xref: /freebsd/sys/dev/hwpmc/hwpmc_mod.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*-
2  * Copyright (c) 2003-2005 Joseph Koshy
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/eventhandler.h>
33 #include <sys/jail.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/mutex.h>
41 #include <sys/pmc.h>
42 #include <sys/pmckern.h>
43 #include <sys/pmclog.h>
44 #include <sys/proc.h>
45 #include <sys/queue.h>
46 #include <sys/resourcevar.h>
47 #include <sys/sched.h>
48 #include <sys/signalvar.h>
49 #include <sys/smp.h>
50 #include <sys/sx.h>
51 #include <sys/sysctl.h>
52 #include <sys/sysent.h>
53 #include <sys/systm.h>
54 #include <sys/vnode.h>
55 
56 #include <machine/atomic.h>
57 #include <machine/md_var.h>
58 
59 /*
60  * Types
61  */
62 
63 enum pmc_flags {
64 	PMC_FLAG_NONE	  = 0x00, /* do nothing */
65 	PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
66 	PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
67 };
68 
69 /*
70  * The offset in sysent where the syscall is allocated.
71  */
72 
73 static int pmc_syscall_num = NO_SYSCALL;
74 struct pmc_cpu		**pmc_pcpu;	 /* per-cpu state */
75 pmc_value_t		*pmc_pcpu_saved; /* saved PMC values: CSW handling */
76 
77 #define	PMC_PCPU_SAVED(C,R)	pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
78 
79 struct mtx_pool		*pmc_mtxpool;
80 static int		*pmc_pmcdisp;	 /* PMC row dispositions */
81 
82 #define	PMC_ROW_DISP_IS_FREE(R)		(pmc_pmcdisp[(R)] == 0)
83 #define	PMC_ROW_DISP_IS_THREAD(R)	(pmc_pmcdisp[(R)] > 0)
84 #define	PMC_ROW_DISP_IS_STANDALONE(R)	(pmc_pmcdisp[(R)] < 0)
85 
86 #define	PMC_MARK_ROW_FREE(R) do {					  \
87 	pmc_pmcdisp[(R)] = 0;						  \
88 } while (0)
89 
90 #define	PMC_MARK_ROW_STANDALONE(R) do {					  \
91 	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
92 		    __LINE__));						  \
93 	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
94 	KASSERT(pmc_pmcdisp[(R)] >= (-mp_ncpus), ("[pmc,%d] row "	  \
95 		"disposition error", __LINE__));			  \
96 } while (0)
97 
98 #define	PMC_UNMARK_ROW_STANDALONE(R) do { 				  \
99 	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
100 	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
101 		    __LINE__));						  \
102 } while (0)
103 
104 #define	PMC_MARK_ROW_THREAD(R) do {					  \
105 	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
106 		    __LINE__));						  \
107 	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
108 } while (0)
109 
110 #define	PMC_UNMARK_ROW_THREAD(R) do {					  \
111 	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
112 	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
113 		    __LINE__));						  \
114 } while (0)
115 
116 
117 /* various event handlers */
118 static eventhandler_tag	pmc_exit_tag, pmc_fork_tag;
119 
120 /* Module statistics */
121 struct pmc_op_getdriverstats pmc_stats;
122 
123 /* Machine/processor dependent operations */
124 struct pmc_mdep  *md;
125 
126 /*
127  * Hash tables mapping owner processes and target threads to PMCs.
128  */
129 
130 struct mtx pmc_processhash_mtx;		/* spin mutex */
131 static u_long pmc_processhashmask;
132 static LIST_HEAD(pmc_processhash, pmc_process)	*pmc_processhash;
133 
134 /*
135  * Hash table of PMC owner descriptors.  This table is protected by
136  * the shared PMC "sx" lock.
137  */
138 
139 static u_long pmc_ownerhashmask;
140 static LIST_HEAD(pmc_ownerhash, pmc_owner)	*pmc_ownerhash;
141 
142 /*
143  * List of PMC owners with system-wide sampling PMCs.
144  */
145 
146 static LIST_HEAD(, pmc_owner)			pmc_ss_owners;
147 
148 
149 /*
150  * Prototypes
151  */
152 
153 #ifdef	DEBUG
154 static int	pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
155 static int	pmc_debugflags_parse(char *newstr, char *fence);
156 #endif
157 
158 static int	load(struct module *module, int cmd, void *arg);
159 static int	pmc_attach_process(struct proc *p, struct pmc *pm);
160 static struct pmc *pmc_allocate_pmc_descriptor(void);
161 static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
162 static int	pmc_attach_one_process(struct proc *p, struct pmc *pm);
163 static int	pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
164     int cpu);
165 static int	pmc_can_attach(struct pmc *pm, struct proc *p);
166 static void	pmc_cleanup(void);
167 static int	pmc_detach_process(struct proc *p, struct pmc *pm);
168 static int	pmc_detach_one_process(struct proc *p, struct pmc *pm,
169     int flags);
170 static void	pmc_destroy_owner_descriptor(struct pmc_owner *po);
171 static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
172 static int	pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
173 static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
174     pmc_id_t pmc);
175 static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
176     uint32_t mode);
177 static void	pmc_force_context_switch(void);
178 static void	pmc_link_target_process(struct pmc *pm,
179     struct pmc_process *pp);
180 static void	pmc_maybe_remove_owner(struct pmc_owner *po);
181 static void	pmc_process_csw_in(struct thread *td);
182 static void	pmc_process_csw_out(struct thread *td);
183 static void	pmc_process_exit(void *arg, struct proc *p);
184 static void	pmc_process_fork(void *arg, struct proc *p1,
185     struct proc *p2, int n);
186 static void	pmc_process_samples(int cpu);
187 static void	pmc_release_pmc_descriptor(struct pmc *pmc);
188 static void	pmc_remove_owner(struct pmc_owner *po);
189 static void	pmc_remove_process_descriptor(struct pmc_process *pp);
190 static void	pmc_restore_cpu_binding(struct pmc_binding *pb);
191 static void	pmc_save_cpu_binding(struct pmc_binding *pb);
192 static void	pmc_select_cpu(int cpu);
193 static int	pmc_start(struct pmc *pm);
194 static int	pmc_stop(struct pmc *pm);
195 static int	pmc_syscall_handler(struct thread *td, void *syscall_args);
196 static void	pmc_unlink_target_process(struct pmc *pmc,
197     struct pmc_process *pp);
198 
199 /*
200  * Kernel tunables and sysctl(8) interface.
201  */
202 
203 SYSCTL_NODE(_kern, OID_AUTO, hwpmc, CTLFLAG_RW, 0, "HWPMC parameters");
204 
205 #ifdef	DEBUG
206 struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
207 char	pmc_debugstr[PMC_DEBUG_STRSIZE];
208 TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
209     sizeof(pmc_debugstr));
210 SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
211     CTLTYPE_STRING|CTLFLAG_RW|CTLFLAG_TUN,
212     0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
213 #endif
214 
215 /*
216  * kern.hwpmc.hashrows -- determines the number of rows in the
217  * of the hash table used to look up threads
218  */
219 
220 static int pmc_hashsize = PMC_HASH_SIZE;
221 TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "hashsize", &pmc_hashsize);
222 SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_TUN|CTLFLAG_RD,
223     &pmc_hashsize, 0, "rows in hash tables");
224 
225 /*
226  * kern.hwpmc.nsamples --- number of PC samples per CPU
227  */
228 
229 static int pmc_nsamples = PMC_NSAMPLES;
230 TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "nsamples", &pmc_nsamples);
231 SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_TUN|CTLFLAG_RD,
232     &pmc_nsamples, 0, "number of PC samples per CPU");
233 
234 /*
235  * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
236  */
237 
238 static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
239 TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "mtxpoolsize", &pmc_mtxpool_size);
240 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_TUN|CTLFLAG_RD,
241     &pmc_mtxpool_size, 0, "size of spin mutex pool");
242 
243 
244 /*
245  * security.bsd.unprivileged_syspmcs -- allow non-root processes to
246  * allocate system-wide PMCs.
247  *
248  * Allowing unprivileged processes to allocate system PMCs is convenient
249  * if system-wide measurements need to be taken concurrently with other
250  * per-process measurements.  This feature is turned off by default.
251  */
252 
253 SYSCTL_DECL(_security_bsd);
254 
255 static int pmc_unprivileged_syspmcs = 0;
256 TUNABLE_INT("security.bsd.unprivileged_syspmcs", &pmc_unprivileged_syspmcs);
257 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RW,
258     &pmc_unprivileged_syspmcs, 0,
259     "allow unprivileged process to allocate system PMCs");
260 
261 /*
262  * Hash function.  Discard the lower 2 bits of the pointer since
263  * these are always zero for our uses.  The hash multiplier is
264  * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
265  */
266 
267 #if	LONG_BIT == 64
268 #define	_PMC_HM		11400714819323198486u
269 #elif	LONG_BIT == 32
270 #define	_PMC_HM		2654435769u
271 #else
272 #error 	Must know the size of 'long' to compile
273 #endif
274 
275 #define	PMC_HASH_PTR(P,M)	((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
276 
277 /*
278  * Syscall structures
279  */
280 
281 /* The `sysent' for the new syscall */
282 static struct sysent pmc_sysent = {
283 	2,			/* sy_narg */
284 	pmc_syscall_handler	/* sy_call */
285 };
286 
287 static struct syscall_module_data pmc_syscall_mod = {
288 	load,
289 	NULL,
290 	&pmc_syscall_num,
291 	&pmc_sysent,
292 	{ 0, NULL }
293 };
294 
295 static moduledata_t pmc_mod = {
296 	PMC_MODULE_NAME,
297 	syscall_module_handler,
298 	&pmc_syscall_mod
299 };
300 
301 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
302 MODULE_VERSION(pmc, PMC_VERSION);
303 
304 #ifdef	DEBUG
305 enum pmc_dbgparse_state {
306 	PMCDS_WS,		/* in whitespace */
307 	PMCDS_MAJOR,		/* seen a major keyword */
308 	PMCDS_MINOR
309 };
310 
311 static int
312 pmc_debugflags_parse(char *newstr, char *fence)
313 {
314 	char c, *p, *q;
315 	struct pmc_debugflags *tmpflags;
316 	int error, found, *newbits, tmp;
317 	size_t kwlen;
318 
319 	MALLOC(tmpflags, struct pmc_debugflags *, sizeof(*tmpflags),
320 	    M_PMC, M_WAITOK|M_ZERO);
321 
322 	p = newstr;
323 	error = 0;
324 
325 	for (; p < fence && (c = *p); p++) {
326 
327 		/* skip white space */
328 		if (c == ' ' || c == '\t')
329 			continue;
330 
331 		/* look for a keyword followed by "=" */
332 		for (q = p; p < fence && (c = *p) && c != '='; p++)
333 			;
334 		if (c != '=') {
335 			error = EINVAL;
336 			goto done;
337 		}
338 
339 		kwlen = p - q;
340 		newbits = NULL;
341 
342 		/* lookup flag group name */
343 #define	DBG_SET_FLAG_MAJ(S,F)						\
344 		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
345 			newbits = &tmpflags->pdb_ ## F;
346 
347 		DBG_SET_FLAG_MAJ("cpu",		CPU);
348 		DBG_SET_FLAG_MAJ("csw",		CSW);
349 		DBG_SET_FLAG_MAJ("logging",	LOG);
350 		DBG_SET_FLAG_MAJ("module",	MOD);
351 		DBG_SET_FLAG_MAJ("md", 		MDP);
352 		DBG_SET_FLAG_MAJ("owner",	OWN);
353 		DBG_SET_FLAG_MAJ("pmc",		PMC);
354 		DBG_SET_FLAG_MAJ("process",	PRC);
355 		DBG_SET_FLAG_MAJ("sampling", 	SAM);
356 
357 		if (newbits == NULL) {
358 			error = EINVAL;
359 			goto done;
360 		}
361 
362 		p++;		/* skip the '=' */
363 
364 		/* Now parse the individual flags */
365 		tmp = 0;
366 	newflag:
367 		for (q = p; p < fence && (c = *p); p++)
368 			if (c == ' ' || c == '\t' || c == ',')
369 				break;
370 
371 		/* p == fence or c == ws or c == "," or c == 0 */
372 
373 		if ((kwlen = p - q) == 0) {
374 			*newbits = tmp;
375 			continue;
376 		}
377 
378 		found = 0;
379 #define	DBG_SET_FLAG_MIN(S,F)						\
380 		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
381 			tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
382 
383 		/* a '*' denotes all possible flags in the group */
384 		if (kwlen == 1 && *q == '*')
385 			tmp = found = ~0;
386 		/* look for individual flag names */
387 		DBG_SET_FLAG_MIN("allocaterow", ALR);
388 		DBG_SET_FLAG_MIN("allocate",	ALL);
389 		DBG_SET_FLAG_MIN("attach",	ATT);
390 		DBG_SET_FLAG_MIN("bind",	BND);
391 		DBG_SET_FLAG_MIN("config",	CFG);
392 		DBG_SET_FLAG_MIN("exec",	EXC);
393 		DBG_SET_FLAG_MIN("exit",	EXT);
394 		DBG_SET_FLAG_MIN("find",	FND);
395 		DBG_SET_FLAG_MIN("flush",	FLS);
396 		DBG_SET_FLAG_MIN("fork",	FRK);
397 		DBG_SET_FLAG_MIN("getbuf",	GTB);
398 		DBG_SET_FLAG_MIN("hook",	PMH);
399 		DBG_SET_FLAG_MIN("init",	INI);
400 		DBG_SET_FLAG_MIN("intr",	INT);
401 		DBG_SET_FLAG_MIN("linktarget",	TLK);
402 		DBG_SET_FLAG_MIN("mayberemove", OMR);
403 		DBG_SET_FLAG_MIN("ops",		OPS);
404 		DBG_SET_FLAG_MIN("read",	REA);
405 		DBG_SET_FLAG_MIN("register",	REG);
406 		DBG_SET_FLAG_MIN("release",	REL);
407 		DBG_SET_FLAG_MIN("remove",	ORM);
408 		DBG_SET_FLAG_MIN("sample",	SAM);
409 		DBG_SET_FLAG_MIN("scheduleio",	SIO);
410 		DBG_SET_FLAG_MIN("select",	SEL);
411 		DBG_SET_FLAG_MIN("signal",	SIG);
412 		DBG_SET_FLAG_MIN("swi",		SWI);
413 		DBG_SET_FLAG_MIN("swo",		SWO);
414 		DBG_SET_FLAG_MIN("start",	STA);
415 		DBG_SET_FLAG_MIN("stop",	STO);
416 		DBG_SET_FLAG_MIN("syscall",	PMS);
417 		DBG_SET_FLAG_MIN("unlinktarget", TUL);
418 		DBG_SET_FLAG_MIN("write",	WRI);
419 		if (found == 0) {
420 			/* unrecognized flag name */
421 			error = EINVAL;
422 			goto done;
423 		}
424 
425 		if (c == 0 || c == ' ' || c == '\t') {	/* end of flag group */
426 			*newbits = tmp;
427 			continue;
428 		}
429 
430 		p++;
431 		goto newflag;
432 	}
433 
434 	/* save the new flag set */
435 	bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
436 
437  done:
438 	FREE(tmpflags, M_PMC);
439 	return error;
440 }
441 
442 static int
443 pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
444 {
445 	char *fence, *newstr;
446 	int error;
447 	unsigned int n;
448 
449 	(void) arg1; (void) arg2; /* unused parameters */
450 
451 	n = sizeof(pmc_debugstr);
452 	MALLOC(newstr, char *, n, M_PMC, M_ZERO|M_WAITOK);
453 	(void) strlcpy(newstr, pmc_debugstr, n);
454 
455 	error = sysctl_handle_string(oidp, newstr, n, req);
456 
457 	/* if there is a new string, parse and copy it */
458 	if (error == 0 && req->newptr != NULL) {
459 		fence = newstr + (n < req->newlen ? n : req->newlen + 1);
460 		if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
461 			(void) strlcpy(pmc_debugstr, newstr,
462 			    sizeof(pmc_debugstr));
463 	}
464 
465 	FREE(newstr, M_PMC);
466 
467 	return error;
468 }
469 #endif
470 
471 /*
472  * Concurrency Control
473  *
474  * The driver manages the following data structures:
475  *
476  *   - target process descriptors, one per target process
477  *   - owner process descriptors (and attached lists), one per owner process
478  *   - lookup hash tables for owner and target processes
479  *   - PMC descriptors (and attached lists)
480  *   - per-cpu hardware state
481  *   - the 'hook' variable through which the kernel calls into
482  *     this module
483  *   - the machine hardware state (managed by the MD layer)
484  *
485  * These data structures are accessed from:
486  *
487  * - thread context-switch code
488  * - interrupt handlers (possibly on multiple cpus)
489  * - kernel threads on multiple cpus running on behalf of user
490  *   processes doing system calls
491  * - this driver's private kernel threads
492  *
493  * = Locks and Locking strategy =
494  *
495  * The driver uses four locking strategies for its operation:
496  *
497  * - There is a 'global' SX lock "pmc_sx" that is used to protect
498  *   the its 'meta-data'.
499  *
500  *   Calls into the module (via syscall() or by the kernel) start with
501  *   this lock being held in exclusive mode.  Depending on the requested
502  *   operation, the lock may be downgraded to 'shared' mode to allow
503  *   more concurrent readers into the module.
504  *
505  *   This SX lock is held in exclusive mode for any operations that
506  *   modify the linkages between the driver's internal data structures.
