xref: /freebsd/sys/dev/hwpmc/hwpmc_mod.c (revision 6486b015fc84e96725fef22b0e3363351399ae83)
1 /*-
2  * Copyright (c) 2003-2008 Joseph Koshy
3  * Copyright (c) 2007 The FreeBSD Foundation
4  * All rights reserved.
5  *
6  * Portions of this software were developed by A. Joseph Koshy under
7  * sponsorship from the FreeBSD Foundation and Google, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/eventhandler.h>
37 #include <sys/jail.h>
38 #include <sys/kernel.h>
39 #include <sys/kthread.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/mount.h>
45 #include <sys/mutex.h>
46 #include <sys/pmc.h>
47 #include <sys/pmckern.h>
48 #include <sys/pmclog.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/signalvar.h>
55 #include <sys/smp.h>
56 #include <sys/sx.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysent.h>
59 #include <sys/systm.h>
60 #include <sys/vnode.h>
61 
62 #include <sys/linker.h>		/* needs to be after <sys/malloc.h> */
63 
64 #include <machine/atomic.h>
65 #include <machine/md_var.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_extern.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_object.h>
72 
73 #include "hwpmc_soft.h"
74 
75 /*
76  * Types
77  */
78 
79 enum pmc_flags {
80 	PMC_FLAG_NONE	  = 0x00, /* do nothing */
81 	PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
82 	PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
83 };
84 
85 /*
86  * The offset in sysent where the syscall is allocated.
87  */
88 
89 static int pmc_syscall_num = NO_SYSCALL;
90 struct pmc_cpu		**pmc_pcpu;	 /* per-cpu state */
91 pmc_value_t		*pmc_pcpu_saved; /* saved PMC values: CSW handling */
92 
93 #define	PMC_PCPU_SAVED(C,R)	pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
94 
95 struct mtx_pool		*pmc_mtxpool;
96 static int		*pmc_pmcdisp;	 /* PMC row dispositions */
97 
98 #define	PMC_ROW_DISP_IS_FREE(R)		(pmc_pmcdisp[(R)] == 0)
99 #define	PMC_ROW_DISP_IS_THREAD(R)	(pmc_pmcdisp[(R)] > 0)
100 #define	PMC_ROW_DISP_IS_STANDALONE(R)	(pmc_pmcdisp[(R)] < 0)
101 
102 #define	PMC_MARK_ROW_FREE(R) do {					  \
103 	pmc_pmcdisp[(R)] = 0;						  \
104 } while (0)
105 
106 #define	PMC_MARK_ROW_STANDALONE(R) do {					  \
107 	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
108 		    __LINE__));						  \
109 	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
110 	KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()),		  \
111 		("[pmc,%d] row disposition error", __LINE__));		  \
112 } while (0)
113 
114 #define	PMC_UNMARK_ROW_STANDALONE(R) do { 				  \
115 	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
116 	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
117 		    __LINE__));						  \
118 } while (0)
119 
120 #define	PMC_MARK_ROW_THREAD(R) do {					  \
121 	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
122 		    __LINE__));						  \
123 	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
124 } while (0)
125 
126 #define	PMC_UNMARK_ROW_THREAD(R) do {					  \
127 	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
128 	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
129 		    __LINE__));						  \
130 } while (0)
131 
132 
133 /* various event handlers */
134 static eventhandler_tag	pmc_exit_tag, pmc_fork_tag;
135 
136 /* Module statistics */
137 struct pmc_op_getdriverstats pmc_stats;
138 
139 /* Machine/processor dependent operations */
140 static struct pmc_mdep  *md;
141 
142 /*
143  * Hash tables mapping owner processes and target threads to PMCs.
144  */
145 
146 struct mtx pmc_processhash_mtx;		/* spin mutex */
147 static u_long pmc_processhashmask;
148 static LIST_HEAD(pmc_processhash, pmc_process)	*pmc_processhash;
149 
150 /*
151  * Hash table of PMC owner descriptors.  This table is protected by
152  * the shared PMC "sx" lock.
153  */
154 
155 static u_long pmc_ownerhashmask;
156 static LIST_HEAD(pmc_ownerhash, pmc_owner)	*pmc_ownerhash;
157 
158 /*
159  * List of PMC owners with system-wide sampling PMCs.
160  */
161 
162 static LIST_HEAD(, pmc_owner)			pmc_ss_owners;
163 
164 
165 /*
166  * A map of row indices to classdep structures.
167  */
168 static struct pmc_classdep **pmc_rowindex_to_classdep;
169 
170 /*
171  * Prototypes
172  */
173 
174 #ifdef	DEBUG
175 static int	pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
176 static int	pmc_debugflags_parse(char *newstr, char *fence);
177 #endif
178 
179 static int	load(struct module *module, int cmd, void *arg);
180 static int	pmc_attach_process(struct proc *p, struct pmc *pm);
181 static struct pmc *pmc_allocate_pmc_descriptor(void);
182 static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
183 static int	pmc_attach_one_process(struct proc *p, struct pmc *pm);
184 static int	pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
185     int cpu);
186 static int	pmc_can_attach(struct pmc *pm, struct proc *p);
187 static void	pmc_capture_user_callchain(int cpu, int soft, struct trapframe *tf);
188 static void	pmc_cleanup(void);
189 static int	pmc_detach_process(struct proc *p, struct pmc *pm);
190 static int	pmc_detach_one_process(struct proc *p, struct pmc *pm,
191     int flags);
192 static void	pmc_destroy_owner_descriptor(struct pmc_owner *po);
193 static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
194 static int	pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
195 static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
196     pmc_id_t pmc);
197 static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
198     uint32_t mode);
199 static void	pmc_force_context_switch(void);
200 static void	pmc_link_target_process(struct pmc *pm,
201     struct pmc_process *pp);
202 static void	pmc_log_all_process_mappings(struct pmc_owner *po);
203 static void	pmc_log_kernel_mappings(struct pmc *pm);
204 static void	pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
205 static void	pmc_maybe_remove_owner(struct pmc_owner *po);
206 static void	pmc_process_csw_in(struct thread *td);
207 static void	pmc_process_csw_out(struct thread *td);
208 static void	pmc_process_exit(void *arg, struct proc *p);
209 static void	pmc_process_fork(void *arg, struct proc *p1,
210     struct proc *p2, int n);
211 static void	pmc_process_samples(int cpu, int soft);
212 static void	pmc_release_pmc_descriptor(struct pmc *pmc);
213 static void	pmc_remove_owner(struct pmc_owner *po);
214 static void	pmc_remove_process_descriptor(struct pmc_process *pp);
215 static void	pmc_restore_cpu_binding(struct pmc_binding *pb);
216 static void	pmc_save_cpu_binding(struct pmc_binding *pb);
217 static void	pmc_select_cpu(int cpu);
218 static int	pmc_start(struct pmc *pm);
219 static int	pmc_stop(struct pmc *pm);
220 static int	pmc_syscall_handler(struct thread *td, void *syscall_args);
221 static void	pmc_unlink_target_process(struct pmc *pmc,
222     struct pmc_process *pp);
223 static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
224 static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
225 static struct pmc_mdep *pmc_generic_cpu_initialize(void);
226 static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
227 
228 /*
229  * Kernel tunables and sysctl(8) interface.
230  */
231 
232 SYSCTL_DECL(_kern_hwpmc);
233 
234 static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
235 TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "callchaindepth", &pmc_callchaindepth);
236 SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_TUN|CTLFLAG_RD,
237     &pmc_callchaindepth, 0, "depth of call chain records");
238 
239 #ifdef	DEBUG
240 struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
241 char	pmc_debugstr[PMC_DEBUG_STRSIZE];
242 TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
243     sizeof(pmc_debugstr));
244 SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
245     CTLTYPE_STRING|CTLFLAG_RW|CTLFLAG_TUN,
246     0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
247 #endif
248 
249 /*
250  * kern.hwpmc.hashrows -- determines the number of rows in the
251  * of the hash table used to look up threads
252  */
253 
254 static int pmc_hashsize = PMC_HASH_SIZE;
255 TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "hashsize", &pmc_hashsize);
256 SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_TUN|CTLFLAG_RD,
257     &pmc_hashsize, 0, "rows in hash tables");
258 
259 /*
260  * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
261  */
262 
263 static int pmc_nsamples = PMC_NSAMPLES;
264 TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "nsamples", &pmc_nsamples);
265 SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_TUN|CTLFLAG_RD,
266     &pmc_nsamples, 0, "number of PC samples per CPU");
267 
268 
269 /*
270  * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
271  */
272 
273 static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
274 TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "mtxpoolsize", &pmc_mtxpool_size);
275 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_TUN|CTLFLAG_RD,
276     &pmc_mtxpool_size, 0, "size of spin mutex pool");
277 
278 
279 /*
280  * security.bsd.unprivileged_syspmcs -- allow non-root processes to
281  * allocate system-wide PMCs.
282  *
283  * Allowing unprivileged processes to allocate system PMCs is convenient
284  * if system-wide measurements need to be taken concurrently with other
285  * per-process measurements.  This feature is turned off by default.
286  */
287 
288 static int pmc_unprivileged_syspmcs = 0;
289 TUNABLE_INT("security.bsd.unprivileged_syspmcs", &pmc_unprivileged_syspmcs);
290 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RW,
291     &pmc_unprivileged_syspmcs, 0,
292     "allow unprivileged process to allocate system PMCs");
293 
294 /*
295  * Hash function.  Discard the lower 2 bits of the pointer since
296  * these are always zero for our uses.  The hash multiplier is
297  * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
298  */
299 
300 #if	LONG_BIT == 64
301 #define	_PMC_HM		11400714819323198486u
302 #elif	LONG_BIT == 32
303 #define	_PMC_HM		2654435769u
304 #else
305 #error 	Must know the size of 'long' to compile
306 #endif
307 
308 #define	PMC_HASH_PTR(P,M)	((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
309 
310 /*
311  * Syscall structures
312  */
313 
314 /* The `sysent' for the new syscall */
315 static struct sysent pmc_sysent = {
316 	2,			/* sy_narg */
317 	pmc_syscall_handler	/* sy_call */
318 };
319 
320 static struct syscall_module_data pmc_syscall_mod = {
321 	load,
322 	NULL,
323 	&pmc_syscall_num,
324 	&pmc_sysent,
325 	{ 0, NULL }
326 };
327 
328 static moduledata_t pmc_mod = {
329 	PMC_MODULE_NAME,
330 	syscall_module_handler,
331 	&pmc_syscall_mod
332 };
333 
334 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
335 MODULE_VERSION(pmc, PMC_VERSION);
336 
337 #ifdef	DEBUG
338 enum pmc_dbgparse_state {
339 	PMCDS_WS,		/* in whitespace */
340 	PMCDS_MAJOR,		/* seen a major keyword */
341 	PMCDS_MINOR
342 };
343 
344 static int
345 pmc_debugflags_parse(char *newstr, char *fence)
346 {
347 	char c, *p, *q;
348 	struct pmc_debugflags *tmpflags;
349 	int error, found, *newbits, tmp;
350 	size_t kwlen;
351 
352 	tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO);
353 
354 	p = newstr;
355 	error = 0;
356 
357 	for (; p < fence && (c = *p); p++) {
358 
359 		/* skip white space */
360 		if (c == ' ' || c == '\t')
361 			continue;
362 
363 		/* look for a keyword followed by "=" */
364 		for (q = p; p < fence && (c = *p) && c != '='; p++)
365 			;
366 		if (c != '=') {
367 			error = EINVAL;
368 			goto done;
369 		}
370 
371 		kwlen = p - q;
372 		newbits = NULL;
373 
374 		/* lookup flag group name */
375 #define	DBG_SET_FLAG_MAJ(S,F)						\
376 		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
377 			newbits = &tmpflags->pdb_ ## F;
378 
379 		DBG_SET_FLAG_MAJ("cpu",		CPU);
380 		DBG_SET_FLAG_MAJ("csw",		CSW);
381 		DBG_SET_FLAG_MAJ("logging",	LOG);
382 		DBG_SET_FLAG_MAJ("module",	MOD);
383 		DBG_SET_FLAG_MAJ("md", 		MDP);
384 		DBG_SET_FLAG_MAJ("owner",	OWN);
385 		DBG_SET_FLAG_MAJ("pmc",		PMC);
386 		DBG_SET_FLAG_MAJ("process",	PRC);
387 		DBG_SET_FLAG_MAJ("sampling", 	SAM);
388 
389 		if (newbits == NULL) {
390 			error = EINVAL;
391 			goto done;
392 		}
393 
394 		p++;		/* skip the '=' */
395 
396 		/* Now parse the individual flags */
397 		tmp = 0;
398 	newflag:
399 		for (q = p; p < fence && (c = *p); p++)
400 			if (c == ' ' || c == '\t' || c == ',')
401 				break;
402 
403 		/* p == fence or c == ws or c == "," or c == 0 */
404 
405 		if ((kwlen = p - q) == 0) {
406 			*newbits = tmp;
407 			continue;
408 		}
409 
410 		found = 0;
411 #define	DBG_SET_FLAG_MIN(S,F)						\
412 		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
413 			tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
414 
415 		/* a '*' denotes all possible flags in the group */
416 		if (kwlen == 1 && *q == '*')
417 			tmp = found = ~0;
418 		/* look for individual flag names */
419 		DBG_SET_FLAG_MIN("allocaterow", ALR);
420 		DBG_SET_FLAG_MIN("allocate",	ALL);
421 		DBG_SET_FLAG_MIN("attach",	ATT);
422 		DBG_SET_FLAG_MIN("bind",	BND);
423 		DBG_SET_FLAG_MIN("config",	CFG);
424 		DBG_SET_FLAG_MIN("exec",	EXC);
425 		DBG_SET_FLAG_MIN("exit",	EXT);
426 		DBG_SET_FLAG_MIN("find",	FND);
427 		DBG_SET_FLAG_MIN("flush",	FLS);
428 		DBG_SET_FLAG_MIN("fork",	FRK);
429 		DBG_SET_FLAG_MIN("getbuf",	GTB);
430 		DBG_SET_FLAG_MIN("hook",	PMH);
431 		DBG_SET_FLAG_MIN("init",	INI);
432 		DBG_SET_FLAG_MIN("intr",	INT);
433 		DBG_SET_FLAG_MIN("linktarget",	TLK);
434 		DBG_SET_FLAG_MIN("mayberemove", OMR);
435 		DBG_SET_FLAG_MIN("ops",		OPS);
436 		DBG_SET_FLAG_MIN("read",	REA);
437 		DBG_SET_FLAG_MIN("register",	REG);
438 		DBG_SET_FLAG_MIN("release",	REL);
439 		DBG_SET_FLAG_MIN("remove",	ORM);
440 		DBG_SET_FLAG_MIN("sample",	SAM);
441 		DBG_SET_FLAG_MIN("scheduleio",	SIO);
442 		DBG_SET_FLAG_MIN("select",	SEL);
443 		DBG_SET_FLAG_MIN("signal",	SIG);
444 		DBG_SET_FLAG_MIN("swi",		SWI);
445 		DBG_SET_FLAG_MIN("swo",		SWO);
446 		DBG_SET_FLAG_MIN("start",	STA);
447 		DBG_SET_FLAG_MIN("stop",	STO);
448 		DBG_SET_FLAG_MIN("syscall",	PMS);
449 		DBG_SET_FLAG_MIN("unlinktarget", TUL);
450 		DBG_SET_FLAG_MIN("write",	WRI);
451 		if (found == 0) {
452 			/* unrecognized flag name */
453 			error = EINVAL;
454 			goto done;
455 		}
456 
457 		if (c == 0 || c == ' ' || c == '\t') {	/* end of flag group */
458 			*newbits = tmp;
459 			continue;
460 		}
461 
462 		p++;
463 		goto newflag;
464 	}
465 
466 	/* save the new flag set */
467 	bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
468 
469  done:
470 	free(tmpflags, M_PMC);
471 	return error;
472 }
473 
474 static int
475 pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
476 {
477 	char *fence, *newstr;
478 	int error;
479 	unsigned int n;
480 
481 	(void) arg1; (void) arg2; /* unused parameters */
482 
483 	n = sizeof(pmc_debugstr);
484 	newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO);
485 	(void) strlcpy(newstr, pmc_debugstr, n);
486 
487 	error = sysctl_handle_string(oidp, newstr, n, req);
488 
489 	/* if there is a new string, parse and copy it */
490 	if (error == 0 && req->newptr != NULL) {
491 		fence = newstr + (n < req->newlen ? n : req->newlen + 1);
492 		if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
493 			(void) strlcpy(pmc_debugstr, newstr,
494 			    sizeof(pmc_debugstr));
495 	}
496 
497 	free(newstr, M_PMC);
498 
499 	return error;
500 }
501 #endif
502 
503 /*
504  * Map a row index to a classdep structure and return the adjusted row
505  * index for the PMC class index.
506  */
507 static struct pmc_classdep *
508 pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri)
509 {
510 	struct pmc_classdep *pcd;
511 
512 	(void) md;
513 
514 	KASSERT(ri >= 0 && ri < md->pmd_npmc,
515 	    ("[pmc,%d] illegal row-index %d", __LINE__, ri));
516 
517 	pcd = pmc_rowindex_to_classdep[ri];
518 
519 	KASSERT(pcd != NULL,
520 	    ("[pmc,%d] ri %d null pcd", __LINE__, ri));
521 
522 	*adjri = ri - pcd->pcd_ri;
523 
524 	KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
525 	    ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
526 
527 	return (pcd);
528 }
529 
530 /*
531  * Concurrency Control
532  *
533  * The driver manages the following data structures:
534  *
535  *   - target process descriptors, one per target process
536  *   - owner process descriptors (and attached lists), one per owner process
537  *   - lookup hash tables for owner and target processes
538  *   - PMC descriptors (and attached lists)
539  *   - per-cpu hardware state
540  *   - the 'hook' variable through which the kernel calls into
541  *     this module
542  *   - the machine hardware state (managed by the MD layer)
543  *
544  * These data structures are accessed from:
545  *
546  * - thread context-switch code
547  * - interrupt handlers (possibly on multiple cpus)
548  * - kernel threads on multiple cpus running on behalf of user
549  *   processes doing system calls
550  * - this driver's private kernel threads
551  *
552  * = Locks and Locking strategy =
553  *
554  * The driver uses four locking strategies for its operation:
555  *
556  * - The global SX lock "pmc_sx" is used to protect internal
557  *   data structures.
558  *
559  *   Calls into the module by syscall() start with this lock being
560  *   held in exclusive mode.  Depending on the requested operation,
561  *   the lock may be downgraded to 'shared' mode to allow more
562  *   concurrent readers into the module.  Calls into the module from
563  *   other parts of the kernel acquire the lock in shared mode.
564  *
565  *   This SX lock is held in exclusive mode for any operations that
566  *   modify the linkages between the driver's internal data structures.
567  *
568  *   The 'pmc_hook' function pointer is also protected by this lock.
569  *   It is only examined with the sx lock held in exclusive mode.  The
570  *   kernel module is allowed to be unloaded only with the sx lock held
571  *   in exclusive mode.  In normal syscall handling, after acquiring the
572  *   pmc_sx lock we first check that 'pmc_hook' is non-null before
573  *   proceeding.  This prevents races between the thread unloading the module
574  *   and other threads seeking to use the module.
575  *
576  * - Lookups of target process structures and owner process structures
577  *   cannot use the global "pmc_sx" SX lock because these lookups need
578  *   to happen during context switches and in other critical sections
579  *   where sleeping is not allowed.  We protect these lookup tables
580  *   with their own private spin-mutexes, "pmc_processhash_mtx" and
581  *   "pmc_ownerhash_mtx".
582  *
583  * - Interrupt handlers work in a lock free manner.  At interrupt
584  *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
585  *   when the PMC was started.  If this pointer is NULL, the interrupt
586  *   is ignored after updating driver statistics.  We ensure that this
587  *   pointer is set (using an atomic operation if necessary) before the
588  *   PMC hardware is started.  Conversely, this pointer is unset atomically
589  *   only after the PMC hardware is stopped.
590  *
591  *   We ensure that everything needed for the operation of an
592  *   interrupt handler is available without it needing to acquire any
593  *   locks.  We also ensure that a PMC's software state is destroyed only
594  *   after the PMC is taken off hardware (on all CPUs).
595  *
596  * - Context-switch handling with process-private PMCs needs more
597  *   care.
