * @q_handle: software queue handle
5077  * @num_qgrps: Number of added queue groups
5078  * @buf: list of queue groups to be added
5079  * @buf_size: size of buffer for indirect command
5080  * @cd: pointer to command details structure or NULL
5081  *
5082  * This function adds one LAN queue
5083  */
5084 enum ice_status
5085 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
5086 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
5087 		struct ice_sq_cd *cd)
5088 {
5089 	struct ice_aqc_txsched_elem_data node = { 0 };
5090 	struct ice_sched_node *parent;
5091 	struct ice_q_ctx *q_ctx;
5092 	enum ice_status status;
5093 	struct ice_hw *hw;
5094 
5095 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5096 		return ICE_ERR_CFG;
5097 
5098 	if (num_qgrps > 1 || buf->num_txqs > 1)
5099 		return ICE_ERR_MAX_LIMIT;
5100 
5101 	hw = pi->hw;
5102 
5103 	if (!ice_is_vsi_valid(hw, vsi_handle))
5104 		return ICE_ERR_PARAM;
5105 
5106 	ice_acquire_lock(&pi->sched_lock);
5107 
5108 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
5109 	if (!q_ctx) {
5110 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
5111 			  q_handle);
5112 		status = ICE_ERR_PARAM;
5113 		goto ena_txq_exit;
5114 	}
5115 
5116 	/* find a parent node */
5117 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5118 					    ICE_SCHED_NODE_OWNER_LAN);
5119 	if (!parent) {
5120 		status = ICE_ERR_PARAM;
5121 		goto ena_txq_exit;
5122 	}
5123 
5124 	buf->parent_teid = parent->info.node_teid;
5125 	node.parent_teid = parent->info.node_teid;
5126 	/* Mark that the values in the "generic" section as valid. The default
5127 	 * value in the "generic" section is zero. This means that :
5128 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
5129 	 * - 0 priority among siblings, indicated by Bit 1-3.
5130 	 * - WFQ, indicated by Bit 4.
5131 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
5132 	 * Bit 5-6.
5133 	 * - Bit 7 is reserved.
5134 	 * Without setting the generic section as valid in valid_sections, the
5135 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
5136 	 */
5137 	buf->txqs[0].info.valid_sections =
5138 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5139 		ICE_AQC_ELEM_VALID_EIR;
5140 	buf->txqs[0].info.generic = 0;
5141 	buf->txqs[0].info.cir_bw.bw_profile_idx =
5142 		CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5143 	buf->txqs[0].info.cir_bw.bw_alloc =
5144 		CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5145 	buf->txqs[0].info.eir_bw.bw_profile_idx =
5146 		CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5147 	buf->txqs[0].info.eir_bw.bw_alloc =
5148 		CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5149 
5150 	/* add the LAN queue */
5151 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
5152 	if (status != ICE_SUCCESS) {
5153 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
5154 			  LE16_TO_CPU(buf->txqs[0].txq_id),
5155 			  hw->adminq.sq_last_status);
5156 		goto ena_txq_exit;
5157 	}
5158 
5159 	node.node_teid = buf->txqs[0].q_teid;
5160 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5161 	q_ctx->q_handle = q_handle;
5162 	q_ctx->q_teid = LE32_TO_CPU(node.node_teid);
5163 
5164 	/* add a leaf node into scheduler tree queue layer */
5165 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
5166 	if (!status)
5167 		status = ice_sched_replay_q_bw(pi, q_ctx);
5168 
5169 ena_txq_exit:
5170 	ice_release_lock(&pi->sched_lock);
5171 	return status;
5172 }
5173 
5174 /**
5175  * ice_dis_vsi_txq
5176  * @pi: port information structure
5177  * @vsi_handle: software VSI handle
5178  * @tc: TC number
5179  * @num_queues: number of queues
5180  * @q_handles: pointer to software queue handle array
5181  * @q_ids: pointer to the q_id array
5182  * @q_teids: pointer to queue node teids
5183  * @rst_src: if called due to reset, specifies the reset source
5184  * @vmvf_num: the relative VM or VF number that is undergoing the reset
5185  * @cd: pointer to command details structure or NULL
5186  *
5187  * This function removes queues and their corresponding nodes in SW DB
5188  */
5189 enum ice_status
5190 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
5191 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
5192 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
5193 		struct ice_sq_cd *cd)
5194 {
5195 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
5196 	struct ice_aqc_dis_txq_item *qg_list;
5197 	struct ice_q_ctx *q_ctx;
5198 	struct ice_hw *hw;
5199 	u16 i, buf_size;
5200 
5201 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5202 		return ICE_ERR_CFG;
5203 
5204 	hw = pi->hw;
5205 
5206 	if (!num_queues) {
5207 		/* if queue is disabled already yet the disable queue command
5208 		 * has to be sent to complete the VF reset, then call
5209 		 * ice_aq_dis_lan_txq without any queue information
5210 		 */
5211 		if (rst_src)
5212 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
5213 						  vmvf_num, NULL);
5214 		return ICE_ERR_CFG;
5215 	}
5216 
5217 	buf_size = ice_struct_size(qg_list, q_id, 1);
5218 	qg_list = (struct ice_aqc_dis_txq_item *)ice_malloc(hw, buf_size);
5219 	if (!qg_list)
5220 		return ICE_ERR_NO_MEMORY;
5221 
5222 	ice_acquire_lock(&pi->sched_lock);
5223 
5224 	for (i = 0; i < num_queues; i++) {
5225 		struct ice_sched_node *node;
5226 
5227 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
5228 		if (!node)
5229 			continue;
5230 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
5231 		if (!q_ctx) {
5232 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
5233 				  q_handles[i]);
5234 			continue;
5235 		}
5236 		if (q_ctx->q_handle != q_handles[i]) {
5237 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
5238 				  q_ctx->q_handle, q_handles[i]);
5239 			continue;
5240 		}
5241 		qg_list->parent_teid = node->info.parent_teid;
5242 		qg_list->num_qs = 1;
5243 		qg_list->q_id[0] = CPU_TO_LE16(q_ids[i]);
5244 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
5245 					    vmvf_num, cd);
5246 
5247 		if (status != ICE_SUCCESS)
5248 			break;
5249 		ice_free_sched_node(pi, node);
5250 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
5251 	}
5252 	ice_release_lock(&pi->sched_lock);
5253 	ice_free(hw, qg_list);
5254 	return status;
5255 }
5256 
5257 /**
5258  * ice_cfg_vsi_qs - configure the new/existing VSI queues
5259  * @pi: port information structure
5260  * @vsi_handle: software VSI handle
5261  * @tc_bitmap: TC bitmap
5262  * @maxqs: max queues array per TC
5263  * @owner: LAN or RDMA
5264  *
5265  * This function adds/updates the VSI queues per TC.