507  *
508  *   The 'pmc_hook' function pointer is also protected by this lock.
509  *   It is only examined with the sx lock held in exclusive mode.  The
510  *   kernel module is allowed to be unloaded only with the sx lock
511  *   held in exclusive mode.  In normal syscall handling, after
512  *   acquiring the pmc_sx lock we first check that 'pmc_hook' is
513  *   non-null before proceeding.  This prevents races between the
514  *   thread unloading the module and other threads seeking to use the
515  *   module.
516  *
517  * - Lookups of target process structures and owner process structures
518  *   cannot use the global "pmc_sx" SX lock because these lookups need
519  *   to happen during context switches and in other critical sections
520  *   where sleeping is not allowed.  We protect these lookup tables
521  *   with their own private spin-mutexes, "pmc_processhash_mtx" and
522  *   "pmc_ownerhash_mtx".  These are 'leaf' mutexes, in that no other
523  *   lock is acquired with these locks held.
524  *
525  * - Interrupt handlers work in a lock free manner.  At interrupt
526  *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
527  *   when the PMC was started.  If this pointer is NULL, the interrupt
528  *   is ignored after updating driver statistics.  We ensure that this
529  *   pointer is set (using an atomic operation if necessary) before the
530  *   PMC hardware is started.  Conversely, this pointer is unset atomically
531  *   only after the PMC hardware is stopped.
532  *
533  *   We ensure that everything needed for the operation of an
534  *   interrupt handler is available without it needing to acquire any
535  *   locks.  We also ensure that a PMC's software state is destroyed only
536  *   after the PMC is taken off hardware (on all CPUs).
537  *
538  * - Context-switch handling with process-private PMCs needs more
539  *   care.
540  *
541  *   A given process may be the target of multiple PMCs.  For example,
542  *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
543  *   while the target process is running on another.  A PMC could also
544  *   be getting released because its owner is exiting.  We tackle
545  *   these situations in the following manner:
546  *
547  *   - each target process structure 'pmc_process' has an array
548  *     of 'struct pmc *' pointers, one for each hardware PMC.
549  *
550  *   - At context switch IN time, each "target" PMC in RUNNING state
551  *     gets started on hardware and a pointer to each PMC is copied into
552  *     the per-cpu phw array.  The 'runcount' for the PMC is
553  *     incremented.
554  *
555  *   - At context switch OUT time, all process-virtual PMCs are stopped
556  *     on hardware.  The saved value is added to the PMCs value field
557  *     only if the PMC is in a non-deleted state (the PMCs state could
558  *     have changed during the current time slice).
559  *
560  *     Note that since in-between a switch IN on a processor and a switch
561  *     OUT, the PMC could have been released on another CPU.  Therefore
562  *     context switch OUT always looks at the hardware state to turn
563  *     OFF PMCs and will update a PMC's saved value only if reachable
564  *     from the target process record.
565  *
566  *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
567  *     be attached to many processes at the time of the call and could
568  *     be active on multiple CPUs).
569  *
570  *     We prevent further scheduling of the PMC by marking it as in
571  *     state 'DELETED'.  If the runcount of the PMC is non-zero then
572  *     this PMC is currently running on a CPU somewhere.  The thread
573  *     doing the PMCRELEASE operation waits by repeatedly doing an
574  *     tsleep() till the runcount comes to zero.
575  *
576  */
577 
578 /*
579  * save the cpu binding of the current kthread
580  */
581 
582 static void
583 pmc_save_cpu_binding(struct pmc_binding *pb)
584 {
585 	PMCDBG(CPU,BND,2, "%s", "save-cpu");
586 	mtx_lock_spin(&sched_lock);
587 	pb->pb_bound = sched_is_bound(curthread);
588 	pb->pb_cpu   = curthread->td_oncpu;
589 	mtx_unlock_spin(&sched_lock);
590 	PMCDBG(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
591 }
592 
593 /*
594  * restore the cpu binding of the current thread
595  */
596 
597 static void
598 pmc_restore_cpu_binding(struct pmc_binding *pb)
599 {
600 	PMCDBG(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
601 	    curthread->td_oncpu, pb->pb_cpu);
602 	mtx_lock_spin(&sched_lock);
603 	if (pb->pb_bound)
604 		sched_bind(curthread, pb->pb_cpu);
605 	else
606 		sched_unbind(curthread);
607 	mtx_unlock_spin(&sched_lock);
608 	PMCDBG(CPU,BND,2, "%s", "restore-cpu done");
609 }
610 
611 /*
612  * move execution over the specified cpu and bind it there.
613  */
614 
615 static void
616 pmc_select_cpu(int cpu)
617 {
618 	KASSERT(cpu >= 0 && cpu < mp_ncpus,
619 	    ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
620 
621 	/* never move to a disabled CPU */
622 	KASSERT(pmc_cpu_is_disabled(cpu) == 0, ("[pmc,%d] selecting "
623 	    "disabled CPU %d", __LINE__, cpu));
624 
625 	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d", cpu);
626 	mtx_lock_spin(&sched_lock);
627 	sched_bind(curthread, cpu);
628 	mtx_unlock_spin(&sched_lock);
629 
630 	KASSERT(curthread->td_oncpu == cpu,
631 	    ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
632 		cpu, curthread->td_oncpu));
633 
634 	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
635 }
636 
637 /*
638  * Force a context switch.
639  *
640  * We do this by tsleep'ing for 1 tick -- invoking mi_switch() is not
641  * guaranteed to force a context switch.
642  */
643 
644 static void
645 pmc_force_context_switch(void)
646 {
647 	u_char	curpri;
648 
649 	mtx_lock_spin(&sched_lock);
650 	curpri = curthread->td_priority;
651 	mtx_unlock_spin(&sched_lock);
652 
653 	(void) tsleep((void *) pmc_force_context_switch, curpri,
654 	    "pmcctx", 1);
655 
656 }
657 
658 /*
659  * Get the file name for an executable.  This is a simple wrapper
660  * around vn_fullpath(9).
661  */
662 
663 static void
664 pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
665 {
666 	struct thread *td;
667 
668 	td = curthread;
669 	*fullpath = "unknown";
670 	*freepath = NULL;
671 	vn_lock(v, LK_CANRECURSE | LK_EXCLUSIVE | LK_RETRY, td);
672 	vn_fullpath(td, v, fullpath, freepath);
673 	VOP_UNLOCK(v, 0, td);
674 }
675 
676 /*
677  * remove an process owning PMCs
678  */
679 
680 void
681 pmc_remove_owner(struct pmc_owner *po)
682 {
683 	struct pmc *pm, *tmp;
684 
685 	sx_assert(&pmc_sx, SX_XLOCKED);
686 
687 	PMCDBG(OWN,ORM,1, "remove-owner po=%p", po);
688 
689 	/* Remove descriptor from the owner hash table */
690 	LIST_REMOVE(po, po_next);
691 
692 	/* release all owned PMC descriptors */
693 	LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
694 		PMCDBG(OWN,ORM,2, "pmc=%p", pm);
695 		KASSERT(pm->pm_owner == po,
696 		    ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
697 
698 		pmc_release_pmc_descriptor(pm);	/* will unlink from the list */
699 	}
700 
701 	KASSERT(po->po_sscount == 0,
702 	    ("[pmc,%d] SS count not zero", __LINE__));
703 	KASSERT(LIST_EMPTY(&po->po_pmcs),
704 	    ("[pmc,%d] PMC list not empty", __LINE__));
705 
706 	/* de-configure the log file if present */
707 	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
708 		pmclog_deconfigure_log(po);
709 }
710 
711 /*
712  * remove an owner process record if all conditions are met.
713  */
714 
715 static void
716 pmc_maybe_remove_owner(struct pmc_owner *po)
717 {
718 
719 	PMCDBG(OWN,OMR,1, "maybe-remove-owner po=%p", po);
720 
721 	/*
722 	 * Remove owner record if
723 	 * - this process does not own any PMCs
724 	 * - this process has not allocated a system-wide sampling buffer
725 	 */
726 
727 	if (LIST_EMPTY(&po->po_pmcs) &&
728 	    ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
729 		pmc_remove_owner(po);
730 		pmc_destroy_owner_descriptor(po);
731 	}
732 }
733 
734 /*
735  * Add an association between a target process and a PMC.
736  */
737 
738 static void
739 pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
740 {
741 	int ri;
742 	struct pmc_target *pt;
743 
744 	sx_assert(&pmc_sx, SX_XLOCKED);
745 
746 	KASSERT(pm != NULL && pp != NULL,
747 	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
748 	KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
749 	    ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
750 		__LINE__, pm, pp->pp_proc->p_pid));
751 	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt < ((int) md->pmd_npmc - 1),
752 	    ("[pmc,%d] Illegal reference count %d for process record %p",
753 		__LINE__, pp->pp_refcnt, (void *) pp));
754 
755 	ri = PMC_TO_ROWINDEX(pm);
756 
757 	PMCDBG(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
758 	    pm, ri, pp);
759 
760 #ifdef	DEBUG
761 	LIST_FOREACH(pt, &pm->pm_targets, pt_next)
762 	    if (pt->pt_process == pp)
763 		    KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
764 				__LINE__, pp, pm));
765 #endif
766 
767 	MALLOC(pt, struct pmc_target *, sizeof(struct pmc_target),
768 	    M_PMC, M_ZERO|M_WAITOK);
769 
770 	pt->pt_process = pp;
771 
772 	LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
773 
774 	atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
775 	    (uintptr_t)pm);
776 
777 	if (pm->pm_owner->po_owner == pp->pp_proc)
778 		pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
779 
780 	/*
781 	 * Initialize the per-process values at this row index.
782 	 */
783 	pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
784 	    pm->pm_sc.pm_reloadcount : 0;
785 
786 	pp->pp_refcnt++;
787 
788 }
789 
790 /*
791  * Removes the association between a target process and a PMC.
792  */
793 
794 static void
795 pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
796 {
797 	int ri;
798 	struct proc *p;
799 	struct pmc_target *ptgt;
800 
801 	sx_assert(&pmc_sx, SX_XLOCKED);
802 
803 	KASSERT(pm != NULL && pp != NULL,
804 	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
805 
806 	KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt < (int) md->pmd_npmc,
807 	    ("[pmc,%d] Illegal ref count %d on process record %p",
808 		__LINE__, pp->pp_refcnt, (void *) pp));
809 
810 	ri = PMC_TO_ROWINDEX(pm);
811 
812 	PMCDBG(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
813 	    pm, ri, pp);
814 
815 	KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
816 	    ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
817 		ri, pm, pp->pp_pmcs[ri].pp_pmc));
818 
819 	pp->pp_pmcs[ri].pp_pmc = NULL;
820 	pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
821 
822 	/* Remove owner-specific flags */
823 	if (pm->pm_owner->po_owner == pp->pp_proc) {
824 		pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
825 		pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
826 	}
827 
828 	pp->pp_refcnt--;
829 
830 	/* Remove the target process from the PMC structure */
831 	LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
832 		if (ptgt->pt_process == pp)
833 			break;
834 
835 	KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
836 		    "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
837 
838 	LIST_REMOVE(ptgt, pt_next);
839 	FREE(ptgt, M_PMC);
840 
841 	/* if the PMC now lacks targets, send the owner a SIGIO */
842 	if (LIST_EMPTY(&pm->pm_targets)) {
843 		p = pm->pm_owner->po_owner;
844 		PROC_LOCK(p);
845 		psignal(p, SIGIO);
846 		PROC_UNLOCK(p);
847 
848 		PMCDBG(PRC,SIG,2, "signalling proc=%p signal=%d", p,
849 		    SIGIO);
850 	}
851 }
852 
853 /*
854  * Check if PMC 'pm' may be attached to target process 't'.
855  */
856 
857 static int
858 pmc_can_attach(struct pmc *pm, struct proc *t)
859 {
860 	struct proc *o;		/* pmc owner */
861 	struct ucred *oc, *tc;	/* owner, target credentials */
862 	int decline_attach, i;
863 
864 	/*
865 	 * A PMC's owner can always attach that PMC to itself.
866 	 */
867 
868 	if ((o = pm->pm_owner->po_owner) == t)
869 		return 0;
870 
871 	PROC_LOCK(o);
872 	oc = o->p_ucred;
873 	crhold(oc);
874 	PROC_UNLOCK(o);
875 
876 	PROC_LOCK(t);
877 	tc = t->p_ucred;
878 	crhold(tc);
879 	PROC_UNLOCK(t);
880 
881 	/*
882 	 * The effective uid of the PMC owner should match at least one
883 	 * of the {effective,real,saved} uids of the target process.
884 	 */
885 
886 	decline_attach = oc->cr_uid != tc->cr_uid &&
887 	    oc->cr_uid != tc->cr_svuid &&
888 	    oc->cr_uid != tc->cr_ruid;
889 
890 	/*
891 	 * Every one of the target's group ids, must be in the owner's
892 	 * group list.
893 	 */
894 	for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
895 		decline_attach = !groupmember(tc->cr_groups[i], oc);
896 
897 	/* check the read and saved gids too */
898 	if (decline_attach == 0)
899 		decline_attach = !groupmember(tc->cr_rgid, oc) ||
900 		    !groupmember(tc->cr_svgid, oc);
901 
902 	crfree(tc);
903 	crfree(oc);
904 
905 	return !decline_attach;
906 }
907 
908 /*
909  * Attach a process to a PMC.
910  */
911 
912 static int
913 pmc_attach_one_process(struct proc *p, struct pmc *pm)
914 {
915 	int ri;
916 	char *fullpath, *freepath;
917 	struct pmc_process	*pp;
918 
919 	sx_assert(&pmc_sx, SX_XLOCKED);
920 
921 	PMCDBG(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
922 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
923 
924 	/*
925 	 * Locate the process descriptor corresponding to process 'p',
926 	 * allocating space as needed.
927 	 *
928 	 * Verify that rowindex 'pm_rowindex' is free in the process
929 	 * descriptor.
930 	 *
931 	 * If not, allocate space for a descriptor and link the
932 	 * process descriptor and PMC.
933 	 */
934 	ri = PMC_TO_ROWINDEX(pm);
935 
936 	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL)
937 		return ENOMEM;
938 
939 	if (pp->pp_pmcs[ri].pp_pmc == pm) /* already present at slot [ri] */
940 		return EEXIST;
941 
942 	if (pp->pp_pmcs[ri].pp_pmc != NULL)
943 		return EBUSY;
944 
945 	pmc_link_target_process(pm, pp);
946 
947 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
948 	    (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
949 		pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
950 
951 	pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
952 
953 	/* issue an attach event to a configured log file */
954 	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
955 		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
956 		pmclog_process_pmcattach(pm, p->p_pid, fullpath);
957 		if (freepath)
958 			FREE(freepath, M_TEMP);
959 	}
960 	/* mark process as using HWPMCs */
961 	PROC_LOCK(p);
962 	p->p_flag |= P_HWPMC;
963 	PROC_UNLOCK(p);
964 
965 	return 0;
966 }
967 
968 /*
969  * Attach a process and optionally its children
970  */
971 
972 static int
973 pmc_attach_process(struct proc *p, struct pmc *pm)
974 {
975 	int error;
976 	struct proc *top;
977 
978 	sx_assert(&pmc_sx, SX_XLOCKED);
979 
980 	PMCDBG(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
981 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
982 
983 
984 	/*
985 	 * If this PMC successfully allowed a GETMSR operation
986 	 * in the past, disallow further ATTACHes.
987 	 */
988 
989 	if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
990 		return EPERM;
991 
992 	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
993 		return pmc_attach_one_process(p, pm);
994 
995 	/*
996 	 * Traverse all child processes, attaching them to
997 	 * this PMC.
998 	 */
999 
1000 	sx_slock(&proctree_lock);
1001 
1002 	top = p;
1003 
1004 	for (;;) {
1005 		if ((error = pmc_attach_one_process(p, pm)) != 0)
1006 			break;
1007 		if (!LIST_EMPTY(&p->p_children))
1008 			p = LIST_FIRST(&p->p_children);
1009 		else for (;;) {
1010 			if (p == top)
1011 				goto done;
1012 			if (LIST_NEXT(p, p_sibling)) {
1013 				p = LIST_NEXT(p, p_sibling);
1014 				break;
1015 			}
1016 			p = p->p_pptr;
1017 		}
1018 	}
1019 
1020 	if (error)
1021 		(void) pmc_detach_process(top, pm);
1022 
1023  done:
1024 	sx_sunlock(&proctree_lock);
1025 	return error;
1026 }
1027 
1028 /*
1029  * Detach a process from a PMC.  If there are no other PMCs tracking
1030  * this process, remove the process structure from its hash table.  If
1031  * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1032  */
1033 
1034 static int
1035 pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1036 {
1037 	int ri;
1038 	struct pmc_process *pp;
1039 
1040 	sx_assert(&pmc_sx, SX_XLOCKED);
1041 
1042 	KASSERT(pm != NULL,
1043 	    ("[pmc,%d] null pm pointer", __LINE__));
1044 
1045 	ri = PMC_TO_ROWINDEX(pm);
1046 
1047 	PMCDBG(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1048 	    pm, ri, p, p->p_pid, p->p_comm, flags);
1049 
1050 	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1051 		return ESRCH;
1052 
1053 	if (pp->pp_pmcs[ri].pp_pmc != pm)
1054 		return EINVAL;
1055 
1056 	pmc_unlink_target_process(pm, pp);
1057 
1058 	/* Issue a detach entry if a log file is configured */
1059 	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1060 		pmclog_process_pmcdetach(pm, p->p_pid);
1061 
1062 	/*
1063 	 * If there are no PMCs targetting this process, we remove its
1064 	 * descriptor from the target hash table and unset the P_HWPMC
1065 	 * flag in the struct proc.