598  *
599  *   A given process may be the target of multiple PMCs.  For example,
600  *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
601  *   while the target process is running on another.  A PMC could also
602  *   be getting released because its owner is exiting.  We tackle
603  *   these situations in the following manner:
604  *
605  *   - each target process structure 'pmc_process' has an array
606  *     of 'struct pmc *' pointers, one for each hardware PMC.
607  *
608  *   - At context switch IN time, each "target" PMC in RUNNING state
609  *     gets started on hardware and a pointer to each PMC is copied into
610  *     the per-cpu phw array.  The 'runcount' for the PMC is
611  *     incremented.
612  *
613  *   - At context switch OUT time, all process-virtual PMCs are stopped
614  *     on hardware.  The saved value is added to the PMCs value field
615  *     only if the PMC is in a non-deleted state (the PMCs state could
616  *     have changed during the current time slice).
617  *
618  *     Note that since in-between a switch IN on a processor and a switch
619  *     OUT, the PMC could have been released on another CPU.  Therefore
620  *     context switch OUT always looks at the hardware state to turn
621  *     OFF PMCs and will update a PMC's saved value only if reachable
622  *     from the target process record.
623  *
624  *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
625  *     be attached to many processes at the time of the call and could
626  *     be active on multiple CPUs).
627  *
628  *     We prevent further scheduling of the PMC by marking it as in
629  *     state 'DELETED'.  If the runcount of the PMC is non-zero then
630  *     this PMC is currently running on a CPU somewhere.  The thread
631  *     doing the PMCRELEASE operation waits by repeatedly doing a
632  *     pause() till the runcount comes to zero.
633  *
634  * The contents of a PMC descriptor (struct pmc) are protected using
635  * a spin-mutex.  In order to save space, we use a mutex pool.
636  *
637  * In terms of lock types used by witness(4), we use:
638  * - Type "pmc-sx", used by the global SX lock.
639  * - Type "pmc-sleep", for sleep mutexes used by logger threads.
640  * - Type "pmc-per-proc", for protecting PMC owner descriptors.
641  * - Type "pmc-leaf", used for all other spin mutexes.
642  */
643 
644 /*
645  * save the cpu binding of the current kthread
646  */
647 
648 static void
649 pmc_save_cpu_binding(struct pmc_binding *pb)
650 {
651 	PMCDBG(CPU,BND,2, "%s", "save-cpu");
652 	thread_lock(curthread);
653 	pb->pb_bound = sched_is_bound(curthread);
654 	pb->pb_cpu   = curthread->td_oncpu;
655 	thread_unlock(curthread);
656 	PMCDBG(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
657 }
658 
659 /*
660  * restore the cpu binding of the current thread
661  */
662 
663 static void
664 pmc_restore_cpu_binding(struct pmc_binding *pb)
665 {
666 	PMCDBG(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
667 	    curthread->td_oncpu, pb->pb_cpu);
668 	thread_lock(curthread);
669 	if (pb->pb_bound)
670 		sched_bind(curthread, pb->pb_cpu);
671 	else
672 		sched_unbind(curthread);
673 	thread_unlock(curthread);
674 	PMCDBG(CPU,BND,2, "%s", "restore-cpu done");
675 }
676 
677 /*
678  * move execution over the specified cpu and bind it there.
679  */
680 
681 static void
682 pmc_select_cpu(int cpu)
683 {
684 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
685 	    ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
686 
687 	/* Never move to an inactive CPU. */
688 	KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
689 	    "CPU %d", __LINE__, cpu));
690 
691 	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d", cpu);
692 	thread_lock(curthread);
693 	sched_bind(curthread, cpu);
694 	thread_unlock(curthread);
695 
696 	KASSERT(curthread->td_oncpu == cpu,
697 	    ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
698 		cpu, curthread->td_oncpu));
699 
700 	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
701 }
702 
703 /*
704  * Force a context switch.
705  *
706  * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
707  * guaranteed to force a context switch.
708  */
709 
710 static void
711 pmc_force_context_switch(void)
712 {
713 
714 	pause("pmcctx", 1);
715 }
716 
717 /*
718  * Get the file name for an executable.  This is a simple wrapper
719  * around vn_fullpath(9).
720  */
721 
722 static void
723 pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
724 {
725 
726 	*fullpath = "unknown";
727 	*freepath = NULL;
728 	vn_fullpath(curthread, v, fullpath, freepath);
729 }
730 
731 /*
732  * remove an process owning PMCs
733  */
734 
735 void
736 pmc_remove_owner(struct pmc_owner *po)
737 {
738 	struct pmc *pm, *tmp;
739 
740 	sx_assert(&pmc_sx, SX_XLOCKED);
741 
742 	PMCDBG(OWN,ORM,1, "remove-owner po=%p", po);
743 
744 	/* Remove descriptor from the owner hash table */
745 	LIST_REMOVE(po, po_next);
746 
747 	/* release all owned PMC descriptors */
748 	LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
749 		PMCDBG(OWN,ORM,2, "pmc=%p", pm);
750 		KASSERT(pm->pm_owner == po,
751 		    ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
752 
753 		pmc_release_pmc_descriptor(pm);	/* will unlink from the list */
754 	}
755 
756 	KASSERT(po->po_sscount == 0,
757 	    ("[pmc,%d] SS count not zero", __LINE__));
758 	KASSERT(LIST_EMPTY(&po->po_pmcs),
759 	    ("[pmc,%d] PMC list not empty", __LINE__));
760 
761 	/* de-configure the log file if present */
762 	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
763 		pmclog_deconfigure_log(po);
764 }
765 
766 /*
767  * remove an owner process record if all conditions are met.
768  */
769 
770 static void
771 pmc_maybe_remove_owner(struct pmc_owner *po)
772 {
773 
774 	PMCDBG(OWN,OMR,1, "maybe-remove-owner po=%p", po);
775 
776 	/*
777 	 * Remove owner record if
778 	 * - this process does not own any PMCs
779 	 * - this process has not allocated a system-wide sampling buffer
780 	 */
781 
782 	if (LIST_EMPTY(&po->po_pmcs) &&
783 	    ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
784 		pmc_remove_owner(po);
785 		pmc_destroy_owner_descriptor(po);
786 	}
787 }
788 
789 /*
790  * Add an association between a target process and a PMC.
791  */
792 
793 static void
794 pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
795 {
796 	int ri;
797 	struct pmc_target *pt;
798 
799 	sx_assert(&pmc_sx, SX_XLOCKED);
800 
801 	KASSERT(pm != NULL && pp != NULL,
802 	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
803 	KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
804 	    ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
805 		__LINE__, pm, pp->pp_proc->p_pid));
806 	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
807 	    ("[pmc,%d] Illegal reference count %d for process record %p",
808 		__LINE__, pp->pp_refcnt, (void *) pp));
809 
810 	ri = PMC_TO_ROWINDEX(pm);
811 
812 	PMCDBG(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
813 	    pm, ri, pp);
814 
815 #ifdef	DEBUG
816 	LIST_FOREACH(pt, &pm->pm_targets, pt_next)
817 	    if (pt->pt_process == pp)
818 		    KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
819 				__LINE__, pp, pm));
820 #endif
821 
822 	pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO);
823 	pt->pt_process = pp;
824 
825 	LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
826 
827 	atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
828 	    (uintptr_t)pm);
829 
830 	if (pm->pm_owner->po_owner == pp->pp_proc)
831 		pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
832 
833 	/*
834 	 * Initialize the per-process values at this row index.
835 	 */
836 	pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
837 	    pm->pm_sc.pm_reloadcount : 0;
838 
839 	pp->pp_refcnt++;
840 
841 }
842 
843 /*
844  * Removes the association between a target process and a PMC.
845  */
846 
847 static void
848 pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
849 {
850 	int ri;
851 	struct proc *p;
852 	struct pmc_target *ptgt;
853 
854 	sx_assert(&pmc_sx, SX_XLOCKED);
855 
856 	KASSERT(pm != NULL && pp != NULL,
857 	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
858 
859 	KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
860 	    ("[pmc,%d] Illegal ref count %d on process record %p",
861 		__LINE__, pp->pp_refcnt, (void *) pp));
862 
863 	ri = PMC_TO_ROWINDEX(pm);
864 
865 	PMCDBG(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
866 	    pm, ri, pp);
867 
868 	KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
869 	    ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
870 		ri, pm, pp->pp_pmcs[ri].pp_pmc));
871 
872 	pp->pp_pmcs[ri].pp_pmc = NULL;
873 	pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
874 
875 	/* Remove owner-specific flags */
876 	if (pm->pm_owner->po_owner == pp->pp_proc) {
877 		pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
878 		pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
879 	}
880 
881 	pp->pp_refcnt--;
882 
883 	/* Remove the target process from the PMC structure */
884 	LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
885 		if (ptgt->pt_process == pp)
886 			break;
887 
888 	KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
889 		    "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
890 
891 	LIST_REMOVE(ptgt, pt_next);
892 	free(ptgt, M_PMC);
893 
894 	/* if the PMC now lacks targets, send the owner a SIGIO */
895 	if (LIST_EMPTY(&pm->pm_targets)) {
896 		p = pm->pm_owner->po_owner;
897 		PROC_LOCK(p);
898 		kern_psignal(p, SIGIO);
899 		PROC_UNLOCK(p);
900 
901 		PMCDBG(PRC,SIG,2, "signalling proc=%p signal=%d", p,
902 		    SIGIO);
903 	}
904 }
905 
906 /*
907  * Check if PMC 'pm' may be attached to target process 't'.
908  */
909 
910 static int
911 pmc_can_attach(struct pmc *pm, struct proc *t)
912 {
913 	struct proc *o;		/* pmc owner */
914 	struct ucred *oc, *tc;	/* owner, target credentials */
915 	int decline_attach, i;
916 
917 	/*
918 	 * A PMC's owner can always attach that PMC to itself.
919 	 */
920 
921 	if ((o = pm->pm_owner->po_owner) == t)
922 		return 0;
923 
924 	PROC_LOCK(o);
925 	oc = o->p_ucred;
926 	crhold(oc);
927 	PROC_UNLOCK(o);
928 
929 	PROC_LOCK(t);
930 	tc = t->p_ucred;
931 	crhold(tc);
932 	PROC_UNLOCK(t);
933 
934 	/*
935 	 * The effective uid of the PMC owner should match at least one
936 	 * of the {effective,real,saved} uids of the target process.
937 	 */
938 
939 	decline_attach = oc->cr_uid != tc->cr_uid &&
940 	    oc->cr_uid != tc->cr_svuid &&
941 	    oc->cr_uid != tc->cr_ruid;
942 
943 	/*
944 	 * Every one of the target's group ids, must be in the owner's
945 	 * group list.
946 	 */
947 	for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
948 		decline_attach = !groupmember(tc->cr_groups[i], oc);
949 
950 	/* check the read and saved gids too */
951 	if (decline_attach == 0)
952 		decline_attach = !groupmember(tc->cr_rgid, oc) ||
953 		    !groupmember(tc->cr_svgid, oc);
954 
955 	crfree(tc);
956 	crfree(oc);
957 
958 	return !decline_attach;
959 }
960 
961 /*
962  * Attach a process to a PMC.
963  */
964 
965 static int
966 pmc_attach_one_process(struct proc *p, struct pmc *pm)
967 {
968 	int ri;
969 	char *fullpath, *freepath;
970 	struct pmc_process	*pp;
971 
972 	sx_assert(&pmc_sx, SX_XLOCKED);
973 
974 	PMCDBG(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
975 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
976 
977 	/*
978 	 * Locate the process descriptor corresponding to process 'p',
979 	 * allocating space as needed.
980 	 *
981 	 * Verify that rowindex 'pm_rowindex' is free in the process
982 	 * descriptor.
983 	 *
984 	 * If not, allocate space for a descriptor and link the
985 	 * process descriptor and PMC.
986 	 */
987 	ri = PMC_TO_ROWINDEX(pm);
988 
989 	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL)
990 		return ENOMEM;
991 
992 	if (pp->pp_pmcs[ri].pp_pmc == pm) /* already present at slot [ri] */
993 		return EEXIST;
994 
995 	if (pp->pp_pmcs[ri].pp_pmc != NULL)
996 		return EBUSY;
997 
998 	pmc_link_target_process(pm, pp);
999 
1000 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
1001 	    (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
1002 		pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
1003 
1004 	pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
1005 
1006 	/* issue an attach event to a configured log file */
1007 	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1008 		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1009 		if (p->p_flag & P_KTHREAD) {
1010 			fullpath = kernelname;
1011 			freepath = NULL;
1012 		} else
1013 			pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1014 		if (freepath)
1015 			free(freepath, M_TEMP);
1016 		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1017 			pmc_log_process_mappings(pm->pm_owner, p);
1018 	}
1019 	/* mark process as using HWPMCs */
1020 	PROC_LOCK(p);
1021 	p->p_flag |= P_HWPMC;
1022 	PROC_UNLOCK(p);
1023 
1024 	return 0;
1025 }
1026 
1027 /*
1028  * Attach a process and optionally its children
1029  */
1030 
1031 static int
1032 pmc_attach_process(struct proc *p, struct pmc *pm)
1033 {
1034 	int error;
1035 	struct proc *top;
1036 
1037 	sx_assert(&pmc_sx, SX_XLOCKED);
1038 
1039 	PMCDBG(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1040 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1041 
1042 
1043 	/*
1044 	 * If this PMC successfully allowed a GETMSR operation
1045 	 * in the past, disallow further ATTACHes.
1046 	 */
1047 
1048 	if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1049 		return EPERM;
1050 
1051 	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1052 		return pmc_attach_one_process(p, pm);
1053 
1054 	/*
1055 	 * Traverse all child processes, attaching them to
1056 	 * this PMC.
1057 	 */
1058 
1059 	sx_slock(&proctree_lock);
1060 
1061 	top = p;
1062 
1063 	for (;;) {
1064 		if ((error = pmc_attach_one_process(p, pm)) != 0)
1065 			break;
1066 		if (!LIST_EMPTY(&p->p_children))
1067 			p = LIST_FIRST(&p->p_children);
1068 		else for (;;) {
1069 			if (p == top)
1070 				goto done;
1071 			if (LIST_NEXT(p, p_sibling)) {
1072 				p = LIST_NEXT(p, p_sibling);
1073 				break;
1074 			}
1075 			p = p->p_pptr;
1076 		}
1077 	}
1078 
1079 	if (error)
1080 		(void) pmc_detach_process(top, pm);
1081 
1082  done:
1083 	sx_sunlock(&proctree_lock);
1084 	return error;
1085 }
1086 
1087 /*
1088  * Detach a process from a PMC.  If there are no other PMCs tracking
1089  * this process, remove the process structure from its hash table.  If
1090  * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1091  */
1092 
1093 static int
1094 pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1095 {
1096 	int ri;
1097 	struct pmc_process *pp;
1098 
1099 	sx_assert(&pmc_sx, SX_XLOCKED);
1100 
1101 	KASSERT(pm != NULL,
1102 	    ("[pmc,%d] null pm pointer", __LINE__));
1103 
1104 	ri = PMC_TO_ROWINDEX(pm);
1105 
1106 	PMCDBG(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1107 	    pm, ri, p, p->p_pid, p->p_comm, flags);
1108 
1109 	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1110 		return ESRCH;
1111 
1112 	if (pp->pp_pmcs[ri].pp_pmc != pm)
1113 		return EINVAL;
1114 
1115 	pmc_unlink_target_process(pm, pp);
1116 
1117 	/* Issue a detach entry if a log file is configured */
1118 	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1119 		pmclog_process_pmcdetach(pm, p->p_pid);
1120 
1121 	/*
1122 	 * If there are no PMCs targetting this process, we remove its
1123 	 * descriptor from the target hash table and unset the P_HWPMC
1124 	 * flag in the struct proc.
1125 	 */
1126 	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1127 	    ("[pmc,%d] Illegal refcnt %d for process struct %p",
1128 		__LINE__, pp->pp_refcnt, pp));
1129 
1130 	if (pp->pp_refcnt != 0)	/* still a target of some PMC */
1131 		return 0;
1132 
1133 	pmc_remove_process_descriptor(pp);
1134 
1135 	if (flags & PMC_FLAG_REMOVE)
1136 		free(pp, M_PMC);
1137 
1138 	PROC_LOCK(p);
1139 	p->p_flag &= ~P_HWPMC;
1140 	PROC_UNLOCK(p);
1141 
1142 	return 0;
1143 }
1144 
1145 /*
1146  * Detach a process and optionally its descendants from a PMC.
1147  */
1148 
1149 static int
1150 pmc_detach_process(struct proc *p, struct pmc *pm)
1151 {
1152 	struct proc *top;
1153 
1154 	sx_assert(&pmc_sx, SX_XLOCKED);
1155 
1156 	PMCDBG(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1157 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1158 
1159 	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1160 		return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1161 
1162 	/*
1163 	 * Traverse all children, detaching them from this PMC.  We
1164 	 * ignore errors since we could be detaching a PMC from a
1165 	 * partially attached proc tree.
1166 	 */
1167 
1168 	sx_slock(&proctree_lock);
1169 
1170 	top = p;
1171 
1172 	for (;;) {
1173 		(void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1174 
1175 		if (!LIST_EMPTY(&p->p_children))
1176 			p = LIST_FIRST(&p->p_children);
1177 		else for (;;) {
1178 			if (p == top)
1179 				goto done;
1180 			if (LIST_NEXT(p, p_sibling)) {
1181 				p = LIST_NEXT(p, p_sibling);
1182 				break;
1183 			}
1184 			p = p->p_pptr;
1185 		}
1186 	}
1187 
1188  done:
1189 	sx_sunlock(&proctree_lock);
1190 
1191 	if (LIST_EMPTY(&pm->pm_targets))
1192 		pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1193 
1194 	return 0;
1195 }
1196 
1197 
1198 /*
1199  * Thread context switch IN
1200  */
1201 
1202 static void
1203 pmc_process_csw_in(struct thread *td)
1204 {
1205 	int cpu;
1206 	unsigned int adjri, ri;
1207 	struct pmc *pm;
1208 	struct proc *p;
1209 	struct pmc_cpu *pc;
1210 	struct pmc_hw *phw;
1211 	pmc_value_t newvalue;
1212 	struct pmc_process *pp;
1213 	struct pmc_classdep *pcd;
1214 
1215 	p = td->td_proc;
1216 
1217 	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1218 		return;
1219 
1220 	KASSERT(pp->pp_proc == td->td_proc,
1221 	    ("[pmc,%d] not my thread state", __LINE__));
1222 
1223 	critical_enter(); /* no preemption from this point */
1224 
1225 	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1226 
1227 	PMCDBG(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1228 	    p->p_pid, p->p_comm, pp);
1229 
1230 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1231 	    ("[pmc,%d] wierd CPU id %d", __LINE__, cpu));
1232 
1233 	pc = pmc_pcpu[cpu];
1234 
1235 	for (ri = 0; ri < md->pmd_npmc; ri++) {
1236 
1237 		if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1238 			continue;
1239 
1240 		KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1241 		    ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1242 			__LINE__, PMC_TO_MODE(pm)));
1243 
1244 		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1245 		    ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1246 			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1247 
1248 		/*
1249 		 * Only PMCs that are marked as 'RUNNING' need
1250 		 * be placed on hardware.
1251 		 */
1252 
1253 		if (pm->pm_state != PMC_STATE_RUNNING)
1254 			continue;
1255 
1256 		/* increment PMC runcount */
1257 		atomic_add_rel_int(&pm->pm_runcount, 1);
1258 
1259 		/* configure the HWPMC we are going to use. */
1260 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1261 		pcd->pcd_config_pmc(cpu, adjri, pm);
1262 
1263 		phw = pc->pc_hwpmcs[ri];
1264 
1265 		KASSERT(phw != NULL,
1266 		    ("[pmc,%d] null hw pointer", __LINE__));
1267 
1268 		KASSERT(phw->phw_pmc == pm,
1269 		    ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1270 			phw->phw_pmc, pm));
1271 
1272 		/*
1273 		 * Write out saved value and start the PMC.
1274 		 *
1275 		 * Sampling PMCs use a per-process value, while
1276 		 * counting mode PMCs use a per-pmc value that is
1277 		 * inherited across descendants.