5266  */
5267 static enum ice_status
5268 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5269 	       u16 *maxqs, u8 owner)
5270 {
5271 	enum ice_status status = ICE_SUCCESS;
5272 	u8 i;
5273 
5274 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5275 		return ICE_ERR_CFG;
5276 
5277 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5278 		return ICE_ERR_PARAM;
5279 
5280 	ice_acquire_lock(&pi->sched_lock);
5281 
5282 	ice_for_each_traffic_class(i) {
5283 		/* configuration is possible only if TC node is present */
5284 		if (!ice_sched_get_tc_node(pi, i))
5285 			continue;
5286 
5287 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5288 					   ice_is_tc_ena(tc_bitmap, i));
5289 		if (status)
5290 			break;
5291 	}
5292 
5293 	ice_release_lock(&pi->sched_lock);
5294 	return status;
5295 }
5296 
5297 /**
5298  * ice_cfg_vsi_lan - configure VSI LAN queues
5299  * @pi: port information structure
5300  * @vsi_handle: software VSI handle
5301  * @tc_bitmap: TC bitmap
5302  * @max_lanqs: max LAN queues array per TC
5303  *
5304  * This function adds/updates the VSI LAN queues per TC.
5305  */
5306 enum ice_status
5307 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5308 		u16 *max_lanqs)
5309 {
5310 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5311 			      ICE_SCHED_NODE_OWNER_LAN);
5312 }
5313 
5314 /**
5315  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5316  * @pi: port information structure
5317  * @vsi_handle: software VSI handle
5318  * @tc_bitmap: TC bitmap
5319  * @max_rdmaqs: max RDMA queues array per TC
5320  *
5321  * This function adds/updates the VSI RDMA queues per TC.
5322  */
5323 enum ice_status
5324 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5325 		 u16 *max_rdmaqs)
5326 {
5327 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5328 			      ICE_SCHED_NODE_OWNER_RDMA);
5329 }
5330 
5331 /**
5332  * ice_ena_vsi_rdma_qset
5333  * @pi: port information structure
5334  * @vsi_handle: software VSI handle
5335  * @tc: TC number
5336  * @rdma_qset: pointer to RDMA qset
5337  * @num_qsets: number of RDMA qsets
5338  * @qset_teid: pointer to qset node teids
5339  *
5340  * This function adds RDMA qset
5341  */
5342 enum ice_status
5343 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5344 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5345 {
5346 	struct ice_aqc_txsched_elem_data node = { 0 };
5347 	struct ice_aqc_add_rdma_qset_data *buf;
5348 	struct ice_sched_node *parent;
5349 	enum ice_status status;
5350 	struct ice_hw *hw;
5351 	u16 i, buf_size;
5352 
5353 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5354 		return ICE_ERR_CFG;
5355 	hw = pi->hw;
5356 
5357 	if (!ice_is_vsi_valid(hw, vsi_handle))
5358 		return ICE_ERR_PARAM;
5359 
5360 	buf_size = ice_struct_size(buf, rdma_qsets, num_qsets);
5361 	buf = (struct ice_aqc_add_rdma_qset_data *)ice_malloc(hw, buf_size);
5362 	if (!buf)
5363 		return ICE_ERR_NO_MEMORY;
5364 	ice_acquire_lock(&pi->sched_lock);
5365 
5366 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5367 					    ICE_SCHED_NODE_OWNER_RDMA);
5368 	if (!parent) {
5369 		status = ICE_ERR_PARAM;
5370 		goto rdma_error_exit;
5371 	}
5372 	buf->parent_teid = parent->info.node_teid;
5373 	node.parent_teid = parent->info.node_teid;
5374 
5375 	buf->num_qsets = CPU_TO_LE16(num_qsets);
5376 	for (i = 0; i < num_qsets; i++) {
5377 		buf->rdma_qsets[i].tx_qset_id = CPU_TO_LE16(rdma_qset[i]);
5378 		buf->rdma_qsets[i].info.valid_sections =
5379 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5380 			ICE_AQC_ELEM_VALID_EIR;
5381 		buf->rdma_qsets[i].info.generic = 0;
5382 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5383 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5384 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5385 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5386 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5387 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5388 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5389 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5390 	}
5391 	status = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5392 	if (status != ICE_SUCCESS) {
5393 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5394 		goto rdma_error_exit;
5395 	}
5396 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5397 	for (i = 0; i < num_qsets; i++) {
5398 		node.node_teid = buf->rdma_qsets[i].qset_teid;
5399 		status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5400 					    &node, NULL);
5401 		if (status)
5402 			break;
5403 		qset_teid[i] = LE32_TO_CPU(node.node_teid);
5404 	}
5405 rdma_error_exit:
5406 	ice_release_lock(&pi->sched_lock);
5407 	ice_free(hw, buf);
5408 	return status;
5409 }
5410 
5411 /**
5412  * ice_dis_vsi_rdma_qset - free RDMA resources
5413  * @pi: port_info struct
5414  * @count: number of RDMA qsets to free
5415  * @qset_teid: TEID of qset node
5416  * @q_id: list of queue IDs being disabled
5417  */
5418 enum ice_status
5419 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5420 		      u16 *q_id)
5421 {
5422 	struct ice_aqc_dis_txq_item *qg_list;
5423 	enum ice_status status = ICE_SUCCESS;
5424 	struct ice_hw *hw;
5425 	u16 qg_size;
5426 	int i;
5427 
5428 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5429 		return ICE_ERR_CFG;
5430 
5431 	hw = pi->hw;
5432 
5433 	qg_size = ice_struct_size(qg_list, q_id, 1);
5434 	qg_list = (struct ice_aqc_dis_txq_item *)ice_malloc(hw, qg_size);
5435 	if (!qg_list)
5436 		return ICE_ERR_NO_MEMORY;
5437 
5438 	ice_acquire_lock(&pi->sched_lock);
5439 
5440 	for (i = 0; i < count; i++) {
5441 		struct ice_sched_node *node;
5442 
5443 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5444 		if (!node)
5445 			continue;
5446 
5447 		qg_list->parent_teid = node->info.parent_teid;
5448 		qg_list->num_qs = 1;
5449 		qg_list->q_id[0] =
5450 			CPU_TO_LE16(q_id[i] |
5451 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5452 
5453 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5454 					    ICE_NO_RESET, 0, NULL);
5455 		if (status)
5456 			break;
5457 
5458 		ice_free_sched_node(pi, node);
5459 	}
5460 
5461 	ice_release_lock(&pi->sched_lock);
5462 	ice_free(hw, qg_list);
5463 	return status;
5464 }
5465 
5466 /**
5467  * ice_aq_get_sensor_reading
5468  * @hw: pointer to the HW struct
5469  * @sensor: sensor type
5470  * @format: requested response format
5471  * @data: pointer to data to be read from the sensor
5472  * @cd: pointer to command details structure or NULL
5473  *
5474  * Get sensor reading (0x0632)
5475  */
5476 enum ice_status
5477 ice_aq_get_sensor_reading(struct ice_hw *hw, u8 sensor, u8 format,
5478 			  struct ice_aqc_get_sensor_reading_resp *data,
5479 			  struct ice_sq_cd *cd)
5480 {
5481 	struct ice_aqc_get_sensor_reading *cmd;
5482 	struct ice_aq_desc desc;
5483 	enum ice_status status;
5484 
5485 	if (!data)
5486 		return ICE_ERR_PARAM;
5487 
5488 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5489 	cmd = &desc.params.get_sensor_reading;
5490 	cmd->sensor = sensor;
5491 	cmd->format = format;
5492 
5493 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5494 
5495 	if (!status)
5496 		ice_memcpy(data, &desc.params.get_sensor_reading_resp,
5497 			   sizeof(*data), ICE_NONDMA_TO_NONDMA);
5498 
5499 	return status;
5500 }
5501 
5502 /**
5503  * ice_is_main_vsi - checks whether the VSI is main VSI
5504  * @hw: pointer to the HW struct
5505  * @vsi_handle: VSI handle
5506  *
5507  * Checks whether the VSI is the main VSI (the first PF VSI created on
5508  * given PF).