1066 	 */
1067 	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt < (int) md->pmd_npmc,
1068 	    ("[pmc,%d] Illegal refcnt %d for process struct %p",
1069 		__LINE__, pp->pp_refcnt, pp));
1070 
1071 	if (pp->pp_refcnt != 0)	/* still a target of some PMC */
1072 		return 0;
1073 
1074 	pmc_remove_process_descriptor(pp);
1075 
1076 	if (flags & PMC_FLAG_REMOVE)
1077 		FREE(pp, M_PMC);
1078 
1079 	PROC_LOCK(p);
1080 	p->p_flag &= ~P_HWPMC;
1081 	PROC_UNLOCK(p);
1082 
1083 	return 0;
1084 }
1085 
1086 /*
1087  * Detach a process and optionally its descendants from a PMC.
1088  */
1089 
1090 static int
1091 pmc_detach_process(struct proc *p, struct pmc *pm)
1092 {
1093 	struct proc *top;
1094 
1095 	sx_assert(&pmc_sx, SX_XLOCKED);
1096 
1097 	PMCDBG(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1098 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1099 
1100 	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1101 		return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1102 
1103 	/*
1104 	 * Traverse all children, detaching them from this PMC.  We
1105 	 * ignore errors since we could be detaching a PMC from a
1106 	 * partially attached proc tree.
1107 	 */
1108 
1109 	sx_slock(&proctree_lock);
1110 
1111 	top = p;
1112 
1113 	for (;;) {
1114 		(void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1115 
1116 		if (!LIST_EMPTY(&p->p_children))
1117 			p = LIST_FIRST(&p->p_children);
1118 		else for (;;) {
1119 			if (p == top)
1120 				goto done;
1121 			if (LIST_NEXT(p, p_sibling)) {
1122 				p = LIST_NEXT(p, p_sibling);
1123 				break;
1124 			}
1125 			p = p->p_pptr;
1126 		}
1127 	}
1128 
1129  done:
1130 	sx_sunlock(&proctree_lock);
1131 
1132 	if (LIST_EMPTY(&pm->pm_targets))
1133 		pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1134 
1135 	return 0;
1136 }
1137 
1138 
1139 /*
1140  * Thread context switch IN
1141  */
1142 
1143 static void
1144 pmc_process_csw_in(struct thread *td)
1145 {
1146 	int cpu;
1147 	unsigned int ri;
1148 	struct pmc *pm;
1149 	struct proc *p;
1150 	struct pmc_cpu *pc;
1151 	struct pmc_hw *phw;
1152 	struct pmc_process *pp;
1153 	pmc_value_t newvalue;
1154 
1155 	p = td->td_proc;
1156 
1157 	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1158 		return;
1159 
1160 	KASSERT(pp->pp_proc == td->td_proc,
1161 	    ("[pmc,%d] not my thread state", __LINE__));
1162 
1163 	critical_enter(); /* no preemption from this point */
1164 
1165 	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1166 
1167 	PMCDBG(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1168 	    p->p_pid, p->p_comm, pp);
1169 
1170 	KASSERT(cpu >= 0 && cpu < mp_ncpus,
1171 	    ("[pmc,%d] wierd CPU id %d", __LINE__, cpu));
1172 
1173 	pc = pmc_pcpu[cpu];
1174 
1175 	for (ri = 0; ri < md->pmd_npmc; ri++) {
1176 
1177 		if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1178 			continue;
1179 
1180 		KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1181 		    ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1182 			__LINE__, PMC_TO_MODE(pm)));
1183 
1184 		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1185 		    ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1186 			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1187 
1188 		/*
1189 		 * Only PMCs that are marked as 'RUNNING' need
1190 		 * be placed on hardware.
1191 		 */
1192 
1193 		if (pm->pm_state != PMC_STATE_RUNNING)
1194 			continue;
1195 
1196 		/* increment PMC runcount */
1197 		atomic_add_rel_32(&pm->pm_runcount, 1);
1198 
1199 		/* configure the HWPMC we are going to use. */
1200 		md->pmd_config_pmc(cpu, ri, pm);
1201 
1202 		phw = pc->pc_hwpmcs[ri];
1203 
1204 		KASSERT(phw != NULL,
1205 		    ("[pmc,%d] null hw pointer", __LINE__));
1206 
1207 		KASSERT(phw->phw_pmc == pm,
1208 		    ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1209 			phw->phw_pmc, pm));
1210 
1211 		/*
1212 		 * Write out saved value and start the PMC.
1213 		 *
1214 		 * Sampling PMCs use a per-process value, while
1215 		 * counting mode PMCs use a per-pmc value that is
1216 		 * inherited across descendants.
1217 		 */
1218 		if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1219 			mtx_pool_lock_spin(pmc_mtxpool, pm);
1220 			newvalue = PMC_PCPU_SAVED(cpu,ri) =
1221 			    pp->pp_pmcs[ri].pp_pmcval;
1222 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1223 		} else {
1224 			KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1225 			    ("[pmc,%d] illegal mode=%d", __LINE__,
1226 			    PMC_TO_MODE(pm)));
1227 			mtx_pool_lock_spin(pmc_mtxpool, pm);
1228 			newvalue = PMC_PCPU_SAVED(cpu, ri) =
1229 			    pm->pm_gv.pm_savedvalue;
1230 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1231 		}
1232 
1233 		PMCDBG(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1234 
1235 		md->pmd_write_pmc(cpu, ri, newvalue);
1236 		md->pmd_start_pmc(cpu, ri);
1237 	}
1238 
1239 	/*
1240 	 * perform any other architecture/cpu dependent thread
1241 	 * switch-in actions.
1242 	 */
1243 
1244 	(void) (*md->pmd_switch_in)(pc, pp);
1245 
1246 	critical_exit();
1247 
1248 }
1249 
1250 /*
1251  * Thread context switch OUT.
1252  */
1253 
1254 static void
1255 pmc_process_csw_out(struct thread *td)
1256 {
1257 	int cpu;
1258 	enum pmc_mode mode;
1259 	unsigned int ri;
1260 	struct pmc *pm;
1261 	struct proc *p;
1262 	struct pmc_cpu *pc;
1263 	struct pmc_process *pp;
1264 	int64_t tmp;
1265 	pmc_value_t newvalue;
1266 
1267 	/*
1268 	 * Locate our process descriptor; this may be NULL if
1269 	 * this process is exiting and we have already removed
1270 	 * the process from the target process table.
1271 	 *
1272 	 * Note that due to kernel preemption, multiple
1273 	 * context switches may happen while the process is
1274 	 * exiting.
1275 	 *
1276 	 * Note also that if the target process cannot be
1277 	 * found we still need to deconfigure any PMCs that
1278 	 * are currently running on hardware.
1279 	 */
1280 
1281 	p = td->td_proc;
1282 	pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1283 
1284 	/*
1285 	 * save PMCs
1286 	 */
1287 
1288 	critical_enter();
1289 
1290 	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1291 
1292 	PMCDBG(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1293 	    p->p_pid, p->p_comm, pp);
1294 
1295 	KASSERT(cpu >= 0 && cpu < mp_ncpus,
1296 	    ("[pmc,%d wierd CPU id %d", __LINE__, cpu));
1297 
1298 	pc = pmc_pcpu[cpu];
1299 
1300 	/*
1301 	 * When a PMC gets unlinked from a target PMC, it will
1302 	 * be removed from the target's pp_pmc[] array.
1303 	 *
1304 	 * However, on a MP system, the target could have been
1305 	 * executing on another CPU at the time of the unlink.
1306 	 * So, at context switch OUT time, we need to look at
1307 	 * the hardware to determine if a PMC is scheduled on
1308 	 * it.
1309 	 */
1310 
1311 	for (ri = 0; ri < md->pmd_npmc; ri++) {
1312 
1313 		pm = NULL;
1314 		(void) (*md->pmd_get_config)(cpu, ri, &pm);
1315 
1316 		if (pm == NULL)	/* nothing at this row index */
1317 			continue;
1318 
1319 		mode = PMC_TO_MODE(pm);
1320 		if (!PMC_IS_VIRTUAL_MODE(mode))
1321 			continue; /* not a process virtual PMC */
1322 
1323 		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1324 		    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1325 			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1326 
1327 		/* Stop hardware if not already stopped */
1328 		if (pm->pm_stalled == 0)
1329 			md->pmd_stop_pmc(cpu, ri);
1330 
1331 		/* reduce this PMC's runcount */
1332 		atomic_subtract_rel_32(&pm->pm_runcount, 1);
1333 
1334 		/*
1335 		 * If this PMC is associated with this process,
1336 		 * save the reading.
1337 		 */
1338 
1339 		if (pp != NULL && pp->pp_pmcs[ri].pp_pmc != NULL) {
1340 
1341 			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1342 			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1343 				pm, ri, pp->pp_pmcs[ri].pp_pmc));
1344 
1345 			KASSERT(pp->pp_refcnt > 0,
1346 			    ("[pmc,%d] pp refcnt = %d", __LINE__,
1347 				pp->pp_refcnt));
1348 
1349 			md->pmd_read_pmc(cpu, ri, &newvalue);
1350 
1351 			tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1352 
1353 			PMCDBG(CSW,SWI,1,"cpu=%d ri=%d tmp=%jd", cpu, ri,
1354 			    tmp);
1355 
1356 			if (mode == PMC_MODE_TS) {
1357 
1358 				/*
1359 				 * For sampling process-virtual PMCs,
1360 				 * we expect the count to be
1361 				 * decreasing as the 'value'
1362 				 * programmed into the PMC is the
1363 				 * number of events to be seen till
1364 				 * the next sampling interrupt.
1365 				 */
1366 				if (tmp < 0)
1367 					tmp += pm->pm_sc.pm_reloadcount;
1368 				mtx_pool_lock_spin(pmc_mtxpool, pm);
1369 				pp->pp_pmcs[ri].pp_pmcval -= tmp;
1370 				if ((int64_t) pp->pp_pmcs[ri].pp_pmcval < 0)
1371 					pp->pp_pmcs[ri].pp_pmcval +=
1372 					    pm->pm_sc.pm_reloadcount;
1373 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1374 
1375 			} else {
1376 
1377 				/*
1378 				 * For counting process-virtual PMCs,
1379 				 * we expect the count to be
1380 				 * increasing monotonically, modulo a 64
1381 				 * bit wraparound.
1382 				 */
1383 				KASSERT((int64_t) tmp >= 0,
1384 				    ("[pmc,%d] negative increment cpu=%d "
1385 				     "ri=%d newvalue=%jx saved=%jx "
1386 				     "incr=%jx", __LINE__, cpu, ri,
1387 				     newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
1388 
1389 				mtx_pool_lock_spin(pmc_mtxpool, pm);
1390 				pm->pm_gv.pm_savedvalue += tmp;
1391 				pp->pp_pmcs[ri].pp_pmcval += tmp;
1392 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1393 
1394 				if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1395 					pmclog_process_proccsw(pm, pp, tmp);
1396 			}
1397 		}
1398 
1399 		/* mark hardware as free */
1400 		md->pmd_config_pmc(cpu, ri, NULL);
1401 	}
1402 
1403 	/*
1404 	 * perform any other architecture/cpu dependent thread
1405 	 * switch out functions.
1406 	 */
1407 
1408 	(void) (*md->pmd_switch_out)(pc, pp);
1409 
1410 	critical_exit();
1411 }
1412 
1413 /*
1414  * The 'hook' invoked from the kernel proper
1415  */
1416 
1417 
1418 #ifdef	DEBUG
1419 const char *pmc_hooknames[] = {
1420 	"",
1421 	"EXIT",
1422 	"EXEC",
1423 	"FORK",
1424 	"CSW-IN",
1425 	"CSW-OUT",
1426 	"SAMPLE"
1427 };
1428 #endif
1429 
1430 static int
1431 pmc_hook_handler(struct thread *td, int function, void *arg)
1432 {
1433 
1434 	PMCDBG(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
1435 	    pmc_hooknames[function], arg);
1436 
1437 	switch (function)
1438 	{
1439 
1440 	/*
1441 	 * Process exec()
1442 	 */
1443 
1444 	case PMC_FN_PROCESS_EXEC:
1445 	{
1446 		char *fullpath, *freepath;
1447 		unsigned int ri;
1448 		int is_using_hwpmcs;
1449 		struct pmc *pm;
1450 		struct proc *p;
1451 		struct pmc_owner *po;
1452 		struct pmc_process *pp;
1453 		struct pmckern_procexec *pk;
1454 
1455 		sx_assert(&pmc_sx, SX_XLOCKED);
1456 
1457 		p = td->td_proc;
1458 		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1459 
1460 		pk = (struct pmckern_procexec *) arg;
1461 
1462 		/* Inform owners of SS mode PMCs of the exec event. */
1463 		LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1464 		    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1465 			    pmclog_process_procexec(po, PMC_ID_INVALID,
1466 				p->p_pid, pk->pm_entryaddr, fullpath);
1467 
1468 		PROC_LOCK(p);
1469 		is_using_hwpmcs = p->p_flag & P_HWPMC;
1470 		PROC_UNLOCK(p);
1471 
1472 		if (!is_using_hwpmcs) {
1473 			if (freepath)
1474 				FREE(freepath, M_TEMP);
1475 			break;
1476 		}
1477 
1478 		/*
1479 		 * PMCs are not inherited across an exec():  remove any
1480 		 * PMCs that this process is the owner of.
1481 		 */
1482 
1483 		if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1484 			pmc_remove_owner(po);
1485 			pmc_destroy_owner_descriptor(po);
1486 		}
1487 
1488 		/*
1489 		 * If the process being exec'ed is not the target of any
1490 		 * PMC, we are done.
1491 		 */
1492 		if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
1493 			if (freepath)
1494 				FREE(freepath, M_TEMP);
1495 			break;
1496 		}
1497 
1498 		/*
1499 		 * Log the exec event to all monitoring owners.  Skip
1500 		 * owners who have already recieved the event because
1501 		 * they had system sampling PMCs active.
1502 		 */
1503 		for (ri = 0; ri < md->pmd_npmc; ri++)
1504 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
1505 				po = pm->pm_owner;
1506 				if (po->po_sscount == 0 &&
1507 				    po->po_flags & PMC_PO_OWNS_LOGFILE)
1508 					pmclog_process_procexec(po, pm->pm_id,
1509 					    p->p_pid, pk->pm_entryaddr,
1510 					    fullpath);
1511 			}
1512 
1513 		if (freepath)
1514 			FREE(freepath, M_TEMP);
1515 
1516 
1517 		PMCDBG(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
1518 		    p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
1519 
1520 		if (pk->pm_credentialschanged == 0) /* no change */
1521 			break;
1522 
1523 		/*
1524 		 * If the newly exec()'ed process has a different credential
1525 		 * than before, allow it to be the target of a PMC only if
1526 		 * the PMC's owner has sufficient priviledge.
1527 		 */
1528 
1529 		for (ri = 0; ri < md->pmd_npmc; ri++)
1530 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
1531 				if (pmc_can_attach(pm, td->td_proc) != 0)
1532 					pmc_detach_one_process(td->td_proc,
1533 					    pm, PMC_FLAG_NONE);
1534 
1535 		KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt < (int) md->pmd_npmc,
1536 		    ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
1537 			pp->pp_refcnt, pp));
1538 
1539 		/*
1540 		 * If this process is no longer the target of any
1541 		 * PMCs, we can remove the process entry and free
1542 		 * up space.
1543 		 */
1544 
1545 		if (pp->pp_refcnt == 0) {
1546 			pmc_remove_process_descriptor(pp);
1547 			FREE(pp, M_PMC);
1548 			break;
1549 		}
1550 
1551 	}
1552 	break;
1553 
1554 	case PMC_FN_CSW_IN:
1555 		pmc_process_csw_in(td);
1556 		break;
1557 
1558 	case PMC_FN_CSW_OUT:
1559 		pmc_process_csw_out(td);
1560 		break;
1561 
1562 	/*
1563 	 * Process accumulated PC samples.
1564 	 *
1565 	 * This function is expected to be called by hardclock() for
1566 	 * each CPU that has accumulated PC samples.
1567 	 *
1568 	 * This function is to be executed on the CPU whose samples
1569 	 * are being processed.
1570 	 */
1571 	case PMC_FN_DO_SAMPLES:
1572 
1573 		/*
1574 		 * Clear the cpu specific bit in the CPU mask before
1575 		 * do the rest of the processing.  If the NMI handler
1576 		 * gets invoked after the "atomic_clear_int()" call
1577 		 * below but before "pmc_process_samples()" gets
1578 		 * around to processing the interrupt, then we will
1579 		 * come back here at the next hardclock() tick (and
1580 		 * may find nothing to do if "pmc_process_samples()"
1581 		 * had already processed the interrupt).  We don't
1582 		 * lose the interrupt sample.
1583 		 */
1584 		atomic_clear_int(&pmc_cpumask, (1 << PCPU_GET(cpuid)));
1585 		pmc_process_samples(PCPU_GET(cpuid));
1586 		break;
1587 
1588 	default:
1589 #ifdef	DEBUG
1590 		KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
1591 #endif
1592 		break;
1593 
1594 	}
1595 
1596 	return 0;
1597 }
1598 
1599 /*
1600  * allocate a 'struct pmc_owner' descriptor in the owner hash table.
