xref: /freebsd/sys/dev/hwpmc/hwpmc_mod.c (revision aa64588d28258aef88cc33b8043112e8856948d0)
1 /*-
2  * Copyright (c) 2003-2008 Joseph Koshy
3  * Copyright (c) 2007 The FreeBSD Foundation
4  * All rights reserved.
5  *
6  * Portions of this software were developed by A. Joseph Koshy under
7  * sponsorship from the FreeBSD Foundation and Google, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/eventhandler.h>
37 #include <sys/jail.h>
38 #include <sys/kernel.h>
39 #include <sys/kthread.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/mount.h>
45 #include <sys/mutex.h>
46 #include <sys/pmc.h>
47 #include <sys/pmckern.h>
48 #include <sys/pmclog.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/signalvar.h>
55 #include <sys/smp.h>
56 #include <sys/sx.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysent.h>
59 #include <sys/systm.h>
60 #include <sys/vnode.h>
61 
62 #include <sys/linker.h>		/* needs to be after <sys/malloc.h> */
63 
64 #include <machine/atomic.h>
65 #include <machine/md_var.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_extern.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_object.h>
72 
73 /*
74  * Types
75  */
76 
77 enum pmc_flags {
78 	PMC_FLAG_NONE	  = 0x00, /* do nothing */
79 	PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
80 	PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
81 };
82 
83 /*
84  * The offset in sysent where the syscall is allocated.
85  */
86 
87 static int pmc_syscall_num = NO_SYSCALL;
88 struct pmc_cpu		**pmc_pcpu;	 /* per-cpu state */
89 pmc_value_t		*pmc_pcpu_saved; /* saved PMC values: CSW handling */
90 
91 #define	PMC_PCPU_SAVED(C,R)	pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
92 
93 struct mtx_pool		*pmc_mtxpool;
94 static int		*pmc_pmcdisp;	 /* PMC row dispositions */
95 
96 #define	PMC_ROW_DISP_IS_FREE(R)		(pmc_pmcdisp[(R)] == 0)
97 #define	PMC_ROW_DISP_IS_THREAD(R)	(pmc_pmcdisp[(R)] > 0)
98 #define	PMC_ROW_DISP_IS_STANDALONE(R)	(pmc_pmcdisp[(R)] < 0)
99 
100 #define	PMC_MARK_ROW_FREE(R) do {					  \
101 	pmc_pmcdisp[(R)] = 0;						  \
102 } while (0)
103 
104 #define	PMC_MARK_ROW_STANDALONE(R) do {					  \
105 	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
106 		    __LINE__));						  \
107 	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
108 	KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()),		  \
109 		("[pmc,%d] row disposition error", __LINE__));		  \
110 } while (0)
111 
112 #define	PMC_UNMARK_ROW_STANDALONE(R) do { 				  \
113 	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
114 	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
115 		    __LINE__));						  \
116 } while (0)
117 
118 #define	PMC_MARK_ROW_THREAD(R) do {					  \
119 	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
120 		    __LINE__));						  \
121 	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
122 } while (0)
123 
124 #define	PMC_UNMARK_ROW_THREAD(R) do {					  \
125 	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
126 	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
127 		    __LINE__));						  \
128 } while (0)
129 
130 
131 /* various event handlers */
132 static eventhandler_tag	pmc_exit_tag, pmc_fork_tag;
133 
134 /* Module statistics */
135 struct pmc_op_getdriverstats pmc_stats;
136 
137 /* Machine/processor dependent operations */
138 static struct pmc_mdep  *md;
139 
140 /*
141  * Hash tables mapping owner processes and target threads to PMCs.
142  */
143 
144 struct mtx pmc_processhash_mtx;		/* spin mutex */
145 static u_long pmc_processhashmask;
146 static LIST_HEAD(pmc_processhash, pmc_process)	*pmc_processhash;
147 
148 /*
149  * Hash table of PMC owner descriptors.  This table is protected by
150  * the shared PMC "sx" lock.
151  */
152 
153 static u_long pmc_ownerhashmask;
154 static LIST_HEAD(pmc_ownerhash, pmc_owner)	*pmc_ownerhash;
155 
156 /*
157  * List of PMC owners with system-wide sampling PMCs.
158  */
159 
160 static LIST_HEAD(, pmc_owner)			pmc_ss_owners;
161 
162 
163 /*
164  * A map of row indices to classdep structures.
165  */
166 static struct pmc_classdep **pmc_rowindex_to_classdep;
167 
168 /*
169  * Prototypes
170  */
171 
172 #ifdef	DEBUG
173 static int	pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
174 static int	pmc_debugflags_parse(char *newstr, char *fence);
175 #endif
176 
177 static int	load(struct module *module, int cmd, void *arg);
178 static int	pmc_attach_process(struct proc *p, struct pmc *pm);
179 static struct pmc *pmc_allocate_pmc_descriptor(void);
180 static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
181 static int	pmc_attach_one_process(struct proc *p, struct pmc *pm);
182 static int	pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
183     int cpu);
184 static int	pmc_can_attach(struct pmc *pm, struct proc *p);
185 static void	pmc_capture_user_callchain(int cpu, struct trapframe *tf);
186 static void	pmc_cleanup(void);
187 static int	pmc_detach_process(struct proc *p, struct pmc *pm);
188 static int	pmc_detach_one_process(struct proc *p, struct pmc *pm,
189     int flags);
190 static void	pmc_destroy_owner_descriptor(struct pmc_owner *po);
191 static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
192 static int	pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
193 static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
194     pmc_id_t pmc);
195 static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
196     uint32_t mode);
197 static void	pmc_force_context_switch(void);
198 static void	pmc_link_target_process(struct pmc *pm,
199     struct pmc_process *pp);
200 static void	pmc_log_all_process_mappings(struct pmc_owner *po);
201 static void	pmc_log_kernel_mappings(struct pmc *pm);
202 static void	pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
203 static void	pmc_maybe_remove_owner(struct pmc_owner *po);
204 static void	pmc_process_csw_in(struct thread *td);
205 static void	pmc_process_csw_out(struct thread *td);
206 static void	pmc_process_exit(void *arg, struct proc *p);
207 static void	pmc_process_fork(void *arg, struct proc *p1,
208     struct proc *p2, int n);
209 static void	pmc_process_samples(int cpu);
210 static void	pmc_release_pmc_descriptor(struct pmc *pmc);
211 static void	pmc_remove_owner(struct pmc_owner *po);
212 static void	pmc_remove_process_descriptor(struct pmc_process *pp);
213 static void	pmc_restore_cpu_binding(struct pmc_binding *pb);
214 static void	pmc_save_cpu_binding(struct pmc_binding *pb);
215 static void	pmc_select_cpu(int cpu);
216 static int	pmc_start(struct pmc *pm);
217 static int	pmc_stop(struct pmc *pm);
218 static int	pmc_syscall_handler(struct thread *td, void *syscall_args);
219 static void	pmc_unlink_target_process(struct pmc *pmc,
220     struct pmc_process *pp);
221 
222 /*
223  * Kernel tunables and sysctl(8) interface.
224  */
225 
226 SYSCTL_NODE(_kern, OID_AUTO, hwpmc, CTLFLAG_RW, 0, "HWPMC parameters");
227 
228 static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
229 TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "callchaindepth", &pmc_callchaindepth);
230 SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_TUN|CTLFLAG_RD,
231     &pmc_callchaindepth, 0, "depth of call chain records");
232 
233 #ifdef	DEBUG
234 struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
235 char	pmc_debugstr[PMC_DEBUG_STRSIZE];
236 TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
237     sizeof(pmc_debugstr));
238 SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
239     CTLTYPE_STRING|CTLFLAG_RW|CTLFLAG_TUN,
240     0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
241 #endif
242 
243 /*
244  * kern.hwpmc.hashrows -- determines the number of rows in the
245  * of the hash table used to look up threads
246  */
247 
248 static int pmc_hashsize = PMC_HASH_SIZE;
249 TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "hashsize", &pmc_hashsize);
250 SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_TUN|CTLFLAG_RD,
251     &pmc_hashsize, 0, "rows in hash tables");
252 
253 /*
254  * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
255  */
256 
257 static int pmc_nsamples = PMC_NSAMPLES;
258 TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "nsamples", &pmc_nsamples);
259 SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_TUN|CTLFLAG_RD,
260     &pmc_nsamples, 0, "number of PC samples per CPU");
261 
262 
263 /*
264  * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
265  */
266 
267 static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
268 TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "mtxpoolsize", &pmc_mtxpool_size);
269 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_TUN|CTLFLAG_RD,
270     &pmc_mtxpool_size, 0, "size of spin mutex pool");
271 
272 
273 /*
274  * security.bsd.unprivileged_syspmcs -- allow non-root processes to
275  * allocate system-wide PMCs.
276  *
277  * Allowing unprivileged processes to allocate system PMCs is convenient
278  * if system-wide measurements need to be taken concurrently with other
279  * per-process measurements.  This feature is turned off by default.
280  */
281 
282 static int pmc_unprivileged_syspmcs = 0;
283 TUNABLE_INT("security.bsd.unprivileged_syspmcs", &pmc_unprivileged_syspmcs);
284 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RW,
285     &pmc_unprivileged_syspmcs, 0,
286     "allow unprivileged process to allocate system PMCs");
287 
288 /*
289  * Hash function.  Discard the lower 2 bits of the pointer since
290  * these are always zero for our uses.  The hash multiplier is
291  * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
292  */
293 
294 #if	LONG_BIT == 64
295 #define	_PMC_HM		11400714819323198486u
296 #elif	LONG_BIT == 32
297 #define	_PMC_HM		2654435769u
298 #else
299 #error 	Must know the size of 'long' to compile
300 #endif
301 
302 #define	PMC_HASH_PTR(P,M)	((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
303 
304 /*
305  * Syscall structures
306  */
307 
308 /* The `sysent' for the new syscall */
309 static struct sysent pmc_sysent = {
310 	2,			/* sy_narg */
311 	pmc_syscall_handler	/* sy_call */
312 };
313 
314 static struct syscall_module_data pmc_syscall_mod = {
315 	load,
316 	NULL,
317 	&pmc_syscall_num,
318 	&pmc_sysent,
319 	{ 0, NULL }
320 };
321 
322 static moduledata_t pmc_mod = {
323 	PMC_MODULE_NAME,
324 	syscall_module_handler,
325 	&pmc_syscall_mod
326 };
327 
328 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
329 MODULE_VERSION(pmc, PMC_VERSION);
330 
331 #ifdef	DEBUG
332 enum pmc_dbgparse_state {
333 	PMCDS_WS,		/* in whitespace */
334 	PMCDS_MAJOR,		/* seen a major keyword */
335 	PMCDS_MINOR
336 };
337 
338 static int
339 pmc_debugflags_parse(char *newstr, char *fence)
340 {
341 	char c, *p, *q;
342 	struct pmc_debugflags *tmpflags;
343 	int error, found, *newbits, tmp;
344 	size_t kwlen;
345 
346 	tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO);
347 
348 	p = newstr;
349 	error = 0;
350 
351 	for (; p < fence && (c = *p); p++) {
352 
353 		/* skip white space */
354 		if (c == ' ' || c == '\t')
355 			continue;
356 
357 		/* look for a keyword followed by "=" */
358 		for (q = p; p < fence && (c = *p) && c != '='; p++)
359 			;
360 		if (c != '=') {
361 			error = EINVAL;
362 			goto done;
363 		}
364 
365 		kwlen = p - q;
366 		newbits = NULL;
367 
368 		/* lookup flag group name */
369 #define	DBG_SET_FLAG_MAJ(S,F)						\
370 		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
371 			newbits = &tmpflags->pdb_ ## F;
372 
373 		DBG_SET_FLAG_MAJ("cpu",		CPU);
374 		DBG_SET_FLAG_MAJ("csw",		CSW);
375 		DBG_SET_FLAG_MAJ("logging",	LOG);
376 		DBG_SET_FLAG_MAJ("module",	MOD);
377 		DBG_SET_FLAG_MAJ("md", 		MDP);
378 		DBG_SET_FLAG_MAJ("owner",	OWN);
379 		DBG_SET_FLAG_MAJ("pmc",		PMC);
380 		DBG_SET_FLAG_MAJ("process",	PRC);
381 		DBG_SET_FLAG_MAJ("sampling", 	SAM);
382 
383 		if (newbits == NULL) {
384 			error = EINVAL;
385 			goto done;
386 		}
387 
388 		p++;		/* skip the '=' */
389 
390 		/* Now parse the individual flags */
391 		tmp = 0;
392 	newflag:
393 		for (q = p; p < fence && (c = *p); p++)
394 			if (c == ' ' || c == '\t' || c == ',')
395 				break;
396 
397 		/* p == fence or c == ws or c == "," or c == 0 */
398 
399 		if ((kwlen = p - q) == 0) {
400 			*newbits = tmp;
401 			continue;
402 		}
403 
404 		found = 0;
405 #define	DBG_SET_FLAG_MIN(S,F)						\
406 		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
407 			tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
408 
409 		/* a '*' denotes all possible flags in the group */
410 		if (kwlen == 1 && *q == '*')
411 			tmp = found = ~0;
412 		/* look for individual flag names */
413 		DBG_SET_FLAG_MIN("allocaterow", ALR);
414 		DBG_SET_FLAG_MIN("allocate",	ALL);
415 		DBG_SET_FLAG_MIN("attach",	ATT);
416 		DBG_SET_FLAG_MIN("bind",	BND);
417 		DBG_SET_FLAG_MIN("config",	CFG);
418 		DBG_SET_FLAG_MIN("exec",	EXC);
419 		DBG_SET_FLAG_MIN("exit",	EXT);
420 		DBG_SET_FLAG_MIN("find",	FND);
421 		DBG_SET_FLAG_MIN("flush",	FLS);
422 		DBG_SET_FLAG_MIN("fork",	FRK);
423 		DBG_SET_FLAG_MIN("getbuf",	GTB);
424 		DBG_SET_FLAG_MIN("hook",	PMH);
425 		DBG_SET_FLAG_MIN("init",	INI);
426 		DBG_SET_FLAG_MIN("intr",	INT);
427 		DBG_SET_FLAG_MIN("linktarget",	TLK);
428 		DBG_SET_FLAG_MIN("mayberemove", OMR);
429 		DBG_SET_FLAG_MIN("ops",		OPS);
430 		DBG_SET_FLAG_MIN("read",	REA);
431 		DBG_SET_FLAG_MIN("register",	REG);
432 		DBG_SET_FLAG_MIN("release",	REL);
433 		DBG_SET_FLAG_MIN("remove",	ORM);
434 		DBG_SET_FLAG_MIN("sample",	SAM);
435 		DBG_SET_FLAG_MIN("scheduleio",	SIO);
436 		DBG_SET_FLAG_MIN("select",	SEL);
437 		DBG_SET_FLAG_MIN("signal",	SIG);
438 		DBG_SET_FLAG_MIN("swi",		SWI);
439 		DBG_SET_FLAG_MIN("swo",		SWO);
440 		DBG_SET_FLAG_MIN("start",	STA);
441 		DBG_SET_FLAG_MIN("stop",	STO);
442 		DBG_SET_FLAG_MIN("syscall",	PMS);
443 		DBG_SET_FLAG_MIN("unlinktarget", TUL);
444 		DBG_SET_FLAG_MIN("write",	WRI);
445 		if (found == 0) {
446 			/* unrecognized flag name */
447 			error = EINVAL;
448 			goto done;
449 		}
450 
451 		if (c == 0 || c == ' ' || c == '\t') {	/* end of flag group */
452 			*newbits = tmp;
453 			continue;
454 		}
455 
456 		p++;
457 		goto newflag;
458 	}
459 
460 	/* save the new flag set */
461 	bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
462 
463  done:
464 	free(tmpflags, M_PMC);
465 	return error;
466 }
467 
468 static int
469 pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
470 {
471 	char *fence, *newstr;
472 	int error;
473 	unsigned int n;
474 
475 	(void) arg1; (void) arg2; /* unused parameters */
476 
477 	n = sizeof(pmc_debugstr);
478 	newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO);
479 	(void) strlcpy(newstr, pmc_debugstr, n);
480 
481 	error = sysctl_handle_string(oidp, newstr, n, req);
482 
483 	/* if there is a new string, parse and copy it */
484 	if (error == 0 && req->newptr != NULL) {
485 		fence = newstr + (n < req->newlen ? n : req->newlen + 1);
486 		if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
487 			(void) strlcpy(pmc_debugstr, newstr,
488 			    sizeof(pmc_debugstr));
489 	}
490 
491 	free(newstr, M_PMC);
492 
493 	return error;
494 }
495 #endif
496 
497 /*
498  * Map a row index to a classdep structure and return the adjusted row
499  * index for the PMC class index.
500  */
501 static struct pmc_classdep *
502 pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri)
503 {
504 	struct pmc_classdep *pcd;
505 
506 	(void) md;
507 
508 	KASSERT(ri >= 0 && ri < md->pmd_npmc,
509 	    ("[pmc,%d] illegal row-index %d", __LINE__, ri));
510 
511 	pcd = pmc_rowindex_to_classdep[ri];
512 
513 	KASSERT(pcd != NULL,
514 	    ("[pmc,%d] ri %d null pcd", __LINE__, ri));
515 
516 	*adjri = ri - pcd->pcd_ri;
517 
518 	KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
519 	    ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
520 
521 	return (pcd);
522 }
523 
524 /*
525  * Concurrency Control
526  *
527  * The driver manages the following data structures:
528  *
529  *   - target process descriptors, one per target process
530  *   - owner process descriptors (and attached lists), one per owner process
531  *   - lookup hash tables for owner and target processes
532  *   - PMC descriptors (and attached lists)
533  *   - per-cpu hardware state
534  *   - the 'hook' variable through which the kernel calls into
535  *     this module
536  *   - the machine hardware state (managed by the MD layer)
537  *
538  * These data structures are accessed from:
539  *
540  * - thread context-switch code
541  * - interrupt handlers (possibly on multiple cpus)
542  * - kernel threads on multiple cpus running on behalf of user
543  *   processes doing system calls
544  * - this driver's private kernel threads
545  *
546  * = Locks and Locking strategy =
547  *
548  * The driver uses four locking strategies for its operation:
549  *
550  * - The global SX lock "pmc_sx" is used to protect internal
551  *   data structures.
552  *
553  *   Calls into the module by syscall() start with this lock being
554  *   held in exclusive mode.  Depending on the requested operation,
555  *   the lock may be downgraded to 'shared' mode to allow more
556  *   concurrent readers into the module.  Calls into the module from
557  *   other parts of the kernel acquire the lock in shared mode.
558  *
559  *   This SX lock is held in exclusive mode for any operations that
560  *   modify the linkages between the driver's internal data structures.
561  *
562  *   The 'pmc_hook' function pointer is also protected by this lock.
563  *   It is only examined with the sx lock held in exclusive mode.  The
564  *   kernel module is allowed to be unloaded only with the sx lock held
565  *   in exclusive mode.  In normal syscall handling, after acquiring the
566  *   pmc_sx lock we first check that 'pmc_hook' is non-null before
567  *   proceeding.  This prevents races between the thread unloading the module
568  *   and other threads seeking to use the module.
569  *
570  * - Lookups of target process structures and owner process structures
571  *   cannot use the global "pmc_sx" SX lock because these lookups need
572  *   to happen during context switches and in other critical sections
573  *   where sleeping is not allowed.  We protect these lookup tables
574  *   with their own private spin-mutexes, "pmc_processhash_mtx" and
575  *   "pmc_ownerhash_mtx".
576  *
577  * - Interrupt handlers work in a lock free manner.  At interrupt
578  *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
579  *   when the PMC was started.  If this pointer is NULL, the interrupt
580  *   is ignored after updating driver statistics.  We ensure that this
581  *   pointer is set (using an atomic operation if necessary) before the
582  *   PMC hardware is started.  Conversely, this pointer is unset atomically
583  *   only after the PMC hardware is stopped.