5509  */
5510 static bool ice_is_main_vsi(struct ice_hw *hw, u16 vsi_handle)
5511 {
5512 	return vsi_handle == ICE_MAIN_VSI_HANDLE && hw->vsi_ctx[vsi_handle];
5513 }
5514 
5515 /**
5516  * ice_replay_pre_init - replay pre initialization
5517  * @hw: pointer to the HW struct
5518  * @sw: pointer to switch info struct for which function initializes filters
5519  *
5520  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5521  */
5522 enum ice_status
5523 ice_replay_pre_init(struct ice_hw *hw, struct ice_switch_info *sw)
5524 {
5525 	enum ice_status status;
5526 	u8 i;
5527 
5528 	/* Delete old entries from replay filter list head if there is any */
5529 	ice_rm_sw_replay_rule_info(hw, sw);
5530 	/* In start of replay, move entries into replay_rules list, it
5531 	 * will allow adding rules entries back to filt_rules list,
5532 	 * which is operational list.
5533 	 */
5534 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5535 		LIST_REPLACE_INIT(&sw->recp_list[i].filt_rules,
5536 				  &sw->recp_list[i].filt_replay_rules);
5537 	ice_sched_replay_agg_vsi_preinit(hw);
5538 
5539 	status = ice_sched_replay_root_node_bw(hw->port_info);
5540 	if (status)
5541 		return status;
5542 
5543 	return ice_sched_replay_tc_node_bw(hw->port_info);
5544 }
5545 
5546 /**
5547  * ice_replay_vsi - replay VSI configuration
5548  * @hw: pointer to the HW struct
5549  * @vsi_handle: driver VSI handle
5550  *
5551  * Restore all VSI configuration after reset. It is required to call this
5552  * function with main VSI first.
5553  */
5554 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5555 {
5556 	struct ice_switch_info *sw = hw->switch_info;
5557 	struct ice_port_info *pi = hw->port_info;
5558 	enum ice_status status;
5559 
5560 	if (!ice_is_vsi_valid(hw, vsi_handle))
5561 		return ICE_ERR_PARAM;
5562 
5563 	/* Replay pre-initialization if there is any */
5564 	if (ice_is_main_vsi(hw, vsi_handle)) {
5565 		status = ice_replay_pre_init(hw, sw);
5566 		if (status)
5567 			return status;
5568 	}
5569 	/* Replay per VSI all RSS configurations */
5570 	status = ice_replay_rss_cfg(hw, vsi_handle);
5571 	if (status)
5572 		return status;
5573 	/* Replay per VSI all filters */
5574 	status = ice_replay_vsi_all_fltr(hw, pi, vsi_handle);
5575 	if (!status)
5576 		status = ice_replay_vsi_agg(hw, vsi_handle);
5577 	return status;
5578 }
5579 
5580 /**
5581  * ice_replay_post - post replay configuration cleanup
5582  * @hw: pointer to the HW struct
5583  *
5584  * Post replay cleanup.
5585  */
5586 void ice_replay_post(struct ice_hw *hw)
5587 {
5588 	/* Delete old entries from replay filter list head */
5589 	ice_rm_all_sw_replay_rule_info(hw);
5590 	ice_sched_replay_agg(hw);
5591 }
5592 
5593 /**
5594  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5595  * @hw: ptr to the hardware info
5596  * @reg: offset of 64 bit HW register to read from
5597  * @prev_stat_loaded: bool to specify if previous stats are loaded
5598  * @prev_stat: ptr to previous loaded stat value
5599  * @cur_stat: ptr to current stat value
5600  */
5601 void
5602 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5603 		  u64 *prev_stat, u64 *cur_stat)
5604 {
5605 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5606 
5607 	/* device stats are not reset at PFR, they likely will not be zeroed
5608 	 * when the driver starts. Thus, save the value from the first read
5609 	 * without adding to the statistic value so that we report stats which
5610 	 * count up from zero.
5611 	 */
5612 	if (!prev_stat_loaded) {
5613 		*prev_stat = new_data;
5614 		return;
5615 	}
5616 
5617 	/* Calculate the difference between the new and old values, and then
5618 	 * add it to the software stat value.
5619 	 */
5620 	if (new_data >= *prev_stat)
5621 		*cur_stat += new_data - *prev_stat;
5622 	else
5623 		/* to manage the potential roll-over */
5624 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5625 
5626 	/* Update the previously stored value to prepare for next read */
5627 	*prev_stat = new_data;
5628 }
5629 
5630 /**
5631  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5632  * @hw: ptr to the hardware info
5633  * @reg: offset of HW register to read from
5634  * @prev_stat_loaded: bool to specify if previous stats are loaded
5635  * @prev_stat: ptr to previous loaded stat value
5636  * @cur_stat: ptr to current stat value
5637  */
5638 void
5639 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5640 		  u64 *prev_stat, u64 *cur_stat)
5641 {
5642 	u32 new_data;
5643 
5644 	new_data = rd32(hw, reg);
5645 
5646 	/* device stats are not reset at PFR, they likely will not be zeroed
5647 	 * when the driver starts. Thus, save the value from the first read
5648 	 * without adding to the statistic value so that we report stats which
5649 	 * count up from zero.
5650 	 */
5651 	if (!prev_stat_loaded) {
5652 		*prev_stat = new_data;
5653 		return;
5654 	}
5655 
5656 	/* Calculate the difference between the new and old values, and then
5657 	 * add it to the software stat value.
5658 	 */
5659 	if (new_data >= *prev_stat)
5660 		*cur_stat += new_data - *prev_stat;
5661 	else
5662 		/* to manage the potential roll-over */
5663 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5664 
5665 	/* Update the previously stored value to prepare for next read */
5666 	*prev_stat = new_data;
5667 }
5668 
5669 /**
5670  * ice_stat_update_repc - read GLV_REPC stats from chip and update stat values
5671  * @hw: ptr to the hardware info
5672  * @vsi_handle: VSI handle
5673  * @prev_stat_loaded: bool to specify if the previous stat values are loaded
5674  * @cur_stats: ptr to current stats structure
5675  *
5676  * The GLV_REPC statistic register actually tracks two 16bit statistics, and
5677  * thus cannot be read using the normal ice_stat_update32 function.
