xref: /freebsd/sys/dev/ice/ice_common.c (revision 16e02ae401ebd9aa7d47f46dc4905f4f8add70a8)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2021, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*$FreeBSD$*/
32 
33 #include "ice_common.h"
34 #include "ice_sched.h"
35 #include "ice_adminq_cmd.h"
36 
37 #include "ice_flow.h"
38 #include "ice_switch.h"
39 
40 #define ICE_PF_RESET_WAIT_COUNT	300
41 
42 /**
43  * dump_phy_type - helper function that prints PHY type strings
44  * @hw: pointer to the HW structure
45  * @phy: 64 bit PHY type to decipher
46  * @i: bit index within phy
47  * @phy_string: string corresponding to bit i in phy
48  * @prefix: prefix string to differentiate multiple dumps
49  */
50 static void
51 dump_phy_type(struct ice_hw *hw, u64 phy, u8 i, const char *phy_string,
52 	      const char *prefix)
53 {
54 	if (phy & BIT_ULL(i))
55 		ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n", prefix, i,
56 			  phy_string);
57 }
58 
59 /**
60  * ice_dump_phy_type_low - helper function to dump phy_type_low
61  * @hw: pointer to the HW structure
62  * @low: 64 bit value for phy_type_low
63  * @prefix: prefix string to differentiate multiple dumps
64  */
65 static void
66 ice_dump_phy_type_low(struct ice_hw *hw, u64 low, const char *prefix)
67 {
68 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix,
69 		  (unsigned long long)low);
70 
71 	dump_phy_type(hw, low, 0, "100BASE_TX", prefix);
72 	dump_phy_type(hw, low, 1, "100M_SGMII", prefix);
73 	dump_phy_type(hw, low, 2, "1000BASE_T", prefix);
74 	dump_phy_type(hw, low, 3, "1000BASE_SX", prefix);
75 	dump_phy_type(hw, low, 4, "1000BASE_LX", prefix);
76 	dump_phy_type(hw, low, 5, "1000BASE_KX", prefix);
77 	dump_phy_type(hw, low, 6, "1G_SGMII", prefix);
78 	dump_phy_type(hw, low, 7, "2500BASE_T", prefix);
79 	dump_phy_type(hw, low, 8, "2500BASE_X", prefix);
80 	dump_phy_type(hw, low, 9, "2500BASE_KX", prefix);
81 	dump_phy_type(hw, low, 10, "5GBASE_T", prefix);
82 	dump_phy_type(hw, low, 11, "5GBASE_KR", prefix);
83 	dump_phy_type(hw, low, 12, "10GBASE_T", prefix);
84 	dump_phy_type(hw, low, 13, "10G_SFI_DA", prefix);
85 	dump_phy_type(hw, low, 14, "10GBASE_SR", prefix);
86 	dump_phy_type(hw, low, 15, "10GBASE_LR", prefix);
87 	dump_phy_type(hw, low, 16, "10GBASE_KR_CR1", prefix);
88 	dump_phy_type(hw, low, 17, "10G_SFI_AOC_ACC", prefix);
89 	dump_phy_type(hw, low, 18, "10G_SFI_C2C", prefix);
90 	dump_phy_type(hw, low, 19, "25GBASE_T", prefix);
91 	dump_phy_type(hw, low, 20, "25GBASE_CR", prefix);
92 	dump_phy_type(hw, low, 21, "25GBASE_CR_S", prefix);
93 	dump_phy_type(hw, low, 22, "25GBASE_CR1", prefix);
94 	dump_phy_type(hw, low, 23, "25GBASE_SR", prefix);
95 	dump_phy_type(hw, low, 24, "25GBASE_LR", prefix);
96 	dump_phy_type(hw, low, 25, "25GBASE_KR", prefix);
97 	dump_phy_type(hw, low, 26, "25GBASE_KR_S", prefix);
98 	dump_phy_type(hw, low, 27, "25GBASE_KR1", prefix);
99 	dump_phy_type(hw, low, 28, "25G_AUI_AOC_ACC", prefix);
100 	dump_phy_type(hw, low, 29, "25G_AUI_C2C", prefix);
101 	dump_phy_type(hw, low, 30, "40GBASE_CR4", prefix);
102 	dump_phy_type(hw, low, 31, "40GBASE_SR4", prefix);
103 	dump_phy_type(hw, low, 32, "40GBASE_LR4", prefix);
104 	dump_phy_type(hw, low, 33, "40GBASE_KR4", prefix);
105 	dump_phy_type(hw, low, 34, "40G_XLAUI_AOC_ACC", prefix);
106 	dump_phy_type(hw, low, 35, "40G_XLAUI", prefix);
107 	dump_phy_type(hw, low, 36, "50GBASE_CR2", prefix);
108 	dump_phy_type(hw, low, 37, "50GBASE_SR2", prefix);
109 	dump_phy_type(hw, low, 38, "50GBASE_LR2", prefix);
110 	dump_phy_type(hw, low, 39, "50GBASE_KR2", prefix);
111 	dump_phy_type(hw, low, 40, "50G_LAUI2_AOC_ACC", prefix);
112 	dump_phy_type(hw, low, 41, "50G_LAUI2", prefix);
113 	dump_phy_type(hw, low, 42, "50G_AUI2_AOC_ACC", prefix);
114 	dump_phy_type(hw, low, 43, "50G_AUI2", prefix);
115 	dump_phy_type(hw, low, 44, "50GBASE_CP", prefix);
116 	dump_phy_type(hw, low, 45, "50GBASE_SR", prefix);
117 	dump_phy_type(hw, low, 46, "50GBASE_FR", prefix);
118 	dump_phy_type(hw, low, 47, "50GBASE_LR", prefix);
119 	dump_phy_type(hw, low, 48, "50GBASE_KR_PAM4", prefix);
120 	dump_phy_type(hw, low, 49, "50G_AUI1_AOC_ACC", prefix);
121 	dump_phy_type(hw, low, 50, "50G_AUI1", prefix);
122 	dump_phy_type(hw, low, 51, "100GBASE_CR4", prefix);
123 	dump_phy_type(hw, low, 52, "100GBASE_SR4", prefix);
124 	dump_phy_type(hw, low, 53, "100GBASE_LR4", prefix);
125 	dump_phy_type(hw, low, 54, "100GBASE_KR4", prefix);
126 	dump_phy_type(hw, low, 55, "100G_CAUI4_AOC_ACC", prefix);
127 	dump_phy_type(hw, low, 56, "100G_CAUI4", prefix);
128 	dump_phy_type(hw, low, 57, "100G_AUI4_AOC_ACC", prefix);
129 	dump_phy_type(hw, low, 58, "100G_AUI4", prefix);
130 	dump_phy_type(hw, low, 59, "100GBASE_CR_PAM4", prefix);
131 	dump_phy_type(hw, low, 60, "100GBASE_KR_PAM4", prefix);
132 	dump_phy_type(hw, low, 61, "100GBASE_CP2", prefix);
133 	dump_phy_type(hw, low, 62, "100GBASE_SR2", prefix);
134 	dump_phy_type(hw, low, 63, "100GBASE_DR", prefix);
135 }
136 
137 /**
138  * ice_dump_phy_type_high - helper function to dump phy_type_high
139  * @hw: pointer to the HW structure
140  * @high: 64 bit value for phy_type_high
141  * @prefix: prefix string to differentiate multiple dumps
142  */
143 static void
144 ice_dump_phy_type_high(struct ice_hw *hw, u64 high, const char *prefix)
145 {
146 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix,
147 		  (unsigned long long)high);
148 
149 	dump_phy_type(hw, high, 0, "100GBASE_KR2_PAM4", prefix);
150 	dump_phy_type(hw, high, 1, "100G_CAUI2_AOC_ACC", prefix);
151 	dump_phy_type(hw, high, 2, "100G_CAUI2", prefix);
152 	dump_phy_type(hw, high, 3, "100G_AUI2_AOC_ACC", prefix);
153 	dump_phy_type(hw, high, 4, "100G_AUI2", prefix);
154 }
155 
156 /**
157  * ice_set_mac_type - Sets MAC type
158  * @hw: pointer to the HW structure
159  *
160  * This function sets the MAC type of the adapter based on the
161  * vendor ID and device ID stored in the HW structure.
162  */
163 enum ice_status ice_set_mac_type(struct ice_hw *hw)
164 {
165 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
166 
167 	if (hw->vendor_id != ICE_INTEL_VENDOR_ID)
168 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
169 
170 	switch (hw->device_id) {
171 	case ICE_DEV_ID_E810C_BACKPLANE:
172 	case ICE_DEV_ID_E810C_QSFP:
173 	case ICE_DEV_ID_E810C_SFP:
174 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
175 	case ICE_DEV_ID_E810_XXV_QSFP:
176 	case ICE_DEV_ID_E810_XXV_SFP:
177 		hw->mac_type = ICE_MAC_E810;
178 		break;
179 	case ICE_DEV_ID_E822C_10G_BASE_T:
180 	case ICE_DEV_ID_E822C_BACKPLANE:
181 	case ICE_DEV_ID_E822C_QSFP:
182 	case ICE_DEV_ID_E822C_SFP:
183 	case ICE_DEV_ID_E822C_SGMII:
184 	case ICE_DEV_ID_E822L_10G_BASE_T:
185 	case ICE_DEV_ID_E822L_BACKPLANE:
186 	case ICE_DEV_ID_E822L_SFP:
187 	case ICE_DEV_ID_E822L_SGMII:
188 	case ICE_DEV_ID_E823L_10G_BASE_T:
189 	case ICE_DEV_ID_E823L_1GBE:
190 	case ICE_DEV_ID_E823L_BACKPLANE:
191 	case ICE_DEV_ID_E823L_QSFP:
192 	case ICE_DEV_ID_E823L_SFP:
193 	case ICE_DEV_ID_E823C_10G_BASE_T:
194 	case ICE_DEV_ID_E823C_BACKPLANE:
195 	case ICE_DEV_ID_E823C_QSFP:
196 	case ICE_DEV_ID_E823C_SFP:
197 	case ICE_DEV_ID_E823C_SGMII:
198 		hw->mac_type = ICE_MAC_GENERIC;
199 		break;
200 	default:
201 		hw->mac_type = ICE_MAC_UNKNOWN;
202 		break;
203 	}
204 
205 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
206 	return ICE_SUCCESS;
207 }
208 
209 /**
210  * ice_is_e810
211  * @hw: pointer to the hardware structure
212  *
213  * returns true if the device is E810 based, false if not.
214  */
215 bool ice_is_e810(struct ice_hw *hw)
216 {
217 	return hw->mac_type == ICE_MAC_E810;
218 }
219 
220 /**
221  * ice_is_e810t
222  * @hw: pointer to the hardware structure
223  *
224  * returns true if the device is E810T based, false if not.
225  */
226 bool ice_is_e810t(struct ice_hw *hw)
227 {
228 	switch (hw->device_id) {
229 	case ICE_DEV_ID_E810C_SFP:
230 		if (hw->subsystem_device_id == ICE_SUBDEV_ID_E810T ||
231 		    hw->subsystem_device_id == ICE_SUBDEV_ID_E810T2)
232 			return true;
233 		break;
234 	case ICE_DEV_ID_E810C_QSFP:
235 		if (hw->subsystem_device_id == ICE_SUBDEV_ID_E810T2)
236 			return true;
237 		break;
238 	default:
239 		break;
240 	}
241 
242 	return false;
243 }
244 
245 /**
246  * ice_clear_pf_cfg - Clear PF configuration
247  * @hw: pointer to the hardware structure
248  *
249  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
250  * configuration, flow director filters, etc.).
251  */
252 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
253 {
254 	struct ice_aq_desc desc;
255 
256 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
257 
258 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
259 }
260 
261 /**
262  * ice_aq_manage_mac_read - manage MAC address read command
263  * @hw: pointer to the HW struct
264  * @buf: a virtual buffer to hold the manage MAC read response
265  * @buf_size: Size of the virtual buffer
266  * @cd: pointer to command details structure or NULL
267  *
268  * This function is used to return per PF station MAC address (0x0107).
269  * NOTE: Upon successful completion of this command, MAC address information
270  * is returned in user specified buffer. Please interpret user specified
271  * buffer as "manage_mac_read" response.
272  * Response such as various MAC addresses are stored in HW struct (port.mac)
273  * ice_discover_dev_caps is expected to be called before this function is
274  * called.
275  */
276 enum ice_status
277 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
278 		       struct ice_sq_cd *cd)
279 {
280 	struct ice_aqc_manage_mac_read_resp *resp;
281 	struct ice_aqc_manage_mac_read *cmd;
282 	struct ice_aq_desc desc;
283 	enum ice_status status;
284 	u16 flags;
285 	u8 i;
286 
287 	cmd = &desc.params.mac_read;
288 
289 	if (buf_size < sizeof(*resp))
290 		return ICE_ERR_BUF_TOO_SHORT;
291 
292 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
293 
294 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
295 	if (status)
296 		return status;
297 
298 	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
299 	flags = LE16_TO_CPU(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
300 
301 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
302 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
303 		return ICE_ERR_CFG;
304 	}
305 
306 	/* A single port can report up to two (LAN and WoL) addresses */
307 	for (i = 0; i < cmd->num_addr; i++)
308 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
309 			ice_memcpy(hw->port_info->mac.lan_addr,
310 				   resp[i].mac_addr, ETH_ALEN,
311 				   ICE_DMA_TO_NONDMA);
312 			ice_memcpy(hw->port_info->mac.perm_addr,
313 				   resp[i].mac_addr,
314 				   ETH_ALEN, ICE_DMA_TO_NONDMA);
315 			break;
316 		}
317 	return ICE_SUCCESS;
318 }
319 
320 /**
321  * ice_aq_get_phy_caps - returns PHY capabilities
322  * @pi: port information structure
323  * @qual_mods: report qualified modules
324  * @report_mode: report mode capabilities
325  * @pcaps: structure for PHY capabilities to be filled
326  * @cd: pointer to command details structure or NULL
327  *
328  * Returns the various PHY capabilities supported on the Port (0x0600)
329  */
330 enum ice_status
331 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
332 		    struct ice_aqc_get_phy_caps_data *pcaps,
333 		    struct ice_sq_cd *cd)
334 {
335 	struct ice_aqc_get_phy_caps *cmd;
336 	u16 pcaps_size = sizeof(*pcaps);
337 	struct ice_aq_desc desc;
338 	enum ice_status status;
339 	const char *prefix;
340 	struct ice_hw *hw;
341 
342 	cmd = &desc.params.get_phy;
343 
344 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
345 		return ICE_ERR_PARAM;
346 	hw = pi->hw;
347 
348 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
349 	    !ice_fw_supports_report_dflt_cfg(hw))
350 		return ICE_ERR_PARAM;
351 
352 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
353 
354 	if (qual_mods)
355 		cmd->param0 |= CPU_TO_LE16(ICE_AQC_GET_PHY_RQM);
356 
357 	cmd->param0 |= CPU_TO_LE16(report_mode);
358 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
359 
360 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
361 
362 	if (report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA)
363 		prefix = "phy_caps_media";
364 	else if (report_mode == ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA)
365 		prefix = "phy_caps_no_media";
366 	else if (report_mode == ICE_AQC_REPORT_ACTIVE_CFG)
367 		prefix = "phy_caps_active";
368 	else if (report_mode == ICE_AQC_REPORT_DFLT_CFG)
369 		prefix = "phy_caps_default";
370 	else
371 		prefix = "phy_caps_invalid";
372 
373 	ice_dump_phy_type_low(hw, LE64_TO_CPU(pcaps->phy_type_low), prefix);
374 	ice_dump_phy_type_high(hw, LE64_TO_CPU(pcaps->phy_type_high), prefix);
375 
376 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
377 		  prefix, report_mode);
378 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
379 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
380 		  pcaps->low_power_ctrl_an);
381 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
382 		  pcaps->eee_cap);
383 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
384 		  pcaps->eeer_value);
385 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
386 		  pcaps->link_fec_options);
387 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
388 		  prefix, pcaps->module_compliance_enforcement);
389 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
390 		  prefix, pcaps->extended_compliance_code);
391 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
392 		  pcaps->module_type[0]);
393 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
394 		  pcaps->module_type[1]);
395 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
396 		  pcaps->module_type[2]);
397 
398 	if (status == ICE_SUCCESS && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
399 		pi->phy.phy_type_low = LE64_TO_CPU(pcaps->phy_type_low);
400 		pi->phy.phy_type_high = LE64_TO_CPU(pcaps->phy_type_high);
401 		ice_memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
402 			   sizeof(pi->phy.link_info.module_type),
403 			   ICE_NONDMA_TO_NONDMA);
404 	}
405 
406 	return status;
407 }
408 
409 /**
410  * ice_aq_get_netlist_node
411  * @hw: pointer to the hw struct
412  * @cmd: get_link_topo AQ structure
413  * @node_part_number: output node part number if node found
414  * @node_handle: output node handle parameter if node found
415  */
416 enum ice_status
417 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
418 			u8 *node_part_number, u16 *node_handle)
419 {
420 	struct ice_aq_desc desc;
421 
422 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
423 	desc.params.get_link_topo = *cmd;
424 
425 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
426 		return ICE_ERR_NOT_SUPPORTED;
427 
428 	if (node_handle)
429 		*node_handle =
430 			LE16_TO_CPU(desc.params.get_link_topo.addr.handle);
431 	if (node_part_number)
432 		*node_part_number = desc.params.get_link_topo.node_part_num;
433 
434 	return ICE_SUCCESS;
435 }
436 
437 #define MAX_NETLIST_SIZE 10
438 /**
439  * ice_find_netlist_node
440  * @hw: pointer to the hw struct
441  * @node_type_ctx: type of netlist node to look for
442  * @node_part_number: node part number to look for
443  * @node_handle: output parameter if node found - optional
444  *
445  * Find and return the node handle for a given node type and part number in the
446  * netlist. When found ICE_SUCCESS is returned, ICE_ERR_DOES_NOT_EXIST
447  * otherwise. If @node_handle provided, it would be set to found node handle.
448  */
449 enum ice_status
450 ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx, u8 node_part_number,
451 		      u16 *node_handle)
452 {
453 	struct ice_aqc_get_link_topo cmd;
454 	u8 rec_node_part_number;
455 	enum ice_status status;
456 	u16 rec_node_handle;
457 	u8 idx;
458 
459 	for (idx = 0; idx < MAX_NETLIST_SIZE; idx++) {
460 		memset(&cmd, 0, sizeof(cmd));
461 
462 		cmd.addr.topo_params.node_type_ctx =
463 			(node_type_ctx << ICE_AQC_LINK_TOPO_NODE_TYPE_S);
464 		cmd.addr.topo_params.index = idx;
465 
466 		status = ice_aq_get_netlist_node(hw, &cmd,
467 						 &rec_node_part_number,
468 						 &rec_node_handle);
469 		if (status)
470 			return status;
471 
472 		if (rec_node_part_number == node_part_number) {
473 			if (node_handle)
474 				*node_handle = rec_node_handle;
475 			return ICE_SUCCESS;
476 		}
477 	}
478 
479 	return ICE_ERR_DOES_NOT_EXIST;
480 }
481 
482 /**
483  * ice_is_media_cage_present
484  * @pi: port information structure
485  *
486  * Returns true if media cage is present, else false. If no cage, then
487  * media type is backplane or BASE-T.
488  */
489 static bool ice_is_media_cage_present(struct ice_port_info *pi)
490 {
491 	struct ice_aqc_get_link_topo *cmd;
492 	struct ice_aq_desc desc;
493 
494 	cmd = &desc.params.get_link_topo;
495 
496 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
497 
498 	cmd->addr.topo_params.node_type_ctx =
499 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
500 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
501 
502 	/* set node type */
503 	cmd->addr.topo_params.node_type_ctx |=
504 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M &
505 		 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE);
506 
507 	/* Node type cage can be used to determine if cage is present. If AQC
508 	 * returns error (ENOENT), then no cage present. If no cage present then
509 	 * connection type is backplane or BASE-T.
510 	 */
511 	return ice_aq_get_netlist_node(pi->hw, cmd, NULL, NULL);
512 }
513 
514 /**
515  * ice_get_media_type - Gets media type
516  * @pi: port information structure
517  */
518 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
519 {
520 	struct ice_link_status *hw_link_info;
521 
522 	if (!pi)
523 		return ICE_MEDIA_UNKNOWN;
524 
525 	hw_link_info = &pi->phy.link_info;
526 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
527 		/* If more than one media type is selected, report unknown */
528 		return ICE_MEDIA_UNKNOWN;
529 
530 	if (hw_link_info->phy_type_low) {
531 		/* 1G SGMII is a special case where some DA cable PHYs
532 		 * may show this as an option when it really shouldn't
533 		 * be since SGMII is meant to be between a MAC and a PHY
534 		 * in a backplane. Try to detect this case and handle it
535 		 */
536 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
537 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
538 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
539 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
540 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
541 			return ICE_MEDIA_DA;
542 
543 		switch (hw_link_info->phy_type_low) {
544 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
545 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
546 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
547 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
548 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
549 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
550 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
551 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
552 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
553 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
554 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
555 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
556 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
557 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
558 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
559 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
560 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
561 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
562 			return ICE_MEDIA_FIBER;
563 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
564 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
565 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
566 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
567 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
568 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
569 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
570 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
571 			return ICE_MEDIA_FIBER;
572 		case ICE_PHY_TYPE_LOW_100BASE_TX:
573 		case ICE_PHY_TYPE_LOW_1000BASE_T:
574 		case ICE_PHY_TYPE_LOW_2500BASE_T:
575 		case ICE_PHY_TYPE_LOW_5GBASE_T:
576 		case ICE_PHY_TYPE_LOW_10GBASE_T:
577 		case ICE_PHY_TYPE_LOW_25GBASE_T:
578 			return ICE_MEDIA_BASET;
579 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
580 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
581 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
582 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
583 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
584 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
585 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
586 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
587 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
588 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
589 			return ICE_MEDIA_DA;
590 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
591 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
592 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
593 		case ICE_PHY_TYPE_LOW_50G_AUI2:
594 		case ICE_PHY_TYPE_LOW_50G_AUI1:
595 		case ICE_PHY_TYPE_LOW_100G_AUI4:
596 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
597 			if (ice_is_media_cage_present(pi))
598 				return ICE_MEDIA_AUI;
599 			/* fall-through */
600 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
601 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
602 		case ICE_PHY_TYPE_LOW_2500BASE_X:
603 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
604 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
605 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
606 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
607 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
608 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
609 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
610 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
611 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
612 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
613 			return ICE_MEDIA_BACKPLANE;
614 		}
615 	} else {
616 		switch (hw_link_info->phy_type_high) {
617 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
618 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
619 			if (ice_is_media_cage_present(pi))
620 				return ICE_MEDIA_AUI;
621 			/* fall-through */
622 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
623 			return ICE_MEDIA_BACKPLANE;
624 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
625 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
626 			return ICE_MEDIA_FIBER;
627 		}
628 	}
629 	return ICE_MEDIA_UNKNOWN;
630 }
631 
632 /**
633  * ice_aq_get_link_info
634  * @pi: port information structure
635  * @ena_lse: enable/disable LinkStatusEvent reporting
636  * @link: pointer to link status structure - optional
637  * @cd: pointer to command details structure or NULL
638  *
639  * Get Link Status (0x607). Returns the link status of the adapter.