584  *
585  *   We ensure that everything needed for the operation of an
586  *   interrupt handler is available without it needing to acquire any
587  *   locks.  We also ensure that a PMC's software state is destroyed only
588  *   after the PMC is taken off hardware (on all CPUs).
589  *
590  * - Context-switch handling with process-private PMCs needs more
591  *   care.
592  *
593  *   A given process may be the target of multiple PMCs.  For example,
594  *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
595  *   while the target process is running on another.  A PMC could also
596  *   be getting released because its owner is exiting.  We tackle
597  *   these situations in the following manner:
598  *
599  *   - each target process structure 'pmc_process' has an array
600  *     of 'struct pmc *' pointers, one for each hardware PMC.
601  *
602  *   - At context switch IN time, each "target" PMC in RUNNING state
603  *     gets started on hardware and a pointer to each PMC is copied into
604  *     the per-cpu phw array.  The 'runcount' for the PMC is
605  *     incremented.
606  *
607  *   - At context switch OUT time, all process-virtual PMCs are stopped
608  *     on hardware.  The saved value is added to the PMCs value field
609  *     only if the PMC is in a non-deleted state (the PMCs state could
610  *     have changed during the current time slice).
611  *
612  *     Note that since in-between a switch IN on a processor and a switch
613  *     OUT, the PMC could have been released on another CPU.  Therefore
614  *     context switch OUT always looks at the hardware state to turn
615  *     OFF PMCs and will update a PMC's saved value only if reachable
616  *     from the target process record.
617  *
618  *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
619  *     be attached to many processes at the time of the call and could
620  *     be active on multiple CPUs).
621  *
622  *     We prevent further scheduling of the PMC by marking it as in
623  *     state 'DELETED'.  If the runcount of the PMC is non-zero then
624  *     this PMC is currently running on a CPU somewhere.  The thread
625  *     doing the PMCRELEASE operation waits by repeatedly doing a
626  *     pause() till the runcount comes to zero.
627  *
628  * The contents of a PMC descriptor (struct pmc) are protected using
629  * a spin-mutex.  In order to save space, we use a mutex pool.
630  *
631  * In terms of lock types used by witness(4), we use:
632  * - Type "pmc-sx", used by the global SX lock.
633  * - Type "pmc-sleep", for sleep mutexes used by logger threads.
634  * - Type "pmc-per-proc", for protecting PMC owner descriptors.
635  * - Type "pmc-leaf", used for all other spin mutexes.
636  */
637 
638 /*
639  * save the cpu binding of the current kthread
640  */
641 
642 static void
643 pmc_save_cpu_binding(struct pmc_binding *pb)
644 {
645 	PMCDBG(CPU,BND,2, "%s", "save-cpu");
646 	thread_lock(curthread);
647 	pb->pb_bound = sched_is_bound(curthread);
648 	pb->pb_cpu   = curthread->td_oncpu;
649 	thread_unlock(curthread);
650 	PMCDBG(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
651 }
652 
653 /*
654  * restore the cpu binding of the current thread
655  */
656 
657 static void
658 pmc_restore_cpu_binding(struct pmc_binding *pb)
659 {
660 	PMCDBG(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
661 	    curthread->td_oncpu, pb->pb_cpu);
662 	thread_lock(curthread);
663 	if (pb->pb_bound)
664 		sched_bind(curthread, pb->pb_cpu);
665 	else
666 		sched_unbind(curthread);
667 	thread_unlock(curthread);
668 	PMCDBG(CPU,BND,2, "%s", "restore-cpu done");
669 }
670 
671 /*
672  * move execution over the specified cpu and bind it there.
673  */
674 
675 static void
676 pmc_select_cpu(int cpu)
677 {
678 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
679 	    ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
680 
681 	/* Never move to an inactive CPU. */
682 	KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
683 	    "CPU %d", __LINE__, cpu));
684 
685 	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d", cpu);
686 	thread_lock(curthread);
687 	sched_bind(curthread, cpu);
688 	thread_unlock(curthread);
689 
690 	KASSERT(curthread->td_oncpu == cpu,
691 	    ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
692 		cpu, curthread->td_oncpu));
693 
694 	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
695 }
696 
697 /*
698  * Force a context switch.
699  *
700  * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
701  * guaranteed to force a context switch.
702  */
703 
704 static void
705 pmc_force_context_switch(void)
706 {
707 
708 	pause("pmcctx", 1);
709 }
710 
711 /*
712  * Get the file name for an executable.  This is a simple wrapper
713  * around vn_fullpath(9).
714  */
715 
716 static void
717 pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
718 {
719 
720 	*fullpath = "unknown";
721 	*freepath = NULL;
722 	vn_fullpath(curthread, v, fullpath, freepath);
723 }
724 
725 /*
726  * remove an process owning PMCs
727  */
728 
729 void
730 pmc_remove_owner(struct pmc_owner *po)
731 {
732 	struct pmc *pm, *tmp;
733 
734 	sx_assert(&pmc_sx, SX_XLOCKED);
735 
736 	PMCDBG(OWN,ORM,1, "remove-owner po=%p", po);
737 
738 	/* Remove descriptor from the owner hash table */
739 	LIST_REMOVE(po, po_next);
740 
741 	/* release all owned PMC descriptors */
742 	LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
743 		PMCDBG(OWN,ORM,2, "pmc=%p", pm);
744 		KASSERT(pm->pm_owner == po,
745 		    ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
746 
747 		pmc_release_pmc_descriptor(pm);	/* will unlink from the list */
748 	}
749 
750 	KASSERT(po->po_sscount == 0,
751 	    ("[pmc,%d] SS count not zero", __LINE__));
752 	KASSERT(LIST_EMPTY(&po->po_pmcs),
753 	    ("[pmc,%d] PMC list not empty", __LINE__));
754 
755 	/* de-configure the log file if present */
756 	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
757 		pmclog_deconfigure_log(po);
758 }
759 
760 /*
761  * remove an owner process record if all conditions are met.
762  */
763 
764 static void
765 pmc_maybe_remove_owner(struct pmc_owner *po)
766 {
767 
768 	PMCDBG(OWN,OMR,1, "maybe-remove-owner po=%p", po);
769 
770 	/*
771 	 * Remove owner record if
772 	 * - this process does not own any PMCs
773 	 * - this process has not allocated a system-wide sampling buffer
774 	 */
775 
776 	if (LIST_EMPTY(&po->po_pmcs) &&
777 	    ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
778 		pmc_remove_owner(po);
779 		pmc_destroy_owner_descriptor(po);
780 	}
781 }
782 
783 /*
784  * Add an association between a target process and a PMC.
785  */
786 
787 static void
788 pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
789 {
790 	int ri;
791 	struct pmc_target *pt;
792 
793 	sx_assert(&pmc_sx, SX_XLOCKED);
794 
795 	KASSERT(pm != NULL && pp != NULL,
796 	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
797 	KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
798 	    ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
799 		__LINE__, pm, pp->pp_proc->p_pid));
800 	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
801 	    ("[pmc,%d] Illegal reference count %d for process record %p",
802 		__LINE__, pp->pp_refcnt, (void *) pp));
803 
804 	ri = PMC_TO_ROWINDEX(pm);
805 
806 	PMCDBG(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
807 	    pm, ri, pp);
808 
809 #ifdef	DEBUG
810 	LIST_FOREACH(pt, &pm->pm_targets, pt_next)
811 	    if (pt->pt_process == pp)
812 		    KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
813 				__LINE__, pp, pm));
814 #endif
815 
816 	pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO);
817 	pt->pt_process = pp;
818 
819 	LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
820 
821 	atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
822 	    (uintptr_t)pm);
823 
824 	if (pm->pm_owner->po_owner == pp->pp_proc)
825 		pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
826 
827 	/*
828 	 * Initialize the per-process values at this row index.
829 	 */
830 	pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
831 	    pm->pm_sc.pm_reloadcount : 0;
832 
833 	pp->pp_refcnt++;
834 
835 }
836 
837 /*
838  * Removes the association between a target process and a PMC.
839  */
840 
841 static void
842 pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
843 {
844 	int ri;
845 	struct proc *p;
846 	struct pmc_target *ptgt;
847 
848 	sx_assert(&pmc_sx, SX_XLOCKED);
849 
850 	KASSERT(pm != NULL && pp != NULL,
851 	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
852 
853 	KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
854 	    ("[pmc,%d] Illegal ref count %d on process record %p",
855 		__LINE__, pp->pp_refcnt, (void *) pp));
856 
857 	ri = PMC_TO_ROWINDEX(pm);
858 
859 	PMCDBG(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
860 	    pm, ri, pp);
861 
862 	KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
863 	    ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
864 		ri, pm, pp->pp_pmcs[ri].pp_pmc));
865 
866 	pp->pp_pmcs[ri].pp_pmc = NULL;
867 	pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
868 
869 	/* Remove owner-specific flags */
870 	if (pm->pm_owner->po_owner == pp->pp_proc) {
871 		pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
872 		pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
873 	}
874 
875 	pp->pp_refcnt--;
876 
877 	/* Remove the target process from the PMC structure */
878 	LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
879 		if (ptgt->pt_process == pp)
880 			break;
881 
882 	KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
883 		    "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
884 
885 	LIST_REMOVE(ptgt, pt_next);
886 	free(ptgt, M_PMC);
887 
888 	/* if the PMC now lacks targets, send the owner a SIGIO */
889 	if (LIST_EMPTY(&pm->pm_targets)) {
890 		p = pm->pm_owner->po_owner;
891 		PROC_LOCK(p);
892 		psignal(p, SIGIO);
893 		PROC_UNLOCK(p);
894 
895 		PMCDBG(PRC,SIG,2, "signalling proc=%p signal=%d", p,
896 		    SIGIO);
897 	}
898 }
899 
900 /*
901  * Check if PMC 'pm' may be attached to target process 't'.
902  */
903 
904 static int
905 pmc_can_attach(struct pmc *pm, struct proc *t)
906 {
907 	struct proc *o;		/* pmc owner */
908 	struct ucred *oc, *tc;	/* owner, target credentials */
909 	int decline_attach, i;
910 
911 	/*
912 	 * A PMC's owner can always attach that PMC to itself.
913 	 */
914 
915 	if ((o = pm->pm_owner->po_owner) == t)
916 		return 0;
917 
918 	PROC_LOCK(o);
919 	oc = o->p_ucred;
920 	crhold(oc);
921 	PROC_UNLOCK(o);
922 
923 	PROC_LOCK(t);
924 	tc = t->p_ucred;
925 	crhold(tc);
926 	PROC_UNLOCK(t);
927 
928 	/*
929 	 * The effective uid of the PMC owner should match at least one
930 	 * of the {effective,real,saved} uids of the target process.
931 	 */
932 
933 	decline_attach = oc->cr_uid != tc->cr_uid &&
934 	    oc->cr_uid != tc->cr_svuid &&
935 	    oc->cr_uid != tc->cr_ruid;
936 
937 	/*
938 	 * Every one of the target's group ids, must be in the owner's
939 	 * group list.
940 	 */
941 	for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
942 		decline_attach = !groupmember(tc->cr_groups[i], oc);
943 
944 	/* check the read and saved gids too */
945 	if (decline_attach == 0)
946 		decline_attach = !groupmember(tc->cr_rgid, oc) ||
947 		    !groupmember(tc->cr_svgid, oc);
948 
949 	crfree(tc);
950 	crfree(oc);
951 
952 	return !decline_attach;
953 }
954 
955 /*
956  * Attach a process to a PMC.
957  */
958 
959 static int
960 pmc_attach_one_process(struct proc *p, struct pmc *pm)
961 {
962 	int ri;
963 	char *fullpath, *freepath;
964 	struct pmc_process	*pp;
965 
966 	sx_assert(&pmc_sx, SX_XLOCKED);
967 
968 	PMCDBG(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
969 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
970 
971 	/*
972 	 * Locate the process descriptor corresponding to process 'p',
973 	 * allocating space as needed.
974 	 *
975 	 * Verify that rowindex 'pm_rowindex' is free in the process
976 	 * descriptor.
977 	 *
978 	 * If not, allocate space for a descriptor and link the
979 	 * process descriptor and PMC.
980 	 */
981 	ri = PMC_TO_ROWINDEX(pm);
982 
983 	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL)
984 		return ENOMEM;
985 
986 	if (pp->pp_pmcs[ri].pp_pmc == pm) /* already present at slot [ri] */
987 		return EEXIST;
988 
989 	if (pp->pp_pmcs[ri].pp_pmc != NULL)
990 		return EBUSY;
991 
992 	pmc_link_target_process(pm, pp);
993 
994 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
995 	    (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
996 		pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
997 
998 	pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
999 
1000 	/* issue an attach event to a configured log file */
1001 	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1002 		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1003 		if (p->p_flag & P_KTHREAD) {
1004 			fullpath = kernelname;
1005 			freepath = NULL;
1006 		} else
1007 			pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1008 		if (freepath)
1009 			free(freepath, M_TEMP);
1010 		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1011 			pmc_log_process_mappings(pm->pm_owner, p);
1012 	}
1013 	/* mark process as using HWPMCs */
1014 	PROC_LOCK(p);
1015 	p->p_flag |= P_HWPMC;
1016 	PROC_UNLOCK(p);
1017 
1018 	return 0;
1019 }
1020 
1021 /*
1022  * Attach a process and optionally its children
1023  */
1024 
1025 static int
1026 pmc_attach_process(struct proc *p, struct pmc *pm)
1027 {
1028 	int error;
1029 	struct proc *top;
1030 
1031 	sx_assert(&pmc_sx, SX_XLOCKED);
1032 
1033 	PMCDBG(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1034 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1035 
1036 
1037 	/*
1038 	 * If this PMC successfully allowed a GETMSR operation
1039 	 * in the past, disallow further ATTACHes.
1040 	 */
1041 
1042 	if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1043 		return EPERM;
1044 
1045 	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1046 		return pmc_attach_one_process(p, pm);
1047 
1048 	/*
1049 	 * Traverse all child processes, attaching them to
1050 	 * this PMC.
1051 	 */
1052 
1053 	sx_slock(&proctree_lock);
1054 
1055 	top = p;
1056 
1057 	for (;;) {
1058 		if ((error = pmc_attach_one_process(p, pm)) != 0)
1059 			break;
1060 		if (!LIST_EMPTY(&p->p_children))
1061 			p = LIST_FIRST(&p->p_children);
1062 		else for (;;) {
1063 			if (p == top)
1064 				goto done;
1065 			if (LIST_NEXT(p, p_sibling)) {
1066 				p = LIST_NEXT(p, p_sibling);
1067 				break;
1068 			}
1069 			p = p->p_pptr;
1070 		}
1071 	}
1072 
1073 	if (error)
1074 		(void) pmc_detach_process(top, pm);
1075 
1076  done:
1077 	sx_sunlock(&proctree_lock);
1078 	return error;
1079 }
1080 
1081 /*
1082  * Detach a process from a PMC.  If there are no other PMCs tracking
1083  * this process, remove the process structure from its hash table.  If
1084  * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1085  */
1086 
1087 static int
1088 pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1089 {
1090 	int ri;
1091 	struct pmc_process *pp;
1092 
1093 	sx_assert(&pmc_sx, SX_XLOCKED);
1094 
1095 	KASSERT(pm != NULL,
1096 	    ("[pmc,%d] null pm pointer", __LINE__));
1097 
1098 	ri = PMC_TO_ROWINDEX(pm);
1099 
1100 	PMCDBG(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1101 	    pm, ri, p, p->p_pid, p->p_comm, flags);
1102 
1103 	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1104 		return ESRCH;
1105 
1106 	if (pp->pp_pmcs[ri].pp_pmc != pm)
1107 		return EINVAL;
1108 
1109 	pmc_unlink_target_process(pm, pp);
1110 
1111 	/* Issue a detach entry if a log file is configured */
1112 	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1113 		pmclog_process_pmcdetach(pm, p->p_pid);
1114 
1115 	/*
1116 	 * If there are no PMCs targetting this process, we remove its
1117 	 * descriptor from the target hash table and unset the P_HWPMC
1118 	 * flag in the struct proc.
1119 	 */
1120 	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1121 	    ("[pmc,%d] Illegal refcnt %d for process struct %p",
1122 		__LINE__, pp->pp_refcnt, pp));
1123 
1124 	if (pp->pp_refcnt != 0)	/* still a target of some PMC */
1125 		return 0;
1126 
1127 	pmc_remove_process_descriptor(pp);
1128 
1129 	if (flags & PMC_FLAG_REMOVE)
1130 		free(pp, M_PMC);
1131 
1132 	PROC_LOCK(p);
1133 	p->p_flag &= ~P_HWPMC;
1134 	PROC_UNLOCK(p);
1135 
1136 	return 0;
1137 }
1138 
1139 /*
1140  * Detach a process and optionally its descendants from a PMC.
1141  */
1142 
1143 static int
1144 pmc_detach_process(struct proc *p, struct pmc *pm)
1145 {
1146 	struct proc *top;
1147 
1148 	sx_assert(&pmc_sx, SX_XLOCKED);
1149 
1150 	PMCDBG(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1151 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1152 
1153 	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1154 		return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1155 
1156 	/*
1157 	 * Traverse all children, detaching them from this PMC.  We
1158 	 * ignore errors since we could be detaching a PMC from a
1159 	 * partially attached proc tree.
1160 	 */
1161 
1162 	sx_slock(&proctree_lock);
1163 
1164 	top = p;
1165 
1166 	for (;;) {
1167 		(void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1168 
1169 		if (!LIST_EMPTY(&p->p_children))
1170 			p = LIST_FIRST(&p->p_children);
1171 		else for (;;) {
1172 			if (p == top)
1173 				goto done;
1174 			if (LIST_NEXT(p, p_sibling)) {
1175 				p = LIST_NEXT(p, p_sibling);
1176 				break;
1177 			}
1178 			p = p->p_pptr;
1179 		}
1180 	}
1181 
1182  done:
1183 	sx_sunlock(&proctree_lock);
1184 
1185 	if (LIST_EMPTY(&pm->pm_targets))
1186 		pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1187 
1188 	return 0;
1189 }
1190 
1191 
1192 /*
1193  * Thread context switch IN
1194  */
1195 
1196 static void
1197 pmc_process_csw_in(struct thread *td)
1198 {
1199 	int cpu;
1200 	unsigned int adjri, ri;
1201 	struct pmc *pm;
1202 	struct proc *p;
1203 	struct pmc_cpu *pc;
1204 	struct pmc_hw *phw;
1205 	pmc_value_t newvalue;
1206 	struct pmc_process *pp;
1207 	struct pmc_classdep *pcd;
1208 
1209 	p = td->td_proc;
1210 
1211 	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1212 		return;
1213 
1214 	KASSERT(pp->pp_proc == td->td_proc,
1215 	    ("[pmc,%d] not my thread state", __LINE__));
1216 
1217 	critical_enter(); /* no preemption from this point */
1218 
1219 	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1220 
1221 	PMCDBG(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1222 	    p->p_pid, p->p_comm, pp);
1223 
1224 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1225 	    ("[pmc,%d] wierd CPU id %d", __LINE__, cpu));
1226 
1227 	pc = pmc_pcpu[cpu];
1228 
1229 	for (ri = 0; ri < md->pmd_npmc; ri++) {
1230 
1231 		if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1232 			continue;
1233 
1234 		KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1235 		    ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1236 			__LINE__, PMC_TO_MODE(pm)));
1237 
1238 		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1239 		    ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1240 			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1241 
1242 		/*
1243 		 * Only PMCs that are marked as 'RUNNING' need
1244 		 * be placed on hardware.
