xref: /freebsd/sys/dev/hwpmc/hwpmc_mod.c (revision 361e428888e630eb708c72cf31579a25ba5d4f03)
1 /*-
2  * Copyright (c) 2003-2008 Joseph Koshy
3  * Copyright (c) 2007 The FreeBSD Foundation
4  * All rights reserved.
5  *
6  * Portions of this software were developed by A. Joseph Koshy under
7  * sponsorship from the FreeBSD Foundation and Google, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/eventhandler.h>
37 #include <sys/jail.h>
38 #include <sys/kernel.h>
39 #include <sys/kthread.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/mount.h>
45 #include <sys/mutex.h>
46 #include <sys/pmc.h>
47 #include <sys/pmckern.h>
48 #include <sys/pmclog.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/resourcevar.h>
53 #include <sys/rwlock.h>
54 #include <sys/sched.h>
55 #include <sys/signalvar.h>
56 #include <sys/smp.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysent.h>
60 #include <sys/systm.h>
61 #include <sys/vnode.h>
62 
63 #include <sys/linker.h>		/* needs to be after <sys/malloc.h> */
64 
65 #include <machine/atomic.h>
66 #include <machine/md_var.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/pmap.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_object.h>
73 
74 #include "hwpmc_soft.h"
75 
76 /*
77  * Types
78  */
79 
80 enum pmc_flags {
81 	PMC_FLAG_NONE	  = 0x00, /* do nothing */
82 	PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
83 	PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
84 };
85 
86 /*
87  * The offset in sysent where the syscall is allocated.
88  */
89 
90 static int pmc_syscall_num = NO_SYSCALL;
91 struct pmc_cpu		**pmc_pcpu;	 /* per-cpu state */
92 pmc_value_t		*pmc_pcpu_saved; /* saved PMC values: CSW handling */
93 
94 #define	PMC_PCPU_SAVED(C,R)	pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
95 
96 struct mtx_pool		*pmc_mtxpool;
97 static int		*pmc_pmcdisp;	 /* PMC row dispositions */
98 
99 #define	PMC_ROW_DISP_IS_FREE(R)		(pmc_pmcdisp[(R)] == 0)
100 #define	PMC_ROW_DISP_IS_THREAD(R)	(pmc_pmcdisp[(R)] > 0)
101 #define	PMC_ROW_DISP_IS_STANDALONE(R)	(pmc_pmcdisp[(R)] < 0)
102 
103 #define	PMC_MARK_ROW_FREE(R) do {					  \
104 	pmc_pmcdisp[(R)] = 0;						  \
105 } while (0)
106 
107 #define	PMC_MARK_ROW_STANDALONE(R) do {					  \
108 	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
109 		    __LINE__));						  \
110 	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
111 	KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()),		  \
112 		("[pmc,%d] row disposition error", __LINE__));		  \
113 } while (0)
114 
115 #define	PMC_UNMARK_ROW_STANDALONE(R) do { 				  \
116 	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
117 	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
118 		    __LINE__));						  \
119 } while (0)
120 
121 #define	PMC_MARK_ROW_THREAD(R) do {					  \
122 	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
123 		    __LINE__));						  \
124 	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
125 } while (0)
126 
127 #define	PMC_UNMARK_ROW_THREAD(R) do {					  \
128 	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
129 	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
130 		    __LINE__));						  \
131 } while (0)
132 
133 
134 /* various event handlers */
135 static eventhandler_tag	pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
136     pmc_kld_unload_tag;
137 
138 /* Module statistics */
139 struct pmc_op_getdriverstats pmc_stats;
140 
141 /* Machine/processor dependent operations */
142 static struct pmc_mdep  *md;
143 
144 /*
145  * Hash tables mapping owner processes and target threads to PMCs.
146  */
147 
148 struct mtx pmc_processhash_mtx;		/* spin mutex */
149 static u_long pmc_processhashmask;
150 static LIST_HEAD(pmc_processhash, pmc_process)	*pmc_processhash;
151 
152 /*
153  * Hash table of PMC owner descriptors.  This table is protected by
154  * the shared PMC "sx" lock.
155  */
156 
157 static u_long pmc_ownerhashmask;
158 static LIST_HEAD(pmc_ownerhash, pmc_owner)	*pmc_ownerhash;
159 
160 /*
161  * List of PMC owners with system-wide sampling PMCs.
162  */
163 
164 static LIST_HEAD(, pmc_owner)			pmc_ss_owners;
165 
166 
167 /*
168  * A map of row indices to classdep structures.
169  */
170 static struct pmc_classdep **pmc_rowindex_to_classdep;
171 
172 /*
173  * Prototypes
174  */
175 
176 #ifdef	HWPMC_DEBUG
177 static int	pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
178 static int	pmc_debugflags_parse(char *newstr, char *fence);
179 #endif
180 
181 static int	load(struct module *module, int cmd, void *arg);
182 static int	pmc_attach_process(struct proc *p, struct pmc *pm);
183 static struct pmc *pmc_allocate_pmc_descriptor(void);
184 static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
185 static int	pmc_attach_one_process(struct proc *p, struct pmc *pm);
186 static int	pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
187     int cpu);
188 static int	pmc_can_attach(struct pmc *pm, struct proc *p);
189 static void	pmc_capture_user_callchain(int cpu, int soft, struct trapframe *tf);
190 static void	pmc_cleanup(void);
191 static int	pmc_detach_process(struct proc *p, struct pmc *pm);
192 static int	pmc_detach_one_process(struct proc *p, struct pmc *pm,
193     int flags);
194 static void	pmc_destroy_owner_descriptor(struct pmc_owner *po);
195 static void	pmc_destroy_pmc_descriptor(struct pmc *pm);
196 static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
197 static int	pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
198 static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
199     pmc_id_t pmc);
200 static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
201     uint32_t mode);
202 static void	pmc_force_context_switch(void);
203 static void	pmc_link_target_process(struct pmc *pm,
204     struct pmc_process *pp);
205 static void	pmc_log_all_process_mappings(struct pmc_owner *po);
206 static void	pmc_log_kernel_mappings(struct pmc *pm);
207 static void	pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
208 static void	pmc_maybe_remove_owner(struct pmc_owner *po);
209 static void	pmc_process_csw_in(struct thread *td);
210 static void	pmc_process_csw_out(struct thread *td);
211 static void	pmc_process_exit(void *arg, struct proc *p);
212 static void	pmc_process_fork(void *arg, struct proc *p1,
213     struct proc *p2, int n);
214 static void	pmc_process_samples(int cpu, int soft);
215 static void	pmc_release_pmc_descriptor(struct pmc *pmc);
216 static void	pmc_remove_owner(struct pmc_owner *po);
217 static void	pmc_remove_process_descriptor(struct pmc_process *pp);
218 static void	pmc_restore_cpu_binding(struct pmc_binding *pb);
219 static void	pmc_save_cpu_binding(struct pmc_binding *pb);
220 static void	pmc_select_cpu(int cpu);
221 static int	pmc_start(struct pmc *pm);
222 static int	pmc_stop(struct pmc *pm);
223 static int	pmc_syscall_handler(struct thread *td, void *syscall_args);
224 static void	pmc_unlink_target_process(struct pmc *pmc,
225     struct pmc_process *pp);
226 static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
227 static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
228 static struct pmc_mdep *pmc_generic_cpu_initialize(void);
229 static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
230 
231 /*
232  * Kernel tunables and sysctl(8) interface.
233  */
234 
235 SYSCTL_DECL(_kern_hwpmc);
236 
237 static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
238 SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_RDTUN,
239     &pmc_callchaindepth, 0, "depth of call chain records");
240 
241 #ifdef	HWPMC_DEBUG
242 struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
243 char	pmc_debugstr[PMC_DEBUG_STRSIZE];
244 TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
245     sizeof(pmc_debugstr));
246 SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
247     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
248     0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
249 #endif
250 
251 /*
252  * kern.hwpmc.hashrows -- determines the number of rows in the
253  * of the hash table used to look up threads
254  */
255 
256 static int pmc_hashsize = PMC_HASH_SIZE;
257 SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_RDTUN,
258     &pmc_hashsize, 0, "rows in hash tables");
259 
260 /*
261  * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
262  */
263 
264 static int pmc_nsamples = PMC_NSAMPLES;
265 SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_RDTUN,
266     &pmc_nsamples, 0, "number of PC samples per CPU");
267 
268 
269 /*
270  * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
271  */
272 
273 static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
274 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_RDTUN,
275     &pmc_mtxpool_size, 0, "size of spin mutex pool");
276 
277 
278 /*
279  * security.bsd.unprivileged_syspmcs -- allow non-root processes to
280  * allocate system-wide PMCs.
281  *
282  * Allowing unprivileged processes to allocate system PMCs is convenient
283  * if system-wide measurements need to be taken concurrently with other
284  * per-process measurements.  This feature is turned off by default.
285  */
286 
287 static int pmc_unprivileged_syspmcs = 0;
288 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RWTUN,
289     &pmc_unprivileged_syspmcs, 0,
290     "allow unprivileged process to allocate system PMCs");
291 
292 /*
293  * Hash function.  Discard the lower 2 bits of the pointer since
294  * these are always zero for our uses.  The hash multiplier is
295  * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
296  */
297 
298 #if	LONG_BIT == 64
299 #define	_PMC_HM		11400714819323198486u
300 #elif	LONG_BIT == 32
301 #define	_PMC_HM		2654435769u
302 #else
303 #error 	Must know the size of 'long' to compile
304 #endif
305 
306 #define	PMC_HASH_PTR(P,M)	((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
307 
308 /*
309  * Syscall structures
310  */
311 
312 /* The `sysent' for the new syscall */
313 static struct sysent pmc_sysent = {
314 	2,			/* sy_narg */
315 	pmc_syscall_handler	/* sy_call */
316 };
317 
318 static struct syscall_module_data pmc_syscall_mod = {
319 	load,
320 	NULL,
321 	&pmc_syscall_num,
322 	&pmc_sysent,
323 #if (__FreeBSD_version >= 1100000)
324 	{ 0, NULL },
325 	SY_THR_STATIC_KLD,
326 #else
327 	{ 0, NULL }
328 #endif
329 };
330 
331 static moduledata_t pmc_mod = {
332 	PMC_MODULE_NAME,
333 	syscall_module_handler,
334 	&pmc_syscall_mod
335 };
336 
337 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
338 MODULE_VERSION(pmc, PMC_VERSION);
339 
340 #ifdef	HWPMC_DEBUG
341 enum pmc_dbgparse_state {
342 	PMCDS_WS,		/* in whitespace */
343 	PMCDS_MAJOR,		/* seen a major keyword */
344 	PMCDS_MINOR
345 };
346 
347 static int
348 pmc_debugflags_parse(char *newstr, char *fence)
349 {
350 	char c, *p, *q;
351 	struct pmc_debugflags *tmpflags;
352 	int error, found, *newbits, tmp;
353 	size_t kwlen;
354 
355 	tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO);
356 
357 	p = newstr;
358 	error = 0;
359 
360 	for (; p < fence && (c = *p); p++) {
361 
362 		/* skip white space */
363 		if (c == ' ' || c == '\t')
364 			continue;
365 
366 		/* look for a keyword followed by "=" */
367 		for (q = p; p < fence && (c = *p) && c != '='; p++)
368 			;
369 		if (c != '=') {
370 			error = EINVAL;
371 			goto done;
372 		}
373 
374 		kwlen = p - q;
375 		newbits = NULL;
376 
377 		/* lookup flag group name */
378 #define	DBG_SET_FLAG_MAJ(S,F)						\
379 		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
380 			newbits = &tmpflags->pdb_ ## F;
381 
382 		DBG_SET_FLAG_MAJ("cpu",		CPU);
383 		DBG_SET_FLAG_MAJ("csw",		CSW);
384 		DBG_SET_FLAG_MAJ("logging",	LOG);
385 		DBG_SET_FLAG_MAJ("module",	MOD);
386 		DBG_SET_FLAG_MAJ("md", 		MDP);
387 		DBG_SET_FLAG_MAJ("owner",	OWN);
388 		DBG_SET_FLAG_MAJ("pmc",		PMC);
389 		DBG_SET_FLAG_MAJ("process",	PRC);
390 		DBG_SET_FLAG_MAJ("sampling", 	SAM);
391 
392 		if (newbits == NULL) {
393 			error = EINVAL;
394 			goto done;
395 		}
396 
397 		p++;		/* skip the '=' */
398 
399 		/* Now parse the individual flags */
400 		tmp = 0;
401 	newflag:
402 		for (q = p; p < fence && (c = *p); p++)
403 			if (c == ' ' || c == '\t' || c == ',')
404 				break;
405 
406 		/* p == fence or c == ws or c == "," or c == 0 */
407 
408 		if ((kwlen = p - q) == 0) {
409 			*newbits = tmp;
410 			continue;
411 		}
412 
413 		found = 0;
414 #define	DBG_SET_FLAG_MIN(S,F)						\
415 		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
416 			tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
417 
418 		/* a '*' denotes all possible flags in the group */
419 		if (kwlen == 1 && *q == '*')
420 			tmp = found = ~0;
421 		/* look for individual flag names */
422 		DBG_SET_FLAG_MIN("allocaterow", ALR);
423 		DBG_SET_FLAG_MIN("allocate",	ALL);
424 		DBG_SET_FLAG_MIN("attach",	ATT);
425 		DBG_SET_FLAG_MIN("bind",	BND);
426 		DBG_SET_FLAG_MIN("config",	CFG);
427 		DBG_SET_FLAG_MIN("exec",	EXC);
428 		DBG_SET_FLAG_MIN("exit",	EXT);
429 		DBG_SET_FLAG_MIN("find",	FND);
430 		DBG_SET_FLAG_MIN("flush",	FLS);
431 		DBG_SET_FLAG_MIN("fork",	FRK);
432 		DBG_SET_FLAG_MIN("getbuf",	GTB);
433 		DBG_SET_FLAG_MIN("hook",	PMH);
434 		DBG_SET_FLAG_MIN("init",	INI);
435 		DBG_SET_FLAG_MIN("intr",	INT);
436 		DBG_SET_FLAG_MIN("linktarget",	TLK);
437 		DBG_SET_FLAG_MIN("mayberemove", OMR);
438 		DBG_SET_FLAG_MIN("ops",		OPS);
439 		DBG_SET_FLAG_MIN("read",	REA);
440 		DBG_SET_FLAG_MIN("register",	REG);
441 		DBG_SET_FLAG_MIN("release",	REL);
442 		DBG_SET_FLAG_MIN("remove",	ORM);
443 		DBG_SET_FLAG_MIN("sample",	SAM);
444 		DBG_SET_FLAG_MIN("scheduleio",	SIO);
445 		DBG_SET_FLAG_MIN("select",	SEL);
446 		DBG_SET_FLAG_MIN("signal",	SIG);
447 		DBG_SET_FLAG_MIN("swi",		SWI);
448 		DBG_SET_FLAG_MIN("swo",		SWO);
449 		DBG_SET_FLAG_MIN("start",	STA);
450 		DBG_SET_FLAG_MIN("stop",	STO);
451 		DBG_SET_FLAG_MIN("syscall",	PMS);
452 		DBG_SET_FLAG_MIN("unlinktarget", TUL);
453 		DBG_SET_FLAG_MIN("write",	WRI);
454 		if (found == 0) {
455 			/* unrecognized flag name */
456 			error = EINVAL;
457 			goto done;
458 		}
459 
460 		if (c == 0 || c == ' ' || c == '\t') {	/* end of flag group */
461 			*newbits = tmp;
462 			continue;
463 		}
464 
465 		p++;
466 		goto newflag;
467 	}
468 
469 	/* save the new flag set */
470 	bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
471 
472  done:
473 	free(tmpflags, M_PMC);
474 	return error;
475 }
476 
477 static int
478 pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
479 {
480 	char *fence, *newstr;
481 	int error;
482 	unsigned int n;
483 
484 	(void) arg1; (void) arg2; /* unused parameters */
485 
486 	n = sizeof(pmc_debugstr);
487 	newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO);
488 	(void) strlcpy(newstr, pmc_debugstr, n);
489 
490 	error = sysctl_handle_string(oidp, newstr, n, req);
491 
492 	/* if there is a new string, parse and copy it */
493 	if (error == 0 && req->newptr != NULL) {
494 		fence = newstr + (n < req->newlen ? n : req->newlen + 1);
495 		if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
496 			(void) strlcpy(pmc_debugstr, newstr,
497 			    sizeof(pmc_debugstr));
498 	}
499 
500 	free(newstr, M_PMC);
501 
502 	return error;
503 }
504 #endif
505 
506 /*
507  * Map a row index to a classdep structure and return the adjusted row
508  * index for the PMC class index.
509  */
510 static struct pmc_classdep *
511 pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri)
512 {
513 	struct pmc_classdep *pcd;
514 
515 	(void) md;
516 
517 	KASSERT(ri >= 0 && ri < md->pmd_npmc,
518 	    ("[pmc,%d] illegal row-index %d", __LINE__, ri));
519 
520 	pcd = pmc_rowindex_to_classdep[ri];
521 
522 	KASSERT(pcd != NULL,
523 	    ("[pmc,%d] ri %d null pcd", __LINE__, ri));
524 
525 	*adjri = ri - pcd->pcd_ri;
526 
527 	KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
528 	    ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
529 
530 	return (pcd);
531 }
532 
533 /*
534  * Concurrency Control
535  *
536  * The driver manages the following data structures:
537  *
538  *   - target process descriptors, one per target process
539  *   - owner process descriptors (and attached lists), one per owner process
540  *   - lookup hash tables for owner and target processes
541  *   - PMC descriptors (and attached lists)
542  *   - per-cpu hardware state
543  *   - the 'hook' variable through which the kernel calls into
544  *     this module
545  *   - the machine hardware state (managed by the MD layer)
546  *
547  * These data structures are accessed from:
548  *
549  * - thread context-switch code
550  * - interrupt handlers (possibly on multiple cpus)
551  * - kernel threads on multiple cpus running on behalf of user
552  *   processes doing system calls
553  * - this driver's private kernel threads
554  *
555  * = Locks and Locking strategy =
556  *
557  * The driver uses four locking strategies for its operation:
558  *
559  * - The global SX lock "pmc_sx" is used to protect internal
560  *   data structures.
561  *
562  *   Calls into the module by syscall() start with this lock being
563  *   held in exclusive mode.  Depending on the requested operation,
564  *   the lock may be downgraded to 'shared' mode to allow more
565  *   concurrent readers into the module.  Calls into the module from
566  *   other parts of the kernel acquire the lock in shared mode.
567  *
568  *   This SX lock is held in exclusive mode for any operations that
569  *   modify the linkages between the driver's internal data structures.
570  *
571  *   The 'pmc_hook' function pointer is also protected by this lock.
572  *   It is only examined with the sx lock held in exclusive mode.  The
573  *   kernel module is allowed to be unloaded only with the sx lock held
574  *   in exclusive mode.  In normal syscall handling, after acquiring the
575  *   pmc_sx lock we first check that 'pmc_hook' is non-null before
576  *   proceeding.  This prevents races between the thread unloading the module
577  *   and other threads seeking to use the module.
578  *
579  * - Lookups of target process structures and owner process structures
580  *   cannot use the global "pmc_sx" SX lock because these lookups need
581  *   to happen during context switches and in other critical sections
582  *   where sleeping is not allowed.  We protect these lookup tables
583  *   with their own private spin-mutexes, "pmc_processhash_mtx" and
584  *   "pmc_ownerhash_mtx".
585  *
586  * - Interrupt handlers work in a lock free manner.  At interrupt
587  *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
588  *   when the PMC was started.  If this pointer is NULL, the interrupt
589  *   is ignored after updating driver statistics.  We ensure that this
590  *   pointer is set (using an atomic operation if necessary) before the
591  *   PMC hardware is started.  Conversely, this pointer is unset atomically
592  *   only after the PMC hardware is stopped.
593  *
594  *   We ensure that everything needed for the operation of an
595  *   interrupt handler is available without it needing to acquire any
596  *   locks.  We also ensure that a PMC's software state is destroyed only
597  *   after the PMC is taken off hardware (on all CPUs).
598  *
599  * - Context-switch handling with process-private PMCs needs more
600  *   care.
601  *
602  *   A given process may be the target of multiple PMCs.  For example,
603  *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
604  *   while the target process is running on another.  A PMC could also
605  *   be getting released because its owner is exiting.  We tackle
606  *   these situations in the following manner:
607  *
608  *   - each target process structure 'pmc_process' has an array
609  *     of 'struct pmc *' pointers, one for each hardware PMC.
610  *
611  *   - At context switch IN time, each "target" PMC in RUNNING state
612  *     gets started on hardware and a pointer to each PMC is copied into
613  *     the per-cpu phw array.  The 'runcount' for the PMC is
614  *     incremented.
