xref: /freebsd/sys/dev/hwpmc/hwpmc_mod.c (revision 7e00348e7605b9906601438008341ffc37c00e2c)
1 /*-
2  * Copyright (c) 2003-2008 Joseph Koshy
3  * Copyright (c) 2007 The FreeBSD Foundation
4  * All rights reserved.
5  *
6  * Portions of this software were developed by A. Joseph Koshy under
7  * sponsorship from the FreeBSD Foundation and Google, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/eventhandler.h>
37 #include <sys/jail.h>
38 #include <sys/kernel.h>
39 #include <sys/kthread.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/mount.h>
45 #include <sys/mutex.h>
46 #include <sys/pmc.h>
47 #include <sys/pmckern.h>
48 #include <sys/pmclog.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/resourcevar.h>
53 #include <sys/rwlock.h>
54 #include <sys/sched.h>
55 #include <sys/signalvar.h>
56 #include <sys/smp.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysent.h>
60 #include <sys/systm.h>
61 #include <sys/vnode.h>
62 
63 #include <sys/linker.h>		/* needs to be after <sys/malloc.h> */
64 
65 #include <machine/atomic.h>
66 #include <machine/md_var.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/pmap.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_object.h>
73 
74 #include "hwpmc_soft.h"
75 
76 /*
77  * Types
78  */
79 
80 enum pmc_flags {
81 	PMC_FLAG_NONE	  = 0x00, /* do nothing */
82 	PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
83 	PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
84 };
85 
86 /*
87  * The offset in sysent where the syscall is allocated.
88  */
89 
90 static int pmc_syscall_num = NO_SYSCALL;
91 struct pmc_cpu		**pmc_pcpu;	 /* per-cpu state */
92 pmc_value_t		*pmc_pcpu_saved; /* saved PMC values: CSW handling */
93 
94 #define	PMC_PCPU_SAVED(C,R)	pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
95 
96 struct mtx_pool		*pmc_mtxpool;
97 static int		*pmc_pmcdisp;	 /* PMC row dispositions */
98 
99 #define	PMC_ROW_DISP_IS_FREE(R)		(pmc_pmcdisp[(R)] == 0)
100 #define	PMC_ROW_DISP_IS_THREAD(R)	(pmc_pmcdisp[(R)] > 0)
101 #define	PMC_ROW_DISP_IS_STANDALONE(R)	(pmc_pmcdisp[(R)] < 0)
102 
103 #define	PMC_MARK_ROW_FREE(R) do {					  \
104 	pmc_pmcdisp[(R)] = 0;						  \
105 } while (0)
106 
107 #define	PMC_MARK_ROW_STANDALONE(R) do {					  \
108 	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
109 		    __LINE__));						  \
110 	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
111 	KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()),		  \
112 		("[pmc,%d] row disposition error", __LINE__));		  \
113 } while (0)
114 
115 #define	PMC_UNMARK_ROW_STANDALONE(R) do { 				  \
116 	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
117 	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
118 		    __LINE__));						  \
119 } while (0)
120 
121 #define	PMC_MARK_ROW_THREAD(R) do {					  \
122 	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
123 		    __LINE__));						  \
124 	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
125 } while (0)
126 
127 #define	PMC_UNMARK_ROW_THREAD(R) do {					  \
128 	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
129 	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
130 		    __LINE__));						  \
131 } while (0)
132 
133 
134 /* various event handlers */
135 static eventhandler_tag	pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
136     pmc_kld_unload_tag;
137 
138 /* Module statistics */
139 struct pmc_op_getdriverstats pmc_stats;
140 
141 /* Machine/processor dependent operations */
142 static struct pmc_mdep  *md;
143 
144 /*
145  * Hash tables mapping owner processes and target threads to PMCs.
146  */
147 
148 struct mtx pmc_processhash_mtx;		/* spin mutex */
149 static u_long pmc_processhashmask;
150 static LIST_HEAD(pmc_processhash, pmc_process)	*pmc_processhash;
151 
152 /*
153  * Hash table of PMC owner descriptors.  This table is protected by
154  * the shared PMC "sx" lock.
155  */
156 
157 static u_long pmc_ownerhashmask;
158 static LIST_HEAD(pmc_ownerhash, pmc_owner)	*pmc_ownerhash;
159 
160 /*
161  * List of PMC owners with system-wide sampling PMCs.
162  */
163 
164 static LIST_HEAD(, pmc_owner)			pmc_ss_owners;
165 
166 
167 /*
168  * A map of row indices to classdep structures.
169  */
170 static struct pmc_classdep **pmc_rowindex_to_classdep;
171 
172 /*
173  * Prototypes
174  */
175 
176 #ifdef	DEBUG
177 static int	pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
178 static int	pmc_debugflags_parse(char *newstr, char *fence);
179 #endif
180 
181 static int	load(struct module *module, int cmd, void *arg);
182 static int	pmc_attach_process(struct proc *p, struct pmc *pm);
183 static struct pmc *pmc_allocate_pmc_descriptor(void);
184 static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
185 static int	pmc_attach_one_process(struct proc *p, struct pmc *pm);
186 static int	pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
187     int cpu);
188 static int	pmc_can_attach(struct pmc *pm, struct proc *p);
189 static void	pmc_capture_user_callchain(int cpu, int soft, struct trapframe *tf);
190 static void	pmc_cleanup(void);
191 static int	pmc_detach_process(struct proc *p, struct pmc *pm);
192 static int	pmc_detach_one_process(struct proc *p, struct pmc *pm,
193     int flags);
194 static void	pmc_destroy_owner_descriptor(struct pmc_owner *po);
195 static void	pmc_destroy_pmc_descriptor(struct pmc *pm);
196 static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
197 static int	pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
198 static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
199     pmc_id_t pmc);
200 static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
201     uint32_t mode);
202 static void	pmc_force_context_switch(void);
203 static void	pmc_link_target_process(struct pmc *pm,
204     struct pmc_process *pp);
205 static void	pmc_log_all_process_mappings(struct pmc_owner *po);
206 static void	pmc_log_kernel_mappings(struct pmc *pm);
207 static void	pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
208 static void	pmc_maybe_remove_owner(struct pmc_owner *po);
209 static void	pmc_process_csw_in(struct thread *td);
210 static void	pmc_process_csw_out(struct thread *td);
211 static void	pmc_process_exit(void *arg, struct proc *p);
212 static void	pmc_process_fork(void *arg, struct proc *p1,
213     struct proc *p2, int n);
214 static void	pmc_process_samples(int cpu, int soft);
215 static void	pmc_release_pmc_descriptor(struct pmc *pmc);
216 static void	pmc_remove_owner(struct pmc_owner *po);
217 static void	pmc_remove_process_descriptor(struct pmc_process *pp);
218 static void	pmc_restore_cpu_binding(struct pmc_binding *pb);
219 static void	pmc_save_cpu_binding(struct pmc_binding *pb);
220 static void	pmc_select_cpu(int cpu);
221 static int	pmc_start(struct pmc *pm);
222 static int	pmc_stop(struct pmc *pm);
223 static int	pmc_syscall_handler(struct thread *td, void *syscall_args);
224 static void	pmc_unlink_target_process(struct pmc *pmc,
225     struct pmc_process *pp);
226 static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
227 static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
228 static struct pmc_mdep *pmc_generic_cpu_initialize(void);
229 static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
230 
231 /*
232  * Kernel tunables and sysctl(8) interface.
233  */
234 
235 SYSCTL_DECL(_kern_hwpmc);
236 
237 static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
238 SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_RDTUN,
239     &pmc_callchaindepth, 0, "depth of call chain records");
240 
241 #ifdef	DEBUG
242 struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
243 char	pmc_debugstr[PMC_DEBUG_STRSIZE];
244 TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
245     sizeof(pmc_debugstr));
246 SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
247     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
248     0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
249 #endif
250 
251 /*
252  * kern.hwpmc.hashrows -- determines the number of rows in the
253  * of the hash table used to look up threads
254  */
255 
256 static int pmc_hashsize = PMC_HASH_SIZE;
257 SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_RDTUN,
258     &pmc_hashsize, 0, "rows in hash tables");
259 
260 /*
261  * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
262  */
263 
264 static int pmc_nsamples = PMC_NSAMPLES;
265 SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_RDTUN,
266     &pmc_nsamples, 0, "number of PC samples per CPU");
267 
268 
269 /*
270  * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
271  */
272 
273 static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
274 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_RDTUN,
275     &pmc_mtxpool_size, 0, "size of spin mutex pool");
276 
277 
278 /*
279  * security.bsd.unprivileged_syspmcs -- allow non-root processes to
280  * allocate system-wide PMCs.
281  *
282  * Allowing unprivileged processes to allocate system PMCs is convenient
283  * if system-wide measurements need to be taken concurrently with other
284  * per-process measurements.  This feature is turned off by default.
285  */
286 
287 static int pmc_unprivileged_syspmcs = 0;
288 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RWTUN,
289     &pmc_unprivileged_syspmcs, 0,
290     "allow unprivileged process to allocate system PMCs");
291 
292 /*
293  * Hash function.  Discard the lower 2 bits of the pointer since
294  * these are always zero for our uses.  The hash multiplier is
295  * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
296  */
297 
298 #if	LONG_BIT == 64
299 #define	_PMC_HM		11400714819323198486u
300 #elif	LONG_BIT == 32
301 #define	_PMC_HM		2654435769u
302 #else
303 #error 	Must know the size of 'long' to compile
304 #endif
305 
306 #define	PMC_HASH_PTR(P,M)	((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
307 
308 /*
309  * Syscall structures
310  */
311 
312 /* The `sysent' for the new syscall */
313 static struct sysent pmc_sysent = {
314 	2,			/* sy_narg */
315 	pmc_syscall_handler	/* sy_call */
316 };
317 
318 static struct syscall_module_data pmc_syscall_mod = {
319 	load,
320 	NULL,
321 	&pmc_syscall_num,
322 	&pmc_sysent,
323 	{ 0, NULL },
324 	SY_THR_STATIC_KLD,
325 };
326 
327 static moduledata_t pmc_mod = {
328 	PMC_MODULE_NAME,
329 	syscall_module_handler,
330 	&pmc_syscall_mod
331 };
332 
333 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
334 MODULE_VERSION(pmc, PMC_VERSION);
335 
336 #ifdef	DEBUG
337 enum pmc_dbgparse_state {
338 	PMCDS_WS,		/* in whitespace */
339 	PMCDS_MAJOR,		/* seen a major keyword */
340 	PMCDS_MINOR
341 };
342 
343 static int
344 pmc_debugflags_parse(char *newstr, char *fence)
345 {
346 	char c, *p, *q;
347 	struct pmc_debugflags *tmpflags;
348 	int error, found, *newbits, tmp;
349 	size_t kwlen;
350 
351 	tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO);
352 
353 	p = newstr;
354 	error = 0;
355 
356 	for (; p < fence && (c = *p); p++) {
357 
358 		/* skip white space */
359 		if (c == ' ' || c == '\t')
360 			continue;
361 
362 		/* look for a keyword followed by "=" */
363 		for (q = p; p < fence && (c = *p) && c != '='; p++)
364 			;
365 		if (c != '=') {
366 			error = EINVAL;
367 			goto done;
368 		}
369 
370 		kwlen = p - q;
371 		newbits = NULL;
372 
373 		/* lookup flag group name */
374 #define	DBG_SET_FLAG_MAJ(S,F)						\
375 		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
376 			newbits = &tmpflags->pdb_ ## F;
377 
378 		DBG_SET_FLAG_MAJ("cpu",		CPU);
379 		DBG_SET_FLAG_MAJ("csw",		CSW);
380 		DBG_SET_FLAG_MAJ("logging",	LOG);
381 		DBG_SET_FLAG_MAJ("module",	MOD);
382 		DBG_SET_FLAG_MAJ("md", 		MDP);
383 		DBG_SET_FLAG_MAJ("owner",	OWN);
384 		DBG_SET_FLAG_MAJ("pmc",		PMC);
385 		DBG_SET_FLAG_MAJ("process",	PRC);
386 		DBG_SET_FLAG_MAJ("sampling", 	SAM);
387 
388 		if (newbits == NULL) {
389 			error = EINVAL;
390 			goto done;
391 		}
392 
393 		p++;		/* skip the '=' */
394 
395 		/* Now parse the individual flags */
396 		tmp = 0;
397 	newflag:
398 		for (q = p; p < fence && (c = *p); p++)
399 			if (c == ' ' || c == '\t' || c == ',')
400 				break;
401 
402 		/* p == fence or c == ws or c == "," or c == 0 */
403 
404 		if ((kwlen = p - q) == 0) {
405 			*newbits = tmp;
406 			continue;
407 		}
408 
409 		found = 0;
410 #define	DBG_SET_FLAG_MIN(S,F)						\
411 		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
412 			tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
413 
414 		/* a '*' denotes all possible flags in the group */
415 		if (kwlen == 1 && *q == '*')
416 			tmp = found = ~0;
417 		/* look for individual flag names */
418 		DBG_SET_FLAG_MIN("allocaterow", ALR);
419 		DBG_SET_FLAG_MIN("allocate",	ALL);
420 		DBG_SET_FLAG_MIN("attach",	ATT);
421 		DBG_SET_FLAG_MIN("bind",	BND);
422 		DBG_SET_FLAG_MIN("config",	CFG);
423 		DBG_SET_FLAG_MIN("exec",	EXC);
424 		DBG_SET_FLAG_MIN("exit",	EXT);
425 		DBG_SET_FLAG_MIN("find",	FND);
426 		DBG_SET_FLAG_MIN("flush",	FLS);
427 		DBG_SET_FLAG_MIN("fork",	FRK);
428 		DBG_SET_FLAG_MIN("getbuf",	GTB);
429 		DBG_SET_FLAG_MIN("hook",	PMH);
430 		DBG_SET_FLAG_MIN("init",	INI);
431 		DBG_SET_FLAG_MIN("intr",	INT);
432 		DBG_SET_FLAG_MIN("linktarget",	TLK);
433 		DBG_SET_FLAG_MIN("mayberemove", OMR);
434 		DBG_SET_FLAG_MIN("ops",		OPS);
435 		DBG_SET_FLAG_MIN("read",	REA);
436 		DBG_SET_FLAG_MIN("register",	REG);
437 		DBG_SET_FLAG_MIN("release",	REL);
438 		DBG_SET_FLAG_MIN("remove",	ORM);
439 		DBG_SET_FLAG_MIN("sample",	SAM);
440 		DBG_SET_FLAG_MIN("scheduleio",	SIO);
441 		DBG_SET_FLAG_MIN("select",	SEL);
442 		DBG_SET_FLAG_MIN("signal",	SIG);
443 		DBG_SET_FLAG_MIN("swi",		SWI);
444 		DBG_SET_FLAG_MIN("swo",		SWO);
445 		DBG_SET_FLAG_MIN("start",	STA);
446 		DBG_SET_FLAG_MIN("stop",	STO);
447 		DBG_SET_FLAG_MIN("syscall",	PMS);
448 		DBG_SET_FLAG_MIN("unlinktarget", TUL);
449 		DBG_SET_FLAG_MIN("write",	WRI);
450 		if (found == 0) {
451 			/* unrecognized flag name */
452 			error = EINVAL;
453 			goto done;
454 		}
455 
456 		if (c == 0 || c == ' ' || c == '\t') {	/* end of flag group */
457 			*newbits = tmp;
458 			continue;
459 		}
460 
461 		p++;
462 		goto newflag;
463 	}
464 
465 	/* save the new flag set */
466 	bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
467 
468  done:
469 	free(tmpflags, M_PMC);
470 	return error;
471 }
472 
473 static int
474 pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
475 {
476 	char *fence, *newstr;
477 	int error;
478 	unsigned int n;
479 
480 	(void) arg1; (void) arg2; /* unused parameters */
481 
482 	n = sizeof(pmc_debugstr);
483 	newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO);
484 	(void) strlcpy(newstr, pmc_debugstr, n);
485 
486 	error = sysctl_handle_string(oidp, newstr, n, req);
487 
488 	/* if there is a new string, parse and copy it */
489 	if (error == 0 && req->newptr != NULL) {
490 		fence = newstr + (n < req->newlen ? n : req->newlen + 1);
491 		if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
492 			(void) strlcpy(pmc_debugstr, newstr,
493 			    sizeof(pmc_debugstr));
494 	}
495 
496 	free(newstr, M_PMC);
497 
498 	return error;
499 }
500 #endif
501 
502 /*
503  * Map a row index to a classdep structure and return the adjusted row
504  * index for the PMC class index.
505  */
506 static struct pmc_classdep *
507 pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri)
508 {
509 	struct pmc_classdep *pcd;
510 
511 	(void) md;
512 
513 	KASSERT(ri >= 0 && ri < md->pmd_npmc,
514 	    ("[pmc,%d] illegal row-index %d", __LINE__, ri));
515 
516 	pcd = pmc_rowindex_to_classdep[ri];
517 
518 	KASSERT(pcd != NULL,
519 	    ("[pmc,%d] ri %d null pcd", __LINE__, ri));
520 
521 	*adjri = ri - pcd->pcd_ri;
522 
523 	KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
524 	    ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
525 
526 	return (pcd);
527 }
528 
529 /*
530  * Concurrency Control
531  *
532  * The driver manages the following data structures:
533  *
534  *   - target process descriptors, one per target process
535  *   - owner process descriptors (and attached lists), one per owner process
536  *   - lookup hash tables for owner and target processes
537  *   - PMC descriptors (and attached lists)
538  *   - per-cpu hardware state
539  *   - the 'hook' variable through which the kernel calls into
540  *     this module
541  *   - the machine hardware state (managed by the MD layer)
542  *
543  * These data structures are accessed from:
544  *
545  * - thread context-switch code
546  * - interrupt handlers (possibly on multiple cpus)
547  * - kernel threads on multiple cpus running on behalf of user
548  *   processes doing system calls
549  * - this driver's private kernel threads
550  *
551  * = Locks and Locking strategy =
552  *
553  * The driver uses four locking strategies for its operation:
554  *
555  * - The global SX lock "pmc_sx" is used to protect internal
556  *   data structures.
557  *
558  *   Calls into the module by syscall() start with this lock being
559  *   held in exclusive mode.  Depending on the requested operation,
560  *   the lock may be downgraded to 'shared' mode to allow more
561  *   concurrent readers into the module.  Calls into the module from
562  *   other parts of the kernel acquire the lock in shared mode.
563  *
564  *   This SX lock is held in exclusive mode for any operations that
565  *   modify the linkages between the driver's internal data structures.
566  *
567  *   The 'pmc_hook' function pointer is also protected by this lock.
568  *   It is only examined with the sx lock held in exclusive mode.  The
569  *   kernel module is allowed to be unloaded only with the sx lock held
570  *   in exclusive mode.  In normal syscall handling, after acquiring the
571  *   pmc_sx lock we first check that 'pmc_hook' is non-null before
572  *   proceeding.  This prevents races between the thread unloading the module
573  *   and other threads seeking to use the module.
574  *
575  * - Lookups of target process structures and owner process structures
576  *   cannot use the global "pmc_sx" SX lock because these lookups need
577  *   to happen during context switches and in other critical sections
578  *   where sleeping is not allowed.  We protect these lookup tables
579  *   with their own private spin-mutexes, "pmc_processhash_mtx" and
580  *   "pmc_ownerhash_mtx".
581  *
582  * - Interrupt handlers work in a lock free manner.  At interrupt
583  *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
584  *   when the PMC was started.  If this pointer is NULL, the interrupt
585  *   is ignored after updating driver statistics.  We ensure that this
586  *   pointer is set (using an atomic operation if necessary) before the
587  *   PMC hardware is started.  Conversely, this pointer is unset atomically
588  *   only after the PMC hardware is stopped.
589  *
590  *   We ensure that everything needed for the operation of an
591  *   interrupt handler is available without it needing to acquire any
592  *   locks.  We also ensure that a PMC's software state is destroyed only
593  *   after the PMC is taken off hardware (on all CPUs).
594  *
595  * - Context-switch handling with process-private PMCs needs more
596  *   care.
597  *
598  *   A given process may be the target of multiple PMCs.  For example,
599  *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
600  *   while the target process is running on another.  A PMC could also
601  *   be getting released because its owner is exiting.  We tackle
602  *   these situations in the following manner:
603  *
604  *   - each target process structure 'pmc_process' has an array
605  *     of 'struct pmc *' pointers, one for each hardware PMC.