640  */
641 enum ice_status
642 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
643 		     struct ice_link_status *link, struct ice_sq_cd *cd)
644 {
645 	struct ice_aqc_get_link_status_data link_data = { 0 };
646 	struct ice_aqc_get_link_status *resp;
647 	struct ice_link_status *li_old, *li;
648 	enum ice_media_type *hw_media_type;
649 	struct ice_fc_info *hw_fc_info;
650 	bool tx_pause, rx_pause;
651 	struct ice_aq_desc desc;
652 	enum ice_status status;
653 	struct ice_hw *hw;
654 	u16 cmd_flags;
655 
656 	if (!pi)
657 		return ICE_ERR_PARAM;
658 	hw = pi->hw;
659 
660 	li_old = &pi->phy.link_info_old;
661 	hw_media_type = &pi->phy.media_type;
662 	li = &pi->phy.link_info;
663 	hw_fc_info = &pi->fc;
664 
665 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
666 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
667 	resp = &desc.params.get_link_status;
668 	resp->cmd_flags = CPU_TO_LE16(cmd_flags);
669 	resp->lport_num = pi->lport;
670 
671 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
672 
673 	if (status != ICE_SUCCESS)
674 		return status;
675 
676 	/* save off old link status information */
677 	*li_old = *li;
678 
679 	/* update current link status information */
680 	li->link_speed = LE16_TO_CPU(link_data.link_speed);
681 	li->phy_type_low = LE64_TO_CPU(link_data.phy_type_low);
682 	li->phy_type_high = LE64_TO_CPU(link_data.phy_type_high);
683 	*hw_media_type = ice_get_media_type(pi);
684 	li->link_info = link_data.link_info;
685 	li->link_cfg_err = link_data.link_cfg_err;
686 	li->an_info = link_data.an_info;
687 	li->ext_info = link_data.ext_info;
688 	li->max_frame_size = LE16_TO_CPU(link_data.max_frame_size);
689 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
690 	li->topo_media_conflict = link_data.topo_media_conflict;
691 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
692 				      ICE_AQ_CFG_PACING_TYPE_M);
693 
694 	/* update fc info */
695 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
696 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
697 	if (tx_pause && rx_pause)
698 		hw_fc_info->current_mode = ICE_FC_FULL;
699 	else if (tx_pause)
700 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
701 	else if (rx_pause)
702 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
703 	else
704 		hw_fc_info->current_mode = ICE_FC_NONE;
705 
706 	li->lse_ena = !!(resp->cmd_flags & CPU_TO_LE16(ICE_AQ_LSE_IS_ENABLED));
707 
708 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
709 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
710 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
711 		  (unsigned long long)li->phy_type_low);
712 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
713 		  (unsigned long long)li->phy_type_high);
714 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
715 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
716 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
717 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
718 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
719 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
720 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
721 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
722 		  li->max_frame_size);
723 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
724 
725 	/* save link status information */
726 	if (link)
727 		*link = *li;
728 
729 	/* flag cleared so calling functions don't call AQ again */
730 	pi->phy.get_link_info = false;
731 
732 	return ICE_SUCCESS;
733 }
734 
735 /**
736  * ice_fill_tx_timer_and_fc_thresh
737  * @hw: pointer to the HW struct
738  * @cmd: pointer to MAC cfg structure
739  *
740  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
741  * descriptor
742  */
743 static void
744 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
745 				struct ice_aqc_set_mac_cfg *cmd)
746 {
747 	u16 fc_thres_val, tx_timer_val;
748 	u32 val;
749 
750 	/* We read back the transmit timer and fc threshold value of
751 	 * LFC. Thus, we will use index =
752 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
753 	 *
754 	 * Also, because we are operating on transmit timer and fc
755 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
756 	 */
757 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
758 
759 	/* Retrieve the transmit timer */
760 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
761 	tx_timer_val = val &
762 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
763 	cmd->tx_tmr_value = CPU_TO_LE16(tx_timer_val);
764 
765 	/* Retrieve the fc threshold */
766 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
767 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
768 
769 	cmd->fc_refresh_threshold = CPU_TO_LE16(fc_thres_val);
770 }
771 
772 /**
773  * ice_aq_set_mac_cfg
774  * @hw: pointer to the HW struct
775  * @max_frame_size: Maximum Frame Size to be supported
776  * @auto_drop: Tell HW to drop packets if TC queue is blocked
777  * @cd: pointer to command details structure or NULL
778  *
779  * Set MAC configuration (0x0603)
780  */
781 enum ice_status
782 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, bool auto_drop,
783 		   struct ice_sq_cd *cd)
784 {
785 	struct ice_aqc_set_mac_cfg *cmd;
786 	struct ice_aq_desc desc;
787 
788 	cmd = &desc.params.set_mac_cfg;
789 
790 	if (max_frame_size == 0)
791 		return ICE_ERR_PARAM;
792 
793 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
794 
795 	cmd->max_frame_size = CPU_TO_LE16(max_frame_size);
796 
797 	if (ice_is_fw_auto_drop_supported(hw) && auto_drop)
798 		cmd->drop_opts |= ICE_AQ_SET_MAC_AUTO_DROP_BLOCKING_PKTS;
799 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
800 
801 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
802 }
803 
804 /**
805  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
806  * @hw: pointer to the HW struct
807  */
808 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
809 {
810 	struct ice_switch_info *sw;
811 	enum ice_status status;
812 
813 	hw->switch_info = (struct ice_switch_info *)
814 			  ice_malloc(hw, sizeof(*hw->switch_info));
815 
816 	sw = hw->switch_info;
817 
818 	if (!sw)
819 		return ICE_ERR_NO_MEMORY;
820 
821 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
822 	sw->prof_res_bm_init = 0;
823 
824 	status = ice_init_def_sw_recp(hw, &hw->switch_info->recp_list);
825 	if (status) {
826 		ice_free(hw, hw->switch_info);
827 		return status;
828 	}
829 	return ICE_SUCCESS;
830 }
831 
832 /**
833  * ice_cleanup_fltr_mgmt_single - clears single filter mngt struct
834  * @hw: pointer to the HW struct
835  * @sw: pointer to switch info struct for which function clears filters
836  */
837 static void
838 ice_cleanup_fltr_mgmt_single(struct ice_hw *hw, struct ice_switch_info *sw)
839 {
840 	struct ice_vsi_list_map_info *v_pos_map;
841 	struct ice_vsi_list_map_info *v_tmp_map;
842 	struct ice_sw_recipe *recps;
843 	u8 i;
844 
845 	if (!sw)
846 		return;
847 
848 	LIST_FOR_EACH_ENTRY_SAFE(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
849 				 ice_vsi_list_map_info, list_entry) {
850 		LIST_DEL(&v_pos_map->list_entry);
851 		ice_free(hw, v_pos_map);
852 	}
853 	recps = sw->recp_list;
854 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
855 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
856 
857 		recps[i].root_rid = i;
858 		LIST_FOR_EACH_ENTRY_SAFE(rg_entry, tmprg_entry,
859 					 &recps[i].rg_list, ice_recp_grp_entry,
860 					 l_entry) {
861 			LIST_DEL(&rg_entry->l_entry);
862 			ice_free(hw, rg_entry);
863 		}
864 
865 		if (recps[i].adv_rule) {
866 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
867 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
868 
869 			ice_destroy_lock(&recps[i].filt_rule_lock);
870 			LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
871 						 &recps[i].filt_rules,
872 						 ice_adv_fltr_mgmt_list_entry,
873 						 list_entry) {
874 				LIST_DEL(&lst_itr->list_entry);
875 				ice_free(hw, lst_itr->lkups);
876 				ice_free(hw, lst_itr);
877 			}
878 		} else {
879 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
880 
881 			ice_destroy_lock(&recps[i].filt_rule_lock);
882 			LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
883 						 &recps[i].filt_rules,
884 						 ice_fltr_mgmt_list_entry,
885 						 list_entry) {
886 				LIST_DEL(&lst_itr->list_entry);
887 				ice_free(hw, lst_itr);
888 			}
889 		}
890 		if (recps[i].root_buf)
891 			ice_free(hw, recps[i].root_buf);
892 	}
893 	ice_rm_sw_replay_rule_info(hw, sw);
894 	ice_free(hw, sw->recp_list);
895 	ice_free(hw, sw);
896 }
897 
898 /**
899  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
900  * @hw: pointer to the HW struct
901  */
902 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
903 {
904 	ice_cleanup_fltr_mgmt_single(hw, hw->switch_info);
905 }
906 
907 /**
908  * ice_get_itr_intrl_gran
909  * @hw: pointer to the HW struct
910  *
911  * Determines the ITR/INTRL granularities based on the maximum aggregate
912  * bandwidth according to the device's configuration during power-on.
913  */
914 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
915 {
916 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
917 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
918 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
919 
920 	switch (max_agg_bw) {
921 	case ICE_MAX_AGG_BW_200G:
922 	case ICE_MAX_AGG_BW_100G:
923 	case ICE_MAX_AGG_BW_50G:
924 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
925 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
926 		break;
927 	case ICE_MAX_AGG_BW_25G:
928 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
929 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
930 		break;
931 	}
932 }
933 
934 /**
935  * ice_print_rollback_msg - print FW rollback message
936  * @hw: pointer to the hardware structure
937  */
938 void ice_print_rollback_msg(struct ice_hw *hw)
939 {
940 	char nvm_str[ICE_NVM_VER_LEN] = { 0 };
941 	struct ice_orom_info *orom;
942 	struct ice_nvm_info *nvm;
943 
944 	orom = &hw->flash.orom;
945 	nvm = &hw->flash.nvm;
946 
947 	SNPRINTF(nvm_str, sizeof(nvm_str), "%x.%02x 0x%x %d.%d.%d",
948 		 nvm->major, nvm->minor, nvm->eetrack, orom->major,
949 		 orom->build, orom->patch);
950 	ice_warn(hw,
951 		 "Firmware rollback mode detected. Current version is NVM: %s, FW: %d.%d. Device may exhibit limited functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware rollback mode\n",
952 		 nvm_str, hw->fw_maj_ver, hw->fw_min_ver);
953 }
954 
955 /**
956  * ice_set_umac_shared
957  * @hw: pointer to the hw struct
958  *
959  * Set boolean flag to allow unicast MAC sharing
960  */
961 void ice_set_umac_shared(struct ice_hw *hw)
962 {
963 	hw->umac_shared = true;
964 }
965 
966 /**
967  * ice_init_hw - main hardware initialization routine
968  * @hw: pointer to the hardware structure
969  */
970 enum ice_status ice_init_hw(struct ice_hw *hw)
971 {
972 	struct ice_aqc_get_phy_caps_data *pcaps;
973 	enum ice_status status;
974 	u16 mac_buf_len;
975 	void *mac_buf;
976 
977 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
978 
979 	/* Set MAC type based on DeviceID */
980 	status = ice_set_mac_type(hw);
981 	if (status)
982 		return status;
983 
984 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
985 			 PF_FUNC_RID_FUNCTION_NUMBER_M) >>
986 		PF_FUNC_RID_FUNCTION_NUMBER_S;
987 
988 	status = ice_reset(hw, ICE_RESET_PFR);
989 	if (status)
990 		return status;
991 	ice_get_itr_intrl_gran(hw);
992 
993 	status = ice_create_all_ctrlq(hw);
994 	if (status)
995 		goto err_unroll_cqinit;
996 
997 	ice_fwlog_set_support_ena(hw);
998 	status = ice_fwlog_set(hw, &hw->fwlog_cfg);
999 	if (status) {
1000 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging, status %d.\n",
1001 			  status);
1002 	} else {
1003 		if (hw->fwlog_cfg.options & ICE_FWLOG_OPTION_REGISTER_ON_INIT) {
1004 			status = ice_fwlog_register(hw);
1005 			if (status)
1006 				ice_debug(hw, ICE_DBG_INIT, "Failed to register for FW logging events, status %d.\n",
1007 					  status);
1008 		} else {
1009 			status = ice_fwlog_unregister(hw);
1010 			if (status)
1011 				ice_debug(hw, ICE_DBG_INIT, "Failed to unregister for FW logging events, status %d.\n",
1012 					  status);
1013 		}
1014 	}
1015 
1016 	status = ice_init_nvm(hw);
1017 	if (status)
1018 		goto err_unroll_cqinit;
1019 
1020 	if (ice_get_fw_mode(hw) == ICE_FW_MODE_ROLLBACK)
1021 		ice_print_rollback_msg(hw);
1022 
1023 	status = ice_clear_pf_cfg(hw);
1024 	if (status)
1025 		goto err_unroll_cqinit;
1026 
1027 	ice_clear_pxe_mode(hw);
1028 
1029 	status = ice_get_caps(hw);
1030 	if (status)
1031 		goto err_unroll_cqinit;
1032 
1033 	hw->port_info = (struct ice_port_info *)
1034 			ice_malloc(hw, sizeof(*hw->port_info));
1035 	if (!hw->port_info) {
1036 		status = ICE_ERR_NO_MEMORY;
1037 		goto err_unroll_cqinit;
1038 	}
1039 
1040 	/* set the back pointer to HW */
1041 	hw->port_info->hw = hw;
1042 
1043 	/* Initialize port_info struct with switch configuration data */
1044 	status = ice_get_initial_sw_cfg(hw);
1045 	if (status)
1046 		goto err_unroll_alloc;
1047 
1048 	hw->evb_veb = true;
1049 	/* Query the allocated resources for Tx scheduler */
1050 	status = ice_sched_query_res_alloc(hw);
1051 	if (status) {
1052 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1053 		goto err_unroll_alloc;
1054 	}
1055 	ice_sched_get_psm_clk_freq(hw);
1056 
1057 	/* Initialize port_info struct with scheduler data */
1058 	status = ice_sched_init_port(hw->port_info);
1059 	if (status)
1060 		goto err_unroll_sched;
1061 	pcaps = (struct ice_aqc_get_phy_caps_data *)
1062 		ice_malloc(hw, sizeof(*pcaps));
1063 	if (!pcaps) {
1064 		status = ICE_ERR_NO_MEMORY;
1065 		goto err_unroll_sched;
1066 	}
1067 
1068 	/* Initialize port_info struct with PHY capabilities */
1069 	status = ice_aq_get_phy_caps(hw->port_info, false,
1070 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, NULL);
1071 	ice_free(hw, pcaps);
1072 	if (status)
1073 		ice_warn(hw, "Get PHY capabilities failed status = %d, continuing anyway\n",
1074 			 status);
1075 
1076 	/* Initialize port_info struct with link information */
1077 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1078 	if (status)
1079 		goto err_unroll_sched;
1080 	/* need a valid SW entry point to build a Tx tree */
1081 	if (!hw->sw_entry_point_layer) {
1082 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1083 		status = ICE_ERR_CFG;
1084 		goto err_unroll_sched;
1085 	}
1086 	INIT_LIST_HEAD(&hw->agg_list);
1087 	/* Initialize max burst size */
1088 	if (!hw->max_burst_size)
1089 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1090 	status = ice_init_fltr_mgmt_struct(hw);
1091 	if (status)
1092 		goto err_unroll_sched;
1093 
1094 	/* Get MAC information */
1095 
1096 	/* A single port can report up to two (LAN and WoL) addresses */
1097 	mac_buf = ice_calloc(hw, 2,
1098 			     sizeof(struct ice_aqc_manage_mac_read_resp));
1099 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1100 
1101 	if (!mac_buf) {
1102 		status = ICE_ERR_NO_MEMORY;
1103 		goto err_unroll_fltr_mgmt_struct;
1104 	}
1105 
1106 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1107 	ice_free(hw, mac_buf);
1108 
1109 	if (status)
1110 		goto err_unroll_fltr_mgmt_struct;
1111 
1112 	/* enable jumbo frame support at MAC level */
1113 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, false,
1114 				    NULL);
1115 	if (status)
1116 		goto err_unroll_fltr_mgmt_struct;
1117 
1118 	status = ice_init_hw_tbls(hw);
1119 	if (status)
1120 		goto err_unroll_fltr_mgmt_struct;
1121 	ice_init_lock(&hw->tnl_lock);
1122 
1123 	return ICE_SUCCESS;
1124 
1125 err_unroll_fltr_mgmt_struct:
1126 	ice_cleanup_fltr_mgmt_struct(hw);
1127 err_unroll_sched:
1128 	ice_sched_cleanup_all(hw);
1129 err_unroll_alloc:
1130 	ice_free(hw, hw->port_info);
1131 	hw->port_info = NULL;
1132 err_unroll_cqinit:
1133 	ice_destroy_all_ctrlq(hw);
1134 	return status;
1135 }
1136 
1137 /**
1138  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1139  * @hw: pointer to the hardware structure
1140  *
1141  * This should be called only during nominal operation, not as a result of
1142  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1143  * applicable initializations if it fails for any reason.
1144  */
1145 void ice_deinit_hw(struct ice_hw *hw)
1146 {
1147 	ice_cleanup_fltr_mgmt_struct(hw);
1148 
1149 	ice_sched_cleanup_all(hw);
1150 	ice_sched_clear_agg(hw);
1151 	ice_free_seg(hw);
1152 	ice_free_hw_tbls(hw);
1153 	ice_destroy_lock(&hw->tnl_lock);
1154 
1155 	if (hw->port_info) {
1156 		ice_free(hw, hw->port_info);
1157 		hw->port_info = NULL;
1158 	}
1159 
1160 	ice_destroy_all_ctrlq(hw);
1161 
1162 	/* Clear VSI contexts if not already cleared */
1163 	ice_clear_all_vsi_ctx(hw);
1164 }
1165 
1166 /**
1167  * ice_check_reset - Check to see if a global reset is complete
1168  * @hw: pointer to the hardware structure
1169  */
1170 enum ice_status ice_check_reset(struct ice_hw *hw)
1171 {
1172 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1173 
1174 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1175 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1176 	 * Add 1sec for outstanding AQ commands that can take a long time.
1177 	 */
1178 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1179 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1180 
1181 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1182 		ice_msec_delay(100, true);
1183 		reg = rd32(hw, GLGEN_RSTAT);
1184 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1185 			break;
1186 	}
1187 
1188 	if (cnt == grst_timeout) {
1189 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1190 		return ICE_ERR_RESET_FAILED;
1191 	}
1192 
1193 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1194 				 GLNVM_ULD_PCIER_DONE_1_M |\
1195 				 GLNVM_ULD_CORER_DONE_M |\
1196 				 GLNVM_ULD_GLOBR_DONE_M |\
1197 				 GLNVM_ULD_POR_DONE_M |\
1198 				 GLNVM_ULD_POR_DONE_1_M |\
1199 				 GLNVM_ULD_PCIER_DONE_2_M)
1200 
1201 	uld_mask = ICE_RESET_DONE_MASK;
1202 
1203 	/* Device is Active; check Global Reset processes are done */
1204 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1205 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1206 		if (reg == uld_mask) {
1207 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1208 			break;
1209 		}
1210 		ice_msec_delay(10, true);
1211 	}
1212 
1213 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1214 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1215 			  reg);
1216 		return ICE_ERR_RESET_FAILED;
1217 	}
1218 
1219 	return ICE_SUCCESS;
1220 }
1221 
1222 /**
1223  * ice_pf_reset - Reset the PF
1224  * @hw: pointer to the hardware structure
1225  *
1226  * If a global reset has been triggered, this function checks
1227  * for its completion and then issues the PF reset
1228  */
1229 static enum ice_status ice_pf_reset(struct ice_hw *hw)
1230 {
1231 	u32 cnt, reg;
1232 
1233 	/* If at function entry a global reset was already in progress, i.e.
1234 	 * state is not 'device active' or any of the reset done bits are not
1235 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1236 	 * global reset is done.
1237 	 */
1238 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1239 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1240 		/* poll on global reset currently in progress until done */
1241 		if (ice_check_reset(hw))
1242 			return ICE_ERR_RESET_FAILED;
1243 
1244 		return ICE_SUCCESS;
1245 	}
1246 
1247 	/* Reset the PF */
1248 	reg = rd32(hw, PFGEN_CTRL);
1249 
1250 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1251 
1252 	/* Wait for the PFR to complete. The wait time is the global config lock
1253 	 * timeout plus the PFR timeout which will account for a possible reset
1254 	 * that is occurring during a download package operation.
1255 	 */
1256 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1257 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1258 		reg = rd32(hw, PFGEN_CTRL);
1259 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1260 			break;
1261 
1262 		ice_msec_delay(1, true);
1263 	}
1264 
1265 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1266 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1267 		return ICE_ERR_RESET_FAILED;
1268 	}
1269 
1270 	return ICE_SUCCESS;
1271 }
1272 
1273 /**
1274  * ice_reset - Perform different types of reset
1275  * @hw: pointer to the hardware structure
1276  * @req: reset request
1277  *
1278  * This function triggers a reset as specified by the req parameter.
1279  *
1280  * Note:
1281  * If anything other than a PF reset is triggered, PXE mode is restored.
1282  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1283  * interface has been restored in the rebuild flow.
1284  */
1285 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1286 {
1287 	u32 val = 0;
1288 
1289 	switch (req) {
1290 	case ICE_RESET_PFR:
1291 		return ice_pf_reset(hw);
1292 	case ICE_RESET_CORER:
1293 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1294 		val = GLGEN_RTRIG_CORER_M;
1295 		break;
1296 	case ICE_RESET_GLOBR:
1297 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1298 		val = GLGEN_RTRIG_GLOBR_M;
1299 		break;
1300 	default:
1301 		return ICE_ERR_PARAM;
1302 	}
1303 
1304 	val |= rd32(hw, GLGEN_RTRIG);
1305 	wr32(hw, GLGEN_RTRIG, val);
1306 	ice_flush(hw);
1307 
1308 	/* wait for the FW to be ready */
1309 	return ice_check_reset(hw);
1310 }
1311 
1312 /**
1313  * ice_copy_rxq_ctx_to_hw
1314  * @hw: pointer to the hardware structure
1315  * @ice_rxq_ctx: pointer to the rxq context
1316  * @rxq_index: the index of the Rx queue
1317  *
1318  * Copies rxq context from dense structure to HW register space
1319  */
1320 static enum ice_status
1321 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1322 {
1323 	u8 i;
1324 
1325 	if (!ice_rxq_ctx)
1326 		return ICE_ERR_BAD_PTR;
1327 
1328 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1329 		return ICE_ERR_PARAM;
1330 
1331 	/* Copy each dword separately to HW */
1332 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1333 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1334 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1335 
1336 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1337 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1338 	}
1339 
1340 	return ICE_SUCCESS;
1341 }
1342 
1343 /* LAN Rx Queue Context */
1344 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1345 	/* Field		Width	LSB */
1346 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1347 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1348 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1349 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1350 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1351 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1352 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1353 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1354 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1355 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1356 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1357 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1358 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1359 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1360 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1361 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1362 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1363 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1364 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1365 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1366 	{ 0 }
1367 };
1368 
1369 /**
1370  * ice_write_rxq_ctx
1371  * @hw: pointer to the hardware structure
1372  * @rlan_ctx: pointer to the rxq context
1373  * @rxq_index: the index of the Rx queue
1374  *
1375  * Converts rxq context from sparse to dense structure and then writes
1376  * it to HW register space and enables the hardware to prefetch descriptors
1377  * instead of only fetching them on demand
1378  */
1379 enum ice_status
1380 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1381 		  u32 rxq_index)
1382 {
1383 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1384 
1385 	if (!rlan_ctx)
1386 		return ICE_ERR_BAD_PTR;
1387 
1388 	rlan_ctx->prefena = 1;
1389 
1390 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1391 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1392 }
1393 
1394 /**
1395  * ice_clear_rxq_ctx
1396  * @hw: pointer to the hardware structure
1397  * @rxq_index: the index of the Rx queue to clear
1398  *
1399  * Clears rxq context in HW register space
1400  */
1401 enum ice_status ice_clear_rxq_ctx(struct ice_hw *hw, u32 rxq_index)
1402 {
1403 	u8 i;
1404 
1405 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1406 		return ICE_ERR_PARAM;
1407 
1408 	/* Clear each dword register separately */
1409 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++)
1410 		wr32(hw, QRX_CONTEXT(i, rxq_index), 0);
1411 
1412 	return ICE_SUCCESS;
1413 }
1414 
1415 /* LAN Tx Queue Context */
1416 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1417 				    /* Field			Width	LSB */
1418 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1419 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1420 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1421 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1422 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1423 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1424 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1425 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1426 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1427 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1428 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1429 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1430 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1431 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1432 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1433 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1434 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1435 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1436 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1437 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1438 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1439 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1440 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1441 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1442 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1443 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1444 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1445 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1446 	{ 0 }
1447 };
1448 
1449 /**
1450  * ice_copy_tx_cmpltnq_ctx_to_hw
1451  * @hw: pointer to the hardware structure
1452  * @ice_tx_cmpltnq_ctx: pointer to the Tx completion queue context
1453  * @tx_cmpltnq_index: the index of the completion queue
1454  *
1455  * Copies Tx completion queue context from dense structure to HW register space
1456  */
1457 static enum ice_status
1458 ice_copy_tx_cmpltnq_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_cmpltnq_ctx,
1459 			      u32 tx_cmpltnq_index)
1460 {
1461 	u8 i;
1462 
1463 	if (!ice_tx_cmpltnq_ctx)
1464 		return ICE_ERR_BAD_PTR;
1465 
1466 	if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1467 		return ICE_ERR_PARAM;
1468 
1469 	/* Copy each dword separately to HW */
1470 	for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++) {
1471 		wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index),
1472 		     *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1473 
1474 		ice_debug(hw, ICE_DBG_QCTX, "cmpltnqdata[%d]: %08X\n", i,
1475 			  *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1476 	}
1477 
1478 	return ICE_SUCCESS;
1479 }
1480 
1481 /* LAN Tx Completion Queue Context */
1482 static const struct ice_ctx_ele ice_tx_cmpltnq_ctx_info[] = {
1483 				       /* Field			Width   LSB */
1484 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, base,			57,	0),
1485 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, q_len,		18,	64),
1486 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, generation,		1,	96),
1487 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, wrt_ptr,		22,	97),
1488 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, pf_num,		3,	128),
1489 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_num,		10,	131),
1490 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_type,		2,	141),
1491 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, tph_desc_wr,		1,	160),
1492 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cpuid,		8,	161),
1493 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cmpltn_cache,		512,	192),
1494 	{ 0 }
1495 };
1496 
1497 /**
1498  * ice_write_tx_cmpltnq_ctx
1499  * @hw: pointer to the hardware structure
1500  * @tx_cmpltnq_ctx: pointer to the completion queue context
1501  * @tx_cmpltnq_index: the index of the completion queue
1502  *
1503  * Converts completion queue context from sparse to dense structure and then
1504  * writes it to HW register space
1505  */
1506 enum ice_status
1507 ice_write_tx_cmpltnq_ctx(struct ice_hw *hw,
1508 			 struct ice_tx_cmpltnq_ctx *tx_cmpltnq_ctx,
1509 			 u32 tx_cmpltnq_index)
1510 {
1511 	u8 ctx_buf[ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1512 
1513 	ice_set_ctx(hw, (u8 *)tx_cmpltnq_ctx, ctx_buf, ice_tx_cmpltnq_ctx_info);
1514 	return ice_copy_tx_cmpltnq_ctx_to_hw(hw, ctx_buf, tx_cmpltnq_index);
1515 }
1516 
1517 /**
1518  * ice_clear_tx_cmpltnq_ctx
1519  * @hw: pointer to the hardware structure
1520  * @tx_cmpltnq_index: the index of the completion queue to clear
1521  *
1522  * Clears Tx completion queue context in HW register space
1523  */
1524 enum ice_status
1525 ice_clear_tx_cmpltnq_ctx(struct ice_hw *hw, u32 tx_cmpltnq_index)
1526 {
1527 	u8 i;
1528 
1529 	if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1530 		return ICE_ERR_PARAM;
1531 
1532 	/* Clear each dword register separately */
1533 	for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++)
1534 		wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index), 0);
1535 
1536 	return ICE_SUCCESS;
1537 }
1538 
1539 /**
1540  * ice_copy_tx_drbell_q_ctx_to_hw
1541  * @hw: pointer to the hardware structure
1542  * @ice_tx_drbell_q_ctx: pointer to the doorbell queue context
1543  * @tx_drbell_q_index: the index of the doorbell queue
1544  *
1545  * Copies doorbell queue context from dense structure to HW register space
1546  */
1547 static enum ice_status
1548 ice_copy_tx_drbell_q_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_drbell_q_ctx,
1549 			       u32 tx_drbell_q_index)
1550 {
1551 	u8 i;
1552 
1553 	if (!ice_tx_drbell_q_ctx)
1554 		return ICE_ERR_BAD_PTR;
1555 
1556 	if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1557 		return ICE_ERR_PARAM;
1558 
1559 	/* Copy each dword separately to HW */
1560 	for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++) {
1561 		wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index),
1562 		     *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1563 
1564 		ice_debug(hw, ICE_DBG_QCTX, "tx_drbell_qdata[%d]: %08X\n", i,
1565 			  *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1566 	}
1567 
1568 	return ICE_SUCCESS;
1569 }
1570 
1571 /* LAN Tx Doorbell Queue Context info */
1572 static const struct ice_ctx_ele ice_tx_drbell_q_ctx_info[] = {
1573 					/* Field		Width   LSB */
1574 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, base,		57,	0),
1575 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, ring_len,		13,	64),
1576 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, pf_num,		3,	80),
1577 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, vf_num,		8,	84),
1578 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, vmvf_type,		2,	94),
1579 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, cpuid,		8,	96),
1580 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_rd,		1,	104),
1581 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_wr,		1,	108),
1582 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, db_q_en,		1,	112),
1583 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_head,		13,	128),
1584 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_tail,		13,	144),
1585 	{ 0 }
1586 };
1587 
1588 /**
1589  * ice_write_tx_drbell_q_ctx
1590  * @hw: pointer to the hardware structure
1591  * @tx_drbell_q_ctx: pointer to the doorbell queue context
1592  * @tx_drbell_q_index: the index of the doorbell queue
1593  *
1594  * Converts doorbell queue context from sparse to dense structure and then
1595  * writes it to HW register space
1596  */
1597 enum ice_status
1598 ice_write_tx_drbell_q_ctx(struct ice_hw *hw,
1599 			  struct ice_tx_drbell_q_ctx *tx_drbell_q_ctx,
1600 			  u32 tx_drbell_q_index)
1601 {
1602 	u8 ctx_buf[ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1603 
1604 	ice_set_ctx(hw, (u8 *)tx_drbell_q_ctx, ctx_buf,
1605 		    ice_tx_drbell_q_ctx_info);
1606 	return ice_copy_tx_drbell_q_ctx_to_hw(hw, ctx_buf, tx_drbell_q_index);
1607 }
1608 
1609 /**
1610  * ice_clear_tx_drbell_q_ctx
1611  * @hw: pointer to the hardware structure
1612  * @tx_drbell_q_index: the index of the doorbell queue to clear
1613  *
1614  * Clears doorbell queue context in HW register space
1615  */
1616 enum ice_status
1617 ice_clear_tx_drbell_q_ctx(struct ice_hw *hw, u32 tx_drbell_q_index)
1618 {
1619 	u8 i;
1620 
1621 	if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1622 		return ICE_ERR_PARAM;
1623 
1624 	/* Clear each dword register separately */
1625 	for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++)
1626 		wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index), 0);
1627 
1628 	return ICE_SUCCESS;
1629 }
1630 
1631 /* FW Admin Queue command wrappers */
1632 
1633 /**
1634  * ice_should_retry_sq_send_cmd
1635  * @opcode: AQ opcode
1636  *
1637  * Decide if we should retry the send command routine for the ATQ, depending
1638  * on the opcode.