1601  */
1602 
1603 static struct pmc_owner *
1604 pmc_allocate_owner_descriptor(struct proc *p)
1605 {
1606 	uint32_t hindex;
1607 	struct pmc_owner *po;
1608 	struct pmc_ownerhash *poh;
1609 
1610 	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
1611 	poh = &pmc_ownerhash[hindex];
1612 
1613 	/* allocate space for N pointers and one descriptor struct */
1614 	MALLOC(po, struct pmc_owner *, sizeof(struct pmc_owner),
1615 	    M_PMC, M_ZERO|M_WAITOK);
1616 
1617 	po->po_sscount = po->po_error = po->po_flags = 0;
1618 	po->po_file  = NULL;
1619 	po->po_owner = p;
1620 	po->po_kthread = NULL;
1621 	LIST_INIT(&po->po_pmcs);
1622 	LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
1623 
1624 	TAILQ_INIT(&po->po_logbuffers);
1625 	mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc", MTX_SPIN);
1626 
1627 	PMCDBG(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
1628 	    p, p->p_pid, p->p_comm, po);
1629 
1630 	return po;
1631 }
1632 
1633 static void
1634 pmc_destroy_owner_descriptor(struct pmc_owner *po)
1635 {
1636 
1637 	PMCDBG(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
1638 	    po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
1639 
1640 	mtx_destroy(&po->po_mtx);
1641 	FREE(po, M_PMC);
1642 }
1643 
1644 /*
1645  * find the descriptor corresponding to process 'p', adding or removing it
1646  * as specified by 'mode'.
1647  */
1648 
1649 static struct pmc_process *
1650 pmc_find_process_descriptor(struct proc *p, uint32_t mode)
1651 {
1652 	uint32_t hindex;
1653 	struct pmc_process *pp, *ppnew;
1654 	struct pmc_processhash *pph;
1655 
1656 	hindex = PMC_HASH_PTR(p, pmc_processhashmask);
1657 	pph = &pmc_processhash[hindex];
1658 
1659 	ppnew = NULL;
1660 
1661 	/*
1662 	 * Pre-allocate memory in the FIND_ALLOCATE case since we
1663 	 * cannot call malloc(9) once we hold a spin lock.
1664 	 */
1665 
1666 	if (mode & PMC_FLAG_ALLOCATE) {
1667 		/* allocate additional space for 'n' pmc pointers */
1668 		MALLOC(ppnew, struct pmc_process *,
1669 		    sizeof(struct pmc_process) + md->pmd_npmc *
1670 		    sizeof(struct pmc_targetstate), M_PMC, M_ZERO|M_WAITOK);
1671 	}
1672 
1673 	mtx_lock_spin(&pmc_processhash_mtx);
1674 	LIST_FOREACH(pp, pph, pp_next)
1675 	    if (pp->pp_proc == p)
1676 		    break;
1677 
1678 	if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
1679 		LIST_REMOVE(pp, pp_next);
1680 
1681 	if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
1682 	    ppnew != NULL) {
1683 		ppnew->pp_proc = p;
1684 		LIST_INSERT_HEAD(pph, ppnew, pp_next);
1685 		pp = ppnew;
1686 		ppnew = NULL;
1687 	}
1688 	mtx_unlock_spin(&pmc_processhash_mtx);
1689 
1690 	if (pp != NULL && ppnew != NULL)
1691 		FREE(ppnew, M_PMC);
1692 
1693 	return pp;
1694 }
1695 
1696 /*
1697  * remove a process descriptor from the process hash table.
1698  */
1699 
1700 static void
1701 pmc_remove_process_descriptor(struct pmc_process *pp)
1702 {
1703 	KASSERT(pp->pp_refcnt == 0,
1704 	    ("[pmc,%d] Removing process descriptor %p with count %d",
1705 		__LINE__, pp, pp->pp_refcnt));
1706 
1707 	mtx_lock_spin(&pmc_processhash_mtx);
1708 	LIST_REMOVE(pp, pp_next);
1709 	mtx_unlock_spin(&pmc_processhash_mtx);
1710 }
1711 
1712 
1713 /*
1714  * find an owner descriptor corresponding to proc 'p'
1715  */
1716 
1717 static struct pmc_owner *
1718 pmc_find_owner_descriptor(struct proc *p)
1719 {
1720 	uint32_t hindex;
1721 	struct pmc_owner *po;
1722 	struct pmc_ownerhash *poh;
1723 
1724 	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
1725 	poh = &pmc_ownerhash[hindex];
1726 
1727 	po = NULL;
1728 	LIST_FOREACH(po, poh, po_next)
1729 	    if (po->po_owner == p)
1730 		    break;
1731 
1732 	PMCDBG(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
1733 	    "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
1734 
1735 	return po;
1736 }
1737 
1738 /*
1739  * pmc_allocate_pmc_descriptor
1740  *
1741  * Allocate a pmc descriptor and initialize its
1742  * fields.
1743  */
1744 
1745 static struct pmc *
1746 pmc_allocate_pmc_descriptor(void)
1747 {
1748 	struct pmc *pmc;
1749 
1750 	MALLOC(pmc, struct pmc *, sizeof(struct pmc), M_PMC, M_ZERO|M_WAITOK);
1751 
1752 	if (pmc != NULL) {
1753 		pmc->pm_owner = NULL;
1754 		LIST_INIT(&pmc->pm_targets);
1755 	}
1756 
1757 	PMCDBG(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
1758 
1759 	return pmc;
1760 }
1761 
1762 /*
1763  * Destroy a pmc descriptor.
1764  */
1765 
1766 static void
1767 pmc_destroy_pmc_descriptor(struct pmc *pm)
1768 {
1769 	(void) pm;
1770 
1771 #ifdef	DEBUG
1772 	KASSERT(pm->pm_state == PMC_STATE_DELETED ||
1773 	    pm->pm_state == PMC_STATE_FREE,
1774 	    ("[pmc,%d] destroying non-deleted PMC", __LINE__));
1775 	KASSERT(LIST_EMPTY(&pm->pm_targets),
1776 	    ("[pmc,%d] destroying pmc with targets", __LINE__));
1777 	KASSERT(pm->pm_owner == NULL,
1778 	    ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
1779 	KASSERT(pm->pm_runcount == 0,
1780 	    ("[pmc,%d] pmc has non-zero run count %d", __LINE__,
1781 		pm->pm_runcount));
1782 #endif
1783 }
1784 
1785 static void
1786 pmc_wait_for_pmc_idle(struct pmc *pm)
1787 {
1788 #ifdef	DEBUG
1789 	volatile int maxloop;
1790 
1791 	maxloop = 100 * mp_ncpus;
1792 #endif
1793 
1794 	/*
1795 	 * Loop (with a forced context switch) till the PMC's runcount
1796 	 * comes down to zero.
1797 	 */
1798 	while (atomic_load_acq_32(&pm->pm_runcount) > 0) {
1799 #ifdef	DEBUG
1800 		maxloop--;
1801 		KASSERT(maxloop > 0,
1802 		    ("[pmc,%d] (ri%d, rc%d) waiting too long for "
1803 			"pmc to be free", __LINE__,
1804 			PMC_TO_ROWINDEX(pm), pm->pm_runcount));
1805 #endif
1806 		pmc_force_context_switch();
1807 	}
1808 }
1809 
1810 /*
1811  * This function does the following things:
1812  *
1813  *  - detaches the PMC from hardware
1814  *  - unlinks all target threads that were attached to it
1815  *  - removes the PMC from its owner's list
1816  *  - destroy's the PMC private mutex
1817  *
1818  * Once this function completes, the given pmc pointer can be safely
1819  * FREE'd by the caller.
1820  */
1821 
1822 static void
1823 pmc_release_pmc_descriptor(struct pmc *pm)
1824 {
1825 	u_int ri, cpu;
1826 	enum pmc_mode mode;
1827 	struct pmc_hw *phw;
1828 	struct pmc_owner *po;
1829 	struct pmc_process *pp;
1830 	struct pmc_target *ptgt, *tmp;
1831 	struct pmc_binding pb;
1832 
1833 	sx_assert(&pmc_sx, SX_XLOCKED);
1834 
1835 	KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
1836 
1837 	ri   = PMC_TO_ROWINDEX(pm);
1838 	mode = PMC_TO_MODE(pm);
1839 
1840 	PMCDBG(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
1841 	    mode);
1842 
1843 	/*
1844 	 * First, we take the PMC off hardware.
1845 	 */
1846 	cpu = 0;
1847 	if (PMC_IS_SYSTEM_MODE(mode)) {
1848 
1849 		/*
1850 		 * A system mode PMC runs on a specific CPU.  Switch
1851 		 * to this CPU and turn hardware off.
1852 		 */
1853 		pmc_save_cpu_binding(&pb);
1854 
1855 		cpu = PMC_TO_CPU(pm);
1856 
1857 		pmc_select_cpu(cpu);
1858 
1859 		/* switch off non-stalled CPUs */
1860 		if (pm->pm_state == PMC_STATE_RUNNING &&
1861 		    pm->pm_stalled == 0) {
1862 
1863 			phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
1864 
1865 			KASSERT(phw->phw_pmc == pm,
1866 			    ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
1867 				__LINE__, ri, phw->phw_pmc, pm));
1868 			PMCDBG(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
1869 
1870 			critical_enter();
1871 			md->pmd_stop_pmc(cpu, ri);
1872 			critical_exit();
1873 		}
1874 
1875 		PMCDBG(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
1876 
1877 		critical_enter();
1878 		md->pmd_config_pmc(cpu, ri, NULL);
1879 		critical_exit();
1880 
1881 		/* adjust the global and process count of SS mode PMCs */
1882 		if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
1883 			po = pm->pm_owner;
1884 			po->po_sscount--;
1885 			if (po->po_sscount == 0) {
1886 				atomic_subtract_rel_int(&pmc_ss_count, 1);
1887 				LIST_REMOVE(po, po_ssnext);
1888 			}
1889 		}
1890 
1891 		pm->pm_state = PMC_STATE_DELETED;
1892 
1893 		pmc_restore_cpu_binding(&pb);
1894 
1895 		/*
1896 		 * We could have references to this PMC structure in
1897 		 * the per-cpu sample queues.  Wait for the queue to
1898 		 * drain.
1899 		 */
1900 		pmc_wait_for_pmc_idle(pm);
1901 
1902 	} else if (PMC_IS_VIRTUAL_MODE(mode)) {
1903 
1904 		/*
1905 		 * A virtual PMC could be running on multiple CPUs at
1906 		 * a given instant.
1907 		 *
1908 		 * By marking its state as DELETED, we ensure that
1909 		 * this PMC is never further scheduled on hardware.
1910 		 *
1911 		 * Then we wait till all CPUs are done with this PMC.
1912 		 */
1913 		pm->pm_state = PMC_STATE_DELETED;
1914 
1915 
1916 		/* Wait for the PMCs runcount to come to zero. */
1917 		pmc_wait_for_pmc_idle(pm);
1918 
1919 		/*
1920 		 * At this point the PMC is off all CPUs and cannot be
1921 		 * freshly scheduled onto a CPU.  It is now safe to
1922 		 * unlink all targets from this PMC.  If a
1923 		 * process-record's refcount falls to zero, we remove
1924 		 * it from the hash table.  The module-wide SX lock
1925 		 * protects us from races.
1926 		 */
1927 		LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
1928 			pp = ptgt->pt_process;
1929 			pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
1930 
1931 			PMCDBG(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
1932 
1933 			/*
1934 			 * If the target process record shows that no
1935 			 * PMCs are attached to it, reclaim its space.
1936 			 */
1937 
1938 			if (pp->pp_refcnt == 0) {
1939 				pmc_remove_process_descriptor(pp);
1940 				FREE(pp, M_PMC);
1941 			}
1942 		}
1943 
1944 		cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
1945 
1946 	}
1947 
1948 	/*
1949 	 * Release any MD resources
1950 	 */
1951 
1952 	(void) md->pmd_release_pmc(cpu, ri, pm);
1953 
1954 	/*
1955 	 * Update row disposition
1956 	 */
1957 
1958 	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
1959 		PMC_UNMARK_ROW_STANDALONE(ri);
1960 	else
1961 		PMC_UNMARK_ROW_THREAD(ri);
1962 
1963 	/* unlink from the owner's list */
1964 	if (pm->pm_owner) {
1965 		LIST_REMOVE(pm, pm_next);
1966 		pm->pm_owner = NULL;
1967 	}
1968 
1969 	pmc_destroy_pmc_descriptor(pm);
1970 }
1971 
1972 /*
1973  * Register an owner and a pmc.
1974  */
1975 
1976 static int
1977 pmc_register_owner(struct proc *p, struct pmc *pmc)
1978 {
1979 	struct pmc_owner *po;
1980 
1981 	sx_assert(&pmc_sx, SX_XLOCKED);
1982 
1983 	if ((po = pmc_find_owner_descriptor(p)) == NULL)
1984 		if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
1985 			return ENOMEM;
1986 
1987 	KASSERT(pmc->pm_owner == NULL,
1988 	    ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
1989 	pmc->pm_owner  = po;
1990 
1991 	LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
1992 
1993 	PROC_LOCK(p);
1994 	p->p_flag |= P_HWPMC;
1995 	PROC_UNLOCK(p);
1996 
1997 	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1998 		pmclog_process_pmcallocate(pmc);
1999 
2000 	PMCDBG(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2001 	    po, pmc);
2002 
2003 	return 0;
2004 }
2005 
2006 /*
2007  * Return the current row disposition:
2008  * == 0 => FREE
2009  *  > 0 => PROCESS MODE
2010  *  < 0 => SYSTEM MODE
2011  */
2012 
2013 int
2014 pmc_getrowdisp(int ri)
2015 {
2016 	return pmc_pmcdisp[ri];
2017 }
2018 
2019 /*
2020  * Check if a PMC at row index 'ri' can be allocated to the current
2021  * process.
2022  *
2023  * Allocation can fail if:
2024  *   - the current process is already being profiled by a PMC at index 'ri',
2025  *     attached to it via OP_PMCATTACH.
2026  *   - the current process has already allocated a PMC at index 'ri'
2027  *     via OP_ALLOCATE.
2028  */
2029 
2030 static int
2031 pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2032 {
2033 	enum pmc_mode mode;
2034 	struct pmc *pm;
2035 	struct pmc_owner *po;
2036 	struct pmc_process *pp;
2037 
2038 	PMCDBG(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2039 	    "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2040 
2041 	/*
2042 	 * We shouldn't have already allocated a process-mode PMC at
2043 	 * row index 'ri'.
2044 	 *
2045 	 * We shouldn't have allocated a system-wide PMC on the same
2046 	 * CPU and same RI.
2047 	 */
2048 	if ((po = pmc_find_owner_descriptor(p)) != NULL)
2049 		LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2050 		    if (PMC_TO_ROWINDEX(pm) == ri) {
2051 			    mode = PMC_TO_MODE(pm);
2052 			    if (PMC_IS_VIRTUAL_MODE(mode))
2053 				    return EEXIST;
2054 			    if (PMC_IS_SYSTEM_MODE(mode) &&
2055 				(int) PMC_TO_CPU(pm) == cpu)
2056 				    return EEXIST;
2057 		    }
2058 	        }
2059 
2060 	/*
2061 	 * We also shouldn't be the target of any PMC at this index
2062 	 * since otherwise a PMC_ATTACH to ourselves will fail.
2063 	 */
2064 	if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2065 		if (pp->pp_pmcs[ri].pp_pmc)
2066 			return EEXIST;
2067 
2068 	PMCDBG(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2069 	    p, p->p_pid, p->p_comm, ri);
2070 
2071 	return 0;
2072 }
2073 
2074 /*
2075  * Check if a given PMC at row index 'ri' can be currently used in
2076  * mode 'mode'.
2077  */
2078 
2079 static int
2080 pmc_can_allocate_row(int ri, enum pmc_mode mode)
2081 {
2082 	enum pmc_disp	disp;
2083 
2084 	sx_assert(&pmc_sx, SX_XLOCKED);
2085 
2086 	PMCDBG(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2087 
2088 	if (PMC_IS_SYSTEM_MODE(mode))
2089 		disp = PMC_DISP_STANDALONE;
2090 	else
2091 		disp = PMC_DISP_THREAD;
2092 
2093 	/*
2094 	 * check disposition for PMC row 'ri':
2095 	 *
2096 	 * Expected disposition		Row-disposition		Result
2097 	 *
2098 	 * STANDALONE			STANDALONE or FREE	proceed
2099 	 * STANDALONE			THREAD			fail
2100 	 * THREAD			THREAD or FREE		proceed
2101 	 * THREAD			STANDALONE		fail
2102 	 */
2103 
2104 	if (!PMC_ROW_DISP_IS_FREE(ri) &&
2105 	    !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2106 	    !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2107 		return EBUSY;
2108 
2109 	/*
2110 	 * All OK
2111 	 */
2112 
2113 	PMCDBG(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2114 
2115 	return 0;
2116 
2117 }
2118 
2119 /*
2120  * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
2121  */
2122 
2123 static struct pmc *
2124 pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2125 {
2126 	struct pmc *pm;
2127 
2128 	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2129 	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2130 		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2131 
2132 	LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2133 	    if (pm->pm_id == pmcid)
2134 		    return pm;
2135 
2136 	return NULL;
2137 }
2138 
2139 static int
2140 pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
2141 {
2142 
2143 	struct pmc *pm;
2144 	struct pmc_owner *po;
2145 
2146 	PMCDBG(PMC,FND,1, "find-pmc id=%d", pmcid);
2147 
2148 	if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL)
2149 		return ESRCH;
2150 
2151 	if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
2152 		return EINVAL;
2153 
2154 	PMCDBG(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
2155 
2156 	*pmc = pm;
2157 	return 0;
2158 }
2159 
2160 /*
2161  * Start a PMC.