606  *
607  *   - At context switch IN time, each "target" PMC in RUNNING state
608  *     gets started on hardware and a pointer to each PMC is copied into
609  *     the per-cpu phw array.  The 'runcount' for the PMC is
610  *     incremented.
611  *
612  *   - At context switch OUT time, all process-virtual PMCs are stopped
613  *     on hardware.  The saved value is added to the PMCs value field
614  *     only if the PMC is in a non-deleted state (the PMCs state could
615  *     have changed during the current time slice).
616  *
617  *     Note that since in-between a switch IN on a processor and a switch
618  *     OUT, the PMC could have been released on another CPU.  Therefore
619  *     context switch OUT always looks at the hardware state to turn
620  *     OFF PMCs and will update a PMC's saved value only if reachable
621  *     from the target process record.
622  *
623  *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
624  *     be attached to many processes at the time of the call and could
625  *     be active on multiple CPUs).
626  *
627  *     We prevent further scheduling of the PMC by marking it as in
628  *     state 'DELETED'.  If the runcount of the PMC is non-zero then
629  *     this PMC is currently running on a CPU somewhere.  The thread
630  *     doing the PMCRELEASE operation waits by repeatedly doing a
631  *     pause() till the runcount comes to zero.
632  *
633  * The contents of a PMC descriptor (struct pmc) are protected using
634  * a spin-mutex.  In order to save space, we use a mutex pool.
635  *
636  * In terms of lock types used by witness(4), we use:
637  * - Type "pmc-sx", used by the global SX lock.
638  * - Type "pmc-sleep", for sleep mutexes used by logger threads.
639  * - Type "pmc-per-proc", for protecting PMC owner descriptors.
640  * - Type "pmc-leaf", used for all other spin mutexes.
641  */
642 
643 /*
644  * save the cpu binding of the current kthread
645  */
646 
647 static void
648 pmc_save_cpu_binding(struct pmc_binding *pb)
649 {
650 	PMCDBG(CPU,BND,2, "%s", "save-cpu");
651 	thread_lock(curthread);
652 	pb->pb_bound = sched_is_bound(curthread);
653 	pb->pb_cpu   = curthread->td_oncpu;
654 	thread_unlock(curthread);
655 	PMCDBG(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
656 }
657 
658 /*
659  * restore the cpu binding of the current thread
660  */
661 
662 static void
663 pmc_restore_cpu_binding(struct pmc_binding *pb)
664 {
665 	PMCDBG(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
666 	    curthread->td_oncpu, pb->pb_cpu);
667 	thread_lock(curthread);
668 	if (pb->pb_bound)
669 		sched_bind(curthread, pb->pb_cpu);
670 	else
671 		sched_unbind(curthread);
672 	thread_unlock(curthread);
673 	PMCDBG(CPU,BND,2, "%s", "restore-cpu done");
674 }
675 
676 /*
677  * move execution over the specified cpu and bind it there.
678  */
679 
680 static void
681 pmc_select_cpu(int cpu)
682 {
683 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
684 	    ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
685 
686 	/* Never move to an inactive CPU. */
687 	KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
688 	    "CPU %d", __LINE__, cpu));
689 
690 	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d", cpu);
691 	thread_lock(curthread);
692 	sched_bind(curthread, cpu);
693 	thread_unlock(curthread);
694 
695 	KASSERT(curthread->td_oncpu == cpu,
696 	    ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
697 		cpu, curthread->td_oncpu));
698 
699 	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
700 }
701 
702 /*
703  * Force a context switch.
704  *
705  * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
706  * guaranteed to force a context switch.
707  */
708 
709 static void
710 pmc_force_context_switch(void)
711 {
712 
713 	pause("pmcctx", 1);
714 }
715 
716 /*
717  * Get the file name for an executable.  This is a simple wrapper
718  * around vn_fullpath(9).
719  */
720 
721 static void
722 pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
723 {
724 
725 	*fullpath = "unknown";
726 	*freepath = NULL;
727 	vn_fullpath(curthread, v, fullpath, freepath);
728 }
729 
730 /*
731  * remove an process owning PMCs
732  */
733 
734 void
735 pmc_remove_owner(struct pmc_owner *po)
736 {
737 	struct pmc *pm, *tmp;
738 
739 	sx_assert(&pmc_sx, SX_XLOCKED);
740 
741 	PMCDBG(OWN,ORM,1, "remove-owner po=%p", po);
742 
743 	/* Remove descriptor from the owner hash table */
744 	LIST_REMOVE(po, po_next);
745 
746 	/* release all owned PMC descriptors */
747 	LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
748 		PMCDBG(OWN,ORM,2, "pmc=%p", pm);
749 		KASSERT(pm->pm_owner == po,
750 		    ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
751 
752 		pmc_release_pmc_descriptor(pm);	/* will unlink from the list */
753 		pmc_destroy_pmc_descriptor(pm);
754 	}
755 
756 	KASSERT(po->po_sscount == 0,
757 	    ("[pmc,%d] SS count not zero", __LINE__));
758 	KASSERT(LIST_EMPTY(&po->po_pmcs),
759 	    ("[pmc,%d] PMC list not empty", __LINE__));
760 
761 	/* de-configure the log file if present */
762 	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
763 		pmclog_deconfigure_log(po);
764 }
765 
766 /*
767  * remove an owner process record if all conditions are met.
768  */
769 
770 static void
771 pmc_maybe_remove_owner(struct pmc_owner *po)
772 {
773 
774 	PMCDBG(OWN,OMR,1, "maybe-remove-owner po=%p", po);
775 
776 	/*
777 	 * Remove owner record if
778 	 * - this process does not own any PMCs
779 	 * - this process has not allocated a system-wide sampling buffer
780 	 */
781 
782 	if (LIST_EMPTY(&po->po_pmcs) &&
783 	    ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
784 		pmc_remove_owner(po);
785 		pmc_destroy_owner_descriptor(po);
786 	}
787 }
788 
789 /*
790  * Add an association between a target process and a PMC.
791  */
792 
793 static void
794 pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
795 {
796 	int ri;
797 	struct pmc_target *pt;
798 
799 	sx_assert(&pmc_sx, SX_XLOCKED);
800 
801 	KASSERT(pm != NULL && pp != NULL,
802 	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
803 	KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
804 	    ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
805 		__LINE__, pm, pp->pp_proc->p_pid));
806 	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
807 	    ("[pmc,%d] Illegal reference count %d for process record %p",
808 		__LINE__, pp->pp_refcnt, (void *) pp));
809 
810 	ri = PMC_TO_ROWINDEX(pm);
811 
812 	PMCDBG(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
813 	    pm, ri, pp);
814 
815 #ifdef	DEBUG
816 	LIST_FOREACH(pt, &pm->pm_targets, pt_next)
817 	    if (pt->pt_process == pp)
818 		    KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
819 				__LINE__, pp, pm));
820 #endif
821 
822 	pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO);
823 	pt->pt_process = pp;
824 
825 	LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
826 
827 	atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
828 	    (uintptr_t)pm);
829 
830 	if (pm->pm_owner->po_owner == pp->pp_proc)
831 		pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
832 
833 	/*
834 	 * Initialize the per-process values at this row index.
835 	 */
836 	pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
837 	    pm->pm_sc.pm_reloadcount : 0;
838 
839 	pp->pp_refcnt++;
840 
841 }
842 
843 /*
844  * Removes the association between a target process and a PMC.
845  */
846 
847 static void
848 pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
849 {
850 	int ri;
851 	struct proc *p;
852 	struct pmc_target *ptgt;
853 
854 	sx_assert(&pmc_sx, SX_XLOCKED);
855 
856 	KASSERT(pm != NULL && pp != NULL,
857 	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
858 
859 	KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
860 	    ("[pmc,%d] Illegal ref count %d on process record %p",
861 		__LINE__, pp->pp_refcnt, (void *) pp));
862 
863 	ri = PMC_TO_ROWINDEX(pm);
864 
865 	PMCDBG(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
866 	    pm, ri, pp);
867 
868 	KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
869 	    ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
870 		ri, pm, pp->pp_pmcs[ri].pp_pmc));
871 
872 	pp->pp_pmcs[ri].pp_pmc = NULL;
873 	pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
874 
875 	/* Remove owner-specific flags */
876 	if (pm->pm_owner->po_owner == pp->pp_proc) {
877 		pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
878 		pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
879 	}
880 
881 	pp->pp_refcnt--;
882 
883 	/* Remove the target process from the PMC structure */
884 	LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
885 		if (ptgt->pt_process == pp)
886 			break;
887 
888 	KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
889 		    "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
890 
891 	LIST_REMOVE(ptgt, pt_next);
892 	free(ptgt, M_PMC);
893 
894 	/* if the PMC now lacks targets, send the owner a SIGIO */
895 	if (LIST_EMPTY(&pm->pm_targets)) {
896 		p = pm->pm_owner->po_owner;
897 		PROC_LOCK(p);
898 		kern_psignal(p, SIGIO);
899 		PROC_UNLOCK(p);
900 
901 		PMCDBG(PRC,SIG,2, "signalling proc=%p signal=%d", p,
902 		    SIGIO);
903 	}
904 }
905 
906 /*
907  * Check if PMC 'pm' may be attached to target process 't'.
908  */
909 
910 static int
911 pmc_can_attach(struct pmc *pm, struct proc *t)
912 {
913 	struct proc *o;		/* pmc owner */
914 	struct ucred *oc, *tc;	/* owner, target credentials */
915 	int decline_attach, i;
916 
917 	/*
918 	 * A PMC's owner can always attach that PMC to itself.
919 	 */
920 
921 	if ((o = pm->pm_owner->po_owner) == t)
922 		return 0;
923 
924 	PROC_LOCK(o);
925 	oc = o->p_ucred;
926 	crhold(oc);
927 	PROC_UNLOCK(o);
928 
929 	PROC_LOCK(t);
930 	tc = t->p_ucred;
931 	crhold(tc);
932 	PROC_UNLOCK(t);
933 
934 	/*
935 	 * The effective uid of the PMC owner should match at least one
936 	 * of the {effective,real,saved} uids of the target process.
937 	 */
938 
939 	decline_attach = oc->cr_uid != tc->cr_uid &&
940 	    oc->cr_uid != tc->cr_svuid &&
941 	    oc->cr_uid != tc->cr_ruid;
942 
943 	/*
944 	 * Every one of the target's group ids, must be in the owner's
945 	 * group list.
946 	 */
947 	for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
948 		decline_attach = !groupmember(tc->cr_groups[i], oc);
949 
950 	/* check the read and saved gids too */
951 	if (decline_attach == 0)
952 		decline_attach = !groupmember(tc->cr_rgid, oc) ||
953 		    !groupmember(tc->cr_svgid, oc);
954 
955 	crfree(tc);
956 	crfree(oc);
957 
958 	return !decline_attach;
959 }
960 
961 /*
962  * Attach a process to a PMC.
963  */
964 
965 static int
966 pmc_attach_one_process(struct proc *p, struct pmc *pm)
967 {
968 	int ri;
969 	char *fullpath, *freepath;
970 	struct pmc_process	*pp;
971 
972 	sx_assert(&pmc_sx, SX_XLOCKED);
973 
974 	PMCDBG(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
975 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
976 
977 	/*
978 	 * Locate the process descriptor corresponding to process 'p',
979 	 * allocating space as needed.
980 	 *
981 	 * Verify that rowindex 'pm_rowindex' is free in the process
982 	 * descriptor.
983 	 *
984 	 * If not, allocate space for a descriptor and link the
985 	 * process descriptor and PMC.
986 	 */
987 	ri = PMC_TO_ROWINDEX(pm);
988 
989 	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL)
990 		return ENOMEM;
991 
992 	if (pp->pp_pmcs[ri].pp_pmc == pm) /* already present at slot [ri] */
993 		return EEXIST;
994 
995 	if (pp->pp_pmcs[ri].pp_pmc != NULL)
996 		return EBUSY;
997 
998 	pmc_link_target_process(pm, pp);
999 
1000 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
1001 	    (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
1002 		pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
1003 
1004 	pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
1005 
1006 	/* issue an attach event to a configured log file */
1007 	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1008 		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1009 		if (p->p_flag & P_KTHREAD) {
1010 			fullpath = kernelname;
1011 			freepath = NULL;
1012 		} else
1013 			pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1014 		if (freepath)
1015 			free(freepath, M_TEMP);
1016 		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1017 			pmc_log_process_mappings(pm->pm_owner, p);
1018 	}
1019 	/* mark process as using HWPMCs */
1020 	PROC_LOCK(p);
1021 	p->p_flag |= P_HWPMC;
1022 	PROC_UNLOCK(p);
1023 
1024 	return 0;
1025 }
1026 
1027 /*
1028  * Attach a process and optionally its children
1029  */
1030 
1031 static int
1032 pmc_attach_process(struct proc *p, struct pmc *pm)
1033 {
1034 	int error;
1035 	struct proc *top;
1036 
1037 	sx_assert(&pmc_sx, SX_XLOCKED);
1038 
1039 	PMCDBG(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1040 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1041 
1042 
1043 	/*
1044 	 * If this PMC successfully allowed a GETMSR operation
1045 	 * in the past, disallow further ATTACHes.
1046 	 */
1047 
1048 	if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1049 		return EPERM;
1050 
1051 	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1052 		return pmc_attach_one_process(p, pm);
1053 
1054 	/*
1055 	 * Traverse all child processes, attaching them to
1056 	 * this PMC.
1057 	 */
1058 
1059 	sx_slock(&proctree_lock);
1060 
1061 	top = p;
1062 
1063 	for (;;) {
1064 		if ((error = pmc_attach_one_process(p, pm)) != 0)
1065 			break;
1066 		if (!LIST_EMPTY(&p->p_children))
1067 			p = LIST_FIRST(&p->p_children);
1068 		else for (;;) {
1069 			if (p == top)
1070 				goto done;
1071 			if (LIST_NEXT(p, p_sibling)) {
1072 				p = LIST_NEXT(p, p_sibling);
1073 				break;
1074 			}
1075 			p = p->p_pptr;
1076 		}
1077 	}
1078 
1079 	if (error)
1080 		(void) pmc_detach_process(top, pm);
1081 
1082  done:
1083 	sx_sunlock(&proctree_lock);
1084 	return error;
1085 }
1086 
1087 /*
1088  * Detach a process from a PMC.  If there are no other PMCs tracking
1089  * this process, remove the process structure from its hash table.  If
1090  * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1091  */
1092 
1093 static int
1094 pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1095 {
1096 	int ri;
1097 	struct pmc_process *pp;
1098 
1099 	sx_assert(&pmc_sx, SX_XLOCKED);
1100 
1101 	KASSERT(pm != NULL,
1102 	    ("[pmc,%d] null pm pointer", __LINE__));
1103 
1104 	ri = PMC_TO_ROWINDEX(pm);
1105 
1106 	PMCDBG(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1107 	    pm, ri, p, p->p_pid, p->p_comm, flags);
1108 
1109 	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1110 		return ESRCH;
1111 
1112 	if (pp->pp_pmcs[ri].pp_pmc != pm)
1113 		return EINVAL;
1114 
1115 	pmc_unlink_target_process(pm, pp);
1116 
1117 	/* Issue a detach entry if a log file is configured */
1118 	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1119 		pmclog_process_pmcdetach(pm, p->p_pid);
1120 
1121 	/*
1122 	 * If there are no PMCs targetting this process, we remove its
1123 	 * descriptor from the target hash table and unset the P_HWPMC
1124 	 * flag in the struct proc.
1125 	 */
1126 	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1127 	    ("[pmc,%d] Illegal refcnt %d for process struct %p",
1128 		__LINE__, pp->pp_refcnt, pp));
1129 
1130 	if (pp->pp_refcnt != 0)	/* still a target of some PMC */
1131 		return 0;
1132 
1133 	pmc_remove_process_descriptor(pp);
1134 
1135 	if (flags & PMC_FLAG_REMOVE)
1136 		free(pp, M_PMC);
1137 
1138 	PROC_LOCK(p);
1139 	p->p_flag &= ~P_HWPMC;
1140 	PROC_UNLOCK(p);
1141 
1142 	return 0;
1143 }
1144 
1145 /*
1146  * Detach a process and optionally its descendants from a PMC.
1147  */
1148 
1149 static int
1150 pmc_detach_process(struct proc *p, struct pmc *pm)
1151 {
1152 	struct proc *top;
1153 
1154 	sx_assert(&pmc_sx, SX_XLOCKED);
1155 
1156 	PMCDBG(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1157 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1158 
1159 	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1160 		return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1161 
1162 	/*
1163 	 * Traverse all children, detaching them from this PMC.  We
1164 	 * ignore errors since we could be detaching a PMC from a
1165 	 * partially attached proc tree.
1166 	 */
1167 
1168 	sx_slock(&proctree_lock);
1169 
1170 	top = p;
1171 
1172 	for (;;) {
1173 		(void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1174 
1175 		if (!LIST_EMPTY(&p->p_children))
1176 			p = LIST_FIRST(&p->p_children);
1177 		else for (;;) {
1178 			if (p == top)
1179 				goto done;
1180 			if (LIST_NEXT(p, p_sibling)) {
1181 				p = LIST_NEXT(p, p_sibling);
1182 				break;
1183 			}
1184 			p = p->p_pptr;
1185 		}
1186 	}
1187 
1188  done:
1189 	sx_sunlock(&proctree_lock);
1190 
1191 	if (LIST_EMPTY(&pm->pm_targets))
1192 		pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1193 
1194 	return 0;
1195 }
1196 
1197 
1198 /*
1199  * Thread context switch IN
1200  */
1201 
1202 static void
1203 pmc_process_csw_in(struct thread *td)
1204 {
1205 	int cpu;
1206 	unsigned int adjri, ri;
1207 	struct pmc *pm;
1208 	struct proc *p;
1209 	struct pmc_cpu *pc;
1210 	struct pmc_hw *phw;
1211 	pmc_value_t newvalue;
1212 	struct pmc_process *pp;
1213 	struct pmc_classdep *pcd;
1214 
1215 	p = td->td_proc;
1216 
1217 	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1218 		return;
1219 
1220 	KASSERT(pp->pp_proc == td->td_proc,
1221 	    ("[pmc,%d] not my thread state", __LINE__));
1222 
1223 	critical_enter(); /* no preemption from this point */
1224 
1225 	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1226 
1227 	PMCDBG(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1228 	    p->p_pid, p->p_comm, pp);
1229 
1230 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1231 	    ("[pmc,%d] wierd CPU id %d", __LINE__, cpu));
1232 
1233 	pc = pmc_pcpu[cpu];
1234 
1235 	for (ri = 0; ri < md->pmd_npmc; ri++) {
1236 
1237 		if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1238 			continue;
1239 
1240 		KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1241 		    ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1242 			__LINE__, PMC_TO_MODE(pm)));
1243 
1244 		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1245 		    ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1246 			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1247 
1248 		/*
1249 		 * Only PMCs that are marked as 'RUNNING' need
1250 		 * be placed on hardware.
1251 		 */
1252 
1253 		if (pm->pm_state != PMC_STATE_RUNNING)
1254 			continue;
1255 
1256 		/* increment PMC runcount */
1257 		atomic_add_rel_int(&pm->pm_runcount, 1);
1258 
1259 		/* configure the HWPMC we are going to use. */
1260 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1261 		pcd->pcd_config_pmc(cpu, adjri, pm);
1262 
1263 		phw = pc->pc_hwpmcs[ri];
1264 
1265 		KASSERT(phw != NULL,
1266 		    ("[pmc,%d] null hw pointer", __LINE__));
1267 
1268 		KASSERT(phw->phw_pmc == pm,
1269 		    ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1270 			phw->phw_pmc, pm));
1271 
1272 		/*
1273 		 * Write out saved value and start the PMC.
1274 		 *
1275 		 * Sampling PMCs use a per-process value, while
1276 		 * counting mode PMCs use a per-pmc value that is
1277 		 * inherited across descendants.