1245 		 */
1246 
1247 		if (pm->pm_state != PMC_STATE_RUNNING)
1248 			continue;
1249 
1250 		/* increment PMC runcount */
1251 		atomic_add_rel_int(&pm->pm_runcount, 1);
1252 
1253 		/* configure the HWPMC we are going to use. */
1254 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1255 		pcd->pcd_config_pmc(cpu, adjri, pm);
1256 
1257 		phw = pc->pc_hwpmcs[ri];
1258 
1259 		KASSERT(phw != NULL,
1260 		    ("[pmc,%d] null hw pointer", __LINE__));
1261 
1262 		KASSERT(phw->phw_pmc == pm,
1263 		    ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1264 			phw->phw_pmc, pm));
1265 
1266 		/*
1267 		 * Write out saved value and start the PMC.
1268 		 *
1269 		 * Sampling PMCs use a per-process value, while
1270 		 * counting mode PMCs use a per-pmc value that is
1271 		 * inherited across descendants.
1272 		 */
1273 		if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1274 			mtx_pool_lock_spin(pmc_mtxpool, pm);
1275 			newvalue = PMC_PCPU_SAVED(cpu,ri) =
1276 			    pp->pp_pmcs[ri].pp_pmcval;
1277 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1278 		} else {
1279 			KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1280 			    ("[pmc,%d] illegal mode=%d", __LINE__,
1281 			    PMC_TO_MODE(pm)));
1282 			mtx_pool_lock_spin(pmc_mtxpool, pm);
1283 			newvalue = PMC_PCPU_SAVED(cpu, ri) =
1284 			    pm->pm_gv.pm_savedvalue;
1285 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1286 		}
1287 
1288 		PMCDBG(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1289 
1290 		pcd->pcd_write_pmc(cpu, adjri, newvalue);
1291 		pcd->pcd_start_pmc(cpu, adjri);
1292 	}
1293 
1294 	/*
1295 	 * perform any other architecture/cpu dependent thread
1296 	 * switch-in actions.
1297 	 */
1298 
1299 	(void) (*md->pmd_switch_in)(pc, pp);
1300 
1301 	critical_exit();
1302 
1303 }
1304 
1305 /*
1306  * Thread context switch OUT.
1307  */
1308 
1309 static void
1310 pmc_process_csw_out(struct thread *td)
1311 {
1312 	int cpu;
1313 	int64_t tmp;
1314 	struct pmc *pm;
1315 	struct proc *p;
1316 	enum pmc_mode mode;
1317 	struct pmc_cpu *pc;
1318 	pmc_value_t newvalue;
1319 	unsigned int adjri, ri;
1320 	struct pmc_process *pp;
1321 	struct pmc_classdep *pcd;
1322 
1323 
1324 	/*
1325 	 * Locate our process descriptor; this may be NULL if
1326 	 * this process is exiting and we have already removed
1327 	 * the process from the target process table.
1328 	 *
1329 	 * Note that due to kernel preemption, multiple
1330 	 * context switches may happen while the process is
1331 	 * exiting.
1332 	 *
1333 	 * Note also that if the target process cannot be
1334 	 * found we still need to deconfigure any PMCs that
1335 	 * are currently running on hardware.
1336 	 */
1337 
1338 	p = td->td_proc;
1339 	pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1340 
1341 	/*
1342 	 * save PMCs
1343 	 */
1344 
1345 	critical_enter();
1346 
1347 	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1348 
1349 	PMCDBG(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1350 	    p->p_pid, p->p_comm, pp);
1351 
1352 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1353 	    ("[pmc,%d wierd CPU id %d", __LINE__, cpu));
1354 
1355 	pc = pmc_pcpu[cpu];
1356 
1357 	/*
1358 	 * When a PMC gets unlinked from a target PMC, it will
1359 	 * be removed from the target's pp_pmc[] array.
1360 	 *
1361 	 * However, on a MP system, the target could have been
1362 	 * executing on another CPU at the time of the unlink.
1363 	 * So, at context switch OUT time, we need to look at
1364 	 * the hardware to determine if a PMC is scheduled on
1365 	 * it.
1366 	 */
1367 
1368 	for (ri = 0; ri < md->pmd_npmc; ri++) {
1369 
1370 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1371 		pm  = NULL;
1372 		(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
1373 
1374 		if (pm == NULL)	/* nothing at this row index */
1375 			continue;
1376 
1377 		mode = PMC_TO_MODE(pm);
1378 		if (!PMC_IS_VIRTUAL_MODE(mode))
1379 			continue; /* not a process virtual PMC */
1380 
1381 		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1382 		    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1383 			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1384 
1385 		/* Stop hardware if not already stopped */
1386 		if (pm->pm_stalled == 0)
1387 			pcd->pcd_stop_pmc(cpu, adjri);
1388 
1389 		/* reduce this PMC's runcount */
1390 		atomic_subtract_rel_int(&pm->pm_runcount, 1);
1391 
1392 		/*
1393 		 * If this PMC is associated with this process,
1394 		 * save the reading.
1395 		 */
1396 
1397 		if (pp != NULL && pp->pp_pmcs[ri].pp_pmc != NULL) {
1398 
1399 			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1400 			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1401 				pm, ri, pp->pp_pmcs[ri].pp_pmc));
1402 
1403 			KASSERT(pp->pp_refcnt > 0,
1404 			    ("[pmc,%d] pp refcnt = %d", __LINE__,
1405 				pp->pp_refcnt));
1406 
1407 			pcd->pcd_read_pmc(cpu, adjri, &newvalue);
1408 
1409 			tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1410 
1411 			PMCDBG(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd", cpu, ri,
1412 			    tmp);
1413 
1414 			if (mode == PMC_MODE_TS) {
1415 
1416 				/*
1417 				 * For sampling process-virtual PMCs,
1418 				 * we expect the count to be
1419 				 * decreasing as the 'value'
1420 				 * programmed into the PMC is the
1421 				 * number of events to be seen till
1422 				 * the next sampling interrupt.
1423 				 */
1424 				if (tmp < 0)
1425 					tmp += pm->pm_sc.pm_reloadcount;
1426 				mtx_pool_lock_spin(pmc_mtxpool, pm);
1427 				pp->pp_pmcs[ri].pp_pmcval -= tmp;
1428 				if ((int64_t) pp->pp_pmcs[ri].pp_pmcval < 0)
1429 					pp->pp_pmcs[ri].pp_pmcval +=
1430 					    pm->pm_sc.pm_reloadcount;
1431 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1432 
1433 			} else {
1434 
1435 				/*
1436 				 * For counting process-virtual PMCs,
1437 				 * we expect the count to be
1438 				 * increasing monotonically, modulo a 64
1439 				 * bit wraparound.
1440 				 */
1441 				KASSERT((int64_t) tmp >= 0,
1442 				    ("[pmc,%d] negative increment cpu=%d "
1443 				     "ri=%d newvalue=%jx saved=%jx "
1444 				     "incr=%jx", __LINE__, cpu, ri,
1445 				     newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
1446 
1447 				mtx_pool_lock_spin(pmc_mtxpool, pm);
1448 				pm->pm_gv.pm_savedvalue += tmp;
1449 				pp->pp_pmcs[ri].pp_pmcval += tmp;
1450 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1451 
1452 				if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1453 					pmclog_process_proccsw(pm, pp, tmp);
1454 			}
1455 		}
1456 
1457 		/* mark hardware as free */
1458 		pcd->pcd_config_pmc(cpu, adjri, NULL);
1459 	}
1460 
1461 	/*
1462 	 * perform any other architecture/cpu dependent thread
1463 	 * switch out functions.
1464 	 */
1465 
1466 	(void) (*md->pmd_switch_out)(pc, pp);
1467 
1468 	critical_exit();
1469 }
1470 
1471 /*
1472  * Log a KLD operation.
1473  */
1474 
1475 static void
1476 pmc_process_kld_load(struct pmckern_map_in *pkm)
1477 {
1478 	struct pmc_owner *po;
1479 
1480 	sx_assert(&pmc_sx, SX_LOCKED);
1481 
1482 	/*
1483 	 * Notify owners of system sampling PMCs about KLD operations.
1484 	 */
1485 
1486 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1487 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1488 	    	pmclog_process_map_in(po, (pid_t) -1, pkm->pm_address,
1489 		    (char *) pkm->pm_file);
1490 
1491 	/*
1492 	 * TODO: Notify owners of (all) process-sampling PMCs too.
1493 	 */
1494 
1495 	return;
1496 }
1497 
1498 static void
1499 pmc_process_kld_unload(struct pmckern_map_out *pkm)
1500 {
1501 	struct pmc_owner *po;
1502 
1503 	sx_assert(&pmc_sx, SX_LOCKED);
1504 
1505 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1506 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1507 		pmclog_process_map_out(po, (pid_t) -1,
1508 		    pkm->pm_address, pkm->pm_address + pkm->pm_size);
1509 
1510 	/*
1511 	 * TODO: Notify owners of process-sampling PMCs.
1512 	 */
1513 }
1514 
1515 /*
1516  * A mapping change for a process.
1517  */
1518 
1519 static void
1520 pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1521 {
1522 	int ri;
1523 	pid_t pid;
1524 	char *fullpath, *freepath;
1525 	const struct pmc *pm;
1526 	struct pmc_owner *po;
1527 	const struct pmc_process *pp;
1528 
1529 	freepath = fullpath = NULL;
1530 	pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath);
1531 
1532 	pid = td->td_proc->p_pid;
1533 
1534 	/* Inform owners of all system-wide sampling PMCs. */
1535 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1536 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1537 		pmclog_process_map_in(po, pid, pkm->pm_address, fullpath);
1538 
1539 	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1540 		goto done;
1541 
1542 	/*
1543 	 * Inform sampling PMC owners tracking this process.
1544 	 */
1545 	for (ri = 0; ri < md->pmd_npmc; ri++)
1546 		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1547 		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1548 			pmclog_process_map_in(pm->pm_owner,
1549 			    pid, pkm->pm_address, fullpath);
1550 
1551   done:
1552 	if (freepath)
1553 		free(freepath, M_TEMP);
1554 }
1555 
1556 
1557 /*
1558  * Log an munmap request.
1559  */
1560 
1561 static void
1562 pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1563 {
1564 	int ri;
1565 	pid_t pid;
1566 	struct pmc_owner *po;
1567 	const struct pmc *pm;
1568 	const struct pmc_process *pp;
1569 
1570 	pid = td->td_proc->p_pid;
1571 
1572 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1573 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1574 		pmclog_process_map_out(po, pid, pkm->pm_address,
1575 		    pkm->pm_address + pkm->pm_size);
1576 
1577 	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1578 		return;
1579 
1580 	for (ri = 0; ri < md->pmd_npmc; ri++)
1581 		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1582 		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1583 			pmclog_process_map_out(pm->pm_owner, pid,
1584 			    pkm->pm_address, pkm->pm_address + pkm->pm_size);
1585 }
1586 
1587 /*
1588  * Log mapping information about the kernel.
1589  */
1590 
1591 static void
1592 pmc_log_kernel_mappings(struct pmc *pm)
1593 {
1594 	struct pmc_owner *po;
1595 	struct pmckern_map_in *km, *kmbase;
1596 
1597 	sx_assert(&pmc_sx, SX_LOCKED);
1598 	KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1599 	    ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1600 		__LINE__, (void *) pm));
1601 
1602 	po = pm->pm_owner;
1603 
1604 	if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE)
1605 		return;
1606 
1607 	/*
1608 	 * Log the current set of kernel modules.
1609 	 */
1610 	kmbase = linker_hwpmc_list_objects();
1611 	for (km = kmbase; km->pm_file != NULL; km++) {
1612 		PMCDBG(LOG,REG,1,"%s %p", (char *) km->pm_file,
1613 		    (void *) km->pm_address);
1614 		pmclog_process_map_in(po, (pid_t) -1, km->pm_address,
1615 		    km->pm_file);
1616 	}
1617 	free(kmbase, M_LINKER);
1618 
1619 	po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1620 }
1621 
1622 /*
1623  * Log the mappings for a single process.
1624  */
1625 
1626 static void
1627 pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1628 {
1629 	int locked;
1630 	vm_map_t map;
1631 	struct vnode *vp;
1632 	struct vmspace *vm;
1633 	vm_map_entry_t entry;
1634 	vm_offset_t last_end;
1635 	u_int last_timestamp;
1636 	struct vnode *last_vp;
1637 	vm_offset_t start_addr;
1638 	vm_object_t obj, lobj, tobj;
1639 	char *fullpath, *freepath;
1640 
1641 	last_vp = NULL;
1642 	last_end = (vm_offset_t) 0;
1643 	fullpath = freepath = NULL;
1644 
1645 	if ((vm = vmspace_acquire_ref(p)) == NULL)
1646 		return;
1647 
1648 	map = &vm->vm_map;
1649 	vm_map_lock_read(map);
1650 
1651 	for (entry = map->header.next; entry != &map->header; entry = entry->next) {
1652 
1653 		if (entry == NULL) {
1654 			PMCDBG(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1655 			    "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1656 			break;
1657 		}
1658 
1659 		/*
1660 		 * We only care about executable map entries.
1661 		 */
1662 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) ||
1663 		    !(entry->protection & VM_PROT_EXECUTE) ||
1664 		    (entry->object.vm_object == NULL)) {
1665 			continue;
1666 		}
1667 
1668 		obj = entry->object.vm_object;
1669 		VM_OBJECT_LOCK(obj);
1670 
1671 		/*
1672 		 * Walk the backing_object list to find the base
1673 		 * (non-shadowed) vm_object.
1674 		 */
1675 		for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
1676 			if (tobj != obj)
1677 				VM_OBJECT_LOCK(tobj);
1678 			if (lobj != obj)
1679 				VM_OBJECT_UNLOCK(lobj);
1680 			lobj = tobj;
1681 		}
1682 
1683 		/*
1684 		 * At this point lobj is the base vm_object and it is locked.
1685 		 */
1686 		if (lobj == NULL) {
1687 			PMCDBG(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
1688 			    "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
1689 			VM_OBJECT_UNLOCK(obj);
1690 			continue;
1691 		}
1692 
1693 		if (lobj->type != OBJT_VNODE || lobj->handle == NULL) {
1694 			if (lobj != obj)
1695 				VM_OBJECT_UNLOCK(lobj);
1696 			VM_OBJECT_UNLOCK(obj);
1697 			continue;
1698 		}
1699 
1700 		/*
1701 		 * Skip contiguous regions that point to the same
1702 		 * vnode, so we don't emit redundant MAP-IN
1703 		 * directives.
1704 		 */
1705 		if (entry->start == last_end && lobj->handle == last_vp) {
1706 			last_end = entry->end;
1707 			if (lobj != obj)
1708 				VM_OBJECT_UNLOCK(lobj);
1709 			VM_OBJECT_UNLOCK(obj);
1710 			continue;
1711 		}
1712 
1713 		/*
1714 		 * We don't want to keep the proc's vm_map or this
1715 		 * vm_object locked while we walk the pathname, since
1716 		 * vn_fullpath() can sleep.  However, if we drop the
1717 		 * lock, it's possible for concurrent activity to
1718 		 * modify the vm_map list.  To protect against this,
1719 		 * we save the vm_map timestamp before we release the
1720 		 * lock, and check it after we reacquire the lock
1721 		 * below.
1722 		 */
1723 		start_addr = entry->start;
1724 		last_end = entry->end;
1725 		last_timestamp = map->timestamp;
1726 		vm_map_unlock_read(map);
1727 
1728 		vp = lobj->handle;
1729 		vref(vp);
1730 		if (lobj != obj)
1731 			VM_OBJECT_UNLOCK(lobj);
1732 
1733 		VM_OBJECT_UNLOCK(obj);
1734 
1735 		freepath = NULL;
1736 		pmc_getfilename(vp, &fullpath, &freepath);
1737 		last_vp = vp;
1738 
1739 		locked = VFS_LOCK_GIANT(vp->v_mount);
1740 		vrele(vp);
1741 		VFS_UNLOCK_GIANT(locked);
1742 
1743 		vp = NULL;
1744 		pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
1745 		if (freepath)
1746 			free(freepath, M_TEMP);
1747 
1748 		vm_map_lock_read(map);
1749 
1750 		/*
1751 		 * If our saved timestamp doesn't match, this means
1752 		 * that the vm_map was modified out from under us and
1753 		 * we can't trust our current "entry" pointer.  Do a
1754 		 * new lookup for this entry.  If there is no entry
1755 		 * for this address range, vm_map_lookup_entry() will
1756 		 * return the previous one, so we always want to go to
1757 		 * entry->next on the next loop iteration.
1758 		 *
1759 		 * There is an edge condition here that can occur if
1760 		 * there is no entry at or before this address.  In
1761 		 * this situation, vm_map_lookup_entry returns
1762 		 * &map->header, which would cause our loop to abort
1763 		 * without processing the rest of the map.  However,
1764 		 * in practice this will never happen for process
1765 		 * vm_map.  This is because the executable's text
1766 		 * segment is the first mapping in the proc's address
1767 		 * space, and this mapping is never removed until the
1768 		 * process exits, so there will always be a non-header
1769 		 * entry at or before the requested address for
1770 		 * vm_map_lookup_entry to return.
1771 		 */
1772 		if (map->timestamp != last_timestamp)
1773 			vm_map_lookup_entry(map, last_end - 1, &entry);
1774 	}
1775 
1776 	vm_map_unlock_read(map);
1777 	vmspace_free(vm);
1778 	return;
1779 }
1780 
1781 /*
1782  * Log mappings for all processes in the system.
1783  */
1784 
1785 static void
1786 pmc_log_all_process_mappings(struct pmc_owner *po)
1787 {
1788 	struct proc *p, *top;
1789 
1790 	sx_assert(&pmc_sx, SX_XLOCKED);
1791 
1792 	if ((p = pfind(1)) == NULL)
1793 		panic("[pmc,%d] Cannot find init", __LINE__);
1794 
1795 	PROC_UNLOCK(p);
1796 
1797 	sx_slock(&proctree_lock);
1798 
1799 	top = p;
1800 
1801 	for (;;) {
1802 		pmc_log_process_mappings(po, p);
1803 		if (!LIST_EMPTY(&p->p_children))
1804 			p = LIST_FIRST(&p->p_children);
1805 		else for (;;) {
1806 			if (p == top)
1807 				goto done;
1808 			if (LIST_NEXT(p, p_sibling)) {
1809 				p = LIST_NEXT(p, p_sibling);
1810 				break;
1811 			}
1812 			p = p->p_pptr;
1813 		}
1814 	}
1815  done:
1816 	sx_sunlock(&proctree_lock);
1817 }
1818 
1819 /*
1820  * The 'hook' invoked from the kernel proper
1821  */
1822 
1823 
1824 #ifdef	DEBUG
1825 const char *pmc_hooknames[] = {
1826 	/* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
1827 	"",
1828 	"EXEC",
1829 	"CSW-IN",
1830 	"CSW-OUT",
1831 	"SAMPLE",
1832 	"KLDLOAD",
1833 	"KLDUNLOAD",
1834 	"MMAP",
1835 	"MUNMAP",
1836 	"CALLCHAIN"
1837 };
1838 #endif
1839 
1840 static int
1841 pmc_hook_handler(struct thread *td, int function, void *arg)
1842 {
1843 
1844 	PMCDBG(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
1845 	    pmc_hooknames[function], arg);
1846 
1847 	switch (function)
1848 	{
1849 
1850 	/*
1851 	 * Process exec()
1852 	 */
1853 
1854 	case PMC_FN_PROCESS_EXEC:
1855 	{
1856 		char *fullpath, *freepath;
1857 		unsigned int ri;
1858 		int is_using_hwpmcs;
1859 		struct pmc *pm;
1860 		struct proc *p;
1861 		struct pmc_owner *po;
1862 		struct pmc_process *pp;
1863 		struct pmckern_procexec *pk;
1864 
1865 		sx_assert(&pmc_sx, SX_XLOCKED);
1866 
1867 		p = td->td_proc;
1868 		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1869 
1870 		pk = (struct pmckern_procexec *) arg;
1871 
1872 		/* Inform owners of SS mode PMCs of the exec event. */
1873 		LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1874 		    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1875 			    pmclog_process_procexec(po, PMC_ID_INVALID,
1876 				p->p_pid, pk->pm_entryaddr, fullpath);
1877 
1878 		PROC_LOCK(p);
1879 		is_using_hwpmcs = p->p_flag & P_HWPMC;
1880 		PROC_UNLOCK(p);
1881 
1882 		if (!is_using_hwpmcs) {
1883 			if (freepath)
1884 				free(freepath, M_TEMP);
1885 			break;
1886 		}
1887 
1888 		/*
1889 		 * PMCs are not inherited across an exec():  remove any
1890 		 * PMCs that this process is the owner of.