2162  */
2163 
2164 static int
2165 pmc_start(struct pmc *pm)
2166 {
2167 	int error, cpu, ri;
2168 	enum pmc_mode mode;
2169 	struct pmc_owner *po;
2170 	struct pmc_binding pb;
2171 
2172 	KASSERT(pm != NULL,
2173 	    ("[pmc,%d] null pm", __LINE__));
2174 
2175 	mode = PMC_TO_MODE(pm);
2176 	ri   = PMC_TO_ROWINDEX(pm);
2177 	error = 0;
2178 
2179 	PMCDBG(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
2180 
2181 	po = pm->pm_owner;
2182 
2183 	if (PMC_IS_VIRTUAL_MODE(mode)) {
2184 
2185 		/*
2186 		 * If a PMCATTACH has never been done on this PMC,
2187 		 * attach it to its owner process.
2188 		 */
2189 
2190 		if (LIST_EMPTY(&pm->pm_targets))
2191 			error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
2192 			    pmc_attach_process(po->po_owner, pm);
2193 
2194 		/*
2195 		 * Disallow PMCSTART if a logfile is required but has not
2196 		 * been configured yet.
2197 		 */
2198 
2199 		if (error == 0 && (pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
2200 		    (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
2201 			error = EDOOFUS;
2202 
2203 		/*
2204 		 * If the PMC is attached to its owner, then force a context
2205 		 * switch to ensure that the MD state gets set correctly.
2206 		 */
2207 
2208 		if (error == 0) {
2209 			pm->pm_state = PMC_STATE_RUNNING;
2210 			if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
2211 				pmc_force_context_switch();
2212 		}
2213 
2214 		return error;
2215 	}
2216 
2217 
2218 	/*
2219 	 * A system-wide PMC.
2220 	 */
2221 
2222 	if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
2223 	    (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
2224 		return EDOOFUS;	/* programming error */
2225 
2226 	/*
2227 	 * Add the owner to the global list if this is a system-wide
2228 	 * sampling PMC.
2229 	 */
2230 
2231 	if (mode == PMC_MODE_SS) {
2232 		if (po->po_sscount == 0) {
2233 			LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
2234 			atomic_add_rel_int(&pmc_ss_count, 1);
2235 			PMCDBG(PMC,OPS,1, "po=%p in global list", po);
2236 		}
2237 		po->po_sscount++;
2238 	}
2239 
2240 	/*
2241 	 * Move to the CPU associated with this
2242 	 * PMC, and start the hardware.
2243 	 */
2244 
2245 	pmc_save_cpu_binding(&pb);
2246 
2247 	cpu = PMC_TO_CPU(pm);
2248 
2249 	if (pmc_cpu_is_disabled(cpu))
2250 		return ENXIO;
2251 
2252 	pmc_select_cpu(cpu);
2253 
2254 	/*
2255 	 * global PMCs are configured at allocation time
2256 	 * so write out the initial value and start the PMC.
2257 	 */
2258 
2259 	pm->pm_state = PMC_STATE_RUNNING;
2260 
2261 	critical_enter();
2262 	if ((error = md->pmd_write_pmc(cpu, ri,
2263 		 PMC_IS_SAMPLING_MODE(mode) ?
2264 		 pm->pm_sc.pm_reloadcount :
2265 		 pm->pm_sc.pm_initial)) == 0)
2266 		error = md->pmd_start_pmc(cpu, ri);
2267 	critical_exit();
2268 
2269 	pmc_restore_cpu_binding(&pb);
2270 
2271 	return error;
2272 }
2273 
2274 /*
2275  * Stop a PMC.
2276  */
2277 
2278 static int
2279 pmc_stop(struct pmc *pm)
2280 {
2281 	int cpu, error, ri;
2282 	struct pmc_owner *po;
2283 	struct pmc_binding pb;
2284 
2285 	KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
2286 
2287 	PMCDBG(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
2288 	    PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
2289 
2290 	pm->pm_state = PMC_STATE_STOPPED;
2291 
2292 	/*
2293 	 * If the PMC is a virtual mode one, changing the state to
2294 	 * non-RUNNING is enough to ensure that the PMC never gets
2295 	 * scheduled.
2296 	 *
2297 	 * If this PMC is current running on a CPU, then it will
2298 	 * handled correctly at the time its target process is context
2299 	 * switched out.
2300 	 */
2301 
2302 	if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
2303 		return 0;
2304 
2305 	/*
2306 	 * A system-mode PMC.  Move to the CPU associated with
2307 	 * this PMC, and stop the hardware.  We update the
2308 	 * 'initial count' so that a subsequent PMCSTART will
2309 	 * resume counting from the current hardware count.
2310 	 */
2311 
2312 	pmc_save_cpu_binding(&pb);
2313 
2314 	cpu = PMC_TO_CPU(pm);
2315 
2316 	KASSERT(cpu >= 0 && cpu < mp_ncpus,
2317 	    ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
2318 
2319 	if (pmc_cpu_is_disabled(cpu))
2320 		return ENXIO;
2321 
2322 	pmc_select_cpu(cpu);
2323 
2324 	ri = PMC_TO_ROWINDEX(pm);
2325 
2326 	critical_enter();
2327 	if ((error = md->pmd_stop_pmc(cpu, ri)) == 0)
2328 		error = md->pmd_read_pmc(cpu, ri, &pm->pm_sc.pm_initial);
2329 	critical_exit();
2330 
2331 	pmc_restore_cpu_binding(&pb);
2332 
2333 	po = pm->pm_owner;
2334 
2335 	/* remove this owner from the global list of SS PMC owners */
2336 	if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
2337 		po->po_sscount--;
2338 		if (po->po_sscount == 0) {
2339 			atomic_subtract_rel_int(&pmc_ss_count, 1);
2340 			LIST_REMOVE(po, po_ssnext);
2341 			PMCDBG(PMC,OPS,2,"po=%p removed from global list", po);
2342 		}
2343 	}
2344 
2345 	return error;
2346 }
2347 
2348 
2349 #ifdef	DEBUG
2350 static const char *pmc_op_to_name[] = {
2351 #undef	__PMC_OP
2352 #define	__PMC_OP(N, D)	#N ,
2353 	__PMC_OPS()
2354 	NULL
2355 };
2356 #endif
2357 
2358 /*
2359  * The syscall interface
2360  */
2361 
2362 #define	PMC_GET_SX_XLOCK(...) do {		\
2363 	sx_xlock(&pmc_sx);			\
2364 	if (pmc_hook == NULL) {			\
2365 		sx_xunlock(&pmc_sx);		\
2366 		return __VA_ARGS__;		\
2367 	}					\
2368 } while (0)
2369 
2370 #define	PMC_DOWNGRADE_SX() do {			\
2371 	sx_downgrade(&pmc_sx);			\
2372 	is_sx_downgraded = 1;			\
2373 } while (0)
2374 
2375 static int
2376 pmc_syscall_handler(struct thread *td, void *syscall_args)
2377 {
2378 	int error, is_sx_downgraded, op;
2379 	struct pmc_syscall_args *c;
2380 	void *arg;
2381 
2382 	PMC_GET_SX_XLOCK(ENOSYS);
2383 
2384 	DROP_GIANT();
2385 
2386 	is_sx_downgraded = 0;
2387 
2388 	c = (struct pmc_syscall_args *) syscall_args;
2389 
2390 	op = c->pmop_code;
2391 	arg = c->pmop_data;
2392 
2393 	PMCDBG(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
2394 	    pmc_op_to_name[op], arg);
2395 
2396 	error = 0;
2397 	atomic_add_int(&pmc_stats.pm_syscalls, 1);
2398 
2399 	switch(op)
2400 	{
2401 
2402 
2403 	/*
2404 	 * Configure a log file.
2405 	 *
2406 	 * XXX This OP will be reworked.
2407 	 */
2408 
2409 	case PMC_OP_CONFIGURELOG:
2410 	{
2411 		struct pmc *pm;
2412 		struct pmc_owner *po;
2413 		struct pmc_op_configurelog cl;
2414 		struct proc *p;
2415 
2416 		sx_assert(&pmc_sx, SX_XLOCKED);
2417 
2418 		if ((error = copyin(arg, &cl, sizeof(cl))) != 0)
2419 			break;
2420 
2421 		/* mark this process as owning a log file */
2422 		p = td->td_proc;
2423 		if ((po = pmc_find_owner_descriptor(p)) == NULL)
2424 			if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
2425 				error = ENOMEM;
2426 				break;
2427 			}
2428 
2429 		/*
2430 		 * If a valid fd was passed in, try to configure that,
2431 		 * otherwise if 'fd' was less than zero and there was
2432 		 * a log file configured, flush its buffers and
2433 		 * de-configure it.
2434 		 */
2435 		if (cl.pm_logfd >= 0)
2436 			error = pmclog_configure_log(po, cl.pm_logfd);
2437 		else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
2438 			pmclog_process_closelog(po);
2439 			error = pmclog_flush(po);
2440 			if (error == 0) {
2441 				LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2442 				    if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
2443 					pm->pm_state == PMC_STATE_RUNNING)
2444 					    pmc_stop(pm);
2445 				error = pmclog_deconfigure_log(po);
2446 			}
2447 		} else
2448 			error = EINVAL;
2449 	}
2450 	break;
2451 
2452 
2453 	/*
2454 	 * Flush a log file.
2455 	 */
2456 
2457 	case PMC_OP_FLUSHLOG:
2458 	{
2459 		struct pmc_owner *po;
2460 
2461 		sx_assert(&pmc_sx, SX_XLOCKED);
2462 
2463 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2464 			error = EINVAL;
2465 			break;
2466 		}
2467 
2468 		error = pmclog_flush(po);
2469 	}
2470 	break;
2471 
2472 	/*
2473 	 * Retrieve hardware configuration.
2474 	 */
2475 
2476 	case PMC_OP_GETCPUINFO:	/* CPU information */
2477 	{
2478 		struct pmc_op_getcpuinfo gci;
2479 
2480 		gci.pm_cputype = md->pmd_cputype;
2481 		gci.pm_ncpu    = mp_ncpus;
2482 		gci.pm_npmc    = md->pmd_npmc;
2483 		gci.pm_nclass  = md->pmd_nclass;
2484 		bcopy(md->pmd_classes, &gci.pm_classes,
2485 		    sizeof(gci.pm_classes));
2486 		error = copyout(&gci, arg, sizeof(gci));
2487 	}
2488 	break;
2489 
2490 
2491 	/*
2492 	 * Get module statistics
2493 	 */
2494 
2495 	case PMC_OP_GETDRIVERSTATS:
2496 	{
2497 		struct pmc_op_getdriverstats gms;
2498 
2499 		bcopy(&pmc_stats, &gms, sizeof(gms));
2500 		error = copyout(&gms, arg, sizeof(gms));
2501 	}
2502 	break;
2503 
2504 
2505 	/*
2506 	 * Retrieve module version number
2507 	 */
2508 
2509 	case PMC_OP_GETMODULEVERSION:
2510 	{
2511 		uint32_t cv, modv;
2512 
2513 		/* retrieve the client's idea of the ABI version */
2514 		if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
2515 			break;
2516 		/* don't service clients newer than our driver */
2517 		modv = PMC_VERSION;
2518 		if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
2519 			error = EPROGMISMATCH;
2520 			break;
2521 		}
2522 		error = copyout(&modv, arg, sizeof(int));
2523 	}
2524 	break;
2525 
2526 
2527 	/*
2528 	 * Retrieve the state of all the PMCs on a given
2529 	 * CPU.
2530 	 */
2531 
2532 	case PMC_OP_GETPMCINFO:
2533 	{
2534 		uint32_t cpu, n, npmc;
2535 		size_t pmcinfo_size;
2536 		struct pmc *pm;
2537 		struct pmc_info *p, *pmcinfo;
2538 		struct pmc_op_getpmcinfo *gpi;
2539 		struct pmc_owner *po;
2540 		struct pmc_binding pb;
2541 
2542 		PMC_DOWNGRADE_SX();
2543 
2544 		gpi = (struct pmc_op_getpmcinfo *) arg;
2545 
2546 		if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
2547 			break;
2548 
2549 		if (cpu >= (unsigned int) mp_ncpus) {
2550 			error = EINVAL;
2551 			break;
2552 		}
2553 
2554 		if (pmc_cpu_is_disabled(cpu)) {
2555 			error = ENXIO;
2556 			break;
2557 		}
2558 
2559 		/* switch to CPU 'cpu' */
2560 		pmc_save_cpu_binding(&pb);
2561 		pmc_select_cpu(cpu);
2562 
2563 		npmc = md->pmd_npmc;
2564 
2565 		pmcinfo_size = npmc * sizeof(struct pmc_info);
2566 		MALLOC(pmcinfo, struct pmc_info *, pmcinfo_size, M_PMC,
2567 		    M_WAITOK);
2568 
2569 		p = pmcinfo;
2570 
2571 		for (n = 0; n < md->pmd_npmc; n++, p++) {
2572 
2573 			if ((error = md->pmd_describe(cpu, n, p, &pm)) != 0)
2574 				break;
2575 
2576 			if (PMC_ROW_DISP_IS_STANDALONE(n))
2577 				p->pm_rowdisp = PMC_DISP_STANDALONE;
2578 			else if (PMC_ROW_DISP_IS_THREAD(n))
2579 				p->pm_rowdisp = PMC_DISP_THREAD;
2580 			else
2581 				p->pm_rowdisp = PMC_DISP_FREE;
2582 
2583 			p->pm_ownerpid = -1;
2584 
2585 			if (pm == NULL)	/* no PMC associated */
2586 				continue;
2587 
2588 			po = pm->pm_owner;
2589 
2590 			KASSERT(po->po_owner != NULL,
2591 			    ("[pmc,%d] pmc_owner had a null proc pointer",
2592 				__LINE__));
2593 
2594 			p->pm_ownerpid = po->po_owner->p_pid;
2595 			p->pm_mode     = PMC_TO_MODE(pm);
2596 			p->pm_event    = pm->pm_event;
2597 			p->pm_flags    = pm->pm_flags;
2598 
2599 			if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
2600 				p->pm_reloadcount =
2601 				    pm->pm_sc.pm_reloadcount;
2602 		}
2603 
2604 		pmc_restore_cpu_binding(&pb);
2605 
2606 		/* now copy out the PMC info collected */
2607 		if (error == 0)
2608 			error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
2609 
2610 		FREE(pmcinfo, M_PMC);
2611 	}
2612 	break;
2613 
2614 
2615 	/*
2616 	 * Set the administrative state of a PMC.  I.e. whether
2617 	 * the PMC is to be used or not.
2618 	 */
2619 
2620 	case PMC_OP_PMCADMIN:
2621 	{
2622 		int cpu, ri;
2623 		enum pmc_state request;
2624 		struct pmc_cpu *pc;
2625 		struct pmc_hw *phw;
2626 		struct pmc_op_pmcadmin pma;
2627 		struct pmc_binding pb;
2628 
2629 		sx_assert(&pmc_sx, SX_XLOCKED);
2630 
2631 		KASSERT(td == curthread,
2632 		    ("[pmc,%d] td != curthread", __LINE__));
2633 
2634 		if (suser(td) || jailed(td->td_ucred)) {
2635 			error =  EPERM;
2636 			break;
2637 		}
2638 
2639 		if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
2640 			break;
2641 
2642 		cpu = pma.pm_cpu;
2643 
2644 		if (cpu < 0 || cpu >= mp_ncpus) {
2645 			error = EINVAL;
2646 			break;
2647 		}
2648 
2649 		if (pmc_cpu_is_disabled(cpu)) {
2650 			error = ENXIO;
2651 			break;
2652 		}
2653 
2654 		request = pma.pm_state;
2655 
2656 		if (request != PMC_STATE_DISABLED &&
2657 		    request != PMC_STATE_FREE) {
2658 			error = EINVAL;
2659 			break;
2660 		}
2661 
2662 		ri = pma.pm_pmc; /* pmc id == row index */
2663 		if (ri < 0 || ri >= (int) md->pmd_npmc) {
2664 			error = EINVAL;
2665 			break;
2666 		}
2667 
2668 		/*
2669 		 * We can't disable a PMC with a row-index allocated
2670 		 * for process virtual PMCs.
2671 		 */
2672 
2673 		if (PMC_ROW_DISP_IS_THREAD(ri) &&
2674 		    request == PMC_STATE_DISABLED) {
2675 			error = EBUSY;
2676 			break;
2677 		}
2678 
2679 		/*
2680 		 * otherwise, this PMC on this CPU is either free or
2681 		 * in system-wide mode.
2682 		 */
2683 
2684 		pmc_save_cpu_binding(&pb);
2685 		pmc_select_cpu(cpu);
2686 
2687 		pc  = pmc_pcpu[cpu];
2688 		phw = pc->pc_hwpmcs[ri];
2689 
2690 		/*
2691 		 * XXX do we need some kind of 'forced' disable?