1278 		 */
1279 		if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1280 			mtx_pool_lock_spin(pmc_mtxpool, pm);
1281 			newvalue = PMC_PCPU_SAVED(cpu,ri) =
1282 			    pp->pp_pmcs[ri].pp_pmcval;
1283 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1284 		} else {
1285 			KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1286 			    ("[pmc,%d] illegal mode=%d", __LINE__,
1287 			    PMC_TO_MODE(pm)));
1288 			mtx_pool_lock_spin(pmc_mtxpool, pm);
1289 			newvalue = PMC_PCPU_SAVED(cpu, ri) =
1290 			    pm->pm_gv.pm_savedvalue;
1291 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1292 		}
1293 
1294 		PMCDBG(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1295 
1296 		pcd->pcd_write_pmc(cpu, adjri, newvalue);
1297 		pcd->pcd_start_pmc(cpu, adjri);
1298 	}
1299 
1300 	/*
1301 	 * perform any other architecture/cpu dependent thread
1302 	 * switch-in actions.
1303 	 */
1304 
1305 	(void) (*md->pmd_switch_in)(pc, pp);
1306 
1307 	critical_exit();
1308 
1309 }
1310 
1311 /*
1312  * Thread context switch OUT.
1313  */
1314 
1315 static void
1316 pmc_process_csw_out(struct thread *td)
1317 {
1318 	int cpu;
1319 	int64_t tmp;
1320 	struct pmc *pm;
1321 	struct proc *p;
1322 	enum pmc_mode mode;
1323 	struct pmc_cpu *pc;
1324 	pmc_value_t newvalue;
1325 	unsigned int adjri, ri;
1326 	struct pmc_process *pp;
1327 	struct pmc_classdep *pcd;
1328 
1329 
1330 	/*
1331 	 * Locate our process descriptor; this may be NULL if
1332 	 * this process is exiting and we have already removed
1333 	 * the process from the target process table.
1334 	 *
1335 	 * Note that due to kernel preemption, multiple
1336 	 * context switches may happen while the process is
1337 	 * exiting.
1338 	 *
1339 	 * Note also that if the target process cannot be
1340 	 * found we still need to deconfigure any PMCs that
1341 	 * are currently running on hardware.
1342 	 */
1343 
1344 	p = td->td_proc;
1345 	pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1346 
1347 	/*
1348 	 * save PMCs
1349 	 */
1350 
1351 	critical_enter();
1352 
1353 	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1354 
1355 	PMCDBG(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1356 	    p->p_pid, p->p_comm, pp);
1357 
1358 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1359 	    ("[pmc,%d wierd CPU id %d", __LINE__, cpu));
1360 
1361 	pc = pmc_pcpu[cpu];
1362 
1363 	/*
1364 	 * When a PMC gets unlinked from a target PMC, it will
1365 	 * be removed from the target's pp_pmc[] array.
1366 	 *
1367 	 * However, on a MP system, the target could have been
1368 	 * executing on another CPU at the time of the unlink.
1369 	 * So, at context switch OUT time, we need to look at
1370 	 * the hardware to determine if a PMC is scheduled on
1371 	 * it.
1372 	 */
1373 
1374 	for (ri = 0; ri < md->pmd_npmc; ri++) {
1375 
1376 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1377 		pm  = NULL;
1378 		(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
1379 
1380 		if (pm == NULL)	/* nothing at this row index */
1381 			continue;
1382 
1383 		mode = PMC_TO_MODE(pm);
1384 		if (!PMC_IS_VIRTUAL_MODE(mode))
1385 			continue; /* not a process virtual PMC */
1386 
1387 		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1388 		    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1389 			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1390 
1391 		/* Stop hardware if not already stopped */
1392 		if (pm->pm_stalled == 0)
1393 			pcd->pcd_stop_pmc(cpu, adjri);
1394 
1395 		/* reduce this PMC's runcount */
1396 		atomic_subtract_rel_int(&pm->pm_runcount, 1);
1397 
1398 		/*
1399 		 * If this PMC is associated with this process,
1400 		 * save the reading.
1401 		 */
1402 
1403 		if (pp != NULL && pp->pp_pmcs[ri].pp_pmc != NULL) {
1404 
1405 			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1406 			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1407 				pm, ri, pp->pp_pmcs[ri].pp_pmc));
1408 
1409 			KASSERT(pp->pp_refcnt > 0,
1410 			    ("[pmc,%d] pp refcnt = %d", __LINE__,
1411 				pp->pp_refcnt));
1412 
1413 			pcd->pcd_read_pmc(cpu, adjri, &newvalue);
1414 
1415 			tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1416 
1417 			PMCDBG(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd", cpu, ri,
1418 			    tmp);
1419 
1420 			if (mode == PMC_MODE_TS) {
1421 
1422 				/*
1423 				 * For sampling process-virtual PMCs,
1424 				 * we expect the count to be
1425 				 * decreasing as the 'value'
1426 				 * programmed into the PMC is the
1427 				 * number of events to be seen till
1428 				 * the next sampling interrupt.
1429 				 */
1430 				if (tmp < 0)
1431 					tmp += pm->pm_sc.pm_reloadcount;
1432 				mtx_pool_lock_spin(pmc_mtxpool, pm);
1433 				pp->pp_pmcs[ri].pp_pmcval -= tmp;
1434 				if ((int64_t) pp->pp_pmcs[ri].pp_pmcval < 0)
1435 					pp->pp_pmcs[ri].pp_pmcval +=
1436 					    pm->pm_sc.pm_reloadcount;
1437 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1438 
1439 			} else {
1440 
1441 				/*
1442 				 * For counting process-virtual PMCs,
1443 				 * we expect the count to be
1444 				 * increasing monotonically, modulo a 64
1445 				 * bit wraparound.
1446 				 */
1447 				KASSERT((int64_t) tmp >= 0,
1448 				    ("[pmc,%d] negative increment cpu=%d "
1449 				     "ri=%d newvalue=%jx saved=%jx "
1450 				     "incr=%jx", __LINE__, cpu, ri,
1451 				     newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
1452 
1453 				mtx_pool_lock_spin(pmc_mtxpool, pm);
1454 				pm->pm_gv.pm_savedvalue += tmp;
1455 				pp->pp_pmcs[ri].pp_pmcval += tmp;
1456 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1457 
1458 				if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1459 					pmclog_process_proccsw(pm, pp, tmp);
1460 			}
1461 		}
1462 
1463 		/* mark hardware as free */
1464 		pcd->pcd_config_pmc(cpu, adjri, NULL);
1465 	}
1466 
1467 	/*
1468 	 * perform any other architecture/cpu dependent thread
1469 	 * switch out functions.
1470 	 */
1471 
1472 	(void) (*md->pmd_switch_out)(pc, pp);
1473 
1474 	critical_exit();
1475 }
1476 
1477 /*
1478  * A mapping change for a process.
1479  */
1480 
1481 static void
1482 pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1483 {
1484 	int ri;
1485 	pid_t pid;
1486 	char *fullpath, *freepath;
1487 	const struct pmc *pm;
1488 	struct pmc_owner *po;
1489 	const struct pmc_process *pp;
1490 
1491 	freepath = fullpath = NULL;
1492 	pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath);
1493 
1494 	pid = td->td_proc->p_pid;
1495 
1496 	/* Inform owners of all system-wide sampling PMCs. */
1497 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1498 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1499 		pmclog_process_map_in(po, pid, pkm->pm_address, fullpath);
1500 
1501 	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1502 		goto done;
1503 
1504 	/*
1505 	 * Inform sampling PMC owners tracking this process.
1506 	 */
1507 	for (ri = 0; ri < md->pmd_npmc; ri++)
1508 		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1509 		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1510 			pmclog_process_map_in(pm->pm_owner,
1511 			    pid, pkm->pm_address, fullpath);
1512 
1513   done:
1514 	if (freepath)
1515 		free(freepath, M_TEMP);
1516 }
1517 
1518 
1519 /*
1520  * Log an munmap request.
1521  */
1522 
1523 static void
1524 pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1525 {
1526 	int ri;
1527 	pid_t pid;
1528 	struct pmc_owner *po;
1529 	const struct pmc *pm;
1530 	const struct pmc_process *pp;
1531 
1532 	pid = td->td_proc->p_pid;
1533 
1534 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1535 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1536 		pmclog_process_map_out(po, pid, pkm->pm_address,
1537 		    pkm->pm_address + pkm->pm_size);
1538 
1539 	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1540 		return;
1541 
1542 	for (ri = 0; ri < md->pmd_npmc; ri++)
1543 		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1544 		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1545 			pmclog_process_map_out(pm->pm_owner, pid,
1546 			    pkm->pm_address, pkm->pm_address + pkm->pm_size);
1547 }
1548 
1549 /*
1550  * Log mapping information about the kernel.
1551  */
1552 
1553 static void
1554 pmc_log_kernel_mappings(struct pmc *pm)
1555 {
1556 	struct pmc_owner *po;
1557 	struct pmckern_map_in *km, *kmbase;
1558 
1559 	sx_assert(&pmc_sx, SX_LOCKED);
1560 	KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1561 	    ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1562 		__LINE__, (void *) pm));
1563 
1564 	po = pm->pm_owner;
1565 
1566 	if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE)
1567 		return;
1568 
1569 	/*
1570 	 * Log the current set of kernel modules.
1571 	 */
1572 	kmbase = linker_hwpmc_list_objects();
1573 	for (km = kmbase; km->pm_file != NULL; km++) {
1574 		PMCDBG(LOG,REG,1,"%s %p", (char *) km->pm_file,
1575 		    (void *) km->pm_address);
1576 		pmclog_process_map_in(po, (pid_t) -1, km->pm_address,
1577 		    km->pm_file);
1578 	}
1579 	free(kmbase, M_LINKER);
1580 
1581 	po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1582 }
1583 
1584 /*
1585  * Log the mappings for a single process.
1586  */
1587 
1588 static void
1589 pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1590 {
1591 	vm_map_t map;
1592 	struct vnode *vp;
1593 	struct vmspace *vm;
1594 	vm_map_entry_t entry;
1595 	vm_offset_t last_end;
1596 	u_int last_timestamp;
1597 	struct vnode *last_vp;
1598 	vm_offset_t start_addr;
1599 	vm_object_t obj, lobj, tobj;
1600 	char *fullpath, *freepath;
1601 
1602 	last_vp = NULL;
1603 	last_end = (vm_offset_t) 0;
1604 	fullpath = freepath = NULL;
1605 
1606 	if ((vm = vmspace_acquire_ref(p)) == NULL)
1607 		return;
1608 
1609 	map = &vm->vm_map;
1610 	vm_map_lock_read(map);
1611 
1612 	for (entry = map->header.next; entry != &map->header; entry = entry->next) {
1613 
1614 		if (entry == NULL) {
1615 			PMCDBG(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1616 			    "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1617 			break;
1618 		}
1619 
1620 		/*
1621 		 * We only care about executable map entries.
1622 		 */
1623 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) ||
1624 		    !(entry->protection & VM_PROT_EXECUTE) ||
1625 		    (entry->object.vm_object == NULL)) {
1626 			continue;
1627 		}
1628 
1629 		obj = entry->object.vm_object;
1630 		VM_OBJECT_RLOCK(obj);
1631 
1632 		/*
1633 		 * Walk the backing_object list to find the base
1634 		 * (non-shadowed) vm_object.
1635 		 */
1636 		for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
1637 			if (tobj != obj)
1638 				VM_OBJECT_RLOCK(tobj);
1639 			if (lobj != obj)
1640 				VM_OBJECT_RUNLOCK(lobj);
1641 			lobj = tobj;
1642 		}
1643 
1644 		/*
1645 		 * At this point lobj is the base vm_object and it is locked.
1646 		 */
1647 		if (lobj == NULL) {
1648 			PMCDBG(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
1649 			    "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
1650 			VM_OBJECT_RUNLOCK(obj);
1651 			continue;
1652 		}
1653 
1654 		if (lobj->type != OBJT_VNODE || lobj->handle == NULL) {
1655 			if (lobj != obj)
1656 				VM_OBJECT_RUNLOCK(lobj);
1657 			VM_OBJECT_RUNLOCK(obj);
1658 			continue;
1659 		}
1660 
1661 		/*
1662 		 * Skip contiguous regions that point to the same
1663 		 * vnode, so we don't emit redundant MAP-IN
1664 		 * directives.
1665 		 */
1666 		if (entry->start == last_end && lobj->handle == last_vp) {
1667 			last_end = entry->end;
1668 			if (lobj != obj)
1669 				VM_OBJECT_RUNLOCK(lobj);
1670 			VM_OBJECT_RUNLOCK(obj);
1671 			continue;
1672 		}
1673 
1674 		/*
1675 		 * We don't want to keep the proc's vm_map or this
1676 		 * vm_object locked while we walk the pathname, since
1677 		 * vn_fullpath() can sleep.  However, if we drop the
1678 		 * lock, it's possible for concurrent activity to
1679 		 * modify the vm_map list.  To protect against this,
1680 		 * we save the vm_map timestamp before we release the
1681 		 * lock, and check it after we reacquire the lock
1682 		 * below.
1683 		 */
1684 		start_addr = entry->start;
1685 		last_end = entry->end;
1686 		last_timestamp = map->timestamp;
1687 		vm_map_unlock_read(map);
1688 
1689 		vp = lobj->handle;
1690 		vref(vp);
1691 		if (lobj != obj)
1692 			VM_OBJECT_RUNLOCK(lobj);
1693 
1694 		VM_OBJECT_RUNLOCK(obj);
1695 
1696 		freepath = NULL;
1697 		pmc_getfilename(vp, &fullpath, &freepath);
1698 		last_vp = vp;
1699 
1700 		vrele(vp);
1701 
1702 		vp = NULL;
1703 		pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
1704 		if (freepath)
1705 			free(freepath, M_TEMP);
1706 
1707 		vm_map_lock_read(map);
1708 
1709 		/*
1710 		 * If our saved timestamp doesn't match, this means
1711 		 * that the vm_map was modified out from under us and
1712 		 * we can't trust our current "entry" pointer.  Do a
1713 		 * new lookup for this entry.  If there is no entry
1714 		 * for this address range, vm_map_lookup_entry() will
1715 		 * return the previous one, so we always want to go to
1716 		 * entry->next on the next loop iteration.
1717 		 *
1718 		 * There is an edge condition here that can occur if
1719 		 * there is no entry at or before this address.  In
1720 		 * this situation, vm_map_lookup_entry returns
1721 		 * &map->header, which would cause our loop to abort
1722 		 * without processing the rest of the map.  However,
1723 		 * in practice this will never happen for process
1724 		 * vm_map.  This is because the executable's text
1725 		 * segment is the first mapping in the proc's address
1726 		 * space, and this mapping is never removed until the
1727 		 * process exits, so there will always be a non-header
1728 		 * entry at or before the requested address for
1729 		 * vm_map_lookup_entry to return.
1730 		 */
1731 		if (map->timestamp != last_timestamp)
1732 			vm_map_lookup_entry(map, last_end - 1, &entry);
1733 	}
1734 
1735 	vm_map_unlock_read(map);
1736 	vmspace_free(vm);
1737 	return;
1738 }
1739 
1740 /*
1741  * Log mappings for all processes in the system.
1742  */
1743 
1744 static void
1745 pmc_log_all_process_mappings(struct pmc_owner *po)
1746 {
1747 	struct proc *p, *top;
1748 
1749 	sx_assert(&pmc_sx, SX_XLOCKED);
1750 
1751 	if ((p = pfind(1)) == NULL)
1752 		panic("[pmc,%d] Cannot find init", __LINE__);
1753 
1754 	PROC_UNLOCK(p);
1755 
1756 	sx_slock(&proctree_lock);
1757 
1758 	top = p;
1759 
1760 	for (;;) {
1761 		pmc_log_process_mappings(po, p);
1762 		if (!LIST_EMPTY(&p->p_children))
1763 			p = LIST_FIRST(&p->p_children);
1764 		else for (;;) {
1765 			if (p == top)
1766 				goto done;
1767 			if (LIST_NEXT(p, p_sibling)) {
1768 				p = LIST_NEXT(p, p_sibling);
1769 				break;
1770 			}
1771 			p = p->p_pptr;
1772 		}
1773 	}
1774  done:
1775 	sx_sunlock(&proctree_lock);
1776 }
1777 
1778 /*
1779  * The 'hook' invoked from the kernel proper
1780  */
1781 
1782 
1783 #ifdef	DEBUG
1784 const char *pmc_hooknames[] = {
1785 	/* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
1786 	"",
1787 	"EXEC",
1788 	"CSW-IN",
1789 	"CSW-OUT",
1790 	"SAMPLE",
1791 	"UNUSED1",
1792 	"UNUSED2",
1793 	"MMAP",
1794 	"MUNMAP",
1795 	"CALLCHAIN-NMI",
1796 	"CALLCHAIN-SOFT",
1797 	"SOFTSAMPLING"
1798 };
1799 #endif
1800 
1801 static int
1802 pmc_hook_handler(struct thread *td, int function, void *arg)
1803 {
1804 
1805 	PMCDBG(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
1806 	    pmc_hooknames[function], arg);
1807 
1808 	switch (function)
1809 	{
1810 
1811 	/*
1812 	 * Process exec()
1813 	 */
1814 
1815 	case PMC_FN_PROCESS_EXEC:
1816 	{
1817 		char *fullpath, *freepath;
1818 		unsigned int ri;
1819 		int is_using_hwpmcs;
1820 		struct pmc *pm;
1821 		struct proc *p;
1822 		struct pmc_owner *po;
1823 		struct pmc_process *pp;
1824 		struct pmckern_procexec *pk;
1825 
1826 		sx_assert(&pmc_sx, SX_XLOCKED);
1827 
1828 		p = td->td_proc;
1829 		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1830 
1831 		pk = (struct pmckern_procexec *) arg;
1832 
1833 		/* Inform owners of SS mode PMCs of the exec event. */
1834 		LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1835 		    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1836 			    pmclog_process_procexec(po, PMC_ID_INVALID,
1837 				p->p_pid, pk->pm_entryaddr, fullpath);
1838 
1839 		PROC_LOCK(p);
1840 		is_using_hwpmcs = p->p_flag & P_HWPMC;
1841 		PROC_UNLOCK(p);
1842 
1843 		if (!is_using_hwpmcs) {
1844 			if (freepath)
1845 				free(freepath, M_TEMP);
1846 			break;
1847 		}
1848 
1849 		/*
1850 		 * PMCs are not inherited across an exec():  remove any
1851 		 * PMCs that this process is the owner of.
1852 		 */
1853 
1854 		if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1855 			pmc_remove_owner(po);
1856 			pmc_destroy_owner_descriptor(po);
1857 		}
1858 
1859 		/*
1860 		 * If the process being exec'ed is not the target of any
1861 		 * PMC, we are done.
1862 		 */
1863 		if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
1864 			if (freepath)
1865 				free(freepath, M_TEMP);
1866 			break;
1867 		}
1868 
1869 		/*
1870 		 * Log the exec event to all monitoring owners.  Skip
1871 		 * owners who have already recieved the event because
1872 		 * they had system sampling PMCs active.
1873 		 */
1874 		for (ri = 0; ri < md->pmd_npmc; ri++)
1875 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
1876 				po = pm->pm_owner;
1877 				if (po->po_sscount == 0 &&
1878 				    po->po_flags & PMC_PO_OWNS_LOGFILE)
1879 					pmclog_process_procexec(po, pm->pm_id,
1880 					    p->p_pid, pk->pm_entryaddr,
1881 					    fullpath);
1882 			}
1883 
1884 		if (freepath)
1885 			free(freepath, M_TEMP);
1886 
1887 
1888 		PMCDBG(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
1889 		    p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
1890 
1891 		if (pk->pm_credentialschanged == 0) /* no change */
1892 			break;
1893 
1894 		/*
1895 		 * If the newly exec()'ed process has a different credential
1896 		 * than before, allow it to be the target of a PMC only if
1897 		 * the PMC's owner has sufficient priviledge.
1898 		 */
1899 
1900 		for (ri = 0; ri < md->pmd_npmc; ri++)
1901 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
1902 				if (pmc_can_attach(pm, td->td_proc) != 0)
1903 					pmc_detach_one_process(td->td_proc,
1904 					    pm, PMC_FLAG_NONE);
1905 
1906 		KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1907 		    ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
1908 			pp->pp_refcnt, pp));
1909 
1910 		/*
1911 		 * If this process is no longer the target of any
1912 		 * PMCs, we can remove the process entry and free
1913 		 * up space.