5678  *
5679  * Read the GLV_REPC register associated with the given VSI, and update the
5680  * rx_no_desc and rx_error values in the ice_eth_stats structure.
5681  *
5682  * Because the statistics in GLV_REPC stick at 0xFFFF, the register must be
5683  * cleared each time it's read.
5684  *
5685  * Note that the GLV_RDPC register also counts the causes that would trigger
5686  * GLV_REPC. However, it does not give the finer grained detail about why the
5687  * packets are being dropped. The GLV_REPC values can be used to distinguish
5688  * whether Rx packets are dropped due to errors or due to no available
5689  * descriptors.
5690  */
5691 void
5692 ice_stat_update_repc(struct ice_hw *hw, u16 vsi_handle, bool prev_stat_loaded,
5693 		     struct ice_eth_stats *cur_stats)
5694 {
5695 	u16 vsi_num, no_desc, error_cnt;
5696 	u32 repc;
5697 
5698 	if (!ice_is_vsi_valid(hw, vsi_handle))
5699 		return;
5700 
5701 	vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
5702 
5703 	/* If we haven't loaded stats yet, just clear the current value */
5704 	if (!prev_stat_loaded) {
5705 		wr32(hw, GLV_REPC(vsi_num), 0);
5706 		return;
5707 	}
5708 
5709 	repc = rd32(hw, GLV_REPC(vsi_num));
5710 	no_desc = (repc & GLV_REPC_NO_DESC_CNT_M) >> GLV_REPC_NO_DESC_CNT_S;
5711 	error_cnt = (repc & GLV_REPC_ERROR_CNT_M) >> GLV_REPC_ERROR_CNT_S;
5712 
5713 	/* Clear the count by writing to the stats register */
5714 	wr32(hw, GLV_REPC(vsi_num), 0);
5715 
5716 	cur_stats->rx_no_desc += no_desc;
5717 	cur_stats->rx_errors += error_cnt;
5718 }
5719 
5720 /**
5721  * ice_aq_alternate_write
5722  * @hw: pointer to the hardware structure
5723  * @reg_addr0: address of first dword to be written
5724  * @reg_val0: value to be written under 'reg_addr0'
5725  * @reg_addr1: address of second dword to be written
5726  * @reg_val1: value to be written under 'reg_addr1'
5727  *
5728  * Write one or two dwords to alternate structure. Fields are indicated
5729  * by 'reg_addr0' and 'reg_addr1' register numbers.
5730  */
5731 enum ice_status
5732 ice_aq_alternate_write(struct ice_hw *hw, u32 reg_addr0, u32 reg_val0,
5733 		       u32 reg_addr1, u32 reg_val1)
5734 {
5735 	struct ice_aqc_read_write_alt_direct *cmd;
5736 	struct ice_aq_desc desc;
5737 	enum ice_status status;
5738 
5739 	cmd = &desc.params.read_write_alt_direct;
5740 
5741 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_alt_direct);
5742 	cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
5743 	cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
5744 	cmd->dword0_value = CPU_TO_LE32(reg_val0);
5745 	cmd->dword1_value = CPU_TO_LE32(reg_val1);
5746 
5747 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5748 
5749 	return status;
5750 }
5751 
5752 /**
5753  * ice_aq_alternate_read
5754  * @hw: pointer to the hardware structure
5755  * @reg_addr0: address of first dword to be read
5756  * @reg_val0: pointer for data read from 'reg_addr0'
5757  * @reg_addr1: address of second dword to be read
5758  * @reg_val1: pointer for data read from 'reg_addr1'
5759  *
5760  * Read one or two dwords from alternate structure. Fields are indicated
5761  * by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer
5762  * is not passed then only register at 'reg_addr0' is read.
5763  */
5764 enum ice_status
5765 ice_aq_alternate_read(struct ice_hw *hw, u32 reg_addr0, u32 *reg_val0,
5766 		      u32 reg_addr1, u32 *reg_val1)
5767 {
5768 	struct ice_aqc_read_write_alt_direct *cmd;
5769 	struct ice_aq_desc desc;
5770 	enum ice_status status;
5771 
5772 	cmd = &desc.params.read_write_alt_direct;
5773 
5774 	if (!reg_val0)
5775 		return ICE_ERR_PARAM;
5776 
5777 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_alt_direct);
5778 	cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
5779 	cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
5780 
5781 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5782 
5783 	if (status == ICE_SUCCESS) {
5784 		*reg_val0 = LE32_TO_CPU(cmd->dword0_value);
5785 
5786 		if (reg_val1)
5787 			*reg_val1 = LE32_TO_CPU(cmd->dword1_value);
5788 	}
5789 
5790 	return status;
5791 }
5792 
5793 /**
5794  *  ice_aq_alternate_write_done
5795  *  @hw: pointer to the HW structure.
5796  *  @bios_mode: indicates whether the command is executed by UEFI or legacy BIOS
5797  *  @reset_needed: indicates the SW should trigger GLOBAL reset
5798  *
5799  *  Indicates to the FW that alternate structures have been changed.
5800  */
5801 enum ice_status
5802 ice_aq_alternate_write_done(struct ice_hw *hw, u8 bios_mode, bool *reset_needed)
5803 {
5804 	struct ice_aqc_done_alt_write *cmd;
5805 	struct ice_aq_desc desc;
5806 	enum ice_status status;
5807 
5808 	cmd = &desc.params.done_alt_write;
5809 
5810 	if (!reset_needed)
5811 		return ICE_ERR_PARAM;
5812 
5813 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_done_alt_write);
5814 	cmd->flags = bios_mode;
5815 
5816 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5817 	if (!status)
5818 		*reset_needed = (LE16_TO_CPU(cmd->flags) &
5819 				 ICE_AQC_RESP_RESET_NEEDED) != 0;
5820 
5821 	return status;
5822 }
5823 
5824 /**
5825  *  ice_aq_alternate_clear
5826  *  @hw: pointer to the HW structure.
5827  *
5828  *  Clear the alternate structures of the port from which the function
5829  *  is called.