1639  */
1640 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1641 {
1642 	switch (opcode) {
1643 	case ice_aqc_opc_dnl_get_status:
1644 	case ice_aqc_opc_dnl_run:
1645 	case ice_aqc_opc_dnl_call:
1646 	case ice_aqc_opc_dnl_read_sto:
1647 	case ice_aqc_opc_dnl_write_sto:
1648 	case ice_aqc_opc_dnl_set_breakpoints:
1649 	case ice_aqc_opc_dnl_read_log:
1650 	case ice_aqc_opc_get_link_topo:
1651 	case ice_aqc_opc_done_alt_write:
1652 	case ice_aqc_opc_lldp_stop:
1653 	case ice_aqc_opc_lldp_start:
1654 	case ice_aqc_opc_lldp_filter_ctrl:
1655 		return true;
1656 	}
1657 
1658 	return false;
1659 }
1660 
1661 /**
1662  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1663  * @hw: pointer to the HW struct
1664  * @cq: pointer to the specific Control queue
1665  * @desc: prefilled descriptor describing the command
1666  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1667  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1668  * @cd: pointer to command details structure
1669  *
1670  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1671  * Queue if the EBUSY AQ error is returned.
1672  */
1673 static enum ice_status
1674 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1675 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1676 		      struct ice_sq_cd *cd)
1677 {
1678 	struct ice_aq_desc desc_cpy;
1679 	enum ice_status status;
1680 	bool is_cmd_for_retry;
1681 	u8 *buf_cpy = NULL;
1682 	u8 idx = 0;
1683 	u16 opcode;
1684 
1685 	opcode = LE16_TO_CPU(desc->opcode);
1686 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1687 	ice_memset(&desc_cpy, 0, sizeof(desc_cpy), ICE_NONDMA_MEM);
1688 
1689 	if (is_cmd_for_retry) {
1690 		if (buf) {
1691 			buf_cpy = (u8 *)ice_malloc(hw, buf_size);
1692 			if (!buf_cpy)
1693 				return ICE_ERR_NO_MEMORY;
1694 		}
1695 
1696 		ice_memcpy(&desc_cpy, desc, sizeof(desc_cpy),
1697 			   ICE_NONDMA_TO_NONDMA);
1698 	}
1699 
1700 	do {
1701 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1702 
1703 		if (!is_cmd_for_retry || status == ICE_SUCCESS ||
1704 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1705 			break;
1706 
1707 		if (buf_cpy)
1708 			ice_memcpy(buf, buf_cpy, buf_size,
1709 				   ICE_NONDMA_TO_NONDMA);
1710 
1711 		ice_memcpy(desc, &desc_cpy, sizeof(desc_cpy),
1712 			   ICE_NONDMA_TO_NONDMA);
1713 
1714 		ice_msec_delay(ICE_SQ_SEND_DELAY_TIME_MS, false);
1715 
1716 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1717 
1718 	if (buf_cpy)
1719 		ice_free(hw, buf_cpy);
1720 
1721 	return status;
1722 }
1723 
1724 /**
1725  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1726  * @hw: pointer to the HW struct
1727  * @desc: descriptor describing the command
1728  * @buf: buffer to use for indirect commands (NULL for direct commands)
1729  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1730  * @cd: pointer to command details structure
1731  *
1732  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1733  */
1734 enum ice_status
1735 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1736 		u16 buf_size, struct ice_sq_cd *cd)
1737 {
1738 	return ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1739 }
1740 
1741 /**
1742  * ice_aq_get_fw_ver
1743  * @hw: pointer to the HW struct
1744  * @cd: pointer to command details structure or NULL
1745  *
1746  * Get the firmware version (0x0001) from the admin queue commands
1747  */
1748 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1749 {
1750 	struct ice_aqc_get_ver *resp;
1751 	struct ice_aq_desc desc;
1752 	enum ice_status status;
1753 
1754 	resp = &desc.params.get_ver;
1755 
1756 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1757 
1758 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1759 
1760 	if (!status) {
1761 		hw->fw_branch = resp->fw_branch;
1762 		hw->fw_maj_ver = resp->fw_major;
1763 		hw->fw_min_ver = resp->fw_minor;
1764 		hw->fw_patch = resp->fw_patch;
1765 		hw->fw_build = LE32_TO_CPU(resp->fw_build);
1766 		hw->api_branch = resp->api_branch;
1767 		hw->api_maj_ver = resp->api_major;
1768 		hw->api_min_ver = resp->api_minor;
1769 		hw->api_patch = resp->api_patch;
1770 	}
1771 
1772 	return status;
1773 }
1774 
1775 /**
1776  * ice_aq_send_driver_ver
1777  * @hw: pointer to the HW struct
1778  * @dv: driver's major, minor version
1779  * @cd: pointer to command details structure or NULL
1780  *
1781  * Send the driver version (0x0002) to the firmware
1782  */
1783 enum ice_status
1784 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1785 		       struct ice_sq_cd *cd)
1786 {
1787 	struct ice_aqc_driver_ver *cmd;
1788 	struct ice_aq_desc desc;
1789 	u16 len;
1790 
1791 	cmd = &desc.params.driver_ver;
1792 
1793 	if (!dv)
1794 		return ICE_ERR_PARAM;
1795 
1796 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1797 
1798 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1799 	cmd->major_ver = dv->major_ver;
1800 	cmd->minor_ver = dv->minor_ver;
1801 	cmd->build_ver = dv->build_ver;
1802 	cmd->subbuild_ver = dv->subbuild_ver;
1803 
1804 	len = 0;
1805 	while (len < sizeof(dv->driver_string) &&
1806 	       IS_ASCII(dv->driver_string[len]) && dv->driver_string[len])
1807 		len++;
1808 
1809 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1810 }
1811 
1812 /**
1813  * ice_aq_q_shutdown
1814  * @hw: pointer to the HW struct
1815  * @unloading: is the driver unloading itself
1816  *
1817  * Tell the Firmware that we're shutting down the AdminQ and whether
1818  * or not the driver is unloading as well (0x0003).
1819  */
1820 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1821 {
1822 	struct ice_aqc_q_shutdown *cmd;
1823 	struct ice_aq_desc desc;
1824 
1825 	cmd = &desc.params.q_shutdown;
1826 
1827 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1828 
1829 	if (unloading)
1830 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1831 
1832 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1833 }
1834 
1835 /**
1836  * ice_aq_req_res
1837  * @hw: pointer to the HW struct
1838  * @res: resource ID
1839  * @access: access type
1840  * @sdp_number: resource number
1841  * @timeout: the maximum time in ms that the driver may hold the resource
1842  * @cd: pointer to command details structure or NULL
1843  *
1844  * Requests common resource using the admin queue commands (0x0008).
1845  * When attempting to acquire the Global Config Lock, the driver can
1846  * learn of three states:
1847  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1848  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1849  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1850  *                          successfully downloaded the package; the driver does
1851  *                          not have to download the package and can continue
1852  *                          loading
1853  *
1854  * Note that if the caller is in an acquire lock, perform action, release lock
1855  * phase of operation, it is possible that the FW may detect a timeout and issue
1856  * a CORER. In this case, the driver will receive a CORER interrupt and will
1857  * have to determine its cause. The calling thread that is handling this flow
1858  * will likely get an error propagated back to it indicating the Download
1859  * Package, Update Package or the Release Resource AQ commands timed out.
1860  */
1861 static enum ice_status
1862 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1863 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1864 	       struct ice_sq_cd *cd)
1865 {
1866 	struct ice_aqc_req_res *cmd_resp;
1867 	struct ice_aq_desc desc;
1868 	enum ice_status status;
1869 
1870 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1871 
1872 	cmd_resp = &desc.params.res_owner;
1873 
1874 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1875 
1876 	cmd_resp->res_id = CPU_TO_LE16(res);
1877 	cmd_resp->access_type = CPU_TO_LE16(access);
1878 	cmd_resp->res_number = CPU_TO_LE32(sdp_number);
1879 	cmd_resp->timeout = CPU_TO_LE32(*timeout);
1880 	*timeout = 0;
1881 
1882 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1883 
1884 	/* The completion specifies the maximum time in ms that the driver
1885 	 * may hold the resource in the Timeout field.
1886 	 */
1887 
1888 	/* Global config lock response utilizes an additional status field.
1889 	 *
1890 	 * If the Global config lock resource is held by some other driver, the
1891 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1892 	 * and the timeout field indicates the maximum time the current owner
1893 	 * of the resource has to free it.
1894 	 */
1895 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1896 		if (LE16_TO_CPU(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1897 			*timeout = LE32_TO_CPU(cmd_resp->timeout);
1898 			return ICE_SUCCESS;
1899 		} else if (LE16_TO_CPU(cmd_resp->status) ==
1900 			   ICE_AQ_RES_GLBL_IN_PROG) {
1901 			*timeout = LE32_TO_CPU(cmd_resp->timeout);
1902 			return ICE_ERR_AQ_ERROR;
1903 		} else if (LE16_TO_CPU(cmd_resp->status) ==
1904 			   ICE_AQ_RES_GLBL_DONE) {
1905 			return ICE_ERR_AQ_NO_WORK;
1906 		}
1907 
1908 		/* invalid FW response, force a timeout immediately */
1909 		*timeout = 0;
1910 		return ICE_ERR_AQ_ERROR;
1911 	}
1912 
1913 	/* If the resource is held by some other driver, the command completes
1914 	 * with a busy return value and the timeout field indicates the maximum
1915 	 * time the current owner of the resource has to free it.
1916 	 */
1917 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1918 		*timeout = LE32_TO_CPU(cmd_resp->timeout);
1919 
1920 	return status;
1921 }
1922 
1923 /**
1924  * ice_aq_release_res
1925  * @hw: pointer to the HW struct
1926  * @res: resource ID
1927  * @sdp_number: resource number
1928  * @cd: pointer to command details structure or NULL
1929  *
1930  * release common resource using the admin queue commands (0x0009)
1931  */
1932 static enum ice_status
1933 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1934 		   struct ice_sq_cd *cd)
1935 {
1936 	struct ice_aqc_req_res *cmd;
1937 	struct ice_aq_desc desc;
1938 
1939 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1940 
1941 	cmd = &desc.params.res_owner;
1942 
1943 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1944 
1945 	cmd->res_id = CPU_TO_LE16(res);
1946 	cmd->res_number = CPU_TO_LE32(sdp_number);
1947 
1948 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1949 }
1950 
1951 /**
1952  * ice_acquire_res
1953  * @hw: pointer to the HW structure
1954  * @res: resource ID
1955  * @access: access type (read or write)
1956  * @timeout: timeout in milliseconds
1957  *
1958  * This function will attempt to acquire the ownership of a resource.
1959  */
1960 enum ice_status
1961 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1962 		enum ice_aq_res_access_type access, u32 timeout)
1963 {
1964 #define ICE_RES_POLLING_DELAY_MS	10
1965 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1966 	u32 time_left = timeout;
1967 	enum ice_status status;
1968 
1969 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1970 
1971 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1972 
1973 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1974 	 * previously acquired the resource and performed any necessary updates;
1975 	 * in this case the caller does not obtain the resource and has no
1976 	 * further work to do.
1977 	 */
1978 	if (status == ICE_ERR_AQ_NO_WORK)
1979 		goto ice_acquire_res_exit;
1980 
1981 	if (status)
1982 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1983 
1984 	/* If necessary, poll until the current lock owner timeouts */
1985 	timeout = time_left;
1986 	while (status && timeout && time_left) {
1987 		ice_msec_delay(delay, true);
1988 		timeout = (timeout > delay) ? timeout - delay : 0;
1989 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1990 
1991 		if (status == ICE_ERR_AQ_NO_WORK)
1992 			/* lock free, but no work to do */
1993 			break;
1994 
1995 		if (!status)
1996 			/* lock acquired */
1997 			break;
1998 	}
1999 	if (status && status != ICE_ERR_AQ_NO_WORK)
2000 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
2001 
2002 ice_acquire_res_exit:
2003 	if (status == ICE_ERR_AQ_NO_WORK) {
2004 		if (access == ICE_RES_WRITE)
2005 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
2006 		else
2007 			ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
2008 	}
2009 	return status;
2010 }
2011 
2012 /**
2013  * ice_release_res
2014  * @hw: pointer to the HW structure
2015  * @res: resource ID
2016  *
2017  * This function will release a resource using the proper Admin Command.
2018  */
2019 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2020 {
2021 	enum ice_status status;
2022 	u32 total_delay = 0;
2023 
2024 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2025 
2026 	status = ice_aq_release_res(hw, res, 0, NULL);
2027 
2028 	/* there are some rare cases when trying to release the resource
2029 	 * results in an admin queue timeout, so handle them correctly
2030 	 */
2031 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
2032 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
2033 		ice_msec_delay(1, true);
2034 		status = ice_aq_release_res(hw, res, 0, NULL);
2035 		total_delay++;
2036 	}
2037 }
2038 
2039 /**
2040  * ice_aq_alloc_free_res - command to allocate/free resources
2041  * @hw: pointer to the HW struct
2042  * @num_entries: number of resource entries in buffer
2043  * @buf: Indirect buffer to hold data parameters and response
2044  * @buf_size: size of buffer for indirect commands
2045  * @opc: pass in the command opcode
2046  * @cd: pointer to command details structure or NULL
2047  *
2048  * Helper function to allocate/free resources using the admin queue commands
2049  */
2050 enum ice_status
2051 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
2052 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2053 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2054 {
2055 	struct ice_aqc_alloc_free_res_cmd *cmd;
2056 	struct ice_aq_desc desc;
2057 
2058 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2059 
2060 	cmd = &desc.params.sw_res_ctrl;
2061 
2062 	if (!buf)
2063 		return ICE_ERR_PARAM;
2064 
2065 	if (buf_size < FLEX_ARRAY_SIZE(buf, elem, num_entries))
2066 		return ICE_ERR_PARAM;
2067 
2068 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2069 
2070 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
2071 
2072 	cmd->num_entries = CPU_TO_LE16(num_entries);
2073 
2074 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2075 }
2076 
2077 /**
2078  * ice_alloc_hw_res - allocate resource
2079  * @hw: pointer to the HW struct
2080  * @type: type of resource
2081  * @num: number of resources to allocate
2082  * @btm: allocate from bottom
2083  * @res: pointer to array that will receive the resources
2084  */
2085 enum ice_status
2086 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2087 {
2088 	struct ice_aqc_alloc_free_res_elem *buf;
2089 	enum ice_status status;
2090 	u16 buf_len;
2091 
2092 	buf_len = ice_struct_size(buf, elem, num);
2093 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
2094 	if (!buf)
2095 		return ICE_ERR_NO_MEMORY;
2096 
2097 	/* Prepare buffer to allocate resource. */
2098 	buf->num_elems = CPU_TO_LE16(num);
2099 	buf->res_type = CPU_TO_LE16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2100 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2101 	if (btm)
2102 		buf->res_type |= CPU_TO_LE16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2103 
2104 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
2105 				       ice_aqc_opc_alloc_res, NULL);
2106 	if (status)
2107 		goto ice_alloc_res_exit;
2108 
2109 	ice_memcpy(res, buf->elem, sizeof(*buf->elem) * num,
2110 		   ICE_NONDMA_TO_NONDMA);
2111 
2112 ice_alloc_res_exit:
2113 	ice_free(hw, buf);
2114 	return status;
2115 }
2116 
2117 /**
2118  * ice_free_hw_res - free allocated HW resource
2119  * @hw: pointer to the HW struct
2120  * @type: type of resource to free
2121  * @num: number of resources
2122  * @res: pointer to array that contains the resources to free
2123  */
2124 enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2125 {
2126 	struct ice_aqc_alloc_free_res_elem *buf;
2127 	enum ice_status status;
2128 	u16 buf_len;
2129 
2130 	buf_len = ice_struct_size(buf, elem, num);
2131 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
2132 	if (!buf)
2133 		return ICE_ERR_NO_MEMORY;
2134 
2135 	/* Prepare buffer to free resource. */
2136 	buf->num_elems = CPU_TO_LE16(num);
2137 	buf->res_type = CPU_TO_LE16(type);
2138 	ice_memcpy(buf->elem, res, sizeof(*buf->elem) * num,
2139 		   ICE_NONDMA_TO_NONDMA);
2140 
2141 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
2142 				       ice_aqc_opc_free_res, NULL);
2143 	if (status)
2144 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2145 
2146 	ice_free(hw, buf);
2147 	return status;
2148 }
2149 
2150 /**
2151  * ice_get_num_per_func - determine number of resources per PF
2152  * @hw: pointer to the HW structure
2153  * @max: value to be evenly split between each PF
2154  *
2155  * Determine the number of valid functions by going through the bitmap returned
2156  * from parsing capabilities and use this to calculate the number of resources
2157  * per PF based on the max value passed in.
2158  */
2159 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2160 {
2161 	u8 funcs;
2162 
2163 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2164 	funcs = ice_hweight8(hw->dev_caps.common_cap.valid_functions &
2165 			     ICE_CAPS_VALID_FUNCS_M);
2166 
2167 	if (!funcs)
2168 		return 0;
2169 
2170 	return max / funcs;
2171 }
2172 
2173 /**
2174  * ice_print_led_caps - print LED capabilities
2175  * @hw: pointer to the ice_hw instance
2176  * @caps: pointer to common caps instance
2177  * @prefix: string to prefix when printing
2178  * @dbg: set to indicate debug print
2179  */
2180 static void
2181 ice_print_led_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2182 		   char const *prefix, bool dbg)
2183 {
2184 	u8 i;
2185 
2186 	if (dbg)
2187 		ice_debug(hw, ICE_DBG_INIT, "%s: led_pin_num = %d\n", prefix,
2188 			  caps->led_pin_num);
2189 	else
2190 		ice_info(hw, "%s: led_pin_num = %d\n", prefix,
2191 			 caps->led_pin_num);
2192 
2193 	for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_LED; i++) {
2194 		if (!caps->led[i])
2195 			continue;
2196 
2197 		if (dbg)
2198 			ice_debug(hw, ICE_DBG_INIT, "%s: led[%d] = %d\n",
2199 				  prefix, i, caps->led[i]);
2200 		else
2201 			ice_info(hw, "%s: led[%d] = %d\n", prefix, i,
2202 				 caps->led[i]);
2203 	}
2204 }
2205 
2206 /**
2207  * ice_print_sdp_caps - print SDP capabilities
2208  * @hw: pointer to the ice_hw instance
2209  * @caps: pointer to common caps instance
2210  * @prefix: string to prefix when printing
2211  * @dbg: set to indicate debug print
2212  */
2213 static void
2214 ice_print_sdp_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2215 		   char const *prefix, bool dbg)
2216 {
2217 	u8 i;
2218 
2219 	if (dbg)
2220 		ice_debug(hw, ICE_DBG_INIT, "%s: sdp_pin_num = %d\n", prefix,
2221 			  caps->sdp_pin_num);
2222 	else
2223 		ice_info(hw, "%s: sdp_pin_num = %d\n", prefix,
2224 			 caps->sdp_pin_num);
2225 
2226 	for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_SDP; i++) {
2227 		if (!caps->sdp[i])
2228 			continue;
2229 
2230 		if (dbg)
2231 			ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%d] = %d\n",
2232 				  prefix, i, caps->sdp[i]);
2233 		else
2234 			ice_info(hw, "%s: sdp[%d] = %d\n", prefix,
2235 				 i, caps->sdp[i]);
2236 	}
2237 }
2238 
2239 /**
2240  * ice_parse_common_caps - parse common device/function capabilities
2241  * @hw: pointer to the HW struct
2242  * @caps: pointer to common capabilities structure
2243  * @elem: the capability element to parse
2244  * @prefix: message prefix for tracing capabilities
2245  *
2246  * Given a capability element, extract relevant details into the common
2247  * capability structure.
2248  *
2249  * Returns: true if the capability matches one of the common capability ids,
2250  * false otherwise.