1891 		 */
1892 
1893 		if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1894 			pmc_remove_owner(po);
1895 			pmc_destroy_owner_descriptor(po);
1896 		}
1897 
1898 		/*
1899 		 * If the process being exec'ed is not the target of any
1900 		 * PMC, we are done.
1901 		 */
1902 		if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
1903 			if (freepath)
1904 				free(freepath, M_TEMP);
1905 			break;
1906 		}
1907 
1908 		/*
1909 		 * Log the exec event to all monitoring owners.  Skip
1910 		 * owners who have already recieved the event because
1911 		 * they had system sampling PMCs active.
1912 		 */
1913 		for (ri = 0; ri < md->pmd_npmc; ri++)
1914 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
1915 				po = pm->pm_owner;
1916 				if (po->po_sscount == 0 &&
1917 				    po->po_flags & PMC_PO_OWNS_LOGFILE)
1918 					pmclog_process_procexec(po, pm->pm_id,
1919 					    p->p_pid, pk->pm_entryaddr,
1920 					    fullpath);
1921 			}
1922 
1923 		if (freepath)
1924 			free(freepath, M_TEMP);
1925 
1926 
1927 		PMCDBG(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
1928 		    p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
1929 
1930 		if (pk->pm_credentialschanged == 0) /* no change */
1931 			break;
1932 
1933 		/*
1934 		 * If the newly exec()'ed process has a different credential
1935 		 * than before, allow it to be the target of a PMC only if
1936 		 * the PMC's owner has sufficient priviledge.
1937 		 */
1938 
1939 		for (ri = 0; ri < md->pmd_npmc; ri++)
1940 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
1941 				if (pmc_can_attach(pm, td->td_proc) != 0)
1942 					pmc_detach_one_process(td->td_proc,
1943 					    pm, PMC_FLAG_NONE);
1944 
1945 		KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1946 		    ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
1947 			pp->pp_refcnt, pp));
1948 
1949 		/*
1950 		 * If this process is no longer the target of any
1951 		 * PMCs, we can remove the process entry and free
1952 		 * up space.
1953 		 */
1954 
1955 		if (pp->pp_refcnt == 0) {
1956 			pmc_remove_process_descriptor(pp);
1957 			free(pp, M_PMC);
1958 			break;
1959 		}
1960 
1961 	}
1962 	break;
1963 
1964 	case PMC_FN_CSW_IN:
1965 		pmc_process_csw_in(td);
1966 		break;
1967 
1968 	case PMC_FN_CSW_OUT:
1969 		pmc_process_csw_out(td);
1970 		break;
1971 
1972 	/*
1973 	 * Process accumulated PC samples.
1974 	 *
1975 	 * This function is expected to be called by hardclock() for
1976 	 * each CPU that has accumulated PC samples.
1977 	 *
1978 	 * This function is to be executed on the CPU whose samples
1979 	 * are being processed.
1980 	 */
1981 	case PMC_FN_DO_SAMPLES:
1982 
1983 		/*
1984 		 * Clear the cpu specific bit in the CPU mask before
1985 		 * do the rest of the processing.  If the NMI handler
1986 		 * gets invoked after the "atomic_clear_int()" call
1987 		 * below but before "pmc_process_samples()" gets
1988 		 * around to processing the interrupt, then we will
1989 		 * come back here at the next hardclock() tick (and
1990 		 * may find nothing to do if "pmc_process_samples()"
1991 		 * had already processed the interrupt).  We don't
1992 		 * lose the interrupt sample.
1993 		 */
1994 		atomic_clear_int(&pmc_cpumask, (1 << PCPU_GET(cpuid)));
1995 		pmc_process_samples(PCPU_GET(cpuid));
1996 		break;
1997 
1998 
1999 	case PMC_FN_KLD_LOAD:
2000 		sx_assert(&pmc_sx, SX_LOCKED);
2001 		pmc_process_kld_load((struct pmckern_map_in *) arg);
2002 		break;
2003 
2004 	case PMC_FN_KLD_UNLOAD:
2005 		sx_assert(&pmc_sx, SX_LOCKED);
2006 		pmc_process_kld_unload((struct pmckern_map_out *) arg);
2007 		break;
2008 
2009 	case PMC_FN_MMAP:
2010 		sx_assert(&pmc_sx, SX_LOCKED);
2011 		pmc_process_mmap(td, (struct pmckern_map_in *) arg);
2012 		break;
2013 
2014 	case PMC_FN_MUNMAP:
2015 		sx_assert(&pmc_sx, SX_LOCKED);
2016 		pmc_process_munmap(td, (struct pmckern_map_out *) arg);
2017 		break;
2018 
2019 	case PMC_FN_USER_CALLCHAIN:
2020 		/*
2021 		 * Record a call chain.
2022 		 */
2023 		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2024 		    __LINE__));
2025 		pmc_capture_user_callchain(PCPU_GET(cpuid),
2026 		    (struct trapframe *) arg);
2027 		td->td_pflags &= ~TDP_CALLCHAIN;
2028 		break;
2029 
2030 	default:
2031 #ifdef	DEBUG
2032 		KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2033 #endif
2034 		break;
2035 
2036 	}
2037 
2038 	return 0;
2039 }
2040 
2041 /*
2042  * allocate a 'struct pmc_owner' descriptor in the owner hash table.
2043  */
2044 
2045 static struct pmc_owner *
2046 pmc_allocate_owner_descriptor(struct proc *p)
2047 {
2048 	uint32_t hindex;
2049 	struct pmc_owner *po;
2050 	struct pmc_ownerhash *poh;
2051 
2052 	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2053 	poh = &pmc_ownerhash[hindex];
2054 
2055 	/* allocate space for N pointers and one descriptor struct */
2056 	po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO);
2057 	po->po_sscount = po->po_error = po->po_flags = po->po_logprocmaps = 0;
2058 	po->po_file  = NULL;
2059 	po->po_owner = p;
2060 	po->po_kthread = NULL;
2061 	LIST_INIT(&po->po_pmcs);
2062 	LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2063 
2064 	TAILQ_INIT(&po->po_logbuffers);
2065 	mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2066 
2067 	PMCDBG(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2068 	    p, p->p_pid, p->p_comm, po);
2069 
2070 	return po;
2071 }
2072 
2073 static void
2074 pmc_destroy_owner_descriptor(struct pmc_owner *po)
2075 {
2076 
2077 	PMCDBG(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2078 	    po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2079 
2080 	mtx_destroy(&po->po_mtx);
2081 	free(po, M_PMC);
2082 }
2083 
2084 /*
2085  * find the descriptor corresponding to process 'p', adding or removing it
2086  * as specified by 'mode'.
2087  */
2088 
2089 static struct pmc_process *
2090 pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2091 {
2092 	uint32_t hindex;
2093 	struct pmc_process *pp, *ppnew;
2094 	struct pmc_processhash *pph;
2095 
2096 	hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2097 	pph = &pmc_processhash[hindex];
2098 
2099 	ppnew = NULL;
2100 
2101 	/*
2102 	 * Pre-allocate memory in the FIND_ALLOCATE case since we
2103 	 * cannot call malloc(9) once we hold a spin lock.
2104 	 */
2105 	if (mode & PMC_FLAG_ALLOCATE)
2106 		ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2107 		    sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO);
2108 
2109 	mtx_lock_spin(&pmc_processhash_mtx);
2110 	LIST_FOREACH(pp, pph, pp_next)
2111 	    if (pp->pp_proc == p)
2112 		    break;
2113 
2114 	if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
2115 		LIST_REMOVE(pp, pp_next);
2116 
2117 	if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
2118 	    ppnew != NULL) {
2119 		ppnew->pp_proc = p;
2120 		LIST_INSERT_HEAD(pph, ppnew, pp_next);
2121 		pp = ppnew;
2122 		ppnew = NULL;
2123 	}
2124 	mtx_unlock_spin(&pmc_processhash_mtx);
2125 
2126 	if (pp != NULL && ppnew != NULL)
2127 		free(ppnew, M_PMC);
2128 
2129 	return pp;
2130 }
2131 
2132 /*
2133  * remove a process descriptor from the process hash table.
2134  */
2135 
2136 static void
2137 pmc_remove_process_descriptor(struct pmc_process *pp)
2138 {
2139 	KASSERT(pp->pp_refcnt == 0,
2140 	    ("[pmc,%d] Removing process descriptor %p with count %d",
2141 		__LINE__, pp, pp->pp_refcnt));
2142 
2143 	mtx_lock_spin(&pmc_processhash_mtx);
2144 	LIST_REMOVE(pp, pp_next);
2145 	mtx_unlock_spin(&pmc_processhash_mtx);
2146 }
2147 
2148 
2149 /*
2150  * find an owner descriptor corresponding to proc 'p'
2151  */
2152 
2153 static struct pmc_owner *
2154 pmc_find_owner_descriptor(struct proc *p)
2155 {
2156 	uint32_t hindex;
2157 	struct pmc_owner *po;
2158 	struct pmc_ownerhash *poh;
2159 
2160 	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2161 	poh = &pmc_ownerhash[hindex];
2162 
2163 	po = NULL;
2164 	LIST_FOREACH(po, poh, po_next)
2165 	    if (po->po_owner == p)
2166 		    break;
2167 
2168 	PMCDBG(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2169 	    "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2170 
2171 	return po;
2172 }
2173 
2174 /*
2175  * pmc_allocate_pmc_descriptor
2176  *
2177  * Allocate a pmc descriptor and initialize its
2178  * fields.
2179  */
2180 
2181 static struct pmc *
2182 pmc_allocate_pmc_descriptor(void)
2183 {
2184 	struct pmc *pmc;
2185 
2186 	pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO);
2187 
2188 	if (pmc != NULL) {
2189 		pmc->pm_owner = NULL;
2190 		LIST_INIT(&pmc->pm_targets);
2191 	}
2192 
2193 	PMCDBG(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2194 
2195 	return pmc;
2196 }
2197 
2198 /*
2199  * Destroy a pmc descriptor.
2200  */
2201 
2202 static void
2203 pmc_destroy_pmc_descriptor(struct pmc *pm)
2204 {
2205 	(void) pm;
2206 
2207 #ifdef	DEBUG
2208 	KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2209 	    pm->pm_state == PMC_STATE_FREE,
2210 	    ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2211 	KASSERT(LIST_EMPTY(&pm->pm_targets),
2212 	    ("[pmc,%d] destroying pmc with targets", __LINE__));
2213 	KASSERT(pm->pm_owner == NULL,
2214 	    ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2215 	KASSERT(pm->pm_runcount == 0,
2216 	    ("[pmc,%d] pmc has non-zero run count %d", __LINE__,
2217 		pm->pm_runcount));
2218 #endif
2219 }
2220 
2221 static void
2222 pmc_wait_for_pmc_idle(struct pmc *pm)
2223 {
2224 #ifdef	DEBUG
2225 	volatile int maxloop;
2226 
2227 	maxloop = 100 * pmc_cpu_max();
2228 #endif
2229 
2230 	/*
2231 	 * Loop (with a forced context switch) till the PMC's runcount
2232 	 * comes down to zero.
2233 	 */
2234 	while (atomic_load_acq_32(&pm->pm_runcount) > 0) {
2235 #ifdef	DEBUG
2236 		maxloop--;
2237 		KASSERT(maxloop > 0,
2238 		    ("[pmc,%d] (ri%d, rc%d) waiting too long for "
2239 			"pmc to be free", __LINE__,
2240 			PMC_TO_ROWINDEX(pm), pm->pm_runcount));
2241 #endif
2242 		pmc_force_context_switch();
2243 	}
2244 }
2245 
2246 /*
2247  * This function does the following things:
2248  *
2249  *  - detaches the PMC from hardware
2250  *  - unlinks all target threads that were attached to it
2251  *  - removes the PMC from its owner's list
2252  *  - destroy's the PMC private mutex
2253  *
2254  * Once this function completes, the given pmc pointer can be safely
2255  * FREE'd by the caller.
2256  */
2257 
2258 static void
2259 pmc_release_pmc_descriptor(struct pmc *pm)
2260 {
2261 	enum pmc_mode mode;
2262 	struct pmc_hw *phw;
2263 	u_int adjri, ri, cpu;
2264 	struct pmc_owner *po;
2265 	struct pmc_binding pb;
2266 	struct pmc_process *pp;
2267 	struct pmc_classdep *pcd;
2268 	struct pmc_target *ptgt, *tmp;
2269 
2270 	sx_assert(&pmc_sx, SX_XLOCKED);
2271 
2272 	KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2273 
2274 	ri   = PMC_TO_ROWINDEX(pm);
2275 	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2276 	mode = PMC_TO_MODE(pm);
2277 
2278 	PMCDBG(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2279 	    mode);
2280 
2281 	/*
2282 	 * First, we take the PMC off hardware.
2283 	 */
2284 	cpu = 0;
2285 	if (PMC_IS_SYSTEM_MODE(mode)) {
2286 
2287 		/*
2288 		 * A system mode PMC runs on a specific CPU.  Switch
2289 		 * to this CPU and turn hardware off.
2290 		 */
2291 		pmc_save_cpu_binding(&pb);
2292 
2293 		cpu = PMC_TO_CPU(pm);
2294 
2295 		pmc_select_cpu(cpu);
2296 
2297 		/* switch off non-stalled CPUs */
2298 		if (pm->pm_state == PMC_STATE_RUNNING &&
2299 		    pm->pm_stalled == 0) {
2300 
2301 			phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2302 
2303 			KASSERT(phw->phw_pmc == pm,
2304 			    ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2305 				__LINE__, ri, phw->phw_pmc, pm));
2306 			PMCDBG(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2307 
2308 			critical_enter();
2309 			pcd->pcd_stop_pmc(cpu, adjri);
2310 			critical_exit();
2311 		}
2312 
2313 		PMCDBG(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2314 
2315 		critical_enter();
2316 		pcd->pcd_config_pmc(cpu, adjri, NULL);
2317 		critical_exit();
2318 
2319 		/* adjust the global and process count of SS mode PMCs */
2320 		if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2321 			po = pm->pm_owner;
2322 			po->po_sscount--;
2323 			if (po->po_sscount == 0) {
2324 				atomic_subtract_rel_int(&pmc_ss_count, 1);
2325 				LIST_REMOVE(po, po_ssnext);
2326 			}
2327 		}
2328 
2329 		pm->pm_state = PMC_STATE_DELETED;
2330 
2331 		pmc_restore_cpu_binding(&pb);
2332 
2333 		/*
2334 		 * We could have references to this PMC structure in
2335 		 * the per-cpu sample queues.  Wait for the queue to
2336 		 * drain.
2337 		 */
2338 		pmc_wait_for_pmc_idle(pm);
2339 
2340 	} else if (PMC_IS_VIRTUAL_MODE(mode)) {
2341 
2342 		/*
2343 		 * A virtual PMC could be running on multiple CPUs at
2344 		 * a given instant.
2345 		 *
2346 		 * By marking its state as DELETED, we ensure that
2347 		 * this PMC is never further scheduled on hardware.
2348 		 *
2349 		 * Then we wait till all CPUs are done with this PMC.
2350 		 */
2351 		pm->pm_state = PMC_STATE_DELETED;
2352 
2353 
2354 		/* Wait for the PMCs runcount to come to zero. */
2355 		pmc_wait_for_pmc_idle(pm);
2356 
2357 		/*
2358 		 * At this point the PMC is off all CPUs and cannot be
2359 		 * freshly scheduled onto a CPU.  It is now safe to
2360 		 * unlink all targets from this PMC.  If a
2361 		 * process-record's refcount falls to zero, we remove
2362 		 * it from the hash table.  The module-wide SX lock
2363 		 * protects us from races.
2364 		 */
2365 		LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2366 			pp = ptgt->pt_process;
2367 			pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2368 
2369 			PMCDBG(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2370 
2371 			/*
2372 			 * If the target process record shows that no
2373 			 * PMCs are attached to it, reclaim its space.
2374 			 */
2375 
2376 			if (pp->pp_refcnt == 0) {
2377 				pmc_remove_process_descriptor(pp);
2378 				free(pp, M_PMC);
2379 			}
2380 		}
2381 
2382 		cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2383 
2384 	}
2385 
2386 	/*
2387 	 * Release any MD resources
2388 	 */
2389 	(void) pcd->pcd_release_pmc(cpu, adjri, pm);
2390 
2391 	/*
2392 	 * Update row disposition
2393 	 */
2394 
2395 	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2396 		PMC_UNMARK_ROW_STANDALONE(ri);
2397 	else
2398 		PMC_UNMARK_ROW_THREAD(ri);
2399 
2400 	/* unlink from the owner's list */
2401 	if (pm->pm_owner) {
2402 		LIST_REMOVE(pm, pm_next);
2403 		pm->pm_owner = NULL;
2404 	}
2405 
2406 	pmc_destroy_pmc_descriptor(pm);
2407 }
2408 
2409 /*
2410  * Register an owner and a pmc.
2411  */
2412 
2413 static int
2414 pmc_register_owner(struct proc *p, struct pmc *pmc)
2415 {
2416 	struct pmc_owner *po;
2417 
2418 	sx_assert(&pmc_sx, SX_XLOCKED);
2419 
2420 	if ((po = pmc_find_owner_descriptor(p)) == NULL)
2421 		if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2422 			return ENOMEM;
2423 
2424 	KASSERT(pmc->pm_owner == NULL,
2425 	    ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2426 	pmc->pm_owner  = po;
2427 
2428 	LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2429 
2430 	PROC_LOCK(p);
2431 	p->p_flag |= P_HWPMC;
2432 	PROC_UNLOCK(p);
2433 
2434 	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2435 		pmclog_process_pmcallocate(pmc);
2436 
2437 	PMCDBG(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2438 	    po, pmc);
2439 
2440 	return 0;
2441 }
2442 
2443 /*
2444  * Return the current row disposition:
2445  * == 0 => FREE
2446  *  > 0 => PROCESS MODE
2447  *  < 0 => SYSTEM MODE
2448  */
2449 
2450 int
2451 pmc_getrowdisp(int ri)
2452 {
2453 	return pmc_pmcdisp[ri];
2454 }
2455 
2456 /*
2457  * Check if a PMC at row index 'ri' can be allocated to the current
2458  * process.
2459  *
2460  * Allocation can fail if:
2461  *   - the current process is already being profiled by a PMC at index 'ri',
2462  *     attached to it via OP_PMCATTACH.
2463  *   - the current process has already allocated a PMC at index 'ri'
2464  *     via OP_ALLOCATE.
2465  */
2466 
2467 static int
2468 pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2469 {
2470 	enum pmc_mode mode;
2471 	struct pmc *pm;
2472 	struct pmc_owner *po;
2473 	struct pmc_process *pp;
2474 
2475 	PMCDBG(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2476 	    "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2477 
2478 	/*
2479 	 * We shouldn't have already allocated a process-mode PMC at
2480 	 * row index 'ri'.
2481 	 *
2482 	 * We shouldn't have allocated a system-wide PMC on the same
2483 	 * CPU and same RI.