1278 		 */
1279 		if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1280 			mtx_pool_lock_spin(pmc_mtxpool, pm);
1281 			newvalue = PMC_PCPU_SAVED(cpu,ri) =
1282 			    pp->pp_pmcs[ri].pp_pmcval;
1283 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1284 		} else {
1285 			KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1286 			    ("[pmc,%d] illegal mode=%d", __LINE__,
1287 			    PMC_TO_MODE(pm)));
1288 			mtx_pool_lock_spin(pmc_mtxpool, pm);
1289 			newvalue = PMC_PCPU_SAVED(cpu, ri) =
1290 			    pm->pm_gv.pm_savedvalue;
1291 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1292 		}
1293 
1294 		PMCDBG(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1295 
1296 		pcd->pcd_write_pmc(cpu, adjri, newvalue);
1297 		pcd->pcd_start_pmc(cpu, adjri);
1298 	}
1299 
1300 	/*
1301 	 * perform any other architecture/cpu dependent thread
1302 	 * switch-in actions.
1303 	 */
1304 
1305 	(void) (*md->pmd_switch_in)(pc, pp);
1306 
1307 	critical_exit();
1308 
1309 }
1310 
1311 /*
1312  * Thread context switch OUT.
1313  */
1314 
1315 static void
1316 pmc_process_csw_out(struct thread *td)
1317 {
1318 	int cpu;
1319 	int64_t tmp;
1320 	struct pmc *pm;
1321 	struct proc *p;
1322 	enum pmc_mode mode;
1323 	struct pmc_cpu *pc;
1324 	pmc_value_t newvalue;
1325 	unsigned int adjri, ri;
1326 	struct pmc_process *pp;
1327 	struct pmc_classdep *pcd;
1328 
1329 
1330 	/*
1331 	 * Locate our process descriptor; this may be NULL if
1332 	 * this process is exiting and we have already removed
1333 	 * the process from the target process table.
1334 	 *
1335 	 * Note that due to kernel preemption, multiple
1336 	 * context switches may happen while the process is
1337 	 * exiting.
1338 	 *
1339 	 * Note also that if the target process cannot be
1340 	 * found we still need to deconfigure any PMCs that
1341 	 * are currently running on hardware.
1342 	 */
1343 
1344 	p = td->td_proc;
1345 	pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1346 
1347 	/*
1348 	 * save PMCs
1349 	 */
1350 
1351 	critical_enter();
1352 
1353 	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1354 
1355 	PMCDBG(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1356 	    p->p_pid, p->p_comm, pp);
1357 
1358 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1359 	    ("[pmc,%d wierd CPU id %d", __LINE__, cpu));
1360 
1361 	pc = pmc_pcpu[cpu];
1362 
1363 	/*
1364 	 * When a PMC gets unlinked from a target PMC, it will
1365 	 * be removed from the target's pp_pmc[] array.
1366 	 *
1367 	 * However, on a MP system, the target could have been
1368 	 * executing on another CPU at the time of the unlink.
1369 	 * So, at context switch OUT time, we need to look at
1370 	 * the hardware to determine if a PMC is scheduled on
1371 	 * it.
1372 	 */
1373 
1374 	for (ri = 0; ri < md->pmd_npmc; ri++) {
1375 
1376 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1377 		pm  = NULL;
1378 		(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
1379 
1380 		if (pm == NULL)	/* nothing at this row index */
1381 			continue;
1382 
1383 		mode = PMC_TO_MODE(pm);
1384 		if (!PMC_IS_VIRTUAL_MODE(mode))
1385 			continue; /* not a process virtual PMC */
1386 
1387 		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1388 		    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1389 			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1390 
1391 		/* Stop hardware if not already stopped */
1392 		if (pm->pm_stalled == 0)
1393 			pcd->pcd_stop_pmc(cpu, adjri);
1394 
1395 		/* reduce this PMC's runcount */
1396 		atomic_subtract_rel_int(&pm->pm_runcount, 1);
1397 
1398 		/*
1399 		 * If this PMC is associated with this process,
1400 		 * save the reading.
1401 		 */
1402 
1403 		if (pp != NULL && pp->pp_pmcs[ri].pp_pmc != NULL) {
1404 
1405 			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1406 			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1407 				pm, ri, pp->pp_pmcs[ri].pp_pmc));
1408 
1409 			KASSERT(pp->pp_refcnt > 0,
1410 			    ("[pmc,%d] pp refcnt = %d", __LINE__,
1411 				pp->pp_refcnt));
1412 
1413 			pcd->pcd_read_pmc(cpu, adjri, &newvalue);
1414 
1415 			tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1416 
1417 			PMCDBG(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd", cpu, ri,
1418 			    tmp);
1419 
1420 			if (mode == PMC_MODE_TS) {
1421 
1422 				/*
1423 				 * For sampling process-virtual PMCs,
1424 				 * we expect the count to be
1425 				 * decreasing as the 'value'
1426 				 * programmed into the PMC is the
1427 				 * number of events to be seen till
1428 				 * the next sampling interrupt.
1429 				 */
1430 				if (tmp < 0)
1431 					tmp += pm->pm_sc.pm_reloadcount;
1432 				mtx_pool_lock_spin(pmc_mtxpool, pm);
1433 				pp->pp_pmcs[ri].pp_pmcval -= tmp;
1434 				if ((int64_t) pp->pp_pmcs[ri].pp_pmcval < 0)
1435 					pp->pp_pmcs[ri].pp_pmcval +=
1436 					    pm->pm_sc.pm_reloadcount;
1437 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1438 
1439 			} else {
1440 
1441 				/*
1442 				 * For counting process-virtual PMCs,
1443 				 * we expect the count to be
1444 				 * increasing monotonically, modulo a 64
1445 				 * bit wraparound.
1446 				 */
1447 				KASSERT((int64_t) tmp >= 0,
1448 				    ("[pmc,%d] negative increment cpu=%d "
1449 				     "ri=%d newvalue=%jx saved=%jx "
1450 				     "incr=%jx", __LINE__, cpu, ri,
1451 				     newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
1452 
1453 				mtx_pool_lock_spin(pmc_mtxpool, pm);
1454 				pm->pm_gv.pm_savedvalue += tmp;
1455 				pp->pp_pmcs[ri].pp_pmcval += tmp;
1456 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1457 
1458 				if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1459 					pmclog_process_proccsw(pm, pp, tmp);
1460 			}
1461 		}
1462 
1463 		/* mark hardware as free */
1464 		pcd->pcd_config_pmc(cpu, adjri, NULL);
1465 	}
1466 
1467 	/*
1468 	 * perform any other architecture/cpu dependent thread
1469 	 * switch out functions.
1470 	 */
1471 
1472 	(void) (*md->pmd_switch_out)(pc, pp);
1473 
1474 	critical_exit();
1475 }
1476 
1477 /*
1478  * Log a KLD operation.
1479  */
1480 
1481 static void
1482 pmc_process_kld_load(struct pmckern_map_in *pkm)
1483 {
1484 	struct pmc_owner *po;
1485 
1486 	sx_assert(&pmc_sx, SX_LOCKED);
1487 
1488 	/*
1489 	 * Notify owners of system sampling PMCs about KLD operations.
1490 	 */
1491 
1492 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1493 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1494 	    	pmclog_process_map_in(po, (pid_t) -1, pkm->pm_address,
1495 		    (char *) pkm->pm_file);
1496 
1497 	/*
1498 	 * TODO: Notify owners of (all) process-sampling PMCs too.
1499 	 */
1500 
1501 	return;
1502 }
1503 
1504 static void
1505 pmc_process_kld_unload(struct pmckern_map_out *pkm)
1506 {
1507 	struct pmc_owner *po;
1508 
1509 	sx_assert(&pmc_sx, SX_LOCKED);
1510 
1511 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1512 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1513 		pmclog_process_map_out(po, (pid_t) -1,
1514 		    pkm->pm_address, pkm->pm_address + pkm->pm_size);
1515 
1516 	/*
1517 	 * TODO: Notify owners of process-sampling PMCs.
1518 	 */
1519 }
1520 
1521 /*
1522  * A mapping change for a process.
1523  */
1524 
1525 static void
1526 pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1527 {
1528 	int ri;
1529 	pid_t pid;
1530 	char *fullpath, *freepath;
1531 	const struct pmc *pm;
1532 	struct pmc_owner *po;
1533 	const struct pmc_process *pp;
1534 
1535 	freepath = fullpath = NULL;
1536 	pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath);
1537 
1538 	pid = td->td_proc->p_pid;
1539 
1540 	/* Inform owners of all system-wide sampling PMCs. */
1541 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1542 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1543 		pmclog_process_map_in(po, pid, pkm->pm_address, fullpath);
1544 
1545 	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1546 		goto done;
1547 
1548 	/*
1549 	 * Inform sampling PMC owners tracking this process.
1550 	 */
1551 	for (ri = 0; ri < md->pmd_npmc; ri++)
1552 		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1553 		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1554 			pmclog_process_map_in(pm->pm_owner,
1555 			    pid, pkm->pm_address, fullpath);
1556 
1557   done:
1558 	if (freepath)
1559 		free(freepath, M_TEMP);
1560 }
1561 
1562 
1563 /*
1564  * Log an munmap request.
1565  */
1566 
1567 static void
1568 pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1569 {
1570 	int ri;
1571 	pid_t pid;
1572 	struct pmc_owner *po;
1573 	const struct pmc *pm;
1574 	const struct pmc_process *pp;
1575 
1576 	pid = td->td_proc->p_pid;
1577 
1578 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1579 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1580 		pmclog_process_map_out(po, pid, pkm->pm_address,
1581 		    pkm->pm_address + pkm->pm_size);
1582 
1583 	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1584 		return;
1585 
1586 	for (ri = 0; ri < md->pmd_npmc; ri++)
1587 		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1588 		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1589 			pmclog_process_map_out(pm->pm_owner, pid,
1590 			    pkm->pm_address, pkm->pm_address + pkm->pm_size);
1591 }
1592 
1593 /*
1594  * Log mapping information about the kernel.
1595  */
1596 
1597 static void
1598 pmc_log_kernel_mappings(struct pmc *pm)
1599 {
1600 	struct pmc_owner *po;
1601 	struct pmckern_map_in *km, *kmbase;
1602 
1603 	sx_assert(&pmc_sx, SX_LOCKED);
1604 	KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1605 	    ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1606 		__LINE__, (void *) pm));
1607 
1608 	po = pm->pm_owner;
1609 
1610 	if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE)
1611 		return;
1612 
1613 	/*
1614 	 * Log the current set of kernel modules.
1615 	 */
1616 	kmbase = linker_hwpmc_list_objects();
1617 	for (km = kmbase; km->pm_file != NULL; km++) {
1618 		PMCDBG(LOG,REG,1,"%s %p", (char *) km->pm_file,
1619 		    (void *) km->pm_address);
1620 		pmclog_process_map_in(po, (pid_t) -1, km->pm_address,
1621 		    km->pm_file);
1622 	}
1623 	free(kmbase, M_LINKER);
1624 
1625 	po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1626 }
1627 
1628 /*
1629  * Log the mappings for a single process.
1630  */
1631 
1632 static void
1633 pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1634 {
1635 	int locked;
1636 	vm_map_t map;
1637 	struct vnode *vp;
1638 	struct vmspace *vm;
1639 	vm_map_entry_t entry;
1640 	vm_offset_t last_end;
1641 	u_int last_timestamp;
1642 	struct vnode *last_vp;
1643 	vm_offset_t start_addr;
1644 	vm_object_t obj, lobj, tobj;
1645 	char *fullpath, *freepath;
1646 
1647 	last_vp = NULL;
1648 	last_end = (vm_offset_t) 0;
1649 	fullpath = freepath = NULL;
1650 
1651 	if ((vm = vmspace_acquire_ref(p)) == NULL)
1652 		return;
1653 
1654 	map = &vm->vm_map;
1655 	vm_map_lock_read(map);
1656 
1657 	for (entry = map->header.next; entry != &map->header; entry = entry->next) {
1658 
1659 		if (entry == NULL) {
1660 			PMCDBG(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1661 			    "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1662 			break;
1663 		}
1664 
1665 		/*
1666 		 * We only care about executable map entries.
1667 		 */
1668 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) ||
1669 		    !(entry->protection & VM_PROT_EXECUTE) ||
1670 		    (entry->object.vm_object == NULL)) {
1671 			continue;
1672 		}
1673 
1674 		obj = entry->object.vm_object;
1675 		VM_OBJECT_LOCK(obj);
1676 
1677 		/*
1678 		 * Walk the backing_object list to find the base
1679 		 * (non-shadowed) vm_object.
1680 		 */
1681 		for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
1682 			if (tobj != obj)
1683 				VM_OBJECT_LOCK(tobj);
1684 			if (lobj != obj)
1685 				VM_OBJECT_UNLOCK(lobj);
1686 			lobj = tobj;
1687 		}
1688 
1689 		/*
1690 		 * At this point lobj is the base vm_object and it is locked.
1691 		 */
1692 		if (lobj == NULL) {
1693 			PMCDBG(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
1694 			    "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
1695 			VM_OBJECT_UNLOCK(obj);
1696 			continue;
1697 		}
1698 
1699 		if (lobj->type != OBJT_VNODE || lobj->handle == NULL) {
1700 			if (lobj != obj)
1701 				VM_OBJECT_UNLOCK(lobj);
1702 			VM_OBJECT_UNLOCK(obj);
1703 			continue;
1704 		}
1705 
1706 		/*
1707 		 * Skip contiguous regions that point to the same
1708 		 * vnode, so we don't emit redundant MAP-IN
1709 		 * directives.
1710 		 */
1711 		if (entry->start == last_end && lobj->handle == last_vp) {
1712 			last_end = entry->end;
1713 			if (lobj != obj)
1714 				VM_OBJECT_UNLOCK(lobj);
1715 			VM_OBJECT_UNLOCK(obj);
1716 			continue;
1717 		}
1718 
1719 		/*
1720 		 * We don't want to keep the proc's vm_map or this
1721 		 * vm_object locked while we walk the pathname, since
1722 		 * vn_fullpath() can sleep.  However, if we drop the
1723 		 * lock, it's possible for concurrent activity to
1724 		 * modify the vm_map list.  To protect against this,
1725 		 * we save the vm_map timestamp before we release the
1726 		 * lock, and check it after we reacquire the lock
1727 		 * below.
1728 		 */
1729 		start_addr = entry->start;
1730 		last_end = entry->end;
1731 		last_timestamp = map->timestamp;
1732 		vm_map_unlock_read(map);
1733 
1734 		vp = lobj->handle;
1735 		vref(vp);
1736 		if (lobj != obj)
1737 			VM_OBJECT_UNLOCK(lobj);
1738 
1739 		VM_OBJECT_UNLOCK(obj);
1740 
1741 		freepath = NULL;
1742 		pmc_getfilename(vp, &fullpath, &freepath);
1743 		last_vp = vp;
1744 
1745 		locked = VFS_LOCK_GIANT(vp->v_mount);
1746 		vrele(vp);
1747 		VFS_UNLOCK_GIANT(locked);
1748 
1749 		vp = NULL;
1750 		pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
1751 		if (freepath)
1752 			free(freepath, M_TEMP);
1753 
1754 		vm_map_lock_read(map);
1755 
1756 		/*
1757 		 * If our saved timestamp doesn't match, this means
1758 		 * that the vm_map was modified out from under us and
1759 		 * we can't trust our current "entry" pointer.  Do a
1760 		 * new lookup for this entry.  If there is no entry
1761 		 * for this address range, vm_map_lookup_entry() will
1762 		 * return the previous one, so we always want to go to
1763 		 * entry->next on the next loop iteration.
1764 		 *
1765 		 * There is an edge condition here that can occur if
1766 		 * there is no entry at or before this address.  In
1767 		 * this situation, vm_map_lookup_entry returns
1768 		 * &map->header, which would cause our loop to abort
1769 		 * without processing the rest of the map.  However,
1770 		 * in practice this will never happen for process
1771 		 * vm_map.  This is because the executable's text
1772 		 * segment is the first mapping in the proc's address
1773 		 * space, and this mapping is never removed until the
1774 		 * process exits, so there will always be a non-header
1775 		 * entry at or before the requested address for
1776 		 * vm_map_lookup_entry to return.
1777 		 */
1778 		if (map->timestamp != last_timestamp)
1779 			vm_map_lookup_entry(map, last_end - 1, &entry);
1780 	}
1781 
1782 	vm_map_unlock_read(map);
1783 	vmspace_free(vm);
1784 	return;
1785 }
1786 
1787 /*
1788  * Log mappings for all processes in the system.
1789  */
1790 
1791 static void
1792 pmc_log_all_process_mappings(struct pmc_owner *po)
1793 {
1794 	struct proc *p, *top;
1795 
1796 	sx_assert(&pmc_sx, SX_XLOCKED);
1797 
1798 	if ((p = pfind(1)) == NULL)
1799 		panic("[pmc,%d] Cannot find init", __LINE__);
1800 
1801 	PROC_UNLOCK(p);
1802 
1803 	sx_slock(&proctree_lock);
1804 
1805 	top = p;
1806 
1807 	for (;;) {
1808 		pmc_log_process_mappings(po, p);
1809 		if (!LIST_EMPTY(&p->p_children))
1810 			p = LIST_FIRST(&p->p_children);
1811 		else for (;;) {
1812 			if (p == top)
1813 				goto done;
1814 			if (LIST_NEXT(p, p_sibling)) {
1815 				p = LIST_NEXT(p, p_sibling);
1816 				break;
1817 			}
1818 			p = p->p_pptr;
1819 		}
1820 	}
1821  done:
1822 	sx_sunlock(&proctree_lock);
1823 }
1824 
1825 /*
1826  * The 'hook' invoked from the kernel proper
1827  */
1828 
1829 
1830 #ifdef	DEBUG
1831 const char *pmc_hooknames[] = {
1832 	/* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
1833 	"",
1834 	"EXEC",
1835 	"CSW-IN",
1836 	"CSW-OUT",
1837 	"SAMPLE",
1838 	"KLDLOAD",
1839 	"KLDUNLOAD",
1840 	"MMAP",
1841 	"MUNMAP",
1842 	"CALLCHAIN-NMI",
1843 	"CALLCHAIN-SOFT",
1844 	"SOFTSAMPLING"
1845 };
1846 #endif
1847 
1848 static int
1849 pmc_hook_handler(struct thread *td, int function, void *arg)
1850 {
1851 
1852 	PMCDBG(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
1853 	    pmc_hooknames[function], arg);
1854 
1855 	switch (function)
1856 	{
1857 
1858 	/*
1859 	 * Process exec()
1860 	 */
1861 
1862 	case PMC_FN_PROCESS_EXEC:
1863 	{
1864 		char *fullpath, *freepath;
1865 		unsigned int ri;
1866 		int is_using_hwpmcs;
1867 		struct pmc *pm;
1868 		struct proc *p;
1869 		struct pmc_owner *po;
1870 		struct pmc_process *pp;
1871 		struct pmckern_procexec *pk;
1872 
1873 		sx_assert(&pmc_sx, SX_XLOCKED);
1874 
1875 		p = td->td_proc;
1876 		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1877 
1878 		pk = (struct pmckern_procexec *) arg;
1879 
1880 		/* Inform owners of SS mode PMCs of the exec event. */
1881 		LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1882 		    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1883 			    pmclog_process_procexec(po, PMC_ID_INVALID,
1884 				p->p_pid, pk->pm_entryaddr, fullpath);
1885 
1886 		PROC_LOCK(p);
1887 		is_using_hwpmcs = p->p_flag & P_HWPMC;
1888 		PROC_UNLOCK(p);
1889 
1890 		if (!is_using_hwpmcs) {
1891 			if (freepath)
1892 				free(freepath, M_TEMP);
1893 			break;
1894 		}
1895 
1896 		/*
1897 		 * PMCs are not inherited across an exec():  remove any
1898 		 * PMCs that this process is the owner of.
1899 		 */
1900 
1901 		if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1902 			pmc_remove_owner(po);
1903 			pmc_destroy_owner_descriptor(po);
1904 		}
1905 
1906 		/*
1907 		 * If the process being exec'ed is not the target of any
1908 		 * PMC, we are done.
1909 		 */
1910 		if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
1911 			if (freepath)
1912 				free(freepath, M_TEMP);
1913 			break;
1914 		}
1915 
1916 		/*
1917 		 * Log the exec event to all monitoring owners.  Skip
1918 		 * owners who have already recieved the event because
1919 		 * they had system sampling PMCs active.
1920 		 */
1921 		for (ri = 0; ri < md->pmd_npmc; ri++)
1922 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
1923 				po = pm->pm_owner;
1924 				if (po->po_sscount == 0 &&
1925 				    po->po_flags & PMC_PO_OWNS_LOGFILE)
1926 					pmclog_process_procexec(po, pm->pm_id,
1927 					    p->p_pid, pk->pm_entryaddr,
1928 					    fullpath);
1929 			}
1930 
1931 		if (freepath)
1932 			free(freepath, M_TEMP);
1933 
1934 
1935 		PMCDBG(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
1936 		    p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
1937 
1938 		if (pk->pm_credentialschanged == 0) /* no change */
1939 			break;
1940 
1941 		/*
1942 		 * If the newly exec()'ed process has a different credential
1943 		 * than before, allow it to be the target of a PMC only if
1944 		 * the PMC's owner has sufficient priviledge.