2251  */
2252 static bool
2253 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2254 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2255 {
2256 	u32 logical_id = LE32_TO_CPU(elem->logical_id);
2257 	u32 phys_id = LE32_TO_CPU(elem->phys_id);
2258 	u32 number = LE32_TO_CPU(elem->number);
2259 	u16 cap = LE16_TO_CPU(elem->cap);
2260 	bool found = true;
2261 
2262 	switch (cap) {
2263 	case ICE_AQC_CAPS_SWITCHING_MODE:
2264 		caps->switching_mode = number;
2265 		ice_debug(hw, ICE_DBG_INIT, "%s: switching_mode = %d\n", prefix,
2266 			  caps->switching_mode);
2267 		break;
2268 	case ICE_AQC_CAPS_MANAGEABILITY_MODE:
2269 		caps->mgmt_mode = number;
2270 		caps->mgmt_protocols_mctp = logical_id;
2271 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_mode = %d\n", prefix,
2272 			  caps->mgmt_mode);
2273 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_protocols_mctp = %d\n", prefix,
2274 			  caps->mgmt_protocols_mctp);
2275 		break;
2276 	case ICE_AQC_CAPS_OS2BMC:
2277 		caps->os2bmc = number;
2278 		ice_debug(hw, ICE_DBG_INIT, "%s: os2bmc = %d\n", prefix, caps->os2bmc);
2279 		break;
2280 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2281 		caps->valid_functions = number;
2282 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2283 			  caps->valid_functions);
2284 		break;
2285 	case ICE_AQC_CAPS_SRIOV:
2286 		caps->sr_iov_1_1 = (number == 1);
2287 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2288 			  caps->sr_iov_1_1);
2289 		break;
2290 	case ICE_AQC_CAPS_802_1QBG:
2291 		caps->evb_802_1_qbg = (number == 1);
2292 		ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbg = %d\n", prefix, number);
2293 		break;
2294 	case ICE_AQC_CAPS_802_1BR:
2295 		caps->evb_802_1_qbh = (number == 1);
2296 		ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbh = %d\n", prefix, number);
2297 		break;
2298 	case ICE_AQC_CAPS_DCB:
2299 		caps->dcb = (number == 1);
2300 		caps->active_tc_bitmap = logical_id;
2301 		caps->maxtc = phys_id;
2302 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2303 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2304 			  caps->active_tc_bitmap);
2305 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2306 		break;
2307 	case ICE_AQC_CAPS_ISCSI:
2308 		caps->iscsi = (number == 1);
2309 		ice_debug(hw, ICE_DBG_INIT, "%s: iscsi = %d\n", prefix, caps->iscsi);
2310 		break;
2311 	case ICE_AQC_CAPS_RSS:
2312 		caps->rss_table_size = number;
2313 		caps->rss_table_entry_width = logical_id;
2314 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2315 			  caps->rss_table_size);
2316 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2317 			  caps->rss_table_entry_width);
2318 		break;
2319 	case ICE_AQC_CAPS_RXQS:
2320 		caps->num_rxq = number;
2321 		caps->rxq_first_id = phys_id;
2322 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2323 			  caps->num_rxq);
2324 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2325 			  caps->rxq_first_id);
2326 		break;
2327 	case ICE_AQC_CAPS_TXQS:
2328 		caps->num_txq = number;
2329 		caps->txq_first_id = phys_id;
2330 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2331 			  caps->num_txq);
2332 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2333 			  caps->txq_first_id);
2334 		break;
2335 	case ICE_AQC_CAPS_MSIX:
2336 		caps->num_msix_vectors = number;
2337 		caps->msix_vector_first_id = phys_id;
2338 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2339 			  caps->num_msix_vectors);
2340 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2341 			  caps->msix_vector_first_id);
2342 		break;
2343 	case ICE_AQC_CAPS_NVM_VER:
2344 		break;
2345 	case ICE_AQC_CAPS_NVM_MGMT:
2346 		caps->sec_rev_disabled =
2347 			(number & ICE_NVM_MGMT_SEC_REV_DISABLED) ?
2348 			true : false;
2349 		ice_debug(hw, ICE_DBG_INIT, "%s: sec_rev_disabled = %d\n", prefix,
2350 			  caps->sec_rev_disabled);
2351 		caps->update_disabled =
2352 			(number & ICE_NVM_MGMT_UPDATE_DISABLED) ?
2353 			true : false;
2354 		ice_debug(hw, ICE_DBG_INIT, "%s: update_disabled = %d\n", prefix,
2355 			  caps->update_disabled);
2356 		caps->nvm_unified_update =
2357 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2358 			true : false;
2359 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2360 			  caps->nvm_unified_update);
2361 		break;
2362 	case ICE_AQC_CAPS_CEM:
2363 		caps->mgmt_cem = (number == 1);
2364 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_cem = %d\n", prefix,
2365 			  caps->mgmt_cem);
2366 		break;
2367 	case ICE_AQC_CAPS_LED:
2368 		if (phys_id < ICE_MAX_SUPPORTED_GPIO_LED) {
2369 			caps->led[phys_id] = true;
2370 			caps->led_pin_num++;
2371 			ice_debug(hw, ICE_DBG_INIT, "%s: led[%d] = 1\n", prefix, phys_id);
2372 		}
2373 		break;
2374 	case ICE_AQC_CAPS_SDP:
2375 		if (phys_id < ICE_MAX_SUPPORTED_GPIO_SDP) {
2376 			caps->sdp[phys_id] = true;
2377 			caps->sdp_pin_num++;
2378 			ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%d] = 1\n", prefix, phys_id);
2379 		}
2380 		break;
2381 	case ICE_AQC_CAPS_WR_CSR_PROT:
2382 		caps->wr_csr_prot = number;
2383 		caps->wr_csr_prot |= (u64)logical_id << 32;
2384 		ice_debug(hw, ICE_DBG_INIT, "%s: wr_csr_prot = 0x%llX\n", prefix,
2385 			  (unsigned long long)caps->wr_csr_prot);
2386 		break;
2387 	case ICE_AQC_CAPS_WOL_PROXY:
2388 		caps->num_wol_proxy_fltr = number;
2389 		caps->wol_proxy_vsi_seid = logical_id;
2390 		caps->apm_wol_support = !!(phys_id & ICE_WOL_SUPPORT_M);
2391 		caps->acpi_prog_mthd = !!(phys_id &
2392 					  ICE_ACPI_PROG_MTHD_M);
2393 		caps->proxy_support = !!(phys_id & ICE_PROXY_SUPPORT_M);
2394 		ice_debug(hw, ICE_DBG_INIT, "%s: num_wol_proxy_fltr = %d\n", prefix,
2395 			  caps->num_wol_proxy_fltr);
2396 		ice_debug(hw, ICE_DBG_INIT, "%s: wol_proxy_vsi_seid = %d\n", prefix,
2397 			  caps->wol_proxy_vsi_seid);
2398 		ice_debug(hw, ICE_DBG_INIT, "%s: apm_wol_support = %d\n",
2399 			  prefix, caps->apm_wol_support);
2400 		break;
2401 	case ICE_AQC_CAPS_MAX_MTU:
2402 		caps->max_mtu = number;
2403 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2404 			  prefix, caps->max_mtu);
2405 		break;
2406 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2407 		caps->pcie_reset_avoidance = (number > 0);
2408 		ice_debug(hw, ICE_DBG_INIT,
2409 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2410 			  caps->pcie_reset_avoidance);
2411 		break;
2412 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2413 		caps->reset_restrict_support = (number == 1);
2414 		ice_debug(hw, ICE_DBG_INIT,
2415 			  "%s: reset_restrict_support = %d\n", prefix,
2416 			  caps->reset_restrict_support);
2417 		break;
2418 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG0:
2419 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG1:
2420 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG2:
2421 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG3:
2422 	{
2423 		u8 index = cap - ICE_AQC_CAPS_EXT_TOPO_DEV_IMG0;
2424 
2425 		caps->ext_topo_dev_img_ver_high[index] = number;
2426 		caps->ext_topo_dev_img_ver_low[index] = logical_id;
2427 		caps->ext_topo_dev_img_part_num[index] =
2428 			(phys_id & ICE_EXT_TOPO_DEV_IMG_PART_NUM_M) >>
2429 			ICE_EXT_TOPO_DEV_IMG_PART_NUM_S;
2430 		caps->ext_topo_dev_img_load_en[index] =
2431 			(phys_id & ICE_EXT_TOPO_DEV_IMG_LOAD_EN) != 0;
2432 		caps->ext_topo_dev_img_prog_en[index] =
2433 			(phys_id & ICE_EXT_TOPO_DEV_IMG_PROG_EN) != 0;
2434 		ice_debug(hw, ICE_DBG_INIT,
2435 			  "%s: ext_topo_dev_img_ver_high[%d] = %d\n",
2436 			  prefix, index,
2437 			  caps->ext_topo_dev_img_ver_high[index]);
2438 		ice_debug(hw, ICE_DBG_INIT,
2439 			  "%s: ext_topo_dev_img_ver_low[%d] = %d\n",
2440 			  prefix, index,
2441 			  caps->ext_topo_dev_img_ver_low[index]);
2442 		ice_debug(hw, ICE_DBG_INIT,
2443 			  "%s: ext_topo_dev_img_part_num[%d] = %d\n",
2444 			  prefix, index,
2445 			  caps->ext_topo_dev_img_part_num[index]);
2446 		ice_debug(hw, ICE_DBG_INIT,
2447 			  "%s: ext_topo_dev_img_load_en[%d] = %d\n",
2448 			  prefix, index,
2449 			  caps->ext_topo_dev_img_load_en[index]);
2450 		ice_debug(hw, ICE_DBG_INIT,
2451 			  "%s: ext_topo_dev_img_prog_en[%d] = %d\n",
2452 			  prefix, index,
2453 			  caps->ext_topo_dev_img_prog_en[index]);
2454 		break;
2455 	}
2456 	default:
2457 		/* Not one of the recognized common capabilities */
2458 		found = false;
2459 	}
2460 
2461 	return found;
2462 }
2463 
2464 /**
2465  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2466  * @hw: pointer to the HW structure
2467  * @caps: pointer to capabilities structure to fix
2468  *
2469  * Re-calculate the capabilities that are dependent on the number of physical
2470  * ports; i.e. some features are not supported or function differently on
2471  * devices with more than 4 ports.
2472  */
2473 static void
2474 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2475 {
2476 	/* This assumes device capabilities are always scanned before function
2477 	 * capabilities during the initialization flow.
2478 	 */
2479 	if (hw->dev_caps.num_funcs > 4) {
2480 		/* Max 4 TCs per port */
2481 		caps->maxtc = 4;
2482 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2483 			  caps->maxtc);
2484 	}
2485 }
2486 
2487 /**
2488  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2489  * @hw: pointer to the HW struct
2490  * @func_p: pointer to function capabilities structure
2491  * @cap: pointer to the capability element to parse
2492  *
2493  * Extract function capabilities for ICE_AQC_CAPS_VF.
2494  */
2495 static void
2496 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2497 		       struct ice_aqc_list_caps_elem *cap)
2498 {
2499 	u32 number = LE32_TO_CPU(cap->number);
2500 	u32 logical_id = LE32_TO_CPU(cap->logical_id);
2501 
2502 	func_p->num_allocd_vfs = number;
2503 	func_p->vf_base_id = logical_id;
2504 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2505 		  func_p->num_allocd_vfs);
2506 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2507 		  func_p->vf_base_id);
2508 }
2509 
2510 /**
2511  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2512  * @hw: pointer to the HW struct
2513  * @func_p: pointer to function capabilities structure
2514  * @cap: pointer to the capability element to parse
2515  *
2516  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2517  */
2518 static void
2519 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2520 			struct ice_aqc_list_caps_elem *cap)
2521 {
2522 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2523 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2524 		  LE32_TO_CPU(cap->number));
2525 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2526 		  func_p->guar_num_vsi);
2527 }
2528 
2529 /**
2530  * ice_parse_func_caps - Parse function capabilities
2531  * @hw: pointer to the HW struct
2532  * @func_p: pointer to function capabilities structure
2533  * @buf: buffer containing the function capability records
2534  * @cap_count: the number of capabilities
2535  *
2536  * Helper function to parse function (0x000A) capabilities list. For
2537  * capabilities shared between device and function, this relies on
2538  * ice_parse_common_caps.
2539  *
2540  * Loop through the list of provided capabilities and extract the relevant
2541  * data into the function capabilities structured.
2542  */
2543 static void
2544 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2545 		    void *buf, u32 cap_count)
2546 {
2547 	struct ice_aqc_list_caps_elem *cap_resp;
2548 	u32 i;
2549 
2550 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2551 
2552 	ice_memset(func_p, 0, sizeof(*func_p), ICE_NONDMA_MEM);
2553 
2554 	for (i = 0; i < cap_count; i++) {
2555 		u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2556 		bool found;
2557 
2558 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2559 					      &cap_resp[i], "func caps");
2560 
2561 		switch (cap) {
2562 		case ICE_AQC_CAPS_VF:
2563 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2564 			break;
2565 		case ICE_AQC_CAPS_VSI:
2566 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2567 			break;
2568 		default:
2569 			/* Don't list common capabilities as unknown */
2570 			if (!found)
2571 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2572 					  i, cap);
2573 			break;
2574 		}
2575 	}
2576 
2577 	ice_print_led_caps(hw, &func_p->common_cap, "func caps", true);
2578 	ice_print_sdp_caps(hw, &func_p->common_cap, "func caps", true);
2579 
2580 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2581 }
2582 
2583 /**
2584  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2585  * @hw: pointer to the HW struct
2586  * @dev_p: pointer to device capabilities structure
2587  * @cap: capability element to parse
2588  *
2589  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2590  */
2591 static void
2592 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2593 			      struct ice_aqc_list_caps_elem *cap)
2594 {
2595 	u32 number = LE32_TO_CPU(cap->number);
2596 
2597 	dev_p->num_funcs = ice_hweight32(number);
2598 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2599 		  dev_p->num_funcs);
2600 
2601 }
2602 
2603 /**
2604  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2605  * @hw: pointer to the HW struct
2606  * @dev_p: pointer to device capabilities structure
2607  * @cap: capability element to parse
2608  *
2609  * Parse ICE_AQC_CAPS_VF for device capabilities.
2610  */
2611 static void
2612 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2613 		      struct ice_aqc_list_caps_elem *cap)
2614 {
2615 	u32 number = LE32_TO_CPU(cap->number);
2616 
2617 	dev_p->num_vfs_exposed = number;
2618 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2619 		  dev_p->num_vfs_exposed);
2620 }
2621 
2622 /**
2623  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2624  * @hw: pointer to the HW struct
2625  * @dev_p: pointer to device capabilities structure
2626  * @cap: capability element to parse
2627  *
2628  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2629  */
2630 static void
2631 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2632 		       struct ice_aqc_list_caps_elem *cap)
2633 {
2634 	u32 number = LE32_TO_CPU(cap->number);
2635 
2636 	dev_p->num_vsi_allocd_to_host = number;
2637 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2638 		  dev_p->num_vsi_allocd_to_host);
2639 }
2640 
2641 /**
2642  * ice_parse_dev_caps - Parse device capabilities
2643  * @hw: pointer to the HW struct
2644  * @dev_p: pointer to device capabilities structure
2645  * @buf: buffer containing the device capability records
2646  * @cap_count: the number of capabilities
2647  *
2648  * Helper device to parse device (0x000B) capabilities list. For
2649  * capabilities shared between device and function, this relies on
2650  * ice_parse_common_caps.
2651  *
2652  * Loop through the list of provided capabilities and extract the relevant
2653  * data into the device capabilities structured.
2654  */
2655 static void
2656 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2657 		   void *buf, u32 cap_count)
2658 {
2659 	struct ice_aqc_list_caps_elem *cap_resp;
2660 	u32 i;
2661 
2662 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2663 
2664 	ice_memset(dev_p, 0, sizeof(*dev_p), ICE_NONDMA_MEM);
2665 
2666 	for (i = 0; i < cap_count; i++) {
2667 		u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2668 		bool found;
2669 
2670 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2671 					      &cap_resp[i], "dev caps");
2672 
2673 		switch (cap) {
2674 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2675 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2676 			break;
2677 		case ICE_AQC_CAPS_VF:
2678 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2679 			break;
2680 		case ICE_AQC_CAPS_VSI:
2681 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2682 			break;
2683 		default:
2684 			/* Don't list common capabilities as unknown */
2685 			if (!found)
2686 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2687 					  i, cap);
2688 			break;
2689 		}
2690 	}
2691 
2692 	ice_print_led_caps(hw, &dev_p->common_cap, "dev caps", true);
2693 	ice_print_sdp_caps(hw, &dev_p->common_cap, "dev caps", true);
2694 
2695 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2696 }
2697 
2698 /**
2699  * ice_aq_list_caps - query function/device capabilities
2700  * @hw: pointer to the HW struct
2701  * @buf: a buffer to hold the capabilities
2702  * @buf_size: size of the buffer
2703  * @cap_count: if not NULL, set to the number of capabilities reported
2704  * @opc: capabilities type to discover, device or function
2705  * @cd: pointer to command details structure or NULL
2706  *
2707  * Get the function (0x000A) or device (0x000B) capabilities description from
2708  * firmware and store it in the buffer.
2709  *
2710  * If the cap_count pointer is not NULL, then it is set to the number of
2711  * capabilities firmware will report. Note that if the buffer size is too
2712  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2713  * cap_count will still be updated in this case. It is recommended that the
2714  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2715  * firmware could return) to avoid this.
2716  */
2717 static enum ice_status
2718 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2719 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2720 {
2721 	struct ice_aqc_list_caps *cmd;
2722 	struct ice_aq_desc desc;
2723 	enum ice_status status;
2724 
2725 	cmd = &desc.params.get_cap;
2726 
2727 	if (opc != ice_aqc_opc_list_func_caps &&
2728 	    opc != ice_aqc_opc_list_dev_caps)
2729 		return ICE_ERR_PARAM;
2730 
2731 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2732 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2733 
2734 	if (cap_count)
2735 		*cap_count = LE32_TO_CPU(cmd->count);
2736 
2737 	return status;
2738 }
2739 
2740 /**
2741  * ice_discover_dev_caps - Read and extract device capabilities
2742  * @hw: pointer to the hardware structure
2743  * @dev_caps: pointer to device capabilities structure
2744  *
2745  * Read the device capabilities and extract them into the dev_caps structure
2746  * for later use.
2747  */
2748 static enum ice_status
2749 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2750 {
2751 	enum ice_status status;
2752 	u32 cap_count = 0;
2753 	void *cbuf;
2754 
2755 	cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
2756 	if (!cbuf)
2757 		return ICE_ERR_NO_MEMORY;
2758 
2759 	/* Although the driver doesn't know the number of capabilities the
2760 	 * device will return, we can simply send a 4KB buffer, the maximum
2761 	 * possible size that firmware can return.
2762 	 */
2763 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2764 
2765 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2766 				  ice_aqc_opc_list_dev_caps, NULL);
2767 	if (!status)
2768 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2769 	ice_free(hw, cbuf);
2770 
2771 	return status;
2772 }
2773 
2774 /**
2775  * ice_discover_func_caps - Read and extract function capabilities
2776  * @hw: pointer to the hardware structure
2777  * @func_caps: pointer to function capabilities structure
2778  *
2779  * Read the function capabilities and extract them into the func_caps structure
2780  * for later use.
2781  */
2782 static enum ice_status
2783 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2784 {
2785 	enum ice_status status;
2786 	u32 cap_count = 0;
2787 	void *cbuf;
2788 
2789 	cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
2790 	if (!cbuf)
2791 		return ICE_ERR_NO_MEMORY;
2792 
2793 	/* Although the driver doesn't know the number of capabilities the
2794 	 * device will return, we can simply send a 4KB buffer, the maximum
2795 	 * possible size that firmware can return.
2796 	 */
2797 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2798 
2799 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2800 				  ice_aqc_opc_list_func_caps, NULL);
2801 	if (!status)
2802 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2803 	ice_free(hw, cbuf);
2804 
2805 	return status;
2806 }
2807 
2808 /**
2809  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2810  * @hw: pointer to the hardware structure
2811  */
2812 void ice_set_safe_mode_caps(struct ice_hw *hw)
2813 {
2814 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2815 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2816 	struct ice_hw_common_caps cached_caps;
2817 	u32 num_funcs;
2818 
2819 	/* cache some func_caps values that should be restored after memset */
2820 	cached_caps = func_caps->common_cap;
2821 
2822 	/* unset func capabilities */
2823 	memset(func_caps, 0, sizeof(*func_caps));
2824 
2825 #define ICE_RESTORE_FUNC_CAP(name) \
2826 	func_caps->common_cap.name = cached_caps.name
2827 
2828 	/* restore cached values */
2829 	ICE_RESTORE_FUNC_CAP(valid_functions);
2830 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2831 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2832 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2833 	ICE_RESTORE_FUNC_CAP(max_mtu);
2834 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2835 
2836 	/* one Tx and one Rx queue in safe mode */
2837 	func_caps->common_cap.num_rxq = 1;
2838 	func_caps->common_cap.num_txq = 1;
2839 
2840 	/* two MSIX vectors, one for traffic and one for misc causes */
2841 	func_caps->common_cap.num_msix_vectors = 2;
2842 	func_caps->guar_num_vsi = 1;
2843 
2844 	/* cache some dev_caps values that should be restored after memset */
2845 	cached_caps = dev_caps->common_cap;
2846 	num_funcs = dev_caps->num_funcs;
2847 
2848 	/* unset dev capabilities */
2849 	memset(dev_caps, 0, sizeof(*dev_caps));
2850 
2851 #define ICE_RESTORE_DEV_CAP(name) \
2852 	dev_caps->common_cap.name = cached_caps.name
2853 
2854 	/* restore cached values */
2855 	ICE_RESTORE_DEV_CAP(valid_functions);
2856 	ICE_RESTORE_DEV_CAP(txq_first_id);
2857 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2858 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2859 	ICE_RESTORE_DEV_CAP(max_mtu);
2860 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2861 	dev_caps->num_funcs = num_funcs;
2862 
2863 	/* one Tx and one Rx queue per function in safe mode */
2864 	dev_caps->common_cap.num_rxq = num_funcs;
2865 	dev_caps->common_cap.num_txq = num_funcs;
2866 
2867 	/* two MSIX vectors per function */
2868 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2869 }
2870 
2871 /**
2872  * ice_get_caps - get info about the HW
2873  * @hw: pointer to the hardware structure
2874  */
2875 enum ice_status ice_get_caps(struct ice_hw *hw)
2876 {
2877 	enum ice_status status;
2878 
2879 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2880 	if (status)
2881 		return status;
2882 
2883 	return ice_discover_func_caps(hw, &hw->func_caps);
2884 }
2885 
2886 /**
2887  * ice_aq_manage_mac_write - manage MAC address write command
2888  * @hw: pointer to the HW struct
2889  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2890  * @flags: flags to control write behavior
2891  * @cd: pointer to command details structure or NULL
2892  *
2893  * This function is used to write MAC address to the NVM (0x0108).
2894  */
2895 enum ice_status
2896 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2897 			struct ice_sq_cd *cd)
2898 {
2899 	struct ice_aqc_manage_mac_write *cmd;
2900 	struct ice_aq_desc desc;
2901 
2902 	cmd = &desc.params.mac_write;
2903 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2904 
2905 	cmd->flags = flags;
2906 	ice_memcpy(cmd->mac_addr, mac_addr, ETH_ALEN, ICE_NONDMA_TO_NONDMA);
2907 
2908 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2909 }
2910 
2911 /**
2912  * ice_aq_clear_pxe_mode
2913  * @hw: pointer to the HW struct
2914  *
2915  * Tell the firmware that the driver is taking over from PXE (0x0110).
2916  */
2917 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
2918 {
2919 	struct ice_aq_desc desc;
2920 
2921 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2922 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2923 
2924 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2925 }
2926 
2927 /**
2928  * ice_clear_pxe_mode - clear pxe operations mode
2929  * @hw: pointer to the HW struct
2930  *
2931  * Make sure all PXE mode settings are cleared, including things
2932  * like descriptor fetch/write-back mode.
2933  */
2934 void ice_clear_pxe_mode(struct ice_hw *hw)
2935 {
2936 	if (ice_check_sq_alive(hw, &hw->adminq))
2937 		ice_aq_clear_pxe_mode(hw);
2938 }
2939 
2940 /**
2941  * ice_aq_set_port_params - set physical port parameters.