2692 		 */
2693 
2694 		if (phw->phw_pmc == NULL) {
2695 			if (request == PMC_STATE_DISABLED &&
2696 			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
2697 				phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
2698 				PMC_MARK_ROW_STANDALONE(ri);
2699 			} else if (request == PMC_STATE_FREE &&
2700 			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
2701 				phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
2702 				PMC_UNMARK_ROW_STANDALONE(ri);
2703 			}
2704 			/* other cases are a no-op */
2705 		} else
2706 			error = EBUSY;
2707 
2708 		pmc_restore_cpu_binding(&pb);
2709 	}
2710 	break;
2711 
2712 
2713 	/*
2714 	 * Allocate a PMC.
2715 	 */
2716 
2717 	case PMC_OP_PMCALLOCATE:
2718 	{
2719 		uint32_t caps;
2720 		u_int cpu;
2721 		int n;
2722 		enum pmc_mode mode;
2723 		struct pmc *pmc;
2724 		struct pmc_hw *phw;
2725 		struct pmc_op_pmcallocate pa;
2726 		struct pmc_binding pb;
2727 
2728 		if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
2729 			break;
2730 
2731 		caps = pa.pm_caps;
2732 		mode = pa.pm_mode;
2733 		cpu  = pa.pm_cpu;
2734 
2735 		if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
2736 		     mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
2737 		    (cpu != (u_int) PMC_CPU_ANY && cpu >= (u_int) mp_ncpus)) {
2738 			error = EINVAL;
2739 			break;
2740 		}
2741 
2742 		/*
2743 		 * Virtual PMCs should only ask for a default CPU.
2744 		 * System mode PMCs need to specify a non-default CPU.
2745 		 */
2746 
2747 		if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
2748 		    (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
2749 			error = EINVAL;
2750 			break;
2751 		}
2752 
2753 		/*
2754 		 * Check that a disabled CPU is not being asked for.
2755 		 */
2756 
2757 		if (PMC_IS_SYSTEM_MODE(mode) && pmc_cpu_is_disabled(cpu)) {
2758 			error = ENXIO;
2759 			break;
2760 		}
2761 
2762 		/*
2763 		 * Refuse an allocation for a system-wide PMC if this
2764 		 * process has been jailed, or if this process lacks
2765 		 * super-user credentials and the sysctl tunable
2766 		 * 'security.bsd.unprivileged_syspmcs' is zero.
2767 		 */
2768 
2769 		if (PMC_IS_SYSTEM_MODE(mode)) {
2770 			if (jailed(curthread->td_ucred))
2771 				error = EPERM;
2772 			else if (suser(curthread) &&
2773 			    (pmc_unprivileged_syspmcs == 0))
2774 				error = EPERM;
2775 		}
2776 
2777 		if (error)
2778 			break;
2779 
2780 		/*
2781 		 * Look for valid values for 'pm_flags'
2782 		 */
2783 
2784 		if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
2785 		    PMC_F_LOG_PROCEXIT)) != 0) {
2786 			error = EINVAL;
2787 			break;
2788 		}
2789 
2790 		/* process logging options are not allowed for system PMCs */
2791 		if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
2792 		    (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
2793 			error = EINVAL;
2794 			break;
2795 		}
2796 
2797 		/*
2798 		 * All sampling mode PMCs need to be able to interrupt the
2799 		 * CPU.
2800 		 */
2801 		if (PMC_IS_SAMPLING_MODE(mode))
2802 			caps |= PMC_CAP_INTERRUPT;
2803 
2804 		/* A valid class specifier should have been passed in. */
2805 		for (n = 0; n < md->pmd_nclass; n++)
2806 			if (md->pmd_classes[n].pm_class == pa.pm_class)
2807 				break;
2808 		if (n == md->pmd_nclass) {
2809 			error = EINVAL;
2810 			break;
2811 		}
2812 
2813 		/* The requested PMC capabilities should be feasible. */
2814 		if ((md->pmd_classes[n].pm_caps & caps) != caps) {
2815 			error = EOPNOTSUPP;
2816 			break;
2817 		}
2818 
2819 		PMCDBG(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
2820 		    pa.pm_ev, caps, mode, cpu);
2821 
2822 		pmc = pmc_allocate_pmc_descriptor();
2823 		pmc->pm_id    = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
2824 		    PMC_ID_INVALID);
2825 		pmc->pm_event = pa.pm_ev;
2826 		pmc->pm_state = PMC_STATE_FREE;
2827 		pmc->pm_caps  = caps;
2828 		pmc->pm_flags = pa.pm_flags;
2829 
2830 		/* switch thread to CPU 'cpu' */
2831 		pmc_save_cpu_binding(&pb);
2832 
2833 #define	PMC_IS_SHAREABLE_PMC(cpu, n)				\
2834 	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &		\
2835 	 PMC_PHW_FLAG_IS_SHAREABLE)
2836 #define	PMC_IS_UNALLOCATED(cpu, n)				\
2837 	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
2838 
2839 		if (PMC_IS_SYSTEM_MODE(mode)) {
2840 			pmc_select_cpu(cpu);
2841 			for (n = 0; n < (int) md->pmd_npmc; n++)
2842 				if (pmc_can_allocate_row(n, mode) == 0 &&
2843 				    pmc_can_allocate_rowindex(
2844 					    curthread->td_proc, n, cpu) == 0 &&
2845 				    (PMC_IS_UNALLOCATED(cpu, n) ||
2846 				     PMC_IS_SHAREABLE_PMC(cpu, n)) &&
2847 				    md->pmd_allocate_pmc(cpu, n, pmc,
2848 					&pa) == 0)
2849 					break;
2850 		} else {
2851 			/* Process virtual mode */
2852 			for (n = 0; n < (int) md->pmd_npmc; n++) {
2853 				if (pmc_can_allocate_row(n, mode) == 0 &&
2854 				    pmc_can_allocate_rowindex(
2855 					    curthread->td_proc, n,
2856 					    PMC_CPU_ANY) == 0 &&
2857 				    md->pmd_allocate_pmc(curthread->td_oncpu,
2858 					n, pmc, &pa) == 0)
2859 					break;
2860 			}
2861 		}
2862 
2863 #undef	PMC_IS_UNALLOCATED
2864 #undef	PMC_IS_SHAREABLE_PMC
2865 
2866 		pmc_restore_cpu_binding(&pb);
2867 
2868 		if (n == (int) md->pmd_npmc) {
2869 			pmc_destroy_pmc_descriptor(pmc);
2870 			FREE(pmc, M_PMC);
2871 			pmc = NULL;
2872 			error = EINVAL;
2873 			break;
2874 		}
2875 
2876 		/* Fill in the correct value in the ID field */
2877 		pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
2878 
2879 		PMCDBG(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
2880 		    pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
2881 
2882 		/* Process mode PMCs with logging enabled need log files */
2883 		if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
2884 			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
2885 
2886 		/* All system mode sampling PMCs require a log file */
2887 		if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
2888 			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
2889 
2890 		/*
2891 		 * Configure global pmc's immediately
2892 		 */
2893 
2894 		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
2895 
2896 			pmc_save_cpu_binding(&pb);
2897 			pmc_select_cpu(cpu);
2898 
2899 			phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
2900 
2901 			if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
2902 			    (error = md->pmd_config_pmc(cpu, n, pmc)) != 0) {
2903 				(void) md->pmd_release_pmc(cpu, n, pmc);
2904 				pmc_destroy_pmc_descriptor(pmc);
2905 				FREE(pmc, M_PMC);
2906 				pmc = NULL;
2907 				pmc_restore_cpu_binding(&pb);
2908 				error = EPERM;
2909 				break;
2910 			}
2911 
2912 			pmc_restore_cpu_binding(&pb);
2913 		}
2914 
2915 		pmc->pm_state    = PMC_STATE_ALLOCATED;
2916 
2917 		/*
2918 		 * mark row disposition
2919 		 */
2920 
2921 		if (PMC_IS_SYSTEM_MODE(mode))
2922 			PMC_MARK_ROW_STANDALONE(n);
2923 		else
2924 			PMC_MARK_ROW_THREAD(n);
2925 
2926 		/*
2927 		 * Register this PMC with the current thread as its owner.
2928 		 */
2929 
2930 		if ((error =
2931 		    pmc_register_owner(curthread->td_proc, pmc)) != 0) {
2932 			pmc_release_pmc_descriptor(pmc);
2933 			FREE(pmc, M_PMC);
2934 			pmc = NULL;
2935 			break;
2936 		}
2937 
2938 		/*
2939 		 * Return the allocated index.
2940 		 */
2941 
2942 		pa.pm_pmcid = pmc->pm_id;
2943 
2944 		error = copyout(&pa, arg, sizeof(pa));
2945 	}
2946 	break;
2947 
2948 
2949 	/*
2950 	 * Attach a PMC to a process.
2951 	 */
2952 
2953 	case PMC_OP_PMCATTACH:
2954 	{
2955 		struct pmc *pm;
2956 		struct proc *p;
2957 		struct pmc_op_pmcattach a;
2958 
2959 		sx_assert(&pmc_sx, SX_XLOCKED);
2960 
2961 		if ((error = copyin(arg, &a, sizeof(a))) != 0)
2962 			break;
2963 
2964 		if (a.pm_pid < 0) {
2965 			error = EINVAL;
2966 			break;
2967 		} else if (a.pm_pid == 0)
2968 			a.pm_pid = td->td_proc->p_pid;
2969 
2970 		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
2971 			break;
2972 
2973 		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
2974 			error = EINVAL;
2975 			break;
2976 		}
2977 
2978 		/* PMCs may be (re)attached only when allocated or stopped */
2979 		if (pm->pm_state == PMC_STATE_RUNNING) {
2980 			error = EBUSY;
2981 			break;
2982 		} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
2983 		    pm->pm_state != PMC_STATE_STOPPED) {
2984 			error = EINVAL;
2985 			break;
2986 		}
2987 
2988 		/* lookup pid */
2989 		if ((p = pfind(a.pm_pid)) == NULL) {
2990 			error = ESRCH;
2991 			break;
2992 		}
2993 
2994 		/*
2995 		 * Ignore processes that are working on exiting.
2996 		 */
2997 		if (p->p_flag & P_WEXIT) {
2998 			error = ESRCH;
2999 			PROC_UNLOCK(p);	/* pfind() returns a locked process */
3000 			break;
3001 		}
3002 
3003 		/*
3004 		 * we are allowed to attach a PMC to a process if
3005 		 * we can debug it.
3006 		 */
3007 		error = p_candebug(curthread, p);
3008 
3009 		PROC_UNLOCK(p);
3010 
3011 		if (error == 0)
3012 			error = pmc_attach_process(p, pm);
3013 	}
3014 	break;
3015 
3016 
3017 	/*
3018 	 * Detach an attached PMC from a process.
3019 	 */
3020 
3021 	case PMC_OP_PMCDETACH:
3022 	{
3023 		struct pmc *pm;
3024 		struct proc *p;
3025 		struct pmc_op_pmcattach a;
3026 
3027 		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3028 			break;
3029 
3030 		if (a.pm_pid < 0) {
3031 			error = EINVAL;
3032 			break;
3033 		} else if (a.pm_pid == 0)
3034 			a.pm_pid = td->td_proc->p_pid;
3035 
3036 		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3037 			break;
3038 
3039 		if ((p = pfind(a.pm_pid)) == NULL) {
3040 			error = ESRCH;
3041 			break;
3042 		}
3043 
3044 		/*
3045 		 * Treat processes that are in the process of exiting
3046 		 * as if they were not present.
3047 		 */
3048 
3049 		if (p->p_flag & P_WEXIT)
3050 			error = ESRCH;
3051 
3052 		PROC_UNLOCK(p);	/* pfind() returns a locked process */
3053 
3054 		if (error == 0)
3055 			error = pmc_detach_process(p, pm);
3056 	}
3057 	break;
3058 
3059 
3060 	/*
3061 	 * Retrieve the MSR number associated with the counter
3062 	 * 'pmc_id'.  This allows processes to directly use RDPMC
3063 	 * instructions to read their PMCs, without the overhead of a
3064 	 * system call.
3065 	 */
3066 
3067 	case PMC_OP_PMCGETMSR:
3068 	{
3069 		int ri;
3070 		struct pmc	*pm;
3071 		struct pmc_target *pt;
3072 		struct pmc_op_getmsr gm;
3073 
3074 		PMC_DOWNGRADE_SX();
3075 
3076 		/* CPU has no 'GETMSR' support */
3077 		if (md->pmd_get_msr == NULL) {
3078 			error = ENOSYS;
3079 			break;
3080 		}
3081 
3082 		if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
3083 			break;
3084 
3085 		if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
3086 			break;
3087 
3088 		/*
3089 		 * The allocated PMC has to be a process virtual PMC,
3090 		 * i.e., of type MODE_T[CS].  Global PMCs can only be
3091 		 * read using the PMCREAD operation since they may be
3092 		 * allocated on a different CPU than the one we could
3093 		 * be running on at the time of the RDPMC instruction.
3094 		 *
3095 		 * The GETMSR operation is not allowed for PMCs that
3096 		 * are inherited across processes.
3097 		 */
3098 
3099 		if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
3100 		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
3101 			error = EINVAL;
3102 			break;
3103 		}
3104 
3105 		/*
3106 		 * It only makes sense to use a RDPMC (or its
3107 		 * equivalent instruction on non-x86 architectures) on
3108 		 * a process that has allocated and attached a PMC to
3109 		 * itself.  Conversely the PMC is only allowed to have
3110 		 * one process attached to it -- its owner.
3111 		 */
3112 
3113 		if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
3114 		    LIST_NEXT(pt, pt_next) != NULL ||
3115 		    pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
3116 			error = EINVAL;
3117 			break;
3118 		}
3119 
3120 		ri = PMC_TO_ROWINDEX(pm);
3121 
3122 		if ((error = (*md->pmd_get_msr)(ri, &gm.pm_msr)) < 0)
3123 			break;
3124 
3125 		if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
3126 			break;
3127 
3128 		/*
3129 		 * Mark our process as using MSRs.  Update machine
3130 		 * state using a forced context switch.
3131 		 */
3132 
3133 		pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
3134 		pmc_force_context_switch();
3135 
3136 	}
3137 	break;
3138 
3139 	/*
3140 	 * Release an allocated PMC
3141 	 */
3142 
3143 	case PMC_OP_PMCRELEASE:
3144 	{
3145 		pmc_id_t pmcid;
3146 		struct pmc *pm;
3147 		struct pmc_owner *po;
3148 		struct pmc_op_simple sp;
3149 
3150 		/*
3151 		 * Find PMC pointer for the named PMC.
3152 		 *
3153 		 * Use pmc_release_pmc_descriptor() to switch off the
3154 		 * PMC, remove all its target threads, and remove the
3155 		 * PMC from its owner's list.
3156 		 *
3157 		 * Remove the owner record if this is the last PMC
3158 		 * owned.
3159 		 *
3160 		 * Free up space.
3161 		 */
3162 
3163 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3164 			break;
3165 
3166 		pmcid = sp.pm_pmcid;
3167 
3168 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3169 			break;
3170 
3171 		po = pm->pm_owner;
3172 		pmc_release_pmc_descriptor(pm);
3173 		pmc_maybe_remove_owner(po);
3174 
3175 		FREE(pm, M_PMC);
3176 	}
3177 	break;
3178 
3179 
3180 	/*
3181 	 * Read and/or write a PMC.
3182 	 */
3183 
3184 	case PMC_OP_PMCRW:
3185 	{
3186 		uint32_t cpu, ri;
3187 		struct pmc *pm;
3188 		struct pmc_op_pmcrw *pprw;
3189 		struct pmc_op_pmcrw prw;
3190 		struct pmc_binding pb;
3191 		pmc_value_t oldvalue;
3192 
3193 		PMC_DOWNGRADE_SX();
3194 
3195 		if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
3196 			break;
3197 
3198 		ri = 0;
3199 		PMCDBG(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
3200 		    prw.pm_flags);
3201 
3202 		/* must have at least one flag set */
3203 		if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
3204 			error = EINVAL;
3205 			break;
3206 		}
3207 
3208 		/* locate pmc descriptor */
3209 		if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
3210 			break;
3211 
3212 		/* Can't read a PMC that hasn't been started. */
3213 		if (pm->pm_state != PMC_STATE_ALLOCATED &&
3214 		    pm->pm_state != PMC_STATE_STOPPED &&
3215 		    pm->pm_state != PMC_STATE_RUNNING) {
3216 			error = EINVAL;
3217 			break;
3218 		}
3219 
3220 		/* writing a new value is allowed only for 'STOPPED' pmcs */
3221 		if (pm->pm_state == PMC_STATE_RUNNING &&
3222 		    (prw.pm_flags & PMC_F_NEWVALUE)) {
3223 			error = EBUSY;
3224 			break;
3225 		}
3226 
3227 		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
3228 
3229 			/*
3230 			 * If this PMC is attached to its owner (i.e.,
3231 			 * the process requesting this operation) and
3232 			 * is running, then attempt to get an
3233 			 * upto-date reading from hardware for a READ.
3234 			 * Writes are only allowed when the PMC is
3235 			 * stopped, so only update the saved value
3236 			 * field.
3237 			 *
3238 			 * If the PMC is not running, or is not
3239 			 * attached to its owner, read/write to the
3240 			 * savedvalue field.