1914 		 */
1915 
1916 		if (pp->pp_refcnt == 0) {
1917 			pmc_remove_process_descriptor(pp);
1918 			free(pp, M_PMC);
1919 			break;
1920 		}
1921 
1922 	}
1923 	break;
1924 
1925 	case PMC_FN_CSW_IN:
1926 		pmc_process_csw_in(td);
1927 		break;
1928 
1929 	case PMC_FN_CSW_OUT:
1930 		pmc_process_csw_out(td);
1931 		break;
1932 
1933 	/*
1934 	 * Process accumulated PC samples.
1935 	 *
1936 	 * This function is expected to be called by hardclock() for
1937 	 * each CPU that has accumulated PC samples.
1938 	 *
1939 	 * This function is to be executed on the CPU whose samples
1940 	 * are being processed.
1941 	 */
1942 	case PMC_FN_DO_SAMPLES:
1943 
1944 		/*
1945 		 * Clear the cpu specific bit in the CPU mask before
1946 		 * do the rest of the processing.  If the NMI handler
1947 		 * gets invoked after the "atomic_clear_int()" call
1948 		 * below but before "pmc_process_samples()" gets
1949 		 * around to processing the interrupt, then we will
1950 		 * come back here at the next hardclock() tick (and
1951 		 * may find nothing to do if "pmc_process_samples()"
1952 		 * had already processed the interrupt).  We don't
1953 		 * lose the interrupt sample.
1954 		 */
1955 		CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmc_cpumask);
1956 		pmc_process_samples(PCPU_GET(cpuid), PMC_HR);
1957 		pmc_process_samples(PCPU_GET(cpuid), PMC_SR);
1958 		break;
1959 
1960 	case PMC_FN_MMAP:
1961 		sx_assert(&pmc_sx, SX_LOCKED);
1962 		pmc_process_mmap(td, (struct pmckern_map_in *) arg);
1963 		break;
1964 
1965 	case PMC_FN_MUNMAP:
1966 		sx_assert(&pmc_sx, SX_LOCKED);
1967 		pmc_process_munmap(td, (struct pmckern_map_out *) arg);
1968 		break;
1969 
1970 	case PMC_FN_USER_CALLCHAIN:
1971 		/*
1972 		 * Record a call chain.
1973 		 */
1974 		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
1975 		    __LINE__));
1976 
1977 		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
1978 		    (struct trapframe *) arg);
1979 		td->td_pflags &= ~TDP_CALLCHAIN;
1980 		break;
1981 
1982 	case PMC_FN_USER_CALLCHAIN_SOFT:
1983 		/*
1984 		 * Record a call chain.
1985 		 */
1986 		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
1987 		    __LINE__));
1988 		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_SR,
1989 		    (struct trapframe *) arg);
1990 		td->td_pflags &= ~TDP_CALLCHAIN;
1991 		break;
1992 
1993 	case PMC_FN_SOFT_SAMPLING:
1994 		/*
1995 		 * Call soft PMC sampling intr.
1996 		 */
1997 		pmc_soft_intr((struct pmckern_soft *) arg);
1998 		break;
1999 
2000 	default:
2001 #ifdef	DEBUG
2002 		KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2003 #endif
2004 		break;
2005 
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 /*
2012  * allocate a 'struct pmc_owner' descriptor in the owner hash table.
2013  */
2014 
2015 static struct pmc_owner *
2016 pmc_allocate_owner_descriptor(struct proc *p)
2017 {
2018 	uint32_t hindex;
2019 	struct pmc_owner *po;
2020 	struct pmc_ownerhash *poh;
2021 
2022 	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2023 	poh = &pmc_ownerhash[hindex];
2024 
2025 	/* allocate space for N pointers and one descriptor struct */
2026 	po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO);
2027 	po->po_owner = p;
2028 	LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2029 
2030 	TAILQ_INIT(&po->po_logbuffers);
2031 	mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2032 
2033 	PMCDBG(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2034 	    p, p->p_pid, p->p_comm, po);
2035 
2036 	return po;
2037 }
2038 
2039 static void
2040 pmc_destroy_owner_descriptor(struct pmc_owner *po)
2041 {
2042 
2043 	PMCDBG(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2044 	    po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2045 
2046 	mtx_destroy(&po->po_mtx);
2047 	free(po, M_PMC);
2048 }
2049 
2050 /*
2051  * find the descriptor corresponding to process 'p', adding or removing it
2052  * as specified by 'mode'.
2053  */
2054 
2055 static struct pmc_process *
2056 pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2057 {
2058 	uint32_t hindex;
2059 	struct pmc_process *pp, *ppnew;
2060 	struct pmc_processhash *pph;
2061 
2062 	hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2063 	pph = &pmc_processhash[hindex];
2064 
2065 	ppnew = NULL;
2066 
2067 	/*
2068 	 * Pre-allocate memory in the FIND_ALLOCATE case since we
2069 	 * cannot call malloc(9) once we hold a spin lock.
2070 	 */
2071 	if (mode & PMC_FLAG_ALLOCATE)
2072 		ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2073 		    sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO);
2074 
2075 	mtx_lock_spin(&pmc_processhash_mtx);
2076 	LIST_FOREACH(pp, pph, pp_next)
2077 	    if (pp->pp_proc == p)
2078 		    break;
2079 
2080 	if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
2081 		LIST_REMOVE(pp, pp_next);
2082 
2083 	if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
2084 	    ppnew != NULL) {
2085 		ppnew->pp_proc = p;
2086 		LIST_INSERT_HEAD(pph, ppnew, pp_next);
2087 		pp = ppnew;
2088 		ppnew = NULL;
2089 	}
2090 	mtx_unlock_spin(&pmc_processhash_mtx);
2091 
2092 	if (pp != NULL && ppnew != NULL)
2093 		free(ppnew, M_PMC);
2094 
2095 	return pp;
2096 }
2097 
2098 /*
2099  * remove a process descriptor from the process hash table.
2100  */
2101 
2102 static void
2103 pmc_remove_process_descriptor(struct pmc_process *pp)
2104 {
2105 	KASSERT(pp->pp_refcnt == 0,
2106 	    ("[pmc,%d] Removing process descriptor %p with count %d",
2107 		__LINE__, pp, pp->pp_refcnt));
2108 
2109 	mtx_lock_spin(&pmc_processhash_mtx);
2110 	LIST_REMOVE(pp, pp_next);
2111 	mtx_unlock_spin(&pmc_processhash_mtx);
2112 }
2113 
2114 
2115 /*
2116  * find an owner descriptor corresponding to proc 'p'
2117  */
2118 
2119 static struct pmc_owner *
2120 pmc_find_owner_descriptor(struct proc *p)
2121 {
2122 	uint32_t hindex;
2123 	struct pmc_owner *po;
2124 	struct pmc_ownerhash *poh;
2125 
2126 	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2127 	poh = &pmc_ownerhash[hindex];
2128 
2129 	po = NULL;
2130 	LIST_FOREACH(po, poh, po_next)
2131 	    if (po->po_owner == p)
2132 		    break;
2133 
2134 	PMCDBG(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2135 	    "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2136 
2137 	return po;
2138 }
2139 
2140 /*
2141  * pmc_allocate_pmc_descriptor
2142  *
2143  * Allocate a pmc descriptor and initialize its
2144  * fields.
2145  */
2146 
2147 static struct pmc *
2148 pmc_allocate_pmc_descriptor(void)
2149 {
2150 	struct pmc *pmc;
2151 
2152 	pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO);
2153 
2154 	PMCDBG(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2155 
2156 	return pmc;
2157 }
2158 
2159 /*
2160  * Destroy a pmc descriptor.
2161  */
2162 
2163 static void
2164 pmc_destroy_pmc_descriptor(struct pmc *pm)
2165 {
2166 
2167 	KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2168 	    pm->pm_state == PMC_STATE_FREE,
2169 	    ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2170 	KASSERT(LIST_EMPTY(&pm->pm_targets),
2171 	    ("[pmc,%d] destroying pmc with targets", __LINE__));
2172 	KASSERT(pm->pm_owner == NULL,
2173 	    ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2174 	KASSERT(pm->pm_runcount == 0,
2175 	    ("[pmc,%d] pmc has non-zero run count %d", __LINE__,
2176 		pm->pm_runcount));
2177 
2178 	free(pm, M_PMC);
2179 }
2180 
2181 static void
2182 pmc_wait_for_pmc_idle(struct pmc *pm)
2183 {
2184 #ifdef DEBUG
2185 	volatile int maxloop;
2186 
2187 	maxloop = 100 * pmc_cpu_max();
2188 #endif
2189 	/*
2190 	 * Loop (with a forced context switch) till the PMC's runcount
2191 	 * comes down to zero.
2192 	 */
2193 	while (atomic_load_acq_32(&pm->pm_runcount) > 0) {
2194 #ifdef DEBUG
2195 		maxloop--;
2196 		KASSERT(maxloop > 0,
2197 		    ("[pmc,%d] (ri%d, rc%d) waiting too long for "
2198 			"pmc to be free", __LINE__,
2199 			PMC_TO_ROWINDEX(pm), pm->pm_runcount));
2200 #endif
2201 		pmc_force_context_switch();
2202 	}
2203 }
2204 
2205 /*
2206  * This function does the following things:
2207  *
2208  *  - detaches the PMC from hardware
2209  *  - unlinks all target threads that were attached to it
2210  *  - removes the PMC from its owner's list
2211  *  - destroys the PMC private mutex
2212  *
2213  * Once this function completes, the given pmc pointer can be freed by
2214  * calling pmc_destroy_pmc_descriptor().
2215  */
2216 
2217 static void
2218 pmc_release_pmc_descriptor(struct pmc *pm)
2219 {
2220 	enum pmc_mode mode;
2221 	struct pmc_hw *phw;
2222 	u_int adjri, ri, cpu;
2223 	struct pmc_owner *po;
2224 	struct pmc_binding pb;
2225 	struct pmc_process *pp;
2226 	struct pmc_classdep *pcd;
2227 	struct pmc_target *ptgt, *tmp;
2228 
2229 	sx_assert(&pmc_sx, SX_XLOCKED);
2230 
2231 	KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2232 
2233 	ri   = PMC_TO_ROWINDEX(pm);
2234 	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2235 	mode = PMC_TO_MODE(pm);
2236 
2237 	PMCDBG(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2238 	    mode);
2239 
2240 	/*
2241 	 * First, we take the PMC off hardware.
2242 	 */
2243 	cpu = 0;
2244 	if (PMC_IS_SYSTEM_MODE(mode)) {
2245 
2246 		/*
2247 		 * A system mode PMC runs on a specific CPU.  Switch
2248 		 * to this CPU and turn hardware off.
2249 		 */
2250 		pmc_save_cpu_binding(&pb);
2251 
2252 		cpu = PMC_TO_CPU(pm);
2253 
2254 		pmc_select_cpu(cpu);
2255 
2256 		/* switch off non-stalled CPUs */
2257 		if (pm->pm_state == PMC_STATE_RUNNING &&
2258 		    pm->pm_stalled == 0) {
2259 
2260 			phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2261 
2262 			KASSERT(phw->phw_pmc == pm,
2263 			    ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2264 				__LINE__, ri, phw->phw_pmc, pm));
2265 			PMCDBG(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2266 
2267 			critical_enter();
2268 			pcd->pcd_stop_pmc(cpu, adjri);
2269 			critical_exit();
2270 		}
2271 
2272 		PMCDBG(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2273 
2274 		critical_enter();
2275 		pcd->pcd_config_pmc(cpu, adjri, NULL);
2276 		critical_exit();
2277 
2278 		/* adjust the global and process count of SS mode PMCs */
2279 		if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2280 			po = pm->pm_owner;
2281 			po->po_sscount--;
2282 			if (po->po_sscount == 0) {
2283 				atomic_subtract_rel_int(&pmc_ss_count, 1);
2284 				LIST_REMOVE(po, po_ssnext);
2285 			}
2286 		}
2287 
2288 		pm->pm_state = PMC_STATE_DELETED;
2289 
2290 		pmc_restore_cpu_binding(&pb);
2291 
2292 		/*
2293 		 * We could have references to this PMC structure in
2294 		 * the per-cpu sample queues.  Wait for the queue to
2295 		 * drain.
2296 		 */
2297 		pmc_wait_for_pmc_idle(pm);
2298 
2299 	} else if (PMC_IS_VIRTUAL_MODE(mode)) {
2300 
2301 		/*
2302 		 * A virtual PMC could be running on multiple CPUs at
2303 		 * a given instant.
2304 		 *
2305 		 * By marking its state as DELETED, we ensure that
2306 		 * this PMC is never further scheduled on hardware.
2307 		 *
2308 		 * Then we wait till all CPUs are done with this PMC.
2309 		 */
2310 		pm->pm_state = PMC_STATE_DELETED;
2311 
2312 
2313 		/* Wait for the PMCs runcount to come to zero. */
2314 		pmc_wait_for_pmc_idle(pm);
2315 
2316 		/*
2317 		 * At this point the PMC is off all CPUs and cannot be
2318 		 * freshly scheduled onto a CPU.  It is now safe to
2319 		 * unlink all targets from this PMC.  If a
2320 		 * process-record's refcount falls to zero, we remove
2321 		 * it from the hash table.  The module-wide SX lock
2322 		 * protects us from races.
2323 		 */
2324 		LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2325 			pp = ptgt->pt_process;
2326 			pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2327 
2328 			PMCDBG(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2329 
2330 			/*
2331 			 * If the target process record shows that no
2332 			 * PMCs are attached to it, reclaim its space.
2333 			 */
2334 
2335 			if (pp->pp_refcnt == 0) {
2336 				pmc_remove_process_descriptor(pp);
2337 				free(pp, M_PMC);
2338 			}
2339 		}
2340 
2341 		cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2342 
2343 	}
2344 
2345 	/*
2346 	 * Release any MD resources
2347 	 */
2348 	(void) pcd->pcd_release_pmc(cpu, adjri, pm);
2349 
2350 	/*
2351 	 * Update row disposition
2352 	 */
2353 
2354 	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2355 		PMC_UNMARK_ROW_STANDALONE(ri);
2356 	else
2357 		PMC_UNMARK_ROW_THREAD(ri);
2358 
2359 	/* unlink from the owner's list */
2360 	if (pm->pm_owner) {
2361 		LIST_REMOVE(pm, pm_next);
2362 		pm->pm_owner = NULL;
2363 	}
2364 }
2365 
2366 /*
2367  * Register an owner and a pmc.
2368  */
2369 
2370 static int
2371 pmc_register_owner(struct proc *p, struct pmc *pmc)
2372 {
2373 	struct pmc_owner *po;
2374 
2375 	sx_assert(&pmc_sx, SX_XLOCKED);
2376 
2377 	if ((po = pmc_find_owner_descriptor(p)) == NULL)
2378 		if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2379 			return ENOMEM;
2380 
2381 	KASSERT(pmc->pm_owner == NULL,
2382 	    ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2383 	pmc->pm_owner  = po;
2384 
2385 	LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2386 
2387 	PROC_LOCK(p);
2388 	p->p_flag |= P_HWPMC;
2389 	PROC_UNLOCK(p);
2390 
2391 	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2392 		pmclog_process_pmcallocate(pmc);
2393 
2394 	PMCDBG(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2395 	    po, pmc);
2396 
2397 	return 0;
2398 }
2399 
2400 /*
2401  * Return the current row disposition:
2402  * == 0 => FREE
2403  *  > 0 => PROCESS MODE
2404  *  < 0 => SYSTEM MODE
2405  */
2406 
2407 int
2408 pmc_getrowdisp(int ri)
2409 {
2410 	return pmc_pmcdisp[ri];
2411 }
2412 
2413 /*
2414  * Check if a PMC at row index 'ri' can be allocated to the current
2415  * process.
2416  *
2417  * Allocation can fail if:
2418  *   - the current process is already being profiled by a PMC at index 'ri',
2419  *     attached to it via OP_PMCATTACH.
2420  *   - the current process has already allocated a PMC at index 'ri'
2421  *     via OP_ALLOCATE.
2422  */
2423 
2424 static int
2425 pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2426 {
2427 	enum pmc_mode mode;
2428 	struct pmc *pm;
2429 	struct pmc_owner *po;
2430 	struct pmc_process *pp;
2431 
2432 	PMCDBG(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2433 	    "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2434 
2435 	/*
2436 	 * We shouldn't have already allocated a process-mode PMC at
2437 	 * row index 'ri'.
2438 	 *
2439 	 * We shouldn't have allocated a system-wide PMC on the same
2440 	 * CPU and same RI.
2441 	 */
2442 	if ((po = pmc_find_owner_descriptor(p)) != NULL)
2443 		LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2444 		    if (PMC_TO_ROWINDEX(pm) == ri) {
2445 			    mode = PMC_TO_MODE(pm);
2446 			    if (PMC_IS_VIRTUAL_MODE(mode))
2447 				    return EEXIST;
2448 			    if (PMC_IS_SYSTEM_MODE(mode) &&
2449 				(int) PMC_TO_CPU(pm) == cpu)
2450 				    return EEXIST;
2451 		    }
2452 	        }
2453 
2454 	/*
2455 	 * We also shouldn't be the target of any PMC at this index
2456 	 * since otherwise a PMC_ATTACH to ourselves will fail.
2457 	 */
2458 	if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2459 		if (pp->pp_pmcs[ri].pp_pmc)
2460 			return EEXIST;
2461 
2462 	PMCDBG(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2463 	    p, p->p_pid, p->p_comm, ri);
2464 
2465 	return 0;
2466 }
2467 
2468 /*
2469  * Check if a given PMC at row index 'ri' can be currently used in
2470  * mode 'mode'.
2471  */
2472 
2473 static int
2474 pmc_can_allocate_row(int ri, enum pmc_mode mode)
2475 {
2476 	enum pmc_disp	disp;
2477 
2478 	sx_assert(&pmc_sx, SX_XLOCKED);
2479 
2480 	PMCDBG(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2481 
2482 	if (PMC_IS_SYSTEM_MODE(mode))
2483 		disp = PMC_DISP_STANDALONE;
2484 	else
2485 		disp = PMC_DISP_THREAD;
2486 
2487 	/*
2488 	 * check disposition for PMC row 'ri':
2489 	 *
2490 	 * Expected disposition		Row-disposition		Result
2491 	 *
2492 	 * STANDALONE			STANDALONE or FREE	proceed
2493 	 * STANDALONE			THREAD			fail
2494 	 * THREAD			THREAD or FREE		proceed
2495 	 * THREAD			STANDALONE		fail
2496 	 */
2497 
2498 	if (!PMC_ROW_DISP_IS_FREE(ri) &&
2499 	    !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2500 	    !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2501 		return EBUSY;
2502 
2503 	/*
2504 	 * All OK
2505 	 */
2506 
2507 	PMCDBG(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2508 
2509 	return 0;
2510 
2511 }
2512 
2513 /*
2514  * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
2515  */
2516 
2517 static struct pmc *
2518 pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2519 {
2520 	struct pmc *pm;
2521 
2522 	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2523 	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2524 		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2525 
2526 	LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2527 	    if (pm->pm_id == pmcid)
2528 		    return pm;
2529 
2530 	return NULL;
2531 }
2532 
2533 static int
2534 pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
2535 {
2536 
2537 	struct pmc *pm;
2538 	struct pmc_owner *po;
2539 
2540 	PMCDBG(PMC,FND,1, "find-pmc id=%d", pmcid);
2541 
2542 	if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL)
2543 		return ESRCH;
2544 
2545 	if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
2546 		return EINVAL;
2547 
2548 	PMCDBG(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
2549 
2550 	*pmc = pm;
2551 	return 0;
2552 }
2553 
2554 /*
2555  * Start a PMC.
2556  */
2557 
2558 static int
2559 pmc_start(struct pmc *pm)
2560 {
2561 	enum pmc_mode mode;
2562 	struct pmc_owner *po;
2563 	struct pmc_binding pb;
2564 	struct pmc_classdep *pcd;
2565 	int adjri, error, cpu, ri;
2566 
2567 	KASSERT(pm != NULL,
2568 	    ("[pmc,%d] null pm", __LINE__));
2569 
2570 	mode = PMC_TO_MODE(pm);
2571 	ri   = PMC_TO_ROWINDEX(pm);
2572 	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2573 
2574 	error = 0;
2575 
2576 	PMCDBG(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
2577 
2578 	po = pm->pm_owner;
2579 
2580 	/*
2581 	 * Disallow PMCSTART if a logfile is required but has not been
2582 	 * configured yet.