2942  * @pi: pointer to the port info struct
2943  * @bad_frame_vsi: defines the VSI to which bad frames are forwarded
2944  * @save_bad_pac: if set packets with errors are forwarded to the bad frames VSI
2945  * @pad_short_pac: if set transmit packets smaller than 60 bytes are padded
2946  * @double_vlan: if set double VLAN is enabled
2947  * @cd: pointer to command details structure or NULL
2948  *
2949  * Set Physical port parameters (0x0203)
2950  */
2951 enum ice_status
2952 ice_aq_set_port_params(struct ice_port_info *pi, u16 bad_frame_vsi,
2953 		       bool save_bad_pac, bool pad_short_pac, bool double_vlan,
2954 		       struct ice_sq_cd *cd)
2955 
2956 {
2957 	struct ice_aqc_set_port_params *cmd;
2958 	struct ice_hw *hw = pi->hw;
2959 	struct ice_aq_desc desc;
2960 	u16 cmd_flags = 0;
2961 
2962 	cmd = &desc.params.set_port_params;
2963 
2964 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2965 	cmd->bad_frame_vsi = CPU_TO_LE16(bad_frame_vsi);
2966 	if (save_bad_pac)
2967 		cmd_flags |= ICE_AQC_SET_P_PARAMS_SAVE_BAD_PACKETS;
2968 	if (pad_short_pac)
2969 		cmd_flags |= ICE_AQC_SET_P_PARAMS_PAD_SHORT_PACKETS;
2970 	if (double_vlan)
2971 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2972 	cmd->cmd_flags = CPU_TO_LE16(cmd_flags);
2973 
2974 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2975 }
2976 
2977 /**
2978  * ice_is_100m_speed_supported
2979  * @hw: pointer to the HW struct
2980  *
2981  * returns true if 100M speeds are supported by the device,
2982  * false otherwise.
2983  */
2984 bool ice_is_100m_speed_supported(struct ice_hw *hw)
2985 {
2986 	switch (hw->device_id) {
2987 	case ICE_DEV_ID_E822C_10G_BASE_T:
2988 	case ICE_DEV_ID_E822C_SGMII:
2989 	case ICE_DEV_ID_E822L_10G_BASE_T:
2990 	case ICE_DEV_ID_E822L_SGMII:
2991 	case ICE_DEV_ID_E823L_10G_BASE_T:
2992 	case ICE_DEV_ID_E823L_1GBE:
2993 		return true;
2994 	default:
2995 		return false;
2996 	}
2997 }
2998 
2999 /**
3000  * ice_get_link_speed_based_on_phy_type - returns link speed
3001  * @phy_type_low: lower part of phy_type
3002  * @phy_type_high: higher part of phy_type
3003  *
3004  * This helper function will convert an entry in PHY type structure
3005  * [phy_type_low, phy_type_high] to its corresponding link speed.
3006  * Note: In the structure of [phy_type_low, phy_type_high], there should
3007  * be one bit set, as this function will convert one PHY type to its
3008  * speed.
3009  * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
3010  * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
3011  */
3012 static u16
3013 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3014 {
3015 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3016 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3017 
3018 	switch (phy_type_low) {
3019 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3020 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3021 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3022 		break;
3023 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3024 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3025 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3026 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3027 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3028 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3029 		break;
3030 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3031 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3032 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3033 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3034 		break;
3035 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3036 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3037 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3038 		break;
3039 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3040 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3041 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3042 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3043 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3044 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3045 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3046 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3047 		break;
3048 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3049 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3050 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3051 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3052 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3053 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3054 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3055 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3056 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3057 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3058 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3059 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3060 		break;
3061 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3062 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3063 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3064 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3065 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3066 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3067 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3068 		break;
3069 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3070 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3071 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3072 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3073 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3074 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3075 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3076 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3077 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3078 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3079 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3080 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3081 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3082 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3083 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3084 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3085 		break;
3086 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3087 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3088 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3089 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3090 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3091 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3092 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3093 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3094 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3095 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3096 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3097 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3098 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3099 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3100 		break;
3101 	default:
3102 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3103 		break;
3104 	}
3105 
3106 	switch (phy_type_high) {
3107 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3108 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3109 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3110 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3111 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3112 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3113 		break;
3114 	default:
3115 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3116 		break;
3117 	}
3118 
3119 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3120 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3121 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3122 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3123 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3124 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3125 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3126 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3127 		return speed_phy_type_low;
3128 	else
3129 		return speed_phy_type_high;
3130 }
3131 
3132 /**
3133  * ice_update_phy_type
3134  * @phy_type_low: pointer to the lower part of phy_type
3135  * @phy_type_high: pointer to the higher part of phy_type
3136  * @link_speeds_bitmap: targeted link speeds bitmap
3137  *
3138  * Note: For the link_speeds_bitmap structure, you can check it at
3139  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3140  * link_speeds_bitmap include multiple speeds.
3141  *
3142  * Each entry in this [phy_type_low, phy_type_high] structure will
3143  * present a certain link speed. This helper function will turn on bits
3144  * in [phy_type_low, phy_type_high] structure based on the value of
3145  * link_speeds_bitmap input parameter.
3146  */
3147 void
3148 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3149 		    u16 link_speeds_bitmap)
3150 {
3151 	u64 pt_high;
3152 	u64 pt_low;
3153 	int index;
3154 	u16 speed;
3155 
3156 	/* We first check with low part of phy_type */
3157 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3158 		pt_low = BIT_ULL(index);
3159 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3160 
3161 		if (link_speeds_bitmap & speed)
3162 			*phy_type_low |= BIT_ULL(index);
3163 	}
3164 
3165 	/* We then check with high part of phy_type */
3166 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3167 		pt_high = BIT_ULL(index);
3168 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3169 
3170 		if (link_speeds_bitmap & speed)
3171 			*phy_type_high |= BIT_ULL(index);
3172 	}
3173 }
3174 
3175 /**
3176  * ice_aq_set_phy_cfg
3177  * @hw: pointer to the HW struct
3178  * @pi: port info structure of the interested logical port
3179  * @cfg: structure with PHY configuration data to be set
3180  * @cd: pointer to command details structure or NULL
3181  *
3182  * Set the various PHY configuration parameters supported on the Port.
3183  * One or more of the Set PHY config parameters may be ignored in an MFP
3184  * mode as the PF may not have the privilege to set some of the PHY Config
3185  * parameters. This status will be indicated by the command response (0x0601).
3186  */
3187 enum ice_status
3188 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3189 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3190 {
3191 	struct ice_aq_desc desc;
3192 	enum ice_status status;
3193 
3194 	if (!cfg)
3195 		return ICE_ERR_PARAM;
3196 
3197 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3198 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3199 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3200 			  cfg->caps);
3201 
3202 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3203 	}
3204 
3205 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3206 	desc.params.set_phy.lport_num = pi->lport;
3207 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3208 
3209 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3210 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3211 		  (unsigned long long)LE64_TO_CPU(cfg->phy_type_low));
3212 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3213 		  (unsigned long long)LE64_TO_CPU(cfg->phy_type_high));
3214 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3215 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3216 		  cfg->low_power_ctrl_an);
3217 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3218 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3219 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3220 		  cfg->link_fec_opt);
3221 
3222 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3223 
3224 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3225 		status = ICE_SUCCESS;
3226 
3227 	if (!status)
3228 		pi->phy.curr_user_phy_cfg = *cfg;
3229 
3230 	return status;
3231 }
3232 
3233 /**
3234  * ice_update_link_info - update status of the HW network link
3235  * @pi: port info structure of the interested logical port
3236  */
3237 enum ice_status ice_update_link_info(struct ice_port_info *pi)
3238 {
3239 	struct ice_link_status *li;
3240 	enum ice_status status;
3241 
3242 	if (!pi)
3243 		return ICE_ERR_PARAM;
3244 
3245 	li = &pi->phy.link_info;
3246 
3247 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3248 	if (status)
3249 		return status;
3250 
3251 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3252 		struct ice_aqc_get_phy_caps_data *pcaps;
3253 		struct ice_hw *hw;
3254 
3255 		hw = pi->hw;
3256 		pcaps = (struct ice_aqc_get_phy_caps_data *)
3257 			ice_malloc(hw, sizeof(*pcaps));
3258 		if (!pcaps)
3259 			return ICE_ERR_NO_MEMORY;
3260 
3261 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3262 					     pcaps, NULL);
3263 
3264 		if (status == ICE_SUCCESS)
3265 			ice_memcpy(li->module_type, &pcaps->module_type,
3266 				   sizeof(li->module_type),
3267 				   ICE_NONDMA_TO_NONDMA);
3268 
3269 		ice_free(hw, pcaps);
3270 	}
3271 
3272 	return status;
3273 }
3274 
3275 /**
3276  * ice_cache_phy_user_req
3277  * @pi: port information structure
3278  * @cache_data: PHY logging data
3279  * @cache_mode: PHY logging mode
3280  *
3281  * Log the user request on (FC, FEC, SPEED) for later user.
3282  */
3283 static void
3284 ice_cache_phy_user_req(struct ice_port_info *pi,
3285 		       struct ice_phy_cache_mode_data cache_data,
3286 		       enum ice_phy_cache_mode cache_mode)
3287 {
3288 	if (!pi)
3289 		return;
3290 
3291 	switch (cache_mode) {
3292 	case ICE_FC_MODE:
3293 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3294 		break;
3295 	case ICE_SPEED_MODE:
3296 		pi->phy.curr_user_speed_req =
3297 			cache_data.data.curr_user_speed_req;
3298 		break;
3299 	case ICE_FEC_MODE:
3300 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3301 		break;
3302 	default:
3303 		break;
3304 	}
3305 }
3306 
3307 /**
3308  * ice_caps_to_fc_mode
3309  * @caps: PHY capabilities
3310  *
3311  * Convert PHY FC capabilities to ice FC mode
3312  */
3313 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3314 {
3315 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3316 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3317 		return ICE_FC_FULL;
3318 
3319 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3320 		return ICE_FC_TX_PAUSE;
3321 
3322 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3323 		return ICE_FC_RX_PAUSE;
3324 
3325 	return ICE_FC_NONE;
3326 }
3327 
3328 /**
3329  * ice_caps_to_fec_mode
3330  * @caps: PHY capabilities
3331  * @fec_options: Link FEC options
3332  *
3333  * Convert PHY FEC capabilities to ice FEC mode
3334  */
3335 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3336 {
3337 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3338 		return ICE_FEC_AUTO;
3339 
3340 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3341 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3342 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3343 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3344 		return ICE_FEC_BASER;
3345 
3346 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3347 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3348 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3349 		return ICE_FEC_RS;
3350 
3351 	return ICE_FEC_NONE;
3352 }
3353 
3354 /**
3355  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3356  * @pi: port information structure
3357  * @cfg: PHY configuration data to set FC mode
3358  * @req_mode: FC mode to configure
3359  */
3360 static enum ice_status
3361 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3362 	       enum ice_fc_mode req_mode)
3363 {
3364 	struct ice_phy_cache_mode_data cache_data;
3365 	u8 pause_mask = 0x0;
3366 
3367 	if (!pi || !cfg)
3368 		return ICE_ERR_BAD_PTR;
3369 	switch (req_mode) {
3370 	case ICE_FC_AUTO:
3371 	{
3372 		struct ice_aqc_get_phy_caps_data *pcaps;
3373 		enum ice_status status;
3374 
3375 		pcaps = (struct ice_aqc_get_phy_caps_data *)
3376 			ice_malloc(pi->hw, sizeof(*pcaps));
3377 		if (!pcaps)
3378 			return ICE_ERR_NO_MEMORY;
3379 		/* Query the value of FC that both the NIC and attached media
3380 		 * can do.
3381 		 */
3382 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3383 					     pcaps, NULL);
3384 		if (status) {
3385 			ice_free(pi->hw, pcaps);
3386 			return status;
3387 		}
3388 
3389 		pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3390 		pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3391 
3392 		ice_free(pi->hw, pcaps);
3393 		break;
3394 	}
3395 	case ICE_FC_FULL:
3396 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3397 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3398 		break;
3399 	case ICE_FC_RX_PAUSE:
3400 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3401 		break;
3402 	case ICE_FC_TX_PAUSE:
3403 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3404 		break;
3405 	default:
3406 		break;
3407 	}
3408 
3409 	/* clear the old pause settings */
3410 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3411 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3412 
3413 	/* set the new capabilities */
3414 	cfg->caps |= pause_mask;
3415 
3416 	/* Cache user FC request */
3417 	cache_data.data.curr_user_fc_req = req_mode;
3418 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3419 
3420 	return ICE_SUCCESS;
3421 }
3422 
3423 /**
3424  * ice_set_fc
3425  * @pi: port information structure
3426  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3427  * @ena_auto_link_update: enable automatic link update
3428  *
3429  * Set the requested flow control mode.
3430  */
3431 enum ice_status
3432 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3433 {
3434 	struct ice_aqc_set_phy_cfg_data  cfg = { 0 };
3435 	struct ice_aqc_get_phy_caps_data *pcaps;
3436 	enum ice_status status;
3437 	struct ice_hw *hw;
3438 
3439 	if (!pi || !aq_failures)
3440 		return ICE_ERR_BAD_PTR;
3441 
3442 	*aq_failures = 0;
3443 	hw = pi->hw;
3444 
3445 	pcaps = (struct ice_aqc_get_phy_caps_data *)
3446 		ice_malloc(hw, sizeof(*pcaps));
3447 	if (!pcaps)
3448 		return ICE_ERR_NO_MEMORY;
3449 
3450 	/* Get the current PHY config */
3451 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3452 				     pcaps, NULL);
3453 
3454 	if (status) {
3455 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3456 		goto out;
3457 	}
3458 
3459 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3460 
3461 	/* Configure the set PHY data */
3462 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3463 	if (status) {
3464 		if (status != ICE_ERR_BAD_PTR)
3465 			*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3466 
3467 		goto out;
3468 	}
3469 
3470 	/* If the capabilities have changed, then set the new config */
3471 	if (cfg.caps != pcaps->caps) {
3472 		int retry_count, retry_max = 10;
3473 
3474 		/* Auto restart link so settings take effect */
3475 		if (ena_auto_link_update)
3476 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3477 
3478 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3479 		if (status) {
3480 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3481 			goto out;
3482 		}
3483 
3484 		/* Update the link info
3485 		 * It sometimes takes a really long time for link to
3486 		 * come back from the atomic reset. Thus, we wait a
3487 		 * little bit.
3488 		 */
3489 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3490 			status = ice_update_link_info(pi);
3491 
3492 			if (status == ICE_SUCCESS)
3493 				break;
3494 
3495 			ice_msec_delay(100, true);
3496 		}
3497 
3498 		if (status)
3499 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3500 	}
3501 
3502 out:
3503 	ice_free(hw, pcaps);
3504 	return status;
3505 }
3506 
3507 /**
3508  * ice_phy_caps_equals_cfg
3509  * @phy_caps: PHY capabilities
3510  * @phy_cfg: PHY configuration
3511  *
3512  * Helper function to determine if PHY capabilities matches PHY
3513  * configuration
3514  */
3515 bool
3516 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3517 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3518 {
3519 	u8 caps_mask, cfg_mask;
3520 
3521 	if (!phy_caps || !phy_cfg)
3522 		return false;
3523 
3524 	/* These bits are not common between capabilities and configuration.
3525 	 * Do not use them to determine equality.
3526 	 */
3527 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3528 					      ICE_AQC_PHY_EN_MOD_QUAL);
3529 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3530 
3531 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3532 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3533 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3534 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3535 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3536 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3537 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3538 		return false;
3539 
3540 	return true;
3541 }
3542 
3543 /**
3544  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3545  * @pi: port information structure
3546  * @caps: PHY ability structure to copy data from
3547  * @cfg: PHY configuration structure to copy data to
3548  *
3549  * Helper function to copy AQC PHY get ability data to PHY set configuration
3550  * data structure
3551  */
3552 void
3553 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3554 			 struct ice_aqc_get_phy_caps_data *caps,
3555 			 struct ice_aqc_set_phy_cfg_data *cfg)
3556 {
3557 	if (!pi || !caps || !cfg)
3558 		return;
3559 
3560 	ice_memset(cfg, 0, sizeof(*cfg), ICE_NONDMA_MEM);
3561 	cfg->phy_type_low = caps->phy_type_low;
3562 	cfg->phy_type_high = caps->phy_type_high;
3563 	cfg->caps = caps->caps;
3564 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3565 	cfg->eee_cap = caps->eee_cap;
3566 	cfg->eeer_value = caps->eeer_value;
3567 	cfg->link_fec_opt = caps->link_fec_options;
3568 	cfg->module_compliance_enforcement =
3569 		caps->module_compliance_enforcement;
3570 }
3571 
3572 /**
3573  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3574  * @pi: port information structure
3575  * @cfg: PHY configuration data to set FEC mode
3576  * @fec: FEC mode to configure
3577  */
3578 enum ice_status
3579 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3580 		enum ice_fec_mode fec)
3581 {
3582 	struct ice_aqc_get_phy_caps_data *pcaps;
3583 	enum ice_status status = ICE_SUCCESS;
3584 	struct ice_hw *hw;
3585 
3586 	if (!pi || !cfg)
3587 		return ICE_ERR_BAD_PTR;
3588 
3589 	hw = pi->hw;
3590 
3591 	pcaps = (struct ice_aqc_get_phy_caps_data *)
3592 		ice_malloc(hw, sizeof(*pcaps));
3593 	if (!pcaps)
3594 		return ICE_ERR_NO_MEMORY;
3595 
3596 	status = ice_aq_get_phy_caps(pi, false,
3597 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3598 				      ICE_AQC_REPORT_DFLT_CFG :
3599 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3600 
3601 	if (status)
3602 		goto out;
3603 
3604 	cfg->caps |= (pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC);
3605 	cfg->link_fec_opt = pcaps->link_fec_options;
3606 
3607 	switch (fec) {
3608 	case ICE_FEC_BASER:
3609 		/* Clear RS bits, and AND BASE-R ability
3610 		 * bits and OR request bits.
3611 		 */
3612 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3613 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3614 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3615 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3616 		break;
3617 	case ICE_FEC_RS:
3618 		/* Clear BASE-R bits, and AND RS ability
3619 		 * bits and OR request bits.
3620 		 */
3621 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3622 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3623 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3624 		break;
3625 	case ICE_FEC_NONE:
3626 		/* Clear all FEC option bits. */
3627 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3628 		break;
3629 	case ICE_FEC_AUTO:
3630 		/* AND auto FEC bit, and all caps bits. */
3631 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3632 		cfg->link_fec_opt |= pcaps->link_fec_options;
3633 		break;
3634 	default:
3635 		status = ICE_ERR_PARAM;
3636 		break;
3637 	}
3638 
3639 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw) &&
3640 	    !ice_fw_supports_report_dflt_cfg(pi->hw)) {
3641 		struct ice_link_default_override_tlv tlv;
3642 
3643 		if (ice_get_link_default_override(&tlv, pi))
3644 			goto out;
3645 
3646 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3647 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3648 			cfg->link_fec_opt = tlv.fec_options;
3649 	}
3650 
3651 out:
3652 	ice_free(hw, pcaps);
3653 
3654 	return status;
3655 }
3656 
3657 /**
3658  * ice_get_link_status - get status of the HW network link
3659  * @pi: port information structure
3660  * @link_up: pointer to bool (true/false = linkup/linkdown)
3661  *
3662  * Variable link_up is true if link is up, false if link is down.
3663  * The variable link_up is invalid if status is non zero. As a
3664  * result of this call, link status reporting becomes enabled
3665  */
3666 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3667 {
3668 	struct ice_phy_info *phy_info;
3669 	enum ice_status status = ICE_SUCCESS;
3670 
3671 	if (!pi || !link_up)
3672 		return ICE_ERR_PARAM;
3673 
3674 	phy_info = &pi->phy;
3675 
3676 	if (phy_info->get_link_info) {
3677 		status = ice_update_link_info(pi);
3678 
3679 		if (status)
3680 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3681 				  status);
3682 	}
3683 
3684 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3685 
3686 	return status;
3687 }
3688 
3689 /**
3690  * ice_aq_set_link_restart_an
3691  * @pi: pointer to the port information structure
3692  * @ena_link: if true: enable link, if false: disable link
3693  * @cd: pointer to command details structure or NULL
3694  *
3695  * Sets up the link and restarts the Auto-Negotiation over the link.
3696  */
3697 enum ice_status
3698 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3699 			   struct ice_sq_cd *cd)
3700 {
3701 	struct ice_aqc_restart_an *cmd;
3702 	struct ice_aq_desc desc;
3703 
3704 	cmd = &desc.params.restart_an;
3705 
3706 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3707 
3708 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3709 	cmd->lport_num = pi->lport;
3710 	if (ena_link)
3711 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3712 	else
3713 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3714 
3715 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3716 }
3717 
3718 /**
3719  * ice_aq_set_event_mask
3720  * @hw: pointer to the HW struct
3721  * @port_num: port number of the physical function
3722  * @mask: event mask to be set
3723  * @cd: pointer to command details structure or NULL
3724  *
3725  * Set event mask (0x0613)
3726  */
3727 enum ice_status
3728 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3729 		      struct ice_sq_cd *cd)
3730 {
3731 	struct ice_aqc_set_event_mask *cmd;
3732 	struct ice_aq_desc desc;
3733 
3734 	cmd = &desc.params.set_event_mask;
3735 
3736 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3737 
3738 	cmd->lport_num = port_num;
3739 
3740 	cmd->event_mask = CPU_TO_LE16(mask);
3741 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3742 }
3743 
3744 /**
3745  * ice_aq_set_mac_loopback
3746  * @hw: pointer to the HW struct
3747  * @ena_lpbk: Enable or Disable loopback
3748  * @cd: pointer to command details structure or NULL
3749  *
3750  * Enable/disable loopback on a given port
3751  */
3752 enum ice_status
3753 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3754 {
3755 	struct ice_aqc_set_mac_lb *cmd;
3756 	struct ice_aq_desc desc;
3757 
3758 	cmd = &desc.params.set_mac_lb;
3759 
3760 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3761 	if (ena_lpbk)
3762 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3763 
3764 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3765 }
3766 
3767 /**
3768  * ice_aq_set_port_id_led
3769  * @pi: pointer to the port information
3770  * @is_orig_mode: is this LED set to original mode (by the net-list)
3771  * @cd: pointer to command details structure or NULL
3772  *
3773  * Set LED value for the given port (0x06e9)
3774  */
3775 enum ice_status
3776 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3777 		       struct ice_sq_cd *cd)
3778 {
3779 	struct ice_aqc_set_port_id_led *cmd;
3780 	struct ice_hw *hw = pi->hw;
3781 	struct ice_aq_desc desc;
3782 
3783 	cmd = &desc.params.set_port_id_led;
3784 
3785 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3786 
3787 	if (is_orig_mode)
3788 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3789 	else
3790 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3791 
3792 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3793 }
3794 
3795 /**
3796  * ice_aq_sff_eeprom
3797  * @hw: pointer to the HW struct
3798  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3799  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3800  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3801  * @page: QSFP page
3802  * @set_page: set or ignore the page
3803  * @data: pointer to data buffer to be read/written to the I2C device.
3804  * @length: 1-16 for read, 1 for write.
3805  * @write: 0 read, 1 for write.