615  *
616  *   - At context switch OUT time, all process-virtual PMCs are stopped
617  *     on hardware.  The saved value is added to the PMCs value field
618  *     only if the PMC is in a non-deleted state (the PMCs state could
619  *     have changed during the current time slice).
620  *
621  *     Note that since in-between a switch IN on a processor and a switch
622  *     OUT, the PMC could have been released on another CPU.  Therefore
623  *     context switch OUT always looks at the hardware state to turn
624  *     OFF PMCs and will update a PMC's saved value only if reachable
625  *     from the target process record.
626  *
627  *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
628  *     be attached to many processes at the time of the call and could
629  *     be active on multiple CPUs).
630  *
631  *     We prevent further scheduling of the PMC by marking it as in
632  *     state 'DELETED'.  If the runcount of the PMC is non-zero then
633  *     this PMC is currently running on a CPU somewhere.  The thread
634  *     doing the PMCRELEASE operation waits by repeatedly doing a
635  *     pause() till the runcount comes to zero.
636  *
637  * The contents of a PMC descriptor (struct pmc) are protected using
638  * a spin-mutex.  In order to save space, we use a mutex pool.
639  *
640  * In terms of lock types used by witness(4), we use:
641  * - Type "pmc-sx", used by the global SX lock.
642  * - Type "pmc-sleep", for sleep mutexes used by logger threads.
643  * - Type "pmc-per-proc", for protecting PMC owner descriptors.
644  * - Type "pmc-leaf", used for all other spin mutexes.
645  */
646 
647 /*
648  * save the cpu binding of the current kthread
649  */
650 
651 static void
652 pmc_save_cpu_binding(struct pmc_binding *pb)
653 {
654 	PMCDBG0(CPU,BND,2, "save-cpu");
655 	thread_lock(curthread);
656 	pb->pb_bound = sched_is_bound(curthread);
657 	pb->pb_cpu   = curthread->td_oncpu;
658 	thread_unlock(curthread);
659 	PMCDBG1(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
660 }
661 
662 /*
663  * restore the cpu binding of the current thread
664  */
665 
666 static void
667 pmc_restore_cpu_binding(struct pmc_binding *pb)
668 {
669 	PMCDBG2(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
670 	    curthread->td_oncpu, pb->pb_cpu);
671 	thread_lock(curthread);
672 	if (pb->pb_bound)
673 		sched_bind(curthread, pb->pb_cpu);
674 	else
675 		sched_unbind(curthread);
676 	thread_unlock(curthread);
677 	PMCDBG0(CPU,BND,2, "restore-cpu done");
678 }
679 
680 /*
681  * move execution over the specified cpu and bind it there.
682  */
683 
684 static void
685 pmc_select_cpu(int cpu)
686 {
687 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
688 	    ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
689 
690 	/* Never move to an inactive CPU. */
691 	KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
692 	    "CPU %d", __LINE__, cpu));
693 
694 	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d", cpu);
695 	thread_lock(curthread);
696 	sched_bind(curthread, cpu);
697 	thread_unlock(curthread);
698 
699 	KASSERT(curthread->td_oncpu == cpu,
700 	    ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
701 		cpu, curthread->td_oncpu));
702 
703 	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
704 }
705 
706 /*
707  * Force a context switch.
708  *
709  * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
710  * guaranteed to force a context switch.
711  */
712 
713 static void
714 pmc_force_context_switch(void)
715 {
716 
717 	pause("pmcctx", 1);
718 }
719 
720 /*
721  * Get the file name for an executable.  This is a simple wrapper
722  * around vn_fullpath(9).
723  */
724 
725 static void
726 pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
727 {
728 
729 	*fullpath = "unknown";
730 	*freepath = NULL;
731 	vn_fullpath(curthread, v, fullpath, freepath);
732 }
733 
734 /*
735  * remove an process owning PMCs
736  */
737 
738 void
739 pmc_remove_owner(struct pmc_owner *po)
740 {
741 	struct pmc *pm, *tmp;
742 
743 	sx_assert(&pmc_sx, SX_XLOCKED);
744 
745 	PMCDBG1(OWN,ORM,1, "remove-owner po=%p", po);
746 
747 	/* Remove descriptor from the owner hash table */
748 	LIST_REMOVE(po, po_next);
749 
750 	/* release all owned PMC descriptors */
751 	LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
752 		PMCDBG1(OWN,ORM,2, "pmc=%p", pm);
753 		KASSERT(pm->pm_owner == po,
754 		    ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
755 
756 		pmc_release_pmc_descriptor(pm);	/* will unlink from the list */
757 		pmc_destroy_pmc_descriptor(pm);
758 	}
759 
760 	KASSERT(po->po_sscount == 0,
761 	    ("[pmc,%d] SS count not zero", __LINE__));
762 	KASSERT(LIST_EMPTY(&po->po_pmcs),
763 	    ("[pmc,%d] PMC list not empty", __LINE__));
764 
765 	/* de-configure the log file if present */
766 	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
767 		pmclog_deconfigure_log(po);
768 }
769 
770 /*
771  * remove an owner process record if all conditions are met.
772  */
773 
774 static void
775 pmc_maybe_remove_owner(struct pmc_owner *po)
776 {
777 
778 	PMCDBG1(OWN,OMR,1, "maybe-remove-owner po=%p", po);
779 
780 	/*
781 	 * Remove owner record if
782 	 * - this process does not own any PMCs
783 	 * - this process has not allocated a system-wide sampling buffer
784 	 */
785 
786 	if (LIST_EMPTY(&po->po_pmcs) &&
787 	    ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
788 		pmc_remove_owner(po);
789 		pmc_destroy_owner_descriptor(po);
790 	}
791 }
792 
793 /*
794  * Add an association between a target process and a PMC.
795  */
796 
797 static void
798 pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
799 {
800 	int ri;
801 	struct pmc_target *pt;
802 
803 	sx_assert(&pmc_sx, SX_XLOCKED);
804 
805 	KASSERT(pm != NULL && pp != NULL,
806 	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
807 	KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
808 	    ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
809 		__LINE__, pm, pp->pp_proc->p_pid));
810 	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
811 	    ("[pmc,%d] Illegal reference count %d for process record %p",
812 		__LINE__, pp->pp_refcnt, (void *) pp));
813 
814 	ri = PMC_TO_ROWINDEX(pm);
815 
816 	PMCDBG3(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
817 	    pm, ri, pp);
818 
819 #ifdef	HWPMC_DEBUG
820 	LIST_FOREACH(pt, &pm->pm_targets, pt_next)
821 	    if (pt->pt_process == pp)
822 		    KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
823 				__LINE__, pp, pm));
824 #endif
825 
826 	pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO);
827 	pt->pt_process = pp;
828 
829 	LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
830 
831 	atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
832 	    (uintptr_t)pm);
833 
834 	if (pm->pm_owner->po_owner == pp->pp_proc)
835 		pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
836 
837 	/*
838 	 * Initialize the per-process values at this row index.
839 	 */
840 	pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
841 	    pm->pm_sc.pm_reloadcount : 0;
842 
843 	pp->pp_refcnt++;
844 
845 }
846 
847 /*
848  * Removes the association between a target process and a PMC.
849  */
850 
851 static void
852 pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
853 {
854 	int ri;
855 	struct proc *p;
856 	struct pmc_target *ptgt;
857 
858 	sx_assert(&pmc_sx, SX_XLOCKED);
859 
860 	KASSERT(pm != NULL && pp != NULL,
861 	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
862 
863 	KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
864 	    ("[pmc,%d] Illegal ref count %d on process record %p",
865 		__LINE__, pp->pp_refcnt, (void *) pp));
866 
867 	ri = PMC_TO_ROWINDEX(pm);
868 
869 	PMCDBG3(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
870 	    pm, ri, pp);
871 
872 	KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
873 	    ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
874 		ri, pm, pp->pp_pmcs[ri].pp_pmc));
875 
876 	pp->pp_pmcs[ri].pp_pmc = NULL;
877 	pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
878 
879 	/* Remove owner-specific flags */
880 	if (pm->pm_owner->po_owner == pp->pp_proc) {
881 		pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
882 		pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
883 	}
884 
885 	pp->pp_refcnt--;
886 
887 	/* Remove the target process from the PMC structure */
888 	LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
889 		if (ptgt->pt_process == pp)
890 			break;
891 
892 	KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
893 		    "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
894 
895 	LIST_REMOVE(ptgt, pt_next);
896 	free(ptgt, M_PMC);
897 
898 	/* if the PMC now lacks targets, send the owner a SIGIO */
899 	if (LIST_EMPTY(&pm->pm_targets)) {
900 		p = pm->pm_owner->po_owner;
901 		PROC_LOCK(p);
902 		kern_psignal(p, SIGIO);
903 		PROC_UNLOCK(p);
904 
905 		PMCDBG2(PRC,SIG,2, "signalling proc=%p signal=%d", p,
906 		    SIGIO);
907 	}
908 }
909 
910 /*
911  * Check if PMC 'pm' may be attached to target process 't'.
912  */
913 
914 static int
915 pmc_can_attach(struct pmc *pm, struct proc *t)
916 {
917 	struct proc *o;		/* pmc owner */
918 	struct ucred *oc, *tc;	/* owner, target credentials */
919 	int decline_attach, i;
920 
921 	/*
922 	 * A PMC's owner can always attach that PMC to itself.
923 	 */
924 
925 	if ((o = pm->pm_owner->po_owner) == t)
926 		return 0;
927 
928 	PROC_LOCK(o);
929 	oc = o->p_ucred;
930 	crhold(oc);
931 	PROC_UNLOCK(o);
932 
933 	PROC_LOCK(t);
934 	tc = t->p_ucred;
935 	crhold(tc);
936 	PROC_UNLOCK(t);
937 
938 	/*
939 	 * The effective uid of the PMC owner should match at least one
940 	 * of the {effective,real,saved} uids of the target process.
941 	 */
942 
943 	decline_attach = oc->cr_uid != tc->cr_uid &&
944 	    oc->cr_uid != tc->cr_svuid &&
945 	    oc->cr_uid != tc->cr_ruid;
946 
947 	/*
948 	 * Every one of the target's group ids, must be in the owner's
949 	 * group list.
950 	 */
951 	for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
952 		decline_attach = !groupmember(tc->cr_groups[i], oc);
953 
954 	/* check the read and saved gids too */
955 	if (decline_attach == 0)
956 		decline_attach = !groupmember(tc->cr_rgid, oc) ||
957 		    !groupmember(tc->cr_svgid, oc);
958 
959 	crfree(tc);
960 	crfree(oc);
961 
962 	return !decline_attach;
963 }
964 
965 /*
966  * Attach a process to a PMC.
967  */
968 
969 static int
970 pmc_attach_one_process(struct proc *p, struct pmc *pm)
971 {
972 	int ri;
973 	char *fullpath, *freepath;
974 	struct pmc_process	*pp;
975 
976 	sx_assert(&pmc_sx, SX_XLOCKED);
977 
978 	PMCDBG5(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
979 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
980 
981 	/*
982 	 * Locate the process descriptor corresponding to process 'p',
983 	 * allocating space as needed.
984 	 *
985 	 * Verify that rowindex 'pm_rowindex' is free in the process
986 	 * descriptor.
987 	 *
988 	 * If not, allocate space for a descriptor and link the
989 	 * process descriptor and PMC.
990 	 */
991 	ri = PMC_TO_ROWINDEX(pm);
992 
993 	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL)
994 		return ENOMEM;
995 
996 	if (pp->pp_pmcs[ri].pp_pmc == pm) /* already present at slot [ri] */
997 		return EEXIST;
998 
999 	if (pp->pp_pmcs[ri].pp_pmc != NULL)
1000 		return EBUSY;
1001 
1002 	pmc_link_target_process(pm, pp);
1003 
1004 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
1005 	    (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
1006 		pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
1007 
1008 	pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
1009 
1010 	/* issue an attach event to a configured log file */
1011 	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1012 		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1013 		if (p->p_flag & P_KTHREAD) {
1014 			fullpath = kernelname;
1015 			freepath = NULL;
1016 		} else
1017 			pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1018 		if (freepath)
1019 			free(freepath, M_TEMP);
1020 		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1021 			pmc_log_process_mappings(pm->pm_owner, p);
1022 	}
1023 	/* mark process as using HWPMCs */
1024 	PROC_LOCK(p);
1025 	p->p_flag |= P_HWPMC;
1026 	PROC_UNLOCK(p);
1027 
1028 	return 0;
1029 }
1030 
1031 /*
1032  * Attach a process and optionally its children
1033  */
1034 
1035 static int
1036 pmc_attach_process(struct proc *p, struct pmc *pm)
1037 {
1038 	int error;
1039 	struct proc *top;
1040 
1041 	sx_assert(&pmc_sx, SX_XLOCKED);
1042 
1043 	PMCDBG5(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1044 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1045 
1046 
1047 	/*
1048 	 * If this PMC successfully allowed a GETMSR operation
1049 	 * in the past, disallow further ATTACHes.
1050 	 */
1051 
1052 	if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1053 		return EPERM;
1054 
1055 	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1056 		return pmc_attach_one_process(p, pm);
1057 
1058 	/*
1059 	 * Traverse all child processes, attaching them to
1060 	 * this PMC.
1061 	 */
1062 
1063 	sx_slock(&proctree_lock);
1064 
1065 	top = p;
1066 
1067 	for (;;) {
1068 		if ((error = pmc_attach_one_process(p, pm)) != 0)
1069 			break;
1070 		if (!LIST_EMPTY(&p->p_children))
1071 			p = LIST_FIRST(&p->p_children);
1072 		else for (;;) {
1073 			if (p == top)
1074 				goto done;
1075 			if (LIST_NEXT(p, p_sibling)) {
1076 				p = LIST_NEXT(p, p_sibling);
1077 				break;
1078 			}
1079 			p = p->p_pptr;
1080 		}
1081 	}
1082 
1083 	if (error)
1084 		(void) pmc_detach_process(top, pm);
1085 
1086  done:
1087 	sx_sunlock(&proctree_lock);
1088 	return error;
1089 }
1090 
1091 /*
1092  * Detach a process from a PMC.  If there are no other PMCs tracking
1093  * this process, remove the process structure from its hash table.  If
1094  * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1095  */
1096 
1097 static int
1098 pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1099 {
1100 	int ri;
1101 	struct pmc_process *pp;
1102 
1103 	sx_assert(&pmc_sx, SX_XLOCKED);
1104 
1105 	KASSERT(pm != NULL,
1106 	    ("[pmc,%d] null pm pointer", __LINE__));
1107 
1108 	ri = PMC_TO_ROWINDEX(pm);
1109 
1110 	PMCDBG6(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1111 	    pm, ri, p, p->p_pid, p->p_comm, flags);
1112 
1113 	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1114 		return ESRCH;
1115 
1116 	if (pp->pp_pmcs[ri].pp_pmc != pm)
1117 		return EINVAL;
1118 
1119 	pmc_unlink_target_process(pm, pp);
1120 
1121 	/* Issue a detach entry if a log file is configured */
1122 	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1123 		pmclog_process_pmcdetach(pm, p->p_pid);
1124 
1125 	/*
1126 	 * If there are no PMCs targetting this process, we remove its
1127 	 * descriptor from the target hash table and unset the P_HWPMC
1128 	 * flag in the struct proc.
1129 	 */
1130 	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1131 	    ("[pmc,%d] Illegal refcnt %d for process struct %p",
1132 		__LINE__, pp->pp_refcnt, pp));
1133 
1134 	if (pp->pp_refcnt != 0)	/* still a target of some PMC */
1135 		return 0;
1136 
1137 	pmc_remove_process_descriptor(pp);
1138 
1139 	if (flags & PMC_FLAG_REMOVE)
1140 		free(pp, M_PMC);
1141 
1142 	PROC_LOCK(p);
1143 	p->p_flag &= ~P_HWPMC;
1144 	PROC_UNLOCK(p);
1145 
1146 	return 0;
1147 }
1148 
1149 /*
1150  * Detach a process and optionally its descendants from a PMC.
1151  */
1152 
1153 static int
1154 pmc_detach_process(struct proc *p, struct pmc *pm)
1155 {
1156 	struct proc *top;
1157 
1158 	sx_assert(&pmc_sx, SX_XLOCKED);
1159 
1160 	PMCDBG5(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1161 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1162 
1163 	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1164 		return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1165 
1166 	/*
1167 	 * Traverse all children, detaching them from this PMC.  We
1168 	 * ignore errors since we could be detaching a PMC from a
1169 	 * partially attached proc tree.
1170 	 */
1171 
1172 	sx_slock(&proctree_lock);
1173 
1174 	top = p;
1175 
1176 	for (;;) {
1177 		(void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1178 
1179 		if (!LIST_EMPTY(&p->p_children))
1180 			p = LIST_FIRST(&p->p_children);
1181 		else for (;;) {
1182 			if (p == top)
1183 				goto done;
1184 			if (LIST_NEXT(p, p_sibling)) {
1185 				p = LIST_NEXT(p, p_sibling);
1186 				break;
1187 			}
1188 			p = p->p_pptr;
1189 		}
1190 	}
1191 
1192  done:
1193 	sx_sunlock(&proctree_lock);
1194 
1195 	if (LIST_EMPTY(&pm->pm_targets))
1196 		pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1197 
1198 	return 0;
1199 }
1200 
1201 
1202 /*
1203  * Thread context switch IN
1204  */
1205 
1206 static void
1207 pmc_process_csw_in(struct thread *td)
1208 {
1209 	int cpu;
1210 	unsigned int adjri, ri;
1211 	struct pmc *pm;
1212 	struct proc *p;
1213 	struct pmc_cpu *pc;
1214 	struct pmc_hw *phw;
1215 	pmc_value_t newvalue;
1216 	struct pmc_process *pp;
1217 	struct pmc_classdep *pcd;
1218 
1219 	p = td->td_proc;
1220 
1221 	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1222 		return;
1223 
1224 	KASSERT(pp->pp_proc == td->td_proc,
1225 	    ("[pmc,%d] not my thread state", __LINE__));
1226 
1227 	critical_enter(); /* no preemption from this point */
1228 
1229 	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1230 
1231 	PMCDBG5(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1232 	    p->p_pid, p->p_comm, pp);
1233 
1234 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1235 	    ("[pmc,%d] wierd CPU id %d", __LINE__, cpu));
1236 
1237 	pc = pmc_pcpu[cpu];
1238 
1239 	for (ri = 0; ri < md->pmd_npmc; ri++) {
1240 
1241 		if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1242 			continue;
1243 
1244 		KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1245 		    ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1246 			__LINE__, PMC_TO_MODE(pm)));
1247 
1248 		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1249 		    ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1250 			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1251 
1252 		/*
1253 		 * Only PMCs that are marked as 'RUNNING' need
1254 		 * be placed on hardware.
1255 		 */
1256 
1257 		if (pm->pm_state != PMC_STATE_RUNNING)
1258 			continue;
1259 
1260 		/* increment PMC runcount */
1261 		atomic_add_rel_int(&pm->pm_runcount, 1);
1262 
1263 		/* configure the HWPMC we are going to use. */
1264 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1265 		pcd->pcd_config_pmc(cpu, adjri, pm);
1266 
1267 		phw = pc->pc_hwpmcs[ri];
1268 
1269 		KASSERT(phw != NULL,
1270 		    ("[pmc,%d] null hw pointer", __LINE__));
1271 
1272 		KASSERT(phw->phw_pmc == pm,
1273 		    ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1274 			phw->phw_pmc, pm));
1275 
1276 		/*
1277 		 * Write out saved value and start the PMC.
1278 		 *
1279 		 * Sampling PMCs use a per-process value, while
1280 		 * counting mode PMCs use a per-pmc value that is
1281 		 * inherited across descendants.
1282 		 */
1283 		if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1284 			mtx_pool_lock_spin(pmc_mtxpool, pm);
1285 
1286 			/*
1287 			 * Use the saved value calculated after the most recent
1288 			 * thread switch out to start this counter.  Reset
1289 			 * the saved count in case another thread from this
1290 			 * process switches in before any threads switch out.
1291 			 */
1292 			newvalue = PMC_PCPU_SAVED(cpu,ri) =
1293 			    pp->pp_pmcs[ri].pp_pmcval;
1294 			pp->pp_pmcs[ri].pp_pmcval = pm->pm_sc.pm_reloadcount;
1295 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1296 		} else {
1297 			KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1298 			    ("[pmc,%d] illegal mode=%d", __LINE__,
1299 			    PMC_TO_MODE(pm)));
1300 			mtx_pool_lock_spin(pmc_mtxpool, pm);
1301 			newvalue = PMC_PCPU_SAVED(cpu, ri) =
1302 			    pm->pm_gv.pm_savedvalue;
1303 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1304 		}
1305 
1306 		PMCDBG3(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1307 
1308 		pcd->pcd_write_pmc(cpu, adjri, newvalue);
1309 
1310 		/* If a sampling mode PMC, reset stalled state. */
1311 		if (PMC_TO_MODE(pm) == PMC_MODE_TS)
1312 			CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
1313 
1314 		/* Indicate that we desire this to run. */
1315 		CPU_SET_ATOMIC(cpu, &pm->pm_cpustate);
1316 
1317 		/* Start the PMC. */
1318 		pcd->pcd_start_pmc(cpu, adjri);
1319 	}
1320 
1321 	/*
1322 	 * perform any other architecture/cpu dependent thread
1323 	 * switch-in actions.