2583 	 */
2584 	if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
2585 	    (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
2586 		return (EDOOFUS);	/* programming error */
2587 
2588 	/*
2589 	 * If this is a sampling mode PMC, log mapping information for
2590 	 * the kernel modules that are currently loaded.
2591 	 */
2592 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
2593 	    pmc_log_kernel_mappings(pm);
2594 
2595 	if (PMC_IS_VIRTUAL_MODE(mode)) {
2596 
2597 		/*
2598 		 * If a PMCATTACH has never been done on this PMC,
2599 		 * attach it to its owner process.
2600 		 */
2601 
2602 		if (LIST_EMPTY(&pm->pm_targets))
2603 			error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
2604 			    pmc_attach_process(po->po_owner, pm);
2605 
2606 		/*
2607 		 * If the PMC is attached to its owner, then force a context
2608 		 * switch to ensure that the MD state gets set correctly.
2609 		 */
2610 
2611 		if (error == 0) {
2612 			pm->pm_state = PMC_STATE_RUNNING;
2613 			if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
2614 				pmc_force_context_switch();
2615 		}
2616 
2617 		return (error);
2618 	}
2619 
2620 
2621 	/*
2622 	 * A system-wide PMC.
2623 	 *
2624 	 * Add the owner to the global list if this is a system-wide
2625 	 * sampling PMC.
2626 	 */
2627 
2628 	if (mode == PMC_MODE_SS) {
2629 		if (po->po_sscount == 0) {
2630 			LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
2631 			atomic_add_rel_int(&pmc_ss_count, 1);
2632 			PMCDBG(PMC,OPS,1, "po=%p in global list", po);
2633 		}
2634 		po->po_sscount++;
2635 
2636 		/*
2637 		 * Log mapping information for all existing processes in the
2638 		 * system.  Subsequent mappings are logged as they happen;
2639 		 * see pmc_process_mmap().
2640 		 */
2641 		if (po->po_logprocmaps == 0) {
2642 			pmc_log_all_process_mappings(po);
2643 			po->po_logprocmaps = 1;
2644 		}
2645 	}
2646 
2647 	/*
2648 	 * Move to the CPU associated with this
2649 	 * PMC, and start the hardware.
2650 	 */
2651 
2652 	pmc_save_cpu_binding(&pb);
2653 
2654 	cpu = PMC_TO_CPU(pm);
2655 
2656 	if (!pmc_cpu_is_active(cpu))
2657 		return (ENXIO);
2658 
2659 	pmc_select_cpu(cpu);
2660 
2661 	/*
2662 	 * global PMCs are configured at allocation time
2663 	 * so write out the initial value and start the PMC.
2664 	 */
2665 
2666 	pm->pm_state = PMC_STATE_RUNNING;
2667 
2668 	critical_enter();
2669 	if ((error = pcd->pcd_write_pmc(cpu, adjri,
2670 		 PMC_IS_SAMPLING_MODE(mode) ?
2671 		 pm->pm_sc.pm_reloadcount :
2672 		 pm->pm_sc.pm_initial)) == 0)
2673 		error = pcd->pcd_start_pmc(cpu, adjri);
2674 	critical_exit();
2675 
2676 	pmc_restore_cpu_binding(&pb);
2677 
2678 	return (error);
2679 }
2680 
2681 /*
2682  * Stop a PMC.
2683  */
2684 
2685 static int
2686 pmc_stop(struct pmc *pm)
2687 {
2688 	struct pmc_owner *po;
2689 	struct pmc_binding pb;
2690 	struct pmc_classdep *pcd;
2691 	int adjri, cpu, error, ri;
2692 
2693 	KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
2694 
2695 	PMCDBG(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
2696 	    PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
2697 
2698 	pm->pm_state = PMC_STATE_STOPPED;
2699 
2700 	/*
2701 	 * If the PMC is a virtual mode one, changing the state to
2702 	 * non-RUNNING is enough to ensure that the PMC never gets
2703 	 * scheduled.
2704 	 *
2705 	 * If this PMC is current running on a CPU, then it will
2706 	 * handled correctly at the time its target process is context
2707 	 * switched out.
2708 	 */
2709 
2710 	if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
2711 		return 0;
2712 
2713 	/*
2714 	 * A system-mode PMC.  Move to the CPU associated with
2715 	 * this PMC, and stop the hardware.  We update the
2716 	 * 'initial count' so that a subsequent PMCSTART will
2717 	 * resume counting from the current hardware count.
2718 	 */
2719 
2720 	pmc_save_cpu_binding(&pb);
2721 
2722 	cpu = PMC_TO_CPU(pm);
2723 
2724 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
2725 	    ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
2726 
2727 	if (!pmc_cpu_is_active(cpu))
2728 		return ENXIO;
2729 
2730 	pmc_select_cpu(cpu);
2731 
2732 	ri = PMC_TO_ROWINDEX(pm);
2733 	pcd = pmc_ri_to_classdep(md, ri, &adjri);
2734 
2735 	critical_enter();
2736 	if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0)
2737 		error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial);
2738 	critical_exit();
2739 
2740 	pmc_restore_cpu_binding(&pb);
2741 
2742 	po = pm->pm_owner;
2743 
2744 	/* remove this owner from the global list of SS PMC owners */
2745 	if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
2746 		po->po_sscount--;
2747 		if (po->po_sscount == 0) {
2748 			atomic_subtract_rel_int(&pmc_ss_count, 1);
2749 			LIST_REMOVE(po, po_ssnext);
2750 			PMCDBG(PMC,OPS,2,"po=%p removed from global list", po);
2751 		}
2752 	}
2753 
2754 	return (error);
2755 }
2756 
2757 
2758 #ifdef	DEBUG
2759 static const char *pmc_op_to_name[] = {
2760 #undef	__PMC_OP
2761 #define	__PMC_OP(N, D)	#N ,
2762 	__PMC_OPS()
2763 	NULL
2764 };
2765 #endif
2766 
2767 /*
2768  * The syscall interface
2769  */
2770 
2771 #define	PMC_GET_SX_XLOCK(...) do {		\
2772 	sx_xlock(&pmc_sx);			\
2773 	if (pmc_hook == NULL) {			\
2774 		sx_xunlock(&pmc_sx);		\
2775 		return __VA_ARGS__;		\
2776 	}					\
2777 } while (0)
2778 
2779 #define	PMC_DOWNGRADE_SX() do {			\
2780 	sx_downgrade(&pmc_sx);			\
2781 	is_sx_downgraded = 1;			\
2782 } while (0)
2783 
2784 static int
2785 pmc_syscall_handler(struct thread *td, void *syscall_args)
2786 {
2787 	int error, is_sx_downgraded, is_sx_locked, op;
2788 	struct pmc_syscall_args *c;
2789 	void *arg;
2790 
2791 	PMC_GET_SX_XLOCK(ENOSYS);
2792 
2793 	DROP_GIANT();
2794 
2795 	is_sx_downgraded = 0;
2796 	is_sx_locked = 1;
2797 
2798 	c = (struct pmc_syscall_args *) syscall_args;
2799 
2800 	op = c->pmop_code;
2801 	arg = c->pmop_data;
2802 
2803 	PMCDBG(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
2804 	    pmc_op_to_name[op], arg);
2805 
2806 	error = 0;
2807 	atomic_add_int(&pmc_stats.pm_syscalls, 1);
2808 
2809 	switch(op)
2810 	{
2811 
2812 
2813 	/*
2814 	 * Configure a log file.
2815 	 *
2816 	 * XXX This OP will be reworked.
2817 	 */
2818 
2819 	case PMC_OP_CONFIGURELOG:
2820 	{
2821 		struct proc *p;
2822 		struct pmc *pm;
2823 		struct pmc_owner *po;
2824 		struct pmc_op_configurelog cl;
2825 
2826 		sx_assert(&pmc_sx, SX_XLOCKED);
2827 
2828 		if ((error = copyin(arg, &cl, sizeof(cl))) != 0)
2829 			break;
2830 
2831 		/* mark this process as owning a log file */
2832 		p = td->td_proc;
2833 		if ((po = pmc_find_owner_descriptor(p)) == NULL)
2834 			if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
2835 				error = ENOMEM;
2836 				break;
2837 			}
2838 
2839 		/*
2840 		 * If a valid fd was passed in, try to configure that,
2841 		 * otherwise if 'fd' was less than zero and there was
2842 		 * a log file configured, flush its buffers and
2843 		 * de-configure it.
2844 		 */
2845 		if (cl.pm_logfd >= 0) {
2846 			sx_xunlock(&pmc_sx);
2847 			is_sx_locked = 0;
2848 			error = pmclog_configure_log(md, po, cl.pm_logfd);
2849 		} else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
2850 			pmclog_process_closelog(po);
2851 			error = pmclog_close(po);
2852 			if (error == 0) {
2853 				LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2854 				    if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
2855 					pm->pm_state == PMC_STATE_RUNNING)
2856 					    pmc_stop(pm);
2857 				error = pmclog_deconfigure_log(po);
2858 			}
2859 		} else
2860 			error = EINVAL;
2861 
2862 		if (error)
2863 			break;
2864 	}
2865 	break;
2866 
2867 	/*
2868 	 * Flush a log file.
2869 	 */
2870 
2871 	case PMC_OP_FLUSHLOG:
2872 	{
2873 		struct pmc_owner *po;
2874 
2875 		sx_assert(&pmc_sx, SX_XLOCKED);
2876 
2877 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2878 			error = EINVAL;
2879 			break;
2880 		}
2881 
2882 		error = pmclog_flush(po);
2883 	}
2884 	break;
2885 
2886 	/*
2887 	 * Close a log file.
2888 	 */
2889 
2890 	case PMC_OP_CLOSELOG:
2891 	{
2892 		struct pmc_owner *po;
2893 
2894 		sx_assert(&pmc_sx, SX_XLOCKED);
2895 
2896 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2897 			error = EINVAL;
2898 			break;
2899 		}
2900 
2901 		error = pmclog_close(po);
2902 	}
2903 	break;
2904 
2905 	/*
2906 	 * Retrieve hardware configuration.
2907 	 */
2908 
2909 	case PMC_OP_GETCPUINFO:	/* CPU information */
2910 	{
2911 		struct pmc_op_getcpuinfo gci;
2912 		struct pmc_classinfo *pci;
2913 		struct pmc_classdep *pcd;
2914 		int cl;
2915 
2916 		gci.pm_cputype = md->pmd_cputype;
2917 		gci.pm_ncpu    = pmc_cpu_max();
2918 		gci.pm_npmc    = md->pmd_npmc;
2919 		gci.pm_nclass  = md->pmd_nclass;
2920 		pci = gci.pm_classes;
2921 		pcd = md->pmd_classdep;
2922 		for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
2923 			pci->pm_caps  = pcd->pcd_caps;
2924 			pci->pm_class = pcd->pcd_class;
2925 			pci->pm_width = pcd->pcd_width;
2926 			pci->pm_num   = pcd->pcd_num;
2927 		}
2928 		error = copyout(&gci, arg, sizeof(gci));
2929 	}
2930 	break;
2931 
2932 	/*
2933 	 * Retrieve soft events list.
2934 	 */
2935 	case PMC_OP_GETDYNEVENTINFO:
2936 	{
2937 		enum pmc_class			cl;
2938 		enum pmc_event			ev;
2939 		struct pmc_op_getdyneventinfo	*gei;
2940 		struct pmc_dyn_event_descr	dev;
2941 		struct pmc_soft			*ps;
2942 		uint32_t			nevent;
2943 
2944 		sx_assert(&pmc_sx, SX_LOCKED);
2945 
2946 		gei = (struct pmc_op_getdyneventinfo *) arg;
2947 
2948 		if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
2949 			break;
2950 
2951 		/* Only SOFT class is dynamic. */
2952 		if (cl != PMC_CLASS_SOFT) {
2953 			error = EINVAL;
2954 			break;
2955 		}
2956 
2957 		nevent = 0;
2958 		for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
2959 			ps = pmc_soft_ev_acquire(ev);
2960 			if (ps == NULL)
2961 				continue;
2962 			bcopy(&ps->ps_ev, &dev, sizeof(dev));
2963 			pmc_soft_ev_release(ps);
2964 
2965 			error = copyout(&dev,
2966 			    &gei->pm_events[nevent],
2967 			    sizeof(struct pmc_dyn_event_descr));
2968 			if (error != 0)
2969 				break;
2970 			nevent++;
2971 		}
2972 		if (error != 0)
2973 			break;
2974 
2975 		error = copyout(&nevent, &gei->pm_nevent,
2976 		    sizeof(nevent));
2977 	}
2978 	break;
2979 
2980 	/*
2981 	 * Get module statistics
2982 	 */
2983 
2984 	case PMC_OP_GETDRIVERSTATS:
2985 	{
2986 		struct pmc_op_getdriverstats gms;
2987 
2988 		bcopy(&pmc_stats, &gms, sizeof(gms));
2989 		error = copyout(&gms, arg, sizeof(gms));
2990 	}
2991 	break;
2992 
2993 
2994 	/*
2995 	 * Retrieve module version number
2996 	 */
2997 
2998 	case PMC_OP_GETMODULEVERSION:
2999 	{
3000 		uint32_t cv, modv;
3001 
3002 		/* retrieve the client's idea of the ABI version */
3003 		if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
3004 			break;
3005 		/* don't service clients newer than our driver */
3006 		modv = PMC_VERSION;
3007 		if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
3008 			error = EPROGMISMATCH;
3009 			break;
3010 		}
3011 		error = copyout(&modv, arg, sizeof(int));
3012 	}
3013 	break;
3014 
3015 
3016 	/*
3017 	 * Retrieve the state of all the PMCs on a given
3018 	 * CPU.
3019 	 */
3020 
3021 	case PMC_OP_GETPMCINFO:
3022 	{
3023 		int ari;
3024 		struct pmc *pm;
3025 		size_t pmcinfo_size;
3026 		uint32_t cpu, n, npmc;
3027 		struct pmc_owner *po;
3028 		struct pmc_binding pb;
3029 		struct pmc_classdep *pcd;
3030 		struct pmc_info *p, *pmcinfo;
3031 		struct pmc_op_getpmcinfo *gpi;
3032 
3033 		PMC_DOWNGRADE_SX();
3034 
3035 		gpi = (struct pmc_op_getpmcinfo *) arg;
3036 
3037 		if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
3038 			break;
3039 
3040 		if (cpu >= pmc_cpu_max()) {
3041 			error = EINVAL;
3042 			break;
3043 		}
3044 
3045 		if (!pmc_cpu_is_active(cpu)) {
3046 			error = ENXIO;
3047 			break;
3048 		}
3049 
3050 		/* switch to CPU 'cpu' */
3051 		pmc_save_cpu_binding(&pb);
3052 		pmc_select_cpu(cpu);
3053 
3054 		npmc = md->pmd_npmc;
3055 
3056 		pmcinfo_size = npmc * sizeof(struct pmc_info);
3057 		pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK);
3058 
3059 		p = pmcinfo;
3060 
3061 		for (n = 0; n < md->pmd_npmc; n++, p++) {
3062 
3063 			pcd = pmc_ri_to_classdep(md, n, &ari);
3064 
3065 			KASSERT(pcd != NULL,
3066 			    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
3067 
3068 			if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
3069 				break;
3070 
3071 			if (PMC_ROW_DISP_IS_STANDALONE(n))
3072 				p->pm_rowdisp = PMC_DISP_STANDALONE;
3073 			else if (PMC_ROW_DISP_IS_THREAD(n))
3074 				p->pm_rowdisp = PMC_DISP_THREAD;
3075 			else
3076 				p->pm_rowdisp = PMC_DISP_FREE;
3077 
3078 			p->pm_ownerpid = -1;
3079 
3080 			if (pm == NULL)	/* no PMC associated */
3081 				continue;
3082 
3083 			po = pm->pm_owner;
3084 
3085 			KASSERT(po->po_owner != NULL,
3086 			    ("[pmc,%d] pmc_owner had a null proc pointer",
3087 				__LINE__));
3088 
3089 			p->pm_ownerpid = po->po_owner->p_pid;
3090 			p->pm_mode     = PMC_TO_MODE(pm);
3091 			p->pm_event    = pm->pm_event;
3092 			p->pm_flags    = pm->pm_flags;
3093 
3094 			if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3095 				p->pm_reloadcount =
3096 				    pm->pm_sc.pm_reloadcount;
3097 		}
3098 
3099 		pmc_restore_cpu_binding(&pb);
3100 
3101 		/* now copy out the PMC info collected */
3102 		if (error == 0)
3103 			error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
3104 
3105 		free(pmcinfo, M_PMC);
3106 	}
3107 	break;
3108 
3109 
3110 	/*
3111 	 * Set the administrative state of a PMC.  I.e. whether
3112 	 * the PMC is to be used or not.
3113 	 */
3114 
3115 	case PMC_OP_PMCADMIN:
3116 	{
3117 		int cpu, ri;
3118 		enum pmc_state request;
3119 		struct pmc_cpu *pc;
3120 		struct pmc_hw *phw;
3121 		struct pmc_op_pmcadmin pma;
3122 		struct pmc_binding pb;
3123 
3124 		sx_assert(&pmc_sx, SX_XLOCKED);
3125 
3126 		KASSERT(td == curthread,
3127 		    ("[pmc,%d] td != curthread", __LINE__));
3128 
3129 		error = priv_check(td, PRIV_PMC_MANAGE);
3130 		if (error)
3131 			break;
3132 
3133 		if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
3134 			break;
3135 
3136 		cpu = pma.pm_cpu;
3137 
3138 		if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
3139 			error = EINVAL;
3140 			break;
3141 		}
3142 
3143 		if (!pmc_cpu_is_active(cpu)) {
3144 			error = ENXIO;
3145 			break;
3146 		}
3147 
3148 		request = pma.pm_state;
3149 
3150 		if (request != PMC_STATE_DISABLED &&
3151 		    request != PMC_STATE_FREE) {
3152 			error = EINVAL;
3153 			break;
3154 		}
3155 
3156 		ri = pma.pm_pmc; /* pmc id == row index */
3157 		if (ri < 0 || ri >= (int) md->pmd_npmc) {
3158 			error = EINVAL;
3159 			break;
3160 		}
3161 
3162 		/*
3163 		 * We can't disable a PMC with a row-index allocated
3164 		 * for process virtual PMCs.
3165 		 */
3166 
3167 		if (PMC_ROW_DISP_IS_THREAD(ri) &&
3168 		    request == PMC_STATE_DISABLED) {
3169 			error = EBUSY;
3170 			break;
3171 		}
3172 
3173 		/*
3174 		 * otherwise, this PMC on this CPU is either free or
3175 		 * in system-wide mode.
3176 		 */
3177 
3178 		pmc_save_cpu_binding(&pb);
3179 		pmc_select_cpu(cpu);
3180 
3181 		pc  = pmc_pcpu[cpu];
3182 		phw = pc->pc_hwpmcs[ri];
3183 
3184 		/*
3185 		 * XXX do we need some kind of 'forced' disable?
3186 		 */
3187 
3188 		if (phw->phw_pmc == NULL) {
3189 			if (request == PMC_STATE_DISABLED &&
3190 			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
3191 				phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
3192 				PMC_MARK_ROW_STANDALONE(ri);
3193 			} else if (request == PMC_STATE_FREE &&
3194 			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
3195 				phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
3196 				PMC_UNMARK_ROW_STANDALONE(ri);
3197 			}
3198 			/* other cases are a no-op */
3199 		} else
3200 			error = EBUSY;
3201 
3202 		pmc_restore_cpu_binding(&pb);
3203 	}
3204 	break;
3205 
3206 
3207 	/*
3208 	 * Allocate a PMC.
3209 	 */
3210 
3211 	case PMC_OP_PMCALLOCATE:
3212 	{
3213 		int adjri, n;
3214 		u_int cpu;
3215 		uint32_t caps;
3216 		struct pmc *pmc;
3217 		enum pmc_mode mode;
3218 		struct pmc_hw *phw;
3219 		struct pmc_binding pb;
3220 		struct pmc_classdep *pcd;
3221 		struct pmc_op_pmcallocate pa;
3222 
3223 		if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
3224 			break;
3225 
3226 		caps = pa.pm_caps;
3227 		mode = pa.pm_mode;
3228 		cpu  = pa.pm_cpu;
3229 
3230 		if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
3231 		     mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
3232 		    (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) {
3233 			error = EINVAL;
3234 			break;
3235 		}
3236 
3237 		/*
3238 		 * Virtual PMCs should only ask for a default CPU.