3806  * @cd: pointer to command details structure or NULL
3807  *
3808  * Read/Write SFF EEPROM (0x06EE)
3809  */
3810 enum ice_status
3811 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3812 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3813 		  bool write, struct ice_sq_cd *cd)
3814 {
3815 	struct ice_aqc_sff_eeprom *cmd;
3816 	struct ice_aq_desc desc;
3817 	enum ice_status status;
3818 
3819 	if (!data || (mem_addr & 0xff00))
3820 		return ICE_ERR_PARAM;
3821 
3822 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3823 	cmd = &desc.params.read_write_sff_param;
3824 	desc.flags = CPU_TO_LE16(ICE_AQ_FLAG_RD);
3825 	cmd->lport_num = (u8)(lport & 0xff);
3826 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3827 	cmd->i2c_bus_addr = CPU_TO_LE16(((bus_addr >> 1) &
3828 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3829 					((set_page <<
3830 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3831 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3832 	cmd->i2c_mem_addr = CPU_TO_LE16(mem_addr & 0xff);
3833 	cmd->eeprom_page = CPU_TO_LE16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3834 	if (write)
3835 		cmd->i2c_bus_addr |= CPU_TO_LE16(ICE_AQC_SFF_IS_WRITE);
3836 
3837 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3838 	return status;
3839 }
3840 
3841 /**
3842  * ice_aq_prog_topo_dev_nvm
3843  * @hw: pointer to the hardware structure
3844  * @topo_params: pointer to structure storing topology parameters for a device
3845  * @cd: pointer to command details structure or NULL
3846  *
3847  * Program Topology Device NVM (0x06F2)
3848  *
3849  */
3850 enum ice_status
3851 ice_aq_prog_topo_dev_nvm(struct ice_hw *hw,
3852 			 struct ice_aqc_link_topo_params *topo_params,
3853 			 struct ice_sq_cd *cd)
3854 {
3855 	struct ice_aqc_prog_topo_dev_nvm *cmd;
3856 	struct ice_aq_desc desc;
3857 
3858 	cmd = &desc.params.prog_topo_dev_nvm;
3859 
3860 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_prog_topo_dev_nvm);
3861 
3862 	ice_memcpy(&cmd->topo_params, topo_params, sizeof(*topo_params),
3863 		   ICE_NONDMA_TO_NONDMA);
3864 
3865 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3866 }
3867 
3868 /**
3869  * ice_aq_read_topo_dev_nvm
3870  * @hw: pointer to the hardware structure
3871  * @topo_params: pointer to structure storing topology parameters for a device
3872  * @start_address: byte offset in the topology device NVM
3873  * @data: pointer to data buffer
3874  * @data_size: number of bytes to be read from the topology device NVM
3875  * @cd: pointer to command details structure or NULL
3876  * Read Topology Device NVM (0x06F3)
3877  *
3878  */
3879 enum ice_status
3880 ice_aq_read_topo_dev_nvm(struct ice_hw *hw,
3881 			 struct ice_aqc_link_topo_params *topo_params,
3882 			 u32 start_address, u8 *data, u8 data_size,
3883 			 struct ice_sq_cd *cd)
3884 {
3885 	struct ice_aqc_read_topo_dev_nvm *cmd;
3886 	struct ice_aq_desc desc;
3887 	enum ice_status status;
3888 
3889 	if (!data || data_size == 0 ||
3890 	    data_size > ICE_AQC_READ_TOPO_DEV_NVM_DATA_READ_SIZE)
3891 		return ICE_ERR_PARAM;
3892 
3893 	cmd = &desc.params.read_topo_dev_nvm;
3894 
3895 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_topo_dev_nvm);
3896 
3897 	desc.datalen = data_size;
3898 	ice_memcpy(&cmd->topo_params, topo_params, sizeof(*topo_params),
3899 		   ICE_NONDMA_TO_NONDMA);
3900 	cmd->start_address = CPU_TO_LE32(start_address);
3901 
3902 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3903 	if (status)
3904 		return status;
3905 
3906 	ice_memcpy(data, cmd->data_read, data_size, ICE_NONDMA_TO_NONDMA);
3907 
3908 	return ICE_SUCCESS;
3909 }
3910 
3911 /**
3912  * __ice_aq_get_set_rss_lut
3913  * @hw: pointer to the hardware structure
3914  * @params: RSS LUT parameters
3915  * @set: set true to set the table, false to get the table
3916  *
3917  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3918  */
3919 static enum ice_status
3920 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3921 {
3922 	u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3923 	struct ice_aqc_get_set_rss_lut *cmd_resp;
3924 	struct ice_aq_desc desc;
3925 	enum ice_status status;
3926 	u8 *lut;
3927 
3928 	if (!params)
3929 		return ICE_ERR_PARAM;
3930 
3931 	vsi_handle = params->vsi_handle;
3932 	lut = params->lut;
3933 
3934 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3935 		return ICE_ERR_PARAM;
3936 
3937 	lut_size = params->lut_size;
3938 	lut_type = params->lut_type;
3939 	glob_lut_idx = params->global_lut_id;
3940 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3941 
3942 	cmd_resp = &desc.params.get_set_rss_lut;
3943 
3944 	if (set) {
3945 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3946 		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3947 	} else {
3948 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3949 	}
3950 
3951 	cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
3952 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3953 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3954 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3955 
3956 	switch (lut_type) {
3957 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3958 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3959 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3960 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3961 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3962 		break;
3963 	default:
3964 		status = ICE_ERR_PARAM;
3965 		goto ice_aq_get_set_rss_lut_exit;
3966 	}
3967 
3968 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3969 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3970 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3971 
3972 		if (!set)
3973 			goto ice_aq_get_set_rss_lut_send;
3974 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3975 		if (!set)
3976 			goto ice_aq_get_set_rss_lut_send;
3977 	} else {
3978 		goto ice_aq_get_set_rss_lut_send;
3979 	}
3980 
3981 	/* LUT size is only valid for Global and PF table types */
3982 	switch (lut_size) {
3983 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3984 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128_FLAG <<
3985 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3986 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3987 		break;
3988 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3989 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3990 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3991 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3992 		break;
3993 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3994 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3995 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3996 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3997 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3998 			break;
3999 		}
4000 		/* fall-through */
4001 	default:
4002 		status = ICE_ERR_PARAM;
4003 		goto ice_aq_get_set_rss_lut_exit;
4004 	}
4005 
4006 ice_aq_get_set_rss_lut_send:
4007 	cmd_resp->flags = CPU_TO_LE16(flags);
4008 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4009 
4010 ice_aq_get_set_rss_lut_exit:
4011 	return status;
4012 }
4013 
4014 /**
4015  * ice_aq_get_rss_lut
4016  * @hw: pointer to the hardware structure
4017  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4018  *
4019  * get the RSS lookup table, PF or VSI type
4020  */
4021 enum ice_status
4022 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4023 {
4024 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4025 }
4026 
4027 /**
4028  * ice_aq_set_rss_lut
4029  * @hw: pointer to the hardware structure
4030  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4031  *
4032  * set the RSS lookup table, PF or VSI type
4033  */
4034 enum ice_status
4035 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4036 {
4037 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4038 }
4039 
4040 /**
4041  * __ice_aq_get_set_rss_key
4042  * @hw: pointer to the HW struct
4043  * @vsi_id: VSI FW index
4044  * @key: pointer to key info struct
4045  * @set: set true to set the key, false to get the key
4046  *
4047  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4048  */
4049 static enum
4050 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4051 				    struct ice_aqc_get_set_rss_keys *key,
4052 				    bool set)
4053 {
4054 	struct ice_aqc_get_set_rss_key *cmd_resp;
4055 	u16 key_size = sizeof(*key);
4056 	struct ice_aq_desc desc;
4057 
4058 	cmd_resp = &desc.params.get_set_rss_key;
4059 
4060 	if (set) {
4061 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4062 		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4063 	} else {
4064 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4065 	}
4066 
4067 	cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
4068 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
4069 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
4070 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
4071 
4072 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4073 }
4074 
4075 /**
4076  * ice_aq_get_rss_key
4077  * @hw: pointer to the HW struct
4078  * @vsi_handle: software VSI handle
4079  * @key: pointer to key info struct
4080  *
4081  * get the RSS key per VSI
4082  */
4083 enum ice_status
4084 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4085 		   struct ice_aqc_get_set_rss_keys *key)
4086 {
4087 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4088 		return ICE_ERR_PARAM;
4089 
4090 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4091 					key, false);
4092 }
4093 
4094 /**
4095  * ice_aq_set_rss_key
4096  * @hw: pointer to the HW struct
4097  * @vsi_handle: software VSI handle
4098  * @keys: pointer to key info struct
4099  *
4100  * set the RSS key per VSI
4101  */
4102 enum ice_status
4103 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4104 		   struct ice_aqc_get_set_rss_keys *keys)
4105 {
4106 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4107 		return ICE_ERR_PARAM;
4108 
4109 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4110 					keys, true);
4111 }
4112 
4113 /**
4114  * ice_aq_add_lan_txq
4115  * @hw: pointer to the hardware structure
4116  * @num_qgrps: Number of added queue groups
4117  * @qg_list: list of queue groups to be added
4118  * @buf_size: size of buffer for indirect command
4119  * @cd: pointer to command details structure or NULL
4120  *
4121  * Add Tx LAN queue (0x0C30)
4122  *
4123  * NOTE:
4124  * Prior to calling add Tx LAN queue:
4125  * Initialize the following as part of the Tx queue context:
4126  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4127  * Cache profile and Packet shaper profile.
4128  *
4129  * After add Tx LAN queue AQ command is completed:
4130  * Interrupts should be associated with specific queues,
4131  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4132  * flow.
4133  */
4134 enum ice_status
4135 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4136 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4137 		   struct ice_sq_cd *cd)
4138 {
4139 	struct ice_aqc_add_tx_qgrp *list;
4140 	struct ice_aqc_add_txqs *cmd;
4141 	struct ice_aq_desc desc;
4142 	u16 i, sum_size = 0;
4143 
4144 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
4145 
4146 	cmd = &desc.params.add_txqs;
4147 
4148 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4149 
4150 	if (!qg_list)
4151 		return ICE_ERR_PARAM;
4152 
4153 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4154 		return ICE_ERR_PARAM;
4155 
4156 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4157 		sum_size += ice_struct_size(list, txqs, list->num_txqs);
4158 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4159 						      list->num_txqs);
4160 	}
4161 
4162 	if (buf_size != sum_size)
4163 		return ICE_ERR_PARAM;
4164 
4165 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4166 
4167 	cmd->num_qgrps = num_qgrps;
4168 
4169 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4170 }
4171 
4172 /**
4173  * ice_aq_dis_lan_txq
4174  * @hw: pointer to the hardware structure
4175  * @num_qgrps: number of groups in the list
4176  * @qg_list: the list of groups to disable
4177  * @buf_size: the total size of the qg_list buffer in bytes
4178  * @rst_src: if called due to reset, specifies the reset source
4179  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4180  * @cd: pointer to command details structure or NULL
4181  *
4182  * Disable LAN Tx queue (0x0C31)
4183  */
4184 static enum ice_status
4185 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4186 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4187 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4188 		   struct ice_sq_cd *cd)
4189 {
4190 	struct ice_aqc_dis_txq_item *item;
4191 	struct ice_aqc_dis_txqs *cmd;
4192 	struct ice_aq_desc desc;
4193 	enum ice_status status;
4194 	u16 i, sz = 0;
4195 
4196 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
4197 	cmd = &desc.params.dis_txqs;
4198 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4199 
4200 	/* qg_list can be NULL only in VM/VF reset flow */
4201 	if (!qg_list && !rst_src)
4202 		return ICE_ERR_PARAM;
4203 
4204 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4205 		return ICE_ERR_PARAM;
4206 
4207 	cmd->num_entries = num_qgrps;
4208 
4209 	cmd->vmvf_and_timeout = CPU_TO_LE16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
4210 					    ICE_AQC_Q_DIS_TIMEOUT_M);
4211 
4212 	switch (rst_src) {
4213 	case ICE_VM_RESET:
4214 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4215 		cmd->vmvf_and_timeout |=
4216 			CPU_TO_LE16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
4217 		break;
4218 	case ICE_VF_RESET:
4219 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4220 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4221 		cmd->vmvf_and_timeout |=
4222 			CPU_TO_LE16((vmvf_num + hw->func_caps.vf_base_id) &
4223 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
4224 		break;
4225 	case ICE_NO_RESET:
4226 	default:
4227 		break;
4228 	}
4229 
4230 	/* flush pipe on time out */
4231 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4232 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4233 	if (!qg_list)
4234 		goto do_aq;
4235 
4236 	/* set RD bit to indicate that command buffer is provided by the driver
4237 	 * and it needs to be read by the firmware
4238 	 */
4239 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4240 
4241 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4242 		u16 item_size = ice_struct_size(item, q_id, item->num_qs);
4243 
4244 		/* If the num of queues is even, add 2 bytes of padding */
4245 		if ((item->num_qs % 2) == 0)
4246 			item_size += 2;
4247 
4248 		sz += item_size;
4249 
4250 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4251 	}
4252 
4253 	if (buf_size != sz)
4254 		return ICE_ERR_PARAM;
4255 
4256 do_aq:
4257 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4258 	if (status) {
4259 		if (!qg_list)
4260 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4261 				  vmvf_num, hw->adminq.sq_last_status);
4262 		else
4263 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4264 				  LE16_TO_CPU(qg_list[0].q_id[0]),
4265 				  hw->adminq.sq_last_status);
4266 	}
4267 	return status;
4268 }
4269 
4270 /**
4271  * ice_aq_move_recfg_lan_txq
4272  * @hw: pointer to the hardware structure
4273  * @num_qs: number of queues to move/reconfigure
4274  * @is_move: true if this operation involves node movement
4275  * @is_tc_change: true if this operation involves a TC change
4276  * @subseq_call: true if this operation is a subsequent call
4277  * @flush_pipe: on timeout, true to flush pipe, false to return EAGAIN
4278  * @timeout: timeout in units of 100 usec (valid values 0-50)
4279  * @blocked_cgds: out param, bitmap of CGDs that timed out if returning EAGAIN
4280  * @buf: struct containing src/dest TEID and per-queue info
4281  * @buf_size: size of buffer for indirect command
4282  * @txqs_moved: out param, number of queues successfully moved
4283  * @cd: pointer to command details structure or NULL
4284  *
4285  * Move / Reconfigure Tx LAN queues (0x0C32)
4286  */
4287 enum ice_status
4288 ice_aq_move_recfg_lan_txq(struct ice_hw *hw, u8 num_qs, bool is_move,
4289 			  bool is_tc_change, bool subseq_call, bool flush_pipe,
4290 			  u8 timeout, u32 *blocked_cgds,
4291 			  struct ice_aqc_move_txqs_data *buf, u16 buf_size,
4292 			  u8 *txqs_moved, struct ice_sq_cd *cd)
4293 {
4294 	struct ice_aqc_move_txqs *cmd;
4295 	struct ice_aq_desc desc;
4296 	enum ice_status status;
4297 
4298 	cmd = &desc.params.move_txqs;
4299 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_move_recfg_txqs);
4300 
4301 #define ICE_LAN_TXQ_MOVE_TIMEOUT_MAX 50
4302 	if (timeout > ICE_LAN_TXQ_MOVE_TIMEOUT_MAX)
4303 		return ICE_ERR_PARAM;
4304 
4305 	if (is_tc_change && !flush_pipe && !blocked_cgds)
4306 		return ICE_ERR_PARAM;
4307 
4308 	if (!is_move && !is_tc_change)
4309 		return ICE_ERR_PARAM;
4310 
4311 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4312 
4313 	if (is_move)
4314 		cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_MOVE;
4315 
4316 	if (is_tc_change)
4317 		cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_TC_CHANGE;
4318 
4319 	if (subseq_call)
4320 		cmd->cmd_type |= ICE_AQC_Q_CMD_SUBSEQ_CALL;
4321 
4322 	if (flush_pipe)
4323 		cmd->cmd_type |= ICE_AQC_Q_CMD_FLUSH_PIPE;
4324 
4325 	cmd->num_qs = num_qs;
4326 	cmd->timeout = ((timeout << ICE_AQC_Q_CMD_TIMEOUT_S) &
4327 			ICE_AQC_Q_CMD_TIMEOUT_M);
4328 
4329 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4330 
4331 	if (!status && txqs_moved)
4332 		*txqs_moved = cmd->num_qs;
4333 
4334 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EAGAIN &&
4335 	    is_tc_change && !flush_pipe)
4336 		*blocked_cgds = LE32_TO_CPU(cmd->blocked_cgds);
4337 
4338 	return status;
4339 }
4340 
4341 /* End of FW Admin Queue command wrappers */
4342 
4343 /**
4344  * ice_write_byte - write a byte to a packed context structure
4345  * @src_ctx:  the context structure to read from
4346  * @dest_ctx: the context to be written to
4347  * @ce_info:  a description of the struct to be filled
4348  */
4349 static void
4350 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4351 {
4352 	u8 src_byte, dest_byte, mask;
4353 	u8 *from, *dest;
4354 	u16 shift_width;
4355 
4356 	/* copy from the next struct field */
4357 	from = src_ctx + ce_info->offset;
4358 
4359 	/* prepare the bits and mask */
4360 	shift_width = ce_info->lsb % 8;
4361 	mask = (u8)(BIT(ce_info->width) - 1);
4362 
4363 	src_byte = *from;
4364 	src_byte &= mask;
4365 
4366 	/* shift to correct alignment */
4367 	mask <<= shift_width;
4368 	src_byte <<= shift_width;
4369 
4370 	/* get the current bits from the target bit string */
4371 	dest = dest_ctx + (ce_info->lsb / 8);
4372 
4373 	ice_memcpy(&dest_byte, dest, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
4374 
4375 	dest_byte &= ~mask;	/* get the bits not changing */
4376 	dest_byte |= src_byte;	/* add in the new bits */
4377 
4378 	/* put it all back */
4379 	ice_memcpy(dest, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
4380 }
4381 
4382 /**
4383  * ice_write_word - write a word to a packed context structure
4384  * @src_ctx:  the context structure to read from
4385  * @dest_ctx: the context to be written to
4386  * @ce_info:  a description of the struct to be filled
4387  */
4388 static void
4389 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4390 {
4391 	u16 src_word, mask;
4392 	__le16 dest_word;
4393 	u8 *from, *dest;
4394 	u16 shift_width;
4395 
4396 	/* copy from the next struct field */
4397 	from = src_ctx + ce_info->offset;
4398 
4399 	/* prepare the bits and mask */
4400 	shift_width = ce_info->lsb % 8;
4401 	mask = BIT(ce_info->width) - 1;
4402 
4403 	/* don't swizzle the bits until after the mask because the mask bits
4404 	 * will be in a different bit position on big endian machines
4405 	 */
4406 	src_word = *(u16 *)from;
4407 	src_word &= mask;
4408 
4409 	/* shift to correct alignment */
4410 	mask <<= shift_width;
4411 	src_word <<= shift_width;
4412 
4413 	/* get the current bits from the target bit string */
4414 	dest = dest_ctx + (ce_info->lsb / 8);
4415 
4416 	ice_memcpy(&dest_word, dest, sizeof(dest_word), ICE_DMA_TO_NONDMA);
4417 
4418 	dest_word &= ~(CPU_TO_LE16(mask));	/* get the bits not changing */
4419 	dest_word |= CPU_TO_LE16(src_word);	/* add in the new bits */
4420 
4421 	/* put it all back */
4422 	ice_memcpy(dest, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
4423 }
4424 
4425 /**
4426  * ice_write_dword - write a dword to a packed context structure
4427  * @src_ctx:  the context structure to read from
4428  * @dest_ctx: the context to be written to
4429  * @ce_info:  a description of the struct to be filled
4430  */
4431 static void
4432 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4433 {
4434 	u32 src_dword, mask;
4435 	__le32 dest_dword;
4436 	u8 *from, *dest;
4437 	u16 shift_width;
4438 
4439 	/* copy from the next struct field */
4440 	from = src_ctx + ce_info->offset;
4441 
4442 	/* prepare the bits and mask */
4443 	shift_width = ce_info->lsb % 8;
4444 
4445 	/* if the field width is exactly 32 on an x86 machine, then the shift
4446 	 * operation will not work because the SHL instructions count is masked
4447 	 * to 5 bits so the shift will do nothing
4448 	 */
4449 	if (ce_info->width < 32)
4450 		mask = BIT(ce_info->width) - 1;
4451 	else
4452 		mask = (u32)~0;
4453 
4454 	/* don't swizzle the bits until after the mask because the mask bits
4455 	 * will be in a different bit position on big endian machines
4456 	 */
4457 	src_dword = *(u32 *)from;
4458 	src_dword &= mask;
4459 
4460 	/* shift to correct alignment */
4461 	mask <<= shift_width;
4462 	src_dword <<= shift_width;
4463 
4464 	/* get the current bits from the target bit string */
4465 	dest = dest_ctx + (ce_info->lsb / 8);
4466 
4467 	ice_memcpy(&dest_dword, dest, sizeof(dest_dword), ICE_DMA_TO_NONDMA);
4468 
4469 	dest_dword &= ~(CPU_TO_LE32(mask));	/* get the bits not changing */
4470 	dest_dword |= CPU_TO_LE32(src_dword);	/* add in the new bits */
4471 
4472 	/* put it all back */
4473 	ice_memcpy(dest, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
4474 }
4475 
4476 /**
4477  * ice_write_qword - write a qword to a packed context structure
4478  * @src_ctx:  the context structure to read from
4479  * @dest_ctx: the context to be written to
4480  * @ce_info:  a description of the struct to be filled
4481  */
4482 static void
4483 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4484 {
4485 	u64 src_qword, mask;
4486 	__le64 dest_qword;
4487 	u8 *from, *dest;
4488 	u16 shift_width;
4489 
4490 	/* copy from the next struct field */
4491 	from = src_ctx + ce_info->offset;
4492 
4493 	/* prepare the bits and mask */
4494 	shift_width = ce_info->lsb % 8;
4495 
4496 	/* if the field width is exactly 64 on an x86 machine, then the shift
4497 	 * operation will not work because the SHL instructions count is masked
4498 	 * to 6 bits so the shift will do nothing
4499 	 */
4500 	if (ce_info->width < 64)
4501 		mask = BIT_ULL(ce_info->width) - 1;
4502 	else
4503 		mask = (u64)~0;
4504 
4505 	/* don't swizzle the bits until after the mask because the mask bits
4506 	 * will be in a different bit position on big endian machines
4507 	 */
4508 	src_qword = *(u64 *)from;
4509 	src_qword &= mask;
4510 
4511 	/* shift to correct alignment */
4512 	mask <<= shift_width;
4513 	src_qword <<= shift_width;
4514 
4515 	/* get the current bits from the target bit string */
4516 	dest = dest_ctx + (ce_info->lsb / 8);
4517 
4518 	ice_memcpy(&dest_qword, dest, sizeof(dest_qword), ICE_DMA_TO_NONDMA);
4519 
4520 	dest_qword &= ~(CPU_TO_LE64(mask));	/* get the bits not changing */
4521 	dest_qword |= CPU_TO_LE64(src_qword);	/* add in the new bits */
4522 
4523 	/* put it all back */
4524 	ice_memcpy(dest, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
4525 }
4526 
4527 /**
4528  * ice_set_ctx - set context bits in packed structure
4529  * @hw: pointer to the hardware structure
4530  * @src_ctx:  pointer to a generic non-packed context structure
4531  * @dest_ctx: pointer to memory for the packed structure
4532  * @ce_info:  a description of the structure to be transformed
4533  */
4534 enum ice_status
4535 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4536 	    const struct ice_ctx_ele *ce_info)
4537 {
4538 	int f;
4539 
4540 	for (f = 0; ce_info[f].width; f++) {
4541 		/* We have to deal with each element of the FW response
4542 		 * using the correct size so that we are correct regardless
4543 		 * of the endianness of the machine.
4544 		 */
4545 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4546 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4547 				  f, ce_info[f].width, ce_info[f].size_of);
4548 			continue;
4549 		}
4550 		switch (ce_info[f].size_of) {
4551 		case sizeof(u8):
4552 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4553 			break;
4554 		case sizeof(u16):
4555 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4556 			break;
4557 		case sizeof(u32):
4558 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4559 			break;
4560 		case sizeof(u64):
4561 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4562 			break;
4563 		default:
4564 			return ICE_ERR_INVAL_SIZE;
4565 		}
4566 	}
4567 
4568 	return ICE_SUCCESS;
4569 }
4570 
4571 /**
4572  * ice_aq_get_internal_data
4573  * @hw: pointer to the hardware structure
4574  * @cluster_id: specific cluster to dump
4575  * @table_id: table ID within cluster
4576  * @start: index of line in the block to read
4577  * @buf: dump buffer
4578  * @buf_size: dump buffer size
4579  * @ret_buf_size: return buffer size (returned by FW)
4580  * @ret_next_table: next block to read (returned by FW)
4581  * @ret_next_index: next index to read (returned by FW)
4582  * @cd: pointer to command details structure
4583  *
4584  * Get internal FW/HW data (0xFF08) for debug purposes.