1324 	 */
1325 
1326 	(void) (*md->pmd_switch_in)(pc, pp);
1327 
1328 	critical_exit();
1329 
1330 }
1331 
1332 /*
1333  * Thread context switch OUT.
1334  */
1335 
1336 static void
1337 pmc_process_csw_out(struct thread *td)
1338 {
1339 	int cpu;
1340 	int64_t tmp;
1341 	struct pmc *pm;
1342 	struct proc *p;
1343 	enum pmc_mode mode;
1344 	struct pmc_cpu *pc;
1345 	pmc_value_t newvalue;
1346 	unsigned int adjri, ri;
1347 	struct pmc_process *pp;
1348 	struct pmc_classdep *pcd;
1349 
1350 
1351 	/*
1352 	 * Locate our process descriptor; this may be NULL if
1353 	 * this process is exiting and we have already removed
1354 	 * the process from the target process table.
1355 	 *
1356 	 * Note that due to kernel preemption, multiple
1357 	 * context switches may happen while the process is
1358 	 * exiting.
1359 	 *
1360 	 * Note also that if the target process cannot be
1361 	 * found we still need to deconfigure any PMCs that
1362 	 * are currently running on hardware.
1363 	 */
1364 
1365 	p = td->td_proc;
1366 	pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1367 
1368 	/*
1369 	 * save PMCs
1370 	 */
1371 
1372 	critical_enter();
1373 
1374 	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1375 
1376 	PMCDBG5(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1377 	    p->p_pid, p->p_comm, pp);
1378 
1379 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1380 	    ("[pmc,%d wierd CPU id %d", __LINE__, cpu));
1381 
1382 	pc = pmc_pcpu[cpu];
1383 
1384 	/*
1385 	 * When a PMC gets unlinked from a target PMC, it will
1386 	 * be removed from the target's pp_pmc[] array.
1387 	 *
1388 	 * However, on a MP system, the target could have been
1389 	 * executing on another CPU at the time of the unlink.
1390 	 * So, at context switch OUT time, we need to look at
1391 	 * the hardware to determine if a PMC is scheduled on
1392 	 * it.
1393 	 */
1394 
1395 	for (ri = 0; ri < md->pmd_npmc; ri++) {
1396 
1397 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1398 		pm  = NULL;
1399 		(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
1400 
1401 		if (pm == NULL)	/* nothing at this row index */
1402 			continue;
1403 
1404 		mode = PMC_TO_MODE(pm);
1405 		if (!PMC_IS_VIRTUAL_MODE(mode))
1406 			continue; /* not a process virtual PMC */
1407 
1408 		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1409 		    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1410 			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1411 
1412 		/*
1413 		 * Change desired state, and then stop if not stalled.
1414 		 * This two-step dance should avoid race conditions where
1415 		 * an interrupt re-enables the PMC after this code has
1416 		 * already checked the pm_stalled flag.
1417 		 */
1418 		CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
1419 		if (!CPU_ISSET(cpu, &pm->pm_stalled))
1420 			pcd->pcd_stop_pmc(cpu, adjri);
1421 
1422 		/* reduce this PMC's runcount */
1423 		atomic_subtract_rel_int(&pm->pm_runcount, 1);
1424 
1425 		/*
1426 		 * If this PMC is associated with this process,
1427 		 * save the reading.
1428 		 */
1429 
1430 		if (pp != NULL && pp->pp_pmcs[ri].pp_pmc != NULL) {
1431 
1432 			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1433 			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1434 				pm, ri, pp->pp_pmcs[ri].pp_pmc));
1435 
1436 			KASSERT(pp->pp_refcnt > 0,
1437 			    ("[pmc,%d] pp refcnt = %d", __LINE__,
1438 				pp->pp_refcnt));
1439 
1440 			pcd->pcd_read_pmc(cpu, adjri, &newvalue);
1441 
1442 			if (mode == PMC_MODE_TS) {
1443 				PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (samp)",
1444 				    cpu, ri, PMC_PCPU_SAVED(cpu,ri) - newvalue);
1445 
1446 				/*
1447 				 * For sampling process-virtual PMCs,
1448 				 * newvalue is the number of events to be seen
1449 				 * until the next sampling interrupt.
1450 				 * We can just add the events left from this
1451 				 * invocation to the counter, then adjust
1452 				 * in case we overflow our range.
1453 				 *
1454 				 * (Recall that we reload the counter every
1455 				 * time we use it.)
1456 				 */
1457 				mtx_pool_lock_spin(pmc_mtxpool, pm);
1458 
1459 				pp->pp_pmcs[ri].pp_pmcval += newvalue;
1460 				if (pp->pp_pmcs[ri].pp_pmcval >
1461 				    pm->pm_sc.pm_reloadcount)
1462 					pp->pp_pmcs[ri].pp_pmcval -=
1463 					    pm->pm_sc.pm_reloadcount;
1464 				KASSERT(pp->pp_pmcs[ri].pp_pmcval > 0 &&
1465 				    pp->pp_pmcs[ri].pp_pmcval <=
1466 				    pm->pm_sc.pm_reloadcount,
1467 				    ("[pmc,%d] pp_pmcval outside of expected "
1468 				    "range cpu=%d ri=%d pp_pmcval=%jx "
1469 				    "pm_reloadcount=%jx", __LINE__, cpu, ri,
1470 				    pp->pp_pmcs[ri].pp_pmcval,
1471 				    pm->pm_sc.pm_reloadcount));
1472 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1473 
1474 			} else {
1475 				tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1476 
1477 				PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (count)",
1478 				    cpu, ri, tmp);
1479 
1480 				/*
1481 				 * For counting process-virtual PMCs,
1482 				 * we expect the count to be
1483 				 * increasing monotonically, modulo a 64
1484 				 * bit wraparound.
1485 				 */
1486 				KASSERT((int64_t) tmp >= 0,
1487 				    ("[pmc,%d] negative increment cpu=%d "
1488 				     "ri=%d newvalue=%jx saved=%jx "
1489 				     "incr=%jx", __LINE__, cpu, ri,
1490 				     newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
1491 
1492 				mtx_pool_lock_spin(pmc_mtxpool, pm);
1493 				pm->pm_gv.pm_savedvalue += tmp;
1494 				pp->pp_pmcs[ri].pp_pmcval += tmp;
1495 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1496 
1497 				if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1498 					pmclog_process_proccsw(pm, pp, tmp);
1499 			}
1500 		}
1501 
1502 		/* mark hardware as free */
1503 		pcd->pcd_config_pmc(cpu, adjri, NULL);
1504 	}
1505 
1506 	/*
1507 	 * perform any other architecture/cpu dependent thread
1508 	 * switch out functions.
1509 	 */
1510 
1511 	(void) (*md->pmd_switch_out)(pc, pp);
1512 
1513 	critical_exit();
1514 }
1515 
1516 /*
1517  * A mapping change for a process.
1518  */
1519 
1520 static void
1521 pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1522 {
1523 	int ri;
1524 	pid_t pid;
1525 	char *fullpath, *freepath;
1526 	const struct pmc *pm;
1527 	struct pmc_owner *po;
1528 	const struct pmc_process *pp;
1529 
1530 	freepath = fullpath = NULL;
1531 	pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath);
1532 
1533 	pid = td->td_proc->p_pid;
1534 
1535 	/* Inform owners of all system-wide sampling PMCs. */
1536 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1537 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1538 		pmclog_process_map_in(po, pid, pkm->pm_address, fullpath);
1539 
1540 	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1541 		goto done;
1542 
1543 	/*
1544 	 * Inform sampling PMC owners tracking this process.
1545 	 */
1546 	for (ri = 0; ri < md->pmd_npmc; ri++)
1547 		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1548 		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1549 			pmclog_process_map_in(pm->pm_owner,
1550 			    pid, pkm->pm_address, fullpath);
1551 
1552   done:
1553 	if (freepath)
1554 		free(freepath, M_TEMP);
1555 }
1556 
1557 
1558 /*
1559  * Log an munmap request.
1560  */
1561 
1562 static void
1563 pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1564 {
1565 	int ri;
1566 	pid_t pid;
1567 	struct pmc_owner *po;
1568 	const struct pmc *pm;
1569 	const struct pmc_process *pp;
1570 
1571 	pid = td->td_proc->p_pid;
1572 
1573 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1574 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1575 		pmclog_process_map_out(po, pid, pkm->pm_address,
1576 		    pkm->pm_address + pkm->pm_size);
1577 
1578 	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1579 		return;
1580 
1581 	for (ri = 0; ri < md->pmd_npmc; ri++)
1582 		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1583 		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1584 			pmclog_process_map_out(pm->pm_owner, pid,
1585 			    pkm->pm_address, pkm->pm_address + pkm->pm_size);
1586 }
1587 
1588 /*
1589  * Log mapping information about the kernel.
1590  */
1591 
1592 static void
1593 pmc_log_kernel_mappings(struct pmc *pm)
1594 {
1595 	struct pmc_owner *po;
1596 	struct pmckern_map_in *km, *kmbase;
1597 
1598 	sx_assert(&pmc_sx, SX_LOCKED);
1599 	KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1600 	    ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1601 		__LINE__, (void *) pm));
1602 
1603 	po = pm->pm_owner;
1604 
1605 	if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE)
1606 		return;
1607 
1608 	/*
1609 	 * Log the current set of kernel modules.
1610 	 */
1611 	kmbase = linker_hwpmc_list_objects();
1612 	for (km = kmbase; km->pm_file != NULL; km++) {
1613 		PMCDBG2(LOG,REG,1,"%s %p", (char *) km->pm_file,
1614 		    (void *) km->pm_address);
1615 		pmclog_process_map_in(po, (pid_t) -1, km->pm_address,
1616 		    km->pm_file);
1617 	}
1618 	free(kmbase, M_LINKER);
1619 
1620 	po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1621 }
1622 
1623 /*
1624  * Log the mappings for a single process.
1625  */
1626 
1627 static void
1628 pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1629 {
1630 	vm_map_t map;
1631 	struct vnode *vp;
1632 	struct vmspace *vm;
1633 	vm_map_entry_t entry;
1634 	vm_offset_t last_end;
1635 	u_int last_timestamp;
1636 	struct vnode *last_vp;
1637 	vm_offset_t start_addr;
1638 	vm_object_t obj, lobj, tobj;
1639 	char *fullpath, *freepath;
1640 
1641 	last_vp = NULL;
1642 	last_end = (vm_offset_t) 0;
1643 	fullpath = freepath = NULL;
1644 
1645 	if ((vm = vmspace_acquire_ref(p)) == NULL)
1646 		return;
1647 
1648 	map = &vm->vm_map;
1649 	vm_map_lock_read(map);
1650 
1651 	for (entry = map->header.next; entry != &map->header; entry = entry->next) {
1652 
1653 		if (entry == NULL) {
1654 			PMCDBG2(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1655 			    "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1656 			break;
1657 		}
1658 
1659 		/*
1660 		 * We only care about executable map entries.
1661 		 */
1662 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) ||
1663 		    !(entry->protection & VM_PROT_EXECUTE) ||
1664 		    (entry->object.vm_object == NULL)) {
1665 			continue;
1666 		}
1667 
1668 		obj = entry->object.vm_object;
1669 		VM_OBJECT_RLOCK(obj);
1670 
1671 		/*
1672 		 * Walk the backing_object list to find the base
1673 		 * (non-shadowed) vm_object.
1674 		 */
1675 		for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
1676 			if (tobj != obj)
1677 				VM_OBJECT_RLOCK(tobj);
1678 			if (lobj != obj)
1679 				VM_OBJECT_RUNLOCK(lobj);
1680 			lobj = tobj;
1681 		}
1682 
1683 		/*
1684 		 * At this point lobj is the base vm_object and it is locked.
1685 		 */
1686 		if (lobj == NULL) {
1687 			PMCDBG3(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
1688 			    "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
1689 			VM_OBJECT_RUNLOCK(obj);
1690 			continue;
1691 		}
1692 
1693 		vp = vm_object_vnode(lobj);
1694 		if (vp == NULL) {
1695 			if (lobj != obj)
1696 				VM_OBJECT_RUNLOCK(lobj);
1697 			VM_OBJECT_RUNLOCK(obj);
1698 			continue;
1699 		}
1700 
1701 		/*
1702 		 * Skip contiguous regions that point to the same
1703 		 * vnode, so we don't emit redundant MAP-IN
1704 		 * directives.
1705 		 */
1706 		if (entry->start == last_end && vp == last_vp) {
1707 			last_end = entry->end;
1708 			if (lobj != obj)
1709 				VM_OBJECT_RUNLOCK(lobj);
1710 			VM_OBJECT_RUNLOCK(obj);
1711 			continue;
1712 		}
1713 
1714 		/*
1715 		 * We don't want to keep the proc's vm_map or this
1716 		 * vm_object locked while we walk the pathname, since
1717 		 * vn_fullpath() can sleep.  However, if we drop the
1718 		 * lock, it's possible for concurrent activity to
1719 		 * modify the vm_map list.  To protect against this,
1720 		 * we save the vm_map timestamp before we release the
1721 		 * lock, and check it after we reacquire the lock
1722 		 * below.
1723 		 */
1724 		start_addr = entry->start;
1725 		last_end = entry->end;
1726 		last_timestamp = map->timestamp;
1727 		vm_map_unlock_read(map);
1728 
1729 		vref(vp);
1730 		if (lobj != obj)
1731 			VM_OBJECT_RUNLOCK(lobj);
1732 
1733 		VM_OBJECT_RUNLOCK(obj);
1734 
1735 		freepath = NULL;
1736 		pmc_getfilename(vp, &fullpath, &freepath);
1737 		last_vp = vp;
1738 
1739 		vrele(vp);
1740 
1741 		vp = NULL;
1742 		pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
1743 		if (freepath)
1744 			free(freepath, M_TEMP);
1745 
1746 		vm_map_lock_read(map);
1747 
1748 		/*
1749 		 * If our saved timestamp doesn't match, this means
1750 		 * that the vm_map was modified out from under us and
1751 		 * we can't trust our current "entry" pointer.  Do a
1752 		 * new lookup for this entry.  If there is no entry
1753 		 * for this address range, vm_map_lookup_entry() will
1754 		 * return the previous one, so we always want to go to
1755 		 * entry->next on the next loop iteration.
1756 		 *
1757 		 * There is an edge condition here that can occur if
1758 		 * there is no entry at or before this address.  In
1759 		 * this situation, vm_map_lookup_entry returns
1760 		 * &map->header, which would cause our loop to abort
1761 		 * without processing the rest of the map.  However,
1762 		 * in practice this will never happen for process
1763 		 * vm_map.  This is because the executable's text
1764 		 * segment is the first mapping in the proc's address
1765 		 * space, and this mapping is never removed until the
1766 		 * process exits, so there will always be a non-header
1767 		 * entry at or before the requested address for
1768 		 * vm_map_lookup_entry to return.
1769 		 */
1770 		if (map->timestamp != last_timestamp)
1771 			vm_map_lookup_entry(map, last_end - 1, &entry);
1772 	}
1773 
1774 	vm_map_unlock_read(map);
1775 	vmspace_free(vm);
1776 	return;
1777 }
1778 
1779 /*
1780  * Log mappings for all processes in the system.
1781  */
1782 
1783 static void
1784 pmc_log_all_process_mappings(struct pmc_owner *po)
1785 {
1786 	struct proc *p, *top;
1787 
1788 	sx_assert(&pmc_sx, SX_XLOCKED);
1789 
1790 	if ((p = pfind(1)) == NULL)
1791 		panic("[pmc,%d] Cannot find init", __LINE__);
1792 
1793 	PROC_UNLOCK(p);
1794 
1795 	sx_slock(&proctree_lock);
1796 
1797 	top = p;
1798 
1799 	for (;;) {
1800 		pmc_log_process_mappings(po, p);
1801 		if (!LIST_EMPTY(&p->p_children))
1802 			p = LIST_FIRST(&p->p_children);
1803 		else for (;;) {
1804 			if (p == top)
1805 				goto done;
1806 			if (LIST_NEXT(p, p_sibling)) {
1807 				p = LIST_NEXT(p, p_sibling);
1808 				break;
1809 			}
1810 			p = p->p_pptr;
1811 		}
1812 	}
1813  done:
1814 	sx_sunlock(&proctree_lock);
1815 }
1816 
1817 /*
1818  * The 'hook' invoked from the kernel proper
1819  */
1820 
1821 
1822 #ifdef	HWPMC_DEBUG
1823 const char *pmc_hooknames[] = {
1824 	/* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
1825 	"",
1826 	"EXEC",
1827 	"CSW-IN",
1828 	"CSW-OUT",
1829 	"SAMPLE",
1830 	"UNUSED1",
1831 	"UNUSED2",
1832 	"MMAP",
1833 	"MUNMAP",
1834 	"CALLCHAIN-NMI",
1835 	"CALLCHAIN-SOFT",
1836 	"SOFTSAMPLING"
1837 };
1838 #endif
1839 
1840 static int
1841 pmc_hook_handler(struct thread *td, int function, void *arg)
1842 {
1843 
1844 	PMCDBG4(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
1845 	    pmc_hooknames[function], arg);
1846 
1847 	switch (function)
1848 	{
1849 
1850 	/*
1851 	 * Process exec()
1852 	 */
1853 
1854 	case PMC_FN_PROCESS_EXEC:
1855 	{
1856 		char *fullpath, *freepath;
1857 		unsigned int ri;
1858 		int is_using_hwpmcs;
1859 		struct pmc *pm;
1860 		struct proc *p;
1861 		struct pmc_owner *po;
1862 		struct pmc_process *pp;
1863 		struct pmckern_procexec *pk;
1864 
1865 		sx_assert(&pmc_sx, SX_XLOCKED);
1866 
1867 		p = td->td_proc;
1868 		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1869 
1870 		pk = (struct pmckern_procexec *) arg;
1871 
1872 		/* Inform owners of SS mode PMCs of the exec event. */
1873 		LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1874 		    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1875 			    pmclog_process_procexec(po, PMC_ID_INVALID,
1876 				p->p_pid, pk->pm_entryaddr, fullpath);
1877 
1878 		PROC_LOCK(p);
1879 		is_using_hwpmcs = p->p_flag & P_HWPMC;
1880 		PROC_UNLOCK(p);
1881 
1882 		if (!is_using_hwpmcs) {
1883 			if (freepath)
1884 				free(freepath, M_TEMP);
1885 			break;
1886 		}
1887 
1888 		/*
1889 		 * PMCs are not inherited across an exec():  remove any
1890 		 * PMCs that this process is the owner of.
1891 		 */
1892 
1893 		if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1894 			pmc_remove_owner(po);
1895 			pmc_destroy_owner_descriptor(po);
1896 		}
1897 
1898 		/*
1899 		 * If the process being exec'ed is not the target of any
1900 		 * PMC, we are done.
1901 		 */
1902 		if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
1903 			if (freepath)
1904 				free(freepath, M_TEMP);
1905 			break;
1906 		}
1907 
1908 		/*
1909 		 * Log the exec event to all monitoring owners.  Skip
1910 		 * owners who have already recieved the event because
1911 		 * they had system sampling PMCs active.
1912 		 */
1913 		for (ri = 0; ri < md->pmd_npmc; ri++)
1914 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
1915 				po = pm->pm_owner;
1916 				if (po->po_sscount == 0 &&
1917 				    po->po_flags & PMC_PO_OWNS_LOGFILE)
1918 					pmclog_process_procexec(po, pm->pm_id,
1919 					    p->p_pid, pk->pm_entryaddr,
1920 					    fullpath);
1921 			}
1922 
1923 		if (freepath)
1924 			free(freepath, M_TEMP);
1925 
1926 
1927 		PMCDBG4(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
1928 		    p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
1929 
1930 		if (pk->pm_credentialschanged == 0) /* no change */
1931 			break;
1932 
1933 		/*
1934 		 * If the newly exec()'ed process has a different credential
1935 		 * than before, allow it to be the target of a PMC only if
1936 		 * the PMC's owner has sufficient priviledge.
1937 		 */
1938 
1939 		for (ri = 0; ri < md->pmd_npmc; ri++)
1940 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
1941 				if (pmc_can_attach(pm, td->td_proc) != 0)
1942 					pmc_detach_one_process(td->td_proc,
1943 					    pm, PMC_FLAG_NONE);
1944 
1945 		KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1946 		    ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
1947 			pp->pp_refcnt, pp));
1948 
1949 		/*
1950 		 * If this process is no longer the target of any
1951 		 * PMCs, we can remove the process entry and free
1952 		 * up space.