3241 			 */
3242 
3243 			ri = PMC_TO_ROWINDEX(pm);
3244 
3245 			mtx_pool_lock_spin(pmc_mtxpool, pm);
3246 			cpu = curthread->td_oncpu;
3247 
3248 			if (prw.pm_flags & PMC_F_OLDVALUE) {
3249 				if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
3250 				    (pm->pm_state == PMC_STATE_RUNNING))
3251 					error = (*md->pmd_read_pmc)(cpu, ri,
3252 					    &oldvalue);
3253 				else
3254 					oldvalue = pm->pm_gv.pm_savedvalue;
3255 			}
3256 			if (prw.pm_flags & PMC_F_NEWVALUE)
3257 				pm->pm_gv.pm_savedvalue = prw.pm_value;
3258 
3259 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
3260 
3261 		} else { /* System mode PMCs */
3262 			cpu = PMC_TO_CPU(pm);
3263 			ri  = PMC_TO_ROWINDEX(pm);
3264 
3265 			if (pmc_cpu_is_disabled(cpu)) {
3266 				error = ENXIO;
3267 				break;
3268 			}
3269 
3270 			/* move this thread to CPU 'cpu' */
3271 			pmc_save_cpu_binding(&pb);
3272 			pmc_select_cpu(cpu);
3273 
3274 			critical_enter();
3275 			/* save old value */
3276 			if (prw.pm_flags & PMC_F_OLDVALUE)
3277 				if ((error = (*md->pmd_read_pmc)(cpu, ri,
3278 					 &oldvalue)))
3279 					goto error;
3280 			/* write out new value */
3281 			if (prw.pm_flags & PMC_F_NEWVALUE)
3282 				error = (*md->pmd_write_pmc)(cpu, ri,
3283 				    prw.pm_value);
3284 		error:
3285 			critical_exit();
3286 			pmc_restore_cpu_binding(&pb);
3287 			if (error)
3288 				break;
3289 		}
3290 
3291 		pprw = (struct pmc_op_pmcrw *) arg;
3292 
3293 #ifdef	DEBUG
3294 		if (prw.pm_flags & PMC_F_NEWVALUE)
3295 			PMCDBG(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
3296 			    ri, prw.pm_value, oldvalue);
3297 		else if (prw.pm_flags & PMC_F_OLDVALUE)
3298 			PMCDBG(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
3299 #endif
3300 
3301 		/* return old value if requested */
3302 		if (prw.pm_flags & PMC_F_OLDVALUE)
3303 			if ((error = copyout(&oldvalue, &pprw->pm_value,
3304 				 sizeof(prw.pm_value))))
3305 				break;
3306 
3307 	}
3308 	break;
3309 
3310 
3311 	/*
3312 	 * Set the sampling rate for a sampling mode PMC and the
3313 	 * initial count for a counting mode PMC.
3314 	 */
3315 
3316 	case PMC_OP_PMCSETCOUNT:
3317 	{
3318 		struct pmc *pm;
3319 		struct pmc_op_pmcsetcount sc;
3320 
3321 		PMC_DOWNGRADE_SX();
3322 
3323 		if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
3324 			break;
3325 
3326 		if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
3327 			break;
3328 
3329 		if (pm->pm_state == PMC_STATE_RUNNING) {
3330 			error = EBUSY;
3331 			break;
3332 		}
3333 
3334 		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3335 			pm->pm_sc.pm_reloadcount = sc.pm_count;
3336 		else
3337 			pm->pm_sc.pm_initial = sc.pm_count;
3338 	}
3339 	break;
3340 
3341 
3342 	/*
3343 	 * Start a PMC.
3344 	 */
3345 
3346 	case PMC_OP_PMCSTART:
3347 	{
3348 		pmc_id_t pmcid;
3349 		struct pmc *pm;
3350 		struct pmc_op_simple sp;
3351 
3352 		sx_assert(&pmc_sx, SX_XLOCKED);
3353 
3354 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3355 			break;
3356 
3357 		pmcid = sp.pm_pmcid;
3358 
3359 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3360 			break;
3361 
3362 		KASSERT(pmcid == pm->pm_id,
3363 		    ("[pmc,%d] pmcid %x != id %x", __LINE__,
3364 			pm->pm_id, pmcid));
3365 
3366 		if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
3367 			break;
3368 		else if (pm->pm_state != PMC_STATE_STOPPED &&
3369 		    pm->pm_state != PMC_STATE_ALLOCATED) {
3370 			error = EINVAL;
3371 			break;
3372 		}
3373 
3374 		error = pmc_start(pm);
3375 	}
3376 	break;
3377 
3378 
3379 	/*
3380 	 * Stop a PMC.
3381 	 */
3382 
3383 	case PMC_OP_PMCSTOP:
3384 	{
3385 		pmc_id_t pmcid;
3386 		struct pmc *pm;
3387 		struct pmc_op_simple sp;
3388 
3389 		PMC_DOWNGRADE_SX();
3390 
3391 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3392 			break;
3393 
3394 		pmcid = sp.pm_pmcid;
3395 
3396 		/*
3397 		 * Mark the PMC as inactive and invoke the MD stop
3398 		 * routines if needed.
3399 		 */
3400 
3401 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3402 			break;
3403 
3404 		KASSERT(pmcid == pm->pm_id,
3405 		    ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
3406 			pm->pm_id, pmcid));
3407 
3408 		if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
3409 			break;
3410 		else if (pm->pm_state != PMC_STATE_RUNNING) {
3411 			error = EINVAL;
3412 			break;
3413 		}
3414 
3415 		error = pmc_stop(pm);
3416 	}
3417 	break;
3418 
3419 
3420 	/*
3421 	 * Write a user supplied value to the log file.
3422 	 */
3423 
3424 	case PMC_OP_WRITELOG:
3425 	{
3426 		struct pmc_op_writelog wl;
3427 		struct pmc_owner *po;
3428 
3429 		PMC_DOWNGRADE_SX();
3430 
3431 		if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
3432 			break;
3433 
3434 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3435 			error = EINVAL;
3436 			break;
3437 		}
3438 
3439 		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
3440 			error = EINVAL;
3441 			break;
3442 		}
3443 
3444 		error = pmclog_process_userlog(po, &wl);
3445 	}
3446 	break;
3447 
3448 
3449 	default:
3450 		error = EINVAL;
3451 		break;
3452 	}
3453 
3454 	if (is_sx_downgraded)
3455 		sx_sunlock(&pmc_sx);
3456 	else
3457 		sx_xunlock(&pmc_sx);
3458 
3459 	if (error)
3460 		atomic_add_int(&pmc_stats.pm_syscall_errors, 1);
3461 
3462 	PICKUP_GIANT();
3463 
3464 	return error;
3465 }
3466 
3467 /*
3468  * Helper functions
3469  */
3470 
3471 
3472 /*
3473  * Interrupt processing.
3474  *
3475  * Find a free slot in the per-cpu array of PC samples and write the
3476  * current (PMC,PID,PC) triple to it.  If an event was successfully
3477  * added, a bit is set in mask 'pmc_cpumask' denoting that the
3478  * DO_SAMPLES hook needs to be invoked from the clock handler.
3479  *
3480  * This function is meant to be called from an NMI handler.  It cannot
3481  * use any of the locking primitives supplied by the OS.
3482  */
3483 
3484 int
3485 pmc_process_interrupt(int cpu, struct pmc *pm, uintfptr_t pc, int usermode)
3486 {
3487 	int error, ri;
3488 	struct thread *td;
3489 	struct pmc_sample *ps;
3490 	struct pmc_samplebuffer *psb;
3491 
3492 	error = 0;
3493 	ri = PMC_TO_ROWINDEX(pm);
3494 
3495 	psb = pmc_pcpu[cpu]->pc_sb;
3496 
3497 	ps = psb->ps_write;
3498 	if (ps->ps_pc) {	/* in use, reader hasn't caught up */
3499 		pm->pm_stalled = 1;
3500 		atomic_add_int(&pmc_stats.pm_intr_bufferfull, 1);
3501 		PMCDBG(SAM,INT,1,"(spc) cpu=%d pm=%p pc=%jx um=%d wr=%d rd=%d",
3502 		    cpu, pm, (uint64_t) pc, usermode,
3503 		    (int) (psb->ps_write - psb->ps_samples),
3504 		    (int) (psb->ps_read - psb->ps_samples));
3505 		error = ENOMEM;
3506 		goto done;
3507 	}
3508 
3509 	/* fill in entry */
3510 	PMCDBG(SAM,INT,1,"cpu=%d pm=%p pc=%jx um=%d wr=%d rd=%d", cpu, pm,
3511 	    (uint64_t) pc, usermode,
3512 	    (int) (psb->ps_write - psb->ps_samples),
3513 	    (int) (psb->ps_read - psb->ps_samples));
3514 
3515 	atomic_add_rel_32(&pm->pm_runcount, 1);		/* hold onto PMC */
3516 	ps->ps_pmc = pm;
3517 	if ((td = curthread) && td->td_proc)
3518 		ps->ps_pid = td->td_proc->p_pid;
3519 	else
3520 		ps->ps_pid = -1;
3521 	ps->ps_usermode = usermode;
3522 	ps->ps_pc = pc;		/* mark entry as in use */
3523 
3524 	/* increment write pointer, modulo ring buffer size */
3525 	ps++;
3526 	if (ps == psb->ps_fence)
3527 		psb->ps_write = psb->ps_samples;
3528 	else
3529 		psb->ps_write = ps;
3530 
3531  done:
3532 	/* mark CPU as needing processing */
3533 	atomic_set_rel_int(&pmc_cpumask, (1 << cpu));
3534 
3535 	return error;
3536 }
3537 
3538 
3539 /*
3540  * Process saved PC samples.
3541  */
3542 
3543 static void
3544 pmc_process_samples(int cpu)
3545 {
3546 	int n, ri;
3547 	struct pmc *pm;
3548 	struct thread *td;
3549 	struct pmc_owner *po;
3550 	struct pmc_sample *ps;
3551 	struct pmc_samplebuffer *psb;
3552 
3553 	KASSERT(PCPU_GET(cpuid) == cpu,
3554 	    ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
3555 		PCPU_GET(cpuid), cpu));
3556 
3557 	psb = pmc_pcpu[cpu]->pc_sb;
3558 
3559 	for (n = 0; n < pmc_nsamples; n++) { /* bound on #iterations */
3560 
3561 		ps = psb->ps_read;
3562 		if (ps->ps_pc == (uintfptr_t) 0)	/* no data */
3563 			break;
3564 
3565 		pm = ps->ps_pmc;
3566 		po = pm->pm_owner;
3567 
3568 		KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
3569 		    ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
3570 			pm, PMC_TO_MODE(pm)));
3571 
3572 		/* Ignore PMCs that have been switched off */
3573 		if (pm->pm_state != PMC_STATE_RUNNING)
3574 			goto entrydone;
3575 
3576 		PMCDBG(SAM,OPS,1,"cpu=%d pm=%p pc=%jx um=%d wr=%d rd=%d", cpu,
3577 		    pm, (uint64_t) ps->ps_pc, ps->ps_usermode,
3578 		    (int) (psb->ps_write - psb->ps_samples),
3579 		    (int) (psb->ps_read - psb->ps_samples));
3580 
3581 		/*
3582 		 * If this is a process-mode PMC that is attached to
3583 		 * its owner, and if the PC is in user mode, update
3584 		 * profiling statistics like timer-based profiling
3585 		 * would have done.
3586 		 */
3587 		if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
3588 			if (ps->ps_usermode) {
3589 				td = FIRST_THREAD_IN_PROC(po->po_owner);
3590 				addupc_intr(td, ps->ps_pc, 1);
3591 			}
3592 			goto entrydone;
3593 		}
3594 
3595 		/*
3596 		 * Otherwise, this is either a sampling mode PMC that
3597 		 * is attached to a different process than its owner,
3598 		 * or a system-wide sampling PMC.  Dispatch a log
3599 		 * entry to the PMC's owner process.
3600 		 */
3601 
3602 		pmclog_process_pcsample(pm, ps);
3603 
3604 	entrydone:
3605 		ps->ps_pc = (uintfptr_t) 0;	/* mark entry as free */
3606 		atomic_subtract_rel_32(&pm->pm_runcount, 1);
3607 
3608 		/* increment read pointer, modulo sample size */
3609 		if (++ps == psb->ps_fence)
3610 			psb->ps_read = psb->ps_samples;
3611 		else
3612 			psb->ps_read = ps;
3613 	}
3614 
3615 	atomic_add_int(&pmc_stats.pm_log_sweeps, 1);
3616 
3617 	/* Do not re-enable stalled PMCs if we failed to process any samples */
3618 	if (n == 0)
3619 		return;
3620 
3621 	/*
3622 	 * Restart any stalled sampling PMCs on this CPU.
3623 	 *
3624 	 * If the NMI handler sets the pm_stalled field of a PMC after
3625 	 * the check below, we'll end up processing the stalled PMC at
3626 	 * the next hardclock tick.
3627 	 */
3628 	for (n = 0; n < md->pmd_npmc; n++) {
3629 		(void) (*md->pmd_get_config)(cpu,n,&pm);
3630 		if (pm == NULL ||			 /* !cfg'ed */
3631 		    pm->pm_state != PMC_STATE_RUNNING || /* !active */
3632 		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
3633 		    pm->pm_stalled == 0) /* !stalled */
3634 			continue;
3635 
3636 		pm->pm_stalled = 0;
3637 		ri = PMC_TO_ROWINDEX(pm);
3638 		(*md->pmd_start_pmc)(cpu, ri);
3639 	}
3640 }
3641 
3642 /*
3643  * Event handlers.
3644  */
3645 
3646 /*
3647  * Handle a process exit.
3648  *
3649  * Remove this process from all hash tables.  If this process
3650  * owned any PMCs, turn off those PMCs and deallocate them,
3651  * removing any associations with target processes.
3652  *
3653  * This function will be called by the last 'thread' of a
3654  * process.
3655  *
3656  * XXX This eventhandler gets called early in the exit process.
3657  * Consider using a 'hook' invocation from thread_exit() or equivalent
3658  * spot.  Another negative is that kse_exit doesn't seem to call
3659  * exit1() [??].
3660  *
3661  */
3662 
3663 static void
3664 pmc_process_exit(void *arg __unused, struct proc *p)
3665 {
3666 	int is_using_hwpmcs;
3667 	int cpu;
3668 	unsigned int ri;
3669 	struct pmc *pm;
3670 	struct pmc_process *pp;
3671 	struct pmc_owner *po;
3672 	pmc_value_t newvalue, tmp;
3673 
3674 	PROC_LOCK(p);
3675 	is_using_hwpmcs = p->p_flag & P_HWPMC;
3676 	PROC_UNLOCK(p);
3677 
3678 	/*
3679 	 * Log a sysexit event to all SS PMC owners.
3680 	 */
3681 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
3682 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
3683 		    pmclog_process_sysexit(po, p->p_pid);
3684 
3685 	if (!is_using_hwpmcs)
3686 		return;
3687 
3688 	PMC_GET_SX_XLOCK();
3689 	PMCDBG(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
3690 	    p->p_comm);
3691 
3692 	/*
3693 	 * Since this code is invoked by the last thread in an exiting
3694 	 * process, we would have context switched IN at some prior
3695 	 * point.  However, with PREEMPTION, kernel mode context
3696 	 * switches may happen any time, so we want to disable a
3697 	 * context switch OUT till we get any PMCs targetting this
3698 	 * process off the hardware.
3699 	 *
3700 	 * We also need to atomically remove this process'
3701 	 * entry from our target process hash table, using
3702 	 * PMC_FLAG_REMOVE.
3703 	 */
3704 	PMCDBG(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
3705 	    p->p_comm);
3706 
3707 	critical_enter(); /* no preemption */
3708 
3709 	cpu = curthread->td_oncpu;
3710 
3711 	if ((pp = pmc_find_process_descriptor(p,
3712 		 PMC_FLAG_REMOVE)) != NULL) {
3713 
3714 		PMCDBG(PRC,EXT,2,
3715 		    "process-exit proc=%p pmc-process=%p", p, pp);
3716 
3717 		/*
3718 		 * The exiting process could the target of
3719 		 * some PMCs which will be running on
3720 		 * currently executing CPU.
3721 		 *
3722 		 * We need to turn these PMCs off like we
3723 		 * would do at context switch OUT time.
3724 		 */
3725 		for (ri = 0; ri < md->pmd_npmc; ri++) {
3726 
3727 			/*
3728 			 * Pick up the pmc pointer from hardware
3729 			 * state similar to the CSW_OUT code.
3730 			 */
3731 			pm = NULL;
3732 			(void) (*md->pmd_get_config)(cpu, ri, &pm);
3733 
3734 			PMCDBG(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
3735 
3736 			if (pm == NULL ||
3737 			    !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
3738 				continue;
3739 
3740 			PMCDBG(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
3741 			    "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
3742 			    pm, pm->pm_state);
3743 
3744 			KASSERT(PMC_TO_ROWINDEX(pm) == ri,
3745 			    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
3746 				__LINE__, PMC_TO_ROWINDEX(pm), ri));
3747 
3748 			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
3749 			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
3750 				__LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
3751 
3752 			(void) md->pmd_stop_pmc(cpu, ri);
3753 
3754 			KASSERT(pm->pm_runcount > 0,
3755 			    ("[pmc,%d] bad runcount ri %d rc %d",
3756 				__LINE__, ri, pm->pm_runcount));
3757 
3758 			/* Stop hardware only if it is actually running */
3759 			if (pm->pm_state == PMC_STATE_RUNNING &&
3760 			    pm->pm_stalled == 0) {
3761 				md->pmd_read_pmc(cpu, ri, &newvalue);
3762 				tmp = newvalue -
3763 				    PMC_PCPU_SAVED(cpu,ri);
3764 
3765 				mtx_pool_lock_spin(pmc_mtxpool, pm);
3766 				pm->pm_gv.pm_savedvalue += tmp;
3767 				pp->pp_pmcs[ri].pp_pmcval += tmp;
3768 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
3769 			}
3770 
3771 			atomic_subtract_rel_32(&pm->pm_runcount,1);
3772 
3773 			KASSERT((int) pm->pm_runcount >= 0,
3774 			    ("[pmc,%d] runcount is %d", __LINE__, ri));
3775 
3776 			(void) md->pmd_config_pmc(cpu, ri, NULL);
3777 		}
3778 
3779 		/*
3780 		 * Inform the MD layer of this pseudo "context switch
3781 		 * out"
3782 		 */
3783 		(void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
3784 
3785 		critical_exit(); /* ok to be pre-empted now */
3786 
3787 		/*
3788 		 * Unlink this process from the PMCs that are
3789 		 * targetting it.  This will send a signal to
3790 		 * all PMC owner's whose PMCs are orphaned.