4585  */
4586 enum ice_status
4587 ice_aq_get_internal_data(struct ice_hw *hw, u8 cluster_id, u16 table_id,
4588 			 u32 start, void *buf, u16 buf_size, u16 *ret_buf_size,
4589 			 u16 *ret_next_table, u32 *ret_next_index,
4590 			 struct ice_sq_cd *cd)
4591 {
4592 	struct ice_aqc_debug_dump_internals *cmd;
4593 	struct ice_aq_desc desc;
4594 	enum ice_status status;
4595 
4596 	cmd = &desc.params.debug_dump;
4597 
4598 	if (buf_size == 0 || !buf)
4599 		return ICE_ERR_PARAM;
4600 
4601 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_debug_dump_internals);
4602 
4603 	cmd->cluster_id = cluster_id;
4604 	cmd->table_id = CPU_TO_LE16(table_id);
4605 	cmd->idx = CPU_TO_LE32(start);
4606 
4607 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4608 
4609 	if (!status) {
4610 		if (ret_buf_size)
4611 			*ret_buf_size = LE16_TO_CPU(desc.datalen);
4612 		if (ret_next_table)
4613 			*ret_next_table = LE16_TO_CPU(cmd->table_id);
4614 		if (ret_next_index)
4615 			*ret_next_index = LE32_TO_CPU(cmd->idx);
4616 	}
4617 
4618 	return status;
4619 }
4620 
4621 /**
4622  * ice_read_byte - read context byte into struct
4623  * @src_ctx:  the context structure to read from
4624  * @dest_ctx: the context to be written to
4625  * @ce_info:  a description of the struct to be filled
4626  */
4627 static void
4628 ice_read_byte(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4629 {
4630 	u8 dest_byte, mask;
4631 	u8 *src, *target;
4632 	u16 shift_width;
4633 
4634 	/* prepare the bits and mask */
4635 	shift_width = ce_info->lsb % 8;
4636 	mask = (u8)(BIT(ce_info->width) - 1);
4637 
4638 	/* shift to correct alignment */
4639 	mask <<= shift_width;
4640 
4641 	/* get the current bits from the src bit string */
4642 	src = src_ctx + (ce_info->lsb / 8);
4643 
4644 	ice_memcpy(&dest_byte, src, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
4645 
4646 	dest_byte &= ~(mask);
4647 
4648 	dest_byte >>= shift_width;
4649 
4650 	/* get the address from the struct field */
4651 	target = dest_ctx + ce_info->offset;
4652 
4653 	/* put it back in the struct */
4654 	ice_memcpy(target, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
4655 }
4656 
4657 /**
4658  * ice_read_word - read context word into struct
4659  * @src_ctx:  the context structure to read from
4660  * @dest_ctx: the context to be written to
4661  * @ce_info:  a description of the struct to be filled
4662  */
4663 static void
4664 ice_read_word(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4665 {
4666 	u16 dest_word, mask;
4667 	u8 *src, *target;
4668 	__le16 src_word;
4669 	u16 shift_width;
4670 
4671 	/* prepare the bits and mask */
4672 	shift_width = ce_info->lsb % 8;
4673 	mask = BIT(ce_info->width) - 1;
4674 
4675 	/* shift to correct alignment */
4676 	mask <<= shift_width;
4677 
4678 	/* get the current bits from the src bit string */
4679 	src = src_ctx + (ce_info->lsb / 8);
4680 
4681 	ice_memcpy(&src_word, src, sizeof(src_word), ICE_DMA_TO_NONDMA);
4682 
4683 	/* the data in the memory is stored as little endian so mask it
4684 	 * correctly
4685 	 */
4686 	src_word &= ~(CPU_TO_LE16(mask));
4687 
4688 	/* get the data back into host order before shifting */
4689 	dest_word = LE16_TO_CPU(src_word);
4690 
4691 	dest_word >>= shift_width;
4692 
4693 	/* get the address from the struct field */
4694 	target = dest_ctx + ce_info->offset;
4695 
4696 	/* put it back in the struct */
4697 	ice_memcpy(target, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
4698 }
4699 
4700 /**
4701  * ice_read_dword - read context dword into struct
4702  * @src_ctx:  the context structure to read from
4703  * @dest_ctx: the context to be written to
4704  * @ce_info:  a description of the struct to be filled
4705  */
4706 static void
4707 ice_read_dword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4708 {
4709 	u32 dest_dword, mask;
4710 	__le32 src_dword;
4711 	u8 *src, *target;
4712 	u16 shift_width;
4713 
4714 	/* prepare the bits and mask */
4715 	shift_width = ce_info->lsb % 8;
4716 
4717 	/* if the field width is exactly 32 on an x86 machine, then the shift
4718 	 * operation will not work because the SHL instructions count is masked
4719 	 * to 5 bits so the shift will do nothing
4720 	 */
4721 	if (ce_info->width < 32)
4722 		mask = BIT(ce_info->width) - 1;
4723 	else
4724 		mask = (u32)~0;
4725 
4726 	/* shift to correct alignment */
4727 	mask <<= shift_width;
4728 
4729 	/* get the current bits from the src bit string */
4730 	src = src_ctx + (ce_info->lsb / 8);
4731 
4732 	ice_memcpy(&src_dword, src, sizeof(src_dword), ICE_DMA_TO_NONDMA);
4733 
4734 	/* the data in the memory is stored as little endian so mask it
4735 	 * correctly
4736 	 */
4737 	src_dword &= ~(CPU_TO_LE32(mask));
4738 
4739 	/* get the data back into host order before shifting */
4740 	dest_dword = LE32_TO_CPU(src_dword);
4741 
4742 	dest_dword >>= shift_width;
4743 
4744 	/* get the address from the struct field */
4745 	target = dest_ctx + ce_info->offset;
4746 
4747 	/* put it back in the struct */
4748 	ice_memcpy(target, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
4749 }
4750 
4751 /**
4752  * ice_read_qword - read context qword into struct
4753  * @src_ctx:  the context structure to read from
4754  * @dest_ctx: the context to be written to
4755  * @ce_info:  a description of the struct to be filled
4756  */
4757 static void
4758 ice_read_qword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4759 {
4760 	u64 dest_qword, mask;
4761 	__le64 src_qword;
4762 	u8 *src, *target;
4763 	u16 shift_width;
4764 
4765 	/* prepare the bits and mask */
4766 	shift_width = ce_info->lsb % 8;
4767 
4768 	/* if the field width is exactly 64 on an x86 machine, then the shift
4769 	 * operation will not work because the SHL instructions count is masked
4770 	 * to 6 bits so the shift will do nothing
4771 	 */
4772 	if (ce_info->width < 64)
4773 		mask = BIT_ULL(ce_info->width) - 1;
4774 	else
4775 		mask = (u64)~0;
4776 
4777 	/* shift to correct alignment */
4778 	mask <<= shift_width;
4779 
4780 	/* get the current bits from the src bit string */
4781 	src = src_ctx + (ce_info->lsb / 8);
4782 
4783 	ice_memcpy(&src_qword, src, sizeof(src_qword), ICE_DMA_TO_NONDMA);
4784 
4785 	/* the data in the memory is stored as little endian so mask it
4786 	 * correctly
4787 	 */
4788 	src_qword &= ~(CPU_TO_LE64(mask));
4789 
4790 	/* get the data back into host order before shifting */
4791 	dest_qword = LE64_TO_CPU(src_qword);
4792 
4793 	dest_qword >>= shift_width;
4794 
4795 	/* get the address from the struct field */
4796 	target = dest_ctx + ce_info->offset;
4797 
4798 	/* put it back in the struct */
4799 	ice_memcpy(target, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
4800 }
4801 
4802 /**
4803  * ice_get_ctx - extract context bits from a packed structure
4804  * @src_ctx:  pointer to a generic packed context structure
4805  * @dest_ctx: pointer to a generic non-packed context structure
4806  * @ce_info:  a description of the structure to be read from
4807  */
4808 enum ice_status
4809 ice_get_ctx(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4810 {
4811 	int f;
4812 
4813 	for (f = 0; ce_info[f].width; f++) {
4814 		switch (ce_info[f].size_of) {
4815 		case 1:
4816 			ice_read_byte(src_ctx, dest_ctx, &ce_info[f]);
4817 			break;
4818 		case 2:
4819 			ice_read_word(src_ctx, dest_ctx, &ce_info[f]);
4820 			break;
4821 		case 4:
4822 			ice_read_dword(src_ctx, dest_ctx, &ce_info[f]);
4823 			break;
4824 		case 8:
4825 			ice_read_qword(src_ctx, dest_ctx, &ce_info[f]);
4826 			break;
4827 		default:
4828 			/* nothing to do, just keep going */
4829 			break;
4830 		}
4831 	}
4832 
4833 	return ICE_SUCCESS;
4834 }
4835 
4836 /**
4837  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4838  * @hw: pointer to the HW struct
4839  * @vsi_handle: software VSI handle
4840  * @tc: TC number
4841  * @q_handle: software queue handle
4842  */
4843 struct ice_q_ctx *
4844 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4845 {
4846 	struct ice_vsi_ctx *vsi;
4847 	struct ice_q_ctx *q_ctx;
4848 
4849 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4850 	if (!vsi)
4851 		return NULL;
4852 	if (q_handle >= vsi->num_lan_q_entries[tc])
4853 		return NULL;
4854 	if (!vsi->lan_q_ctx[tc])
4855 		return NULL;
4856 	q_ctx = vsi->lan_q_ctx[tc];
4857 	return &q_ctx[q_handle];
4858 }
4859 
4860 /**
4861  * ice_ena_vsi_txq
4862  * @pi: port information structure
4863  * @vsi_handle: software VSI handle
4864  * @tc: TC number
4865  * @q_handle: software queue handle
4866  * @num_qgrps: Number of added queue groups
4867  * @buf: list of queue groups to be added
4868  * @buf_size: size of buffer for indirect command
4869  * @cd: pointer to command details structure or NULL
4870  *
4871  * This function adds one LAN queue
4872  */
4873 enum ice_status
4874 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4875 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4876 		struct ice_sq_cd *cd)
4877 {
4878 	struct ice_aqc_txsched_elem_data node = { 0 };
4879 	struct ice_sched_node *parent;
4880 	struct ice_q_ctx *q_ctx;
4881 	enum ice_status status;
4882 	struct ice_hw *hw;
4883 
4884 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4885 		return ICE_ERR_CFG;
4886 
4887 	if (num_qgrps > 1 || buf->num_txqs > 1)
4888 		return ICE_ERR_MAX_LIMIT;
4889 
4890 	hw = pi->hw;
4891 
4892 	if (!ice_is_vsi_valid(hw, vsi_handle))
4893 		return ICE_ERR_PARAM;
4894 
4895 	ice_acquire_lock(&pi->sched_lock);
4896 
4897 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4898 	if (!q_ctx) {
4899 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4900 			  q_handle);
4901 		status = ICE_ERR_PARAM;
4902 		goto ena_txq_exit;
4903 	}
4904 
4905 	/* find a parent node */
4906 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4907 					    ICE_SCHED_NODE_OWNER_LAN);
4908 	if (!parent) {
4909 		status = ICE_ERR_PARAM;
4910 		goto ena_txq_exit;
4911 	}
4912 
4913 	buf->parent_teid = parent->info.node_teid;
4914 	node.parent_teid = parent->info.node_teid;
4915 	/* Mark that the values in the "generic" section as valid. The default
4916 	 * value in the "generic" section is zero. This means that :
4917 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4918 	 * - 0 priority among siblings, indicated by Bit 1-3.
4919 	 * - WFQ, indicated by Bit 4.
4920 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4921 	 * Bit 5-6.
4922 	 * - Bit 7 is reserved.
4923 	 * Without setting the generic section as valid in valid_sections, the
4924 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4925 	 */
4926 	buf->txqs[0].info.valid_sections =
4927 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4928 		ICE_AQC_ELEM_VALID_EIR;
4929 	buf->txqs[0].info.generic = 0;
4930 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4931 		CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
4932 	buf->txqs[0].info.cir_bw.bw_alloc =
4933 		CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
4934 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4935 		CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
4936 	buf->txqs[0].info.eir_bw.bw_alloc =
4937 		CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
4938 
4939 	/* add the LAN queue */
4940 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4941 	if (status != ICE_SUCCESS) {
4942 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4943 			  LE16_TO_CPU(buf->txqs[0].txq_id),
4944 			  hw->adminq.sq_last_status);
4945 		goto ena_txq_exit;
4946 	}
4947 
4948 	node.node_teid = buf->txqs[0].q_teid;
4949 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4950 	q_ctx->q_handle = q_handle;
4951 	q_ctx->q_teid = LE32_TO_CPU(node.node_teid);
4952 
4953 	/* add a leaf node into scheduler tree queue layer */
4954 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
4955 	if (!status)
4956 		status = ice_sched_replay_q_bw(pi, q_ctx);
4957 
4958 ena_txq_exit:
4959 	ice_release_lock(&pi->sched_lock);
4960 	return status;
4961 }
4962 
4963 /**
4964  * ice_dis_vsi_txq
4965  * @pi: port information structure
4966  * @vsi_handle: software VSI handle
4967  * @tc: TC number
4968  * @num_queues: number of queues
4969  * @q_handles: pointer to software queue handle array
4970  * @q_ids: pointer to the q_id array
4971  * @q_teids: pointer to queue node teids
4972  * @rst_src: if called due to reset, specifies the reset source
4973  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4974  * @cd: pointer to command details structure or NULL
4975  *
4976  * This function removes queues and their corresponding nodes in SW DB
4977  */
4978 enum ice_status
4979 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4980 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4981 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4982 		struct ice_sq_cd *cd)
4983 {
4984 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4985 	struct ice_aqc_dis_txq_item *qg_list;
4986 	struct ice_q_ctx *q_ctx;
4987 	struct ice_hw *hw;
4988 	u16 i, buf_size;
4989 
4990 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4991 		return ICE_ERR_CFG;
4992 
4993 	hw = pi->hw;
4994 
4995 	if (!num_queues) {
4996 		/* if queue is disabled already yet the disable queue command
4997 		 * has to be sent to complete the VF reset, then call
4998 		 * ice_aq_dis_lan_txq without any queue information
4999 		 */
5000 		if (rst_src)
5001 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
5002 						  vmvf_num, NULL);
5003 		return ICE_ERR_CFG;
5004 	}
5005 
5006 	buf_size = ice_struct_size(qg_list, q_id, 1);
5007 	qg_list = (struct ice_aqc_dis_txq_item *)ice_malloc(hw, buf_size);
5008 	if (!qg_list)
5009 		return ICE_ERR_NO_MEMORY;
5010 
5011 	ice_acquire_lock(&pi->sched_lock);
5012 
5013 	for (i = 0; i < num_queues; i++) {
5014 		struct ice_sched_node *node;
5015 
5016 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
5017 		if (!node)
5018 			continue;
5019 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
5020 		if (!q_ctx) {
5021 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
5022 				  q_handles[i]);
5023 			continue;
5024 		}
5025 		if (q_ctx->q_handle != q_handles[i]) {
5026 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
5027 				  q_ctx->q_handle, q_handles[i]);
5028 			continue;
5029 		}
5030 		qg_list->parent_teid = node->info.parent_teid;
5031 		qg_list->num_qs = 1;
5032 		qg_list->q_id[0] = CPU_TO_LE16(q_ids[i]);
5033 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
5034 					    vmvf_num, cd);
5035 
5036 		if (status != ICE_SUCCESS)
5037 			break;
5038 		ice_free_sched_node(pi, node);
5039 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
5040 	}
5041 	ice_release_lock(&pi->sched_lock);
5042 	ice_free(hw, qg_list);
5043 	return status;
5044 }
5045 
5046 /**
5047  * ice_cfg_vsi_qs - configure the new/existing VSI queues
5048  * @pi: port information structure
5049  * @vsi_handle: software VSI handle
5050  * @tc_bitmap: TC bitmap
5051  * @maxqs: max queues array per TC
5052  * @owner: LAN or RDMA
5053  *
5054  * This function adds/updates the VSI queues per TC.
5055  */
5056 static enum ice_status
5057 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5058 	       u16 *maxqs, u8 owner)
5059 {
5060 	enum ice_status status = ICE_SUCCESS;
5061 	u8 i;
5062 
5063 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5064 		return ICE_ERR_CFG;
5065 
5066 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5067 		return ICE_ERR_PARAM;
5068 
5069 	ice_acquire_lock(&pi->sched_lock);
5070 
5071 	ice_for_each_traffic_class(i) {
5072 		/* configuration is possible only if TC node is present */
5073 		if (!ice_sched_get_tc_node(pi, i))
5074 			continue;
5075 
5076 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5077 					   ice_is_tc_ena(tc_bitmap, i));
5078 		if (status)
5079 			break;
5080 	}
5081 
5082 	ice_release_lock(&pi->sched_lock);
5083 	return status;
5084 }
5085 
5086 /**
5087  * ice_cfg_vsi_lan - configure VSI LAN queues
5088  * @pi: port information structure
5089  * @vsi_handle: software VSI handle
5090  * @tc_bitmap: TC bitmap
5091  * @max_lanqs: max LAN queues array per TC
5092  *
5093  * This function adds/updates the VSI LAN queues per TC.
5094  */
5095 enum ice_status
5096 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5097 		u16 *max_lanqs)
5098 {
5099 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5100 			      ICE_SCHED_NODE_OWNER_LAN);
5101 }
5102 
5103 /**
5104  * ice_is_main_vsi - checks whether the VSI is main VSI
5105  * @hw: pointer to the HW struct
5106  * @vsi_handle: VSI handle
5107  *
5108  * Checks whether the VSI is the main VSI (the first PF VSI created on
5109  * given PF).
5110  */
5111 static bool ice_is_main_vsi(struct ice_hw *hw, u16 vsi_handle)
5112 {
5113 	return vsi_handle == ICE_MAIN_VSI_HANDLE && hw->vsi_ctx[vsi_handle];
5114 }
5115 
5116 /**
5117  * ice_replay_pre_init - replay pre initialization
5118  * @hw: pointer to the HW struct
5119  * @sw: pointer to switch info struct for which function initializes filters
5120  *
5121  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5122  */
5123 enum ice_status
5124 ice_replay_pre_init(struct ice_hw *hw, struct ice_switch_info *sw)
5125 {
5126 	enum ice_status status;
5127 	u8 i;
5128 
5129 	/* Delete old entries from replay filter list head if there is any */
5130 	ice_rm_sw_replay_rule_info(hw, sw);
5131 	/* In start of replay, move entries into replay_rules list, it
5132 	 * will allow adding rules entries back to filt_rules list,
5133 	 * which is operational list.
5134 	 */
5135 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5136 		LIST_REPLACE_INIT(&sw->recp_list[i].filt_rules,
5137 				  &sw->recp_list[i].filt_replay_rules);
5138 	ice_sched_replay_agg_vsi_preinit(hw);
5139 
5140 	status = ice_sched_replay_root_node_bw(hw->port_info);
5141 	if (status)
5142 		return status;
5143 
5144 	return ice_sched_replay_tc_node_bw(hw->port_info);
5145 }
5146 
5147 /**
5148  * ice_replay_vsi - replay VSI configuration
5149  * @hw: pointer to the HW struct
5150  * @vsi_handle: driver VSI handle
5151  *
5152  * Restore all VSI configuration after reset. It is required to call this
5153  * function with main VSI first.
5154  */
5155 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5156 {
5157 	struct ice_switch_info *sw = hw->switch_info;
5158 	struct ice_port_info *pi = hw->port_info;
5159 	enum ice_status status;
5160 
5161 	if (!ice_is_vsi_valid(hw, vsi_handle))
5162 		return ICE_ERR_PARAM;
5163 
5164 	/* Replay pre-initialization if there is any */
5165 	if (ice_is_main_vsi(hw, vsi_handle)) {
5166 		status = ice_replay_pre_init(hw, sw);
5167 		if (status)
5168 			return status;
5169 	}
5170 	/* Replay per VSI all RSS configurations */
5171 	status = ice_replay_rss_cfg(hw, vsi_handle);
5172 	if (status)
5173 		return status;
5174 	/* Replay per VSI all filters */
5175 	status = ice_replay_vsi_all_fltr(hw, pi, vsi_handle);
5176 	if (!status)
5177 		status = ice_replay_vsi_agg(hw, vsi_handle);
5178 	return status;
5179 }
5180 
5181 /**
5182  * ice_replay_post - post replay configuration cleanup
5183  * @hw: pointer to the HW struct
5184  *
5185  * Post replay cleanup.
5186  */
5187 void ice_replay_post(struct ice_hw *hw)
5188 {
5189 	/* Delete old entries from replay filter list head */
5190 	ice_rm_all_sw_replay_rule_info(hw);
5191 	ice_sched_replay_agg(hw);
5192 }
5193 
5194 /**
5195  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5196  * @hw: ptr to the hardware info
5197  * @reg: offset of 64 bit HW register to read from
5198  * @prev_stat_loaded: bool to specify if previous stats are loaded
5199  * @prev_stat: ptr to previous loaded stat value
5200  * @cur_stat: ptr to current stat value
5201  */
5202 void
5203 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5204 		  u64 *prev_stat, u64 *cur_stat)
5205 {
5206 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5207 
5208 	/* device stats are not reset at PFR, they likely will not be zeroed
5209 	 * when the driver starts. Thus, save the value from the first read
5210 	 * without adding to the statistic value so that we report stats which
5211 	 * count up from zero.
5212 	 */
5213 	if (!prev_stat_loaded) {
5214 		*prev_stat = new_data;
5215 		return;
5216 	}
5217 
5218 	/* Calculate the difference between the new and old values, and then
5219 	 * add it to the software stat value.
5220 	 */
5221 	if (new_data >= *prev_stat)
5222 		*cur_stat += new_data - *prev_stat;
5223 	else
5224 		/* to manage the potential roll-over */
5225 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5226 
5227 	/* Update the previously stored value to prepare for next read */
5228 	*prev_stat = new_data;
5229 }
5230 
5231 /**
5232  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5233  * @hw: ptr to the hardware info
5234  * @reg: offset of HW register to read from
5235  * @prev_stat_loaded: bool to specify if previous stats are loaded
5236  * @prev_stat: ptr to previous loaded stat value
5237  * @cur_stat: ptr to current stat value
5238  */
5239 void
5240 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5241 		  u64 *prev_stat, u64 *cur_stat)
5242 {
5243 	u32 new_data;
5244 
5245 	new_data = rd32(hw, reg);
5246 
5247 	/* device stats are not reset at PFR, they likely will not be zeroed
5248 	 * when the driver starts. Thus, save the value from the first read
5249 	 * without adding to the statistic value so that we report stats which
5250 	 * count up from zero.
5251 	 */
5252 	if (!prev_stat_loaded) {
5253 		*prev_stat = new_data;
5254 		return;
5255 	}
5256 
5257 	/* Calculate the difference between the new and old values, and then
5258 	 * add it to the software stat value.
5259 	 */
5260 	if (new_data >= *prev_stat)
5261 		*cur_stat += new_data - *prev_stat;
5262 	else
5263 		/* to manage the potential roll-over */
5264 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5265 
5266 	/* Update the previously stored value to prepare for next read */
5267 	*prev_stat = new_data;
5268 }
5269 
5270 /**
5271  * ice_stat_update_repc - read GLV_REPC stats from chip and update stat values
5272  * @hw: ptr to the hardware info
5273  * @vsi_handle: VSI handle
5274  * @prev_stat_loaded: bool to specify if the previous stat values are loaded
5275  * @cur_stats: ptr to current stats structure
5276  *
5277  * The GLV_REPC statistic register actually tracks two 16bit statistics, and
5278  * thus cannot be read using the normal ice_stat_update32 function.
5279  *
5280  * Read the GLV_REPC register associated with the given VSI, and update the
5281  * rx_no_desc and rx_error values in the ice_eth_stats structure.
5282  *
5283  * Because the statistics in GLV_REPC stick at 0xFFFF, the register must be
5284  * cleared each time it's read.
5285  *
5286  * Note that the GLV_RDPC register also counts the causes that would trigger
5287  * GLV_REPC. However, it does not give the finer grained detail about why the
5288  * packets are being dropped. The GLV_REPC values can be used to distinguish
5289  * whether Rx packets are dropped due to errors or due to no available
5290  * descriptors.
5291  */
5292 void
5293 ice_stat_update_repc(struct ice_hw *hw, u16 vsi_handle, bool prev_stat_loaded,
5294 		     struct ice_eth_stats *cur_stats)
5295 {
5296 	u16 vsi_num, no_desc, error_cnt;
5297 	u32 repc;
5298 
5299 	if (!ice_is_vsi_valid(hw, vsi_handle))
5300 		return;
5301 
5302 	vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
5303 
5304 	/* If we haven't loaded stats yet, just clear the current value */
5305 	if (!prev_stat_loaded) {
5306 		wr32(hw, GLV_REPC(vsi_num), 0);
5307 		return;
5308 	}
5309 
5310 	repc = rd32(hw, GLV_REPC(vsi_num));
5311 	no_desc = (repc & GLV_REPC_NO_DESC_CNT_M) >> GLV_REPC_NO_DESC_CNT_S;
5312 	error_cnt = (repc & GLV_REPC_ERROR_CNT_M) >> GLV_REPC_ERROR_CNT_S;
5313 
5314 	/* Clear the count by writing to the stats register */
5315 	wr32(hw, GLV_REPC(vsi_num), 0);
5316 
5317 	cur_stats->rx_no_desc += no_desc;
5318 	cur_stats->rx_errors += error_cnt;
5319 }
5320 
5321 /**
5322  * ice_aq_alternate_write
5323  * @hw: pointer to the hardware structure
5324  * @reg_addr0: address of first dword to be written
5325  * @reg_val0: value to be written under 'reg_addr0'
5326  * @reg_addr1: address of second dword to be written
5327  * @reg_val1: value to be written under 'reg_addr1'
5328  *
5329  * Write one or two dwords to alternate structure. Fields are indicated
5330  * by 'reg_addr0' and 'reg_addr1' register numbers.
5331  */
5332 enum ice_status
5333 ice_aq_alternate_write(struct ice_hw *hw, u32 reg_addr0, u32 reg_val0,
5334 		       u32 reg_addr1, u32 reg_val1)
5335 {
5336 	struct ice_aqc_read_write_alt_direct *cmd;
5337 	struct ice_aq_desc desc;
5338 	enum ice_status status;
5339 
5340 	cmd = &desc.params.read_write_alt_direct;
5341 
5342 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_alt_direct);
5343 	cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
5344 	cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
5345 	cmd->dword0_value = CPU_TO_LE32(reg_val0);
5346 	cmd->dword1_value = CPU_TO_LE32(reg_val1);
5347 
5348 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5349 
5350 	return status;
5351 }
5352 
5353 /**
5354  * ice_aq_alternate_read
5355  * @hw: pointer to the hardware structure
5356  * @reg_addr0: address of first dword to be read
5357  * @reg_val0: pointer for data read from 'reg_addr0'
5358  * @reg_addr1: address of second dword to be read
5359  * @reg_val1: pointer for data read from 'reg_addr1'
5360  *
5361  * Read one or two dwords from alternate structure. Fields are indicated
5362  * by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer
5363  * is not passed then only register at 'reg_addr0' is read.