1953 		 */
1954 
1955 		if (pp->pp_refcnt == 0) {
1956 			pmc_remove_process_descriptor(pp);
1957 			free(pp, M_PMC);
1958 			break;
1959 		}
1960 
1961 	}
1962 	break;
1963 
1964 	case PMC_FN_CSW_IN:
1965 		pmc_process_csw_in(td);
1966 		break;
1967 
1968 	case PMC_FN_CSW_OUT:
1969 		pmc_process_csw_out(td);
1970 		break;
1971 
1972 	/*
1973 	 * Process accumulated PC samples.
1974 	 *
1975 	 * This function is expected to be called by hardclock() for
1976 	 * each CPU that has accumulated PC samples.
1977 	 *
1978 	 * This function is to be executed on the CPU whose samples
1979 	 * are being processed.
1980 	 */
1981 	case PMC_FN_DO_SAMPLES:
1982 
1983 		/*
1984 		 * Clear the cpu specific bit in the CPU mask before
1985 		 * do the rest of the processing.  If the NMI handler
1986 		 * gets invoked after the "atomic_clear_int()" call
1987 		 * below but before "pmc_process_samples()" gets
1988 		 * around to processing the interrupt, then we will
1989 		 * come back here at the next hardclock() tick (and
1990 		 * may find nothing to do if "pmc_process_samples()"
1991 		 * had already processed the interrupt).  We don't
1992 		 * lose the interrupt sample.
1993 		 */
1994 		CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmc_cpumask);
1995 		pmc_process_samples(PCPU_GET(cpuid), PMC_HR);
1996 		pmc_process_samples(PCPU_GET(cpuid), PMC_SR);
1997 		break;
1998 
1999 	case PMC_FN_MMAP:
2000 		sx_assert(&pmc_sx, SX_LOCKED);
2001 		pmc_process_mmap(td, (struct pmckern_map_in *) arg);
2002 		break;
2003 
2004 	case PMC_FN_MUNMAP:
2005 		sx_assert(&pmc_sx, SX_LOCKED);
2006 		pmc_process_munmap(td, (struct pmckern_map_out *) arg);
2007 		break;
2008 
2009 	case PMC_FN_USER_CALLCHAIN:
2010 		/*
2011 		 * Record a call chain.
2012 		 */
2013 		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2014 		    __LINE__));
2015 
2016 		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
2017 		    (struct trapframe *) arg);
2018 		td->td_pflags &= ~TDP_CALLCHAIN;
2019 		break;
2020 
2021 	case PMC_FN_USER_CALLCHAIN_SOFT:
2022 		/*
2023 		 * Record a call chain.
2024 		 */
2025 		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2026 		    __LINE__));
2027 		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_SR,
2028 		    (struct trapframe *) arg);
2029 		td->td_pflags &= ~TDP_CALLCHAIN;
2030 		break;
2031 
2032 	case PMC_FN_SOFT_SAMPLING:
2033 		/*
2034 		 * Call soft PMC sampling intr.
2035 		 */
2036 		pmc_soft_intr((struct pmckern_soft *) arg);
2037 		break;
2038 
2039 	default:
2040 #ifdef	HWPMC_DEBUG
2041 		KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2042 #endif
2043 		break;
2044 
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 /*
2051  * allocate a 'struct pmc_owner' descriptor in the owner hash table.
2052  */
2053 
2054 static struct pmc_owner *
2055 pmc_allocate_owner_descriptor(struct proc *p)
2056 {
2057 	uint32_t hindex;
2058 	struct pmc_owner *po;
2059 	struct pmc_ownerhash *poh;
2060 
2061 	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2062 	poh = &pmc_ownerhash[hindex];
2063 
2064 	/* allocate space for N pointers and one descriptor struct */
2065 	po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO);
2066 	po->po_owner = p;
2067 	LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2068 
2069 	TAILQ_INIT(&po->po_logbuffers);
2070 	mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2071 
2072 	PMCDBG4(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2073 	    p, p->p_pid, p->p_comm, po);
2074 
2075 	return po;
2076 }
2077 
2078 static void
2079 pmc_destroy_owner_descriptor(struct pmc_owner *po)
2080 {
2081 
2082 	PMCDBG4(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2083 	    po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2084 
2085 	mtx_destroy(&po->po_mtx);
2086 	free(po, M_PMC);
2087 }
2088 
2089 /*
2090  * find the descriptor corresponding to process 'p', adding or removing it
2091  * as specified by 'mode'.
2092  */
2093 
2094 static struct pmc_process *
2095 pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2096 {
2097 	uint32_t hindex;
2098 	struct pmc_process *pp, *ppnew;
2099 	struct pmc_processhash *pph;
2100 
2101 	hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2102 	pph = &pmc_processhash[hindex];
2103 
2104 	ppnew = NULL;
2105 
2106 	/*
2107 	 * Pre-allocate memory in the FIND_ALLOCATE case since we
2108 	 * cannot call malloc(9) once we hold a spin lock.
2109 	 */
2110 	if (mode & PMC_FLAG_ALLOCATE)
2111 		ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2112 		    sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO);
2113 
2114 	mtx_lock_spin(&pmc_processhash_mtx);
2115 	LIST_FOREACH(pp, pph, pp_next)
2116 	    if (pp->pp_proc == p)
2117 		    break;
2118 
2119 	if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
2120 		LIST_REMOVE(pp, pp_next);
2121 
2122 	if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
2123 	    ppnew != NULL) {
2124 		ppnew->pp_proc = p;
2125 		LIST_INSERT_HEAD(pph, ppnew, pp_next);
2126 		pp = ppnew;
2127 		ppnew = NULL;
2128 	}
2129 	mtx_unlock_spin(&pmc_processhash_mtx);
2130 
2131 	if (pp != NULL && ppnew != NULL)
2132 		free(ppnew, M_PMC);
2133 
2134 	return pp;
2135 }
2136 
2137 /*
2138  * remove a process descriptor from the process hash table.
2139  */
2140 
2141 static void
2142 pmc_remove_process_descriptor(struct pmc_process *pp)
2143 {
2144 	KASSERT(pp->pp_refcnt == 0,
2145 	    ("[pmc,%d] Removing process descriptor %p with count %d",
2146 		__LINE__, pp, pp->pp_refcnt));
2147 
2148 	mtx_lock_spin(&pmc_processhash_mtx);
2149 	LIST_REMOVE(pp, pp_next);
2150 	mtx_unlock_spin(&pmc_processhash_mtx);
2151 }
2152 
2153 
2154 /*
2155  * find an owner descriptor corresponding to proc 'p'
2156  */
2157 
2158 static struct pmc_owner *
2159 pmc_find_owner_descriptor(struct proc *p)
2160 {
2161 	uint32_t hindex;
2162 	struct pmc_owner *po;
2163 	struct pmc_ownerhash *poh;
2164 
2165 	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2166 	poh = &pmc_ownerhash[hindex];
2167 
2168 	po = NULL;
2169 	LIST_FOREACH(po, poh, po_next)
2170 	    if (po->po_owner == p)
2171 		    break;
2172 
2173 	PMCDBG5(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2174 	    "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2175 
2176 	return po;
2177 }
2178 
2179 /*
2180  * pmc_allocate_pmc_descriptor
2181  *
2182  * Allocate a pmc descriptor and initialize its
2183  * fields.
2184  */
2185 
2186 static struct pmc *
2187 pmc_allocate_pmc_descriptor(void)
2188 {
2189 	struct pmc *pmc;
2190 
2191 	pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO);
2192 
2193 	PMCDBG1(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2194 
2195 	return pmc;
2196 }
2197 
2198 /*
2199  * Destroy a pmc descriptor.
2200  */
2201 
2202 static void
2203 pmc_destroy_pmc_descriptor(struct pmc *pm)
2204 {
2205 
2206 	KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2207 	    pm->pm_state == PMC_STATE_FREE,
2208 	    ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2209 	KASSERT(LIST_EMPTY(&pm->pm_targets),
2210 	    ("[pmc,%d] destroying pmc with targets", __LINE__));
2211 	KASSERT(pm->pm_owner == NULL,
2212 	    ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2213 	KASSERT(pm->pm_runcount == 0,
2214 	    ("[pmc,%d] pmc has non-zero run count %d", __LINE__,
2215 		pm->pm_runcount));
2216 
2217 	free(pm, M_PMC);
2218 }
2219 
2220 static void
2221 pmc_wait_for_pmc_idle(struct pmc *pm)
2222 {
2223 #ifdef HWPMC_DEBUG
2224 	volatile int maxloop;
2225 
2226 	maxloop = 100 * pmc_cpu_max();
2227 #endif
2228 	/*
2229 	 * Loop (with a forced context switch) till the PMC's runcount
2230 	 * comes down to zero.
2231 	 */
2232 	while (atomic_load_acq_32(&pm->pm_runcount) > 0) {
2233 #ifdef HWPMC_DEBUG
2234 		maxloop--;
2235 		KASSERT(maxloop > 0,
2236 		    ("[pmc,%d] (ri%d, rc%d) waiting too long for "
2237 			"pmc to be free", __LINE__,
2238 			PMC_TO_ROWINDEX(pm), pm->pm_runcount));
2239 #endif
2240 		pmc_force_context_switch();
2241 	}
2242 }
2243 
2244 /*
2245  * This function does the following things:
2246  *
2247  *  - detaches the PMC from hardware
2248  *  - unlinks all target threads that were attached to it
2249  *  - removes the PMC from its owner's list
2250  *  - destroys the PMC private mutex
2251  *
2252  * Once this function completes, the given pmc pointer can be freed by
2253  * calling pmc_destroy_pmc_descriptor().
2254  */
2255 
2256 static void
2257 pmc_release_pmc_descriptor(struct pmc *pm)
2258 {
2259 	enum pmc_mode mode;
2260 	struct pmc_hw *phw;
2261 	u_int adjri, ri, cpu;
2262 	struct pmc_owner *po;
2263 	struct pmc_binding pb;
2264 	struct pmc_process *pp;
2265 	struct pmc_classdep *pcd;
2266 	struct pmc_target *ptgt, *tmp;
2267 
2268 	sx_assert(&pmc_sx, SX_XLOCKED);
2269 
2270 	KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2271 
2272 	ri   = PMC_TO_ROWINDEX(pm);
2273 	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2274 	mode = PMC_TO_MODE(pm);
2275 
2276 	PMCDBG3(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2277 	    mode);
2278 
2279 	/*
2280 	 * First, we take the PMC off hardware.
2281 	 */
2282 	cpu = 0;
2283 	if (PMC_IS_SYSTEM_MODE(mode)) {
2284 
2285 		/*
2286 		 * A system mode PMC runs on a specific CPU.  Switch
2287 		 * to this CPU and turn hardware off.
2288 		 */
2289 		pmc_save_cpu_binding(&pb);
2290 
2291 		cpu = PMC_TO_CPU(pm);
2292 
2293 		pmc_select_cpu(cpu);
2294 
2295 		/* switch off non-stalled CPUs */
2296 		CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
2297 		if (pm->pm_state == PMC_STATE_RUNNING &&
2298 		    !CPU_ISSET(cpu, &pm->pm_stalled)) {
2299 
2300 			phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2301 
2302 			KASSERT(phw->phw_pmc == pm,
2303 			    ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2304 				__LINE__, ri, phw->phw_pmc, pm));
2305 			PMCDBG2(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2306 
2307 			critical_enter();
2308 			pcd->pcd_stop_pmc(cpu, adjri);
2309 			critical_exit();
2310 		}
2311 
2312 		PMCDBG2(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2313 
2314 		critical_enter();
2315 		pcd->pcd_config_pmc(cpu, adjri, NULL);
2316 		critical_exit();
2317 
2318 		/* adjust the global and process count of SS mode PMCs */
2319 		if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2320 			po = pm->pm_owner;
2321 			po->po_sscount--;
2322 			if (po->po_sscount == 0) {
2323 				atomic_subtract_rel_int(&pmc_ss_count, 1);
2324 				LIST_REMOVE(po, po_ssnext);
2325 			}
2326 		}
2327 
2328 		pm->pm_state = PMC_STATE_DELETED;
2329 
2330 		pmc_restore_cpu_binding(&pb);
2331 
2332 		/*
2333 		 * We could have references to this PMC structure in
2334 		 * the per-cpu sample queues.  Wait for the queue to
2335 		 * drain.
2336 		 */
2337 		pmc_wait_for_pmc_idle(pm);
2338 
2339 	} else if (PMC_IS_VIRTUAL_MODE(mode)) {
2340 
2341 		/*
2342 		 * A virtual PMC could be running on multiple CPUs at
2343 		 * a given instant.
2344 		 *
2345 		 * By marking its state as DELETED, we ensure that
2346 		 * this PMC is never further scheduled on hardware.
2347 		 *
2348 		 * Then we wait till all CPUs are done with this PMC.
2349 		 */
2350 		pm->pm_state = PMC_STATE_DELETED;
2351 
2352 
2353 		/* Wait for the PMCs runcount to come to zero. */
2354 		pmc_wait_for_pmc_idle(pm);
2355 
2356 		/*
2357 		 * At this point the PMC is off all CPUs and cannot be
2358 		 * freshly scheduled onto a CPU.  It is now safe to
2359 		 * unlink all targets from this PMC.  If a
2360 		 * process-record's refcount falls to zero, we remove
2361 		 * it from the hash table.  The module-wide SX lock
2362 		 * protects us from races.
2363 		 */
2364 		LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2365 			pp = ptgt->pt_process;
2366 			pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2367 
2368 			PMCDBG1(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2369 
2370 			/*
2371 			 * If the target process record shows that no
2372 			 * PMCs are attached to it, reclaim its space.
2373 			 */
2374 
2375 			if (pp->pp_refcnt == 0) {
2376 				pmc_remove_process_descriptor(pp);
2377 				free(pp, M_PMC);
2378 			}
2379 		}
2380 
2381 		cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2382 
2383 	}
2384 
2385 	/*
2386 	 * Release any MD resources
2387 	 */
2388 	(void) pcd->pcd_release_pmc(cpu, adjri, pm);
2389 
2390 	/*
2391 	 * Update row disposition
2392 	 */
2393 
2394 	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2395 		PMC_UNMARK_ROW_STANDALONE(ri);
2396 	else
2397 		PMC_UNMARK_ROW_THREAD(ri);
2398 
2399 	/* unlink from the owner's list */
2400 	if (pm->pm_owner) {
2401 		LIST_REMOVE(pm, pm_next);
2402 		pm->pm_owner = NULL;
2403 	}
2404 }
2405 
2406 /*
2407  * Register an owner and a pmc.
2408  */
2409 
2410 static int
2411 pmc_register_owner(struct proc *p, struct pmc *pmc)
2412 {
2413 	struct pmc_owner *po;
2414 
2415 	sx_assert(&pmc_sx, SX_XLOCKED);
2416 
2417 	if ((po = pmc_find_owner_descriptor(p)) == NULL)
2418 		if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2419 			return ENOMEM;
2420 
2421 	KASSERT(pmc->pm_owner == NULL,
2422 	    ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2423 	pmc->pm_owner  = po;
2424 
2425 	LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2426 
2427 	PROC_LOCK(p);
2428 	p->p_flag |= P_HWPMC;
2429 	PROC_UNLOCK(p);
2430 
2431 	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2432 		pmclog_process_pmcallocate(pmc);
2433 
2434 	PMCDBG2(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2435 	    po, pmc);
2436 
2437 	return 0;
2438 }
2439 
2440 /*
2441  * Return the current row disposition:
2442  * == 0 => FREE
2443  *  > 0 => PROCESS MODE
2444  *  < 0 => SYSTEM MODE
2445  */
2446 
2447 int
2448 pmc_getrowdisp(int ri)
2449 {
2450 	return pmc_pmcdisp[ri];
2451 }
2452 
2453 /*
2454  * Check if a PMC at row index 'ri' can be allocated to the current
2455  * process.
2456  *
2457  * Allocation can fail if:
2458  *   - the current process is already being profiled by a PMC at index 'ri',
2459  *     attached to it via OP_PMCATTACH.
2460  *   - the current process has already allocated a PMC at index 'ri'
2461  *     via OP_ALLOCATE.
2462  */
2463 
2464 static int
2465 pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2466 {
2467 	enum pmc_mode mode;
2468 	struct pmc *pm;
2469 	struct pmc_owner *po;
2470 	struct pmc_process *pp;
2471 
2472 	PMCDBG5(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2473 	    "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2474 
2475 	/*
2476 	 * We shouldn't have already allocated a process-mode PMC at
2477 	 * row index 'ri'.
2478 	 *
2479 	 * We shouldn't have allocated a system-wide PMC on the same
2480 	 * CPU and same RI.
2481 	 */
2482 	if ((po = pmc_find_owner_descriptor(p)) != NULL)
2483 		LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2484 		    if (PMC_TO_ROWINDEX(pm) == ri) {
2485 			    mode = PMC_TO_MODE(pm);
2486 			    if (PMC_IS_VIRTUAL_MODE(mode))
2487 				    return EEXIST;
2488 			    if (PMC_IS_SYSTEM_MODE(mode) &&
2489 				(int) PMC_TO_CPU(pm) == cpu)
2490 				    return EEXIST;
2491 		    }
2492 	        }
2493 
2494 	/*
2495 	 * We also shouldn't be the target of any PMC at this index
2496 	 * since otherwise a PMC_ATTACH to ourselves will fail.
2497 	 */
2498 	if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2499 		if (pp->pp_pmcs[ri].pp_pmc)
2500 			return EEXIST;
2501 
2502 	PMCDBG4(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2503 	    p, p->p_pid, p->p_comm, ri);
2504 
2505 	return 0;
2506 }
2507 
2508 /*
2509  * Check if a given PMC at row index 'ri' can be currently used in
2510  * mode 'mode'.
2511  */
2512 
2513 static int
2514 pmc_can_allocate_row(int ri, enum pmc_mode mode)
2515 {
2516 	enum pmc_disp	disp;
2517 
2518 	sx_assert(&pmc_sx, SX_XLOCKED);
2519 
2520 	PMCDBG2(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2521 
2522 	if (PMC_IS_SYSTEM_MODE(mode))
2523 		disp = PMC_DISP_STANDALONE;
2524 	else
2525 		disp = PMC_DISP_THREAD;
2526 
2527 	/*
2528 	 * check disposition for PMC row 'ri':
2529 	 *
2530 	 * Expected disposition		Row-disposition		Result
2531 	 *
2532 	 * STANDALONE			STANDALONE or FREE	proceed
2533 	 * STANDALONE			THREAD			fail
2534 	 * THREAD			THREAD or FREE		proceed
2535 	 * THREAD			STANDALONE		fail
2536 	 */
2537 
2538 	if (!PMC_ROW_DISP_IS_FREE(ri) &&
2539 	    !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2540 	    !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2541 		return EBUSY;
2542 
2543 	/*
2544 	 * All OK
2545 	 */
2546 
2547 	PMCDBG2(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2548 
2549 	return 0;
2550 
2551 }
2552 
2553 /*
2554  * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
2555  */
2556 
2557 static struct pmc *
2558 pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2559 {
2560 	struct pmc *pm;
2561 
2562 	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2563 	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2564 		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2565 
2566 	LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2567 	    if (pm->pm_id == pmcid)
2568 		    return pm;
2569 
2570 	return NULL;
2571 }
2572 
2573 static int
2574 pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
2575 {
2576 
2577 	struct pmc *pm, *opm;
2578 	struct pmc_owner *po;
2579 	struct pmc_process *pp;
2580 
2581 	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2582 	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2583 		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2584 	PMCDBG1(PMC,FND,1, "find-pmc id=%d", pmcid);
2585 
2586 	if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL) {
2587 		/*
2588 		 * In case of PMC_F_DESCENDANTS child processes we will not find
2589 		 * the current process in the owners hash list.  Find the owner
2590 		 * process first and from there lookup the po.
2591 		 */
2592 		if ((pp = pmc_find_process_descriptor(curthread->td_proc,
2593 		    PMC_FLAG_NONE)) == NULL) {
2594 			return ESRCH;
2595 		} else {
2596 			opm = pp->pp_pmcs[PMC_ID_TO_ROWINDEX(pmcid)].pp_pmc;
2597 			if (opm == NULL)
2598 				return ESRCH;
2599 			if ((opm->pm_flags & (PMC_F_ATTACHED_TO_OWNER|
2600 			    PMC_F_DESCENDANTS)) != (PMC_F_ATTACHED_TO_OWNER|
2601 			    PMC_F_DESCENDANTS))
2602 				return ESRCH;
2603 			po = opm->pm_owner;
2604 		}
2605 	}
2606 
2607 	if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
2608 		return EINVAL;
2609 
2610 	PMCDBG2(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
2611 
2612 	*pmc = pm;
2613 	return 0;
2614 }
2615 
2616 /*
2617  * Start a PMC.