5830  */
5831 enum ice_status ice_aq_alternate_clear(struct ice_hw *hw)
5832 {
5833 	struct ice_aq_desc desc;
5834 	enum ice_status status;
5835 
5836 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_port_alt_write);
5837 
5838 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5839 
5840 	return status;
5841 }
5842 
5843 /**
5844  * ice_sched_query_elem - query element information from HW
5845  * @hw: pointer to the HW struct
5846  * @node_teid: node TEID to be queried
5847  * @buf: buffer to element information
5848  *
5849  * This function queries HW element information
5850  */
5851 enum ice_status
5852 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5853 		     struct ice_aqc_txsched_elem_data *buf)
5854 {
5855 	u16 buf_size, num_elem_ret = 0;
5856 	enum ice_status status;
5857 
5858 	buf_size = sizeof(*buf);
5859 	ice_memset(buf, 0, buf_size, ICE_NONDMA_MEM);
5860 	buf->node_teid = CPU_TO_LE32(node_teid);
5861 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5862 					  NULL);
5863 	if (status != ICE_SUCCESS || num_elem_ret != 1)
5864 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5865 	return status;
5866 }
5867 
5868 /**
5869  * ice_get_fw_mode - returns FW mode
5870  * @hw: pointer to the HW struct
5871  */
5872 enum ice_fw_modes ice_get_fw_mode(struct ice_hw *hw)
5873 {
5874 #define ICE_FW_MODE_DBG_M BIT(0)
5875 #define ICE_FW_MODE_REC_M BIT(1)
5876 #define ICE_FW_MODE_ROLLBACK_M BIT(2)
5877 	u32 fw_mode;
5878 
5879 	/* check the current FW mode */
5880 	fw_mode = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_MODES_M;
5881 	if (fw_mode & ICE_FW_MODE_DBG_M)
5882 		return ICE_FW_MODE_DBG;
5883 	else if (fw_mode & ICE_FW_MODE_REC_M)
5884 		return ICE_FW_MODE_REC;
5885 	else if (fw_mode & ICE_FW_MODE_ROLLBACK_M)
5886 		return ICE_FW_MODE_ROLLBACK;
5887 	else
5888 		return ICE_FW_MODE_NORMAL;
5889 }
5890 
5891 /**
5892  * ice_get_cur_lldp_persist_status
5893  * @hw: pointer to the HW struct
5894  * @lldp_status: return value of LLDP persistent status
5895  *
5896  * Get the current status of LLDP persistent
5897  */
5898 enum ice_status
5899 ice_get_cur_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
5900 {
5901 	struct ice_port_info *pi = hw->port_info;
5902 	enum ice_status ret;
5903 	__le32 raw_data;
5904 	u32 data, mask;
5905 
5906 	if (!lldp_status)
5907 		return ICE_ERR_BAD_PTR;
5908 
5909 	ret = ice_acquire_nvm(hw, ICE_RES_READ);
5910 	if (ret)
5911 		return ret;
5912 
5913 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LLDP_PRESERVED_MOD_ID,
5914 			      ICE_AQC_NVM_CUR_LLDP_PERSIST_RD_OFFSET,
5915 			      ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data,
5916 			      false, true, NULL);
5917 	if (!ret) {
5918 		data = LE32_TO_CPU(raw_data);
5919 		mask = ICE_AQC_NVM_LLDP_STATUS_M <<
5920 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5921 		data = data & mask;
5922 		*lldp_status = data >>
5923 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5924 	}
5925 
5926 	ice_release_nvm(hw);
5927 
5928 	return ret;
5929 }
5930 
5931 /**
5932  * ice_get_dflt_lldp_persist_status
5933  * @hw: pointer to the HW struct
5934  * @lldp_status: return value of LLDP persistent status
5935  *
5936  * Get the default status of LLDP persistent
5937  */
5938 enum ice_status
5939 ice_get_dflt_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
5940 {
5941 	struct ice_port_info *pi = hw->port_info;
5942 	u32 data, mask, loc_data, loc_data_tmp;
5943 	enum ice_status ret;
5944 	__le16 loc_raw_data;
5945 	__le32 raw_data;
5946 
5947 	if (!lldp_status)
5948 		return ICE_ERR_BAD_PTR;
5949 
5950 	ret = ice_acquire_nvm(hw, ICE_RES_READ);
5951 	if (ret)
5952 		return ret;
5953 
5954 	/* Read the offset of EMP_SR_PTR */
5955 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
5956 			      ICE_AQC_NVM_EMP_SR_PTR_OFFSET,
5957 			      ICE_AQC_NVM_EMP_SR_PTR_RD_LEN,
5958 			      &loc_raw_data, false, true, NULL);
5959 	if (ret)
5960 		goto exit;
5961 
5962 	loc_data = LE16_TO_CPU(loc_raw_data);
5963 	if (loc_data & ICE_AQC_NVM_EMP_SR_PTR_TYPE_M) {
5964 		loc_data &= ICE_AQC_NVM_EMP_SR_PTR_M;
5965 		loc_data *= ICE_AQC_NVM_SECTOR_UNIT;
5966 	} else {
5967 		loc_data *= ICE_AQC_NVM_WORD_UNIT;
5968 	}
5969 
5970 	/* Read the offset of LLDP configuration pointer */
5971 	loc_data += ICE_AQC_NVM_LLDP_CFG_PTR_OFFSET;
5972 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
5973 			      ICE_AQC_NVM_LLDP_CFG_PTR_RD_LEN, &loc_raw_data,
5974 			      false, true, NULL);
5975 	if (ret)
5976 		goto exit;
5977 
5978 	loc_data_tmp = LE16_TO_CPU(loc_raw_data);
5979 	loc_data_tmp *= ICE_AQC_NVM_WORD_UNIT;
5980 	loc_data += loc_data_tmp;
5981 
5982 	/* We need to skip LLDP configuration section length (2 bytes) */
5983 	loc_data += ICE_AQC_NVM_LLDP_CFG_HEADER_LEN;
5984 
5985 	/* Read the LLDP Default Configure */
5986 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
5987 			      ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data, false,
5988 			      true, NULL);
5989 	if (!ret) {
5990 		data = LE32_TO_CPU(raw_data);
5991 		mask = ICE_AQC_NVM_LLDP_STATUS_M <<
5992 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5993 		data = data & mask;
5994 		*lldp_status = data >>
5995 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5996 	}
5997 
5998 exit:
5999 	ice_release_nvm(hw);
6000 
6001 	return ret;
6002 }
6003 
6004 /**
6005  * ice_aq_read_i2c
6006  * @hw: pointer to the hw struct
6007  * @topo_addr: topology address for a device to communicate with
6008  * @bus_addr: 7-bit I2C bus address
6009  * @addr: I2C memory address (I2C offset) with up to 16 bits
6010  * @params: I2C parameters: bit [7] - Repeated start, bits [6:5] data offset size,
6011  *			    bit [4] - I2C address type, bits [3:0] - data size to read (0-16 bytes)
6012  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
6013  * @cd: pointer to command details structure or NULL
6014  *
6015  * Read I2C (0x06E2)
6016  */
6017 enum ice_status
6018 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
6019 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
6020 		struct ice_sq_cd *cd)
6021 {
6022 	struct ice_aq_desc desc = { 0 };
6023 	struct ice_aqc_i2c *cmd;
6024 	enum ice_status status;
6025 	u8 data_size;
6026 
6027 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
6028 	cmd = &desc.params.read_write_i2c;
6029 
6030 	if (!data)
6031 		return ICE_ERR_PARAM;
6032 
6033 	data_size = (params & ICE_AQC_I2C_DATA_SIZE_M) >> ICE_AQC_I2C_DATA_SIZE_S;
6034 
6035 	cmd->i2c_bus_addr = CPU_TO_LE16(bus_addr);
6036 	cmd->topo_addr = topo_addr;
6037 	cmd->i2c_params = params;
6038 	cmd->i2c_addr = addr;
6039 