5364  */
5365 enum ice_status
5366 ice_aq_alternate_read(struct ice_hw *hw, u32 reg_addr0, u32 *reg_val0,
5367 		      u32 reg_addr1, u32 *reg_val1)
5368 {
5369 	struct ice_aqc_read_write_alt_direct *cmd;
5370 	struct ice_aq_desc desc;
5371 	enum ice_status status;
5372 
5373 	cmd = &desc.params.read_write_alt_direct;
5374 
5375 	if (!reg_val0)
5376 		return ICE_ERR_PARAM;
5377 
5378 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_alt_direct);
5379 	cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
5380 	cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
5381 
5382 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5383 
5384 	if (status == ICE_SUCCESS) {
5385 		*reg_val0 = LE32_TO_CPU(cmd->dword0_value);
5386 
5387 		if (reg_val1)
5388 			*reg_val1 = LE32_TO_CPU(cmd->dword1_value);
5389 	}
5390 
5391 	return status;
5392 }
5393 
5394 /**
5395  *  ice_aq_alternate_write_done
5396  *  @hw: pointer to the HW structure.
5397  *  @bios_mode: indicates whether the command is executed by UEFI or legacy BIOS
5398  *  @reset_needed: indicates the SW should trigger GLOBAL reset
5399  *
5400  *  Indicates to the FW that alternate structures have been changed.
5401  */
5402 enum ice_status
5403 ice_aq_alternate_write_done(struct ice_hw *hw, u8 bios_mode, bool *reset_needed)
5404 {
5405 	struct ice_aqc_done_alt_write *cmd;
5406 	struct ice_aq_desc desc;
5407 	enum ice_status status;
5408 
5409 	cmd = &desc.params.done_alt_write;
5410 
5411 	if (!reset_needed)
5412 		return ICE_ERR_PARAM;
5413 
5414 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_done_alt_write);
5415 	cmd->flags = bios_mode;
5416 
5417 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5418 	if (!status)
5419 		*reset_needed = (LE16_TO_CPU(cmd->flags) &
5420 				 ICE_AQC_RESP_RESET_NEEDED) != 0;
5421 
5422 	return status;
5423 }
5424 
5425 /**
5426  *  ice_aq_alternate_clear
5427  *  @hw: pointer to the HW structure.
5428  *
5429  *  Clear the alternate structures of the port from which the function
5430  *  is called.
5431  */
5432 enum ice_status ice_aq_alternate_clear(struct ice_hw *hw)
5433 {
5434 	struct ice_aq_desc desc;
5435 	enum ice_status status;
5436 
5437 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_port_alt_write);
5438 
5439 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5440 
5441 	return status;
5442 }
5443 
5444 /**
5445  * ice_sched_query_elem - query element information from HW
5446  * @hw: pointer to the HW struct
5447  * @node_teid: node TEID to be queried
5448  * @buf: buffer to element information
5449  *
5450  * This function queries HW element information
5451  */
5452 enum ice_status
5453 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5454 		     struct ice_aqc_txsched_elem_data *buf)
5455 {
5456 	u16 buf_size, num_elem_ret = 0;
5457 	enum ice_status status;
5458 
5459 	buf_size = sizeof(*buf);
5460 	ice_memset(buf, 0, buf_size, ICE_NONDMA_MEM);
5461 	buf->node_teid = CPU_TO_LE32(node_teid);
5462 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5463 					  NULL);
5464 	if (status != ICE_SUCCESS || num_elem_ret != 1)
5465 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5466 	return status;
5467 }
5468 
5469 /**
5470  * ice_get_fw_mode - returns FW mode
5471  * @hw: pointer to the HW struct
5472  */
5473 enum ice_fw_modes ice_get_fw_mode(struct ice_hw *hw)
5474 {
5475 #define ICE_FW_MODE_DBG_M BIT(0)
5476 #define ICE_FW_MODE_REC_M BIT(1)
5477 #define ICE_FW_MODE_ROLLBACK_M BIT(2)
5478 	u32 fw_mode;
5479 
5480 	/* check the current FW mode */
5481 	fw_mode = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_MODES_M;
5482 	if (fw_mode & ICE_FW_MODE_DBG_M)
5483 		return ICE_FW_MODE_DBG;
5484 	else if (fw_mode & ICE_FW_MODE_REC_M)
5485 		return ICE_FW_MODE_REC;
5486 	else if (fw_mode & ICE_FW_MODE_ROLLBACK_M)
5487 		return ICE_FW_MODE_ROLLBACK;
5488 	else
5489 		return ICE_FW_MODE_NORMAL;
5490 }
5491 
5492 /**
5493  * ice_cfg_get_cur_lldp_persist_status
5494  * @hw: pointer to the HW struct
5495  * @lldp_status: return value of LLDP persistent status
5496  *
5497  * Get the current status of LLDP persistent
5498  */
5499 enum ice_status
5500 ice_get_cur_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
5501 {
5502 	struct ice_port_info *pi = hw->port_info;
5503 	enum ice_status ret;
5504 	__le32 raw_data;
5505 	u32 data, mask;
5506 
5507 	if (!lldp_status)
5508 		return ICE_ERR_BAD_PTR;
5509 
5510 	ret = ice_acquire_nvm(hw, ICE_RES_READ);
5511 	if (ret)
5512 		return ret;
5513 
5514 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LLDP_PRESERVED_MOD_ID,
5515 			      ICE_AQC_NVM_CUR_LLDP_PERSIST_RD_OFFSET,
5516 			      ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data,
5517 			      false, true, NULL);
5518 	if (!ret) {
5519 		data = LE32_TO_CPU(raw_data);
5520 		mask = ICE_AQC_NVM_LLDP_STATUS_M <<
5521 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5522 		data = data & mask;
5523 		*lldp_status = data >>
5524 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5525 	}
5526 
5527 	ice_release_nvm(hw);
5528 
5529 	return ret;
5530 }
5531 
5532 /**
5533  * ice_get_dflt_lldp_persist_status
5534  * @hw: pointer to the HW struct
5535  * @lldp_status: return value of LLDP persistent status
5536  *
5537  * Get the default status of LLDP persistent
5538  */
5539 enum ice_status
5540 ice_get_dflt_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
5541 {
5542 	struct ice_port_info *pi = hw->port_info;
5543 	u32 data, mask, loc_data, loc_data_tmp;
5544 	enum ice_status ret;
5545 	__le16 loc_raw_data;
5546 	__le32 raw_data;
5547 
5548 	if (!lldp_status)
5549 		return ICE_ERR_BAD_PTR;
5550 
5551 	ret = ice_acquire_nvm(hw, ICE_RES_READ);
5552 	if (ret)
5553 		return ret;
5554 
5555 	/* Read the offset of EMP_SR_PTR */
5556 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
5557 			      ICE_AQC_NVM_EMP_SR_PTR_OFFSET,
5558 			      ICE_AQC_NVM_EMP_SR_PTR_RD_LEN,
5559 			      &loc_raw_data, false, true, NULL);
5560 	if (ret)
5561 		goto exit;
5562 
5563 	loc_data = LE16_TO_CPU(loc_raw_data);
5564 	if (loc_data & ICE_AQC_NVM_EMP_SR_PTR_TYPE_M) {
5565 		loc_data &= ICE_AQC_NVM_EMP_SR_PTR_M;
5566 		loc_data *= ICE_AQC_NVM_SECTOR_UNIT;
5567 	} else {
5568 		loc_data *= ICE_AQC_NVM_WORD_UNIT;
5569 	}
5570 
5571 	/* Read the offset of LLDP configuration pointer */
5572 	loc_data += ICE_AQC_NVM_LLDP_CFG_PTR_OFFSET;
5573 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
5574 			      ICE_AQC_NVM_LLDP_CFG_PTR_RD_LEN, &loc_raw_data,
5575 			      false, true, NULL);
5576 	if (ret)
5577 		goto exit;
5578 
5579 	loc_data_tmp = LE16_TO_CPU(loc_raw_data);
5580 	loc_data_tmp *= ICE_AQC_NVM_WORD_UNIT;
5581 	loc_data += loc_data_tmp;
5582 
5583 	/* We need to skip LLDP configuration section length (2 bytes) */
5584 	loc_data += ICE_AQC_NVM_LLDP_CFG_HEADER_LEN;
5585 
5586 	/* Read the LLDP Default Configure */
5587 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
5588 			      ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data, false,
5589 			      true, NULL);
5590 	if (!ret) {
5591 		data = LE32_TO_CPU(raw_data);
5592 		mask = ICE_AQC_NVM_LLDP_STATUS_M <<
5593 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5594 		data = data & mask;
5595 		*lldp_status = data >>
5596 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5597 	}
5598 
5599 exit:
5600 	ice_release_nvm(hw);
5601 
5602 	return ret;
5603 }
5604 
5605 /**
5606  * ice_aq_read_i2c
5607  * @hw: pointer to the hw struct
5608  * @topo_addr: topology address for a device to communicate with
5609  * @bus_addr: 7-bit I2C bus address
5610  * @addr: I2C memory address (I2C offset) with up to 16 bits
5611  * @params: I2C parameters: bit [7] - Repeated start, bits [6:5] data offset size,
5612  *			    bit [4] - I2C address type, bits [3:0] - data size to read (0-16 bytes)
5613  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5614  * @cd: pointer to command details structure or NULL
5615  *
5616  * Read I2C (0x06E2)
5617  */
5618 enum ice_status
5619 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5620 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5621 		struct ice_sq_cd *cd)
5622 {
5623 	struct ice_aq_desc desc = { 0 };
5624 	struct ice_aqc_i2c *cmd;
5625 	enum ice_status status;
5626 	u8 data_size;
5627 
5628 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5629 	cmd = &desc.params.read_write_i2c;
5630 
5631 	if (!data)
5632 		return ICE_ERR_PARAM;
5633 
5634 	data_size = (params & ICE_AQC_I2C_DATA_SIZE_M) >> ICE_AQC_I2C_DATA_SIZE_S;
5635 
5636 	cmd->i2c_bus_addr = CPU_TO_LE16(bus_addr);
5637 	cmd->topo_addr = topo_addr;
5638 	cmd->i2c_params = params;
5639 	cmd->i2c_addr = addr;
5640 
5641 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5642 	if (!status) {
5643 		struct ice_aqc_read_i2c_resp *resp;
5644 		u8 i;
5645 
5646 		resp = &desc.params.read_i2c_resp;
5647 		for (i = 0; i < data_size; i++) {
5648 			*data = resp->i2c_data[i];
5649 			data++;
5650 		}
5651 	}
5652 
5653 	return status;
5654 }
5655 
5656 /**
5657  * ice_aq_write_i2c
5658  * @hw: pointer to the hw struct
5659  * @topo_addr: topology address for a device to communicate with
5660  * @bus_addr: 7-bit I2C bus address
5661  * @addr: I2C memory address (I2C offset) with up to 16 bits
5662  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5663  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5664  * @cd: pointer to command details structure or NULL
5665  *
5666  * Write I2C (0x06E3)
5667  */
5668 enum ice_status
5669 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5670 		 u16 bus_addr, __le16 addr, u8 params, u8 *data,
5671 		 struct ice_sq_cd *cd)
5672 {
5673 	struct ice_aq_desc desc = { 0 };
5674 	struct ice_aqc_i2c *cmd;
5675 	u8 i, data_size;
5676 
5677 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5678 	cmd = &desc.params.read_write_i2c;
5679 
5680 	data_size = (params & ICE_AQC_I2C_DATA_SIZE_M) >> ICE_AQC_I2C_DATA_SIZE_S;
5681 
5682 	/* data_size limited to 4 */
5683 	if (data_size > 4)
5684 		return ICE_ERR_PARAM;
5685 
5686 	cmd->i2c_bus_addr = CPU_TO_LE16(bus_addr);
5687 	cmd->topo_addr = topo_addr;
5688 	cmd->i2c_params = params;
5689 	cmd->i2c_addr = addr;
5690 
5691 	for (i = 0; i < data_size; i++) {
5692 		cmd->i2c_data[i] = *data;
5693 		data++;
5694 	}
5695 
5696 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5697 }
5698 
5699 /**
5700  * ice_aq_set_gpio
5701  * @hw: pointer to the hw struct
5702  * @gpio_ctrl_handle: GPIO controller node handle
5703  * @pin_idx: IO Number of the GPIO that needs to be set
5704  * @value: SW provide IO value to set in the LSB
5705  * @cd: pointer to command details structure or NULL
5706  *
5707  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5708  */
5709 enum ice_status
5710 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5711 		struct ice_sq_cd *cd)
5712 {
5713 	struct ice_aqc_gpio *cmd;
5714 	struct ice_aq_desc desc;
5715 
5716 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5717 	cmd = &desc.params.read_write_gpio;
5718 	cmd->gpio_ctrl_handle = gpio_ctrl_handle;
5719 	cmd->gpio_num = pin_idx;
5720 	cmd->gpio_val = value ? 1 : 0;
5721 
5722 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5723 }
5724 
5725 /**
5726  * ice_aq_get_gpio
5727  * @hw: pointer to the hw struct
5728  * @gpio_ctrl_handle: GPIO controller node handle
5729  * @pin_idx: IO Number of the GPIO that needs to be set
5730  * @value: IO value read
5731  * @cd: pointer to command details structure or NULL
5732  *
5733  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5734  * the topology
5735  */
5736 enum ice_status
5737 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5738 		bool *value, struct ice_sq_cd *cd)
5739 {
5740 	struct ice_aqc_gpio *cmd;
5741 	struct ice_aq_desc desc;
5742 	enum ice_status status;
5743 
5744 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5745 	cmd = &desc.params.read_write_gpio;
5746 	cmd->gpio_ctrl_handle = gpio_ctrl_handle;
5747 	cmd->gpio_num = pin_idx;
5748 
5749 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5750 	if (status)
5751 		return status;
5752 
5753 	*value = !!cmd->gpio_val;
5754 	return ICE_SUCCESS;
5755 }
5756 
5757 /**
5758  * ice_fw_supports_link_override
5759  * @hw: pointer to the hardware structure
5760  *
5761  * Checks if the firmware supports link override
5762  */
5763 bool ice_fw_supports_link_override(struct ice_hw *hw)
5764 {
5765 	if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
5766 		if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
5767 			return true;
5768 		if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
5769 		    hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
5770 			return true;
5771 	} else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
5772 		return true;
5773 	}
5774 
5775 	return false;
5776 }
5777 
5778 /**
5779  * ice_get_link_default_override
5780  * @ldo: pointer to the link default override struct
5781  * @pi: pointer to the port info struct
5782  *
5783  * Gets the link default override for a port
5784  */
5785 enum ice_status
5786 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5787 			      struct ice_port_info *pi)
5788 {
5789 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5790 	struct ice_hw *hw = pi->hw;
5791 	enum ice_status status;
5792 
5793 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5794 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5795 	if (status) {
5796 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5797 		return status;
5798 	}
5799 
5800 	/* Each port has its own config; calculate for our port */
5801 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5802 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5803 
5804 	/* link options first */
5805 	status = ice_read_sr_word(hw, tlv_start, &buf);
5806 	if (status) {
5807 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5808 		return status;
5809 	}
5810 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
5811 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5812 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5813 
5814 	/* link PHY config */
5815 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5816 	status = ice_read_sr_word(hw, offset, &buf);
5817 	if (status) {
5818 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5819 		return status;
5820 	}
5821 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5822 
5823 	/* PHY types low */
5824 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5825 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5826 		status = ice_read_sr_word(hw, (offset + i), &buf);
5827 		if (status) {
5828 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5829 			return status;
5830 		}
5831 		/* shift 16 bits at a time to fill 64 bits */
5832 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5833 	}
5834 
5835 	/* PHY types high */
5836 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5837 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5838 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5839 		status = ice_read_sr_word(hw, (offset + i), &buf);
5840 		if (status) {
5841 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5842 			return status;
5843 		}
5844 		/* shift 16 bits at a time to fill 64 bits */
5845 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5846 	}
5847 
5848 	return status;
5849 }
5850 
5851 /**
5852  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5853  * @caps: get PHY capability data
5854  */
5855 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5856 {
5857 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5858 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5859 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5860 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5861 		return true;
5862 
5863 	return false;
5864 }
5865 
5866 /**
5867  * ice_is_fw_health_report_supported
5868  * @hw: pointer to the hardware structure
5869  *
5870  * Return true if firmware supports health status reports,
5871  * false otherwise
5872  */
5873 bool ice_is_fw_health_report_supported(struct ice_hw *hw)
5874 {
5875 	if (hw->api_maj_ver > ICE_FW_API_HEALTH_REPORT_MAJ)
5876 		return true;
5877 
5878 	if (hw->api_maj_ver == ICE_FW_API_HEALTH_REPORT_MAJ) {
5879 		if (hw->api_min_ver > ICE_FW_API_HEALTH_REPORT_MIN)
5880 			return true;
5881 		if (hw->api_min_ver == ICE_FW_API_HEALTH_REPORT_MIN &&
5882 		    hw->api_patch >= ICE_FW_API_HEALTH_REPORT_PATCH)
5883 			return true;
5884 	}
5885 
5886 	return false;
5887 }
5888 
5889 /**
5890  * ice_aq_set_health_status_config - Configure FW health events
5891  * @hw: pointer to the HW struct
5892  * @event_source: type of diagnostic events to enable
5893  * @cd: pointer to command details structure or NULL
5894  *
5895  * Configure the health status event types that the firmware will send to this
5896  * PF. The supported event types are: PF-specific, all PFs, and global
5897  */
5898 enum ice_status
5899 ice_aq_set_health_status_config(struct ice_hw *hw, u8 event_source,
5900 				struct ice_sq_cd *cd)
5901 {
5902 	struct ice_aqc_set_health_status_config *cmd;
5903 	struct ice_aq_desc desc;
5904 
5905 	cmd = &desc.params.set_health_status_config;
5906 
5907 	ice_fill_dflt_direct_cmd_desc(&desc,
5908 				      ice_aqc_opc_set_health_status_config);
5909 
5910 	cmd->event_source = event_source;
5911 
5912 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5913 }
5914 
5915 /**
5916  * ice_aq_get_port_options
5917  * @hw: pointer to the hw struct
5918  * @options: buffer for the resultant port options
5919  * @option_count: input - size of the buffer in port options structures,
5920  *                output - number of returned port options
5921  * @lport: logical port to call the command with (optional)
5922  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
5923  *               when PF owns more than 1 port it must be true
5924  * @active_option_idx: index of active port option in returned buffer
5925  * @active_option_valid: active option in returned buffer is valid
5926  *
5927  * Calls Get Port Options AQC (0x06ea) and verifies result.
5928  */
5929 enum ice_status
5930 ice_aq_get_port_options(struct ice_hw *hw,
5931 			struct ice_aqc_get_port_options_elem *options,
5932 			u8 *option_count, u8 lport, bool lport_valid,
5933 			u8 *active_option_idx, bool *active_option_valid)
5934 {
5935 	struct ice_aqc_get_port_options *cmd;
5936 	struct ice_aq_desc desc;
5937 	enum ice_status status;
5938 	u8 pmd_count;
5939 	u8 max_speed;
5940 	u8 i;
5941 
5942 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
5943 
5944 	/* options buffer shall be able to hold max returned options */
5945 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
5946 		return ICE_ERR_PARAM;
5947 
5948 	cmd = &desc.params.get_port_options;
5949 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
5950 
5951 	if (lport_valid)
5952 		cmd->lport_num = lport;
5953 	cmd->lport_num_valid = lport_valid;
5954 
5955 	status = ice_aq_send_cmd(hw, &desc, options,
5956 				 *option_count * sizeof(*options), NULL);
5957 	if (status != ICE_SUCCESS)
5958 		return status;
5959 
5960 	/* verify direct FW response & set output parameters */
5961 	*option_count = cmd->port_options_count & ICE_AQC_PORT_OPT_COUNT_M;
5962 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
5963 	*active_option_valid = cmd->port_options & ICE_AQC_PORT_OPT_VALID;
5964 	if (*active_option_valid) {
5965 		*active_option_idx = cmd->port_options &
5966 				     ICE_AQC_PORT_OPT_ACTIVE_M;
5967 		if (*active_option_idx > (*option_count - 1))
5968 			return ICE_ERR_OUT_OF_RANGE;
5969 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
5970 			  *active_option_idx);
5971 	}
5972 
5973 	/* verify indirect FW response & mask output options fields */
5974 	for (i = 0; i < *option_count; i++) {
5975 		options[i].pmd &= ICE_AQC_PORT_OPT_PMD_COUNT_M;
5976 		options[i].max_lane_speed &= ICE_AQC_PORT_OPT_MAX_LANE_M;
5977 		pmd_count = options[i].pmd;
5978 		max_speed = options[i].max_lane_speed;
5979 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
5980 			  pmd_count, max_speed);
5981 
5982 		/* check only entries containing valid max pmd speed values,
5983 		 * other reserved values may be returned, when logical port
5984 		 * used is unrelated to specific option
5985 		 */
5986 		if (max_speed <= ICE_AQC_PORT_OPT_MAX_LANE_100G) {
5987 			if (pmd_count > ICE_MAX_PORT_PER_PCI_DEV)
5988 				return ICE_ERR_OUT_OF_RANGE;
5989 			if (pmd_count > 2 &&
5990 			    max_speed > ICE_AQC_PORT_OPT_MAX_LANE_25G)
5991 				return ICE_ERR_CFG;
5992 			if (pmd_count > 7 &&
5993 			    max_speed > ICE_AQC_PORT_OPT_MAX_LANE_10G)
5994 				return ICE_ERR_CFG;
5995 		}
5996 	}
5997 
5998 	return ICE_SUCCESS;
5999 }
6000 
6001 /**
6002  * ice_aq_set_lldp_mib - Set the LLDP MIB
6003  * @hw: pointer to the HW struct
6004  * @mib_type: Local, Remote or both Local and Remote MIBs
6005  * @buf: pointer to the caller-supplied buffer to store the MIB block
6006  * @buf_size: size of the buffer (in bytes)
6007  * @cd: pointer to command details structure or NULL
6008  *
6009  * Set the LLDP MIB. (0x0A08)
6010  */
6011 enum ice_status
6012 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6013 		    struct ice_sq_cd *cd)
6014 {
6015 	struct ice_aqc_lldp_set_local_mib *cmd;
6016 	struct ice_aq_desc desc;
6017 
6018 	cmd = &desc.params.lldp_set_mib;
6019 
6020 	if (buf_size == 0 || !buf)
6021 		return ICE_ERR_PARAM;
6022 
6023 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6024 
6025 	desc.flags |= CPU_TO_LE16((u16)ICE_AQ_FLAG_RD);
6026 	desc.datalen = CPU_TO_LE16(buf_size);
6027 
6028 	cmd->type = mib_type;
6029 	cmd->length = CPU_TO_LE16(buf_size);
6030 
6031 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6032 }
6033 
6034 /**
6035  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6036  * @hw: pointer to HW struct
6037  */
6038 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6039 {
6040 	if (hw->mac_type != ICE_MAC_E810)
6041 		return false;
6042 
6043 	if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
6044 		if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
6045 			return true;
6046 		if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
6047 		    hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
6048 			return true;
6049 	} else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
6050 		return true;
6051 	}
6052 	return false;
6053 }
6054 
6055 /**
6056  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6057  * @hw: pointer to HW struct
6058  * @vsi_num: absolute HW index for VSI
6059  * @add: boolean for if adding or removing a filter
6060  */
6061 enum ice_status
6062 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
6063 {
6064 	struct ice_aqc_lldp_filter_ctrl *cmd;
6065 	struct ice_aq_desc desc;
6066 
6067 	cmd = &desc.params.lldp_filter_ctrl;
6068 
6069 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6070 
6071 	if (add)
6072 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6073 	else
6074 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6075 
6076 	cmd->vsi_num = CPU_TO_LE16(vsi_num);
6077 
6078 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6079 }
6080 
6081 /**
6082  * ice_fw_supports_report_dflt_cfg
6083  * @hw: pointer to the hardware structure
6084  *
6085  * Checks if the firmware supports report default configuration
6086  */
6087 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6088 {
6089 	if (hw->api_maj_ver == ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
6090 		if (hw->api_min_ver > ICE_FW_API_REPORT_DFLT_CFG_MIN)
6091 			return true;
6092 		if (hw->api_min_ver == ICE_FW_API_REPORT_DFLT_CFG_MIN &&
6093 		    hw->api_patch >= ICE_FW_API_REPORT_DFLT_CFG_PATCH)
6094 			return true;
6095 	} else if (hw->api_maj_ver > ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
6096 		return true;
6097 	}
6098 	return false;
6099 }
6100 
6101 /**
6102  * ice_is_fw_auto_drop_supported
6103  * @hw: pointer to the hardware structure
6104  *
6105  * Checks if the firmware supports auto drop feature
6106  */
6107 bool ice_is_fw_auto_drop_supported(struct ice_hw *hw)
6108 {
6109 	if (hw->api_maj_ver >= ICE_FW_API_AUTO_DROP_MAJ &&
6110 	    hw->api_min_ver >= ICE_FW_API_AUTO_DROP_MIN)
6111 		return true;
6112 	return false;
6113 }
6114