1945 		 */
1946 
1947 		for (ri = 0; ri < md->pmd_npmc; ri++)
1948 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
1949 				if (pmc_can_attach(pm, td->td_proc) != 0)
1950 					pmc_detach_one_process(td->td_proc,
1951 					    pm, PMC_FLAG_NONE);
1952 
1953 		KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1954 		    ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
1955 			pp->pp_refcnt, pp));
1956 
1957 		/*
1958 		 * If this process is no longer the target of any
1959 		 * PMCs, we can remove the process entry and free
1960 		 * up space.
1961 		 */
1962 
1963 		if (pp->pp_refcnt == 0) {
1964 			pmc_remove_process_descriptor(pp);
1965 			free(pp, M_PMC);
1966 			break;
1967 		}
1968 
1969 	}
1970 	break;
1971 
1972 	case PMC_FN_CSW_IN:
1973 		pmc_process_csw_in(td);
1974 		break;
1975 
1976 	case PMC_FN_CSW_OUT:
1977 		pmc_process_csw_out(td);
1978 		break;
1979 
1980 	/*
1981 	 * Process accumulated PC samples.
1982 	 *
1983 	 * This function is expected to be called by hardclock() for
1984 	 * each CPU that has accumulated PC samples.
1985 	 *
1986 	 * This function is to be executed on the CPU whose samples
1987 	 * are being processed.
1988 	 */
1989 	case PMC_FN_DO_SAMPLES:
1990 
1991 		/*
1992 		 * Clear the cpu specific bit in the CPU mask before
1993 		 * do the rest of the processing.  If the NMI handler
1994 		 * gets invoked after the "atomic_clear_int()" call
1995 		 * below but before "pmc_process_samples()" gets
1996 		 * around to processing the interrupt, then we will
1997 		 * come back here at the next hardclock() tick (and
1998 		 * may find nothing to do if "pmc_process_samples()"
1999 		 * had already processed the interrupt).  We don't
2000 		 * lose the interrupt sample.
2001 		 */
2002 		CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmc_cpumask);
2003 		pmc_process_samples(PCPU_GET(cpuid), PMC_HR);
2004 		pmc_process_samples(PCPU_GET(cpuid), PMC_SR);
2005 		break;
2006 
2007 
2008 	case PMC_FN_KLD_LOAD:
2009 		sx_assert(&pmc_sx, SX_LOCKED);
2010 		pmc_process_kld_load((struct pmckern_map_in *) arg);
2011 		break;
2012 
2013 	case PMC_FN_KLD_UNLOAD:
2014 		sx_assert(&pmc_sx, SX_LOCKED);
2015 		pmc_process_kld_unload((struct pmckern_map_out *) arg);
2016 		break;
2017 
2018 	case PMC_FN_MMAP:
2019 		sx_assert(&pmc_sx, SX_LOCKED);
2020 		pmc_process_mmap(td, (struct pmckern_map_in *) arg);
2021 		break;
2022 
2023 	case PMC_FN_MUNMAP:
2024 		sx_assert(&pmc_sx, SX_LOCKED);
2025 		pmc_process_munmap(td, (struct pmckern_map_out *) arg);
2026 		break;
2027 
2028 	case PMC_FN_USER_CALLCHAIN:
2029 		/*
2030 		 * Record a call chain.
2031 		 */
2032 		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2033 		    __LINE__));
2034 
2035 		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
2036 		    (struct trapframe *) arg);
2037 		td->td_pflags &= ~TDP_CALLCHAIN;
2038 		break;
2039 
2040 	case PMC_FN_USER_CALLCHAIN_SOFT:
2041 		/*
2042 		 * Record a call chain.
2043 		 */
2044 		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2045 		    __LINE__));
2046 		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_SR,
2047 		    (struct trapframe *) arg);
2048 		td->td_pflags &= ~TDP_CALLCHAIN;
2049 		break;
2050 
2051 	case PMC_FN_SOFT_SAMPLING:
2052 		/*
2053 		 * Call soft PMC sampling intr.
2054 		 */
2055 		pmc_soft_intr((struct pmckern_soft *) arg);
2056 		break;
2057 
2058 	default:
2059 #ifdef	DEBUG
2060 		KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2061 #endif
2062 		break;
2063 
2064 	}
2065 
2066 	return 0;
2067 }
2068 
2069 /*
2070  * allocate a 'struct pmc_owner' descriptor in the owner hash table.
2071  */
2072 
2073 static struct pmc_owner *
2074 pmc_allocate_owner_descriptor(struct proc *p)
2075 {
2076 	uint32_t hindex;
2077 	struct pmc_owner *po;
2078 	struct pmc_ownerhash *poh;
2079 
2080 	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2081 	poh = &pmc_ownerhash[hindex];
2082 
2083 	/* allocate space for N pointers and one descriptor struct */
2084 	po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO);
2085 	po->po_sscount = po->po_error = po->po_flags = po->po_logprocmaps = 0;
2086 	po->po_file  = NULL;
2087 	po->po_owner = p;
2088 	po->po_kthread = NULL;
2089 	LIST_INIT(&po->po_pmcs);
2090 	LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2091 
2092 	TAILQ_INIT(&po->po_logbuffers);
2093 	mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2094 
2095 	PMCDBG(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2096 	    p, p->p_pid, p->p_comm, po);
2097 
2098 	return po;
2099 }
2100 
2101 static void
2102 pmc_destroy_owner_descriptor(struct pmc_owner *po)
2103 {
2104 
2105 	PMCDBG(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2106 	    po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2107 
2108 	mtx_destroy(&po->po_mtx);
2109 	free(po, M_PMC);
2110 }
2111 
2112 /*
2113  * find the descriptor corresponding to process 'p', adding or removing it
2114  * as specified by 'mode'.
2115  */
2116 
2117 static struct pmc_process *
2118 pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2119 {
2120 	uint32_t hindex;
2121 	struct pmc_process *pp, *ppnew;
2122 	struct pmc_processhash *pph;
2123 
2124 	hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2125 	pph = &pmc_processhash[hindex];
2126 
2127 	ppnew = NULL;
2128 
2129 	/*
2130 	 * Pre-allocate memory in the FIND_ALLOCATE case since we
2131 	 * cannot call malloc(9) once we hold a spin lock.
2132 	 */
2133 	if (mode & PMC_FLAG_ALLOCATE)
2134 		ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2135 		    sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO);
2136 
2137 	mtx_lock_spin(&pmc_processhash_mtx);
2138 	LIST_FOREACH(pp, pph, pp_next)
2139 	    if (pp->pp_proc == p)
2140 		    break;
2141 
2142 	if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
2143 		LIST_REMOVE(pp, pp_next);
2144 
2145 	if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
2146 	    ppnew != NULL) {
2147 		ppnew->pp_proc = p;
2148 		LIST_INSERT_HEAD(pph, ppnew, pp_next);
2149 		pp = ppnew;
2150 		ppnew = NULL;
2151 	}
2152 	mtx_unlock_spin(&pmc_processhash_mtx);
2153 
2154 	if (pp != NULL && ppnew != NULL)
2155 		free(ppnew, M_PMC);
2156 
2157 	return pp;
2158 }
2159 
2160 /*
2161  * remove a process descriptor from the process hash table.
2162  */
2163 
2164 static void
2165 pmc_remove_process_descriptor(struct pmc_process *pp)
2166 {
2167 	KASSERT(pp->pp_refcnt == 0,
2168 	    ("[pmc,%d] Removing process descriptor %p with count %d",
2169 		__LINE__, pp, pp->pp_refcnt));
2170 
2171 	mtx_lock_spin(&pmc_processhash_mtx);
2172 	LIST_REMOVE(pp, pp_next);
2173 	mtx_unlock_spin(&pmc_processhash_mtx);
2174 }
2175 
2176 
2177 /*
2178  * find an owner descriptor corresponding to proc 'p'
2179  */
2180 
2181 static struct pmc_owner *
2182 pmc_find_owner_descriptor(struct proc *p)
2183 {
2184 	uint32_t hindex;
2185 	struct pmc_owner *po;
2186 	struct pmc_ownerhash *poh;
2187 
2188 	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2189 	poh = &pmc_ownerhash[hindex];
2190 
2191 	po = NULL;
2192 	LIST_FOREACH(po, poh, po_next)
2193 	    if (po->po_owner == p)
2194 		    break;
2195 
2196 	PMCDBG(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2197 	    "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2198 
2199 	return po;
2200 }
2201 
2202 /*
2203  * pmc_allocate_pmc_descriptor
2204  *
2205  * Allocate a pmc descriptor and initialize its
2206  * fields.
2207  */
2208 
2209 static struct pmc *
2210 pmc_allocate_pmc_descriptor(void)
2211 {
2212 	struct pmc *pmc;
2213 
2214 	pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO);
2215 
2216 	if (pmc != NULL) {
2217 		pmc->pm_owner = NULL;
2218 		LIST_INIT(&pmc->pm_targets);
2219 	}
2220 
2221 	PMCDBG(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2222 
2223 	return pmc;
2224 }
2225 
2226 /*
2227  * Destroy a pmc descriptor.
2228  */
2229 
2230 static void
2231 pmc_destroy_pmc_descriptor(struct pmc *pm)
2232 {
2233 	(void) pm;
2234 
2235 #ifdef	DEBUG
2236 	KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2237 	    pm->pm_state == PMC_STATE_FREE,
2238 	    ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2239 	KASSERT(LIST_EMPTY(&pm->pm_targets),
2240 	    ("[pmc,%d] destroying pmc with targets", __LINE__));
2241 	KASSERT(pm->pm_owner == NULL,
2242 	    ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2243 	KASSERT(pm->pm_runcount == 0,
2244 	    ("[pmc,%d] pmc has non-zero run count %d", __LINE__,
2245 		pm->pm_runcount));
2246 #endif
2247 }
2248 
2249 static void
2250 pmc_wait_for_pmc_idle(struct pmc *pm)
2251 {
2252 #ifdef DEBUG
2253 	volatile int maxloop;
2254 
2255 	maxloop = 100 * pmc_cpu_max();
2256 #endif
2257 	/*
2258 	 * Loop (with a forced context switch) till the PMC's runcount
2259 	 * comes down to zero.
2260 	 */
2261 	while (atomic_load_acq_32(&pm->pm_runcount) > 0) {
2262 #ifdef DEBUG
2263 		maxloop--;
2264 		KASSERT(maxloop > 0,
2265 		    ("[pmc,%d] (ri%d, rc%d) waiting too long for "
2266 			"pmc to be free", __LINE__,
2267 			PMC_TO_ROWINDEX(pm), pm->pm_runcount));
2268 #endif
2269 		pmc_force_context_switch();
2270 	}
2271 }
2272 
2273 /*
2274  * This function does the following things:
2275  *
2276  *  - detaches the PMC from hardware
2277  *  - unlinks all target threads that were attached to it
2278  *  - removes the PMC from its owner's list
2279  *  - destroy's the PMC private mutex
2280  *
2281  * Once this function completes, the given pmc pointer can be safely
2282  * FREE'd by the caller.
2283  */
2284 
2285 static void
2286 pmc_release_pmc_descriptor(struct pmc *pm)
2287 {
2288 	enum pmc_mode mode;
2289 	struct pmc_hw *phw;
2290 	u_int adjri, ri, cpu;
2291 	struct pmc_owner *po;
2292 	struct pmc_binding pb;
2293 	struct pmc_process *pp;
2294 	struct pmc_classdep *pcd;
2295 	struct pmc_target *ptgt, *tmp;
2296 
2297 	sx_assert(&pmc_sx, SX_XLOCKED);
2298 
2299 	KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2300 
2301 	ri   = PMC_TO_ROWINDEX(pm);
2302 	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2303 	mode = PMC_TO_MODE(pm);
2304 
2305 	PMCDBG(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2306 	    mode);
2307 
2308 	/*
2309 	 * First, we take the PMC off hardware.
2310 	 */
2311 	cpu = 0;
2312 	if (PMC_IS_SYSTEM_MODE(mode)) {
2313 
2314 		/*
2315 		 * A system mode PMC runs on a specific CPU.  Switch
2316 		 * to this CPU and turn hardware off.
2317 		 */
2318 		pmc_save_cpu_binding(&pb);
2319 
2320 		cpu = PMC_TO_CPU(pm);
2321 
2322 		pmc_select_cpu(cpu);
2323 
2324 		/* switch off non-stalled CPUs */
2325 		if (pm->pm_state == PMC_STATE_RUNNING &&
2326 		    pm->pm_stalled == 0) {
2327 
2328 			phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2329 
2330 			KASSERT(phw->phw_pmc == pm,
2331 			    ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2332 				__LINE__, ri, phw->phw_pmc, pm));
2333 			PMCDBG(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2334 
2335 			critical_enter();
2336 			pcd->pcd_stop_pmc(cpu, adjri);
2337 			critical_exit();
2338 		}
2339 
2340 		PMCDBG(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2341 
2342 		critical_enter();
2343 		pcd->pcd_config_pmc(cpu, adjri, NULL);
2344 		critical_exit();
2345 
2346 		/* adjust the global and process count of SS mode PMCs */
2347 		if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2348 			po = pm->pm_owner;
2349 			po->po_sscount--;
2350 			if (po->po_sscount == 0) {
2351 				atomic_subtract_rel_int(&pmc_ss_count, 1);
2352 				LIST_REMOVE(po, po_ssnext);
2353 			}
2354 		}
2355 
2356 		pm->pm_state = PMC_STATE_DELETED;
2357 
2358 		pmc_restore_cpu_binding(&pb);
2359 
2360 		/*
2361 		 * We could have references to this PMC structure in
2362 		 * the per-cpu sample queues.  Wait for the queue to
2363 		 * drain.
2364 		 */
2365 		pmc_wait_for_pmc_idle(pm);
2366 
2367 	} else if (PMC_IS_VIRTUAL_MODE(mode)) {
2368 
2369 		/*
2370 		 * A virtual PMC could be running on multiple CPUs at
2371 		 * a given instant.
2372 		 *
2373 		 * By marking its state as DELETED, we ensure that
2374 		 * this PMC is never further scheduled on hardware.
2375 		 *
2376 		 * Then we wait till all CPUs are done with this PMC.
2377 		 */
2378 		pm->pm_state = PMC_STATE_DELETED;
2379 
2380 
2381 		/* Wait for the PMCs runcount to come to zero. */
2382 		pmc_wait_for_pmc_idle(pm);
2383 
2384 		/*
2385 		 * At this point the PMC is off all CPUs and cannot be
2386 		 * freshly scheduled onto a CPU.  It is now safe to
2387 		 * unlink all targets from this PMC.  If a
2388 		 * process-record's refcount falls to zero, we remove
2389 		 * it from the hash table.  The module-wide SX lock
2390 		 * protects us from races.
2391 		 */
2392 		LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2393 			pp = ptgt->pt_process;
2394 			pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2395 
2396 			PMCDBG(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2397 
2398 			/*
2399 			 * If the target process record shows that no
2400 			 * PMCs are attached to it, reclaim its space.
2401 			 */
2402 
2403 			if (pp->pp_refcnt == 0) {
2404 				pmc_remove_process_descriptor(pp);
2405 				free(pp, M_PMC);
2406 			}
2407 		}
2408 
2409 		cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2410 
2411 	}
2412 
2413 	/*
2414 	 * Release any MD resources
2415 	 */
2416 	(void) pcd->pcd_release_pmc(cpu, adjri, pm);
2417 
2418 	/*
2419 	 * Update row disposition
2420 	 */
2421 
2422 	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2423 		PMC_UNMARK_ROW_STANDALONE(ri);
2424 	else
2425 		PMC_UNMARK_ROW_THREAD(ri);
2426 
2427 	/* unlink from the owner's list */
2428 	if (pm->pm_owner) {
2429 		LIST_REMOVE(pm, pm_next);
2430 		pm->pm_owner = NULL;
2431 	}
2432 
2433 	pmc_destroy_pmc_descriptor(pm);
2434 }
2435 
2436 /*
2437  * Register an owner and a pmc.
2438  */
2439 
2440 static int
2441 pmc_register_owner(struct proc *p, struct pmc *pmc)
2442 {
2443 	struct pmc_owner *po;
2444 
2445 	sx_assert(&pmc_sx, SX_XLOCKED);
2446 
2447 	if ((po = pmc_find_owner_descriptor(p)) == NULL)
2448 		if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2449 			return ENOMEM;
2450 
2451 	KASSERT(pmc->pm_owner == NULL,
2452 	    ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2453 	pmc->pm_owner  = po;
2454 
2455 	LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2456 
2457 	PROC_LOCK(p);
2458 	p->p_flag |= P_HWPMC;
2459 	PROC_UNLOCK(p);
2460 
2461 	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2462 		pmclog_process_pmcallocate(pmc);
2463 
2464 	PMCDBG(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2465 	    po, pmc);
2466 
2467 	return 0;
2468 }
2469 
2470 /*
2471  * Return the current row disposition:
2472  * == 0 => FREE
2473  *  > 0 => PROCESS MODE
2474  *  < 0 => SYSTEM MODE
2475  */
2476 
2477 int
2478 pmc_getrowdisp(int ri)
2479 {
2480 	return pmc_pmcdisp[ri];
2481 }
2482 
2483 /*
2484  * Check if a PMC at row index 'ri' can be allocated to the current
2485  * process.
2486  *
2487  * Allocation can fail if:
2488  *   - the current process is already being profiled by a PMC at index 'ri',
2489  *     attached to it via OP_PMCATTACH.
2490  *   - the current process has already allocated a PMC at index 'ri'
2491  *     via OP_ALLOCATE.
2492  */
2493 
2494 static int
2495 pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2496 {
2497 	enum pmc_mode mode;
2498 	struct pmc *pm;
2499 	struct pmc_owner *po;
2500 	struct pmc_process *pp;
2501 
2502 	PMCDBG(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2503 	    "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2504 
2505 	/*
2506 	 * We shouldn't have already allocated a process-mode PMC at
2507 	 * row index 'ri'.
2508 	 *
2509 	 * We shouldn't have allocated a system-wide PMC on the same
2510 	 * CPU and same RI.
2511 	 */
2512 	if ((po = pmc_find_owner_descriptor(p)) != NULL)
2513 		LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2514 		    if (PMC_TO_ROWINDEX(pm) == ri) {
2515 			    mode = PMC_TO_MODE(pm);
2516 			    if (PMC_IS_VIRTUAL_MODE(mode))
2517 				    return EEXIST;
2518 			    if (PMC_IS_SYSTEM_MODE(mode) &&
2519 				(int) PMC_TO_CPU(pm) == cpu)
2520 				    return EEXIST;
2521 		    }
2522 	        }
2523 
2524 	/*
2525 	 * We also shouldn't be the target of any PMC at this index
2526 	 * since otherwise a PMC_ATTACH to ourselves will fail.
2527 	 */
2528 	if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2529 		if (pp->pp_pmcs[ri].pp_pmc)
2530 			return EEXIST;
2531 
2532 	PMCDBG(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2533 	    p, p->p_pid, p->p_comm, ri);
2534 
2535 	return 0;
2536 }
2537 
2538 /*
2539  * Check if a given PMC at row index 'ri' can be currently used in
2540  * mode 'mode'.