3239 		 * System mode PMCs need to specify a non-default CPU.
3240 		 */
3241 
3242 		if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
3243 		    (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
3244 			error = EINVAL;
3245 			break;
3246 		}
3247 
3248 		/*
3249 		 * Check that an inactive CPU is not being asked for.
3250 		 */
3251 
3252 		if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) {
3253 			error = ENXIO;
3254 			break;
3255 		}
3256 
3257 		/*
3258 		 * Refuse an allocation for a system-wide PMC if this
3259 		 * process has been jailed, or if this process lacks
3260 		 * super-user credentials and the sysctl tunable
3261 		 * 'security.bsd.unprivileged_syspmcs' is zero.
3262 		 */
3263 
3264 		if (PMC_IS_SYSTEM_MODE(mode)) {
3265 			if (jailed(curthread->td_ucred)) {
3266 				error = EPERM;
3267 				break;
3268 			}
3269 			if (!pmc_unprivileged_syspmcs) {
3270 				error = priv_check(curthread,
3271 				    PRIV_PMC_SYSTEM);
3272 				if (error)
3273 					break;
3274 			}
3275 		}
3276 
3277 		/*
3278 		 * Look for valid values for 'pm_flags'
3279 		 */
3280 
3281 		if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3282 		    PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN)) != 0) {
3283 			error = EINVAL;
3284 			break;
3285 		}
3286 
3287 		/* process logging options are not allowed for system PMCs */
3288 		if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
3289 		    (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
3290 			error = EINVAL;
3291 			break;
3292 		}
3293 
3294 		/*
3295 		 * All sampling mode PMCs need to be able to interrupt the
3296 		 * CPU.
3297 		 */
3298 		if (PMC_IS_SAMPLING_MODE(mode))
3299 			caps |= PMC_CAP_INTERRUPT;
3300 
3301 		/* A valid class specifier should have been passed in. */
3302 		for (n = 0; n < md->pmd_nclass; n++)
3303 			if (md->pmd_classdep[n].pcd_class == pa.pm_class)
3304 				break;
3305 		if (n == md->pmd_nclass) {
3306 			error = EINVAL;
3307 			break;
3308 		}
3309 
3310 		/* The requested PMC capabilities should be feasible. */
3311 		if ((md->pmd_classdep[n].pcd_caps & caps) != caps) {
3312 			error = EOPNOTSUPP;
3313 			break;
3314 		}
3315 
3316 		PMCDBG(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
3317 		    pa.pm_ev, caps, mode, cpu);
3318 
3319 		pmc = pmc_allocate_pmc_descriptor();
3320 		pmc->pm_id    = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
3321 		    PMC_ID_INVALID);
3322 		pmc->pm_event = pa.pm_ev;
3323 		pmc->pm_state = PMC_STATE_FREE;
3324 		pmc->pm_caps  = caps;
3325 		pmc->pm_flags = pa.pm_flags;
3326 
3327 		/* switch thread to CPU 'cpu' */
3328 		pmc_save_cpu_binding(&pb);
3329 
3330 #define	PMC_IS_SHAREABLE_PMC(cpu, n)				\
3331 	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &		\
3332 	 PMC_PHW_FLAG_IS_SHAREABLE)
3333 #define	PMC_IS_UNALLOCATED(cpu, n)				\
3334 	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3335 
3336 		if (PMC_IS_SYSTEM_MODE(mode)) {
3337 			pmc_select_cpu(cpu);
3338 			for (n = 0; n < (int) md->pmd_npmc; n++) {
3339 				pcd = pmc_ri_to_classdep(md, n, &adjri);
3340 				if (pmc_can_allocate_row(n, mode) == 0 &&
3341 				    pmc_can_allocate_rowindex(
3342 					    curthread->td_proc, n, cpu) == 0 &&
3343 				    (PMC_IS_UNALLOCATED(cpu, n) ||
3344 				     PMC_IS_SHAREABLE_PMC(cpu, n)) &&
3345 				    pcd->pcd_allocate_pmc(cpu, adjri, pmc,
3346 					&pa) == 0)
3347 					break;
3348 			}
3349 		} else {
3350 			/* Process virtual mode */
3351 			for (n = 0; n < (int) md->pmd_npmc; n++) {
3352 				pcd = pmc_ri_to_classdep(md, n, &adjri);
3353 				if (pmc_can_allocate_row(n, mode) == 0 &&
3354 				    pmc_can_allocate_rowindex(
3355 					    curthread->td_proc, n,
3356 					    PMC_CPU_ANY) == 0 &&
3357 				    pcd->pcd_allocate_pmc(curthread->td_oncpu,
3358 					adjri, pmc, &pa) == 0)
3359 					break;
3360 			}
3361 		}
3362 
3363 #undef	PMC_IS_UNALLOCATED
3364 #undef	PMC_IS_SHAREABLE_PMC
3365 
3366 		pmc_restore_cpu_binding(&pb);
3367 
3368 		if (n == (int) md->pmd_npmc) {
3369 			pmc_destroy_pmc_descriptor(pmc);
3370 			pmc = NULL;
3371 			error = EINVAL;
3372 			break;
3373 		}
3374 
3375 		/* Fill in the correct value in the ID field */
3376 		pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
3377 
3378 		PMCDBG(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
3379 		    pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
3380 
3381 		/* Process mode PMCs with logging enabled need log files */
3382 		if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
3383 			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3384 
3385 		/* All system mode sampling PMCs require a log file */
3386 		if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
3387 			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3388 
3389 		/*
3390 		 * Configure global pmc's immediately
3391 		 */
3392 
3393 		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
3394 
3395 			pmc_save_cpu_binding(&pb);
3396 			pmc_select_cpu(cpu);
3397 
3398 			phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
3399 			pcd = pmc_ri_to_classdep(md, n, &adjri);
3400 
3401 			if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
3402 			    (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
3403 				(void) pcd->pcd_release_pmc(cpu, adjri, pmc);
3404 				pmc_destroy_pmc_descriptor(pmc);
3405 				pmc = NULL;
3406 				pmc_restore_cpu_binding(&pb);
3407 				error = EPERM;
3408 				break;
3409 			}
3410 
3411 			pmc_restore_cpu_binding(&pb);
3412 		}
3413 
3414 		pmc->pm_state    = PMC_STATE_ALLOCATED;
3415 
3416 		/*
3417 		 * mark row disposition
3418 		 */
3419 
3420 		if (PMC_IS_SYSTEM_MODE(mode))
3421 			PMC_MARK_ROW_STANDALONE(n);
3422 		else
3423 			PMC_MARK_ROW_THREAD(n);
3424 
3425 		/*
3426 		 * Register this PMC with the current thread as its owner.
3427 		 */
3428 
3429 		if ((error =
3430 		    pmc_register_owner(curthread->td_proc, pmc)) != 0) {
3431 			pmc_release_pmc_descriptor(pmc);
3432 			pmc_destroy_pmc_descriptor(pmc);
3433 			pmc = NULL;
3434 			break;
3435 		}
3436 
3437 		/*
3438 		 * Return the allocated index.
3439 		 */
3440 
3441 		pa.pm_pmcid = pmc->pm_id;
3442 
3443 		error = copyout(&pa, arg, sizeof(pa));
3444 	}
3445 	break;
3446 
3447 
3448 	/*
3449 	 * Attach a PMC to a process.
3450 	 */
3451 
3452 	case PMC_OP_PMCATTACH:
3453 	{
3454 		struct pmc *pm;
3455 		struct proc *p;
3456 		struct pmc_op_pmcattach a;
3457 
3458 		sx_assert(&pmc_sx, SX_XLOCKED);
3459 
3460 		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3461 			break;
3462 
3463 		if (a.pm_pid < 0) {
3464 			error = EINVAL;
3465 			break;
3466 		} else if (a.pm_pid == 0)
3467 			a.pm_pid = td->td_proc->p_pid;
3468 
3469 		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3470 			break;
3471 
3472 		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
3473 			error = EINVAL;
3474 			break;
3475 		}
3476 
3477 		/* PMCs may be (re)attached only when allocated or stopped */
3478 		if (pm->pm_state == PMC_STATE_RUNNING) {
3479 			error = EBUSY;
3480 			break;
3481 		} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
3482 		    pm->pm_state != PMC_STATE_STOPPED) {
3483 			error = EINVAL;
3484 			break;
3485 		}
3486 
3487 		/* lookup pid */
3488 		if ((p = pfind(a.pm_pid)) == NULL) {
3489 			error = ESRCH;
3490 			break;
3491 		}
3492 
3493 		/*
3494 		 * Ignore processes that are working on exiting.
3495 		 */
3496 		if (p->p_flag & P_WEXIT) {
3497 			error = ESRCH;
3498 			PROC_UNLOCK(p);	/* pfind() returns a locked process */
3499 			break;
3500 		}
3501 
3502 		/*
3503 		 * we are allowed to attach a PMC to a process if
3504 		 * we can debug it.
3505 		 */
3506 		error = p_candebug(curthread, p);
3507 
3508 		PROC_UNLOCK(p);
3509 
3510 		if (error == 0)
3511 			error = pmc_attach_process(p, pm);
3512 	}
3513 	break;
3514 
3515 
3516 	/*
3517 	 * Detach an attached PMC from a process.
3518 	 */
3519 
3520 	case PMC_OP_PMCDETACH:
3521 	{
3522 		struct pmc *pm;
3523 		struct proc *p;
3524 		struct pmc_op_pmcattach a;
3525 
3526 		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3527 			break;
3528 
3529 		if (a.pm_pid < 0) {
3530 			error = EINVAL;
3531 			break;
3532 		} else if (a.pm_pid == 0)
3533 			a.pm_pid = td->td_proc->p_pid;
3534 
3535 		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3536 			break;
3537 
3538 		if ((p = pfind(a.pm_pid)) == NULL) {
3539 			error = ESRCH;
3540 			break;
3541 		}
3542 
3543 		/*
3544 		 * Treat processes that are in the process of exiting
3545 		 * as if they were not present.
3546 		 */
3547 
3548 		if (p->p_flag & P_WEXIT)
3549 			error = ESRCH;
3550 
3551 		PROC_UNLOCK(p);	/* pfind() returns a locked process */
3552 
3553 		if (error == 0)
3554 			error = pmc_detach_process(p, pm);
3555 	}
3556 	break;
3557 
3558 
3559 	/*
3560 	 * Retrieve the MSR number associated with the counter
3561 	 * 'pmc_id'.  This allows processes to directly use RDPMC
3562 	 * instructions to read their PMCs, without the overhead of a
3563 	 * system call.
3564 	 */
3565 
3566 	case PMC_OP_PMCGETMSR:
3567 	{
3568 		int adjri, ri;
3569 		struct pmc *pm;
3570 		struct pmc_target *pt;
3571 		struct pmc_op_getmsr gm;
3572 		struct pmc_classdep *pcd;
3573 
3574 		PMC_DOWNGRADE_SX();
3575 
3576 		if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
3577 			break;
3578 
3579 		if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
3580 			break;
3581 
3582 		/*
3583 		 * The allocated PMC has to be a process virtual PMC,
3584 		 * i.e., of type MODE_T[CS].  Global PMCs can only be
3585 		 * read using the PMCREAD operation since they may be
3586 		 * allocated on a different CPU than the one we could
3587 		 * be running on at the time of the RDPMC instruction.
3588 		 *
3589 		 * The GETMSR operation is not allowed for PMCs that
3590 		 * are inherited across processes.
3591 		 */
3592 
3593 		if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
3594 		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
3595 			error = EINVAL;
3596 			break;
3597 		}
3598 
3599 		/*
3600 		 * It only makes sense to use a RDPMC (or its
3601 		 * equivalent instruction on non-x86 architectures) on
3602 		 * a process that has allocated and attached a PMC to
3603 		 * itself.  Conversely the PMC is only allowed to have
3604 		 * one process attached to it -- its owner.
3605 		 */
3606 
3607 		if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
3608 		    LIST_NEXT(pt, pt_next) != NULL ||
3609 		    pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
3610 			error = EINVAL;
3611 			break;
3612 		}
3613 
3614 		ri = PMC_TO_ROWINDEX(pm);
3615 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
3616 
3617 		/* PMC class has no 'GETMSR' support */
3618 		if (pcd->pcd_get_msr == NULL) {
3619 			error = ENOSYS;
3620 			break;
3621 		}
3622 
3623 		if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
3624 			break;
3625 
3626 		if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
3627 			break;
3628 
3629 		/*
3630 		 * Mark our process as using MSRs.  Update machine
3631 		 * state using a forced context switch.
3632 		 */
3633 
3634 		pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
3635 		pmc_force_context_switch();
3636 
3637 	}
3638 	break;
3639 
3640 	/*
3641 	 * Release an allocated PMC
3642 	 */
3643 
3644 	case PMC_OP_PMCRELEASE:
3645 	{
3646 		pmc_id_t pmcid;
3647 		struct pmc *pm;
3648 		struct pmc_owner *po;
3649 		struct pmc_op_simple sp;
3650 
3651 		/*
3652 		 * Find PMC pointer for the named PMC.
3653 		 *
3654 		 * Use pmc_release_pmc_descriptor() to switch off the
3655 		 * PMC, remove all its target threads, and remove the
3656 		 * PMC from its owner's list.
3657 		 *
3658 		 * Remove the owner record if this is the last PMC
3659 		 * owned.
3660 		 *
3661 		 * Free up space.
3662 		 */
3663 
3664 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3665 			break;
3666 
3667 		pmcid = sp.pm_pmcid;
3668 
3669 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3670 			break;
3671 
3672 		po = pm->pm_owner;
3673 		pmc_release_pmc_descriptor(pm);
3674 		pmc_maybe_remove_owner(po);
3675 		pmc_destroy_pmc_descriptor(pm);
3676 	}
3677 	break;
3678 
3679 
3680 	/*
3681 	 * Read and/or write a PMC.
3682 	 */
3683 
3684 	case PMC_OP_PMCRW:
3685 	{
3686 		int adjri;
3687 		struct pmc *pm;
3688 		uint32_t cpu, ri;
3689 		pmc_value_t oldvalue;
3690 		struct pmc_binding pb;
3691 		struct pmc_op_pmcrw prw;
3692 		struct pmc_classdep *pcd;
3693 		struct pmc_op_pmcrw *pprw;
3694 
3695 		PMC_DOWNGRADE_SX();
3696 
3697 		if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
3698 			break;
3699 
3700 		ri = 0;
3701 		PMCDBG(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
3702 		    prw.pm_flags);
3703 
3704 		/* must have at least one flag set */
3705 		if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
3706 			error = EINVAL;
3707 			break;
3708 		}
3709 
3710 		/* locate pmc descriptor */
3711 		if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
3712 			break;
3713 
3714 		/* Can't read a PMC that hasn't been started. */
3715 		if (pm->pm_state != PMC_STATE_ALLOCATED &&
3716 		    pm->pm_state != PMC_STATE_STOPPED &&
3717 		    pm->pm_state != PMC_STATE_RUNNING) {
3718 			error = EINVAL;
3719 			break;
3720 		}
3721 
3722 		/* writing a new value is allowed only for 'STOPPED' pmcs */
3723 		if (pm->pm_state == PMC_STATE_RUNNING &&
3724 		    (prw.pm_flags & PMC_F_NEWVALUE)) {
3725 			error = EBUSY;
3726 			break;
3727 		}
3728 
3729 		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
3730 
3731 			/*
3732 			 * If this PMC is attached to its owner (i.e.,
3733 			 * the process requesting this operation) and
3734 			 * is running, then attempt to get an
3735 			 * upto-date reading from hardware for a READ.
3736 			 * Writes are only allowed when the PMC is
3737 			 * stopped, so only update the saved value
3738 			 * field.
3739 			 *
3740 			 * If the PMC is not running, or is not
3741 			 * attached to its owner, read/write to the
3742 			 * savedvalue field.
3743 			 */
3744 
3745 			ri = PMC_TO_ROWINDEX(pm);
3746 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3747 
3748 			mtx_pool_lock_spin(pmc_mtxpool, pm);
3749 			cpu = curthread->td_oncpu;
3750 
3751 			if (prw.pm_flags & PMC_F_OLDVALUE) {
3752 				if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
3753 				    (pm->pm_state == PMC_STATE_RUNNING))
3754 					error = (*pcd->pcd_read_pmc)(cpu, adjri,
3755 					    &oldvalue);
3756 				else
3757 					oldvalue = pm->pm_gv.pm_savedvalue;
3758 			}
3759 			if (prw.pm_flags & PMC_F_NEWVALUE)
3760 				pm->pm_gv.pm_savedvalue = prw.pm_value;
3761 
3762 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
3763 
3764 		} else { /* System mode PMCs */
3765 			cpu = PMC_TO_CPU(pm);
3766 			ri  = PMC_TO_ROWINDEX(pm);
3767 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3768 
3769 			if (!pmc_cpu_is_active(cpu)) {
3770 				error = ENXIO;
3771 				break;
3772 			}
3773 
3774 			/* move this thread to CPU 'cpu' */
3775 			pmc_save_cpu_binding(&pb);
3776 			pmc_select_cpu(cpu);
3777 
3778 			critical_enter();
3779 			/* save old value */
3780 			if (prw.pm_flags & PMC_F_OLDVALUE)
3781 				if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
3782 					 &oldvalue)))
3783 					goto error;
3784 			/* write out new value */
3785 			if (prw.pm_flags & PMC_F_NEWVALUE)
3786 				error = (*pcd->pcd_write_pmc)(cpu, adjri,
3787 				    prw.pm_value);
3788 		error:
3789 			critical_exit();
3790 			pmc_restore_cpu_binding(&pb);
3791 			if (error)
3792 				break;
3793 		}
3794 
3795 		pprw = (struct pmc_op_pmcrw *) arg;
3796 
3797 #ifdef	DEBUG
3798 		if (prw.pm_flags & PMC_F_NEWVALUE)
3799 			PMCDBG(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
3800 			    ri, prw.pm_value, oldvalue);
3801 		else if (prw.pm_flags & PMC_F_OLDVALUE)
3802 			PMCDBG(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
3803 #endif
3804 
3805 		/* return old value if requested */
3806 		if (prw.pm_flags & PMC_F_OLDVALUE)
3807 			if ((error = copyout(&oldvalue, &pprw->pm_value,
3808 				 sizeof(prw.pm_value))))
3809 				break;
3810 
3811 	}
3812 	break;
3813 
3814 
3815 	/*
3816 	 * Set the sampling rate for a sampling mode PMC and the
3817 	 * initial count for a counting mode PMC.
3818 	 */
3819 
3820 	case PMC_OP_PMCSETCOUNT:
3821 	{
3822 		struct pmc *pm;
3823 		struct pmc_op_pmcsetcount sc;
3824 
3825 		PMC_DOWNGRADE_SX();
3826 
3827 		if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
3828 			break;
3829 
3830 		if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
3831 			break;
3832 
3833 		if (pm->pm_state == PMC_STATE_RUNNING) {
3834 			error = EBUSY;
3835 			break;
3836 		}
3837 
3838 		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3839 			pm->pm_sc.pm_reloadcount = sc.pm_count;
3840 		else
3841 			pm->pm_sc.pm_initial = sc.pm_count;
3842 	}
3843 	break;
3844 
3845 
3846 	/*
3847 	 * Start a PMC.
3848 	 */
3849 
3850 	case PMC_OP_PMCSTART:
3851 	{
3852 		pmc_id_t pmcid;
3853 		struct pmc *pm;
3854 		struct pmc_op_simple sp;
3855 
3856 		sx_assert(&pmc_sx, SX_XLOCKED);
3857 
3858 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3859 			break;
3860 
3861 		pmcid = sp.pm_pmcid;
3862 
3863 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3864 			break;
3865 
3866 		KASSERT(pmcid == pm->pm_id,
3867 		    ("[pmc,%d] pmcid %x != id %x", __LINE__,
3868 			pm->pm_id, pmcid));
3869 
3870 		if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
3871 			break;
3872 		else if (pm->pm_state != PMC_STATE_STOPPED &&
3873 		    pm->pm_state != PMC_STATE_ALLOCATED) {
3874 			error = EINVAL;
3875 			break;
3876 		}
3877 
3878 		error = pmc_start(pm);
3879 	}
3880 	break;
3881 
3882 
3883 	/*
3884 	 * Stop a PMC.