6040 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6041 	if (!status) {
6042 		struct ice_aqc_read_i2c_resp *resp;
6043 		u8 i;
6044 
6045 		resp = &desc.params.read_i2c_resp;
6046 		for (i = 0; i < data_size; i++) {
6047 			*data = resp->i2c_data[i];
6048 			data++;
6049 		}
6050 	}
6051 
6052 	return status;
6053 }
6054 
6055 /**
6056  * ice_aq_write_i2c
6057  * @hw: pointer to the hw struct
6058  * @topo_addr: topology address for a device to communicate with
6059  * @bus_addr: 7-bit I2C bus address
6060  * @addr: I2C memory address (I2C offset) with up to 16 bits
6061  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
6062  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
6063  * @cd: pointer to command details structure or NULL
6064  *
6065  * Write I2C (0x06E3)
6066  */
6067 enum ice_status
6068 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
6069 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
6070 		 struct ice_sq_cd *cd)
6071 {
6072 	struct ice_aq_desc desc = { 0 };
6073 	struct ice_aqc_i2c *cmd;
6074 	u8 i, data_size;
6075 
6076 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
6077 	cmd = &desc.params.read_write_i2c;
6078 
6079 	data_size = (params & ICE_AQC_I2C_DATA_SIZE_M) >> ICE_AQC_I2C_DATA_SIZE_S;
6080 
6081 	/* data_size limited to 4 */
6082 	if (data_size > 4)
6083 		return ICE_ERR_PARAM;
6084 
6085 	cmd->i2c_bus_addr = CPU_TO_LE16(bus_addr);
6086 	cmd->topo_addr = topo_addr;
6087 	cmd->i2c_params = params;
6088 	cmd->i2c_addr = addr;
6089 
6090 	for (i = 0; i < data_size; i++) {
6091 		cmd->i2c_data[i] = *data;
6092 		data++;
6093 	}
6094 
6095 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6096 }
6097 
6098 /**
6099  * ice_aq_set_gpio
6100  * @hw: pointer to the hw struct
6101  * @gpio_ctrl_handle: GPIO controller node handle
6102  * @pin_idx: IO Number of the GPIO that needs to be set
6103  * @value: SW provide IO value to set in the LSB
6104  * @cd: pointer to command details structure or NULL
6105  *
6106  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
6107  */
6108 enum ice_status
6109 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
6110 		struct ice_sq_cd *cd)
6111 {
6112 	struct ice_aqc_gpio *cmd;
6113 	struct ice_aq_desc desc;
6114 
6115 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
6116 	cmd = &desc.params.read_write_gpio;
6117 	cmd->gpio_ctrl_handle = CPU_TO_LE16(gpio_ctrl_handle);
6118 	cmd->gpio_num = pin_idx;
6119 	cmd->gpio_val = value ? 1 : 0;
6120 
6121 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6122 }
6123 
6124 /**
6125  * ice_aq_get_gpio
6126  * @hw: pointer to the hw struct
6127  * @gpio_ctrl_handle: GPIO controller node handle
6128  * @pin_idx: IO Number of the GPIO that needs to be set
6129  * @value: IO value read
6130  * @cd: pointer to command details structure or NULL
6131  *
6132  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
6133  * the topology
6134  */
6135 enum ice_status
6136 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
6137 		bool *value, struct ice_sq_cd *cd)
6138 {
6139 	struct ice_aqc_gpio *cmd;
6140 	struct ice_aq_desc desc;
6141 	enum ice_status status;
6142 
6143 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
6144 	cmd = &desc.params.read_write_gpio;
6145 	cmd->gpio_ctrl_handle = CPU_TO_LE16(gpio_ctrl_handle);
6146 	cmd->gpio_num = pin_idx;
6147 
6148 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6149 	if (status)
6150 		return status;
6151 
6152 	*value = !!cmd->gpio_val;
6153 	return ICE_SUCCESS;
6154 }
6155 
6156 /**
6157  * ice_is_fw_api_min_ver
6158  * @hw: pointer to the hardware structure
6159  * @maj: major version
6160  * @min: minor version
6161  * @patch: patch version
6162  *
6163  * Checks if the firmware is minimum version
6164  */
6165 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
6166 {
6167 	if (hw->api_maj_ver == maj) {
6168 		if (hw->api_min_ver > min)
6169 			return true;
6170 		if (hw->api_min_ver == min && hw->api_patch >= patch)
6171 			return true;
6172 	} else if (hw->api_maj_ver > maj) {
6173 		return true;
6174 	}
6175 
6176 	return false;
6177 }
6178 
6179 /**
6180  * ice_is_fw_min_ver
6181  * @hw: pointer to the hardware structure
6182  * @branch: branch version
6183  * @maj: major version
6184  * @min: minor version
6185  * @patch: patch version
6186  *
6187  * Checks if the firmware is minimum version
6188  */
6189 static bool ice_is_fw_min_ver(struct ice_hw *hw, u8 branch, u8 maj, u8 min,
6190 			      u8 patch)
6191 {
6192 	if (hw->fw_branch == branch) {
6193 		if (hw->fw_maj_ver > maj)
6194 			return true;
6195 		if (hw->fw_maj_ver == maj) {
6196 			if (hw->fw_min_ver > min)
6197 				return true;
6198 			if (hw->fw_min_ver == min && hw->fw_patch >= patch)
6199 				return true;
6200 		}
6201 	}
6202 
6203 	return false;
6204 }
6205 
6206 /**
6207  * ice_fw_supports_link_override
6208  * @hw: pointer to the hardware structure
6209  *
6210  * Checks if the firmware supports link override
6211  */
6212 bool ice_fw_supports_link_override(struct ice_hw *hw)
6213 {
6214 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
6215 				     ICE_FW_API_LINK_OVERRIDE_MIN,
6216 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
6217 }
6218 
6219 /**
6220  * ice_get_link_default_override
6221  * @ldo: pointer to the link default override struct
6222  * @pi: pointer to the port info struct
6223  *
6224  * Gets the link default override for a port
6225  */
6226 enum ice_status
6227 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
6228 			      struct ice_port_info *pi)
6229 {
6230 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
6231 	struct ice_hw *hw = pi->hw;
6232 	enum ice_status status;
6233 
6234 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
6235 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
6236 	if (status) {
6237 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
6238 		return status;
6239 	}
6240 
6241 	/* Each port has its own config; calculate for our port */
6242 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
6243 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
6244 
6245 	/* link options first */
6246 	status = ice_read_sr_word(hw, tlv_start, &buf);
6247 	if (status) {
6248 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6249 		return status;
6250 	}
6251 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
6252 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
6253 		ICE_LINK_OVERRIDE_PHY_CFG_S;
6254 
6255 	/* link PHY config */
6256 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
6257 	status = ice_read_sr_word(hw, offset, &buf);
6258 	if (status) {
6259 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