2618  */
2619 
2620 static int
2621 pmc_start(struct pmc *pm)
2622 {
2623 	enum pmc_mode mode;
2624 	struct pmc_owner *po;
2625 	struct pmc_binding pb;
2626 	struct pmc_classdep *pcd;
2627 	int adjri, error, cpu, ri;
2628 
2629 	KASSERT(pm != NULL,
2630 	    ("[pmc,%d] null pm", __LINE__));
2631 
2632 	mode = PMC_TO_MODE(pm);
2633 	ri   = PMC_TO_ROWINDEX(pm);
2634 	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2635 
2636 	error = 0;
2637 
2638 	PMCDBG3(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
2639 
2640 	po = pm->pm_owner;
2641 
2642 	/*
2643 	 * Disallow PMCSTART if a logfile is required but has not been
2644 	 * configured yet.
2645 	 */
2646 	if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
2647 	    (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
2648 		return (EDOOFUS);	/* programming error */
2649 
2650 	/*
2651 	 * If this is a sampling mode PMC, log mapping information for
2652 	 * the kernel modules that are currently loaded.
2653 	 */
2654 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
2655 	    pmc_log_kernel_mappings(pm);
2656 
2657 	if (PMC_IS_VIRTUAL_MODE(mode)) {
2658 
2659 		/*
2660 		 * If a PMCATTACH has never been done on this PMC,
2661 		 * attach it to its owner process.
2662 		 */
2663 
2664 		if (LIST_EMPTY(&pm->pm_targets))
2665 			error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
2666 			    pmc_attach_process(po->po_owner, pm);
2667 
2668 		/*
2669 		 * If the PMC is attached to its owner, then force a context
2670 		 * switch to ensure that the MD state gets set correctly.
2671 		 */
2672 
2673 		if (error == 0) {
2674 			pm->pm_state = PMC_STATE_RUNNING;
2675 			if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
2676 				pmc_force_context_switch();
2677 		}
2678 
2679 		return (error);
2680 	}
2681 
2682 
2683 	/*
2684 	 * A system-wide PMC.
2685 	 *
2686 	 * Add the owner to the global list if this is a system-wide
2687 	 * sampling PMC.
2688 	 */
2689 
2690 	if (mode == PMC_MODE_SS) {
2691 		if (po->po_sscount == 0) {
2692 			LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
2693 			atomic_add_rel_int(&pmc_ss_count, 1);
2694 			PMCDBG1(PMC,OPS,1, "po=%p in global list", po);
2695 		}
2696 		po->po_sscount++;
2697 
2698 		/*
2699 		 * Log mapping information for all existing processes in the
2700 		 * system.  Subsequent mappings are logged as they happen;
2701 		 * see pmc_process_mmap().
2702 		 */
2703 		if (po->po_logprocmaps == 0) {
2704 			pmc_log_all_process_mappings(po);
2705 			po->po_logprocmaps = 1;
2706 		}
2707 	}
2708 
2709 	/*
2710 	 * Move to the CPU associated with this
2711 	 * PMC, and start the hardware.
2712 	 */
2713 
2714 	pmc_save_cpu_binding(&pb);
2715 
2716 	cpu = PMC_TO_CPU(pm);
2717 
2718 	if (!pmc_cpu_is_active(cpu))
2719 		return (ENXIO);
2720 
2721 	pmc_select_cpu(cpu);
2722 
2723 	/*
2724 	 * global PMCs are configured at allocation time
2725 	 * so write out the initial value and start the PMC.
2726 	 */
2727 
2728 	pm->pm_state = PMC_STATE_RUNNING;
2729 
2730 	critical_enter();
2731 	if ((error = pcd->pcd_write_pmc(cpu, adjri,
2732 		 PMC_IS_SAMPLING_MODE(mode) ?
2733 		 pm->pm_sc.pm_reloadcount :
2734 		 pm->pm_sc.pm_initial)) == 0) {
2735 		/* If a sampling mode PMC, reset stalled state. */
2736 		if (PMC_IS_SAMPLING_MODE(mode))
2737 			CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
2738 
2739 		/* Indicate that we desire this to run. Start it. */
2740 		CPU_SET_ATOMIC(cpu, &pm->pm_cpustate);
2741 		error = pcd->pcd_start_pmc(cpu, adjri);
2742 	}
2743 	critical_exit();
2744 
2745 	pmc_restore_cpu_binding(&pb);
2746 
2747 	return (error);
2748 }
2749 
2750 /*
2751  * Stop a PMC.
2752  */
2753 
2754 static int
2755 pmc_stop(struct pmc *pm)
2756 {
2757 	struct pmc_owner *po;
2758 	struct pmc_binding pb;
2759 	struct pmc_classdep *pcd;
2760 	int adjri, cpu, error, ri;
2761 
2762 	KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
2763 
2764 	PMCDBG3(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
2765 	    PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
2766 
2767 	pm->pm_state = PMC_STATE_STOPPED;
2768 
2769 	/*
2770 	 * If the PMC is a virtual mode one, changing the state to
2771 	 * non-RUNNING is enough to ensure that the PMC never gets
2772 	 * scheduled.
2773 	 *
2774 	 * If this PMC is current running on a CPU, then it will
2775 	 * handled correctly at the time its target process is context
2776 	 * switched out.
2777 	 */
2778 
2779 	if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
2780 		return 0;
2781 
2782 	/*
2783 	 * A system-mode PMC.  Move to the CPU associated with
2784 	 * this PMC, and stop the hardware.  We update the
2785 	 * 'initial count' so that a subsequent PMCSTART will
2786 	 * resume counting from the current hardware count.
2787 	 */
2788 
2789 	pmc_save_cpu_binding(&pb);
2790 
2791 	cpu = PMC_TO_CPU(pm);
2792 
2793 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
2794 	    ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
2795 
2796 	if (!pmc_cpu_is_active(cpu))
2797 		return ENXIO;
2798 
2799 	pmc_select_cpu(cpu);
2800 
2801 	ri = PMC_TO_ROWINDEX(pm);
2802 	pcd = pmc_ri_to_classdep(md, ri, &adjri);
2803 
2804 	CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
2805 	critical_enter();
2806 	if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0)
2807 		error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial);
2808 	critical_exit();
2809 
2810 	pmc_restore_cpu_binding(&pb);
2811 
2812 	po = pm->pm_owner;
2813 
2814 	/* remove this owner from the global list of SS PMC owners */
2815 	if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
2816 		po->po_sscount--;
2817 		if (po->po_sscount == 0) {
2818 			atomic_subtract_rel_int(&pmc_ss_count, 1);
2819 			LIST_REMOVE(po, po_ssnext);
2820 			PMCDBG1(PMC,OPS,2,"po=%p removed from global list", po);
2821 		}
2822 	}
2823 
2824 	return (error);
2825 }
2826 
2827 
2828 #ifdef	HWPMC_DEBUG
2829 static const char *pmc_op_to_name[] = {
2830 #undef	__PMC_OP
2831 #define	__PMC_OP(N, D)	#N ,
2832 	__PMC_OPS()
2833 	NULL
2834 };
2835 #endif
2836 
2837 /*
2838  * The syscall interface
2839  */
2840 
2841 #define	PMC_GET_SX_XLOCK(...) do {		\
2842 	sx_xlock(&pmc_sx);			\
2843 	if (pmc_hook == NULL) {			\
2844 		sx_xunlock(&pmc_sx);		\
2845 		return __VA_ARGS__;		\
2846 	}					\
2847 } while (0)
2848 
2849 #define	PMC_DOWNGRADE_SX() do {			\
2850 	sx_downgrade(&pmc_sx);			\
2851 	is_sx_downgraded = 1;			\
2852 } while (0)
2853 
2854 static int
2855 pmc_syscall_handler(struct thread *td, void *syscall_args)
2856 {
2857 	int error, is_sx_downgraded, is_sx_locked, op;
2858 	struct pmc_syscall_args *c;
2859 	void *arg;
2860 
2861 	PMC_GET_SX_XLOCK(ENOSYS);
2862 
2863 	DROP_GIANT();
2864 
2865 	is_sx_downgraded = 0;
2866 	is_sx_locked = 1;
2867 
2868 	c = (struct pmc_syscall_args *) syscall_args;
2869 
2870 	op = c->pmop_code;
2871 	arg = c->pmop_data;
2872 
2873 	PMCDBG3(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
2874 	    pmc_op_to_name[op], arg);
2875 
2876 	error = 0;
2877 	atomic_add_int(&pmc_stats.pm_syscalls, 1);
2878 
2879 	switch(op)
2880 	{
2881 
2882 
2883 	/*
2884 	 * Configure a log file.
2885 	 *
2886 	 * XXX This OP will be reworked.
2887 	 */
2888 
2889 	case PMC_OP_CONFIGURELOG:
2890 	{
2891 		struct proc *p;
2892 		struct pmc *pm;
2893 		struct pmc_owner *po;
2894 		struct pmc_op_configurelog cl;
2895 
2896 		sx_assert(&pmc_sx, SX_XLOCKED);
2897 
2898 		if ((error = copyin(arg, &cl, sizeof(cl))) != 0)
2899 			break;
2900 
2901 		/* mark this process as owning a log file */
2902 		p = td->td_proc;
2903 		if ((po = pmc_find_owner_descriptor(p)) == NULL)
2904 			if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
2905 				error = ENOMEM;
2906 				break;
2907 			}
2908 
2909 		/*
2910 		 * If a valid fd was passed in, try to configure that,
2911 		 * otherwise if 'fd' was less than zero and there was
2912 		 * a log file configured, flush its buffers and
2913 		 * de-configure it.
2914 		 */
2915 		if (cl.pm_logfd >= 0) {
2916 			sx_xunlock(&pmc_sx);
2917 			is_sx_locked = 0;
2918 			error = pmclog_configure_log(md, po, cl.pm_logfd);
2919 		} else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
2920 			pmclog_process_closelog(po);
2921 			error = pmclog_close(po);
2922 			if (error == 0) {
2923 				LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2924 				    if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
2925 					pm->pm_state == PMC_STATE_RUNNING)
2926 					    pmc_stop(pm);
2927 				error = pmclog_deconfigure_log(po);
2928 			}
2929 		} else
2930 			error = EINVAL;
2931 
2932 		if (error)
2933 			break;
2934 	}
2935 	break;
2936 
2937 	/*
2938 	 * Flush a log file.
2939 	 */
2940 
2941 	case PMC_OP_FLUSHLOG:
2942 	{
2943 		struct pmc_owner *po;
2944 
2945 		sx_assert(&pmc_sx, SX_XLOCKED);
2946 
2947 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2948 			error = EINVAL;
2949 			break;
2950 		}
2951 
2952 		error = pmclog_flush(po);
2953 	}
2954 	break;
2955 
2956 	/*
2957 	 * Close a log file.
2958 	 */
2959 
2960 	case PMC_OP_CLOSELOG:
2961 	{
2962 		struct pmc_owner *po;
2963 
2964 		sx_assert(&pmc_sx, SX_XLOCKED);
2965 
2966 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2967 			error = EINVAL;
2968 			break;
2969 		}
2970 
2971 		error = pmclog_close(po);
2972 	}
2973 	break;
2974 
2975 	/*
2976 	 * Retrieve hardware configuration.
2977 	 */
2978 
2979 	case PMC_OP_GETCPUINFO:	/* CPU information */
2980 	{
2981 		struct pmc_op_getcpuinfo gci;
2982 		struct pmc_classinfo *pci;
2983 		struct pmc_classdep *pcd;
2984 		int cl;
2985 
2986 		gci.pm_cputype = md->pmd_cputype;
2987 		gci.pm_ncpu    = pmc_cpu_max();
2988 		gci.pm_npmc    = md->pmd_npmc;
2989 		gci.pm_nclass  = md->pmd_nclass;
2990 		pci = gci.pm_classes;
2991 		pcd = md->pmd_classdep;
2992 		for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
2993 			pci->pm_caps  = pcd->pcd_caps;
2994 			pci->pm_class = pcd->pcd_class;
2995 			pci->pm_width = pcd->pcd_width;
2996 			pci->pm_num   = pcd->pcd_num;
2997 		}
2998 		error = copyout(&gci, arg, sizeof(gci));
2999 	}
3000 	break;
3001 
3002 	/*
3003 	 * Retrieve soft events list.
3004 	 */
3005 	case PMC_OP_GETDYNEVENTINFO:
3006 	{
3007 		enum pmc_class			cl;
3008 		enum pmc_event			ev;
3009 		struct pmc_op_getdyneventinfo	*gei;
3010 		struct pmc_dyn_event_descr	dev;
3011 		struct pmc_soft			*ps;
3012 		uint32_t			nevent;
3013 
3014 		sx_assert(&pmc_sx, SX_LOCKED);
3015 
3016 		gei = (struct pmc_op_getdyneventinfo *) arg;
3017 
3018 		if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
3019 			break;
3020 
3021 		/* Only SOFT class is dynamic. */
3022 		if (cl != PMC_CLASS_SOFT) {
3023 			error = EINVAL;
3024 			break;
3025 		}
3026 
3027 		nevent = 0;
3028 		for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
3029 			ps = pmc_soft_ev_acquire(ev);
3030 			if (ps == NULL)
3031 				continue;
3032 			bcopy(&ps->ps_ev, &dev, sizeof(dev));
3033 			pmc_soft_ev_release(ps);
3034 
3035 			error = copyout(&dev,
3036 			    &gei->pm_events[nevent],
3037 			    sizeof(struct pmc_dyn_event_descr));
3038 			if (error != 0)
3039 				break;
3040 			nevent++;
3041 		}
3042 		if (error != 0)
3043 			break;
3044 
3045 		error = copyout(&nevent, &gei->pm_nevent,
3046 		    sizeof(nevent));
3047 	}
3048 	break;
3049 
3050 	/*
3051 	 * Get module statistics
3052 	 */
3053 
3054 	case PMC_OP_GETDRIVERSTATS:
3055 	{
3056 		struct pmc_op_getdriverstats gms;
3057 
3058 		bcopy(&pmc_stats, &gms, sizeof(gms));
3059 		error = copyout(&gms, arg, sizeof(gms));
3060 	}
3061 	break;
3062 
3063 
3064 	/*
3065 	 * Retrieve module version number
3066 	 */
3067 
3068 	case PMC_OP_GETMODULEVERSION:
3069 	{
3070 		uint32_t cv, modv;
3071 
3072 		/* retrieve the client's idea of the ABI version */
3073 		if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
3074 			break;
3075 		/* don't service clients newer than our driver */
3076 		modv = PMC_VERSION;
3077 		if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
3078 			error = EPROGMISMATCH;
3079 			break;
3080 		}
3081 		error = copyout(&modv, arg, sizeof(int));
3082 	}
3083 	break;
3084 
3085 
3086 	/*
3087 	 * Retrieve the state of all the PMCs on a given
3088 	 * CPU.
3089 	 */
3090 
3091 	case PMC_OP_GETPMCINFO:
3092 	{
3093 		int ari;
3094 		struct pmc *pm;
3095 		size_t pmcinfo_size;
3096 		uint32_t cpu, n, npmc;
3097 		struct pmc_owner *po;
3098 		struct pmc_binding pb;
3099 		struct pmc_classdep *pcd;
3100 		struct pmc_info *p, *pmcinfo;
3101 		struct pmc_op_getpmcinfo *gpi;
3102 
3103 		PMC_DOWNGRADE_SX();
3104 
3105 		gpi = (struct pmc_op_getpmcinfo *) arg;
3106 
3107 		if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
3108 			break;
3109 
3110 		if (cpu >= pmc_cpu_max()) {
3111 			error = EINVAL;
3112 			break;
3113 		}
3114 
3115 		if (!pmc_cpu_is_active(cpu)) {
3116 			error = ENXIO;
3117 			break;
3118 		}
3119 
3120 		/* switch to CPU 'cpu' */
3121 		pmc_save_cpu_binding(&pb);
3122 		pmc_select_cpu(cpu);
3123 
3124 		npmc = md->pmd_npmc;
3125 
3126 		pmcinfo_size = npmc * sizeof(struct pmc_info);
3127 		pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK);
3128 
3129 		p = pmcinfo;
3130 
3131 		for (n = 0; n < md->pmd_npmc; n++, p++) {
3132 
3133 			pcd = pmc_ri_to_classdep(md, n, &ari);
3134 
3135 			KASSERT(pcd != NULL,
3136 			    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
3137 
3138 			if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
3139 				break;
3140 
3141 			if (PMC_ROW_DISP_IS_STANDALONE(n))
3142 				p->pm_rowdisp = PMC_DISP_STANDALONE;
3143 			else if (PMC_ROW_DISP_IS_THREAD(n))
3144 				p->pm_rowdisp = PMC_DISP_THREAD;
3145 			else
3146 				p->pm_rowdisp = PMC_DISP_FREE;
3147 
3148 			p->pm_ownerpid = -1;
3149 
3150 			if (pm == NULL)	/* no PMC associated */
3151 				continue;
3152 
3153 			po = pm->pm_owner;
3154 
3155 			KASSERT(po->po_owner != NULL,
3156 			    ("[pmc,%d] pmc_owner had a null proc pointer",
3157 				__LINE__));
3158 
3159 			p->pm_ownerpid = po->po_owner->p_pid;
3160 			p->pm_mode     = PMC_TO_MODE(pm);
3161 			p->pm_event    = pm->pm_event;
3162 			p->pm_flags    = pm->pm_flags;
3163 
3164 			if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3165 				p->pm_reloadcount =
3166 				    pm->pm_sc.pm_reloadcount;
3167 		}
3168 
3169 		pmc_restore_cpu_binding(&pb);
3170 
3171 		/* now copy out the PMC info collected */
3172 		if (error == 0)
3173 			error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
3174 
3175 		free(pmcinfo, M_PMC);
3176 	}
3177 	break;
3178 
3179 
3180 	/*
3181 	 * Set the administrative state of a PMC.  I.e. whether
3182 	 * the PMC is to be used or not.
3183 	 */
3184 
3185 	case PMC_OP_PMCADMIN:
3186 	{
3187 		int cpu, ri;
3188 		enum pmc_state request;
3189 		struct pmc_cpu *pc;
3190 		struct pmc_hw *phw;
3191 		struct pmc_op_pmcadmin pma;
3192 		struct pmc_binding pb;
3193 
3194 		sx_assert(&pmc_sx, SX_XLOCKED);
3195 
3196 		KASSERT(td == curthread,
3197 		    ("[pmc,%d] td != curthread", __LINE__));
3198 
3199 		error = priv_check(td, PRIV_PMC_MANAGE);
3200 		if (error)
3201 			break;
3202 
3203 		if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
3204 			break;
3205 
3206 		cpu = pma.pm_cpu;
3207 
3208 		if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
3209 			error = EINVAL;
3210 			break;
3211 		}
3212 
3213 		if (!pmc_cpu_is_active(cpu)) {
3214 			error = ENXIO;
3215 			break;
3216 		}
3217 
3218 		request = pma.pm_state;
3219 
3220 		if (request != PMC_STATE_DISABLED &&
3221 		    request != PMC_STATE_FREE) {
3222 			error = EINVAL;
3223 			break;
3224 		}
3225 
3226 		ri = pma.pm_pmc; /* pmc id == row index */
3227 		if (ri < 0 || ri >= (int) md->pmd_npmc) {
3228 			error = EINVAL;
3229 			break;
3230 		}
3231 
3232 		/*
3233 		 * We can't disable a PMC with a row-index allocated
3234 		 * for process virtual PMCs.
3235 		 */
3236 
3237 		if (PMC_ROW_DISP_IS_THREAD(ri) &&
3238 		    request == PMC_STATE_DISABLED) {
3239 			error = EBUSY;
3240 			break;
3241 		}
3242 
3243 		/*
3244 		 * otherwise, this PMC on this CPU is either free or
3245 		 * in system-wide mode.
3246 		 */
3247 
3248 		pmc_save_cpu_binding(&pb);
3249 		pmc_select_cpu(cpu);
3250 
3251 		pc  = pmc_pcpu[cpu];
3252 		phw = pc->pc_hwpmcs[ri];
3253 
3254 		/*
3255 		 * XXX do we need some kind of 'forced' disable?
3256 		 */
3257 
3258 		if (phw->phw_pmc == NULL) {
3259 			if (request == PMC_STATE_DISABLED &&
3260 			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
3261 				phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
3262 				PMC_MARK_ROW_STANDALONE(ri);
3263 			} else if (request == PMC_STATE_FREE &&
3264 			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
3265 				phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
3266 				PMC_UNMARK_ROW_STANDALONE(ri);
3267 			}
3268 			/* other cases are a no-op */
3269 		} else
3270 			error = EBUSY;
3271 
3272 		pmc_restore_cpu_binding(&pb);
3273 	}
3274 	break;
3275 
3276 
3277 	/*
3278 	 * Allocate a PMC.