3791 		 *
3792 		 * Log PMC value at exit time if requested.
3793 		 */
3794 		for (ri = 0; ri < md->pmd_npmc; ri++)
3795 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
3796 				if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
3797 				    PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
3798 					pmclog_process_procexit(pm, pp);
3799 				pmc_unlink_target_process(pm, pp);
3800 			}
3801 		FREE(pp, M_PMC);
3802 
3803 	} else
3804 		critical_exit(); /* pp == NULL */
3805 
3806 
3807 	/*
3808 	 * If the process owned PMCs, free them up and free up
3809 	 * memory.
3810 	 */
3811 	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
3812 		pmc_remove_owner(po);
3813 		pmc_destroy_owner_descriptor(po);
3814 	}
3815 
3816 	sx_xunlock(&pmc_sx);
3817 }
3818 
3819 /*
3820  * Handle a process fork.
3821  *
3822  * If the parent process 'p1' is under HWPMC monitoring, then copy
3823  * over any attached PMCs that have 'do_descendants' semantics.
3824  */
3825 
3826 static void
3827 pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
3828     int flags)
3829 {
3830 	int is_using_hwpmcs;
3831 	unsigned int ri;
3832 	uint32_t do_descendants;
3833 	struct pmc *pm;
3834 	struct pmc_owner *po;
3835 	struct pmc_process *ppnew, *ppold;
3836 
3837 	(void) flags;		/* unused parameter */
3838 
3839 	PROC_LOCK(p1);
3840 	is_using_hwpmcs = p1->p_flag & P_HWPMC;
3841 	PROC_UNLOCK(p1);
3842 
3843 	/*
3844 	 * If there are system-wide sampling PMCs active, we need to
3845 	 * log all fork events to their owner's logs.
3846 	 */
3847 
3848 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
3849 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
3850 		    pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
3851 
3852 	if (!is_using_hwpmcs)
3853 		return;
3854 
3855 	PMC_GET_SX_XLOCK();
3856 	PMCDBG(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
3857 	    p1->p_pid, p1->p_comm, newproc);
3858 
3859 	/*
3860 	 * If the parent process (curthread->td_proc) is a
3861 	 * target of any PMCs, look for PMCs that are to be
3862 	 * inherited, and link these into the new process
3863 	 * descriptor.
3864 	 */
3865 	if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
3866 		 PMC_FLAG_NONE)) == NULL)
3867 		goto done;		/* nothing to do */
3868 
3869 	do_descendants = 0;
3870 	for (ri = 0; ri < md->pmd_npmc; ri++)
3871 		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
3872 			do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
3873 	if (do_descendants == 0) /* nothing to do */
3874 		goto done;
3875 
3876 	/* allocate a descriptor for the new process  */
3877 	if ((ppnew = pmc_find_process_descriptor(newproc,
3878 		 PMC_FLAG_ALLOCATE)) == NULL)
3879 		goto done;
3880 
3881 	/*
3882 	 * Run through all PMCs that were targeting the old process
3883 	 * and which specified F_DESCENDANTS and attach them to the
3884 	 * new process.
3885 	 *
3886 	 * Log the fork event to all owners of PMCs attached to this
3887 	 * process, if not already logged.
3888 	 */
3889 	for (ri = 0; ri < md->pmd_npmc; ri++)
3890 		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
3891 		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
3892 			pmc_link_target_process(pm, ppnew);
3893 			po = pm->pm_owner;
3894 			if (po->po_sscount == 0 &&
3895 			    po->po_flags & PMC_PO_OWNS_LOGFILE)
3896 				pmclog_process_procfork(po, p1->p_pid,
3897 				    newproc->p_pid);
3898 		}
3899 
3900 	/*
3901 	 * Now mark the new process as being tracked by this driver.
3902 	 */
3903 	PROC_LOCK(newproc);
3904 	newproc->p_flag |= P_HWPMC;
3905 	PROC_UNLOCK(newproc);
3906 
3907  done:
3908 	sx_xunlock(&pmc_sx);
3909 }
3910 
3911 
3912 /*
3913  * initialization
3914  */
3915 
3916 static const char *pmc_name_of_pmcclass[] = {
3917 #undef	__PMC_CLASS
3918 #define	__PMC_CLASS(N) #N ,
3919 	__PMC_CLASSES()
3920 };
3921 
3922 static int
3923 pmc_initialize(void)
3924 {
3925 	int cpu, error, n;
3926 	struct pmc_binding pb;
3927 	struct pmc_samplebuffer *sb;
3928 
3929 	md = NULL;
3930 	error = 0;
3931 
3932 #ifdef	DEBUG
3933 	/* parse debug flags first */
3934 	if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
3935 		pmc_debugstr, sizeof(pmc_debugstr)))
3936 		pmc_debugflags_parse(pmc_debugstr,
3937 		    pmc_debugstr+strlen(pmc_debugstr));
3938 #endif
3939 
3940 	PMCDBG(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
3941 
3942 	/* check kernel version */
3943 	if (pmc_kernel_version != PMC_VERSION) {
3944 		if (pmc_kernel_version == 0)
3945 			printf("hwpmc: this kernel has not been compiled with "
3946 			    "'options HWPMC_HOOKS'.\n");
3947 		else
3948 			printf("hwpmc: kernel version (0x%x) does not match "
3949 			    "module version (0x%x).\n", pmc_kernel_version,
3950 			    PMC_VERSION);
3951 		return EPROGMISMATCH;
3952 	}
3953 
3954 	/*
3955 	 * check sysctl parameters
3956 	 */
3957 
3958 	if (pmc_hashsize <= 0) {
3959 		(void) printf("hwpmc: tunable hashsize=%d must be greater "
3960 		    "than zero.\n", pmc_hashsize);
3961 		pmc_hashsize = PMC_HASH_SIZE;
3962 	}
3963 
3964 	if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
3965 		(void) printf("hwpmc: tunable nsamples=%d out of range.\n",
3966 		    pmc_nsamples);
3967 		pmc_nsamples = PMC_NSAMPLES;
3968 	}
3969 
3970 	md = pmc_md_initialize();
3971 
3972 	if (md == NULL || md->pmd_init == NULL)
3973 		return ENOSYS;
3974 
3975 	/* allocate space for the per-cpu array */
3976 	MALLOC(pmc_pcpu, struct pmc_cpu **, mp_ncpus * sizeof(struct pmc_cpu *),
3977 	    M_PMC, M_WAITOK|M_ZERO);
3978 
3979 	/* per-cpu 'saved values' for managing process-mode PMCs */
3980 	MALLOC(pmc_pcpu_saved, pmc_value_t *,
3981 	    sizeof(pmc_value_t) * mp_ncpus * md->pmd_npmc, M_PMC, M_WAITOK);
3982 
3983 	/* perform cpu dependent initialization */
3984 	pmc_save_cpu_binding(&pb);
3985 	for (cpu = 0; cpu < mp_ncpus; cpu++) {
3986 		if (pmc_cpu_is_disabled(cpu))
3987 			continue;
3988 		pmc_select_cpu(cpu);
3989 		if ((error = md->pmd_init(cpu)) != 0)
3990 			break;
3991 	}
3992 	pmc_restore_cpu_binding(&pb);
3993 
3994 	if (error != 0)
3995 		return error;
3996 
3997 	/* allocate space for the sample array */
3998 	for (cpu = 0; cpu < mp_ncpus; cpu++) {
3999 		if (pmc_cpu_is_disabled(cpu))
4000 			continue;
4001 		MALLOC(sb, struct pmc_samplebuffer *,
4002 		    sizeof(struct pmc_samplebuffer) +
4003 		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4004 		    M_WAITOK|M_ZERO);
4005 
4006 		sb->ps_read = sb->ps_write = sb->ps_samples;
4007 		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4008 		KASSERT(pmc_pcpu[cpu] != NULL,
4009 		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4010 
4011 		pmc_pcpu[cpu]->pc_sb = sb;
4012 	}
4013 
4014 	/* allocate space for the row disposition array */
4015 	pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
4016 	    M_PMC, M_WAITOK|M_ZERO);
4017 
4018 	KASSERT(pmc_pmcdisp != NULL,
4019 	    ("[pmc,%d] pmcdisp allocation returned NULL", __LINE__));
4020 
4021 	/* mark all PMCs as available */
4022 	for (n = 0; n < (int) md->pmd_npmc; n++)
4023 		PMC_MARK_ROW_FREE(n);
4024 
4025 	/* allocate thread hash tables */
4026 	pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
4027 	    &pmc_ownerhashmask);
4028 
4029 	pmc_processhash = hashinit(pmc_hashsize, M_PMC,
4030 	    &pmc_processhashmask);
4031 	mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc", MTX_SPIN);
4032 
4033 	LIST_INIT(&pmc_ss_owners);
4034 	pmc_ss_count = 0;
4035 
4036 	/* allocate a pool of spin mutexes */
4037 	pmc_mtxpool = mtx_pool_create("pmc", pmc_mtxpool_size, MTX_SPIN);
4038 
4039 	PMCDBG(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
4040 	    "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
4041 	    pmc_processhash, pmc_processhashmask);
4042 
4043 	/* register process {exit,fork,exec} handlers */
4044 	pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
4045 	    pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
4046 	pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
4047 	    pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
4048 
4049 	/* initialize logging */
4050 	pmclog_initialize();
4051 
4052 	/* set hook functions */
4053 	pmc_intr = md->pmd_intr;
4054 	pmc_hook = pmc_hook_handler;
4055 
4056 	if (error == 0) {
4057 		printf(PMC_MODULE_NAME ":");
4058 		for (n = 0; n < (int) md->pmd_nclass; n++) {
4059 			printf(" %s/%d/0x%b",
4060 			    pmc_name_of_pmcclass[md->pmd_classes[n].pm_class],
4061 			    md->pmd_nclasspmcs[n],
4062 			    md->pmd_classes[n].pm_caps,
4063 			    "\20"
4064 			    "\1INT\2USR\3SYS\4EDG\5THR"
4065 			    "\6REA\7WRI\10INV\11QUA\12PRC"
4066 			    "\13TAG\14CSC");
4067 		}
4068 		printf("\n");
4069 	}
4070 
4071 	return error;
4072 }
4073 
4074 /* prepare to be unloaded */
4075 static void
4076 pmc_cleanup(void)
4077 {
4078 	int cpu;
4079 	struct pmc_ownerhash *ph;
4080 	struct pmc_owner *po, *tmp;
4081 	struct pmc_binding pb;
4082 #ifdef	DEBUG
4083 	struct pmc_processhash *prh;
4084 #endif
4085 
4086 	PMCDBG(MOD,INI,0, "%s", "cleanup");
4087 
4088 	/* switch off sampling */
4089 	atomic_store_rel_int(&pmc_cpumask, 0);
4090 	pmc_intr = NULL;
4091 
4092 	sx_xlock(&pmc_sx);
4093 	if (pmc_hook == NULL) {	/* being unloaded already */
4094 		sx_xunlock(&pmc_sx);
4095 		return;
4096 	}
4097 
4098 	pmc_hook = NULL; /* prevent new threads from entering module */
4099 
4100 	/* deregister event handlers */
4101 	EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
4102 	EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
4103 
4104 	/* send SIGBUS to all owner threads, free up allocations */
4105 	if (pmc_ownerhash)
4106 		for (ph = pmc_ownerhash;
4107 		     ph <= &pmc_ownerhash[pmc_ownerhashmask];
4108 		     ph++) {
4109 			LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
4110 				pmc_remove_owner(po);
4111 
4112 				/* send SIGBUS to owner processes */
4113 				PMCDBG(MOD,INI,2, "cleanup signal proc=%p "
4114 				    "(%d, %s)", po->po_owner,
4115 				    po->po_owner->p_pid,
4116 				    po->po_owner->p_comm);
4117 
4118 				PROC_LOCK(po->po_owner);
4119 				psignal(po->po_owner, SIGBUS);
4120 				PROC_UNLOCK(po->po_owner);
4121 
4122 				pmc_destroy_owner_descriptor(po);
4123 			}
4124 		}
4125 
4126 	/* reclaim allocated data structures */
4127 	if (pmc_mtxpool)
4128 		mtx_pool_destroy(&pmc_mtxpool);
4129 
4130 	mtx_destroy(&pmc_processhash_mtx);
4131 	if (pmc_processhash) {
4132 #ifdef	DEBUG
4133 		struct pmc_process *pp;
4134 
4135 		PMCDBG(MOD,INI,3, "%s", "destroy process hash");
4136 		for (prh = pmc_processhash;
4137 		     prh <= &pmc_processhash[pmc_processhashmask];
4138 		     prh++)
4139 			LIST_FOREACH(pp, prh, pp_next)
4140 			    PMCDBG(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
4141 #endif
4142 
4143 		hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
4144 		pmc_processhash = NULL;
4145 	}
4146 
4147 	if (pmc_ownerhash) {
4148 		PMCDBG(MOD,INI,3, "%s", "destroy owner hash");
4149 		hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
4150 		pmc_ownerhash = NULL;
4151 	}
4152 
4153 	KASSERT(LIST_EMPTY(&pmc_ss_owners),
4154 	    ("[pmc,%d] Global SS owner list not empty", __LINE__));
4155 	KASSERT(pmc_ss_count == 0,
4156 	    ("[pmc,%d] Global SS count not empty", __LINE__));
4157 
4158 	/* free the per-cpu sample buffers */
4159 	for (cpu = 0; cpu < mp_ncpus; cpu++) {
4160 		if (pmc_cpu_is_disabled(cpu))
4161 			continue;
4162 		KASSERT(pmc_pcpu[cpu]->pc_sb != NULL,
4163 		    ("[pmc,%d] Null cpu sample buffer cpu=%d", __LINE__,
4164 			cpu));
4165 		FREE(pmc_pcpu[cpu]->pc_sb, M_PMC);
4166 		pmc_pcpu[cpu]->pc_sb = NULL;
4167 	}
4168 
4169  	/* do processor dependent cleanup */
4170 	PMCDBG(MOD,INI,3, "%s", "md cleanup");
4171 	if (md) {
4172 		pmc_save_cpu_binding(&pb);
4173 		for (cpu = 0; cpu < mp_ncpus; cpu++) {
4174 			PMCDBG(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
4175 			    cpu, pmc_pcpu[cpu]);
4176 			if (pmc_cpu_is_disabled(cpu))
4177 				continue;
4178 			pmc_select_cpu(cpu);
4179 			if (pmc_pcpu[cpu])
4180 				(void) md->pmd_cleanup(cpu);
4181 		}
4182 		FREE(md, M_PMC);
4183 		md = NULL;
4184 		pmc_restore_cpu_binding(&pb);
4185 	}
4186 
4187 	/* deallocate per-cpu structures */
4188 	FREE(pmc_pcpu, M_PMC);
4189 	pmc_pcpu = NULL;
4190 
4191 	FREE(pmc_pcpu_saved, M_PMC);
4192 	pmc_pcpu_saved = NULL;
4193 
4194 	if (pmc_pmcdisp) {
4195 		FREE(pmc_pmcdisp, M_PMC);
4196 		pmc_pmcdisp = NULL;
4197 	}
4198 
4199 	pmclog_shutdown();
4200 
4201 	sx_xunlock(&pmc_sx); 	/* we are done */
4202 }
4203 
4204 /*
4205  * The function called at load/unload.
4206  */
4207 
4208 static int
4209 load (struct module *module __unused, int cmd, void *arg __unused)
4210 {
4211 	int error;
4212 
4213 	error = 0;
4214 
4215 	switch (cmd) {
4216 	case MOD_LOAD :
4217 		/* initialize the subsystem */
4218 		error = pmc_initialize();
4219 		if (error != 0)
4220 			break;
4221 		PMCDBG(MOD,INI,1, "syscall=%d ncpus=%d",
4222 		    pmc_syscall_num, mp_ncpus);
4223 		break;
4224 
4225 
4226 	case MOD_UNLOAD :
4227 	case MOD_SHUTDOWN:
4228 		pmc_cleanup();
4229 		PMCDBG(MOD,INI,1, "%s", "unloaded");
4230 		break;
4231 
4232 	default :
4233 		error = EINVAL;	/* XXX should panic(9) */
4234 		break;
4235 	}
4236 
4237 	return error;
4238 }
4239 
4240 /* memory pool */
4241 MALLOC_DEFINE(M_PMC, "pmc", "Memory space for the PMC module");
4242