2484 	 */
2485 	if ((po = pmc_find_owner_descriptor(p)) != NULL)
2486 		LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2487 		    if (PMC_TO_ROWINDEX(pm) == ri) {
2488 			    mode = PMC_TO_MODE(pm);
2489 			    if (PMC_IS_VIRTUAL_MODE(mode))
2490 				    return EEXIST;
2491 			    if (PMC_IS_SYSTEM_MODE(mode) &&
2492 				(int) PMC_TO_CPU(pm) == cpu)
2493 				    return EEXIST;
2494 		    }
2495 	        }
2496 
2497 	/*
2498 	 * We also shouldn't be the target of any PMC at this index
2499 	 * since otherwise a PMC_ATTACH to ourselves will fail.
2500 	 */
2501 	if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2502 		if (pp->pp_pmcs[ri].pp_pmc)
2503 			return EEXIST;
2504 
2505 	PMCDBG(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2506 	    p, p->p_pid, p->p_comm, ri);
2507 
2508 	return 0;
2509 }
2510 
2511 /*
2512  * Check if a given PMC at row index 'ri' can be currently used in
2513  * mode 'mode'.
2514  */
2515 
2516 static int
2517 pmc_can_allocate_row(int ri, enum pmc_mode mode)
2518 {
2519 	enum pmc_disp	disp;
2520 
2521 	sx_assert(&pmc_sx, SX_XLOCKED);
2522 
2523 	PMCDBG(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2524 
2525 	if (PMC_IS_SYSTEM_MODE(mode))
2526 		disp = PMC_DISP_STANDALONE;
2527 	else
2528 		disp = PMC_DISP_THREAD;
2529 
2530 	/*
2531 	 * check disposition for PMC row 'ri':
2532 	 *
2533 	 * Expected disposition		Row-disposition		Result
2534 	 *
2535 	 * STANDALONE			STANDALONE or FREE	proceed
2536 	 * STANDALONE			THREAD			fail
2537 	 * THREAD			THREAD or FREE		proceed
2538 	 * THREAD			STANDALONE		fail
2539 	 */
2540 
2541 	if (!PMC_ROW_DISP_IS_FREE(ri) &&
2542 	    !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2543 	    !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2544 		return EBUSY;
2545 
2546 	/*
2547 	 * All OK
2548 	 */
2549 
2550 	PMCDBG(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2551 
2552 	return 0;
2553 
2554 }
2555 
2556 /*
2557  * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
2558  */
2559 
2560 static struct pmc *
2561 pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2562 {
2563 	struct pmc *pm;
2564 
2565 	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2566 	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2567 		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2568 
2569 	LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2570 	    if (pm->pm_id == pmcid)
2571 		    return pm;
2572 
2573 	return NULL;
2574 }
2575 
2576 static int
2577 pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
2578 {
2579 
2580 	struct pmc *pm;
2581 	struct pmc_owner *po;
2582 
2583 	PMCDBG(PMC,FND,1, "find-pmc id=%d", pmcid);
2584 
2585 	if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL)
2586 		return ESRCH;
2587 
2588 	if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
2589 		return EINVAL;
2590 
2591 	PMCDBG(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
2592 
2593 	*pmc = pm;
2594 	return 0;
2595 }
2596 
2597 /*
2598  * Start a PMC.
2599  */
2600 
2601 static int
2602 pmc_start(struct pmc *pm)
2603 {
2604 	enum pmc_mode mode;
2605 	struct pmc_owner *po;
2606 	struct pmc_binding pb;
2607 	struct pmc_classdep *pcd;
2608 	int adjri, error, cpu, ri;
2609 
2610 	KASSERT(pm != NULL,
2611 	    ("[pmc,%d] null pm", __LINE__));
2612 
2613 	mode = PMC_TO_MODE(pm);
2614 	ri   = PMC_TO_ROWINDEX(pm);
2615 	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2616 
2617 	error = 0;
2618 
2619 	PMCDBG(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
2620 
2621 	po = pm->pm_owner;
2622 
2623 	/*
2624 	 * Disallow PMCSTART if a logfile is required but has not been
2625 	 * configured yet.
2626 	 */
2627 	if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
2628 	    (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
2629 		return (EDOOFUS);	/* programming error */
2630 
2631 	/*
2632 	 * If this is a sampling mode PMC, log mapping information for
2633 	 * the kernel modules that are currently loaded.
2634 	 */
2635 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
2636 	    pmc_log_kernel_mappings(pm);
2637 
2638 	if (PMC_IS_VIRTUAL_MODE(mode)) {
2639 
2640 		/*
2641 		 * If a PMCATTACH has never been done on this PMC,
2642 		 * attach it to its owner process.
2643 		 */
2644 
2645 		if (LIST_EMPTY(&pm->pm_targets))
2646 			error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
2647 			    pmc_attach_process(po->po_owner, pm);
2648 
2649 		/*
2650 		 * If the PMC is attached to its owner, then force a context
2651 		 * switch to ensure that the MD state gets set correctly.
2652 		 */
2653 
2654 		if (error == 0) {
2655 			pm->pm_state = PMC_STATE_RUNNING;
2656 			if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
2657 				pmc_force_context_switch();
2658 		}
2659 
2660 		return (error);
2661 	}
2662 
2663 
2664 	/*
2665 	 * A system-wide PMC.
2666 	 *
2667 	 * Add the owner to the global list if this is a system-wide
2668 	 * sampling PMC.
2669 	 */
2670 
2671 	if (mode == PMC_MODE_SS) {
2672 		if (po->po_sscount == 0) {
2673 			LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
2674 			atomic_add_rel_int(&pmc_ss_count, 1);
2675 			PMCDBG(PMC,OPS,1, "po=%p in global list", po);
2676 		}
2677 		po->po_sscount++;
2678 
2679 		/*
2680 		 * Log mapping information for all existing processes in the
2681 		 * system.  Subsequent mappings are logged as they happen;
2682 		 * see pmc_process_mmap().
2683 		 */
2684 		if (po->po_logprocmaps == 0) {
2685 			pmc_log_all_process_mappings(po);
2686 			po->po_logprocmaps = 1;
2687 		}
2688 	}
2689 
2690 	/*
2691 	 * Move to the CPU associated with this
2692 	 * PMC, and start the hardware.
2693 	 */
2694 
2695 	pmc_save_cpu_binding(&pb);
2696 
2697 	cpu = PMC_TO_CPU(pm);
2698 
2699 	if (!pmc_cpu_is_active(cpu))
2700 		return (ENXIO);
2701 
2702 	pmc_select_cpu(cpu);
2703 
2704 	/*
2705 	 * global PMCs are configured at allocation time
2706 	 * so write out the initial value and start the PMC.
2707 	 */
2708 
2709 	pm->pm_state = PMC_STATE_RUNNING;
2710 
2711 	critical_enter();
2712 	if ((error = pcd->pcd_write_pmc(cpu, adjri,
2713 		 PMC_IS_SAMPLING_MODE(mode) ?
2714 		 pm->pm_sc.pm_reloadcount :
2715 		 pm->pm_sc.pm_initial)) == 0)
2716 		error = pcd->pcd_start_pmc(cpu, adjri);
2717 	critical_exit();
2718 
2719 	pmc_restore_cpu_binding(&pb);
2720 
2721 	return (error);
2722 }
2723 
2724 /*
2725  * Stop a PMC.
2726  */
2727 
2728 static int
2729 pmc_stop(struct pmc *pm)
2730 {
2731 	struct pmc_owner *po;
2732 	struct pmc_binding pb;
2733 	struct pmc_classdep *pcd;
2734 	int adjri, cpu, error, ri;
2735 
2736 	KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
2737 
2738 	PMCDBG(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
2739 	    PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
2740 
2741 	pm->pm_state = PMC_STATE_STOPPED;
2742 
2743 	/*
2744 	 * If the PMC is a virtual mode one, changing the state to
2745 	 * non-RUNNING is enough to ensure that the PMC never gets
2746 	 * scheduled.
2747 	 *
2748 	 * If this PMC is current running on a CPU, then it will
2749 	 * handled correctly at the time its target process is context
2750 	 * switched out.
2751 	 */
2752 
2753 	if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
2754 		return 0;
2755 
2756 	/*
2757 	 * A system-mode PMC.  Move to the CPU associated with
2758 	 * this PMC, and stop the hardware.  We update the
2759 	 * 'initial count' so that a subsequent PMCSTART will
2760 	 * resume counting from the current hardware count.
2761 	 */
2762 
2763 	pmc_save_cpu_binding(&pb);
2764 
2765 	cpu = PMC_TO_CPU(pm);
2766 
2767 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
2768 	    ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
2769 
2770 	if (!pmc_cpu_is_active(cpu))
2771 		return ENXIO;
2772 
2773 	pmc_select_cpu(cpu);
2774 
2775 	ri = PMC_TO_ROWINDEX(pm);
2776 	pcd = pmc_ri_to_classdep(md, ri, &adjri);
2777 
2778 	critical_enter();
2779 	if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0)
2780 		error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial);
2781 	critical_exit();
2782 
2783 	pmc_restore_cpu_binding(&pb);
2784 
2785 	po = pm->pm_owner;
2786 
2787 	/* remove this owner from the global list of SS PMC owners */
2788 	if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
2789 		po->po_sscount--;
2790 		if (po->po_sscount == 0) {
2791 			atomic_subtract_rel_int(&pmc_ss_count, 1);
2792 			LIST_REMOVE(po, po_ssnext);
2793 			PMCDBG(PMC,OPS,2,"po=%p removed from global list", po);
2794 		}
2795 	}
2796 
2797 	return (error);
2798 }
2799 
2800 
2801 #ifdef	DEBUG
2802 static const char *pmc_op_to_name[] = {
2803 #undef	__PMC_OP
2804 #define	__PMC_OP(N, D)	#N ,
2805 	__PMC_OPS()
2806 	NULL
2807 };
2808 #endif
2809 
2810 /*
2811  * The syscall interface
2812  */
2813 
2814 #define	PMC_GET_SX_XLOCK(...) do {		\
2815 	sx_xlock(&pmc_sx);			\
2816 	if (pmc_hook == NULL) {			\
2817 		sx_xunlock(&pmc_sx);		\
2818 		return __VA_ARGS__;		\
2819 	}					\
2820 } while (0)
2821 
2822 #define	PMC_DOWNGRADE_SX() do {			\
2823 	sx_downgrade(&pmc_sx);			\
2824 	is_sx_downgraded = 1;			\
2825 } while (0)
2826 
2827 static int
2828 pmc_syscall_handler(struct thread *td, void *syscall_args)
2829 {
2830 	int error, is_sx_downgraded, is_sx_locked, op;
2831 	struct pmc_syscall_args *c;
2832 	void *arg;
2833 
2834 	PMC_GET_SX_XLOCK(ENOSYS);
2835 
2836 	DROP_GIANT();
2837 
2838 	is_sx_downgraded = 0;
2839 	is_sx_locked = 1;
2840 
2841 	c = (struct pmc_syscall_args *) syscall_args;
2842 
2843 	op = c->pmop_code;
2844 	arg = c->pmop_data;
2845 
2846 	PMCDBG(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
2847 	    pmc_op_to_name[op], arg);
2848 
2849 	error = 0;
2850 	atomic_add_int(&pmc_stats.pm_syscalls, 1);
2851 
2852 	switch(op)
2853 	{
2854 
2855 
2856 	/*
2857 	 * Configure a log file.
2858 	 *
2859 	 * XXX This OP will be reworked.
2860 	 */
2861 
2862 	case PMC_OP_CONFIGURELOG:
2863 	{
2864 		struct proc *p;
2865 		struct pmc *pm;
2866 		struct pmc_owner *po;
2867 		struct pmc_op_configurelog cl;
2868 
2869 		sx_assert(&pmc_sx, SX_XLOCKED);
2870 
2871 		if ((error = copyin(arg, &cl, sizeof(cl))) != 0)
2872 			break;
2873 
2874 		/* mark this process as owning a log file */
2875 		p = td->td_proc;
2876 		if ((po = pmc_find_owner_descriptor(p)) == NULL)
2877 			if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
2878 				error = ENOMEM;
2879 				break;
2880 			}
2881 
2882 		/*
2883 		 * If a valid fd was passed in, try to configure that,
2884 		 * otherwise if 'fd' was less than zero and there was
2885 		 * a log file configured, flush its buffers and
2886 		 * de-configure it.
2887 		 */
2888 		if (cl.pm_logfd >= 0) {
2889 			sx_xunlock(&pmc_sx);
2890 			is_sx_locked = 0;
2891 			error = pmclog_configure_log(md, po, cl.pm_logfd);
2892 		} else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
2893 			pmclog_process_closelog(po);
2894 			error = pmclog_flush(po);
2895 			if (error == 0) {
2896 				LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2897 				    if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
2898 					pm->pm_state == PMC_STATE_RUNNING)
2899 					    pmc_stop(pm);
2900 				error = pmclog_deconfigure_log(po);
2901 			}
2902 		} else
2903 			error = EINVAL;
2904 
2905 		if (error)
2906 			break;
2907 	}
2908 	break;
2909 
2910 
2911 	/*
2912 	 * Flush a log file.
2913 	 */
2914 
2915 	case PMC_OP_FLUSHLOG:
2916 	{
2917 		struct pmc_owner *po;
2918 
2919 		sx_assert(&pmc_sx, SX_XLOCKED);
2920 
2921 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2922 			error = EINVAL;
2923 			break;
2924 		}
2925 
2926 		error = pmclog_flush(po);
2927 	}
2928 	break;
2929 
2930 	/*
2931 	 * Retrieve hardware configuration.
2932 	 */
2933 
2934 	case PMC_OP_GETCPUINFO:	/* CPU information */
2935 	{
2936 		struct pmc_op_getcpuinfo gci;
2937 		struct pmc_classinfo *pci;
2938 		struct pmc_classdep *pcd;
2939 		int cl;
2940 
2941 		gci.pm_cputype = md->pmd_cputype;
2942 		gci.pm_ncpu    = pmc_cpu_max();
2943 		gci.pm_npmc    = md->pmd_npmc;
2944 		gci.pm_nclass  = md->pmd_nclass;
2945 		pci = gci.pm_classes;
2946 		pcd = md->pmd_classdep;
2947 		for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
2948 			pci->pm_caps  = pcd->pcd_caps;
2949 			pci->pm_class = pcd->pcd_class;
2950 			pci->pm_width = pcd->pcd_width;
2951 			pci->pm_num   = pcd->pcd_num;
2952 		}
2953 		error = copyout(&gci, arg, sizeof(gci));
2954 	}
2955 	break;
2956 
2957 
2958 	/*
2959 	 * Get module statistics
2960 	 */
2961 
2962 	case PMC_OP_GETDRIVERSTATS:
2963 	{
2964 		struct pmc_op_getdriverstats gms;
2965 
2966 		bcopy(&pmc_stats, &gms, sizeof(gms));
2967 		error = copyout(&gms, arg, sizeof(gms));
2968 	}
2969 	break;
2970 
2971 
2972 	/*
2973 	 * Retrieve module version number
2974 	 */
2975 
2976 	case PMC_OP_GETMODULEVERSION:
2977 	{
2978 		uint32_t cv, modv;
2979 
2980 		/* retrieve the client's idea of the ABI version */
2981 		if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
2982 			break;
2983 		/* don't service clients newer than our driver */
2984 		modv = PMC_VERSION;
2985 		if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
2986 			error = EPROGMISMATCH;
2987 			break;
2988 		}
2989 		error = copyout(&modv, arg, sizeof(int));
2990 	}
2991 	break;
2992 
2993 
2994 	/*
2995 	 * Retrieve the state of all the PMCs on a given
2996 	 * CPU.
2997 	 */
2998 
2999 	case PMC_OP_GETPMCINFO:
3000 	{
3001 		int ari;
3002 		struct pmc *pm;
3003 		size_t pmcinfo_size;
3004 		uint32_t cpu, n, npmc;
3005 		struct pmc_owner *po;
3006 		struct pmc_binding pb;
3007 		struct pmc_classdep *pcd;
3008 		struct pmc_info *p, *pmcinfo;
3009 		struct pmc_op_getpmcinfo *gpi;
3010 
3011 		PMC_DOWNGRADE_SX();
3012 
3013 		gpi = (struct pmc_op_getpmcinfo *) arg;
3014 
3015 		if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
3016 			break;
3017 
3018 		if (cpu >= pmc_cpu_max()) {
3019 			error = EINVAL;
3020 			break;
3021 		}
3022 
3023 		if (!pmc_cpu_is_active(cpu)) {
3024 			error = ENXIO;
3025 			break;
3026 		}
3027 
3028 		/* switch to CPU 'cpu' */
3029 		pmc_save_cpu_binding(&pb);
3030 		pmc_select_cpu(cpu);
3031 
3032 		npmc = md->pmd_npmc;
3033 
3034 		pmcinfo_size = npmc * sizeof(struct pmc_info);
3035 		pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK);
3036 
3037 		p = pmcinfo;
3038 
3039 		for (n = 0; n < md->pmd_npmc; n++, p++) {
3040 
3041 			pcd = pmc_ri_to_classdep(md, n, &ari);
3042 
3043 			KASSERT(pcd != NULL,
3044 			    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
3045 
3046 			if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
3047 				break;
3048 
3049 			if (PMC_ROW_DISP_IS_STANDALONE(n))
3050 				p->pm_rowdisp = PMC_DISP_STANDALONE;
3051 			else if (PMC_ROW_DISP_IS_THREAD(n))
3052 				p->pm_rowdisp = PMC_DISP_THREAD;
3053 			else
3054 				p->pm_rowdisp = PMC_DISP_FREE;
3055 
3056 			p->pm_ownerpid = -1;
3057 
3058 			if (pm == NULL)	/* no PMC associated */
3059 				continue;
3060 
3061 			po = pm->pm_owner;
3062 
3063 			KASSERT(po->po_owner != NULL,
3064 			    ("[pmc,%d] pmc_owner had a null proc pointer",
3065 				__LINE__));
3066 
3067 			p->pm_ownerpid = po->po_owner->p_pid;
3068 			p->pm_mode     = PMC_TO_MODE(pm);
3069 			p->pm_event    = pm->pm_event;
3070 			p->pm_flags    = pm->pm_flags;
3071 
3072 			if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3073 				p->pm_reloadcount =
3074 				    pm->pm_sc.pm_reloadcount;
3075 		}
3076 
3077 		pmc_restore_cpu_binding(&pb);
3078 
3079 		/* now copy out the PMC info collected */
3080 		if (error == 0)
3081 			error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
3082 
3083 		free(pmcinfo, M_PMC);
3084 	}
3085 	break;
3086 
3087 
3088 	/*
3089 	 * Set the administrative state of a PMC.  I.e. whether
3090 	 * the PMC is to be used or not.
3091 	 */
3092 
3093 	case PMC_OP_PMCADMIN:
3094 	{
3095 		int cpu, ri;
3096 		enum pmc_state request;
3097 		struct pmc_cpu *pc;
3098 		struct pmc_hw *phw;
3099 		struct pmc_op_pmcadmin pma;
3100 		struct pmc_binding pb;
3101 
3102 		sx_assert(&pmc_sx, SX_XLOCKED);
3103 
3104 		KASSERT(td == curthread,
3105 		    ("[pmc,%d] td != curthread", __LINE__));
3106 
3107 		error = priv_check(td, PRIV_PMC_MANAGE);
3108 		if (error)
3109 			break;
3110 
3111 		if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
3112 			break;
3113 
3114 		cpu = pma.pm_cpu;
3115 
3116 		if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
3117 			error = EINVAL;
3118 			break;
3119 		}
3120 
3121 		if (!pmc_cpu_is_active(cpu)) {
3122 			error = ENXIO;
3123 			break;
3124 		}
3125 
3126 		request = pma.pm_state;
3127 
3128 		if (request != PMC_STATE_DISABLED &&
3129 		    request != PMC_STATE_FREE) {
3130 			error = EINVAL;
3131 			break;
3132 		}
3133 
3134 		ri = pma.pm_pmc; /* pmc id == row index */
3135 		if (ri < 0 || ri >= (int) md->pmd_npmc) {
3136 			error = EINVAL;
3137 			break;
3138 		}
3139 
3140 		/*
3141 		 * We can't disable a PMC with a row-index allocated
3142 		 * for process virtual PMCs.