2541  */
2542 
2543 static int
2544 pmc_can_allocate_row(int ri, enum pmc_mode mode)
2545 {
2546 	enum pmc_disp	disp;
2547 
2548 	sx_assert(&pmc_sx, SX_XLOCKED);
2549 
2550 	PMCDBG(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2551 
2552 	if (PMC_IS_SYSTEM_MODE(mode))
2553 		disp = PMC_DISP_STANDALONE;
2554 	else
2555 		disp = PMC_DISP_THREAD;
2556 
2557 	/*
2558 	 * check disposition for PMC row 'ri':
2559 	 *
2560 	 * Expected disposition		Row-disposition		Result
2561 	 *
2562 	 * STANDALONE			STANDALONE or FREE	proceed
2563 	 * STANDALONE			THREAD			fail
2564 	 * THREAD			THREAD or FREE		proceed
2565 	 * THREAD			STANDALONE		fail
2566 	 */
2567 
2568 	if (!PMC_ROW_DISP_IS_FREE(ri) &&
2569 	    !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2570 	    !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2571 		return EBUSY;
2572 
2573 	/*
2574 	 * All OK
2575 	 */
2576 
2577 	PMCDBG(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2578 
2579 	return 0;
2580 
2581 }
2582 
2583 /*
2584  * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
2585  */
2586 
2587 static struct pmc *
2588 pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2589 {
2590 	struct pmc *pm;
2591 
2592 	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2593 	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2594 		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2595 
2596 	LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2597 	    if (pm->pm_id == pmcid)
2598 		    return pm;
2599 
2600 	return NULL;
2601 }
2602 
2603 static int
2604 pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
2605 {
2606 
2607 	struct pmc *pm;
2608 	struct pmc_owner *po;
2609 
2610 	PMCDBG(PMC,FND,1, "find-pmc id=%d", pmcid);
2611 
2612 	if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL)
2613 		return ESRCH;
2614 
2615 	if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
2616 		return EINVAL;
2617 
2618 	PMCDBG(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
2619 
2620 	*pmc = pm;
2621 	return 0;
2622 }
2623 
2624 /*
2625  * Start a PMC.
2626  */
2627 
2628 static int
2629 pmc_start(struct pmc *pm)
2630 {
2631 	enum pmc_mode mode;
2632 	struct pmc_owner *po;
2633 	struct pmc_binding pb;
2634 	struct pmc_classdep *pcd;
2635 	int adjri, error, cpu, ri;
2636 
2637 	KASSERT(pm != NULL,
2638 	    ("[pmc,%d] null pm", __LINE__));
2639 
2640 	mode = PMC_TO_MODE(pm);
2641 	ri   = PMC_TO_ROWINDEX(pm);
2642 	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2643 
2644 	error = 0;
2645 
2646 	PMCDBG(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
2647 
2648 	po = pm->pm_owner;
2649 
2650 	/*
2651 	 * Disallow PMCSTART if a logfile is required but has not been
2652 	 * configured yet.
2653 	 */
2654 	if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
2655 	    (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
2656 		return (EDOOFUS);	/* programming error */
2657 
2658 	/*
2659 	 * If this is a sampling mode PMC, log mapping information for
2660 	 * the kernel modules that are currently loaded.
2661 	 */
2662 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
2663 	    pmc_log_kernel_mappings(pm);
2664 
2665 	if (PMC_IS_VIRTUAL_MODE(mode)) {
2666 
2667 		/*
2668 		 * If a PMCATTACH has never been done on this PMC,
2669 		 * attach it to its owner process.
2670 		 */
2671 
2672 		if (LIST_EMPTY(&pm->pm_targets))
2673 			error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
2674 			    pmc_attach_process(po->po_owner, pm);
2675 
2676 		/*
2677 		 * If the PMC is attached to its owner, then force a context
2678 		 * switch to ensure that the MD state gets set correctly.
2679 		 */
2680 
2681 		if (error == 0) {
2682 			pm->pm_state = PMC_STATE_RUNNING;
2683 			if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
2684 				pmc_force_context_switch();
2685 		}
2686 
2687 		return (error);
2688 	}
2689 
2690 
2691 	/*
2692 	 * A system-wide PMC.
2693 	 *
2694 	 * Add the owner to the global list if this is a system-wide
2695 	 * sampling PMC.
2696 	 */
2697 
2698 	if (mode == PMC_MODE_SS) {
2699 		if (po->po_sscount == 0) {
2700 			LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
2701 			atomic_add_rel_int(&pmc_ss_count, 1);
2702 			PMCDBG(PMC,OPS,1, "po=%p in global list", po);
2703 		}
2704 		po->po_sscount++;
2705 
2706 		/*
2707 		 * Log mapping information for all existing processes in the
2708 		 * system.  Subsequent mappings are logged as they happen;
2709 		 * see pmc_process_mmap().
2710 		 */
2711 		if (po->po_logprocmaps == 0) {
2712 			pmc_log_all_process_mappings(po);
2713 			po->po_logprocmaps = 1;
2714 		}
2715 	}
2716 
2717 	/*
2718 	 * Move to the CPU associated with this
2719 	 * PMC, and start the hardware.
2720 	 */
2721 
2722 	pmc_save_cpu_binding(&pb);
2723 
2724 	cpu = PMC_TO_CPU(pm);
2725 
2726 	if (!pmc_cpu_is_active(cpu))
2727 		return (ENXIO);
2728 
2729 	pmc_select_cpu(cpu);
2730 
2731 	/*
2732 	 * global PMCs are configured at allocation time
2733 	 * so write out the initial value and start the PMC.
2734 	 */
2735 
2736 	pm->pm_state = PMC_STATE_RUNNING;
2737 
2738 	critical_enter();
2739 	if ((error = pcd->pcd_write_pmc(cpu, adjri,
2740 		 PMC_IS_SAMPLING_MODE(mode) ?
2741 		 pm->pm_sc.pm_reloadcount :
2742 		 pm->pm_sc.pm_initial)) == 0)
2743 		error = pcd->pcd_start_pmc(cpu, adjri);
2744 	critical_exit();
2745 
2746 	pmc_restore_cpu_binding(&pb);
2747 
2748 	return (error);
2749 }
2750 
2751 /*
2752  * Stop a PMC.
2753  */
2754 
2755 static int
2756 pmc_stop(struct pmc *pm)
2757 {
2758 	struct pmc_owner *po;
2759 	struct pmc_binding pb;
2760 	struct pmc_classdep *pcd;
2761 	int adjri, cpu, error, ri;
2762 
2763 	KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
2764 
2765 	PMCDBG(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
2766 	    PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
2767 
2768 	pm->pm_state = PMC_STATE_STOPPED;
2769 
2770 	/*
2771 	 * If the PMC is a virtual mode one, changing the state to
2772 	 * non-RUNNING is enough to ensure that the PMC never gets
2773 	 * scheduled.
2774 	 *
2775 	 * If this PMC is current running on a CPU, then it will
2776 	 * handled correctly at the time its target process is context
2777 	 * switched out.
2778 	 */
2779 
2780 	if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
2781 		return 0;
2782 
2783 	/*
2784 	 * A system-mode PMC.  Move to the CPU associated with
2785 	 * this PMC, and stop the hardware.  We update the
2786 	 * 'initial count' so that a subsequent PMCSTART will
2787 	 * resume counting from the current hardware count.
2788 	 */
2789 
2790 	pmc_save_cpu_binding(&pb);
2791 
2792 	cpu = PMC_TO_CPU(pm);
2793 
2794 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
2795 	    ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
2796 
2797 	if (!pmc_cpu_is_active(cpu))
2798 		return ENXIO;
2799 
2800 	pmc_select_cpu(cpu);
2801 
2802 	ri = PMC_TO_ROWINDEX(pm);
2803 	pcd = pmc_ri_to_classdep(md, ri, &adjri);
2804 
2805 	critical_enter();
2806 	if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0)
2807 		error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial);
2808 	critical_exit();
2809 
2810 	pmc_restore_cpu_binding(&pb);
2811 
2812 	po = pm->pm_owner;
2813 
2814 	/* remove this owner from the global list of SS PMC owners */
2815 	if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
2816 		po->po_sscount--;
2817 		if (po->po_sscount == 0) {
2818 			atomic_subtract_rel_int(&pmc_ss_count, 1);
2819 			LIST_REMOVE(po, po_ssnext);
2820 			PMCDBG(PMC,OPS,2,"po=%p removed from global list", po);
2821 		}
2822 	}
2823 
2824 	return (error);
2825 }
2826 
2827 
2828 #ifdef	DEBUG
2829 static const char *pmc_op_to_name[] = {
2830 #undef	__PMC_OP
2831 #define	__PMC_OP(N, D)	#N ,
2832 	__PMC_OPS()
2833 	NULL
2834 };
2835 #endif
2836 
2837 /*
2838  * The syscall interface
2839  */
2840 
2841 #define	PMC_GET_SX_XLOCK(...) do {		\
2842 	sx_xlock(&pmc_sx);			\
2843 	if (pmc_hook == NULL) {			\
2844 		sx_xunlock(&pmc_sx);		\
2845 		return __VA_ARGS__;		\
2846 	}					\
2847 } while (0)
2848 
2849 #define	PMC_DOWNGRADE_SX() do {			\
2850 	sx_downgrade(&pmc_sx);			\
2851 	is_sx_downgraded = 1;			\
2852 } while (0)
2853 
2854 static int
2855 pmc_syscall_handler(struct thread *td, void *syscall_args)
2856 {
2857 	int error, is_sx_downgraded, is_sx_locked, op;
2858 	struct pmc_syscall_args *c;
2859 	void *arg;
2860 
2861 	PMC_GET_SX_XLOCK(ENOSYS);
2862 
2863 	DROP_GIANT();
2864 
2865 	is_sx_downgraded = 0;
2866 	is_sx_locked = 1;
2867 
2868 	c = (struct pmc_syscall_args *) syscall_args;
2869 
2870 	op = c->pmop_code;
2871 	arg = c->pmop_data;
2872 
2873 	PMCDBG(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
2874 	    pmc_op_to_name[op], arg);
2875 
2876 	error = 0;
2877 	atomic_add_int(&pmc_stats.pm_syscalls, 1);
2878 
2879 	switch(op)
2880 	{
2881 
2882 
2883 	/*
2884 	 * Configure a log file.
2885 	 *
2886 	 * XXX This OP will be reworked.
2887 	 */
2888 
2889 	case PMC_OP_CONFIGURELOG:
2890 	{
2891 		struct proc *p;
2892 		struct pmc *pm;
2893 		struct pmc_owner *po;
2894 		struct pmc_op_configurelog cl;
2895 
2896 		sx_assert(&pmc_sx, SX_XLOCKED);
2897 
2898 		if ((error = copyin(arg, &cl, sizeof(cl))) != 0)
2899 			break;
2900 
2901 		/* mark this process as owning a log file */
2902 		p = td->td_proc;
2903 		if ((po = pmc_find_owner_descriptor(p)) == NULL)
2904 			if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
2905 				error = ENOMEM;
2906 				break;
2907 			}
2908 
2909 		/*
2910 		 * If a valid fd was passed in, try to configure that,
2911 		 * otherwise if 'fd' was less than zero and there was
2912 		 * a log file configured, flush its buffers and
2913 		 * de-configure it.
2914 		 */
2915 		if (cl.pm_logfd >= 0) {
2916 			sx_xunlock(&pmc_sx);
2917 			is_sx_locked = 0;
2918 			error = pmclog_configure_log(md, po, cl.pm_logfd);
2919 		} else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
2920 			pmclog_process_closelog(po);
2921 			error = pmclog_close(po);
2922 			if (error == 0) {
2923 				LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2924 				    if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
2925 					pm->pm_state == PMC_STATE_RUNNING)
2926 					    pmc_stop(pm);
2927 				error = pmclog_deconfigure_log(po);
2928 			}
2929 		} else
2930 			error = EINVAL;
2931 
2932 		if (error)
2933 			break;
2934 	}
2935 	break;
2936 
2937 	/*
2938 	 * Flush a log file.
2939 	 */
2940 
2941 	case PMC_OP_FLUSHLOG:
2942 	{
2943 		struct pmc_owner *po;
2944 
2945 		sx_assert(&pmc_sx, SX_XLOCKED);
2946 
2947 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2948 			error = EINVAL;
2949 			break;
2950 		}
2951 
2952 		error = pmclog_flush(po);
2953 	}
2954 	break;
2955 
2956 	/*
2957 	 * Close a log file.
2958 	 */
2959 
2960 	case PMC_OP_CLOSELOG:
2961 	{
2962 		struct pmc_owner *po;
2963 
2964 		sx_assert(&pmc_sx, SX_XLOCKED);
2965 
2966 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2967 			error = EINVAL;
2968 			break;
2969 		}
2970 
2971 		error = pmclog_close(po);
2972 	}
2973 	break;
2974 
2975 	/*
2976 	 * Retrieve hardware configuration.
2977 	 */
2978 
2979 	case PMC_OP_GETCPUINFO:	/* CPU information */
2980 	{
2981 		struct pmc_op_getcpuinfo gci;
2982 		struct pmc_classinfo *pci;
2983 		struct pmc_classdep *pcd;
2984 		int cl;
2985 
2986 		gci.pm_cputype = md->pmd_cputype;
2987 		gci.pm_ncpu    = pmc_cpu_max();
2988 		gci.pm_npmc    = md->pmd_npmc;
2989 		gci.pm_nclass  = md->pmd_nclass;
2990 		pci = gci.pm_classes;
2991 		pcd = md->pmd_classdep;
2992 		for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
2993 			pci->pm_caps  = pcd->pcd_caps;
2994 			pci->pm_class = pcd->pcd_class;
2995 			pci->pm_width = pcd->pcd_width;
2996 			pci->pm_num   = pcd->pcd_num;
2997 		}
2998 		error = copyout(&gci, arg, sizeof(gci));
2999 	}
3000 	break;
3001 
3002 	/*
3003 	 * Retrieve soft events list.
3004 	 */
3005 	case PMC_OP_GETDYNEVENTINFO:
3006 	{
3007 		enum pmc_class			cl;
3008 		enum pmc_event			ev;
3009 		struct pmc_op_getdyneventinfo	*gei;
3010 		struct pmc_dyn_event_descr	dev;
3011 		struct pmc_soft			*ps;
3012 		uint32_t			nevent;
3013 
3014 		sx_assert(&pmc_sx, SX_LOCKED);
3015 
3016 		gei = (struct pmc_op_getdyneventinfo *) arg;
3017 
3018 		if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
3019 			break;
3020 
3021 		/* Only SOFT class is dynamic. */
3022 		if (cl != PMC_CLASS_SOFT) {
3023 			error = EINVAL;
3024 			break;
3025 		}
3026 
3027 		nevent = 0;
3028 		for (ev = PMC_EV_SOFT_FIRST; ev <= PMC_EV_SOFT_LAST; ev++) {
3029 			ps = pmc_soft_ev_acquire(ev);
3030 			if (ps == NULL)
3031 				continue;
3032 			bcopy(&ps->ps_ev, &dev, sizeof(dev));
3033 			pmc_soft_ev_release(ps);
3034 
3035 			error = copyout(&dev,
3036 			    &gei->pm_events[nevent],
3037 			    sizeof(struct pmc_dyn_event_descr));
3038 			if (error != 0)
3039 				break;
3040 			nevent++;
3041 		}
3042 		if (error != 0)
3043 			break;
3044 
3045 		error = copyout(&nevent, &gei->pm_nevent,
3046 		    sizeof(nevent));
3047 	}
3048 	break;
3049 
3050 	/*
3051 	 * Get module statistics
3052 	 */
3053 
3054 	case PMC_OP_GETDRIVERSTATS:
3055 	{
3056 		struct pmc_op_getdriverstats gms;
3057 
3058 		bcopy(&pmc_stats, &gms, sizeof(gms));
3059 		error = copyout(&gms, arg, sizeof(gms));
3060 	}
3061 	break;
3062 
3063 
3064 	/*
3065 	 * Retrieve module version number
3066 	 */
3067 
3068 	case PMC_OP_GETMODULEVERSION:
3069 	{
3070 		uint32_t cv, modv;
3071 
3072 		/* retrieve the client's idea of the ABI version */
3073 		if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
3074 			break;
3075 		/* don't service clients newer than our driver */
3076 		modv = PMC_VERSION;
3077 		if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
3078 			error = EPROGMISMATCH;
3079 			break;
3080 		}
3081 		error = copyout(&modv, arg, sizeof(int));
3082 	}
3083 	break;
3084 
3085 
3086 	/*
3087 	 * Retrieve the state of all the PMCs on a given
3088 	 * CPU.
3089 	 */
3090 
3091 	case PMC_OP_GETPMCINFO:
3092 	{
3093 		int ari;
3094 		struct pmc *pm;
3095 		size_t pmcinfo_size;
3096 		uint32_t cpu, n, npmc;
3097 		struct pmc_owner *po;
3098 		struct pmc_binding pb;
3099 		struct pmc_classdep *pcd;
3100 		struct pmc_info *p, *pmcinfo;
3101 		struct pmc_op_getpmcinfo *gpi;
3102 
3103 		PMC_DOWNGRADE_SX();
3104 
3105 		gpi = (struct pmc_op_getpmcinfo *) arg;
3106 
3107 		if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
3108 			break;
3109 
3110 		if (cpu >= pmc_cpu_max()) {
3111 			error = EINVAL;
3112 			break;
3113 		}
3114 
3115 		if (!pmc_cpu_is_active(cpu)) {
3116 			error = ENXIO;
3117 			break;
3118 		}
3119 
3120 		/* switch to CPU 'cpu' */
3121 		pmc_save_cpu_binding(&pb);
3122 		pmc_select_cpu(cpu);
3123 
3124 		npmc = md->pmd_npmc;
3125 
3126 		pmcinfo_size = npmc * sizeof(struct pmc_info);
3127 		pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK);
3128 
3129 		p = pmcinfo;
3130 
3131 		for (n = 0; n < md->pmd_npmc; n++, p++) {
3132 
3133 			pcd = pmc_ri_to_classdep(md, n, &ari);
3134 
3135 			KASSERT(pcd != NULL,
3136 			    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
3137 
3138 			if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
3139 				break;
3140 
3141 			if (PMC_ROW_DISP_IS_STANDALONE(n))
3142 				p->pm_rowdisp = PMC_DISP_STANDALONE;
3143 			else if (PMC_ROW_DISP_IS_THREAD(n))
3144 				p->pm_rowdisp = PMC_DISP_THREAD;
3145 			else
3146 				p->pm_rowdisp = PMC_DISP_FREE;
3147 
3148 			p->pm_ownerpid = -1;
3149 
3150 			if (pm == NULL)	/* no PMC associated */
3151 				continue;
3152 
3153 			po = pm->pm_owner;
3154 
3155 			KASSERT(po->po_owner != NULL,
3156 			    ("[pmc,%d] pmc_owner had a null proc pointer",
3157 				__LINE__));
3158 
3159 			p->pm_ownerpid = po->po_owner->p_pid;
3160 			p->pm_mode     = PMC_TO_MODE(pm);
3161 			p->pm_event    = pm->pm_event;
3162 			p->pm_flags    = pm->pm_flags;
3163 
3164 			if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3165 				p->pm_reloadcount =
3166 				    pm->pm_sc.pm_reloadcount;
3167 		}
3168 
3169 		pmc_restore_cpu_binding(&pb);
3170 
3171 		/* now copy out the PMC info collected */
3172 		if (error == 0)
3173 			error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
3174 
3175 		free(pmcinfo, M_PMC);
3176 	}
3177 	break;
3178 
3179 
3180 	/*
3181 	 * Set the administrative state of a PMC.  I.e. whether
3182 	 * the PMC is to be used or not.
3183 	 */
3184 
3185 	case PMC_OP_PMCADMIN:
3186 	{
3187 		int cpu, ri;
3188 		enum pmc_state request;
3189 		struct pmc_cpu *pc;
3190 		struct pmc_hw *phw;
3191 		struct pmc_op_pmcadmin pma;
3192 		struct pmc_binding pb;
3193 
3194 		sx_assert(&pmc_sx, SX_XLOCKED);
3195 
3196 		KASSERT(td == curthread,
3197 		    ("[pmc,%d] td != curthread", __LINE__));
3198 
3199 		error = priv_check(td, PRIV_PMC_MANAGE);
3200 		if (error)
3201 			break;
3202 
3203 		if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
3204 			break;
3205 
3206 		cpu = pma.pm_cpu;
3207 
3208 		if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
3209 			error = EINVAL;
3210 			break;
3211 		}
3212 
3213 		if (!pmc_cpu_is_active(cpu)) {
3214 			error = ENXIO;
3215 			break;
3216 		}
3217 
3218 		request = pma.pm_state;
3219 
3220 		if (request != PMC_STATE_DISABLED &&
3221 		    request != PMC_STATE_FREE) {
3222 			error = EINVAL;
3223 			break;
3224 		}
3225 
3226 		ri = pma.pm_pmc; /* pmc id == row index */
3227 		if (ri < 0 || ri >= (int) md->pmd_npmc) {
3228 			error = EINVAL;
3229 			break;
3230 		}
3231 
3232 		/*
3233 		 * We can't disable a PMC with a row-index allocated
3234 		 * for process virtual PMCs.
3235 		 */
3236 
3237 		if (PMC_ROW_DISP_IS_THREAD(ri) &&
3238 		    request == PMC_STATE_DISABLED) {
3239 			error = EBUSY;
3240 			break;
3241 		}
3242 
3243 		/*
3244 		 * otherwise, this PMC on this CPU is either free or
3245 		 * in system-wide mode.