3279 	 */
3280 
3281 	case PMC_OP_PMCALLOCATE:
3282 	{
3283 		int adjri, n;
3284 		u_int cpu;
3285 		uint32_t caps;
3286 		struct pmc *pmc;
3287 		enum pmc_mode mode;
3288 		struct pmc_hw *phw;
3289 		struct pmc_binding pb;
3290 		struct pmc_classdep *pcd;
3291 		struct pmc_op_pmcallocate pa;
3292 
3293 		if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
3294 			break;
3295 
3296 		caps = pa.pm_caps;
3297 		mode = pa.pm_mode;
3298 		cpu  = pa.pm_cpu;
3299 
3300 		if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
3301 		     mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
3302 		    (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) {
3303 			error = EINVAL;
3304 			break;
3305 		}
3306 
3307 		/*
3308 		 * Virtual PMCs should only ask for a default CPU.
3309 		 * System mode PMCs need to specify a non-default CPU.
3310 		 */
3311 
3312 		if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
3313 		    (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
3314 			error = EINVAL;
3315 			break;
3316 		}
3317 
3318 		/*
3319 		 * Check that an inactive CPU is not being asked for.
3320 		 */
3321 
3322 		if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) {
3323 			error = ENXIO;
3324 			break;
3325 		}
3326 
3327 		/*
3328 		 * Refuse an allocation for a system-wide PMC if this
3329 		 * process has been jailed, or if this process lacks
3330 		 * super-user credentials and the sysctl tunable
3331 		 * 'security.bsd.unprivileged_syspmcs' is zero.
3332 		 */
3333 
3334 		if (PMC_IS_SYSTEM_MODE(mode)) {
3335 			if (jailed(curthread->td_ucred)) {
3336 				error = EPERM;
3337 				break;
3338 			}
3339 			if (!pmc_unprivileged_syspmcs) {
3340 				error = priv_check(curthread,
3341 				    PRIV_PMC_SYSTEM);
3342 				if (error)
3343 					break;
3344 			}
3345 		}
3346 
3347 		/*
3348 		 * Look for valid values for 'pm_flags'
3349 		 */
3350 
3351 		if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3352 		    PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN)) != 0) {
3353 			error = EINVAL;
3354 			break;
3355 		}
3356 
3357 		/* process logging options are not allowed for system PMCs */
3358 		if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
3359 		    (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
3360 			error = EINVAL;
3361 			break;
3362 		}
3363 
3364 		/*
3365 		 * All sampling mode PMCs need to be able to interrupt the
3366 		 * CPU.
3367 		 */
3368 		if (PMC_IS_SAMPLING_MODE(mode))
3369 			caps |= PMC_CAP_INTERRUPT;
3370 
3371 		/* A valid class specifier should have been passed in. */
3372 		for (n = 0; n < md->pmd_nclass; n++)
3373 			if (md->pmd_classdep[n].pcd_class == pa.pm_class)
3374 				break;
3375 		if (n == md->pmd_nclass) {
3376 			error = EINVAL;
3377 			break;
3378 		}
3379 
3380 		/* The requested PMC capabilities should be feasible. */
3381 		if ((md->pmd_classdep[n].pcd_caps & caps) != caps) {
3382 			error = EOPNOTSUPP;
3383 			break;
3384 		}
3385 
3386 		PMCDBG4(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
3387 		    pa.pm_ev, caps, mode, cpu);
3388 
3389 		pmc = pmc_allocate_pmc_descriptor();
3390 		pmc->pm_id    = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
3391 		    PMC_ID_INVALID);
3392 		pmc->pm_event = pa.pm_ev;
3393 		pmc->pm_state = PMC_STATE_FREE;
3394 		pmc->pm_caps  = caps;
3395 		pmc->pm_flags = pa.pm_flags;
3396 
3397 		/* switch thread to CPU 'cpu' */
3398 		pmc_save_cpu_binding(&pb);
3399 
3400 #define	PMC_IS_SHAREABLE_PMC(cpu, n)				\
3401 	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &		\
3402 	 PMC_PHW_FLAG_IS_SHAREABLE)
3403 #define	PMC_IS_UNALLOCATED(cpu, n)				\
3404 	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3405 
3406 		if (PMC_IS_SYSTEM_MODE(mode)) {
3407 			pmc_select_cpu(cpu);
3408 			for (n = 0; n < (int) md->pmd_npmc; n++) {
3409 				pcd = pmc_ri_to_classdep(md, n, &adjri);
3410 				if (pmc_can_allocate_row(n, mode) == 0 &&
3411 				    pmc_can_allocate_rowindex(
3412 					    curthread->td_proc, n, cpu) == 0 &&
3413 				    (PMC_IS_UNALLOCATED(cpu, n) ||
3414 				     PMC_IS_SHAREABLE_PMC(cpu, n)) &&
3415 				    pcd->pcd_allocate_pmc(cpu, adjri, pmc,
3416 					&pa) == 0)
3417 					break;
3418 			}
3419 		} else {
3420 			/* Process virtual mode */
3421 			for (n = 0; n < (int) md->pmd_npmc; n++) {
3422 				pcd = pmc_ri_to_classdep(md, n, &adjri);
3423 				if (pmc_can_allocate_row(n, mode) == 0 &&
3424 				    pmc_can_allocate_rowindex(
3425 					    curthread->td_proc, n,
3426 					    PMC_CPU_ANY) == 0 &&
3427 				    pcd->pcd_allocate_pmc(curthread->td_oncpu,
3428 					adjri, pmc, &pa) == 0)
3429 					break;
3430 			}
3431 		}
3432 
3433 #undef	PMC_IS_UNALLOCATED
3434 #undef	PMC_IS_SHAREABLE_PMC
3435 
3436 		pmc_restore_cpu_binding(&pb);
3437 
3438 		if (n == (int) md->pmd_npmc) {
3439 			pmc_destroy_pmc_descriptor(pmc);
3440 			pmc = NULL;
3441 			error = EINVAL;
3442 			break;
3443 		}
3444 
3445 		/* Fill in the correct value in the ID field */
3446 		pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
3447 
3448 		PMCDBG5(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
3449 		    pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
3450 
3451 		/* Process mode PMCs with logging enabled need log files */
3452 		if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
3453 			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3454 
3455 		/* All system mode sampling PMCs require a log file */
3456 		if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
3457 			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3458 
3459 		/*
3460 		 * Configure global pmc's immediately
3461 		 */
3462 
3463 		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
3464 
3465 			pmc_save_cpu_binding(&pb);
3466 			pmc_select_cpu(cpu);
3467 
3468 			phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
3469 			pcd = pmc_ri_to_classdep(md, n, &adjri);
3470 
3471 			if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
3472 			    (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
3473 				(void) pcd->pcd_release_pmc(cpu, adjri, pmc);
3474 				pmc_destroy_pmc_descriptor(pmc);
3475 				pmc = NULL;
3476 				pmc_restore_cpu_binding(&pb);
3477 				error = EPERM;
3478 				break;
3479 			}
3480 
3481 			pmc_restore_cpu_binding(&pb);
3482 		}
3483 
3484 		pmc->pm_state    = PMC_STATE_ALLOCATED;
3485 
3486 		/*
3487 		 * mark row disposition
3488 		 */
3489 
3490 		if (PMC_IS_SYSTEM_MODE(mode))
3491 			PMC_MARK_ROW_STANDALONE(n);
3492 		else
3493 			PMC_MARK_ROW_THREAD(n);
3494 
3495 		/*
3496 		 * Register this PMC with the current thread as its owner.
3497 		 */
3498 
3499 		if ((error =
3500 		    pmc_register_owner(curthread->td_proc, pmc)) != 0) {
3501 			pmc_release_pmc_descriptor(pmc);
3502 			pmc_destroy_pmc_descriptor(pmc);
3503 			pmc = NULL;
3504 			break;
3505 		}
3506 
3507 		/*
3508 		 * Return the allocated index.
3509 		 */
3510 
3511 		pa.pm_pmcid = pmc->pm_id;
3512 
3513 		error = copyout(&pa, arg, sizeof(pa));
3514 	}
3515 	break;
3516 
3517 
3518 	/*
3519 	 * Attach a PMC to a process.
3520 	 */
3521 
3522 	case PMC_OP_PMCATTACH:
3523 	{
3524 		struct pmc *pm;
3525 		struct proc *p;
3526 		struct pmc_op_pmcattach a;
3527 
3528 		sx_assert(&pmc_sx, SX_XLOCKED);
3529 
3530 		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3531 			break;
3532 
3533 		if (a.pm_pid < 0) {
3534 			error = EINVAL;
3535 			break;
3536 		} else if (a.pm_pid == 0)
3537 			a.pm_pid = td->td_proc->p_pid;
3538 
3539 		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3540 			break;
3541 
3542 		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
3543 			error = EINVAL;
3544 			break;
3545 		}
3546 
3547 		/* PMCs may be (re)attached only when allocated or stopped */
3548 		if (pm->pm_state == PMC_STATE_RUNNING) {
3549 			error = EBUSY;
3550 			break;
3551 		} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
3552 		    pm->pm_state != PMC_STATE_STOPPED) {
3553 			error = EINVAL;
3554 			break;
3555 		}
3556 
3557 		/* lookup pid */
3558 		if ((p = pfind(a.pm_pid)) == NULL) {
3559 			error = ESRCH;
3560 			break;
3561 		}
3562 
3563 		/*
3564 		 * Ignore processes that are working on exiting.
3565 		 */
3566 		if (p->p_flag & P_WEXIT) {
3567 			error = ESRCH;
3568 			PROC_UNLOCK(p);	/* pfind() returns a locked process */
3569 			break;
3570 		}
3571 
3572 		/*
3573 		 * we are allowed to attach a PMC to a process if
3574 		 * we can debug it.
3575 		 */
3576 		error = p_candebug(curthread, p);
3577 
3578 		PROC_UNLOCK(p);
3579 
3580 		if (error == 0)
3581 			error = pmc_attach_process(p, pm);
3582 	}
3583 	break;
3584 
3585 
3586 	/*
3587 	 * Detach an attached PMC from a process.
3588 	 */
3589 
3590 	case PMC_OP_PMCDETACH:
3591 	{
3592 		struct pmc *pm;
3593 		struct proc *p;
3594 		struct pmc_op_pmcattach a;
3595 
3596 		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3597 			break;
3598 
3599 		if (a.pm_pid < 0) {
3600 			error = EINVAL;
3601 			break;
3602 		} else if (a.pm_pid == 0)
3603 			a.pm_pid = td->td_proc->p_pid;
3604 
3605 		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3606 			break;
3607 
3608 		if ((p = pfind(a.pm_pid)) == NULL) {
3609 			error = ESRCH;
3610 			break;
3611 		}
3612 
3613 		/*
3614 		 * Treat processes that are in the process of exiting
3615 		 * as if they were not present.
3616 		 */
3617 
3618 		if (p->p_flag & P_WEXIT)
3619 			error = ESRCH;
3620 
3621 		PROC_UNLOCK(p);	/* pfind() returns a locked process */
3622 
3623 		if (error == 0)
3624 			error = pmc_detach_process(p, pm);
3625 	}
3626 	break;
3627 
3628 
3629 	/*
3630 	 * Retrieve the MSR number associated with the counter
3631 	 * 'pmc_id'.  This allows processes to directly use RDPMC
3632 	 * instructions to read their PMCs, without the overhead of a
3633 	 * system call.
3634 	 */
3635 
3636 	case PMC_OP_PMCGETMSR:
3637 	{
3638 		int adjri, ri;
3639 		struct pmc *pm;
3640 		struct pmc_target *pt;
3641 		struct pmc_op_getmsr gm;
3642 		struct pmc_classdep *pcd;
3643 
3644 		PMC_DOWNGRADE_SX();
3645 
3646 		if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
3647 			break;
3648 
3649 		if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
3650 			break;
3651 
3652 		/*
3653 		 * The allocated PMC has to be a process virtual PMC,
3654 		 * i.e., of type MODE_T[CS].  Global PMCs can only be
3655 		 * read using the PMCREAD operation since they may be
3656 		 * allocated on a different CPU than the one we could
3657 		 * be running on at the time of the RDPMC instruction.
3658 		 *
3659 		 * The GETMSR operation is not allowed for PMCs that
3660 		 * are inherited across processes.
3661 		 */
3662 
3663 		if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
3664 		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
3665 			error = EINVAL;
3666 			break;
3667 		}
3668 
3669 		/*
3670 		 * It only makes sense to use a RDPMC (or its
3671 		 * equivalent instruction on non-x86 architectures) on
3672 		 * a process that has allocated and attached a PMC to
3673 		 * itself.  Conversely the PMC is only allowed to have
3674 		 * one process attached to it -- its owner.
3675 		 */
3676 
3677 		if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
3678 		    LIST_NEXT(pt, pt_next) != NULL ||
3679 		    pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
3680 			error = EINVAL;
3681 			break;
3682 		}
3683 
3684 		ri = PMC_TO_ROWINDEX(pm);
3685 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
3686 
3687 		/* PMC class has no 'GETMSR' support */
3688 		if (pcd->pcd_get_msr == NULL) {
3689 			error = ENOSYS;
3690 			break;
3691 		}
3692 
3693 		if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
3694 			break;
3695 
3696 		if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
3697 			break;
3698 
3699 		/*
3700 		 * Mark our process as using MSRs.  Update machine
3701 		 * state using a forced context switch.
3702 		 */
3703 
3704 		pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
3705 		pmc_force_context_switch();
3706 
3707 	}
3708 	break;
3709 
3710 	/*
3711 	 * Release an allocated PMC
3712 	 */
3713 
3714 	case PMC_OP_PMCRELEASE:
3715 	{
3716 		pmc_id_t pmcid;
3717 		struct pmc *pm;
3718 		struct pmc_owner *po;
3719 		struct pmc_op_simple sp;
3720 
3721 		/*
3722 		 * Find PMC pointer for the named PMC.
3723 		 *
3724 		 * Use pmc_release_pmc_descriptor() to switch off the
3725 		 * PMC, remove all its target threads, and remove the
3726 		 * PMC from its owner's list.
3727 		 *
3728 		 * Remove the owner record if this is the last PMC
3729 		 * owned.
3730 		 *
3731 		 * Free up space.
3732 		 */
3733 
3734 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3735 			break;
3736 
3737 		pmcid = sp.pm_pmcid;
3738 
3739 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3740 			break;
3741 
3742 		po = pm->pm_owner;
3743 		pmc_release_pmc_descriptor(pm);
3744 		pmc_maybe_remove_owner(po);
3745 		pmc_destroy_pmc_descriptor(pm);
3746 	}
3747 	break;
3748 
3749 
3750 	/*
3751 	 * Read and/or write a PMC.
3752 	 */
3753 
3754 	case PMC_OP_PMCRW:
3755 	{
3756 		int adjri;
3757 		struct pmc *pm;
3758 		uint32_t cpu, ri;
3759 		pmc_value_t oldvalue;
3760 		struct pmc_binding pb;
3761 		struct pmc_op_pmcrw prw;
3762 		struct pmc_classdep *pcd;
3763 		struct pmc_op_pmcrw *pprw;
3764 
3765 		PMC_DOWNGRADE_SX();
3766 
3767 		if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
3768 			break;
3769 
3770 		ri = 0;
3771 		PMCDBG2(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
3772 		    prw.pm_flags);
3773 
3774 		/* must have at least one flag set */
3775 		if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
3776 			error = EINVAL;
3777 			break;
3778 		}
3779 
3780 		/* locate pmc descriptor */
3781 		if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
3782 			break;
3783 
3784 		/* Can't read a PMC that hasn't been started. */
3785 		if (pm->pm_state != PMC_STATE_ALLOCATED &&
3786 		    pm->pm_state != PMC_STATE_STOPPED &&
3787 		    pm->pm_state != PMC_STATE_RUNNING) {
3788 			error = EINVAL;
3789 			break;
3790 		}
3791 
3792 		/* writing a new value is allowed only for 'STOPPED' pmcs */
3793 		if (pm->pm_state == PMC_STATE_RUNNING &&
3794 		    (prw.pm_flags & PMC_F_NEWVALUE)) {
3795 			error = EBUSY;
3796 			break;
3797 		}
3798 
3799 		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
3800 
3801 			/*
3802 			 * If this PMC is attached to its owner (i.e.,
3803 			 * the process requesting this operation) and
3804 			 * is running, then attempt to get an
3805 			 * upto-date reading from hardware for a READ.
3806 			 * Writes are only allowed when the PMC is
3807 			 * stopped, so only update the saved value
3808 			 * field.
3809 			 *
3810 			 * If the PMC is not running, or is not
3811 			 * attached to its owner, read/write to the
3812 			 * savedvalue field.
3813 			 */
3814 
3815 			ri = PMC_TO_ROWINDEX(pm);
3816 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3817 
3818 			mtx_pool_lock_spin(pmc_mtxpool, pm);
3819 			cpu = curthread->td_oncpu;
3820 
3821 			if (prw.pm_flags & PMC_F_OLDVALUE) {
3822 				if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
3823 				    (pm->pm_state == PMC_STATE_RUNNING))
3824 					error = (*pcd->pcd_read_pmc)(cpu, adjri,
3825 					    &oldvalue);
3826 				else
3827 					oldvalue = pm->pm_gv.pm_savedvalue;
3828 			}
3829 			if (prw.pm_flags & PMC_F_NEWVALUE)
3830 				pm->pm_gv.pm_savedvalue = prw.pm_value;
3831 
3832 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
3833 
3834 		} else { /* System mode PMCs */
3835 			cpu = PMC_TO_CPU(pm);
3836 			ri  = PMC_TO_ROWINDEX(pm);
3837 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3838 
3839 			if (!pmc_cpu_is_active(cpu)) {
3840 				error = ENXIO;
3841 				break;
3842 			}
3843 
3844 			/* move this thread to CPU 'cpu' */
3845 			pmc_save_cpu_binding(&pb);
3846 			pmc_select_cpu(cpu);
3847 
3848 			critical_enter();
3849 			/* save old value */
3850 			if (prw.pm_flags & PMC_F_OLDVALUE)
3851 				if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
3852 					 &oldvalue)))
3853 					goto error;
3854 			/* write out new value */
3855 			if (prw.pm_flags & PMC_F_NEWVALUE)
3856 				error = (*pcd->pcd_write_pmc)(cpu, adjri,
3857 				    prw.pm_value);
3858 		error:
3859 			critical_exit();
3860 			pmc_restore_cpu_binding(&pb);
3861 			if (error)
3862 				break;
3863 		}
3864 
3865 		pprw = (struct pmc_op_pmcrw *) arg;
3866 
3867 #ifdef	HWPMC_DEBUG
3868 		if (prw.pm_flags & PMC_F_NEWVALUE)
3869 			PMCDBG3(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
3870 			    ri, prw.pm_value, oldvalue);
3871 		else if (prw.pm_flags & PMC_F_OLDVALUE)
3872 			PMCDBG2(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
3873 #endif
3874 
3875 		/* return old value if requested */
3876 		if (prw.pm_flags & PMC_F_OLDVALUE)
3877 			if ((error = copyout(&oldvalue, &pprw->pm_value,
3878 				 sizeof(prw.pm_value))))
3879 				break;
3880 
3881 	}
3882 	break;
3883 
3884 
3885 	/*
3886 	 * Set the sampling rate for a sampling mode PMC and the
3887 	 * initial count for a counting mode PMC.
3888 	 */
3889 
3890 	case PMC_OP_PMCSETCOUNT:
3891 	{
3892 		struct pmc *pm;
3893 		struct pmc_op_pmcsetcount sc;
3894 
3895 		PMC_DOWNGRADE_SX();
3896 
3897 		if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
3898 			break;
3899 
3900 		if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
3901 			break;
3902 
3903 		if (pm->pm_state == PMC_STATE_RUNNING) {
3904 			error = EBUSY;
3905 			break;
3906 		}
3907 
3908 		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3909 			pm->pm_sc.pm_reloadcount = sc.pm_count;
3910 		else
3911 			pm->pm_sc.pm_initial = sc.pm_count;
3912 	}
3913 	break;
3914 
3915 
3916 	/*
3917 	 * Start a PMC.
3918 	 */
3919 
3920 	case PMC_OP_PMCSTART:
3921 	{
3922 		pmc_id_t pmcid;
3923 		struct pmc *pm;
3924 		struct pmc_op_simple sp;
3925 
3926 		sx_assert(&pmc_sx, SX_XLOCKED);
3927 
3928 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3929 			break;
3930 
3931 		pmcid = sp.pm_pmcid;
3932 
3933 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3934 			break;
3935 
3936 		KASSERT(pmcid == pm->pm_id,
3937 		    ("[pmc,%d] pmcid %x != id %x", __LINE__,
3938 			pm->pm_id, pmcid));
3939 
3940 		if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
3941 			break;
3942 		else if (pm->pm_state != PMC_STATE_STOPPED &&
3943 		    pm->pm_state != PMC_STATE_ALLOCATED) {
3944 			error = EINVAL;
3945 			break;
3946 		}
3947 
3948 		error = pmc_start(pm);
3949 	}
3950 	break;
3951 
3952 
3953 	/*
3954 	 * Stop a PMC.