3143 		 */
3144 
3145 		if (PMC_ROW_DISP_IS_THREAD(ri) &&
3146 		    request == PMC_STATE_DISABLED) {
3147 			error = EBUSY;
3148 			break;
3149 		}
3150 
3151 		/*
3152 		 * otherwise, this PMC on this CPU is either free or
3153 		 * in system-wide mode.
3154 		 */
3155 
3156 		pmc_save_cpu_binding(&pb);
3157 		pmc_select_cpu(cpu);
3158 
3159 		pc  = pmc_pcpu[cpu];
3160 		phw = pc->pc_hwpmcs[ri];
3161 
3162 		/*
3163 		 * XXX do we need some kind of 'forced' disable?
3164 		 */
3165 
3166 		if (phw->phw_pmc == NULL) {
3167 			if (request == PMC_STATE_DISABLED &&
3168 			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
3169 				phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
3170 				PMC_MARK_ROW_STANDALONE(ri);
3171 			} else if (request == PMC_STATE_FREE &&
3172 			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
3173 				phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
3174 				PMC_UNMARK_ROW_STANDALONE(ri);
3175 			}
3176 			/* other cases are a no-op */
3177 		} else
3178 			error = EBUSY;
3179 
3180 		pmc_restore_cpu_binding(&pb);
3181 	}
3182 	break;
3183 
3184 
3185 	/*
3186 	 * Allocate a PMC.
3187 	 */
3188 
3189 	case PMC_OP_PMCALLOCATE:
3190 	{
3191 		int adjri, n;
3192 		u_int cpu;
3193 		uint32_t caps;
3194 		struct pmc *pmc;
3195 		enum pmc_mode mode;
3196 		struct pmc_hw *phw;
3197 		struct pmc_binding pb;
3198 		struct pmc_classdep *pcd;
3199 		struct pmc_op_pmcallocate pa;
3200 
3201 		if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
3202 			break;
3203 
3204 		caps = pa.pm_caps;
3205 		mode = pa.pm_mode;
3206 		cpu  = pa.pm_cpu;
3207 
3208 		if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
3209 		     mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
3210 		    (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) {
3211 			error = EINVAL;
3212 			break;
3213 		}
3214 
3215 		/*
3216 		 * Virtual PMCs should only ask for a default CPU.
3217 		 * System mode PMCs need to specify a non-default CPU.
3218 		 */
3219 
3220 		if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
3221 		    (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
3222 			error = EINVAL;
3223 			break;
3224 		}
3225 
3226 		/*
3227 		 * Check that an inactive CPU is not being asked for.
3228 		 */
3229 
3230 		if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) {
3231 			error = ENXIO;
3232 			break;
3233 		}
3234 
3235 		/*
3236 		 * Refuse an allocation for a system-wide PMC if this
3237 		 * process has been jailed, or if this process lacks
3238 		 * super-user credentials and the sysctl tunable
3239 		 * 'security.bsd.unprivileged_syspmcs' is zero.
3240 		 */
3241 
3242 		if (PMC_IS_SYSTEM_MODE(mode)) {
3243 			if (jailed(curthread->td_ucred)) {
3244 				error = EPERM;
3245 				break;
3246 			}
3247 			if (!pmc_unprivileged_syspmcs) {
3248 				error = priv_check(curthread,
3249 				    PRIV_PMC_SYSTEM);
3250 				if (error)
3251 					break;
3252 			}
3253 		}
3254 
3255 		/*
3256 		 * Look for valid values for 'pm_flags'
3257 		 */
3258 
3259 		if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3260 		    PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN)) != 0) {
3261 			error = EINVAL;
3262 			break;
3263 		}
3264 
3265 		/* process logging options are not allowed for system PMCs */
3266 		if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
3267 		    (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
3268 			error = EINVAL;
3269 			break;
3270 		}
3271 
3272 		/*
3273 		 * All sampling mode PMCs need to be able to interrupt the
3274 		 * CPU.
3275 		 */
3276 		if (PMC_IS_SAMPLING_MODE(mode))
3277 			caps |= PMC_CAP_INTERRUPT;
3278 
3279 		/* A valid class specifier should have been passed in. */
3280 		for (n = 0; n < md->pmd_nclass; n++)
3281 			if (md->pmd_classdep[n].pcd_class == pa.pm_class)
3282 				break;
3283 		if (n == md->pmd_nclass) {
3284 			error = EINVAL;
3285 			break;
3286 		}
3287 
3288 		/* The requested PMC capabilities should be feasible. */
3289 		if ((md->pmd_classdep[n].pcd_caps & caps) != caps) {
3290 			error = EOPNOTSUPP;
3291 			break;
3292 		}
3293 
3294 		PMCDBG(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
3295 		    pa.pm_ev, caps, mode, cpu);
3296 
3297 		pmc = pmc_allocate_pmc_descriptor();
3298 		pmc->pm_id    = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
3299 		    PMC_ID_INVALID);
3300 		pmc->pm_event = pa.pm_ev;
3301 		pmc->pm_state = PMC_STATE_FREE;
3302 		pmc->pm_caps  = caps;
3303 		pmc->pm_flags = pa.pm_flags;
3304 
3305 		/* switch thread to CPU 'cpu' */
3306 		pmc_save_cpu_binding(&pb);
3307 
3308 #define	PMC_IS_SHAREABLE_PMC(cpu, n)				\
3309 	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &		\
3310 	 PMC_PHW_FLAG_IS_SHAREABLE)
3311 #define	PMC_IS_UNALLOCATED(cpu, n)				\
3312 	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3313 
3314 		if (PMC_IS_SYSTEM_MODE(mode)) {
3315 			pmc_select_cpu(cpu);
3316 			for (n = 0; n < (int) md->pmd_npmc; n++) {
3317 				pcd = pmc_ri_to_classdep(md, n, &adjri);
3318 				if (pmc_can_allocate_row(n, mode) == 0 &&
3319 				    pmc_can_allocate_rowindex(
3320 					    curthread->td_proc, n, cpu) == 0 &&
3321 				    (PMC_IS_UNALLOCATED(cpu, n) ||
3322 				     PMC_IS_SHAREABLE_PMC(cpu, n)) &&
3323 				    pcd->pcd_allocate_pmc(cpu, adjri, pmc,
3324 					&pa) == 0)
3325 					break;
3326 			}
3327 		} else {
3328 			/* Process virtual mode */
3329 			for (n = 0; n < (int) md->pmd_npmc; n++) {
3330 				pcd = pmc_ri_to_classdep(md, n, &adjri);
3331 				if (pmc_can_allocate_row(n, mode) == 0 &&
3332 				    pmc_can_allocate_rowindex(
3333 					    curthread->td_proc, n,
3334 					    PMC_CPU_ANY) == 0 &&
3335 				    pcd->pcd_allocate_pmc(curthread->td_oncpu,
3336 					adjri, pmc, &pa) == 0)
3337 					break;
3338 			}
3339 		}
3340 
3341 #undef	PMC_IS_UNALLOCATED
3342 #undef	PMC_IS_SHAREABLE_PMC
3343 
3344 		pmc_restore_cpu_binding(&pb);
3345 
3346 		if (n == (int) md->pmd_npmc) {
3347 			pmc_destroy_pmc_descriptor(pmc);
3348 			free(pmc, M_PMC);
3349 			pmc = NULL;
3350 			error = EINVAL;
3351 			break;
3352 		}
3353 
3354 		/* Fill in the correct value in the ID field */
3355 		pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
3356 
3357 		PMCDBG(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
3358 		    pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
3359 
3360 		/* Process mode PMCs with logging enabled need log files */
3361 		if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
3362 			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3363 
3364 		/* All system mode sampling PMCs require a log file */
3365 		if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
3366 			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3367 
3368 		/*
3369 		 * Configure global pmc's immediately
3370 		 */
3371 
3372 		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
3373 
3374 			pmc_save_cpu_binding(&pb);
3375 			pmc_select_cpu(cpu);
3376 
3377 			phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
3378 			pcd = pmc_ri_to_classdep(md, n, &adjri);
3379 
3380 			if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
3381 			    (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
3382 				(void) pcd->pcd_release_pmc(cpu, adjri, pmc);
3383 				pmc_destroy_pmc_descriptor(pmc);
3384 				free(pmc, M_PMC);
3385 				pmc = NULL;
3386 				pmc_restore_cpu_binding(&pb);
3387 				error = EPERM;
3388 				break;
3389 			}
3390 
3391 			pmc_restore_cpu_binding(&pb);
3392 		}
3393 
3394 		pmc->pm_state    = PMC_STATE_ALLOCATED;
3395 
3396 		/*
3397 		 * mark row disposition
3398 		 */
3399 
3400 		if (PMC_IS_SYSTEM_MODE(mode))
3401 			PMC_MARK_ROW_STANDALONE(n);
3402 		else
3403 			PMC_MARK_ROW_THREAD(n);
3404 
3405 		/*
3406 		 * Register this PMC with the current thread as its owner.
3407 		 */
3408 
3409 		if ((error =
3410 		    pmc_register_owner(curthread->td_proc, pmc)) != 0) {
3411 			pmc_release_pmc_descriptor(pmc);
3412 			free(pmc, M_PMC);
3413 			pmc = NULL;
3414 			break;
3415 		}
3416 
3417 		/*
3418 		 * Return the allocated index.
3419 		 */
3420 
3421 		pa.pm_pmcid = pmc->pm_id;
3422 
3423 		error = copyout(&pa, arg, sizeof(pa));
3424 	}
3425 	break;
3426 
3427 
3428 	/*
3429 	 * Attach a PMC to a process.
3430 	 */
3431 
3432 	case PMC_OP_PMCATTACH:
3433 	{
3434 		struct pmc *pm;
3435 		struct proc *p;
3436 		struct pmc_op_pmcattach a;
3437 
3438 		sx_assert(&pmc_sx, SX_XLOCKED);
3439 
3440 		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3441 			break;
3442 
3443 		if (a.pm_pid < 0) {
3444 			error = EINVAL;
3445 			break;
3446 		} else if (a.pm_pid == 0)
3447 			a.pm_pid = td->td_proc->p_pid;
3448 
3449 		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3450 			break;
3451 
3452 		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
3453 			error = EINVAL;
3454 			break;
3455 		}
3456 
3457 		/* PMCs may be (re)attached only when allocated or stopped */
3458 		if (pm->pm_state == PMC_STATE_RUNNING) {
3459 			error = EBUSY;
3460 			break;
3461 		} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
3462 		    pm->pm_state != PMC_STATE_STOPPED) {
3463 			error = EINVAL;
3464 			break;
3465 		}
3466 
3467 		/* lookup pid */
3468 		if ((p = pfind(a.pm_pid)) == NULL) {
3469 			error = ESRCH;
3470 			break;
3471 		}
3472 
3473 		/*
3474 		 * Ignore processes that are working on exiting.
3475 		 */
3476 		if (p->p_flag & P_WEXIT) {
3477 			error = ESRCH;
3478 			PROC_UNLOCK(p);	/* pfind() returns a locked process */
3479 			break;
3480 		}
3481 
3482 		/*
3483 		 * we are allowed to attach a PMC to a process if
3484 		 * we can debug it.
3485 		 */
3486 		error = p_candebug(curthread, p);
3487 
3488 		PROC_UNLOCK(p);
3489 
3490 		if (error == 0)
3491 			error = pmc_attach_process(p, pm);
3492 	}
3493 	break;
3494 
3495 
3496 	/*
3497 	 * Detach an attached PMC from a process.
3498 	 */
3499 
3500 	case PMC_OP_PMCDETACH:
3501 	{
3502 		struct pmc *pm;
3503 		struct proc *p;
3504 		struct pmc_op_pmcattach a;
3505 
3506 		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3507 			break;
3508 
3509 		if (a.pm_pid < 0) {
3510 			error = EINVAL;
3511 			break;
3512 		} else if (a.pm_pid == 0)
3513 			a.pm_pid = td->td_proc->p_pid;
3514 
3515 		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3516 			break;
3517 
3518 		if ((p = pfind(a.pm_pid)) == NULL) {
3519 			error = ESRCH;
3520 			break;
3521 		}
3522 
3523 		/*
3524 		 * Treat processes that are in the process of exiting
3525 		 * as if they were not present.
3526 		 */
3527 
3528 		if (p->p_flag & P_WEXIT)
3529 			error = ESRCH;
3530 
3531 		PROC_UNLOCK(p);	/* pfind() returns a locked process */
3532 
3533 		if (error == 0)
3534 			error = pmc_detach_process(p, pm);
3535 	}
3536 	break;
3537 
3538 
3539 	/*
3540 	 * Retrieve the MSR number associated with the counter
3541 	 * 'pmc_id'.  This allows processes to directly use RDPMC
3542 	 * instructions to read their PMCs, without the overhead of a
3543 	 * system call.
3544 	 */
3545 
3546 	case PMC_OP_PMCGETMSR:
3547 	{
3548 		int adjri, ri;
3549 		struct pmc *pm;
3550 		struct pmc_target *pt;
3551 		struct pmc_op_getmsr gm;
3552 		struct pmc_classdep *pcd;
3553 
3554 		PMC_DOWNGRADE_SX();
3555 
3556 		if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
3557 			break;
3558 
3559 		if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
3560 			break;
3561 
3562 		/*
3563 		 * The allocated PMC has to be a process virtual PMC,
3564 		 * i.e., of type MODE_T[CS].  Global PMCs can only be
3565 		 * read using the PMCREAD operation since they may be
3566 		 * allocated on a different CPU than the one we could
3567 		 * be running on at the time of the RDPMC instruction.
3568 		 *
3569 		 * The GETMSR operation is not allowed for PMCs that
3570 		 * are inherited across processes.
3571 		 */
3572 
3573 		if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
3574 		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
3575 			error = EINVAL;
3576 			break;
3577 		}
3578 
3579 		/*
3580 		 * It only makes sense to use a RDPMC (or its
3581 		 * equivalent instruction on non-x86 architectures) on
3582 		 * a process that has allocated and attached a PMC to
3583 		 * itself.  Conversely the PMC is only allowed to have
3584 		 * one process attached to it -- its owner.
3585 		 */
3586 
3587 		if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
3588 		    LIST_NEXT(pt, pt_next) != NULL ||
3589 		    pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
3590 			error = EINVAL;
3591 			break;
3592 		}
3593 
3594 		ri = PMC_TO_ROWINDEX(pm);
3595 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
3596 
3597 		/* PMC class has no 'GETMSR' support */
3598 		if (pcd->pcd_get_msr == NULL) {
3599 			error = ENOSYS;
3600 			break;
3601 		}
3602 
3603 		if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
3604 			break;
3605 
3606 		if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
3607 			break;
3608 
3609 		/*
3610 		 * Mark our process as using MSRs.  Update machine
3611 		 * state using a forced context switch.
3612 		 */
3613 
3614 		pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
3615 		pmc_force_context_switch();
3616 
3617 	}
3618 	break;
3619 
3620 	/*
3621 	 * Release an allocated PMC
3622 	 */
3623 
3624 	case PMC_OP_PMCRELEASE:
3625 	{
3626 		pmc_id_t pmcid;
3627 		struct pmc *pm;
3628 		struct pmc_owner *po;
3629 		struct pmc_op_simple sp;
3630 
3631 		/*
3632 		 * Find PMC pointer for the named PMC.
3633 		 *
3634 		 * Use pmc_release_pmc_descriptor() to switch off the
3635 		 * PMC, remove all its target threads, and remove the
3636 		 * PMC from its owner's list.
3637 		 *
3638 		 * Remove the owner record if this is the last PMC
3639 		 * owned.
3640 		 *
3641 		 * Free up space.
3642 		 */
3643 
3644 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3645 			break;
3646 
3647 		pmcid = sp.pm_pmcid;
3648 
3649 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3650 			break;
3651 
3652 		po = pm->pm_owner;
3653 		pmc_release_pmc_descriptor(pm);
3654 		pmc_maybe_remove_owner(po);
3655 
3656 		free(pm, M_PMC);
3657 	}
3658 	break;
3659 
3660 
3661 	/*
3662 	 * Read and/or write a PMC.
3663 	 */
3664 
3665 	case PMC_OP_PMCRW:
3666 	{
3667 		int adjri;
3668 		struct pmc *pm;
3669 		uint32_t cpu, ri;
3670 		pmc_value_t oldvalue;
3671 		struct pmc_binding pb;
3672 		struct pmc_op_pmcrw prw;
3673 		struct pmc_classdep *pcd;
3674 		struct pmc_op_pmcrw *pprw;
3675 
3676 		PMC_DOWNGRADE_SX();
3677 
3678 		if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
3679 			break;
3680 
3681 		ri = 0;
3682 		PMCDBG(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
3683 		    prw.pm_flags);
3684 
3685 		/* must have at least one flag set */
3686 		if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
3687 			error = EINVAL;
3688 			break;
3689 		}
3690 
3691 		/* locate pmc descriptor */
3692 		if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
3693 			break;
3694 
3695 		/* Can't read a PMC that hasn't been started. */
3696 		if (pm->pm_state != PMC_STATE_ALLOCATED &&
3697 		    pm->pm_state != PMC_STATE_STOPPED &&
3698 		    pm->pm_state != PMC_STATE_RUNNING) {
3699 			error = EINVAL;
3700 			break;
3701 		}
3702 
3703 		/* writing a new value is allowed only for 'STOPPED' pmcs */
3704 		if (pm->pm_state == PMC_STATE_RUNNING &&
3705 		    (prw.pm_flags & PMC_F_NEWVALUE)) {
3706 			error = EBUSY;
3707 			break;
3708 		}
3709 
3710 		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
3711 
3712 			/*
3713 			 * If this PMC is attached to its owner (i.e.,
3714 			 * the process requesting this operation) and
3715 			 * is running, then attempt to get an
3716 			 * upto-date reading from hardware for a READ.
3717 			 * Writes are only allowed when the PMC is
3718 			 * stopped, so only update the saved value
3719 			 * field.
3720 			 *
3721 			 * If the PMC is not running, or is not
3722 			 * attached to its owner, read/write to the
3723 			 * savedvalue field.
3724 			 */
3725 
3726 			ri = PMC_TO_ROWINDEX(pm);
3727 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3728 
3729 			mtx_pool_lock_spin(pmc_mtxpool, pm);
3730 			cpu = curthread->td_oncpu;
3731 
3732 			if (prw.pm_flags & PMC_F_OLDVALUE) {
3733 				if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
3734 				    (pm->pm_state == PMC_STATE_RUNNING))
3735 					error = (*pcd->pcd_read_pmc)(cpu, adjri,
3736 					    &oldvalue);
3737 				else
3738 					oldvalue = pm->pm_gv.pm_savedvalue;
3739 			}
3740 			if (prw.pm_flags & PMC_F_NEWVALUE)
3741 				pm->pm_gv.pm_savedvalue = prw.pm_value;
3742 
3743 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
3744 
3745 		} else { /* System mode PMCs */
3746 			cpu = PMC_TO_CPU(pm);
3747 			ri  = PMC_TO_ROWINDEX(pm);
3748 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3749 
3750 			if (!pmc_cpu_is_active(cpu)) {
3751 				error = ENXIO;
3752 				break;
3753 			}
3754 
3755 			/* move this thread to CPU 'cpu' */
3756 			pmc_save_cpu_binding(&pb);
3757 			pmc_select_cpu(cpu);
3758 
3759 			critical_enter();
3760 			/* save old value */
3761 			if (prw.pm_flags & PMC_F_OLDVALUE)
3762 				if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
3763 					 &oldvalue)))
3764 					goto error;
3765 			/* write out new value */
3766 			if (prw.pm_flags & PMC_F_NEWVALUE)
3767 				error = (*pcd->pcd_write_pmc)(cpu, adjri,
3768 				    prw.pm_value);
3769 		error:
3770 			critical_exit();
3771 			pmc_restore_cpu_binding(&pb);
3772 			if (error)
3773 				break;
3774 		}
3775 
3776 		pprw = (struct pmc_op_pmcrw *) arg;
3777 
3778 #ifdef	DEBUG
3779 		if (prw.pm_flags & PMC_F_NEWVALUE)
3780 			PMCDBG(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
3781 			    ri, prw.pm_value, oldvalue);
3782 		else if (prw.pm_flags & PMC_F_OLDVALUE)
3783 			PMCDBG(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
3784 #endif
3785 
3786 		/* return old value if requested */
3787 		if (prw.pm_flags & PMC_F_OLDVALUE)
3788 			if ((error = copyout(&oldvalue, &pprw->pm_value,
3789 				 sizeof(prw.pm_value))))
3790 				break;
3791 
3792 	}
3793 	break;
3794 
3795 
3796 	/*
3797 	 * Set the sampling rate for a sampling mode PMC and the
3798 	 * initial count for a counting mode PMC.