3246 		 */
3247 
3248 		pmc_save_cpu_binding(&pb);
3249 		pmc_select_cpu(cpu);
3250 
3251 		pc  = pmc_pcpu[cpu];
3252 		phw = pc->pc_hwpmcs[ri];
3253 
3254 		/*
3255 		 * XXX do we need some kind of 'forced' disable?
3256 		 */
3257 
3258 		if (phw->phw_pmc == NULL) {
3259 			if (request == PMC_STATE_DISABLED &&
3260 			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
3261 				phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
3262 				PMC_MARK_ROW_STANDALONE(ri);
3263 			} else if (request == PMC_STATE_FREE &&
3264 			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
3265 				phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
3266 				PMC_UNMARK_ROW_STANDALONE(ri);
3267 			}
3268 			/* other cases are a no-op */
3269 		} else
3270 			error = EBUSY;
3271 
3272 		pmc_restore_cpu_binding(&pb);
3273 	}
3274 	break;
3275 
3276 
3277 	/*
3278 	 * Allocate a PMC.
3279 	 */
3280 
3281 	case PMC_OP_PMCALLOCATE:
3282 	{
3283 		int adjri, n;
3284 		u_int cpu;
3285 		uint32_t caps;
3286 		struct pmc *pmc;
3287 		enum pmc_mode mode;
3288 		struct pmc_hw *phw;
3289 		struct pmc_binding pb;
3290 		struct pmc_classdep *pcd;
3291 		struct pmc_op_pmcallocate pa;
3292 
3293 		if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
3294 			break;
3295 
3296 		caps = pa.pm_caps;
3297 		mode = pa.pm_mode;
3298 		cpu  = pa.pm_cpu;
3299 
3300 		if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
3301 		     mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
3302 		    (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) {
3303 			error = EINVAL;
3304 			break;
3305 		}
3306 
3307 		/*
3308 		 * Virtual PMCs should only ask for a default CPU.
3309 		 * System mode PMCs need to specify a non-default CPU.
3310 		 */
3311 
3312 		if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
3313 		    (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
3314 			error = EINVAL;
3315 			break;
3316 		}
3317 
3318 		/*
3319 		 * Check that an inactive CPU is not being asked for.
3320 		 */
3321 
3322 		if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) {
3323 			error = ENXIO;
3324 			break;
3325 		}
3326 
3327 		/*
3328 		 * Refuse an allocation for a system-wide PMC if this
3329 		 * process has been jailed, or if this process lacks
3330 		 * super-user credentials and the sysctl tunable
3331 		 * 'security.bsd.unprivileged_syspmcs' is zero.
3332 		 */
3333 
3334 		if (PMC_IS_SYSTEM_MODE(mode)) {
3335 			if (jailed(curthread->td_ucred)) {
3336 				error = EPERM;
3337 				break;
3338 			}
3339 			if (!pmc_unprivileged_syspmcs) {
3340 				error = priv_check(curthread,
3341 				    PRIV_PMC_SYSTEM);
3342 				if (error)
3343 					break;
3344 			}
3345 		}
3346 
3347 		/*
3348 		 * Look for valid values for 'pm_flags'
3349 		 */
3350 
3351 		if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3352 		    PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN)) != 0) {
3353 			error = EINVAL;
3354 			break;
3355 		}
3356 
3357 		/* process logging options are not allowed for system PMCs */
3358 		if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
3359 		    (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
3360 			error = EINVAL;
3361 			break;
3362 		}
3363 
3364 		/*
3365 		 * All sampling mode PMCs need to be able to interrupt the
3366 		 * CPU.
3367 		 */
3368 		if (PMC_IS_SAMPLING_MODE(mode))
3369 			caps |= PMC_CAP_INTERRUPT;
3370 
3371 		/* A valid class specifier should have been passed in. */
3372 		for (n = 0; n < md->pmd_nclass; n++)
3373 			if (md->pmd_classdep[n].pcd_class == pa.pm_class)
3374 				break;
3375 		if (n == md->pmd_nclass) {
3376 			error = EINVAL;
3377 			break;
3378 		}
3379 
3380 		/* The requested PMC capabilities should be feasible. */
3381 		if ((md->pmd_classdep[n].pcd_caps & caps) != caps) {
3382 			error = EOPNOTSUPP;
3383 			break;
3384 		}
3385 
3386 		PMCDBG(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
3387 		    pa.pm_ev, caps, mode, cpu);
3388 
3389 		pmc = pmc_allocate_pmc_descriptor();
3390 		pmc->pm_id    = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
3391 		    PMC_ID_INVALID);
3392 		pmc->pm_event = pa.pm_ev;
3393 		pmc->pm_state = PMC_STATE_FREE;
3394 		pmc->pm_caps  = caps;
3395 		pmc->pm_flags = pa.pm_flags;
3396 
3397 		/* switch thread to CPU 'cpu' */
3398 		pmc_save_cpu_binding(&pb);
3399 
3400 #define	PMC_IS_SHAREABLE_PMC(cpu, n)				\
3401 	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &		\
3402 	 PMC_PHW_FLAG_IS_SHAREABLE)
3403 #define	PMC_IS_UNALLOCATED(cpu, n)				\
3404 	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3405 
3406 		if (PMC_IS_SYSTEM_MODE(mode)) {
3407 			pmc_select_cpu(cpu);
3408 			for (n = 0; n < (int) md->pmd_npmc; n++) {
3409 				pcd = pmc_ri_to_classdep(md, n, &adjri);
3410 				if (pmc_can_allocate_row(n, mode) == 0 &&
3411 				    pmc_can_allocate_rowindex(
3412 					    curthread->td_proc, n, cpu) == 0 &&
3413 				    (PMC_IS_UNALLOCATED(cpu, n) ||
3414 				     PMC_IS_SHAREABLE_PMC(cpu, n)) &&
3415 				    pcd->pcd_allocate_pmc(cpu, adjri, pmc,
3416 					&pa) == 0)
3417 					break;
3418 			}
3419 		} else {
3420 			/* Process virtual mode */
3421 			for (n = 0; n < (int) md->pmd_npmc; n++) {
3422 				pcd = pmc_ri_to_classdep(md, n, &adjri);
3423 				if (pmc_can_allocate_row(n, mode) == 0 &&
3424 				    pmc_can_allocate_rowindex(
3425 					    curthread->td_proc, n,
3426 					    PMC_CPU_ANY) == 0 &&
3427 				    pcd->pcd_allocate_pmc(curthread->td_oncpu,
3428 					adjri, pmc, &pa) == 0)
3429 					break;
3430 			}
3431 		}
3432 
3433 #undef	PMC_IS_UNALLOCATED
3434 #undef	PMC_IS_SHAREABLE_PMC
3435 
3436 		pmc_restore_cpu_binding(&pb);
3437 
3438 		if (n == (int) md->pmd_npmc) {
3439 			pmc_destroy_pmc_descriptor(pmc);
3440 			free(pmc, M_PMC);
3441 			pmc = NULL;
3442 			error = EINVAL;
3443 			break;
3444 		}
3445 
3446 		/* Fill in the correct value in the ID field */
3447 		pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
3448 
3449 		PMCDBG(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
3450 		    pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
3451 
3452 		/* Process mode PMCs with logging enabled need log files */
3453 		if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
3454 			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3455 
3456 		/* All system mode sampling PMCs require a log file */
3457 		if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
3458 			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3459 
3460 		/*
3461 		 * Configure global pmc's immediately
3462 		 */
3463 
3464 		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
3465 
3466 			pmc_save_cpu_binding(&pb);
3467 			pmc_select_cpu(cpu);
3468 
3469 			phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
3470 			pcd = pmc_ri_to_classdep(md, n, &adjri);
3471 
3472 			if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
3473 			    (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
3474 				(void) pcd->pcd_release_pmc(cpu, adjri, pmc);
3475 				pmc_destroy_pmc_descriptor(pmc);
3476 				free(pmc, M_PMC);
3477 				pmc = NULL;
3478 				pmc_restore_cpu_binding(&pb);
3479 				error = EPERM;
3480 				break;
3481 			}
3482 
3483 			pmc_restore_cpu_binding(&pb);
3484 		}
3485 
3486 		pmc->pm_state    = PMC_STATE_ALLOCATED;
3487 
3488 		/*
3489 		 * mark row disposition
3490 		 */
3491 
3492 		if (PMC_IS_SYSTEM_MODE(mode))
3493 			PMC_MARK_ROW_STANDALONE(n);
3494 		else
3495 			PMC_MARK_ROW_THREAD(n);
3496 
3497 		/*
3498 		 * Register this PMC with the current thread as its owner.
3499 		 */
3500 
3501 		if ((error =
3502 		    pmc_register_owner(curthread->td_proc, pmc)) != 0) {
3503 			pmc_release_pmc_descriptor(pmc);
3504 			free(pmc, M_PMC);
3505 			pmc = NULL;
3506 			break;
3507 		}
3508 
3509 		/*
3510 		 * Return the allocated index.
3511 		 */
3512 
3513 		pa.pm_pmcid = pmc->pm_id;
3514 
3515 		error = copyout(&pa, arg, sizeof(pa));
3516 	}
3517 	break;
3518 
3519 
3520 	/*
3521 	 * Attach a PMC to a process.
3522 	 */
3523 
3524 	case PMC_OP_PMCATTACH:
3525 	{
3526 		struct pmc *pm;
3527 		struct proc *p;
3528 		struct pmc_op_pmcattach a;
3529 
3530 		sx_assert(&pmc_sx, SX_XLOCKED);
3531 
3532 		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3533 			break;
3534 
3535 		if (a.pm_pid < 0) {
3536 			error = EINVAL;
3537 			break;
3538 		} else if (a.pm_pid == 0)
3539 			a.pm_pid = td->td_proc->p_pid;
3540 
3541 		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3542 			break;
3543 
3544 		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
3545 			error = EINVAL;
3546 			break;
3547 		}
3548 
3549 		/* PMCs may be (re)attached only when allocated or stopped */
3550 		if (pm->pm_state == PMC_STATE_RUNNING) {
3551 			error = EBUSY;
3552 			break;
3553 		} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
3554 		    pm->pm_state != PMC_STATE_STOPPED) {
3555 			error = EINVAL;
3556 			break;
3557 		}
3558 
3559 		/* lookup pid */
3560 		if ((p = pfind(a.pm_pid)) == NULL) {
3561 			error = ESRCH;
3562 			break;
3563 		}
3564 
3565 		/*
3566 		 * Ignore processes that are working on exiting.
3567 		 */
3568 		if (p->p_flag & P_WEXIT) {
3569 			error = ESRCH;
3570 			PROC_UNLOCK(p);	/* pfind() returns a locked process */
3571 			break;
3572 		}
3573 
3574 		/*
3575 		 * we are allowed to attach a PMC to a process if
3576 		 * we can debug it.
3577 		 */
3578 		error = p_candebug(curthread, p);
3579 
3580 		PROC_UNLOCK(p);
3581 
3582 		if (error == 0)
3583 			error = pmc_attach_process(p, pm);
3584 	}
3585 	break;
3586 
3587 
3588 	/*
3589 	 * Detach an attached PMC from a process.
3590 	 */
3591 
3592 	case PMC_OP_PMCDETACH:
3593 	{
3594 		struct pmc *pm;
3595 		struct proc *p;
3596 		struct pmc_op_pmcattach a;
3597 
3598 		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3599 			break;
3600 
3601 		if (a.pm_pid < 0) {
3602 			error = EINVAL;
3603 			break;
3604 		} else if (a.pm_pid == 0)
3605 			a.pm_pid = td->td_proc->p_pid;
3606 
3607 		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3608 			break;
3609 
3610 		if ((p = pfind(a.pm_pid)) == NULL) {
3611 			error = ESRCH;
3612 			break;
3613 		}
3614 
3615 		/*
3616 		 * Treat processes that are in the process of exiting
3617 		 * as if they were not present.
3618 		 */
3619 
3620 		if (p->p_flag & P_WEXIT)
3621 			error = ESRCH;
3622 
3623 		PROC_UNLOCK(p);	/* pfind() returns a locked process */
3624 
3625 		if (error == 0)
3626 			error = pmc_detach_process(p, pm);
3627 	}
3628 	break;
3629 
3630 
3631 	/*
3632 	 * Retrieve the MSR number associated with the counter
3633 	 * 'pmc_id'.  This allows processes to directly use RDPMC
3634 	 * instructions to read their PMCs, without the overhead of a
3635 	 * system call.
3636 	 */
3637 
3638 	case PMC_OP_PMCGETMSR:
3639 	{
3640 		int adjri, ri;
3641 		struct pmc *pm;
3642 		struct pmc_target *pt;
3643 		struct pmc_op_getmsr gm;
3644 		struct pmc_classdep *pcd;
3645 
3646 		PMC_DOWNGRADE_SX();
3647 
3648 		if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
3649 			break;
3650 
3651 		if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
3652 			break;
3653 
3654 		/*
3655 		 * The allocated PMC has to be a process virtual PMC,
3656 		 * i.e., of type MODE_T[CS].  Global PMCs can only be
3657 		 * read using the PMCREAD operation since they may be
3658 		 * allocated on a different CPU than the one we could
3659 		 * be running on at the time of the RDPMC instruction.
3660 		 *
3661 		 * The GETMSR operation is not allowed for PMCs that
3662 		 * are inherited across processes.
3663 		 */
3664 
3665 		if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
3666 		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
3667 			error = EINVAL;
3668 			break;
3669 		}
3670 
3671 		/*
3672 		 * It only makes sense to use a RDPMC (or its
3673 		 * equivalent instruction on non-x86 architectures) on
3674 		 * a process that has allocated and attached a PMC to
3675 		 * itself.  Conversely the PMC is only allowed to have
3676 		 * one process attached to it -- its owner.
3677 		 */
3678 
3679 		if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
3680 		    LIST_NEXT(pt, pt_next) != NULL ||
3681 		    pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
3682 			error = EINVAL;
3683 			break;
3684 		}
3685 
3686 		ri = PMC_TO_ROWINDEX(pm);
3687 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
3688 
3689 		/* PMC class has no 'GETMSR' support */
3690 		if (pcd->pcd_get_msr == NULL) {
3691 			error = ENOSYS;
3692 			break;
3693 		}
3694 
3695 		if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
3696 			break;
3697 
3698 		if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
3699 			break;
3700 
3701 		/*
3702 		 * Mark our process as using MSRs.  Update machine
3703 		 * state using a forced context switch.
3704 		 */
3705 
3706 		pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
3707 		pmc_force_context_switch();
3708 
3709 	}
3710 	break;
3711 
3712 	/*
3713 	 * Release an allocated PMC
3714 	 */
3715 
3716 	case PMC_OP_PMCRELEASE:
3717 	{
3718 		pmc_id_t pmcid;
3719 		struct pmc *pm;
3720 		struct pmc_owner *po;
3721 		struct pmc_op_simple sp;
3722 
3723 		/*
3724 		 * Find PMC pointer for the named PMC.
3725 		 *
3726 		 * Use pmc_release_pmc_descriptor() to switch off the
3727 		 * PMC, remove all its target threads, and remove the
3728 		 * PMC from its owner's list.
3729 		 *
3730 		 * Remove the owner record if this is the last PMC
3731 		 * owned.
3732 		 *
3733 		 * Free up space.
3734 		 */
3735 
3736 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3737 			break;
3738 
3739 		pmcid = sp.pm_pmcid;
3740 
3741 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3742 			break;
3743 
3744 		po = pm->pm_owner;
3745 		pmc_release_pmc_descriptor(pm);
3746 		pmc_maybe_remove_owner(po);
3747 
3748 		free(pm, M_PMC);
3749 	}
3750 	break;
3751 
3752 
3753 	/*
3754 	 * Read and/or write a PMC.
3755 	 */
3756 
3757 	case PMC_OP_PMCRW:
3758 	{
3759 		int adjri;
3760 		struct pmc *pm;
3761 		uint32_t cpu, ri;
3762 		pmc_value_t oldvalue;
3763 		struct pmc_binding pb;
3764 		struct pmc_op_pmcrw prw;
3765 		struct pmc_classdep *pcd;
3766 		struct pmc_op_pmcrw *pprw;
3767 
3768 		PMC_DOWNGRADE_SX();
3769 
3770 		if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
3771 			break;
3772 
3773 		ri = 0;
3774 		PMCDBG(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
3775 		    prw.pm_flags);
3776 
3777 		/* must have at least one flag set */
3778 		if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
3779 			error = EINVAL;
3780 			break;
3781 		}
3782 
3783 		/* locate pmc descriptor */
3784 		if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
3785 			break;
3786 
3787 		/* Can't read a PMC that hasn't been started. */
3788 		if (pm->pm_state != PMC_STATE_ALLOCATED &&
3789 		    pm->pm_state != PMC_STATE_STOPPED &&
3790 		    pm->pm_state != PMC_STATE_RUNNING) {
3791 			error = EINVAL;
3792 			break;
3793 		}
3794 
3795 		/* writing a new value is allowed only for 'STOPPED' pmcs */
3796 		if (pm->pm_state == PMC_STATE_RUNNING &&
3797 		    (prw.pm_flags & PMC_F_NEWVALUE)) {
3798 			error = EBUSY;
3799 			break;
3800 		}
3801 
3802 		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
3803 
3804 			/*
3805 			 * If this PMC is attached to its owner (i.e.,
3806 			 * the process requesting this operation) and
3807 			 * is running, then attempt to get an
3808 			 * upto-date reading from hardware for a READ.
3809 			 * Writes are only allowed when the PMC is
3810 			 * stopped, so only update the saved value
3811 			 * field.
3812 			 *
3813 			 * If the PMC is not running, or is not
3814 			 * attached to its owner, read/write to the
3815 			 * savedvalue field.
3816 			 */
3817 
3818 			ri = PMC_TO_ROWINDEX(pm);
3819 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3820 
3821 			mtx_pool_lock_spin(pmc_mtxpool, pm);
3822 			cpu = curthread->td_oncpu;
3823 
3824 			if (prw.pm_flags & PMC_F_OLDVALUE) {
3825 				if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
3826 				    (pm->pm_state == PMC_STATE_RUNNING))
3827 					error = (*pcd->pcd_read_pmc)(cpu, adjri,
3828 					    &oldvalue);
3829 				else
3830 					oldvalue = pm->pm_gv.pm_savedvalue;
3831 			}
3832 			if (prw.pm_flags & PMC_F_NEWVALUE)
3833 				pm->pm_gv.pm_savedvalue = prw.pm_value;
3834 
3835 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
3836 
3837 		} else { /* System mode PMCs */
3838 			cpu = PMC_TO_CPU(pm);
3839 			ri  = PMC_TO_ROWINDEX(pm);
3840 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3841 
3842 			if (!pmc_cpu_is_active(cpu)) {
3843 				error = ENXIO;
3844 				break;
3845 			}
3846 
3847 			/* move this thread to CPU 'cpu' */
3848 			pmc_save_cpu_binding(&pb);
3849 			pmc_select_cpu(cpu);
3850 
3851 			critical_enter();
3852 			/* save old value */
3853 			if (prw.pm_flags & PMC_F_OLDVALUE)
3854 				if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
3855 					 &oldvalue)))
3856 					goto error;
3857 			/* write out new value */
3858 			if (prw.pm_flags & PMC_F_NEWVALUE)
3859 				error = (*pcd->pcd_write_pmc)(cpu, adjri,
3860 				    prw.pm_value);
3861 		error:
3862 			critical_exit();
3863 			pmc_restore_cpu_binding(&pb);
3864 			if (error)
3865 				break;
3866 		}
3867 
3868 		pprw = (struct pmc_op_pmcrw *) arg;
3869 
3870 #ifdef	DEBUG
3871 		if (prw.pm_flags & PMC_F_NEWVALUE)
3872 			PMCDBG(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
3873 			    ri, prw.pm_value, oldvalue);
3874 		else if (prw.pm_flags & PMC_F_OLDVALUE)
3875 			PMCDBG(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
3876 #endif
3877 
3878 		/* return old value if requested */
3879 		if (prw.pm_flags & PMC_F_OLDVALUE)
3880 			if ((error = copyout(&oldvalue, &pprw->pm_value,
3881 				 sizeof(prw.pm_value))))
3882 				break;
3883 
3884 	}
3885 	break;
3886 
3887 
3888 	/*
3889 	 * Set the sampling rate for a sampling mode PMC and the
3890 	 * initial count for a counting mode PMC.