3885 	 */
3886 
3887 	case PMC_OP_PMCSTOP:
3888 	{
3889 		pmc_id_t pmcid;
3890 		struct pmc *pm;
3891 		struct pmc_op_simple sp;
3892 
3893 		PMC_DOWNGRADE_SX();
3894 
3895 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3896 			break;
3897 
3898 		pmcid = sp.pm_pmcid;
3899 
3900 		/*
3901 		 * Mark the PMC as inactive and invoke the MD stop
3902 		 * routines if needed.
3903 		 */
3904 
3905 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3906 			break;
3907 
3908 		KASSERT(pmcid == pm->pm_id,
3909 		    ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
3910 			pm->pm_id, pmcid));
3911 
3912 		if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
3913 			break;
3914 		else if (pm->pm_state != PMC_STATE_RUNNING) {
3915 			error = EINVAL;
3916 			break;
3917 		}
3918 
3919 		error = pmc_stop(pm);
3920 	}
3921 	break;
3922 
3923 
3924 	/*
3925 	 * Write a user supplied value to the log file.
3926 	 */
3927 
3928 	case PMC_OP_WRITELOG:
3929 	{
3930 		struct pmc_op_writelog wl;
3931 		struct pmc_owner *po;
3932 
3933 		PMC_DOWNGRADE_SX();
3934 
3935 		if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
3936 			break;
3937 
3938 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3939 			error = EINVAL;
3940 			break;
3941 		}
3942 
3943 		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
3944 			error = EINVAL;
3945 			break;
3946 		}
3947 
3948 		error = pmclog_process_userlog(po, &wl);
3949 	}
3950 	break;
3951 
3952 
3953 	default:
3954 		error = EINVAL;
3955 		break;
3956 	}
3957 
3958 	if (is_sx_locked != 0) {
3959 		if (is_sx_downgraded)
3960 			sx_sunlock(&pmc_sx);
3961 		else
3962 			sx_xunlock(&pmc_sx);
3963 	}
3964 
3965 	if (error)
3966 		atomic_add_int(&pmc_stats.pm_syscall_errors, 1);
3967 
3968 	PICKUP_GIANT();
3969 
3970 	return error;
3971 }
3972 
3973 /*
3974  * Helper functions
3975  */
3976 
3977 
3978 /*
3979  * Mark the thread as needing callchain capture and post an AST.  The
3980  * actual callchain capture will be done in a context where it is safe
3981  * to take page faults.
3982  */
3983 
3984 static void
3985 pmc_post_callchain_callback(void)
3986 {
3987 	struct thread *td;
3988 
3989 	td = curthread;
3990 
3991 	/*
3992 	 * If there is multiple PMCs for the same interrupt ignore new post
3993 	 */
3994 	if (td->td_pflags & TDP_CALLCHAIN)
3995 		return;
3996 
3997 	/*
3998 	 * Mark this thread as needing callchain capture.
3999 	 * `td->td_pflags' will be safe to touch because this thread
4000 	 * was in user space when it was interrupted.
4001 	 */
4002 	td->td_pflags |= TDP_CALLCHAIN;
4003 
4004 	/*
4005 	 * Don't let this thread migrate between CPUs until callchain
4006 	 * capture completes.
4007 	 */
4008 	sched_pin();
4009 
4010 	return;
4011 }
4012 
4013 /*
4014  * Interrupt processing.
4015  *
4016  * Find a free slot in the per-cpu array of samples and capture the
4017  * current callchain there.  If a sample was successfully added, a bit
4018  * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4019  * needs to be invoked from the clock handler.
4020  *
4021  * This function is meant to be called from an NMI handler.  It cannot
4022  * use any of the locking primitives supplied by the OS.
4023  */
4024 
4025 int
4026 pmc_process_interrupt(int cpu, int ring, struct pmc *pm, struct trapframe *tf,
4027     int inuserspace)
4028 {
4029 	int error, callchaindepth;
4030 	struct thread *td;
4031 	struct pmc_sample *ps;
4032 	struct pmc_samplebuffer *psb;
4033 
4034 	error = 0;
4035 
4036 	/*
4037 	 * Allocate space for a sample buffer.
4038 	 */
4039 	psb = pmc_pcpu[cpu]->pc_sb[ring];
4040 
4041 	ps = psb->ps_write;
4042 	if (ps->ps_nsamples) {	/* in use, reader hasn't caught up */
4043 		pm->pm_stalled = 1;
4044 		atomic_add_int(&pmc_stats.pm_intr_bufferfull, 1);
4045 		PMCDBG(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4046 		    cpu, pm, (void *) tf, inuserspace,
4047 		    (int) (psb->ps_write - psb->ps_samples),
4048 		    (int) (psb->ps_read - psb->ps_samples));
4049 		error = ENOMEM;
4050 		goto done;
4051 	}
4052 
4053 
4054 	/* Fill in entry. */
4055 	PMCDBG(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
4056 	    (void *) tf, inuserspace,
4057 	    (int) (psb->ps_write - psb->ps_samples),
4058 	    (int) (psb->ps_read - psb->ps_samples));
4059 
4060 	KASSERT(pm->pm_runcount >= 0,
4061 	    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4062 		pm->pm_runcount));
4063 
4064 	atomic_add_rel_int(&pm->pm_runcount, 1);	/* hold onto PMC */
4065 
4066 	ps->ps_pmc = pm;
4067 	if ((td = curthread) && td->td_proc)
4068 		ps->ps_pid = td->td_proc->p_pid;
4069 	else
4070 		ps->ps_pid = -1;
4071 	ps->ps_cpu = cpu;
4072 	ps->ps_td = td;
4073 	ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4074 
4075 	callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4076 	    pmc_callchaindepth : 1;
4077 
4078 	if (callchaindepth == 1)
4079 		ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4080 	else {
4081 		/*
4082 		 * Kernel stack traversals can be done immediately,
4083 		 * while we defer to an AST for user space traversals.
4084 		 */
4085 		if (!inuserspace) {
4086 			callchaindepth =
4087 			    pmc_save_kernel_callchain(ps->ps_pc,
4088 				callchaindepth, tf);
4089 		} else {
4090 			pmc_post_callchain_callback();
4091 			callchaindepth = PMC_SAMPLE_INUSE;
4092 		}
4093 	}
4094 
4095 	ps->ps_nsamples = callchaindepth;	/* mark entry as in use */
4096 
4097 	/* increment write pointer, modulo ring buffer size */
4098 	ps++;
4099 	if (ps == psb->ps_fence)
4100 		psb->ps_write = psb->ps_samples;
4101 	else
4102 		psb->ps_write = ps;
4103 
4104  done:
4105 	/* mark CPU as needing processing */
4106 	CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4107 
4108 	return (error);
4109 }
4110 
4111 /*
4112  * Capture a user call chain.  This function will be called from ast()
4113  * before control returns to userland and before the process gets
4114  * rescheduled.
4115  */
4116 
4117 static void
4118 pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
4119 {
4120 	int i;
4121 	struct pmc *pm;
4122 	struct thread *td;
4123 	struct pmc_sample *ps;
4124 	struct pmc_samplebuffer *psb;
4125 #ifdef	INVARIANTS
4126 	int ncallchains;
4127 #endif
4128 
4129 	psb = pmc_pcpu[cpu]->pc_sb[ring];
4130 	td = curthread;
4131 
4132 	KASSERT(td->td_pflags & TDP_CALLCHAIN,
4133 	    ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4134 		__LINE__));
4135 
4136 #ifdef	INVARIANTS
4137 	ncallchains = 0;
4138 #endif
4139 
4140 	/*
4141 	 * Iterate through all deferred callchain requests.
4142 	 */
4143 
4144 	ps = psb->ps_samples;
4145 	for (i = 0; i < pmc_nsamples; i++, ps++) {
4146 
4147 		if (ps->ps_nsamples != PMC_SAMPLE_INUSE)
4148 			continue;
4149 		if (ps->ps_td != td)
4150 			continue;
4151 
4152 		KASSERT(ps->ps_cpu == cpu,
4153 		    ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4154 			ps->ps_cpu, PCPU_GET(cpuid)));
4155 
4156 		pm = ps->ps_pmc;
4157 
4158 		KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4159 		    ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4160 			"want it", __LINE__));
4161 
4162 		KASSERT(pm->pm_runcount > 0,
4163 		    ("[pmc,%d] runcount %d", __LINE__, pm->pm_runcount));
4164 
4165 		/*
4166 		 * Retrieve the callchain and mark the sample buffer
4167 		 * as 'processable' by the timer tick sweep code.
4168 		 */
4169 		ps->ps_nsamples = pmc_save_user_callchain(ps->ps_pc,
4170 		    pmc_callchaindepth, tf);
4171 
4172 #ifdef	INVARIANTS
4173 		ncallchains++;
4174 #endif
4175 	}
4176 
4177 	KASSERT(ncallchains > 0,
4178 	    ("[pmc,%d] cpu %d didn't find a sample to collect", __LINE__,
4179 		cpu));
4180 
4181 	KASSERT(td->td_pinned == 1,
4182 	    ("[pmc,%d] invalid td_pinned value", __LINE__));
4183 	sched_unpin();	/* Can migrate safely now. */
4184 
4185 	return;
4186 }
4187 
4188 /*
4189  * Process saved PC samples.
4190  */
4191 
4192 static void
4193 pmc_process_samples(int cpu, int ring)
4194 {
4195 	struct pmc *pm;
4196 	int adjri, n;
4197 	struct thread *td;
4198 	struct pmc_owner *po;
4199 	struct pmc_sample *ps;
4200 	struct pmc_classdep *pcd;
4201 	struct pmc_samplebuffer *psb;
4202 
4203 	KASSERT(PCPU_GET(cpuid) == cpu,
4204 	    ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4205 		PCPU_GET(cpuid), cpu));
4206 
4207 	psb = pmc_pcpu[cpu]->pc_sb[ring];
4208 
4209 	for (n = 0; n < pmc_nsamples; n++) { /* bound on #iterations */
4210 
4211 		ps = psb->ps_read;
4212 		if (ps->ps_nsamples == PMC_SAMPLE_FREE)
4213 			break;
4214 
4215 		pm = ps->ps_pmc;
4216 
4217 		KASSERT(pm->pm_runcount > 0,
4218 		    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4219 			pm->pm_runcount));
4220 
4221 		po = pm->pm_owner;
4222 
4223 		KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4224 		    ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4225 			pm, PMC_TO_MODE(pm)));
4226 
4227 		/* Ignore PMCs that have been switched off */
4228 		if (pm->pm_state != PMC_STATE_RUNNING)
4229 			goto entrydone;
4230 
4231 		/* If there is a pending AST wait for completion */
4232 		if (ps->ps_nsamples == PMC_SAMPLE_INUSE) {
4233 			/* Need a rescan at a later time. */
4234 			CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4235 			break;
4236 		}
4237 
4238 		PMCDBG(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4239 		    pm, ps->ps_nsamples, ps->ps_flags,
4240 		    (int) (psb->ps_write - psb->ps_samples),
4241 		    (int) (psb->ps_read - psb->ps_samples));
4242 
4243 		/*
4244 		 * If this is a process-mode PMC that is attached to
4245 		 * its owner, and if the PC is in user mode, update
4246 		 * profiling statistics like timer-based profiling
4247 		 * would have done.
4248 		 */
4249 		if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4250 			if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4251 				td = FIRST_THREAD_IN_PROC(po->po_owner);
4252 				addupc_intr(td, ps->ps_pc[0], 1);
4253 			}
4254 			goto entrydone;
4255 		}
4256 
4257 		/*
4258 		 * Otherwise, this is either a sampling mode PMC that
4259 		 * is attached to a different process than its owner,
4260 		 * or a system-wide sampling PMC.  Dispatch a log
4261 		 * entry to the PMC's owner process.
4262 		 */
4263 		pmclog_process_callchain(pm, ps);
4264 
4265 	entrydone:
4266 		ps->ps_nsamples = 0; /* mark entry as free */
4267 		atomic_subtract_rel_int(&pm->pm_runcount, 1);
4268 
4269 		/* increment read pointer, modulo sample size */
4270 		if (++ps == psb->ps_fence)
4271 			psb->ps_read = psb->ps_samples;
4272 		else
4273 			psb->ps_read = ps;
4274 	}
4275 
4276 	atomic_add_int(&pmc_stats.pm_log_sweeps, 1);
4277 
4278 	/* Do not re-enable stalled PMCs if we failed to process any samples */
4279 	if (n == 0)
4280 		return;
4281 
4282 	/*
4283 	 * Restart any stalled sampling PMCs on this CPU.
4284 	 *
4285 	 * If the NMI handler sets the pm_stalled field of a PMC after
4286 	 * the check below, we'll end up processing the stalled PMC at
4287 	 * the next hardclock tick.
4288 	 */
4289 	for (n = 0; n < md->pmd_npmc; n++) {
4290 		pcd = pmc_ri_to_classdep(md, n, &adjri);
4291 		KASSERT(pcd != NULL,
4292 		    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4293 		(void) (*pcd->pcd_get_config)(cpu,adjri,&pm);
4294 
4295 		if (pm == NULL ||			 /* !cfg'ed */
4296 		    pm->pm_state != PMC_STATE_RUNNING || /* !active */
4297 		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
4298 		    pm->pm_stalled == 0) /* !stalled */
4299 			continue;
4300 
4301 		pm->pm_stalled = 0;
4302 		(*pcd->pcd_start_pmc)(cpu, adjri);
4303 	}
4304 }
4305 
4306 /*
4307  * Event handlers.
4308  */
4309 
4310 /*
4311  * Handle a process exit.
4312  *
4313  * Remove this process from all hash tables.  If this process
4314  * owned any PMCs, turn off those PMCs and deallocate them,
4315  * removing any associations with target processes.
4316  *
4317  * This function will be called by the last 'thread' of a
4318  * process.
4319  *
4320  * XXX This eventhandler gets called early in the exit process.
4321  * Consider using a 'hook' invocation from thread_exit() or equivalent
4322  * spot.  Another negative is that kse_exit doesn't seem to call
4323  * exit1() [??].
4324  *
4325  */
4326 
4327 static void
4328 pmc_process_exit(void *arg __unused, struct proc *p)
4329 {
4330 	struct pmc *pm;
4331 	int adjri, cpu;
4332 	unsigned int ri;
4333 	int is_using_hwpmcs;
4334 	struct pmc_owner *po;
4335 	struct pmc_process *pp;
4336 	struct pmc_classdep *pcd;
4337 	pmc_value_t newvalue, tmp;
4338 
4339 	PROC_LOCK(p);
4340 	is_using_hwpmcs = p->p_flag & P_HWPMC;
4341 	PROC_UNLOCK(p);
4342 
4343 	/*
4344 	 * Log a sysexit event to all SS PMC owners.
4345 	 */
4346 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4347 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4348 		    pmclog_process_sysexit(po, p->p_pid);
4349 
4350 	if (!is_using_hwpmcs)
4351 		return;
4352 
4353 	PMC_GET_SX_XLOCK();
4354 	PMCDBG(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
4355 	    p->p_comm);
4356 
4357 	/*
4358 	 * Since this code is invoked by the last thread in an exiting
4359 	 * process, we would have context switched IN at some prior
4360 	 * point.  However, with PREEMPTION, kernel mode context
4361 	 * switches may happen any time, so we want to disable a
4362 	 * context switch OUT till we get any PMCs targetting this
4363 	 * process off the hardware.
4364 	 *
4365 	 * We also need to atomically remove this process'
4366 	 * entry from our target process hash table, using
4367 	 * PMC_FLAG_REMOVE.
4368 	 */
4369 	PMCDBG(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
4370 	    p->p_comm);
4371 
4372 	critical_enter(); /* no preemption */
4373 
4374 	cpu = curthread->td_oncpu;
4375 
4376 	if ((pp = pmc_find_process_descriptor(p,
4377 		 PMC_FLAG_REMOVE)) != NULL) {
4378 
4379 		PMCDBG(PRC,EXT,2,
4380 		    "process-exit proc=%p pmc-process=%p", p, pp);
4381 
4382 		/*
4383 		 * The exiting process could the target of
4384 		 * some PMCs which will be running on
4385 		 * currently executing CPU.
4386 		 *
4387 		 * We need to turn these PMCs off like we
4388 		 * would do at context switch OUT time.
4389 		 */
4390 		for (ri = 0; ri < md->pmd_npmc; ri++) {
4391 
4392 			/*
4393 			 * Pick up the pmc pointer from hardware
4394 			 * state similar to the CSW_OUT code.
4395 			 */
4396 			pm = NULL;
4397 
4398 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
4399 
4400 			(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
4401 
4402 			PMCDBG(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
4403 
4404 			if (pm == NULL ||
4405 			    !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
4406 				continue;
4407 
4408 			PMCDBG(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
4409 			    "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
4410 			    pm, pm->pm_state);
4411 
4412 			KASSERT(PMC_TO_ROWINDEX(pm) == ri,
4413 			    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
4414 				__LINE__, PMC_TO_ROWINDEX(pm), ri));
4415 
4416 			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
4417 			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
4418 				__LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
4419 
4420 			(void) pcd->pcd_stop_pmc(cpu, adjri);
4421 
4422 			KASSERT(pm->pm_runcount > 0,
4423 			    ("[pmc,%d] bad runcount ri %d rc %d",
4424 				__LINE__, ri, pm->pm_runcount));
4425 
4426 			/* Stop hardware only if it is actually running */
4427 			if (pm->pm_state == PMC_STATE_RUNNING &&
4428 			    pm->pm_stalled == 0) {
4429 				pcd->pcd_read_pmc(cpu, adjri, &newvalue);
4430 				tmp = newvalue -
4431 				    PMC_PCPU_SAVED(cpu,ri);
4432 
4433 				mtx_pool_lock_spin(pmc_mtxpool, pm);
4434 				pm->pm_gv.pm_savedvalue += tmp;
4435 				pp->pp_pmcs[ri].pp_pmcval += tmp;
4436 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
4437 			}
4438 
4439 			atomic_subtract_rel_int(&pm->pm_runcount,1);
4440 
4441 			KASSERT((int) pm->pm_runcount >= 0,
4442 			    ("[pmc,%d] runcount is %d", __LINE__, ri));
4443 
4444 			(void) pcd->pcd_config_pmc(cpu, adjri, NULL);
4445 		}
4446 
4447 		/*
4448 		 * Inform the MD layer of this pseudo "context switch
4449 		 * out"
4450 		 */
4451 		(void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
4452 
4453 		critical_exit(); /* ok to be pre-empted now */
4454 
4455 		/*
4456 		 * Unlink this process from the PMCs that are
4457 		 * targetting it.  This will send a signal to
4458 		 * all PMC owner's whose PMCs are orphaned.
4459 		 *
4460 		 * Log PMC value at exit time if requested.
4461 		 */
4462 		for (ri = 0; ri < md->pmd_npmc; ri++)
4463 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
4464 				if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
4465 				    PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
4466 					pmclog_process_procexit(pm, pp);
4467 				pmc_unlink_target_process(pm, pp);
4468 			}
4469 		free(pp, M_PMC);
4470 
4471 	} else
4472 		critical_exit(); /* pp == NULL */
4473 
4474 
4475 	/*
4476 	 * If the process owned PMCs, free them up and free up
4477 	 * memory.
4478 	 */
4479 	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
4480 		pmc_remove_owner(po);
4481 		pmc_destroy_owner_descriptor(po);
4482 	}
4483 
4484 	sx_xunlock(&pmc_sx);
4485 }
4486 
4487 /*
4488  * Handle a process fork.
4489  *
4490  * If the parent process 'p1' is under HWPMC monitoring, then copy
4491  * over any attached PMCs that have 'do_descendants' semantics.
4492  */
4493 
4494 static void
4495 pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
4496     int flags)
4497 {
4498 	int is_using_hwpmcs;
4499 	unsigned int ri;
4500 	uint32_t do_descendants;
4501 	struct pmc *pm;
4502 	struct pmc_owner *po;
4503 	struct pmc_process *ppnew, *ppold;
4504 
4505 	(void) flags;		/* unused parameter */
4506 
4507 	PROC_LOCK(p1);
4508 	is_using_hwpmcs = p1->p_flag & P_HWPMC;
4509 	PROC_UNLOCK(p1);
4510 
4511 	/*
4512 	 * If there are system-wide sampling PMCs active, we need to
4513 	 * log all fork events to their owner's logs.