3799 	 */
3800 
3801 	case PMC_OP_PMCSETCOUNT:
3802 	{
3803 		struct pmc *pm;
3804 		struct pmc_op_pmcsetcount sc;
3805 
3806 		PMC_DOWNGRADE_SX();
3807 
3808 		if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
3809 			break;
3810 
3811 		if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
3812 			break;
3813 
3814 		if (pm->pm_state == PMC_STATE_RUNNING) {
3815 			error = EBUSY;
3816 			break;
3817 		}
3818 
3819 		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3820 			pm->pm_sc.pm_reloadcount = sc.pm_count;
3821 		else
3822 			pm->pm_sc.pm_initial = sc.pm_count;
3823 	}
3824 	break;
3825 
3826 
3827 	/*
3828 	 * Start a PMC.
3829 	 */
3830 
3831 	case PMC_OP_PMCSTART:
3832 	{
3833 		pmc_id_t pmcid;
3834 		struct pmc *pm;
3835 		struct pmc_op_simple sp;
3836 
3837 		sx_assert(&pmc_sx, SX_XLOCKED);
3838 
3839 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3840 			break;
3841 
3842 		pmcid = sp.pm_pmcid;
3843 
3844 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3845 			break;
3846 
3847 		KASSERT(pmcid == pm->pm_id,
3848 		    ("[pmc,%d] pmcid %x != id %x", __LINE__,
3849 			pm->pm_id, pmcid));
3850 
3851 		if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
3852 			break;
3853 		else if (pm->pm_state != PMC_STATE_STOPPED &&
3854 		    pm->pm_state != PMC_STATE_ALLOCATED) {
3855 			error = EINVAL;
3856 			break;
3857 		}
3858 
3859 		error = pmc_start(pm);
3860 	}
3861 	break;
3862 
3863 
3864 	/*
3865 	 * Stop a PMC.
3866 	 */
3867 
3868 	case PMC_OP_PMCSTOP:
3869 	{
3870 		pmc_id_t pmcid;
3871 		struct pmc *pm;
3872 		struct pmc_op_simple sp;
3873 
3874 		PMC_DOWNGRADE_SX();
3875 
3876 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3877 			break;
3878 
3879 		pmcid = sp.pm_pmcid;
3880 
3881 		/*
3882 		 * Mark the PMC as inactive and invoke the MD stop
3883 		 * routines if needed.
3884 		 */
3885 
3886 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3887 			break;
3888 
3889 		KASSERT(pmcid == pm->pm_id,
3890 		    ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
3891 			pm->pm_id, pmcid));
3892 
3893 		if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
3894 			break;
3895 		else if (pm->pm_state != PMC_STATE_RUNNING) {
3896 			error = EINVAL;
3897 			break;
3898 		}
3899 
3900 		error = pmc_stop(pm);
3901 	}
3902 	break;
3903 
3904 
3905 	/*
3906 	 * Write a user supplied value to the log file.
3907 	 */
3908 
3909 	case PMC_OP_WRITELOG:
3910 	{
3911 		struct pmc_op_writelog wl;
3912 		struct pmc_owner *po;
3913 
3914 		PMC_DOWNGRADE_SX();
3915 
3916 		if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
3917 			break;
3918 
3919 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3920 			error = EINVAL;
3921 			break;
3922 		}
3923 
3924 		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
3925 			error = EINVAL;
3926 			break;
3927 		}
3928 
3929 		error = pmclog_process_userlog(po, &wl);
3930 	}
3931 	break;
3932 
3933 
3934 	default:
3935 		error = EINVAL;
3936 		break;
3937 	}
3938 
3939 	if (is_sx_locked != 0) {
3940 		if (is_sx_downgraded)
3941 			sx_sunlock(&pmc_sx);
3942 		else
3943 			sx_xunlock(&pmc_sx);
3944 	}
3945 
3946 	if (error)
3947 		atomic_add_int(&pmc_stats.pm_syscall_errors, 1);
3948 
3949 	PICKUP_GIANT();
3950 
3951 	return error;
3952 }
3953 
3954 /*
3955  * Helper functions
3956  */
3957 
3958 
3959 /*
3960  * Mark the thread as needing callchain capture and post an AST.  The
3961  * actual callchain capture will be done in a context where it is safe
3962  * to take page faults.
3963  */
3964 
3965 static void
3966 pmc_post_callchain_callback(void)
3967 {
3968 	struct thread *td;
3969 
3970 	td = curthread;
3971 
3972 	/*
3973 	 * If there is multiple PMCs for the same interrupt ignore new post
3974 	 */
3975 	if (td->td_pflags & TDP_CALLCHAIN)
3976 		return;
3977 
3978 	/*
3979 	 * Mark this thread as needing callchain capture.
3980 	 * `td->td_pflags' will be safe to touch because this thread
3981 	 * was in user space when it was interrupted.
3982 	 */
3983 	td->td_pflags |= TDP_CALLCHAIN;
3984 
3985 	/*
3986 	 * Don't let this thread migrate between CPUs until callchain
3987 	 * capture completes.
3988 	 */
3989 	sched_pin();
3990 
3991 	return;
3992 }
3993 
3994 /*
3995  * Interrupt processing.
3996  *
3997  * Find a free slot in the per-cpu array of samples and capture the
3998  * current callchain there.  If a sample was successfully added, a bit
3999  * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4000  * needs to be invoked from the clock handler.
4001  *
4002  * This function is meant to be called from an NMI handler.  It cannot
4003  * use any of the locking primitives supplied by the OS.
4004  */
4005 
4006 int
4007 pmc_process_interrupt(int cpu, struct pmc *pm, struct trapframe *tf,
4008     int inuserspace)
4009 {
4010 	int error, callchaindepth;
4011 	struct thread *td;
4012 	struct pmc_sample *ps;
4013 	struct pmc_samplebuffer *psb;
4014 
4015 	error = 0;
4016 
4017 	/*
4018 	 * Allocate space for a sample buffer.
4019 	 */
4020 	psb = pmc_pcpu[cpu]->pc_sb;
4021 
4022 	ps = psb->ps_write;
4023 	if (ps->ps_nsamples) {	/* in use, reader hasn't caught up */
4024 		pm->pm_stalled = 1;
4025 		atomic_add_int(&pmc_stats.pm_intr_bufferfull, 1);
4026 		PMCDBG(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4027 		    cpu, pm, (void *) tf, inuserspace,
4028 		    (int) (psb->ps_write - psb->ps_samples),
4029 		    (int) (psb->ps_read - psb->ps_samples));
4030 		error = ENOMEM;
4031 		goto done;
4032 	}
4033 
4034 
4035 	/* Fill in entry. */
4036 	PMCDBG(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
4037 	    (void *) tf, inuserspace,
4038 	    (int) (psb->ps_write - psb->ps_samples),
4039 	    (int) (psb->ps_read - psb->ps_samples));
4040 
4041 	KASSERT(pm->pm_runcount >= 0,
4042 	    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4043 		pm->pm_runcount));
4044 
4045 	atomic_add_rel_int(&pm->pm_runcount, 1);	/* hold onto PMC */
4046 	ps->ps_pmc = pm;
4047 	if ((td = curthread) && td->td_proc)
4048 		ps->ps_pid = td->td_proc->p_pid;
4049 	else
4050 		ps->ps_pid = -1;
4051 	ps->ps_cpu = cpu;
4052 	ps->ps_td = td;
4053 	ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4054 
4055 	callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4056 	    pmc_callchaindepth : 1;
4057 
4058 	if (callchaindepth == 1)
4059 		ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4060 	else {
4061 		/*
4062 		 * Kernel stack traversals can be done immediately,
4063 		 * while we defer to an AST for user space traversals.
4064 		 */
4065 		if (!inuserspace)
4066 			callchaindepth =
4067 			    pmc_save_kernel_callchain(ps->ps_pc,
4068 				callchaindepth, tf);
4069 		else {
4070 			pmc_post_callchain_callback();
4071 			callchaindepth = PMC_SAMPLE_INUSE;
4072 		}
4073 	}
4074 
4075 	ps->ps_nsamples = callchaindepth;	/* mark entry as in use */
4076 
4077 	/* increment write pointer, modulo ring buffer size */
4078 	ps++;
4079 	if (ps == psb->ps_fence)
4080 		psb->ps_write = psb->ps_samples;
4081 	else
4082 		psb->ps_write = ps;
4083 
4084  done:
4085 	/* mark CPU as needing processing */
4086 	atomic_set_rel_int(&pmc_cpumask, (1 << cpu));
4087 
4088 	return (error);
4089 }
4090 
4091 /*
4092  * Capture a user call chain.  This function will be called from ast()
4093  * before control returns to userland and before the process gets
4094  * rescheduled.
4095  */
4096 
4097 static void
4098 pmc_capture_user_callchain(int cpu, struct trapframe *tf)
4099 {
4100 	int i;
4101 	struct pmc *pm;
4102 	struct thread *td;
4103 	struct pmc_sample *ps;
4104 	struct pmc_samplebuffer *psb;
4105 #ifdef	INVARIANTS
4106 	int ncallchains;
4107 #endif
4108 
4109 	sched_unpin();	/* Can migrate safely now. */
4110 
4111 	psb = pmc_pcpu[cpu]->pc_sb;
4112 	td = curthread;
4113 
4114 	KASSERT(td->td_pflags & TDP_CALLCHAIN,
4115 	    ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4116 		__LINE__));
4117 
4118 #ifdef	INVARIANTS
4119 	ncallchains = 0;
4120 #endif
4121 
4122 	/*
4123 	 * Iterate through all deferred callchain requests.
4124 	 */
4125 
4126 	ps = psb->ps_samples;
4127 	for (i = 0; i < pmc_nsamples; i++, ps++) {
4128 
4129 		if (ps->ps_nsamples != PMC_SAMPLE_INUSE)
4130 			continue;
4131 		if (ps->ps_td != td)
4132 			continue;
4133 
4134 		KASSERT(ps->ps_cpu == cpu,
4135 		    ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4136 			ps->ps_cpu, PCPU_GET(cpuid)));
4137 
4138 		pm = ps->ps_pmc;
4139 
4140 		KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4141 		    ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4142 			"want it", __LINE__));
4143 
4144 		KASSERT(pm->pm_runcount > 0,
4145 		    ("[pmc,%d] runcount %d", __LINE__, pm->pm_runcount));
4146 
4147 		/*
4148 		 * Retrieve the callchain and mark the sample buffer
4149 		 * as 'processable' by the timer tick sweep code.
4150 		 */
4151 		ps->ps_nsamples = pmc_save_user_callchain(ps->ps_pc,
4152 		    pmc_callchaindepth, tf);
4153 
4154 #ifdef	INVARIANTS
4155 		ncallchains++;
4156 #endif
4157 
4158 	}
4159 
4160 	KASSERT(ncallchains > 0,
4161 	    ("[pmc,%d] cpu %d didn't find a sample to collect", __LINE__,
4162 		cpu));
4163 
4164 	return;
4165 }
4166 
4167 
4168 /*
4169  * Process saved PC samples.
4170  */
4171 
4172 static void
4173 pmc_process_samples(int cpu)
4174 {
4175 	struct pmc *pm;
4176 	int adjri, n;
4177 	struct thread *td;
4178 	struct pmc_owner *po;
4179 	struct pmc_sample *ps;
4180 	struct pmc_classdep *pcd;
4181 	struct pmc_samplebuffer *psb;
4182 
4183 	KASSERT(PCPU_GET(cpuid) == cpu,
4184 	    ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4185 		PCPU_GET(cpuid), cpu));
4186 
4187 	psb = pmc_pcpu[cpu]->pc_sb;
4188 
4189 	for (n = 0; n < pmc_nsamples; n++) { /* bound on #iterations */
4190 
4191 		ps = psb->ps_read;
4192 		if (ps->ps_nsamples == PMC_SAMPLE_FREE)
4193 			break;
4194 		if (ps->ps_nsamples == PMC_SAMPLE_INUSE) {
4195 			/* Need a rescan at a later time. */
4196 			atomic_set_rel_int(&pmc_cpumask, (1 << cpu));
4197 			break;
4198 		}
4199 
4200 		pm = ps->ps_pmc;
4201 
4202 		KASSERT(pm->pm_runcount > 0,
4203 		    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4204 			pm->pm_runcount));
4205 
4206 		po = pm->pm_owner;
4207 
4208 		KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4209 		    ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4210 			pm, PMC_TO_MODE(pm)));
4211 
4212 		/* Ignore PMCs that have been switched off */
4213 		if (pm->pm_state != PMC_STATE_RUNNING)
4214 			goto entrydone;
4215 
4216 		PMCDBG(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4217 		    pm, ps->ps_nsamples, ps->ps_flags,
4218 		    (int) (psb->ps_write - psb->ps_samples),
4219 		    (int) (psb->ps_read - psb->ps_samples));
4220 
4221 		/*
4222 		 * If this is a process-mode PMC that is attached to
4223 		 * its owner, and if the PC is in user mode, update
4224 		 * profiling statistics like timer-based profiling
4225 		 * would have done.
4226 		 */
4227 		if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4228 			if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4229 				td = FIRST_THREAD_IN_PROC(po->po_owner);
4230 				addupc_intr(td, ps->ps_pc[0], 1);
4231 			}
4232 			goto entrydone;
4233 		}
4234 
4235 		/*
4236 		 * Otherwise, this is either a sampling mode PMC that
4237 		 * is attached to a different process than its owner,
4238 		 * or a system-wide sampling PMC.  Dispatch a log
4239 		 * entry to the PMC's owner process.
4240 		 */
4241 
4242 		pmclog_process_callchain(pm, ps);
4243 
4244 	entrydone:
4245 		ps->ps_nsamples = 0;	/* mark entry as free */
4246 		atomic_subtract_rel_int(&pm->pm_runcount, 1);
4247 
4248 		/* increment read pointer, modulo sample size */
4249 		if (++ps == psb->ps_fence)
4250 			psb->ps_read = psb->ps_samples;
4251 		else
4252 			psb->ps_read = ps;
4253 	}
4254 
4255 	atomic_add_int(&pmc_stats.pm_log_sweeps, 1);
4256 
4257 	/* Do not re-enable stalled PMCs if we failed to process any samples */
4258 	if (n == 0)
4259 		return;
4260 
4261 	/*
4262 	 * Restart any stalled sampling PMCs on this CPU.
4263 	 *
4264 	 * If the NMI handler sets the pm_stalled field of a PMC after
4265 	 * the check below, we'll end up processing the stalled PMC at
4266 	 * the next hardclock tick.
4267 	 */
4268 	for (n = 0; n < md->pmd_npmc; n++) {
4269 		pcd = pmc_ri_to_classdep(md, n, &adjri);
4270 		KASSERT(pcd != NULL,
4271 		    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4272 		(void) (*pcd->pcd_get_config)(cpu,adjri,&pm);
4273 
4274 		if (pm == NULL ||			 /* !cfg'ed */
4275 		    pm->pm_state != PMC_STATE_RUNNING || /* !active */
4276 		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
4277 		    pm->pm_stalled == 0) /* !stalled */
4278 			continue;
4279 
4280 		pm->pm_stalled = 0;
4281 		(*pcd->pcd_start_pmc)(cpu, adjri);
4282 	}
4283 }
4284 
4285 /*
4286  * Event handlers.
4287  */
4288 
4289 /*
4290  * Handle a process exit.
4291  *
4292  * Remove this process from all hash tables.  If this process
4293  * owned any PMCs, turn off those PMCs and deallocate them,
4294  * removing any associations with target processes.
4295  *
4296  * This function will be called by the last 'thread' of a
4297  * process.
4298  *
4299  * XXX This eventhandler gets called early in the exit process.
4300  * Consider using a 'hook' invocation from thread_exit() or equivalent
4301  * spot.  Another negative is that kse_exit doesn't seem to call
4302  * exit1() [??].
4303  *
4304  */
4305 
4306 static void
4307 pmc_process_exit(void *arg __unused, struct proc *p)
4308 {
4309 	struct pmc *pm;
4310 	int adjri, cpu;
4311 	unsigned int ri;
4312 	int is_using_hwpmcs;
4313 	struct pmc_owner *po;
4314 	struct pmc_process *pp;
4315 	struct pmc_classdep *pcd;
4316 	pmc_value_t newvalue, tmp;
4317 
4318 	PROC_LOCK(p);
4319 	is_using_hwpmcs = p->p_flag & P_HWPMC;
4320 	PROC_UNLOCK(p);
4321 
4322 	/*
4323 	 * Log a sysexit event to all SS PMC owners.
4324 	 */
4325 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4326 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4327 		    pmclog_process_sysexit(po, p->p_pid);
4328 
4329 	if (!is_using_hwpmcs)
4330 		return;
4331 
4332 	PMC_GET_SX_XLOCK();
4333 	PMCDBG(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
4334 	    p->p_comm);
4335 
4336 	/*
4337 	 * Since this code is invoked by the last thread in an exiting
4338 	 * process, we would have context switched IN at some prior
4339 	 * point.  However, with PREEMPTION, kernel mode context
4340 	 * switches may happen any time, so we want to disable a
4341 	 * context switch OUT till we get any PMCs targetting this
4342 	 * process off the hardware.
4343 	 *
4344 	 * We also need to atomically remove this process'
4345 	 * entry from our target process hash table, using
4346 	 * PMC_FLAG_REMOVE.
4347 	 */
4348 	PMCDBG(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
4349 	    p->p_comm);
4350 
4351 	critical_enter(); /* no preemption */
4352 
4353 	cpu = curthread->td_oncpu;
4354 
4355 	if ((pp = pmc_find_process_descriptor(p,
4356 		 PMC_FLAG_REMOVE)) != NULL) {
4357 
4358 		PMCDBG(PRC,EXT,2,
4359 		    "process-exit proc=%p pmc-process=%p", p, pp);
4360 
4361 		/*
4362 		 * The exiting process could the target of
4363 		 * some PMCs which will be running on
4364 		 * currently executing CPU.
4365 		 *
4366 		 * We need to turn these PMCs off like we
4367 		 * would do at context switch OUT time.
4368 		 */
4369 		for (ri = 0; ri < md->pmd_npmc; ri++) {
4370 
4371 			/*
4372 			 * Pick up the pmc pointer from hardware
4373 			 * state similar to the CSW_OUT code.