3891 	 */
3892 
3893 	case PMC_OP_PMCSETCOUNT:
3894 	{
3895 		struct pmc *pm;
3896 		struct pmc_op_pmcsetcount sc;
3897 
3898 		PMC_DOWNGRADE_SX();
3899 
3900 		if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
3901 			break;
3902 
3903 		if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
3904 			break;
3905 
3906 		if (pm->pm_state == PMC_STATE_RUNNING) {
3907 			error = EBUSY;
3908 			break;
3909 		}
3910 
3911 		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3912 			pm->pm_sc.pm_reloadcount = sc.pm_count;
3913 		else
3914 			pm->pm_sc.pm_initial = sc.pm_count;
3915 	}
3916 	break;
3917 
3918 
3919 	/*
3920 	 * Start a PMC.
3921 	 */
3922 
3923 	case PMC_OP_PMCSTART:
3924 	{
3925 		pmc_id_t pmcid;
3926 		struct pmc *pm;
3927 		struct pmc_op_simple sp;
3928 
3929 		sx_assert(&pmc_sx, SX_XLOCKED);
3930 
3931 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3932 			break;
3933 
3934 		pmcid = sp.pm_pmcid;
3935 
3936 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3937 			break;
3938 
3939 		KASSERT(pmcid == pm->pm_id,
3940 		    ("[pmc,%d] pmcid %x != id %x", __LINE__,
3941 			pm->pm_id, pmcid));
3942 
3943 		if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
3944 			break;
3945 		else if (pm->pm_state != PMC_STATE_STOPPED &&
3946 		    pm->pm_state != PMC_STATE_ALLOCATED) {
3947 			error = EINVAL;
3948 			break;
3949 		}
3950 
3951 		error = pmc_start(pm);
3952 	}
3953 	break;
3954 
3955 
3956 	/*
3957 	 * Stop a PMC.
3958 	 */
3959 
3960 	case PMC_OP_PMCSTOP:
3961 	{
3962 		pmc_id_t pmcid;
3963 		struct pmc *pm;
3964 		struct pmc_op_simple sp;
3965 
3966 		PMC_DOWNGRADE_SX();
3967 
3968 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3969 			break;
3970 
3971 		pmcid = sp.pm_pmcid;
3972 
3973 		/*
3974 		 * Mark the PMC as inactive and invoke the MD stop
3975 		 * routines if needed.
3976 		 */
3977 
3978 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3979 			break;
3980 
3981 		KASSERT(pmcid == pm->pm_id,
3982 		    ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
3983 			pm->pm_id, pmcid));
3984 
3985 		if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
3986 			break;
3987 		else if (pm->pm_state != PMC_STATE_RUNNING) {
3988 			error = EINVAL;
3989 			break;
3990 		}
3991 
3992 		error = pmc_stop(pm);
3993 	}
3994 	break;
3995 
3996 
3997 	/*
3998 	 * Write a user supplied value to the log file.
3999 	 */
4000 
4001 	case PMC_OP_WRITELOG:
4002 	{
4003 		struct pmc_op_writelog wl;
4004 		struct pmc_owner *po;
4005 
4006 		PMC_DOWNGRADE_SX();
4007 
4008 		if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
4009 			break;
4010 
4011 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
4012 			error = EINVAL;
4013 			break;
4014 		}
4015 
4016 		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
4017 			error = EINVAL;
4018 			break;
4019 		}
4020 
4021 		error = pmclog_process_userlog(po, &wl);
4022 	}
4023 	break;
4024 
4025 
4026 	default:
4027 		error = EINVAL;
4028 		break;
4029 	}
4030 
4031 	if (is_sx_locked != 0) {
4032 		if (is_sx_downgraded)
4033 			sx_sunlock(&pmc_sx);
4034 		else
4035 			sx_xunlock(&pmc_sx);
4036 	}
4037 
4038 	if (error)
4039 		atomic_add_int(&pmc_stats.pm_syscall_errors, 1);
4040 
4041 	PICKUP_GIANT();
4042 
4043 	return error;
4044 }
4045 
4046 /*
4047  * Helper functions
4048  */
4049 
4050 
4051 /*
4052  * Mark the thread as needing callchain capture and post an AST.  The
4053  * actual callchain capture will be done in a context where it is safe
4054  * to take page faults.
4055  */
4056 
4057 static void
4058 pmc_post_callchain_callback(void)
4059 {
4060 	struct thread *td;
4061 
4062 	td = curthread;
4063 
4064 	/*
4065 	 * If there is multiple PMCs for the same interrupt ignore new post
4066 	 */
4067 	if (td->td_pflags & TDP_CALLCHAIN)
4068 		return;
4069 
4070 	/*
4071 	 * Mark this thread as needing callchain capture.
4072 	 * `td->td_pflags' will be safe to touch because this thread
4073 	 * was in user space when it was interrupted.
4074 	 */
4075 	td->td_pflags |= TDP_CALLCHAIN;
4076 
4077 	/*
4078 	 * Don't let this thread migrate between CPUs until callchain
4079 	 * capture completes.
4080 	 */
4081 	sched_pin();
4082 
4083 	return;
4084 }
4085 
4086 /*
4087  * Interrupt processing.
4088  *
4089  * Find a free slot in the per-cpu array of samples and capture the
4090  * current callchain there.  If a sample was successfully added, a bit
4091  * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4092  * needs to be invoked from the clock handler.
4093  *
4094  * This function is meant to be called from an NMI handler.  It cannot
4095  * use any of the locking primitives supplied by the OS.
4096  */
4097 
4098 int
4099 pmc_process_interrupt(int cpu, int ring, struct pmc *pm, struct trapframe *tf,
4100     int inuserspace)
4101 {
4102 	int error, callchaindepth;
4103 	struct thread *td;
4104 	struct pmc_sample *ps;
4105 	struct pmc_samplebuffer *psb;
4106 
4107 	error = 0;
4108 
4109 	/*
4110 	 * Allocate space for a sample buffer.
4111 	 */
4112 	psb = pmc_pcpu[cpu]->pc_sb[ring];
4113 
4114 	ps = psb->ps_write;
4115 	if (ps->ps_nsamples) {	/* in use, reader hasn't caught up */
4116 		pm->pm_stalled = 1;
4117 		atomic_add_int(&pmc_stats.pm_intr_bufferfull, 1);
4118 		PMCDBG(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4119 		    cpu, pm, (void *) tf, inuserspace,
4120 		    (int) (psb->ps_write - psb->ps_samples),
4121 		    (int) (psb->ps_read - psb->ps_samples));
4122 		error = ENOMEM;
4123 		goto done;
4124 	}
4125 
4126 
4127 	/* Fill in entry. */
4128 	PMCDBG(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
4129 	    (void *) tf, inuserspace,
4130 	    (int) (psb->ps_write - psb->ps_samples),
4131 	    (int) (psb->ps_read - psb->ps_samples));
4132 
4133 	KASSERT(pm->pm_runcount >= 0,
4134 	    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4135 		pm->pm_runcount));
4136 
4137 	atomic_add_rel_int(&pm->pm_runcount, 1);	/* hold onto PMC */
4138 
4139 	ps->ps_pmc = pm;
4140 	if ((td = curthread) && td->td_proc)
4141 		ps->ps_pid = td->td_proc->p_pid;
4142 	else
4143 		ps->ps_pid = -1;
4144 	ps->ps_cpu = cpu;
4145 	ps->ps_td = td;
4146 	ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4147 
4148 	callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4149 	    pmc_callchaindepth : 1;
4150 
4151 	if (callchaindepth == 1)
4152 		ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4153 	else {
4154 		/*
4155 		 * Kernel stack traversals can be done immediately,
4156 		 * while we defer to an AST for user space traversals.
4157 		 */
4158 		if (!inuserspace) {
4159 			callchaindepth =
4160 			    pmc_save_kernel_callchain(ps->ps_pc,
4161 				callchaindepth, tf);
4162 		} else {
4163 			pmc_post_callchain_callback();
4164 			callchaindepth = PMC_SAMPLE_INUSE;
4165 		}
4166 	}
4167 
4168 	ps->ps_nsamples = callchaindepth;	/* mark entry as in use */
4169 
4170 	/* increment write pointer, modulo ring buffer size */
4171 	ps++;
4172 	if (ps == psb->ps_fence)
4173 		psb->ps_write = psb->ps_samples;
4174 	else
4175 		psb->ps_write = ps;
4176 
4177  done:
4178 	/* mark CPU as needing processing */
4179 	CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4180 
4181 	return (error);
4182 }
4183 
4184 /*
4185  * Capture a user call chain.  This function will be called from ast()
4186  * before control returns to userland and before the process gets
4187  * rescheduled.
4188  */
4189 
4190 static void
4191 pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
4192 {
4193 	int i;
4194 	struct pmc *pm;
4195 	struct thread *td;
4196 	struct pmc_sample *ps;
4197 	struct pmc_samplebuffer *psb;
4198 #ifdef	INVARIANTS
4199 	int ncallchains;
4200 #endif
4201 
4202 	psb = pmc_pcpu[cpu]->pc_sb[ring];
4203 	td = curthread;
4204 
4205 	KASSERT(td->td_pflags & TDP_CALLCHAIN,
4206 	    ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4207 		__LINE__));
4208 
4209 #ifdef	INVARIANTS
4210 	ncallchains = 0;
4211 #endif
4212 
4213 	/*
4214 	 * Iterate through all deferred callchain requests.
4215 	 */
4216 
4217 	ps = psb->ps_samples;
4218 	for (i = 0; i < pmc_nsamples; i++, ps++) {
4219 
4220 		if (ps->ps_nsamples != PMC_SAMPLE_INUSE)
4221 			continue;
4222 		if (ps->ps_td != td)
4223 			continue;
4224 
4225 		KASSERT(ps->ps_cpu == cpu,
4226 		    ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4227 			ps->ps_cpu, PCPU_GET(cpuid)));
4228 
4229 		pm = ps->ps_pmc;
4230 
4231 		KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4232 		    ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4233 			"want it", __LINE__));
4234 
4235 		KASSERT(pm->pm_runcount > 0,
4236 		    ("[pmc,%d] runcount %d", __LINE__, pm->pm_runcount));
4237 
4238 		/*
4239 		 * Retrieve the callchain and mark the sample buffer
4240 		 * as 'processable' by the timer tick sweep code.
4241 		 */
4242 		ps->ps_nsamples = pmc_save_user_callchain(ps->ps_pc,
4243 		    pmc_callchaindepth, tf);
4244 
4245 #ifdef	INVARIANTS
4246 		ncallchains++;
4247 #endif
4248 	}
4249 
4250 	KASSERT(ncallchains > 0,
4251 	    ("[pmc,%d] cpu %d didn't find a sample to collect", __LINE__,
4252 		cpu));
4253 
4254 	KASSERT(td->td_pinned > 0,
4255 	    ("[pmc,%d] invalid td_pinned value", __LINE__));
4256 	sched_unpin();	/* Can migrate safely now. */
4257 
4258 	return;
4259 }
4260 
4261 /*
4262  * Process saved PC samples.
4263  */
4264 
4265 static void
4266 pmc_process_samples(int cpu, int ring)
4267 {
4268 	struct pmc *pm;
4269 	int adjri, n;
4270 	struct thread *td;
4271 	struct pmc_owner *po;
4272 	struct pmc_sample *ps;
4273 	struct pmc_classdep *pcd;
4274 	struct pmc_samplebuffer *psb;
4275 
4276 	KASSERT(PCPU_GET(cpuid) == cpu,
4277 	    ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4278 		PCPU_GET(cpuid), cpu));
4279 
4280 	psb = pmc_pcpu[cpu]->pc_sb[ring];
4281 
4282 	for (n = 0; n < pmc_nsamples; n++) { /* bound on #iterations */
4283 
4284 		ps = psb->ps_read;
4285 		if (ps->ps_nsamples == PMC_SAMPLE_FREE)
4286 			break;
4287 
4288 		pm = ps->ps_pmc;
4289 
4290 		KASSERT(pm->pm_runcount > 0,
4291 		    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4292 			pm->pm_runcount));
4293 
4294 		po = pm->pm_owner;
4295 
4296 		KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4297 		    ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4298 			pm, PMC_TO_MODE(pm)));
4299 
4300 		/* Ignore PMCs that have been switched off */
4301 		if (pm->pm_state != PMC_STATE_RUNNING)
4302 			goto entrydone;
4303 
4304 		/* If there is a pending AST wait for completion */
4305 		if (ps->ps_nsamples == PMC_SAMPLE_INUSE) {
4306 			/* Need a rescan at a later time. */
4307 			CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4308 			break;
4309 		}
4310 
4311 		PMCDBG(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4312 		    pm, ps->ps_nsamples, ps->ps_flags,
4313 		    (int) (psb->ps_write - psb->ps_samples),
4314 		    (int) (psb->ps_read - psb->ps_samples));
4315 
4316 		/*
4317 		 * If this is a process-mode PMC that is attached to
4318 		 * its owner, and if the PC is in user mode, update
4319 		 * profiling statistics like timer-based profiling
4320 		 * would have done.
4321 		 */
4322 		if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4323 			if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4324 				td = FIRST_THREAD_IN_PROC(po->po_owner);
4325 				addupc_intr(td, ps->ps_pc[0], 1);
4326 			}
4327 			goto entrydone;
4328 		}
4329 
4330 		/*
4331 		 * Otherwise, this is either a sampling mode PMC that
4332 		 * is attached to a different process than its owner,
4333 		 * or a system-wide sampling PMC.  Dispatch a log
4334 		 * entry to the PMC's owner process.
4335 		 */
4336 		pmclog_process_callchain(pm, ps);
4337 
4338 	entrydone:
4339 		ps->ps_nsamples = 0; /* mark entry as free */
4340 		atomic_subtract_rel_int(&pm->pm_runcount, 1);
4341 
4342 		/* increment read pointer, modulo sample size */
4343 		if (++ps == psb->ps_fence)
4344 			psb->ps_read = psb->ps_samples;
4345 		else
4346 			psb->ps_read = ps;
4347 	}
4348 
4349 	atomic_add_int(&pmc_stats.pm_log_sweeps, 1);
4350 
4351 	/* Do not re-enable stalled PMCs if we failed to process any samples */
4352 	if (n == 0)
4353 		return;
4354 
4355 	/*
4356 	 * Restart any stalled sampling PMCs on this CPU.
4357 	 *
4358 	 * If the NMI handler sets the pm_stalled field of a PMC after
4359 	 * the check below, we'll end up processing the stalled PMC at
4360 	 * the next hardclock tick.
4361 	 */
4362 	for (n = 0; n < md->pmd_npmc; n++) {
4363 		pcd = pmc_ri_to_classdep(md, n, &adjri);
4364 		KASSERT(pcd != NULL,
4365 		    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4366 		(void) (*pcd->pcd_get_config)(cpu,adjri,&pm);
4367 
4368 		if (pm == NULL ||			 /* !cfg'ed */
4369 		    pm->pm_state != PMC_STATE_RUNNING || /* !active */
4370 		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
4371 		    pm->pm_stalled == 0) /* !stalled */
4372 			continue;
4373 
4374 		pm->pm_stalled = 0;
4375 		(*pcd->pcd_start_pmc)(cpu, adjri);
4376 	}
4377 }
4378 
4379 /*
4380  * Event handlers.
4381  */
4382 
4383 /*
4384  * Handle a process exit.
4385  *
4386  * Remove this process from all hash tables.  If this process
4387  * owned any PMCs, turn off those PMCs and deallocate them,
4388  * removing any associations with target processes.
4389  *
4390  * This function will be called by the last 'thread' of a
4391  * process.
4392  *
4393  * XXX This eventhandler gets called early in the exit process.
4394  * Consider using a 'hook' invocation from thread_exit() or equivalent
4395  * spot.  Another negative is that kse_exit doesn't seem to call
4396  * exit1() [??].
4397  *
4398  */
4399 
4400 static void
4401 pmc_process_exit(void *arg __unused, struct proc *p)
4402 {
4403 	struct pmc *pm;
4404 	int adjri, cpu;
4405 	unsigned int ri;
4406 	int is_using_hwpmcs;
4407 	struct pmc_owner *po;
4408 	struct pmc_process *pp;
4409 	struct pmc_classdep *pcd;
4410 	pmc_value_t newvalue, tmp;
4411 
4412 	PROC_LOCK(p);
4413 	is_using_hwpmcs = p->p_flag & P_HWPMC;
4414 	PROC_UNLOCK(p);
4415 
4416 	/*
4417 	 * Log a sysexit event to all SS PMC owners.
4418 	 */
4419 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4420 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4421 		    pmclog_process_sysexit(po, p->p_pid);
4422 
4423 	if (!is_using_hwpmcs)
4424 		return;
4425 
4426 	PMC_GET_SX_XLOCK();
4427 	PMCDBG(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
4428 	    p->p_comm);
4429 
4430 	/*
4431 	 * Since this code is invoked by the last thread in an exiting
4432 	 * process, we would have context switched IN at some prior
4433 	 * point.  However, with PREEMPTION, kernel mode context
4434 	 * switches may happen any time, so we want to disable a
4435 	 * context switch OUT till we get any PMCs targetting this
4436 	 * process off the hardware.
4437 	 *
4438 	 * We also need to atomically remove this process'
4439 	 * entry from our target process hash table, using
4440 	 * PMC_FLAG_REMOVE.
4441 	 */
4442 	PMCDBG(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
4443 	    p->p_comm);
4444 
4445 	critical_enter(); /* no preemption */
4446 
4447 	cpu = curthread->td_oncpu;
4448 
4449 	if ((pp = pmc_find_process_descriptor(p,
4450 		 PMC_FLAG_REMOVE)) != NULL) {
4451 
4452 		PMCDBG(PRC,EXT,2,
4453 		    "process-exit proc=%p pmc-process=%p", p, pp);
4454 
4455 		/*
4456 		 * The exiting process could the target of
4457 		 * some PMCs which will be running on
4458 		 * currently executing CPU.
4459 		 *
4460 		 * We need to turn these PMCs off like we
4461 		 * would do at context switch OUT time.
4462 		 */
4463 		for (ri = 0; ri < md->pmd_npmc; ri++) {
4464 
4465 			/*
4466 			 * Pick up the pmc pointer from hardware
4467 			 * state similar to the CSW_OUT code.
4468 			 */
4469 			pm = NULL;
4470 
4471 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
4472 
4473 			(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
4474 
4475 			PMCDBG(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
4476 
4477 			if (pm == NULL ||
4478 			    !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
4479 				continue;
4480 
4481 			PMCDBG(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
4482 			    "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
4483 			    pm, pm->pm_state);
4484 
4485 			KASSERT(PMC_TO_ROWINDEX(pm) == ri,
4486 			    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
4487 				__LINE__, PMC_TO_ROWINDEX(pm), ri));
4488 
4489 			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
4490 			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
4491 				__LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
4492 
4493 			(void) pcd->pcd_stop_pmc(cpu, adjri);
4494 
4495 			KASSERT(pm->pm_runcount > 0,
4496 			    ("[pmc,%d] bad runcount ri %d rc %d",
4497 				__LINE__, ri, pm->pm_runcount));
4498 
4499 			/* Stop hardware only if it is actually running */
4500 			if (pm->pm_state == PMC_STATE_RUNNING &&
4501 			    pm->pm_stalled == 0) {
4502 				pcd->pcd_read_pmc(cpu, adjri, &newvalue);
4503 				tmp = newvalue -
4504 				    PMC_PCPU_SAVED(cpu,ri);
4505 
4506 				mtx_pool_lock_spin(pmc_mtxpool, pm);
4507 				pm->pm_gv.pm_savedvalue += tmp;
4508 				pp->pp_pmcs[ri].pp_pmcval += tmp;
4509 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
4510 			}
4511 
4512 			atomic_subtract_rel_int(&pm->pm_runcount,1);
4513 
4514 			KASSERT((int) pm->pm_runcount >= 0,
4515 			    ("[pmc,%d] runcount is %d", __LINE__, ri));
4516 
4517 			(void) pcd->pcd_config_pmc(cpu, adjri, NULL);
4518 		}
4519 
4520 		/*
4521 		 * Inform the MD layer of this pseudo "context switch
4522 		 * out"
4523 		 */
4524 		(void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
4525 
4526 		critical_exit(); /* ok to be pre-empted now */
4527 
4528 		/*
4529 		 * Unlink this process from the PMCs that are
4530 		 * targetting it.  This will send a signal to
4531 		 * all PMC owner's whose PMCs are orphaned.