6260 		return status;
6261 	}
6262 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
6263 
6264 	/* PHY types low */
6265 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
6266 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6267 		status = ice_read_sr_word(hw, (offset + i), &buf);
6268 		if (status) {
6269 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6270 			return status;
6271 		}
6272 		/* shift 16 bits at a time to fill 64 bits */
6273 		ldo->phy_type_low |= ((u64)buf << (i * 16));
6274 	}
6275 
6276 	/* PHY types high */
6277 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
6278 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
6279 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6280 		status = ice_read_sr_word(hw, (offset + i), &buf);
6281 		if (status) {
6282 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6283 			return status;
6284 		}
6285 		/* shift 16 bits at a time to fill 64 bits */
6286 		ldo->phy_type_high |= ((u64)buf << (i * 16));
6287 	}
6288 
6289 	return status;
6290 }
6291 
6292 /**
6293  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
6294  * @caps: get PHY capability data
6295  */
6296 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
6297 {
6298 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
6299 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
6300 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
6301 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
6302 		return true;
6303 
6304 	return false;
6305 }
6306 
6307 /**
6308  * ice_is_fw_health_report_supported
6309  * @hw: pointer to the hardware structure
6310  *
6311  * Return true if firmware supports health status reports,
6312  * false otherwise
6313  */
6314 bool ice_is_fw_health_report_supported(struct ice_hw *hw)
6315 {
6316 	if (hw->api_maj_ver > ICE_FW_API_HEALTH_REPORT_MAJ)
6317 		return true;
6318 
6319 	if (hw->api_maj_ver == ICE_FW_API_HEALTH_REPORT_MAJ) {
6320 		if (hw->api_min_ver > ICE_FW_API_HEALTH_REPORT_MIN)
6321 			return true;
6322 		if (hw->api_min_ver == ICE_FW_API_HEALTH_REPORT_MIN &&
6323 		    hw->api_patch >= ICE_FW_API_HEALTH_REPORT_PATCH)
6324 			return true;
6325 	}
6326 
6327 	return false;
6328 }
6329 
6330 /**
6331  * ice_aq_set_health_status_config - Configure FW health events
6332  * @hw: pointer to the HW struct
6333  * @event_source: type of diagnostic events to enable
6334  * @cd: pointer to command details structure or NULL
6335  *
6336  * Configure the health status event types that the firmware will send to this
6337  * PF. The supported event types are: PF-specific, all PFs, and global
6338  */
6339 enum ice_status
6340 ice_aq_set_health_status_config(struct ice_hw *hw, u8 event_source,
6341 				struct ice_sq_cd *cd)
6342 {
6343 	struct ice_aqc_set_health_status_config *cmd;
6344 	struct ice_aq_desc desc;
6345 
6346 	cmd = &desc.params.set_health_status_config;
6347 
6348 	ice_fill_dflt_direct_cmd_desc(&desc,
6349 				      ice_aqc_opc_set_health_status_config);
6350 
6351 	cmd->event_source = event_source;
6352 
6353 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6354 }
6355 
6356 /**
6357  * ice_aq_get_port_options
6358  * @hw: pointer to the hw struct
6359  * @options: buffer for the resultant port options
6360  * @option_count: input - size of the buffer in port options structures,
6361  *                output - number of returned port options
6362  * @lport: logical port to call the command with (optional)
6363  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
6364  *               when PF owns more than 1 port it must be true
6365  * @active_option_idx: index of active port option in returned buffer
6366  * @active_option_valid: active option in returned buffer is valid
6367  * @pending_option_idx: index of pending port option in returned buffer
6368  * @pending_option_valid: pending option in returned buffer is valid
6369  *
6370  * Calls Get Port Options AQC (0x06ea) and verifies result.
6371  */
6372 enum ice_status
6373 ice_aq_get_port_options(struct ice_hw *hw,
6374 			struct ice_aqc_get_port_options_elem *options,
6375 			u8 *option_count, u8 lport, bool lport_valid,
6376 			u8 *active_option_idx, bool *active_option_valid,
6377 			u8 *pending_option_idx, bool *pending_option_valid)
6378 {
6379 	struct ice_aqc_get_port_options *cmd;
6380 	struct ice_aq_desc desc;
6381 	enum ice_status status;
6382 	u8 i;
6383 
6384 	/* options buffer shall be able to hold max returned options */
6385 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
6386 		return ICE_ERR_PARAM;
6387 
6388 	cmd = &desc.params.get_port_options;
6389 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
6390 
6391 	cmd->lport_num = lport;
6392 	cmd->lport_num_valid = lport_valid;
6393 
6394 	status = ice_aq_send_cmd(hw, &desc, options,
6395 				 *option_count * sizeof(*options), NULL);
6396 	if (status != ICE_SUCCESS)
6397 		return status;
6398 
6399 	/* verify direct FW response & set output parameters */
6400 	*option_count = cmd->port_options_count & ICE_AQC_PORT_OPT_COUNT_M;
6401 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
6402 	*active_option_valid = cmd->port_options & ICE_AQC_PORT_OPT_VALID;
6403 	if (*active_option_valid) {
6404 		*active_option_idx = cmd->port_options &
6405 				     ICE_AQC_PORT_OPT_ACTIVE_M;
6406 		if (*active_option_idx > (*option_count - 1))
6407 			return ICE_ERR_OUT_OF_RANGE;
6408 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
6409 			  *active_option_idx);
6410 	}
6411 
6412 	*pending_option_valid = cmd->pending_port_option_status &
6413 				ICE_AQC_PENDING_PORT_OPT_VALID;
6414 	if (*pending_option_valid) {
6415 		*pending_option_idx = cmd->pending_port_option_status &
6416 				      ICE_AQC_PENDING_PORT_OPT_IDX_M;
6417 		if (*pending_option_idx > (*option_count - 1))
6418 			return ICE_ERR_OUT_OF_RANGE;
6419 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
6420 			  *pending_option_idx);
6421 	}
6422 
6423 	/* mask output options fields */
6424 	for (i = 0; i < *option_count; i++) {
6425 		options[i].pmd &= ICE_AQC_PORT_OPT_PMD_COUNT_M;
6426 		options[i].max_lane_speed &= ICE_AQC_PORT_OPT_MAX_LANE_M;
6427 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
6428 			  options[i].pmd, options[i].max_lane_speed);
6429 	}
6430 
6431 	return ICE_SUCCESS;
6432 }
6433 
6434 /**
6435  * ice_aq_set_port_option
6436  * @hw: pointer to the hw struct
6437  * @lport: logical port to call the command with
6438  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
6439  *               when PF owns more than 1 port it must be true
6440  * @new_option: new port option to be written
6441  *
6442  * Calls Set Port Options AQC (0x06eb).