4514 	 */
4515 
4516 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4517 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4518 		    pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
4519 
4520 	if (!is_using_hwpmcs)
4521 		return;
4522 
4523 	PMC_GET_SX_XLOCK();
4524 	PMCDBG(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
4525 	    p1->p_pid, p1->p_comm, newproc);
4526 
4527 	/*
4528 	 * If the parent process (curthread->td_proc) is a
4529 	 * target of any PMCs, look for PMCs that are to be
4530 	 * inherited, and link these into the new process
4531 	 * descriptor.
4532 	 */
4533 	if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
4534 		 PMC_FLAG_NONE)) == NULL)
4535 		goto done;		/* nothing to do */
4536 
4537 	do_descendants = 0;
4538 	for (ri = 0; ri < md->pmd_npmc; ri++)
4539 		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
4540 			do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
4541 	if (do_descendants == 0) /* nothing to do */
4542 		goto done;
4543 
4544 	/* allocate a descriptor for the new process  */
4545 	if ((ppnew = pmc_find_process_descriptor(newproc,
4546 		 PMC_FLAG_ALLOCATE)) == NULL)
4547 		goto done;
4548 
4549 	/*
4550 	 * Run through all PMCs that were targeting the old process
4551 	 * and which specified F_DESCENDANTS and attach them to the
4552 	 * new process.
4553 	 *
4554 	 * Log the fork event to all owners of PMCs attached to this
4555 	 * process, if not already logged.
4556 	 */
4557 	for (ri = 0; ri < md->pmd_npmc; ri++)
4558 		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
4559 		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
4560 			pmc_link_target_process(pm, ppnew);
4561 			po = pm->pm_owner;
4562 			if (po->po_sscount == 0 &&
4563 			    po->po_flags & PMC_PO_OWNS_LOGFILE)
4564 				pmclog_process_procfork(po, p1->p_pid,
4565 				    newproc->p_pid);
4566 		}
4567 
4568 	/*
4569 	 * Now mark the new process as being tracked by this driver.
4570 	 */
4571 	PROC_LOCK(newproc);
4572 	newproc->p_flag |= P_HWPMC;
4573 	PROC_UNLOCK(newproc);
4574 
4575  done:
4576 	sx_xunlock(&pmc_sx);
4577 }
4578 
4579 static void
4580 pmc_kld_load(void *arg __unused, linker_file_t lf)
4581 {
4582 	struct pmc_owner *po;
4583 
4584 	sx_slock(&pmc_sx);
4585 
4586 	/*
4587 	 * Notify owners of system sampling PMCs about KLD operations.
4588 	 */
4589 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4590 		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4591 			pmclog_process_map_in(po, (pid_t) -1,
4592 			    (uintfptr_t) lf->address, lf->filename);
4593 
4594 	/*
4595 	 * TODO: Notify owners of (all) process-sampling PMCs too.
4596 	 */
4597 
4598 	sx_sunlock(&pmc_sx);
4599 }
4600 
4601 static void
4602 pmc_kld_unload(void *arg __unused, const char *filename __unused,
4603     caddr_t address, size_t size)
4604 {
4605 	struct pmc_owner *po;
4606 
4607 	sx_slock(&pmc_sx);
4608 
4609 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4610 		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4611 			pmclog_process_map_out(po, (pid_t) -1,
4612 			    (uintfptr_t) address, (uintfptr_t) address + size);
4613 
4614 	/*
4615 	 * TODO: Notify owners of process-sampling PMCs.
4616 	 */
4617 
4618 	sx_sunlock(&pmc_sx);
4619 }
4620 
4621 /*
4622  * initialization
4623  */
4624 
4625 static const char *pmc_name_of_pmcclass[] = {
4626 #undef	__PMC_CLASS
4627 #define	__PMC_CLASS(N) #N ,
4628 	__PMC_CLASSES()
4629 };
4630 
4631 /*
4632  * Base class initializer: allocate structure and set default classes.
4633  */
4634 struct pmc_mdep *
4635 pmc_mdep_alloc(int nclasses)
4636 {
4637 	struct pmc_mdep *md;
4638 	int	n;
4639 
4640 	/* SOFT + md classes */
4641 	n = 1 + nclasses;
4642 	md = malloc(sizeof(struct pmc_mdep) + n *
4643 	    sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO);
4644 	md->pmd_nclass = n;
4645 
4646 	/* Add base class. */
4647 	pmc_soft_initialize(md);
4648 	return md;
4649 }
4650 
4651 void
4652 pmc_mdep_free(struct pmc_mdep *md)
4653 {
4654 	pmc_soft_finalize(md);
4655 	free(md, M_PMC);
4656 }
4657 
4658 static int
4659 generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
4660 {
4661 	(void) pc; (void) pp;
4662 
4663 	return (0);
4664 }
4665 
4666 static int
4667 generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
4668 {
4669 	(void) pc; (void) pp;
4670 
4671 	return (0);
4672 }
4673 
4674 static struct pmc_mdep *
4675 pmc_generic_cpu_initialize(void)
4676 {
4677 	struct pmc_mdep *md;
4678 
4679 	md = pmc_mdep_alloc(0);
4680 
4681 	md->pmd_cputype    = PMC_CPU_GENERIC;
4682 
4683 	md->pmd_pcpu_init  = NULL;
4684 	md->pmd_pcpu_fini  = NULL;
4685 	md->pmd_switch_in  = generic_switch_in;
4686 	md->pmd_switch_out = generic_switch_out;
4687 
4688 	return (md);
4689 }
4690 
4691 static void
4692 pmc_generic_cpu_finalize(struct pmc_mdep *md)
4693 {
4694 	(void) md;
4695 }
4696 
4697 
4698 static int
4699 pmc_initialize(void)
4700 {
4701 	int c, cpu, error, n, ri;
4702 	unsigned int maxcpu;
4703 	struct pmc_binding pb;
4704 	struct pmc_sample *ps;
4705 	struct pmc_classdep *pcd;
4706 	struct pmc_samplebuffer *sb;
4707 
4708 	md = NULL;
4709 	error = 0;
4710 
4711 #ifdef	DEBUG
4712 	/* parse debug flags first */
4713 	if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
4714 		pmc_debugstr, sizeof(pmc_debugstr)))
4715 		pmc_debugflags_parse(pmc_debugstr,
4716 		    pmc_debugstr+strlen(pmc_debugstr));
4717 #endif
4718 
4719 	PMCDBG(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
4720 
4721 	/* check kernel version */
4722 	if (pmc_kernel_version != PMC_VERSION) {
4723 		if (pmc_kernel_version == 0)
4724 			printf("hwpmc: this kernel has not been compiled with "
4725 			    "'options HWPMC_HOOKS'.\n");
4726 		else
4727 			printf("hwpmc: kernel version (0x%x) does not match "
4728 			    "module version (0x%x).\n", pmc_kernel_version,
4729 			    PMC_VERSION);
4730 		return EPROGMISMATCH;
4731 	}
4732 
4733 	/*
4734 	 * check sysctl parameters
4735 	 */
4736 
4737 	if (pmc_hashsize <= 0) {
4738 		(void) printf("hwpmc: tunable \"hashsize\"=%d must be "
4739 		    "greater than zero.\n", pmc_hashsize);
4740 		pmc_hashsize = PMC_HASH_SIZE;
4741 	}
4742 
4743 	if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
4744 		(void) printf("hwpmc: tunable \"nsamples\"=%d out of "
4745 		    "range.\n", pmc_nsamples);
4746 		pmc_nsamples = PMC_NSAMPLES;
4747 	}
4748 
4749 	if (pmc_callchaindepth <= 0 ||
4750 	    pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
4751 		(void) printf("hwpmc: tunable \"callchaindepth\"=%d out of "
4752 		    "range.\n", pmc_callchaindepth);
4753 		pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
4754 	}
4755 
4756 	md = pmc_md_initialize();
4757 	if (md == NULL) {
4758 		/* Default to generic CPU. */
4759 		md = pmc_generic_cpu_initialize();
4760 		if (md == NULL)
4761 			return (ENOSYS);
4762         }
4763 
4764 	KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
4765 	    ("[pmc,%d] no classes or pmcs", __LINE__));
4766 
4767 	/* Compute the map from row-indices to classdep pointers. */
4768 	pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
4769 	    md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO);
4770 
4771 	for (n = 0; n < md->pmd_npmc; n++)
4772 		pmc_rowindex_to_classdep[n] = NULL;
4773 	for (ri = c = 0; c < md->pmd_nclass; c++) {
4774 		pcd = &md->pmd_classdep[c];
4775 		for (n = 0; n < pcd->pcd_num; n++, ri++)
4776 			pmc_rowindex_to_classdep[ri] = pcd;
4777 	}
4778 
4779 	KASSERT(ri == md->pmd_npmc,
4780 	    ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
4781 	    ri, md->pmd_npmc));
4782 
4783 	maxcpu = pmc_cpu_max();
4784 
4785 	/* allocate space for the per-cpu array */
4786 	pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
4787 	    M_WAITOK|M_ZERO);
4788 
4789 	/* per-cpu 'saved values' for managing process-mode PMCs */
4790 	pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
4791 	    M_PMC, M_WAITOK);
4792 
4793 	/* Perform CPU-dependent initialization. */
4794 	pmc_save_cpu_binding(&pb);
4795 	error = 0;
4796 	for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
4797 		if (!pmc_cpu_is_active(cpu))
4798 			continue;
4799 		pmc_select_cpu(cpu);
4800 		pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
4801 		    md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
4802 		    M_WAITOK|M_ZERO);
4803 		if (md->pmd_pcpu_init)
4804 			error = md->pmd_pcpu_init(md, cpu);
4805 		for (n = 0; error == 0 && n < md->pmd_nclass; n++)
4806 			error = md->pmd_classdep[n].pcd_pcpu_init(md, cpu);
4807 	}
4808 	pmc_restore_cpu_binding(&pb);
4809 
4810 	if (error)
4811 		return (error);
4812 
4813 	/* allocate space for the sample array */
4814 	for (cpu = 0; cpu < maxcpu; cpu++) {
4815 		if (!pmc_cpu_is_active(cpu))
4816 			continue;
4817 
4818 		sb = malloc(sizeof(struct pmc_samplebuffer) +
4819 		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4820 		    M_WAITOK|M_ZERO);
4821 		sb->ps_read = sb->ps_write = sb->ps_samples;
4822 		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4823 
4824 		KASSERT(pmc_pcpu[cpu] != NULL,
4825 		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4826 
4827 		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4828 		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4829 
4830 		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4831 			ps->ps_pc = sb->ps_callchains +
4832 			    (n * pmc_callchaindepth);
4833 
4834 		pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
4835 
4836 		sb = malloc(sizeof(struct pmc_samplebuffer) +
4837 		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4838 		    M_WAITOK|M_ZERO);
4839 		sb->ps_read = sb->ps_write = sb->ps_samples;
4840 		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4841 
4842 		KASSERT(pmc_pcpu[cpu] != NULL,
4843 		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4844 
4845 		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4846 		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4847 
4848 		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4849 			ps->ps_pc = sb->ps_callchains +
4850 			    (n * pmc_callchaindepth);
4851 
4852 		pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
4853 	}
4854 
4855 	/* allocate space for the row disposition array */
4856 	pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
4857 	    M_PMC, M_WAITOK|M_ZERO);
4858 
4859 	/* mark all PMCs as available */
4860 	for (n = 0; n < (int) md->pmd_npmc; n++)
4861 		PMC_MARK_ROW_FREE(n);
4862 
4863 	/* allocate thread hash tables */
4864 	pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
4865 	    &pmc_ownerhashmask);
4866 
4867 	pmc_processhash = hashinit(pmc_hashsize, M_PMC,
4868 	    &pmc_processhashmask);
4869 	mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
4870 	    MTX_SPIN);
4871 
4872 	LIST_INIT(&pmc_ss_owners);
4873 	pmc_ss_count = 0;
4874 
4875 	/* allocate a pool of spin mutexes */
4876 	pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
4877 	    MTX_SPIN);
4878 
4879 	PMCDBG(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
4880 	    "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
4881 	    pmc_processhash, pmc_processhashmask);
4882 
4883 	/* register process {exit,fork,exec} handlers */
4884 	pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
4885 	    pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
4886 	pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
4887 	    pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
4888 
4889 	/* register kld event handlers */
4890 	pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
4891 	    NULL, EVENTHANDLER_PRI_ANY);
4892 	pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
4893 	    NULL, EVENTHANDLER_PRI_ANY);
4894 
4895 	/* initialize logging */
4896 	pmclog_initialize();
4897 
4898 	/* set hook functions */
4899 	pmc_intr = md->pmd_intr;
4900 	pmc_hook = pmc_hook_handler;
4901 
4902 	if (error == 0) {
4903 		printf(PMC_MODULE_NAME ":");
4904 		for (n = 0; n < (int) md->pmd_nclass; n++) {
4905 			pcd = &md->pmd_classdep[n];
4906 			printf(" %s/%d/%d/0x%b",
4907 			    pmc_name_of_pmcclass[pcd->pcd_class],
4908 			    pcd->pcd_num,
4909 			    pcd->pcd_width,
4910 			    pcd->pcd_caps,
4911 			    "\20"
4912 			    "\1INT\2USR\3SYS\4EDG\5THR"
4913 			    "\6REA\7WRI\10INV\11QUA\12PRC"
4914 			    "\13TAG\14CSC");
4915 		}
4916 		printf("\n");
4917 	}
4918 
4919 	return (error);
4920 }
4921 
4922 /* prepare to be unloaded */
4923 static void
4924 pmc_cleanup(void)
4925 {
4926 	int c, cpu;
4927 	unsigned int maxcpu;
4928 	struct pmc_ownerhash *ph;
4929 	struct pmc_owner *po, *tmp;
4930 	struct pmc_binding pb;
4931 #ifdef	DEBUG
4932 	struct pmc_processhash *prh;
4933 #endif
4934 
4935 	PMCDBG(MOD,INI,0, "%s", "cleanup");
4936 
4937 	/* switch off sampling */
4938 	CPU_ZERO(&pmc_cpumask);
4939 	pmc_intr = NULL;
4940 
4941 	sx_xlock(&pmc_sx);
4942 	if (pmc_hook == NULL) {	/* being unloaded already */
4943 		sx_xunlock(&pmc_sx);
4944 		return;
4945 	}
4946 
4947 	pmc_hook = NULL; /* prevent new threads from entering module */
4948 
4949 	/* deregister event handlers */
4950 	EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
4951 	EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
4952 	EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
4953 	EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
4954 
4955 	/* send SIGBUS to all owner threads, free up allocations */
4956 	if (pmc_ownerhash)
4957 		for (ph = pmc_ownerhash;
4958 		     ph <= &pmc_ownerhash[pmc_ownerhashmask];
4959 		     ph++) {
4960 			LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
4961 				pmc_remove_owner(po);
4962 
4963 				/* send SIGBUS to owner processes */
4964 				PMCDBG(MOD,INI,2, "cleanup signal proc=%p "
4965 				    "(%d, %s)", po->po_owner,
4966 				    po->po_owner->p_pid,
4967 				    po->po_owner->p_comm);
4968 
4969 				PROC_LOCK(po->po_owner);
4970 				kern_psignal(po->po_owner, SIGBUS);
4971 				PROC_UNLOCK(po->po_owner);
4972 
4973 				pmc_destroy_owner_descriptor(po);
4974 			}
4975 		}
4976 
4977 	/* reclaim allocated data structures */
4978 	if (pmc_mtxpool)
4979 		mtx_pool_destroy(&pmc_mtxpool);
4980 
4981 	mtx_destroy(&pmc_processhash_mtx);
4982 	if (pmc_processhash) {
4983 #ifdef	DEBUG
4984 		struct pmc_process *pp;
4985 
4986 		PMCDBG(MOD,INI,3, "%s", "destroy process hash");
4987 		for (prh = pmc_processhash;
4988 		     prh <= &pmc_processhash[pmc_processhashmask];
4989 		     prh++)
4990 			LIST_FOREACH(pp, prh, pp_next)
4991 			    PMCDBG(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
4992 #endif
4993 
4994 		hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
4995 		pmc_processhash = NULL;
4996 	}
4997 
4998 	if (pmc_ownerhash) {
4999 		PMCDBG(MOD,INI,3, "%s", "destroy owner hash");
5000 		hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
5001 		pmc_ownerhash = NULL;
5002 	}
5003 
5004 	KASSERT(LIST_EMPTY(&pmc_ss_owners),
5005 	    ("[pmc,%d] Global SS owner list not empty", __LINE__));
5006 	KASSERT(pmc_ss_count == 0,
5007 	    ("[pmc,%d] Global SS count not empty", __LINE__));
5008 
5009  	/* do processor and pmc-class dependent cleanup */
5010 	maxcpu = pmc_cpu_max();
5011 
5012 	PMCDBG(MOD,INI,3, "%s", "md cleanup");
5013 	if (md) {
5014 		pmc_save_cpu_binding(&pb);
5015 		for (cpu = 0; cpu < maxcpu; cpu++) {
5016 			PMCDBG(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
5017 			    cpu, pmc_pcpu[cpu]);
5018 			if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
5019 				continue;
5020 			pmc_select_cpu(cpu);
5021 			for (c = 0; c < md->pmd_nclass; c++)
5022 				md->pmd_classdep[c].pcd_pcpu_fini(md, cpu);
5023 			if (md->pmd_pcpu_fini)
5024 				md->pmd_pcpu_fini(md, cpu);
5025 		}
5026 
5027 		if (md->pmd_cputype == PMC_CPU_GENERIC)
5028 			pmc_generic_cpu_finalize(md);
5029 		else
5030 			pmc_md_finalize(md);
5031 
5032 		pmc_mdep_free(md);
5033 		md = NULL;
5034 		pmc_restore_cpu_binding(&pb);
5035 	}
5036 
5037 	/* Free per-cpu descriptors. */
5038 	for (cpu = 0; cpu < maxcpu; cpu++) {
5039 		if (!pmc_cpu_is_active(cpu))
5040 			continue;
5041 		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
5042 		    ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
5043 			cpu));
5044 		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
5045 		    ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
5046 			cpu));
5047 		free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
5048 		free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
5049 		free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
5050 		free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
5051 		free(pmc_pcpu[cpu], M_PMC);
5052 	}
5053 
5054 	free(pmc_pcpu, M_PMC);
5055 	pmc_pcpu = NULL;
5056 
5057 	free(pmc_pcpu_saved, M_PMC);
5058 	pmc_pcpu_saved = NULL;
5059 
5060 	if (pmc_pmcdisp) {
5061 		free(pmc_pmcdisp, M_PMC);
5062 		pmc_pmcdisp = NULL;
5063 	}
5064 
5065 	if (pmc_rowindex_to_classdep) {
5066 		free(pmc_rowindex_to_classdep, M_PMC);
5067 		pmc_rowindex_to_classdep = NULL;
5068 	}
5069 
5070 	pmclog_shutdown();
5071 
5072 	sx_xunlock(&pmc_sx); 	/* we are done */
5073 }
5074 
5075 /*
5076  * The function called at load/unload.
5077  */
5078 
5079 static int
5080 load (struct module *module __unused, int cmd, void *arg __unused)
5081 {
5082 	int error;
5083 
5084 	error = 0;
5085 
5086 	switch (cmd) {
5087 	case MOD_LOAD :
5088 		/* initialize the subsystem */
5089 		error = pmc_initialize();
5090 		if (error != 0)
5091 			break;
5092 		PMCDBG(MOD,INI,1, "syscall=%d maxcpu=%d",
5093 		    pmc_syscall_num, pmc_cpu_max());
5094 		break;
5095 
5096 
5097 	case MOD_UNLOAD :
5098 	case MOD_SHUTDOWN:
5099 		pmc_cleanup();
5100 		PMCDBG(MOD,INI,1, "%s", "unloaded");
5101 		break;
5102 
5103 	default :
5104 		error = EINVAL;	/* XXX should panic(9) */
5105 		break;
5106 	}
5107 
5108 	return error;
5109 }
5110 
5111 /* memory pool */
5112 MALLOC_DEFINE(M_PMC, "pmc", "Memory space for the PMC module");
5113