4532 		 *
4533 		 * Log PMC value at exit time if requested.
4534 		 */
4535 		for (ri = 0; ri < md->pmd_npmc; ri++)
4536 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
4537 				if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
4538 				    PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
4539 					pmclog_process_procexit(pm, pp);
4540 				pmc_unlink_target_process(pm, pp);
4541 			}
4542 		free(pp, M_PMC);
4543 
4544 	} else
4545 		critical_exit(); /* pp == NULL */
4546 
4547 
4548 	/*
4549 	 * If the process owned PMCs, free them up and free up
4550 	 * memory.
4551 	 */
4552 	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
4553 		pmc_remove_owner(po);
4554 		pmc_destroy_owner_descriptor(po);
4555 	}
4556 
4557 	sx_xunlock(&pmc_sx);
4558 }
4559 
4560 /*
4561  * Handle a process fork.
4562  *
4563  * If the parent process 'p1' is under HWPMC monitoring, then copy
4564  * over any attached PMCs that have 'do_descendants' semantics.
4565  */
4566 
4567 static void
4568 pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
4569     int flags)
4570 {
4571 	int is_using_hwpmcs;
4572 	unsigned int ri;
4573 	uint32_t do_descendants;
4574 	struct pmc *pm;
4575 	struct pmc_owner *po;
4576 	struct pmc_process *ppnew, *ppold;
4577 
4578 	(void) flags;		/* unused parameter */
4579 
4580 	PROC_LOCK(p1);
4581 	is_using_hwpmcs = p1->p_flag & P_HWPMC;
4582 	PROC_UNLOCK(p1);
4583 
4584 	/*
4585 	 * If there are system-wide sampling PMCs active, we need to
4586 	 * log all fork events to their owner's logs.
4587 	 */
4588 
4589 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4590 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4591 		    pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
4592 
4593 	if (!is_using_hwpmcs)
4594 		return;
4595 
4596 	PMC_GET_SX_XLOCK();
4597 	PMCDBG(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
4598 	    p1->p_pid, p1->p_comm, newproc);
4599 
4600 	/*
4601 	 * If the parent process (curthread->td_proc) is a
4602 	 * target of any PMCs, look for PMCs that are to be
4603 	 * inherited, and link these into the new process
4604 	 * descriptor.
4605 	 */
4606 	if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
4607 		 PMC_FLAG_NONE)) == NULL)
4608 		goto done;		/* nothing to do */
4609 
4610 	do_descendants = 0;
4611 	for (ri = 0; ri < md->pmd_npmc; ri++)
4612 		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
4613 			do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
4614 	if (do_descendants == 0) /* nothing to do */
4615 		goto done;
4616 
4617 	/* allocate a descriptor for the new process  */
4618 	if ((ppnew = pmc_find_process_descriptor(newproc,
4619 		 PMC_FLAG_ALLOCATE)) == NULL)
4620 		goto done;
4621 
4622 	/*
4623 	 * Run through all PMCs that were targeting the old process
4624 	 * and which specified F_DESCENDANTS and attach them to the
4625 	 * new process.
4626 	 *
4627 	 * Log the fork event to all owners of PMCs attached to this
4628 	 * process, if not already logged.
4629 	 */
4630 	for (ri = 0; ri < md->pmd_npmc; ri++)
4631 		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
4632 		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
4633 			pmc_link_target_process(pm, ppnew);
4634 			po = pm->pm_owner;
4635 			if (po->po_sscount == 0 &&
4636 			    po->po_flags & PMC_PO_OWNS_LOGFILE)
4637 				pmclog_process_procfork(po, p1->p_pid,
4638 				    newproc->p_pid);
4639 		}
4640 
4641 	/*
4642 	 * Now mark the new process as being tracked by this driver.
4643 	 */
4644 	PROC_LOCK(newproc);
4645 	newproc->p_flag |= P_HWPMC;
4646 	PROC_UNLOCK(newproc);
4647 
4648  done:
4649 	sx_xunlock(&pmc_sx);
4650 }
4651 
4652 
4653 /*
4654  * initialization
4655  */
4656 
4657 static const char *pmc_name_of_pmcclass[] = {
4658 #undef	__PMC_CLASS
4659 #define	__PMC_CLASS(N) #N ,
4660 	__PMC_CLASSES()
4661 };
4662 
4663 /*
4664  * Base class initializer: allocate structure and set default classes.
4665  */
4666 struct pmc_mdep *
4667 pmc_mdep_alloc(int nclasses)
4668 {
4669 	struct pmc_mdep *md;
4670 	int	n;
4671 
4672 	/* SOFT + md classes */
4673 	n = 1 + nclasses;
4674 	md = malloc(sizeof(struct pmc_mdep) + n *
4675 	    sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO);
4676 	if (md != NULL) {
4677 		md->pmd_nclass = n;
4678 
4679 		/* Add base class. */
4680 		pmc_soft_initialize(md);
4681 	}
4682 
4683 	return md;
4684 }
4685 
4686 void
4687 pmc_mdep_free(struct pmc_mdep *md)
4688 {
4689 	pmc_soft_finalize(md);
4690 	free(md, M_PMC);
4691 }
4692 
4693 static int
4694 generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
4695 {
4696 	(void) pc; (void) pp;
4697 
4698 	return (0);
4699 }
4700 
4701 static int
4702 generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
4703 {
4704 	(void) pc; (void) pp;
4705 
4706 	return (0);
4707 }
4708 
4709 static struct pmc_mdep *
4710 pmc_generic_cpu_initialize(void)
4711 {
4712 	struct pmc_mdep *md;
4713 
4714 	md = pmc_mdep_alloc(0);
4715 
4716 	md->pmd_cputype    = PMC_CPU_GENERIC;
4717 
4718 	md->pmd_pcpu_init  = NULL;
4719 	md->pmd_pcpu_fini  = NULL;
4720 	md->pmd_switch_in  = generic_switch_in;
4721 	md->pmd_switch_out = generic_switch_out;
4722 
4723 	return (md);
4724 }
4725 
4726 static void
4727 pmc_generic_cpu_finalize(struct pmc_mdep *md)
4728 {
4729 	(void) md;
4730 }
4731 
4732 
4733 static int
4734 pmc_initialize(void)
4735 {
4736 	int c, cpu, error, n, ri;
4737 	unsigned int maxcpu;
4738 	struct pmc_binding pb;
4739 	struct pmc_sample *ps;
4740 	struct pmc_classdep *pcd;
4741 	struct pmc_samplebuffer *sb;
4742 
4743 	md = NULL;
4744 	error = 0;
4745 
4746 #ifdef	DEBUG
4747 	/* parse debug flags first */
4748 	if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
4749 		pmc_debugstr, sizeof(pmc_debugstr)))
4750 		pmc_debugflags_parse(pmc_debugstr,
4751 		    pmc_debugstr+strlen(pmc_debugstr));
4752 #endif
4753 
4754 	PMCDBG(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
4755 
4756 	/* check kernel version */
4757 	if (pmc_kernel_version != PMC_VERSION) {
4758 		if (pmc_kernel_version == 0)
4759 			printf("hwpmc: this kernel has not been compiled with "
4760 			    "'options HWPMC_HOOKS'.\n");
4761 		else
4762 			printf("hwpmc: kernel version (0x%x) does not match "
4763 			    "module version (0x%x).\n", pmc_kernel_version,
4764 			    PMC_VERSION);
4765 		return EPROGMISMATCH;
4766 	}
4767 
4768 	/*
4769 	 * check sysctl parameters
4770 	 */
4771 
4772 	if (pmc_hashsize <= 0) {
4773 		(void) printf("hwpmc: tunable \"hashsize\"=%d must be "
4774 		    "greater than zero.\n", pmc_hashsize);
4775 		pmc_hashsize = PMC_HASH_SIZE;
4776 	}
4777 
4778 	if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
4779 		(void) printf("hwpmc: tunable \"nsamples\"=%d out of "
4780 		    "range.\n", pmc_nsamples);
4781 		pmc_nsamples = PMC_NSAMPLES;
4782 	}
4783 
4784 	if (pmc_callchaindepth <= 0 ||
4785 	    pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
4786 		(void) printf("hwpmc: tunable \"callchaindepth\"=%d out of "
4787 		    "range.\n", pmc_callchaindepth);
4788 		pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
4789 	}
4790 
4791 	md = pmc_md_initialize();
4792 	if (md == NULL) {
4793 		/* Default to generic CPU. */
4794 		md = pmc_generic_cpu_initialize();
4795 		if (md == NULL)
4796 			return (ENOSYS);
4797         }
4798 
4799 	KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
4800 	    ("[pmc,%d] no classes or pmcs", __LINE__));
4801 
4802 	/* Compute the map from row-indices to classdep pointers. */
4803 	pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
4804 	    md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO);
4805 
4806 	for (n = 0; n < md->pmd_npmc; n++)
4807 		pmc_rowindex_to_classdep[n] = NULL;
4808 	for (ri = c = 0; c < md->pmd_nclass; c++) {
4809 		pcd = &md->pmd_classdep[c];
4810 		for (n = 0; n < pcd->pcd_num; n++, ri++)
4811 			pmc_rowindex_to_classdep[ri] = pcd;
4812 	}
4813 
4814 	KASSERT(ri == md->pmd_npmc,
4815 	    ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
4816 	    ri, md->pmd_npmc));
4817 
4818 	maxcpu = pmc_cpu_max();
4819 
4820 	/* allocate space for the per-cpu array */
4821 	pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
4822 	    M_WAITOK|M_ZERO);
4823 
4824 	/* per-cpu 'saved values' for managing process-mode PMCs */
4825 	pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
4826 	    M_PMC, M_WAITOK);
4827 
4828 	/* Perform CPU-dependent initialization. */
4829 	pmc_save_cpu_binding(&pb);
4830 	error = 0;
4831 	for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
4832 		if (!pmc_cpu_is_active(cpu))
4833 			continue;
4834 		pmc_select_cpu(cpu);
4835 		pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
4836 		    md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
4837 		    M_WAITOK|M_ZERO);
4838 		if (md->pmd_pcpu_init)
4839 			error = md->pmd_pcpu_init(md, cpu);
4840 		for (n = 0; error == 0 && n < md->pmd_nclass; n++)
4841 			error = md->pmd_classdep[n].pcd_pcpu_init(md, cpu);
4842 	}
4843 	pmc_restore_cpu_binding(&pb);
4844 
4845 	if (error)
4846 		return (error);
4847 
4848 	/* allocate space for the sample array */
4849 	for (cpu = 0; cpu < maxcpu; cpu++) {
4850 		if (!pmc_cpu_is_active(cpu))
4851 			continue;
4852 
4853 		sb = malloc(sizeof(struct pmc_samplebuffer) +
4854 		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4855 		    M_WAITOK|M_ZERO);
4856 		sb->ps_read = sb->ps_write = sb->ps_samples;
4857 		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4858 
4859 		KASSERT(pmc_pcpu[cpu] != NULL,
4860 		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4861 
4862 		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4863 		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4864 
4865 		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4866 			ps->ps_pc = sb->ps_callchains +
4867 			    (n * pmc_callchaindepth);
4868 
4869 		pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
4870 
4871 		sb = malloc(sizeof(struct pmc_samplebuffer) +
4872 		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4873 		    M_WAITOK|M_ZERO);
4874 		sb->ps_read = sb->ps_write = sb->ps_samples;
4875 		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4876 
4877 		KASSERT(pmc_pcpu[cpu] != NULL,
4878 		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4879 
4880 		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4881 		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4882 
4883 		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4884 			ps->ps_pc = sb->ps_callchains +
4885 			    (n * pmc_callchaindepth);
4886 
4887 		pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
4888 	}
4889 
4890 	/* allocate space for the row disposition array */
4891 	pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
4892 	    M_PMC, M_WAITOK|M_ZERO);
4893 
4894 	KASSERT(pmc_pmcdisp != NULL,
4895 	    ("[pmc,%d] pmcdisp allocation returned NULL", __LINE__));
4896 
4897 	/* mark all PMCs as available */
4898 	for (n = 0; n < (int) md->pmd_npmc; n++)
4899 		PMC_MARK_ROW_FREE(n);
4900 
4901 	/* allocate thread hash tables */
4902 	pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
4903 	    &pmc_ownerhashmask);
4904 
4905 	pmc_processhash = hashinit(pmc_hashsize, M_PMC,
4906 	    &pmc_processhashmask);
4907 	mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
4908 	    MTX_SPIN);
4909 
4910 	LIST_INIT(&pmc_ss_owners);
4911 	pmc_ss_count = 0;
4912 
4913 	/* allocate a pool of spin mutexes */
4914 	pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
4915 	    MTX_SPIN);
4916 
4917 	PMCDBG(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
4918 	    "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
4919 	    pmc_processhash, pmc_processhashmask);
4920 
4921 	/* register process {exit,fork,exec} handlers */
4922 	pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
4923 	    pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
4924 	pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
4925 	    pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
4926 
4927 	/* initialize logging */
4928 	pmclog_initialize();
4929 
4930 	/* set hook functions */
4931 	pmc_intr = md->pmd_intr;
4932 	pmc_hook = pmc_hook_handler;
4933 
4934 	if (error == 0) {
4935 		printf(PMC_MODULE_NAME ":");
4936 		for (n = 0; n < (int) md->pmd_nclass; n++) {
4937 			pcd = &md->pmd_classdep[n];
4938 			printf(" %s/%d/%d/0x%b",
4939 			    pmc_name_of_pmcclass[pcd->pcd_class],
4940 			    pcd->pcd_num,
4941 			    pcd->pcd_width,
4942 			    pcd->pcd_caps,
4943 			    "\20"
4944 			    "\1INT\2USR\3SYS\4EDG\5THR"
4945 			    "\6REA\7WRI\10INV\11QUA\12PRC"
4946 			    "\13TAG\14CSC");
4947 		}
4948 		printf("\n");
4949 	}
4950 
4951 	return (error);
4952 }
4953 
4954 /* prepare to be unloaded */
4955 static void
4956 pmc_cleanup(void)
4957 {
4958 	int c, cpu;
4959 	unsigned int maxcpu;
4960 	struct pmc_ownerhash *ph;
4961 	struct pmc_owner *po, *tmp;
4962 	struct pmc_binding pb;
4963 #ifdef	DEBUG
4964 	struct pmc_processhash *prh;
4965 #endif
4966 
4967 	PMCDBG(MOD,INI,0, "%s", "cleanup");
4968 
4969 	/* switch off sampling */
4970 	CPU_ZERO(&pmc_cpumask);
4971 	pmc_intr = NULL;
4972 
4973 	sx_xlock(&pmc_sx);
4974 	if (pmc_hook == NULL) {	/* being unloaded already */
4975 		sx_xunlock(&pmc_sx);
4976 		return;
4977 	}
4978 
4979 	pmc_hook = NULL; /* prevent new threads from entering module */
4980 
4981 	/* deregister event handlers */
4982 	EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
4983 	EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
4984 
4985 	/* send SIGBUS to all owner threads, free up allocations */
4986 	if (pmc_ownerhash)
4987 		for (ph = pmc_ownerhash;
4988 		     ph <= &pmc_ownerhash[pmc_ownerhashmask];
4989 		     ph++) {
4990 			LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
4991 				pmc_remove_owner(po);
4992 
4993 				/* send SIGBUS to owner processes */
4994 				PMCDBG(MOD,INI,2, "cleanup signal proc=%p "
4995 				    "(%d, %s)", po->po_owner,
4996 				    po->po_owner->p_pid,
4997 				    po->po_owner->p_comm);
4998 
4999 				PROC_LOCK(po->po_owner);
5000 				kern_psignal(po->po_owner, SIGBUS);
5001 				PROC_UNLOCK(po->po_owner);
5002 
5003 				pmc_destroy_owner_descriptor(po);
5004 			}
5005 		}
5006 
5007 	/* reclaim allocated data structures */
5008 	if (pmc_mtxpool)
5009 		mtx_pool_destroy(&pmc_mtxpool);
5010 
5011 	mtx_destroy(&pmc_processhash_mtx);
5012 	if (pmc_processhash) {
5013 #ifdef	DEBUG
5014 		struct pmc_process *pp;
5015 
5016 		PMCDBG(MOD,INI,3, "%s", "destroy process hash");
5017 		for (prh = pmc_processhash;
5018 		     prh <= &pmc_processhash[pmc_processhashmask];
5019 		     prh++)
5020 			LIST_FOREACH(pp, prh, pp_next)
5021 			    PMCDBG(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
5022 #endif
5023 
5024 		hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
5025 		pmc_processhash = NULL;
5026 	}
5027 
5028 	if (pmc_ownerhash) {
5029 		PMCDBG(MOD,INI,3, "%s", "destroy owner hash");
5030 		hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
5031 		pmc_ownerhash = NULL;
5032 	}
5033 
5034 	KASSERT(LIST_EMPTY(&pmc_ss_owners),
5035 	    ("[pmc,%d] Global SS owner list not empty", __LINE__));
5036 	KASSERT(pmc_ss_count == 0,
5037 	    ("[pmc,%d] Global SS count not empty", __LINE__));
5038 
5039  	/* do processor and pmc-class dependent cleanup */
5040 	maxcpu = pmc_cpu_max();
5041 
5042 	PMCDBG(MOD,INI,3, "%s", "md cleanup");
5043 	if (md) {
5044 		pmc_save_cpu_binding(&pb);
5045 		for (cpu = 0; cpu < maxcpu; cpu++) {
5046 			PMCDBG(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
5047 			    cpu, pmc_pcpu[cpu]);
5048 			if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
5049 				continue;
5050 			pmc_select_cpu(cpu);
5051 			for (c = 0; c < md->pmd_nclass; c++)
5052 				md->pmd_classdep[c].pcd_pcpu_fini(md, cpu);
5053 			if (md->pmd_pcpu_fini)
5054 				md->pmd_pcpu_fini(md, cpu);
5055 		}
5056 
5057 		if (md->pmd_cputype == PMC_CPU_GENERIC)
5058 			pmc_generic_cpu_finalize(md);
5059 		else
5060 			pmc_md_finalize(md);
5061 
5062 		pmc_mdep_free(md);
5063 		md = NULL;
5064 		pmc_restore_cpu_binding(&pb);
5065 	}
5066 
5067 	/* Free per-cpu descriptors. */
5068 	for (cpu = 0; cpu < maxcpu; cpu++) {
5069 		if (!pmc_cpu_is_active(cpu))
5070 			continue;
5071 		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
5072 		    ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
5073 			cpu));
5074 		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
5075 		    ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
5076 			cpu));
5077 		free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
5078 		free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
5079 		free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
5080 		free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
5081 		free(pmc_pcpu[cpu], M_PMC);
5082 	}
5083 
5084 	free(pmc_pcpu, M_PMC);
5085 	pmc_pcpu = NULL;
5086 
5087 	free(pmc_pcpu_saved, M_PMC);
5088 	pmc_pcpu_saved = NULL;
5089 
5090 	if (pmc_pmcdisp) {
5091 		free(pmc_pmcdisp, M_PMC);
5092 		pmc_pmcdisp = NULL;
5093 	}
5094 
5095 	if (pmc_rowindex_to_classdep) {
5096 		free(pmc_rowindex_to_classdep, M_PMC);
5097 		pmc_rowindex_to_classdep = NULL;
5098 	}
5099 
5100 	pmclog_shutdown();
5101 
5102 	sx_xunlock(&pmc_sx); 	/* we are done */
5103 }
5104 
5105 /*
5106  * The function called at load/unload.
5107  */
5108 
5109 static int
5110 load (struct module *module __unused, int cmd, void *arg __unused)
5111 {
5112 	int error;
5113 
5114 	error = 0;
5115 
5116 	switch (cmd) {
5117 	case MOD_LOAD :
5118 		/* initialize the subsystem */
5119 		error = pmc_initialize();
5120 		if (error != 0)
5121 			break;
5122 		PMCDBG(MOD,INI,1, "syscall=%d maxcpu=%d",
5123 		    pmc_syscall_num, pmc_cpu_max());
5124 		break;
5125 
5126 
5127 	case MOD_UNLOAD :
5128 	case MOD_SHUTDOWN:
5129 		pmc_cleanup();
5130 		PMCDBG(MOD,INI,1, "%s", "unloaded");
5131 		break;
5132 
5133 	default :
5134 		error = EINVAL;	/* XXX should panic(9) */
5135 		break;
5136 	}
5137 
5138 	return error;
5139 }
5140 
5141 /* memory pool */
5142 MALLOC_DEFINE(M_PMC, "pmc", "Memory space for the PMC module");
5143