3955 	 */
3956 
3957 	case PMC_OP_PMCSTOP:
3958 	{
3959 		pmc_id_t pmcid;
3960 		struct pmc *pm;
3961 		struct pmc_op_simple sp;
3962 
3963 		PMC_DOWNGRADE_SX();
3964 
3965 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3966 			break;
3967 
3968 		pmcid = sp.pm_pmcid;
3969 
3970 		/*
3971 		 * Mark the PMC as inactive and invoke the MD stop
3972 		 * routines if needed.
3973 		 */
3974 
3975 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3976 			break;
3977 
3978 		KASSERT(pmcid == pm->pm_id,
3979 		    ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
3980 			pm->pm_id, pmcid));
3981 
3982 		if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
3983 			break;
3984 		else if (pm->pm_state != PMC_STATE_RUNNING) {
3985 			error = EINVAL;
3986 			break;
3987 		}
3988 
3989 		error = pmc_stop(pm);
3990 	}
3991 	break;
3992 
3993 
3994 	/*
3995 	 * Write a user supplied value to the log file.
3996 	 */
3997 
3998 	case PMC_OP_WRITELOG:
3999 	{
4000 		struct pmc_op_writelog wl;
4001 		struct pmc_owner *po;
4002 
4003 		PMC_DOWNGRADE_SX();
4004 
4005 		if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
4006 			break;
4007 
4008 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
4009 			error = EINVAL;
4010 			break;
4011 		}
4012 
4013 		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
4014 			error = EINVAL;
4015 			break;
4016 		}
4017 
4018 		error = pmclog_process_userlog(po, &wl);
4019 	}
4020 	break;
4021 
4022 
4023 	default:
4024 		error = EINVAL;
4025 		break;
4026 	}
4027 
4028 	if (is_sx_locked != 0) {
4029 		if (is_sx_downgraded)
4030 			sx_sunlock(&pmc_sx);
4031 		else
4032 			sx_xunlock(&pmc_sx);
4033 	}
4034 
4035 	if (error)
4036 		atomic_add_int(&pmc_stats.pm_syscall_errors, 1);
4037 
4038 	PICKUP_GIANT();
4039 
4040 	return error;
4041 }
4042 
4043 /*
4044  * Helper functions
4045  */
4046 
4047 
4048 /*
4049  * Mark the thread as needing callchain capture and post an AST.  The
4050  * actual callchain capture will be done in a context where it is safe
4051  * to take page faults.
4052  */
4053 
4054 static void
4055 pmc_post_callchain_callback(void)
4056 {
4057 	struct thread *td;
4058 
4059 	td = curthread;
4060 
4061 	/*
4062 	 * If there is multiple PMCs for the same interrupt ignore new post
4063 	 */
4064 	if (td->td_pflags & TDP_CALLCHAIN)
4065 		return;
4066 
4067 	/*
4068 	 * Mark this thread as needing callchain capture.
4069 	 * `td->td_pflags' will be safe to touch because this thread
4070 	 * was in user space when it was interrupted.
4071 	 */
4072 	td->td_pflags |= TDP_CALLCHAIN;
4073 
4074 	/*
4075 	 * Don't let this thread migrate between CPUs until callchain
4076 	 * capture completes.
4077 	 */
4078 	sched_pin();
4079 
4080 	return;
4081 }
4082 
4083 /*
4084  * Interrupt processing.
4085  *
4086  * Find a free slot in the per-cpu array of samples and capture the
4087  * current callchain there.  If a sample was successfully added, a bit
4088  * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4089  * needs to be invoked from the clock handler.
4090  *
4091  * This function is meant to be called from an NMI handler.  It cannot
4092  * use any of the locking primitives supplied by the OS.
4093  */
4094 
4095 int
4096 pmc_process_interrupt(int cpu, int ring, struct pmc *pm, struct trapframe *tf,
4097     int inuserspace)
4098 {
4099 	int error, callchaindepth;
4100 	struct thread *td;
4101 	struct pmc_sample *ps;
4102 	struct pmc_samplebuffer *psb;
4103 
4104 	error = 0;
4105 
4106 	/*
4107 	 * Allocate space for a sample buffer.
4108 	 */
4109 	psb = pmc_pcpu[cpu]->pc_sb[ring];
4110 
4111 	ps = psb->ps_write;
4112 	if (ps->ps_nsamples) {	/* in use, reader hasn't caught up */
4113 		CPU_SET_ATOMIC(cpu, &pm->pm_stalled);
4114 		atomic_add_int(&pmc_stats.pm_intr_bufferfull, 1);
4115 		PMCDBG6(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4116 		    cpu, pm, (void *) tf, inuserspace,
4117 		    (int) (psb->ps_write - psb->ps_samples),
4118 		    (int) (psb->ps_read - psb->ps_samples));
4119 		callchaindepth = 1;
4120 		error = ENOMEM;
4121 		goto done;
4122 	}
4123 
4124 
4125 	/* Fill in entry. */
4126 	PMCDBG6(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
4127 	    (void *) tf, inuserspace,
4128 	    (int) (psb->ps_write - psb->ps_samples),
4129 	    (int) (psb->ps_read - psb->ps_samples));
4130 
4131 	KASSERT(pm->pm_runcount >= 0,
4132 	    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4133 		pm->pm_runcount));
4134 
4135 	atomic_add_rel_int(&pm->pm_runcount, 1);	/* hold onto PMC */
4136 
4137 	ps->ps_pmc = pm;
4138 	if ((td = curthread) && td->td_proc)
4139 		ps->ps_pid = td->td_proc->p_pid;
4140 	else
4141 		ps->ps_pid = -1;
4142 	ps->ps_cpu = cpu;
4143 	ps->ps_td = td;
4144 	ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4145 
4146 	callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4147 	    pmc_callchaindepth : 1;
4148 
4149 	if (callchaindepth == 1)
4150 		ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4151 	else {
4152 		/*
4153 		 * Kernel stack traversals can be done immediately,
4154 		 * while we defer to an AST for user space traversals.
4155 		 */
4156 		if (!inuserspace) {
4157 			callchaindepth =
4158 			    pmc_save_kernel_callchain(ps->ps_pc,
4159 				callchaindepth, tf);
4160 		} else {
4161 			pmc_post_callchain_callback();
4162 			callchaindepth = PMC_SAMPLE_INUSE;
4163 		}
4164 	}
4165 
4166 	ps->ps_nsamples = callchaindepth;	/* mark entry as in use */
4167 
4168 	/* increment write pointer, modulo ring buffer size */
4169 	ps++;
4170 	if (ps == psb->ps_fence)
4171 		psb->ps_write = psb->ps_samples;
4172 	else
4173 		psb->ps_write = ps;
4174 
4175  done:
4176 	/* mark CPU as needing processing */
4177 	if (callchaindepth != PMC_SAMPLE_INUSE)
4178 		CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4179 
4180 	return (error);
4181 }
4182 
4183 /*
4184  * Capture a user call chain.  This function will be called from ast()
4185  * before control returns to userland and before the process gets
4186  * rescheduled.
4187  */
4188 
4189 static void
4190 pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
4191 {
4192 	struct pmc *pm;
4193 	struct thread *td;
4194 	struct pmc_sample *ps, *ps_end;
4195 	struct pmc_samplebuffer *psb;
4196 #ifdef	INVARIANTS
4197 	int ncallchains;
4198 #endif
4199 
4200 	psb = pmc_pcpu[cpu]->pc_sb[ring];
4201 	td = curthread;
4202 
4203 	KASSERT(td->td_pflags & TDP_CALLCHAIN,
4204 	    ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4205 		__LINE__));
4206 
4207 #ifdef	INVARIANTS
4208 	ncallchains = 0;
4209 #endif
4210 
4211 	/*
4212 	 * Iterate through all deferred callchain requests.
4213 	 * Walk from the current read pointer to the current
4214 	 * write pointer.
4215 	 */
4216 
4217 	ps = psb->ps_read;
4218 	ps_end = psb->ps_write;
4219 	do {
4220 		if (ps->ps_nsamples != PMC_SAMPLE_INUSE)
4221 			goto next;
4222 		if (ps->ps_td != td)
4223 			goto next;
4224 
4225 		KASSERT(ps->ps_cpu == cpu,
4226 		    ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4227 			ps->ps_cpu, PCPU_GET(cpuid)));
4228 
4229 		pm = ps->ps_pmc;
4230 
4231 		KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4232 		    ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4233 			"want it", __LINE__));
4234 
4235 		KASSERT(pm->pm_runcount > 0,
4236 		    ("[pmc,%d] runcount %d", __LINE__, pm->pm_runcount));
4237 
4238 		/*
4239 		 * Retrieve the callchain and mark the sample buffer
4240 		 * as 'processable' by the timer tick sweep code.
4241 		 */
4242 		ps->ps_nsamples = pmc_save_user_callchain(ps->ps_pc,
4243 		    pmc_callchaindepth, tf);
4244 
4245 #ifdef	INVARIANTS
4246 		ncallchains++;
4247 #endif
4248 
4249 next:
4250 		/* increment the pointer, modulo sample ring size */
4251 		if (++ps == psb->ps_fence)
4252 			ps = psb->ps_samples;
4253 	} while (ps != ps_end);
4254 
4255 	KASSERT(ncallchains > 0,
4256 	    ("[pmc,%d] cpu %d didn't find a sample to collect", __LINE__,
4257 		cpu));
4258 
4259 	KASSERT(td->td_pinned == 1,
4260 	    ("[pmc,%d] invalid td_pinned value", __LINE__));
4261 	sched_unpin();	/* Can migrate safely now. */
4262 
4263 	/* mark CPU as needing processing */
4264 	CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4265 
4266 	return;
4267 }
4268 
4269 /*
4270  * Process saved PC samples.
4271  */
4272 
4273 static void
4274 pmc_process_samples(int cpu, int ring)
4275 {
4276 	struct pmc *pm;
4277 	int adjri, n;
4278 	struct thread *td;
4279 	struct pmc_owner *po;
4280 	struct pmc_sample *ps;
4281 	struct pmc_classdep *pcd;
4282 	struct pmc_samplebuffer *psb;
4283 
4284 	KASSERT(PCPU_GET(cpuid) == cpu,
4285 	    ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4286 		PCPU_GET(cpuid), cpu));
4287 
4288 	psb = pmc_pcpu[cpu]->pc_sb[ring];
4289 
4290 	for (n = 0; n < pmc_nsamples; n++) { /* bound on #iterations */
4291 
4292 		ps = psb->ps_read;
4293 		if (ps->ps_nsamples == PMC_SAMPLE_FREE)
4294 			break;
4295 
4296 		pm = ps->ps_pmc;
4297 
4298 		KASSERT(pm->pm_runcount > 0,
4299 		    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4300 			pm->pm_runcount));
4301 
4302 		po = pm->pm_owner;
4303 
4304 		KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4305 		    ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4306 			pm, PMC_TO_MODE(pm)));
4307 
4308 		/* Ignore PMCs that have been switched off */
4309 		if (pm->pm_state != PMC_STATE_RUNNING)
4310 			goto entrydone;
4311 
4312 		/* If there is a pending AST wait for completion */
4313 		if (ps->ps_nsamples == PMC_SAMPLE_INUSE) {
4314 			/* Need a rescan at a later time. */
4315 			CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4316 			break;
4317 		}
4318 
4319 		PMCDBG6(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4320 		    pm, ps->ps_nsamples, ps->ps_flags,
4321 		    (int) (psb->ps_write - psb->ps_samples),
4322 		    (int) (psb->ps_read - psb->ps_samples));
4323 
4324 		/*
4325 		 * If this is a process-mode PMC that is attached to
4326 		 * its owner, and if the PC is in user mode, update
4327 		 * profiling statistics like timer-based profiling
4328 		 * would have done.
4329 		 */
4330 		if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4331 			if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4332 				td = FIRST_THREAD_IN_PROC(po->po_owner);
4333 				addupc_intr(td, ps->ps_pc[0], 1);
4334 			}
4335 			goto entrydone;
4336 		}
4337 
4338 		/*
4339 		 * Otherwise, this is either a sampling mode PMC that
4340 		 * is attached to a different process than its owner,
4341 		 * or a system-wide sampling PMC.  Dispatch a log
4342 		 * entry to the PMC's owner process.
4343 		 */
4344 		pmclog_process_callchain(pm, ps);
4345 
4346 	entrydone:
4347 		ps->ps_nsamples = 0; /* mark entry as free */
4348 		atomic_subtract_rel_int(&pm->pm_runcount, 1);
4349 
4350 		/* increment read pointer, modulo sample size */
4351 		if (++ps == psb->ps_fence)
4352 			psb->ps_read = psb->ps_samples;
4353 		else
4354 			psb->ps_read = ps;
4355 	}
4356 
4357 	atomic_add_int(&pmc_stats.pm_log_sweeps, 1);
4358 
4359 	/* Do not re-enable stalled PMCs if we failed to process any samples */
4360 	if (n == 0)
4361 		return;
4362 
4363 	/*
4364 	 * Restart any stalled sampling PMCs on this CPU.
4365 	 *
4366 	 * If the NMI handler sets the pm_stalled field of a PMC after
4367 	 * the check below, we'll end up processing the stalled PMC at
4368 	 * the next hardclock tick.
4369 	 */
4370 	for (n = 0; n < md->pmd_npmc; n++) {
4371 		pcd = pmc_ri_to_classdep(md, n, &adjri);
4372 		KASSERT(pcd != NULL,
4373 		    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4374 		(void) (*pcd->pcd_get_config)(cpu,adjri,&pm);
4375 
4376 		if (pm == NULL ||			 /* !cfg'ed */
4377 		    pm->pm_state != PMC_STATE_RUNNING || /* !active */
4378 		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
4379 		    !CPU_ISSET(cpu, &pm->pm_cpustate) || /* !desired */
4380 		    !CPU_ISSET(cpu, &pm->pm_stalled)) /* !stalled */
4381 			continue;
4382 
4383 		CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
4384 		(*pcd->pcd_start_pmc)(cpu, adjri);
4385 	}
4386 }
4387 
4388 /*
4389  * Event handlers.
4390  */
4391 
4392 /*
4393  * Handle a process exit.
4394  *
4395  * Remove this process from all hash tables.  If this process
4396  * owned any PMCs, turn off those PMCs and deallocate them,
4397  * removing any associations with target processes.
4398  *
4399  * This function will be called by the last 'thread' of a
4400  * process.
4401  *
4402  * XXX This eventhandler gets called early in the exit process.
4403  * Consider using a 'hook' invocation from thread_exit() or equivalent
4404  * spot.  Another negative is that kse_exit doesn't seem to call
4405  * exit1() [??].
4406  *
4407  */
4408 
4409 static void
4410 pmc_process_exit(void *arg __unused, struct proc *p)
4411 {
4412 	struct pmc *pm;
4413 	int adjri, cpu;
4414 	unsigned int ri;
4415 	int is_using_hwpmcs;
4416 	struct pmc_owner *po;
4417 	struct pmc_process *pp;
4418 	struct pmc_classdep *pcd;
4419 	pmc_value_t newvalue, tmp;
4420 
4421 	PROC_LOCK(p);
4422 	is_using_hwpmcs = p->p_flag & P_HWPMC;
4423 	PROC_UNLOCK(p);
4424 
4425 	/*
4426 	 * Log a sysexit event to all SS PMC owners.
4427 	 */
4428 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4429 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4430 		    pmclog_process_sysexit(po, p->p_pid);
4431 
4432 	if (!is_using_hwpmcs)
4433 		return;
4434 
4435 	PMC_GET_SX_XLOCK();
4436 	PMCDBG3(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
4437 	    p->p_comm);
4438 
4439 	/*
4440 	 * Since this code is invoked by the last thread in an exiting
4441 	 * process, we would have context switched IN at some prior
4442 	 * point.  However, with PREEMPTION, kernel mode context
4443 	 * switches may happen any time, so we want to disable a
4444 	 * context switch OUT till we get any PMCs targetting this
4445 	 * process off the hardware.
4446 	 *
4447 	 * We also need to atomically remove this process'
4448 	 * entry from our target process hash table, using
4449 	 * PMC_FLAG_REMOVE.
4450 	 */
4451 	PMCDBG3(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
4452 	    p->p_comm);
4453 
4454 	critical_enter(); /* no preemption */
4455 
4456 	cpu = curthread->td_oncpu;
4457 
4458 	if ((pp = pmc_find_process_descriptor(p,
4459 		 PMC_FLAG_REMOVE)) != NULL) {
4460 
4461 		PMCDBG2(PRC,EXT,2,
4462 		    "process-exit proc=%p pmc-process=%p", p, pp);
4463 
4464 		/*
4465 		 * The exiting process could the target of
4466 		 * some PMCs which will be running on
4467 		 * currently executing CPU.
4468 		 *
4469 		 * We need to turn these PMCs off like we
4470 		 * would do at context switch OUT time.
4471 		 */
4472 		for (ri = 0; ri < md->pmd_npmc; ri++) {
4473 
4474 			/*
4475 			 * Pick up the pmc pointer from hardware
4476 			 * state similar to the CSW_OUT code.
4477 			 */
4478 			pm = NULL;
4479 
4480 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
4481 
4482 			(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
4483 
4484 			PMCDBG2(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
4485 
4486 			if (pm == NULL ||
4487 			    !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
4488 				continue;
4489 
4490 			PMCDBG4(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
4491 			    "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
4492 			    pm, pm->pm_state);
4493 
4494 			KASSERT(PMC_TO_ROWINDEX(pm) == ri,
4495 			    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
4496 				__LINE__, PMC_TO_ROWINDEX(pm), ri));
4497 
4498 			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
4499 			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
4500 				__LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
4501 
4502 			KASSERT(pm->pm_runcount > 0,
4503 			    ("[pmc,%d] bad runcount ri %d rc %d",
4504 				__LINE__, ri, pm->pm_runcount));
4505 
4506 			/*
4507 			 * Change desired state, and then stop if not
4508 			 * stalled. This two-step dance should avoid
4509 			 * race conditions where an interrupt re-enables
4510 			 * the PMC after this code has already checked
4511 			 * the pm_stalled flag.
4512 			 */
4513 			if (CPU_ISSET(cpu, &pm->pm_cpustate)) {
4514 				CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
4515 				if (!CPU_ISSET(cpu, &pm->pm_stalled)) {
4516 					(void) pcd->pcd_stop_pmc(cpu, adjri);
4517 					pcd->pcd_read_pmc(cpu, adjri,
4518 					    &newvalue);
4519 					tmp = newvalue -
4520 					    PMC_PCPU_SAVED(cpu,ri);
4521 
4522 					mtx_pool_lock_spin(pmc_mtxpool, pm);
4523 					pm->pm_gv.pm_savedvalue += tmp;
4524 					pp->pp_pmcs[ri].pp_pmcval += tmp;
4525 					mtx_pool_unlock_spin(pmc_mtxpool, pm);
4526 				}
4527 			}
4528 
4529 			atomic_subtract_rel_int(&pm->pm_runcount,1);
4530 
4531 			KASSERT((int) pm->pm_runcount >= 0,
4532 			    ("[pmc,%d] runcount is %d", __LINE__, ri));
4533 
4534 			(void) pcd->pcd_config_pmc(cpu, adjri, NULL);
4535 		}
4536 
4537 		/*
4538 		 * Inform the MD layer of this pseudo "context switch
4539 		 * out"
4540 		 */
4541 		(void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
4542 
4543 		critical_exit(); /* ok to be pre-empted now */
4544 
4545 		/*
4546 		 * Unlink this process from the PMCs that are
4547 		 * targetting it.  This will send a signal to
4548 		 * all PMC owner's whose PMCs are orphaned.
4549 		 *
4550 		 * Log PMC value at exit time if requested.
4551 		 */
4552 		for (ri = 0; ri < md->pmd_npmc; ri++)
4553 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
4554 				if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
4555 				    PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
4556 					pmclog_process_procexit(pm, pp);
4557 				pmc_unlink_target_process(pm, pp);
4558 			}
4559 		free(pp, M_PMC);
4560 
4561 	} else
4562 		critical_exit(); /* pp == NULL */
4563 
4564 
4565 	/*
4566 	 * If the process owned PMCs, free them up and free up
4567 	 * memory.
4568 	 */
4569 	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
4570 		pmc_remove_owner(po);
4571 		pmc_destroy_owner_descriptor(po);
4572 	}
4573 
4574 	sx_xunlock(&pmc_sx);
4575 }
4576 
4577 /*
4578  * Handle a process fork.
4579  *
4580  * If the parent process 'p1' is under HWPMC monitoring, then copy
4581  * over any attached PMCs that have 'do_descendants' semantics.