4374 			 */
4375 			pm = NULL;
4376 
4377 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
4378 
4379 			(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
4380 
4381 			PMCDBG(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
4382 
4383 			if (pm == NULL ||
4384 			    !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
4385 				continue;
4386 
4387 			PMCDBG(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
4388 			    "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
4389 			    pm, pm->pm_state);
4390 
4391 			KASSERT(PMC_TO_ROWINDEX(pm) == ri,
4392 			    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
4393 				__LINE__, PMC_TO_ROWINDEX(pm), ri));
4394 
4395 			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
4396 			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
4397 				__LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
4398 
4399 			(void) pcd->pcd_stop_pmc(cpu, adjri);
4400 
4401 			KASSERT(pm->pm_runcount > 0,
4402 			    ("[pmc,%d] bad runcount ri %d rc %d",
4403 				__LINE__, ri, pm->pm_runcount));
4404 
4405 			/* Stop hardware only if it is actually running */
4406 			if (pm->pm_state == PMC_STATE_RUNNING &&
4407 			    pm->pm_stalled == 0) {
4408 				pcd->pcd_read_pmc(cpu, adjri, &newvalue);
4409 				tmp = newvalue -
4410 				    PMC_PCPU_SAVED(cpu,ri);
4411 
4412 				mtx_pool_lock_spin(pmc_mtxpool, pm);
4413 				pm->pm_gv.pm_savedvalue += tmp;
4414 				pp->pp_pmcs[ri].pp_pmcval += tmp;
4415 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
4416 			}
4417 
4418 			atomic_subtract_rel_int(&pm->pm_runcount,1);
4419 
4420 			KASSERT((int) pm->pm_runcount >= 0,
4421 			    ("[pmc,%d] runcount is %d", __LINE__, ri));
4422 
4423 			(void) pcd->pcd_config_pmc(cpu, adjri, NULL);
4424 		}
4425 
4426 		/*
4427 		 * Inform the MD layer of this pseudo "context switch
4428 		 * out"
4429 		 */
4430 		(void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
4431 
4432 		critical_exit(); /* ok to be pre-empted now */
4433 
4434 		/*
4435 		 * Unlink this process from the PMCs that are
4436 		 * targetting it.  This will send a signal to
4437 		 * all PMC owner's whose PMCs are orphaned.
4438 		 *
4439 		 * Log PMC value at exit time if requested.
4440 		 */
4441 		for (ri = 0; ri < md->pmd_npmc; ri++)
4442 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
4443 				if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
4444 				    PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
4445 					pmclog_process_procexit(pm, pp);
4446 				pmc_unlink_target_process(pm, pp);
4447 			}
4448 		free(pp, M_PMC);
4449 
4450 	} else
4451 		critical_exit(); /* pp == NULL */
4452 
4453 
4454 	/*
4455 	 * If the process owned PMCs, free them up and free up
4456 	 * memory.
4457 	 */
4458 	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
4459 		pmc_remove_owner(po);
4460 		pmc_destroy_owner_descriptor(po);
4461 	}
4462 
4463 	sx_xunlock(&pmc_sx);
4464 }
4465 
4466 /*
4467  * Handle a process fork.
4468  *
4469  * If the parent process 'p1' is under HWPMC monitoring, then copy
4470  * over any attached PMCs that have 'do_descendants' semantics.
4471  */
4472 
4473 static void
4474 pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
4475     int flags)
4476 {
4477 	int is_using_hwpmcs;
4478 	unsigned int ri;
4479 	uint32_t do_descendants;
4480 	struct pmc *pm;
4481 	struct pmc_owner *po;
4482 	struct pmc_process *ppnew, *ppold;
4483 
4484 	(void) flags;		/* unused parameter */
4485 
4486 	PROC_LOCK(p1);
4487 	is_using_hwpmcs = p1->p_flag & P_HWPMC;
4488 	PROC_UNLOCK(p1);
4489 
4490 	/*
4491 	 * If there are system-wide sampling PMCs active, we need to
4492 	 * log all fork events to their owner's logs.
4493 	 */
4494 
4495 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4496 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4497 		    pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
4498 
4499 	if (!is_using_hwpmcs)
4500 		return;
4501 
4502 	PMC_GET_SX_XLOCK();
4503 	PMCDBG(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
4504 	    p1->p_pid, p1->p_comm, newproc);
4505 
4506 	/*
4507 	 * If the parent process (curthread->td_proc) is a
4508 	 * target of any PMCs, look for PMCs that are to be
4509 	 * inherited, and link these into the new process
4510 	 * descriptor.
4511 	 */
4512 	if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
4513 		 PMC_FLAG_NONE)) == NULL)
4514 		goto done;		/* nothing to do */
4515 
4516 	do_descendants = 0;
4517 	for (ri = 0; ri < md->pmd_npmc; ri++)
4518 		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
4519 			do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
4520 	if (do_descendants == 0) /* nothing to do */
4521 		goto done;
4522 
4523 	/* allocate a descriptor for the new process  */
4524 	if ((ppnew = pmc_find_process_descriptor(newproc,
4525 		 PMC_FLAG_ALLOCATE)) == NULL)
4526 		goto done;
4527 
4528 	/*
4529 	 * Run through all PMCs that were targeting the old process
4530 	 * and which specified F_DESCENDANTS and attach them to the
4531 	 * new process.
4532 	 *
4533 	 * Log the fork event to all owners of PMCs attached to this
4534 	 * process, if not already logged.
4535 	 */
4536 	for (ri = 0; ri < md->pmd_npmc; ri++)
4537 		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
4538 		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
4539 			pmc_link_target_process(pm, ppnew);
4540 			po = pm->pm_owner;
4541 			if (po->po_sscount == 0 &&
4542 			    po->po_flags & PMC_PO_OWNS_LOGFILE)
4543 				pmclog_process_procfork(po, p1->p_pid,
4544 				    newproc->p_pid);
4545 		}
4546 
4547 	/*
4548 	 * Now mark the new process as being tracked by this driver.
4549 	 */
4550 	PROC_LOCK(newproc);
4551 	newproc->p_flag |= P_HWPMC;
4552 	PROC_UNLOCK(newproc);
4553 
4554  done:
4555 	sx_xunlock(&pmc_sx);
4556 }
4557 
4558 
4559 /*
4560  * initialization
4561  */
4562 
4563 static const char *pmc_name_of_pmcclass[] = {
4564 #undef	__PMC_CLASS
4565 #define	__PMC_CLASS(N) #N ,
4566 	__PMC_CLASSES()
4567 };
4568 
4569 static int
4570 pmc_initialize(void)
4571 {
4572 	int c, cpu, error, n, ri;
4573 	unsigned int maxcpu;
4574 	struct pmc_binding pb;
4575 	struct pmc_sample *ps;
4576 	struct pmc_classdep *pcd;
4577 	struct pmc_samplebuffer *sb;
4578 
4579 	md = NULL;
4580 	error = 0;
4581 
4582 #ifdef	DEBUG
4583 	/* parse debug flags first */
4584 	if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
4585 		pmc_debugstr, sizeof(pmc_debugstr)))
4586 		pmc_debugflags_parse(pmc_debugstr,
4587 		    pmc_debugstr+strlen(pmc_debugstr));
4588 #endif
4589 
4590 	PMCDBG(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
4591 
4592 	/* check kernel version */
4593 	if (pmc_kernel_version != PMC_VERSION) {
4594 		if (pmc_kernel_version == 0)
4595 			printf("hwpmc: this kernel has not been compiled with "
4596 			    "'options HWPMC_HOOKS'.\n");
4597 		else
4598 			printf("hwpmc: kernel version (0x%x) does not match "
4599 			    "module version (0x%x).\n", pmc_kernel_version,
4600 			    PMC_VERSION);
4601 		return EPROGMISMATCH;
4602 	}
4603 
4604 	/*
4605 	 * check sysctl parameters
4606 	 */
4607 
4608 	if (pmc_hashsize <= 0) {
4609 		(void) printf("hwpmc: tunable \"hashsize\"=%d must be "
4610 		    "greater than zero.\n", pmc_hashsize);
4611 		pmc_hashsize = PMC_HASH_SIZE;
4612 	}
4613 
4614 	if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
4615 		(void) printf("hwpmc: tunable \"nsamples\"=%d out of "
4616 		    "range.\n", pmc_nsamples);
4617 		pmc_nsamples = PMC_NSAMPLES;
4618 	}
4619 
4620 	if (pmc_callchaindepth <= 0 ||
4621 	    pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
4622 		(void) printf("hwpmc: tunable \"callchaindepth\"=%d out of "
4623 		    "range.\n", pmc_callchaindepth);
4624 		pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
4625 	}
4626 
4627 	md = pmc_md_initialize();
4628 
4629 	if (md == NULL)
4630 		return (ENOSYS);
4631 
4632 	KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
4633 	    ("[pmc,%d] no classes or pmcs", __LINE__));
4634 
4635 	/* Compute the map from row-indices to classdep pointers. */
4636 	pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
4637 	    md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO);
4638 
4639 	for (n = 0; n < md->pmd_npmc; n++)
4640 		pmc_rowindex_to_classdep[n] = NULL;
4641 	for (ri = c = 0; c < md->pmd_nclass; c++) {
4642 		pcd = &md->pmd_classdep[c];
4643 		for (n = 0; n < pcd->pcd_num; n++, ri++)
4644 			pmc_rowindex_to_classdep[ri] = pcd;
4645 	}
4646 
4647 	KASSERT(ri == md->pmd_npmc,
4648 	    ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
4649 	    ri, md->pmd_npmc));
4650 
4651 	maxcpu = pmc_cpu_max();
4652 
4653 	/* allocate space for the per-cpu array */
4654 	pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
4655 	    M_WAITOK|M_ZERO);
4656 
4657 	/* per-cpu 'saved values' for managing process-mode PMCs */
4658 	pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
4659 	    M_PMC, M_WAITOK);
4660 
4661 	/* Perform CPU-dependent initialization. */
4662 	pmc_save_cpu_binding(&pb);
4663 	error = 0;
4664 	for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
4665 		if (!pmc_cpu_is_active(cpu))
4666 			continue;
4667 		pmc_select_cpu(cpu);
4668 		pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
4669 		    md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
4670 		    M_WAITOK|M_ZERO);
4671 		if (md->pmd_pcpu_init)
4672 			error = md->pmd_pcpu_init(md, cpu);
4673 		for (n = 0; error == 0 && n < md->pmd_nclass; n++)
4674 			error = md->pmd_classdep[n].pcd_pcpu_init(md, cpu);
4675 	}
4676 	pmc_restore_cpu_binding(&pb);
4677 
4678 	if (error)
4679 		return (error);
4680 
4681 	/* allocate space for the sample array */
4682 	for (cpu = 0; cpu < maxcpu; cpu++) {
4683 		if (!pmc_cpu_is_active(cpu))
4684 			continue;
4685 
4686 		sb = malloc(sizeof(struct pmc_samplebuffer) +
4687 		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4688 		    M_WAITOK|M_ZERO);
4689 		sb->ps_read = sb->ps_write = sb->ps_samples;
4690 		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4691 
4692 		KASSERT(pmc_pcpu[cpu] != NULL,
4693 		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4694 
4695 		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4696 		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4697 
4698 		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4699 			ps->ps_pc = sb->ps_callchains +
4700 			    (n * pmc_callchaindepth);
4701 
4702 		pmc_pcpu[cpu]->pc_sb = sb;
4703 	}
4704 
4705 	/* allocate space for the row disposition array */
4706 	pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
4707 	    M_PMC, M_WAITOK|M_ZERO);
4708 
4709 	KASSERT(pmc_pmcdisp != NULL,
4710 	    ("[pmc,%d] pmcdisp allocation returned NULL", __LINE__));
4711 
4712 	/* mark all PMCs as available */
4713 	for (n = 0; n < (int) md->pmd_npmc; n++)
4714 		PMC_MARK_ROW_FREE(n);
4715 
4716 	/* allocate thread hash tables */
4717 	pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
4718 	    &pmc_ownerhashmask);
4719 
4720 	pmc_processhash = hashinit(pmc_hashsize, M_PMC,
4721 	    &pmc_processhashmask);
4722 	mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
4723 	    MTX_SPIN);
4724 
4725 	LIST_INIT(&pmc_ss_owners);
4726 	pmc_ss_count = 0;
4727 
4728 	/* allocate a pool of spin mutexes */
4729 	pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
4730 	    MTX_SPIN);
4731 
4732 	PMCDBG(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
4733 	    "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
4734 	    pmc_processhash, pmc_processhashmask);
4735 
4736 	/* register process {exit,fork,exec} handlers */
4737 	pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
4738 	    pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
4739 	pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
4740 	    pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
4741 
4742 	/* initialize logging */
4743 	pmclog_initialize();
4744 
4745 	/* set hook functions */
4746 	pmc_intr = md->pmd_intr;
4747 	pmc_hook = pmc_hook_handler;
4748 
4749 	if (error == 0) {
4750 		printf(PMC_MODULE_NAME ":");
4751 		for (n = 0; n < (int) md->pmd_nclass; n++) {
4752 			pcd = &md->pmd_classdep[n];
4753 			printf(" %s/%d/%d/0x%b",
4754 			    pmc_name_of_pmcclass[pcd->pcd_class],
4755 			    pcd->pcd_num,
4756 			    pcd->pcd_width,
4757 			    pcd->pcd_caps,
4758 			    "\20"
4759 			    "\1INT\2USR\3SYS\4EDG\5THR"
4760 			    "\6REA\7WRI\10INV\11QUA\12PRC"
4761 			    "\13TAG\14CSC");
4762 		}
4763 		printf("\n");
4764 	}
4765 
4766 	return (error);
4767 }
4768 
4769 /* prepare to be unloaded */
4770 static void
4771 pmc_cleanup(void)
4772 {
4773 	int c, cpu;
4774 	unsigned int maxcpu;
4775 	struct pmc_ownerhash *ph;
4776 	struct pmc_owner *po, *tmp;
4777 	struct pmc_binding pb;
4778 #ifdef	DEBUG
4779 	struct pmc_processhash *prh;
4780 #endif
4781 
4782 	PMCDBG(MOD,INI,0, "%s", "cleanup");
4783 
4784 	/* switch off sampling */
4785 	atomic_store_rel_int(&pmc_cpumask, 0);
4786 	pmc_intr = NULL;
4787 
4788 	sx_xlock(&pmc_sx);
4789 	if (pmc_hook == NULL) {	/* being unloaded already */
4790 		sx_xunlock(&pmc_sx);
4791 		return;
4792 	}
4793 
4794 	pmc_hook = NULL; /* prevent new threads from entering module */
4795 
4796 	/* deregister event handlers */
4797 	EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
4798 	EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
4799 
4800 	/* send SIGBUS to all owner threads, free up allocations */
4801 	if (pmc_ownerhash)
4802 		for (ph = pmc_ownerhash;
4803 		     ph <= &pmc_ownerhash[pmc_ownerhashmask];
4804 		     ph++) {
4805 			LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
4806 				pmc_remove_owner(po);
4807 
4808 				/* send SIGBUS to owner processes */
4809 				PMCDBG(MOD,INI,2, "cleanup signal proc=%p "
4810 				    "(%d, %s)", po->po_owner,
4811 				    po->po_owner->p_pid,
4812 				    po->po_owner->p_comm);
4813 
4814 				PROC_LOCK(po->po_owner);
4815 				psignal(po->po_owner, SIGBUS);
4816 				PROC_UNLOCK(po->po_owner);
4817 
4818 				pmc_destroy_owner_descriptor(po);
4819 			}
4820 		}
4821 
4822 	/* reclaim allocated data structures */
4823 	if (pmc_mtxpool)
4824 		mtx_pool_destroy(&pmc_mtxpool);
4825 
4826 	mtx_destroy(&pmc_processhash_mtx);
4827 	if (pmc_processhash) {
4828 #ifdef	DEBUG
4829 		struct pmc_process *pp;
4830 
4831 		PMCDBG(MOD,INI,3, "%s", "destroy process hash");
4832 		for (prh = pmc_processhash;
4833 		     prh <= &pmc_processhash[pmc_processhashmask];
4834 		     prh++)
4835 			LIST_FOREACH(pp, prh, pp_next)
4836 			    PMCDBG(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
4837 #endif
4838 
4839 		hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
4840 		pmc_processhash = NULL;
4841 	}
4842 
4843 	if (pmc_ownerhash) {
4844 		PMCDBG(MOD,INI,3, "%s", "destroy owner hash");
4845 		hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
4846 		pmc_ownerhash = NULL;
4847 	}
4848 
4849 	KASSERT(LIST_EMPTY(&pmc_ss_owners),
4850 	    ("[pmc,%d] Global SS owner list not empty", __LINE__));
4851 	KASSERT(pmc_ss_count == 0,
4852 	    ("[pmc,%d] Global SS count not empty", __LINE__));
4853 
4854  	/* do processor and pmc-class dependent cleanup */
4855 	maxcpu = pmc_cpu_max();
4856 
4857 	PMCDBG(MOD,INI,3, "%s", "md cleanup");
4858 	if (md) {
4859 		pmc_save_cpu_binding(&pb);
4860 		for (cpu = 0; cpu < maxcpu; cpu++) {
4861 			PMCDBG(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
4862 			    cpu, pmc_pcpu[cpu]);
4863 			if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
4864 				continue;
4865 			pmc_select_cpu(cpu);
4866 			for (c = 0; c < md->pmd_nclass; c++)
4867 				md->pmd_classdep[c].pcd_pcpu_fini(md, cpu);
4868 			if (md->pmd_pcpu_fini)
4869 				md->pmd_pcpu_fini(md, cpu);
4870 		}
4871 
4872 		pmc_md_finalize(md);
4873 
4874 		free(md, M_PMC);
4875 		md = NULL;
4876 		pmc_restore_cpu_binding(&pb);
4877 	}
4878 
4879 	/* Free per-cpu descriptors. */
4880 	for (cpu = 0; cpu < maxcpu; cpu++) {
4881 		if (!pmc_cpu_is_active(cpu))
4882 			continue;
4883 		KASSERT(pmc_pcpu[cpu]->pc_sb != NULL,
4884 		    ("[pmc,%d] Null cpu sample buffer cpu=%d", __LINE__,
4885 			cpu));
4886 		free(pmc_pcpu[cpu]->pc_sb->ps_callchains, M_PMC);
4887 		free(pmc_pcpu[cpu]->pc_sb, M_PMC);
4888 		free(pmc_pcpu[cpu], M_PMC);
4889 	}
4890 
4891 	free(pmc_pcpu, M_PMC);
4892 	pmc_pcpu = NULL;
4893 
4894 	free(pmc_pcpu_saved, M_PMC);
4895 	pmc_pcpu_saved = NULL;
4896 
4897 	if (pmc_pmcdisp) {
4898 		free(pmc_pmcdisp, M_PMC);
4899 		pmc_pmcdisp = NULL;
4900 	}
4901 
4902 	if (pmc_rowindex_to_classdep) {
4903 		free(pmc_rowindex_to_classdep, M_PMC);
4904 		pmc_rowindex_to_classdep = NULL;
4905 	}
4906 
4907 	pmclog_shutdown();
4908 
4909 	sx_xunlock(&pmc_sx); 	/* we are done */
4910 }
4911 
4912 /*
4913  * The function called at load/unload.
4914  */
4915 
4916 static int
4917 load (struct module *module __unused, int cmd, void *arg __unused)
4918 {
4919 	int error;
4920 
4921 	error = 0;
4922 
4923 	switch (cmd) {
4924 	case MOD_LOAD :
4925 		/* initialize the subsystem */
4926 		error = pmc_initialize();
4927 		if (error != 0)
4928 			break;
4929 		PMCDBG(MOD,INI,1, "syscall=%d maxcpu=%d",
4930 		    pmc_syscall_num, pmc_cpu_max());
4931 		break;
4932 
4933 
4934 	case MOD_UNLOAD :
4935 	case MOD_SHUTDOWN:
4936 		pmc_cleanup();
4937 		PMCDBG(MOD,INI,1, "%s", "unloaded");
4938 		break;
4939 
4940 	default :
4941 		error = EINVAL;	/* XXX should panic(9) */
4942 		break;
4943 	}
4944 
4945 	return error;
4946 }
4947 
4948 /* memory pool */
4949 MALLOC_DEFINE(M_PMC, "pmc", "Memory space for the PMC module");
4950