6443  */
6444 enum ice_status
6445 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
6446 		       u8 new_option)
6447 {
6448 	struct ice_aqc_set_port_option *cmd;
6449 	struct ice_aq_desc desc;
6450 
6451 	if (new_option >= ICE_AQC_PORT_OPT_COUNT_M)
6452 		return ICE_ERR_PARAM;
6453 
6454 	cmd = &desc.params.set_port_option;
6455 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
6456 
6457 	cmd->lport_num = lport;
6458 
6459 	cmd->lport_num_valid = lport_valid;
6460 	cmd->selected_port_option = new_option;
6461 
6462 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6463 }
6464 
6465 /**
6466  * ice_aq_set_lldp_mib - Set the LLDP MIB
6467  * @hw: pointer to the HW struct
6468  * @mib_type: Local, Remote or both Local and Remote MIBs
6469  * @buf: pointer to the caller-supplied buffer to store the MIB block
6470  * @buf_size: size of the buffer (in bytes)
6471  * @cd: pointer to command details structure or NULL
6472  *
6473  * Set the LLDP MIB. (0x0A08)
6474  */
6475 enum ice_status
6476 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6477 		    struct ice_sq_cd *cd)
6478 {
6479 	struct ice_aqc_lldp_set_local_mib *cmd;
6480 	struct ice_aq_desc desc;
6481 
6482 	cmd = &desc.params.lldp_set_mib;
6483 
6484 	if (buf_size == 0 || !buf)
6485 		return ICE_ERR_PARAM;
6486 
6487 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6488 
6489 	desc.flags |= CPU_TO_LE16((u16)ICE_AQ_FLAG_RD);
6490 	desc.datalen = CPU_TO_LE16(buf_size);
6491 
6492 	cmd->type = mib_type;
6493 	cmd->length = CPU_TO_LE16(buf_size);
6494 
6495 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6496 }
6497 
6498 /**
6499  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6500  * @hw: pointer to HW struct
6501  */
6502 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6503 {
6504 	if (hw->mac_type != ICE_MAC_E810 && hw->mac_type != ICE_MAC_GENERIC)
6505 		return false;
6506 
6507 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6508 				     ICE_FW_API_LLDP_FLTR_MIN,
6509 				     ICE_FW_API_LLDP_FLTR_PATCH);
6510 }
6511 
6512 /**
6513  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6514  * @hw: pointer to HW struct
6515  * @vsi_num: absolute HW index for VSI
6516  * @add: boolean for if adding or removing a filter
6517  */
6518 enum ice_status
6519 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
6520 {
6521 	struct ice_aqc_lldp_filter_ctrl *cmd;
6522 	struct ice_aq_desc desc;
6523 
6524 	cmd = &desc.params.lldp_filter_ctrl;
6525 
6526 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6527 
6528 	if (add)
6529 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6530 	else
6531 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6532 
6533 	cmd->vsi_num = CPU_TO_LE16(vsi_num);
6534 
6535 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6536 }
6537 
6538 /**
6539  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6540  * @hw: pointer to HW struct
6541  */
6542 enum ice_status ice_lldp_execute_pending_mib(struct ice_hw *hw)
6543 {
6544 	struct ice_aq_desc desc;
6545 
6546 	ice_fill_dflt_direct_cmd_desc(&desc, ice_execute_pending_lldp_mib);
6547 
6548 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6549 }
6550 
6551 /**
6552  * ice_fw_supports_report_dflt_cfg
6553  * @hw: pointer to the hardware structure
6554  *
6555  * Checks if the firmware supports report default configuration
6556  */
6557 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6558 {
6559 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6560 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6561 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6562 }
6563 
6564 /* each of the indexes into the following array match the speed of a return
6565  * value from the list of AQ returned speeds like the range:
6566  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6567  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) The array is defined as 15
6568  * elements long because the link_speed returned by the firmware is a 16 bit
6569  * value, but is indexed by [fls(speed) - 1]
6570  */
6571 static const u32 ice_aq_to_link_speed[] = {
6572 	ICE_LINK_SPEED_10MBPS,	/* BIT(0) */
6573 	ICE_LINK_SPEED_100MBPS,
6574 	ICE_LINK_SPEED_1000MBPS,
6575 	ICE_LINK_SPEED_2500MBPS,
6576 	ICE_LINK_SPEED_5000MBPS,
6577 	ICE_LINK_SPEED_10000MBPS,
6578 	ICE_LINK_SPEED_20000MBPS,
6579 	ICE_LINK_SPEED_25000MBPS,
6580 	ICE_LINK_SPEED_40000MBPS,
6581 	ICE_LINK_SPEED_50000MBPS,
6582 	ICE_LINK_SPEED_100000MBPS,	/* BIT(10) */
6583 };
6584 
6585 /**
6586  * ice_get_link_speed - get integer speed from table
6587  * @index: array index from fls(aq speed) - 1
6588  *
6589  * Returns: u32 value containing integer speed
6590  */
6591 u32 ice_get_link_speed(u16 index)
6592 {
6593 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6594 		return ICE_LINK_SPEED_UNKNOWN;
6595 
6596 	return ice_aq_to_link_speed[index];
6597 }
6598 
6599 /**
6600  * ice_fw_supports_fec_dis_auto
6601  * @hw: pointer to the hardware structure
6602  *
6603  * Checks if the firmware supports FEC disable in Auto FEC mode
6604  */
6605 bool ice_fw_supports_fec_dis_auto(struct ice_hw *hw)
6606 {
6607 	return ice_is_fw_min_ver(hw, ICE_FW_VER_BRANCH_E810,
6608 				 ICE_FW_FEC_DIS_AUTO_MAJ,
6609 				 ICE_FW_FEC_DIS_AUTO_MIN,
6610 				 ICE_FW_FEC_DIS_AUTO_PATCH) ||
6611 	       ice_is_fw_min_ver(hw, ICE_FW_VER_BRANCH_E82X,
6612 				 ICE_FW_FEC_DIS_AUTO_MAJ_E82X,
6613 				 ICE_FW_FEC_DIS_AUTO_MIN_E82X,
6614 				 ICE_FW_FEC_DIS_AUTO_PATCH_E82X);
6615 }
6616 
6617 /**
6618  * ice_is_fw_auto_drop_supported
6619  * @hw: pointer to the hardware structure
6620  *
6621  * Checks if the firmware supports auto drop feature
6622  */
6623 bool ice_is_fw_auto_drop_supported(struct ice_hw *hw)
6624 {
6625 	if (hw->api_maj_ver >= ICE_FW_API_AUTO_DROP_MAJ &&
6626 	    hw->api_min_ver >= ICE_FW_API_AUTO_DROP_MIN)
6627 		return true;
6628 	return false;
6629 }
6630 
6631