4582  */
4583 
4584 static void
4585 pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
4586     int flags)
4587 {
4588 	int is_using_hwpmcs;
4589 	unsigned int ri;
4590 	uint32_t do_descendants;
4591 	struct pmc *pm;
4592 	struct pmc_owner *po;
4593 	struct pmc_process *ppnew, *ppold;
4594 
4595 	(void) flags;		/* unused parameter */
4596 
4597 	PROC_LOCK(p1);
4598 	is_using_hwpmcs = p1->p_flag & P_HWPMC;
4599 	PROC_UNLOCK(p1);
4600 
4601 	/*
4602 	 * If there are system-wide sampling PMCs active, we need to
4603 	 * log all fork events to their owner's logs.
4604 	 */
4605 
4606 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4607 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4608 		    pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
4609 
4610 	if (!is_using_hwpmcs)
4611 		return;
4612 
4613 	PMC_GET_SX_XLOCK();
4614 	PMCDBG4(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
4615 	    p1->p_pid, p1->p_comm, newproc);
4616 
4617 	/*
4618 	 * If the parent process (curthread->td_proc) is a
4619 	 * target of any PMCs, look for PMCs that are to be
4620 	 * inherited, and link these into the new process
4621 	 * descriptor.
4622 	 */
4623 	if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
4624 		 PMC_FLAG_NONE)) == NULL)
4625 		goto done;		/* nothing to do */
4626 
4627 	do_descendants = 0;
4628 	for (ri = 0; ri < md->pmd_npmc; ri++)
4629 		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
4630 			do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
4631 	if (do_descendants == 0) /* nothing to do */
4632 		goto done;
4633 
4634 	/* allocate a descriptor for the new process  */
4635 	if ((ppnew = pmc_find_process_descriptor(newproc,
4636 		 PMC_FLAG_ALLOCATE)) == NULL)
4637 		goto done;
4638 
4639 	/*
4640 	 * Run through all PMCs that were targeting the old process
4641 	 * and which specified F_DESCENDANTS and attach them to the
4642 	 * new process.
4643 	 *
4644 	 * Log the fork event to all owners of PMCs attached to this
4645 	 * process, if not already logged.
4646 	 */
4647 	for (ri = 0; ri < md->pmd_npmc; ri++)
4648 		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
4649 		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
4650 			pmc_link_target_process(pm, ppnew);
4651 			po = pm->pm_owner;
4652 			if (po->po_sscount == 0 &&
4653 			    po->po_flags & PMC_PO_OWNS_LOGFILE)
4654 				pmclog_process_procfork(po, p1->p_pid,
4655 				    newproc->p_pid);
4656 		}
4657 
4658 	/*
4659 	 * Now mark the new process as being tracked by this driver.
4660 	 */
4661 	PROC_LOCK(newproc);
4662 	newproc->p_flag |= P_HWPMC;
4663 	PROC_UNLOCK(newproc);
4664 
4665  done:
4666 	sx_xunlock(&pmc_sx);
4667 }
4668 
4669 static void
4670 pmc_kld_load(void *arg __unused, linker_file_t lf)
4671 {
4672 	struct pmc_owner *po;
4673 
4674 	sx_slock(&pmc_sx);
4675 
4676 	/*
4677 	 * Notify owners of system sampling PMCs about KLD operations.
4678 	 */
4679 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4680 		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4681 			pmclog_process_map_in(po, (pid_t) -1,
4682 			    (uintfptr_t) lf->address, lf->filename);
4683 
4684 	/*
4685 	 * TODO: Notify owners of (all) process-sampling PMCs too.
4686 	 */
4687 
4688 	sx_sunlock(&pmc_sx);
4689 }
4690 
4691 static void
4692 pmc_kld_unload(void *arg __unused, const char *filename __unused,
4693     caddr_t address, size_t size)
4694 {
4695 	struct pmc_owner *po;
4696 
4697 	sx_slock(&pmc_sx);
4698 
4699 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4700 		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4701 			pmclog_process_map_out(po, (pid_t) -1,
4702 			    (uintfptr_t) address, (uintfptr_t) address + size);
4703 
4704 	/*
4705 	 * TODO: Notify owners of process-sampling PMCs.
4706 	 */
4707 
4708 	sx_sunlock(&pmc_sx);
4709 }
4710 
4711 /*
4712  * initialization
4713  */
4714 static const char *
4715 pmc_name_of_pmcclass(enum pmc_class class)
4716 {
4717 
4718 	switch (class) {
4719 #undef	__PMC_CLASS
4720 #define	__PMC_CLASS(S,V,D)						\
4721 	case PMC_CLASS_##S:						\
4722 		return #S;
4723 	__PMC_CLASSES();
4724 	default:
4725 		return ("<unknown>");
4726 	}
4727 }
4728 
4729 /*
4730  * Base class initializer: allocate structure and set default classes.
4731  */
4732 struct pmc_mdep *
4733 pmc_mdep_alloc(int nclasses)
4734 {
4735 	struct pmc_mdep *md;
4736 	int	n;
4737 
4738 	/* SOFT + md classes */
4739 	n = 1 + nclasses;
4740 	md = malloc(sizeof(struct pmc_mdep) + n *
4741 	    sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO);
4742 	md->pmd_nclass = n;
4743 
4744 	/* Add base class. */
4745 	pmc_soft_initialize(md);
4746 	return md;
4747 }
4748 
4749 void
4750 pmc_mdep_free(struct pmc_mdep *md)
4751 {
4752 	pmc_soft_finalize(md);
4753 	free(md, M_PMC);
4754 }
4755 
4756 static int
4757 generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
4758 {
4759 	(void) pc; (void) pp;
4760 
4761 	return (0);
4762 }
4763 
4764 static int
4765 generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
4766 {
4767 	(void) pc; (void) pp;
4768 
4769 	return (0);
4770 }
4771 
4772 static struct pmc_mdep *
4773 pmc_generic_cpu_initialize(void)
4774 {
4775 	struct pmc_mdep *md;
4776 
4777 	md = pmc_mdep_alloc(0);
4778 
4779 	md->pmd_cputype    = PMC_CPU_GENERIC;
4780 
4781 	md->pmd_pcpu_init  = NULL;
4782 	md->pmd_pcpu_fini  = NULL;
4783 	md->pmd_switch_in  = generic_switch_in;
4784 	md->pmd_switch_out = generic_switch_out;
4785 
4786 	return (md);
4787 }
4788 
4789 static void
4790 pmc_generic_cpu_finalize(struct pmc_mdep *md)
4791 {
4792 	(void) md;
4793 }
4794 
4795 
4796 static int
4797 pmc_initialize(void)
4798 {
4799 	int c, cpu, error, n, ri;
4800 	unsigned int maxcpu;
4801 	struct pmc_binding pb;
4802 	struct pmc_sample *ps;
4803 	struct pmc_classdep *pcd;
4804 	struct pmc_samplebuffer *sb;
4805 
4806 	md = NULL;
4807 	error = 0;
4808 
4809 #ifdef	HWPMC_DEBUG
4810 	/* parse debug flags first */
4811 	if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
4812 		pmc_debugstr, sizeof(pmc_debugstr)))
4813 		pmc_debugflags_parse(pmc_debugstr,
4814 		    pmc_debugstr+strlen(pmc_debugstr));
4815 #endif
4816 
4817 	PMCDBG1(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
4818 
4819 	/* check kernel version */
4820 	if (pmc_kernel_version != PMC_VERSION) {
4821 		if (pmc_kernel_version == 0)
4822 			printf("hwpmc: this kernel has not been compiled with "
4823 			    "'options HWPMC_HOOKS'.\n");
4824 		else
4825 			printf("hwpmc: kernel version (0x%x) does not match "
4826 			    "module version (0x%x).\n", pmc_kernel_version,
4827 			    PMC_VERSION);
4828 		return EPROGMISMATCH;
4829 	}
4830 
4831 	/*
4832 	 * check sysctl parameters
4833 	 */
4834 
4835 	if (pmc_hashsize <= 0) {
4836 		(void) printf("hwpmc: tunable \"hashsize\"=%d must be "
4837 		    "greater than zero.\n", pmc_hashsize);
4838 		pmc_hashsize = PMC_HASH_SIZE;
4839 	}
4840 
4841 	if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
4842 		(void) printf("hwpmc: tunable \"nsamples\"=%d out of "
4843 		    "range.\n", pmc_nsamples);
4844 		pmc_nsamples = PMC_NSAMPLES;
4845 	}
4846 
4847 	if (pmc_callchaindepth <= 0 ||
4848 	    pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
4849 		(void) printf("hwpmc: tunable \"callchaindepth\"=%d out of "
4850 		    "range - using %d.\n", pmc_callchaindepth,
4851 		    PMC_CALLCHAIN_DEPTH_MAX);
4852 		pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX;
4853 	}
4854 
4855 	md = pmc_md_initialize();
4856 	if (md == NULL) {
4857 		/* Default to generic CPU. */
4858 		md = pmc_generic_cpu_initialize();
4859 		if (md == NULL)
4860 			return (ENOSYS);
4861         }
4862 
4863 	KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
4864 	    ("[pmc,%d] no classes or pmcs", __LINE__));
4865 
4866 	/* Compute the map from row-indices to classdep pointers. */
4867 	pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
4868 	    md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO);
4869 
4870 	for (n = 0; n < md->pmd_npmc; n++)
4871 		pmc_rowindex_to_classdep[n] = NULL;
4872 	for (ri = c = 0; c < md->pmd_nclass; c++) {
4873 		pcd = &md->pmd_classdep[c];
4874 		for (n = 0; n < pcd->pcd_num; n++, ri++)
4875 			pmc_rowindex_to_classdep[ri] = pcd;
4876 	}
4877 
4878 	KASSERT(ri == md->pmd_npmc,
4879 	    ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
4880 	    ri, md->pmd_npmc));
4881 
4882 	maxcpu = pmc_cpu_max();
4883 
4884 	/* allocate space for the per-cpu array */
4885 	pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
4886 	    M_WAITOK|M_ZERO);
4887 
4888 	/* per-cpu 'saved values' for managing process-mode PMCs */
4889 	pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
4890 	    M_PMC, M_WAITOK);
4891 
4892 	/* Perform CPU-dependent initialization. */
4893 	pmc_save_cpu_binding(&pb);
4894 	error = 0;
4895 	for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
4896 		if (!pmc_cpu_is_active(cpu))
4897 			continue;
4898 		pmc_select_cpu(cpu);
4899 		pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
4900 		    md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
4901 		    M_WAITOK|M_ZERO);
4902 		if (md->pmd_pcpu_init)
4903 			error = md->pmd_pcpu_init(md, cpu);
4904 		for (n = 0; error == 0 && n < md->pmd_nclass; n++)
4905 			error = md->pmd_classdep[n].pcd_pcpu_init(md, cpu);
4906 	}
4907 	pmc_restore_cpu_binding(&pb);
4908 
4909 	if (error)
4910 		return (error);
4911 
4912 	/* allocate space for the sample array */
4913 	for (cpu = 0; cpu < maxcpu; cpu++) {
4914 		if (!pmc_cpu_is_active(cpu))
4915 			continue;
4916 
4917 		sb = malloc(sizeof(struct pmc_samplebuffer) +
4918 		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4919 		    M_WAITOK|M_ZERO);
4920 		sb->ps_read = sb->ps_write = sb->ps_samples;
4921 		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4922 
4923 		KASSERT(pmc_pcpu[cpu] != NULL,
4924 		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4925 
4926 		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4927 		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4928 
4929 		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4930 			ps->ps_pc = sb->ps_callchains +
4931 			    (n * pmc_callchaindepth);
4932 
4933 		pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
4934 
4935 		sb = malloc(sizeof(struct pmc_samplebuffer) +
4936 		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4937 		    M_WAITOK|M_ZERO);
4938 		sb->ps_read = sb->ps_write = sb->ps_samples;
4939 		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4940 
4941 		KASSERT(pmc_pcpu[cpu] != NULL,
4942 		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4943 
4944 		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4945 		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4946 
4947 		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4948 			ps->ps_pc = sb->ps_callchains +
4949 			    (n * pmc_callchaindepth);
4950 
4951 		pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
4952 	}
4953 
4954 	/* allocate space for the row disposition array */
4955 	pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
4956 	    M_PMC, M_WAITOK|M_ZERO);
4957 
4958 	/* mark all PMCs as available */
4959 	for (n = 0; n < (int) md->pmd_npmc; n++)
4960 		PMC_MARK_ROW_FREE(n);
4961 
4962 	/* allocate thread hash tables */
4963 	pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
4964 	    &pmc_ownerhashmask);
4965 
4966 	pmc_processhash = hashinit(pmc_hashsize, M_PMC,
4967 	    &pmc_processhashmask);
4968 	mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
4969 	    MTX_SPIN);
4970 
4971 	LIST_INIT(&pmc_ss_owners);
4972 	pmc_ss_count = 0;
4973 
4974 	/* allocate a pool of spin mutexes */
4975 	pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
4976 	    MTX_SPIN);
4977 
4978 	PMCDBG4(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
4979 	    "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
4980 	    pmc_processhash, pmc_processhashmask);
4981 
4982 	/* register process {exit,fork,exec} handlers */
4983 	pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
4984 	    pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
4985 	pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
4986 	    pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
4987 
4988 	/* register kld event handlers */
4989 	pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
4990 	    NULL, EVENTHANDLER_PRI_ANY);
4991 	pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
4992 	    NULL, EVENTHANDLER_PRI_ANY);
4993 
4994 	/* initialize logging */
4995 	pmclog_initialize();
4996 
4997 	/* set hook functions */
4998 	pmc_intr = md->pmd_intr;
4999 	pmc_hook = pmc_hook_handler;
5000 
5001 	if (error == 0) {
5002 		printf(PMC_MODULE_NAME ":");
5003 		for (n = 0; n < (int) md->pmd_nclass; n++) {
5004 			pcd = &md->pmd_classdep[n];
5005 			printf(" %s/%d/%d/0x%b",
5006 			    pmc_name_of_pmcclass(pcd->pcd_class),
5007 			    pcd->pcd_num,
5008 			    pcd->pcd_width,
5009 			    pcd->pcd_caps,
5010 			    "\20"
5011 			    "\1INT\2USR\3SYS\4EDG\5THR"
5012 			    "\6REA\7WRI\10INV\11QUA\12PRC"
5013 			    "\13TAG\14CSC");
5014 		}
5015 		printf("\n");
5016 	}
5017 
5018 	return (error);
5019 }
5020 
5021 /* prepare to be unloaded */
5022 static void
5023 pmc_cleanup(void)
5024 {
5025 	int c, cpu;
5026 	unsigned int maxcpu;
5027 	struct pmc_ownerhash *ph;
5028 	struct pmc_owner *po, *tmp;
5029 	struct pmc_binding pb;
5030 #ifdef	HWPMC_DEBUG
5031 	struct pmc_processhash *prh;
5032 #endif
5033 
5034 	PMCDBG0(MOD,INI,0, "cleanup");
5035 
5036 	/* switch off sampling */
5037 	CPU_ZERO(&pmc_cpumask);
5038 	pmc_intr = NULL;
5039 
5040 	sx_xlock(&pmc_sx);
5041 	if (pmc_hook == NULL) {	/* being unloaded already */
5042 		sx_xunlock(&pmc_sx);
5043 		return;
5044 	}
5045 
5046 	pmc_hook = NULL; /* prevent new threads from entering module */
5047 
5048 	/* deregister event handlers */
5049 	EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
5050 	EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
5051 	EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
5052 	EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
5053 
5054 	/* send SIGBUS to all owner threads, free up allocations */
5055 	if (pmc_ownerhash)
5056 		for (ph = pmc_ownerhash;
5057 		     ph <= &pmc_ownerhash[pmc_ownerhashmask];
5058 		     ph++) {
5059 			LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
5060 				pmc_remove_owner(po);
5061 
5062 				/* send SIGBUS to owner processes */
5063 				PMCDBG3(MOD,INI,2, "cleanup signal proc=%p "
5064 				    "(%d, %s)", po->po_owner,
5065 				    po->po_owner->p_pid,
5066 				    po->po_owner->p_comm);
5067 
5068 				PROC_LOCK(po->po_owner);
5069 				kern_psignal(po->po_owner, SIGBUS);
5070 				PROC_UNLOCK(po->po_owner);
5071 
5072 				pmc_destroy_owner_descriptor(po);
5073 			}
5074 		}
5075 
5076 	/* reclaim allocated data structures */
5077 	if (pmc_mtxpool)
5078 		mtx_pool_destroy(&pmc_mtxpool);
5079 
5080 	mtx_destroy(&pmc_processhash_mtx);
5081 	if (pmc_processhash) {
5082 #ifdef	HWPMC_DEBUG
5083 		struct pmc_process *pp;
5084 
5085 		PMCDBG0(MOD,INI,3, "destroy process hash");
5086 		for (prh = pmc_processhash;
5087 		     prh <= &pmc_processhash[pmc_processhashmask];
5088 		     prh++)
5089 			LIST_FOREACH(pp, prh, pp_next)
5090 			    PMCDBG1(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
5091 #endif
5092 
5093 		hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
5094 		pmc_processhash = NULL;
5095 	}
5096 
5097 	if (pmc_ownerhash) {
5098 		PMCDBG0(MOD,INI,3, "destroy owner hash");
5099 		hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
5100 		pmc_ownerhash = NULL;
5101 	}
5102 
5103 	KASSERT(LIST_EMPTY(&pmc_ss_owners),
5104 	    ("[pmc,%d] Global SS owner list not empty", __LINE__));
5105 	KASSERT(pmc_ss_count == 0,
5106 	    ("[pmc,%d] Global SS count not empty", __LINE__));
5107 
5108  	/* do processor and pmc-class dependent cleanup */
5109 	maxcpu = pmc_cpu_max();
5110 
5111 	PMCDBG0(MOD,INI,3, "md cleanup");
5112 	if (md) {
5113 		pmc_save_cpu_binding(&pb);
5114 		for (cpu = 0; cpu < maxcpu; cpu++) {
5115 			PMCDBG2(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
5116 			    cpu, pmc_pcpu[cpu]);
5117 			if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
5118 				continue;
5119 			pmc_select_cpu(cpu);
5120 			for (c = 0; c < md->pmd_nclass; c++)
5121 				md->pmd_classdep[c].pcd_pcpu_fini(md, cpu);
5122 			if (md->pmd_pcpu_fini)
5123 				md->pmd_pcpu_fini(md, cpu);
5124 		}
5125 
5126 		if (md->pmd_cputype == PMC_CPU_GENERIC)
5127 			pmc_generic_cpu_finalize(md);
5128 		else
5129 			pmc_md_finalize(md);
5130 
5131 		pmc_mdep_free(md);
5132 		md = NULL;
5133 		pmc_restore_cpu_binding(&pb);
5134 	}
5135 
5136 	/* Free per-cpu descriptors. */
5137 	for (cpu = 0; cpu < maxcpu; cpu++) {
5138 		if (!pmc_cpu_is_active(cpu))
5139 			continue;
5140 		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
5141 		    ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
5142 			cpu));
5143 		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
5144 		    ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
5145 			cpu));
5146 		free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
5147 		free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
5148 		free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
5149 		free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
5150 		free(pmc_pcpu[cpu], M_PMC);
5151 	}
5152 
5153 	free(pmc_pcpu, M_PMC);
5154 	pmc_pcpu = NULL;
5155 
5156 	free(pmc_pcpu_saved, M_PMC);
5157 	pmc_pcpu_saved = NULL;
5158 
5159 	if (pmc_pmcdisp) {
5160 		free(pmc_pmcdisp, M_PMC);
5161 		pmc_pmcdisp = NULL;
5162 	}
5163 
5164 	if (pmc_rowindex_to_classdep) {
5165 		free(pmc_rowindex_to_classdep, M_PMC);
5166 		pmc_rowindex_to_classdep = NULL;
5167 	}
5168 
5169 	pmclog_shutdown();
5170 
5171 	sx_xunlock(&pmc_sx); 	/* we are done */
5172 }
5173 
5174 /*
5175  * The function called at load/unload.
5176  */
5177 
5178 static int
5179 load (struct module *module __unused, int cmd, void *arg __unused)
5180 {
5181 	int error;
5182 
5183 	error = 0;
5184 
5185 	switch (cmd) {
5186 	case MOD_LOAD :
5187 		/* initialize the subsystem */
5188 		error = pmc_initialize();
5189 		if (error != 0)
5190 			break;
5191 		PMCDBG2(MOD,INI,1, "syscall=%d maxcpu=%d",
5192 		    pmc_syscall_num, pmc_cpu_max());
5193 		break;
5194 
5195 
5196 	case MOD_UNLOAD :
5197 	case MOD_SHUTDOWN:
5198 		pmc_cleanup();
5199 		PMCDBG0(MOD,INI,1, "unloaded");
5200 		break;
5201 
5202 	default :
5203 		error = EINVAL;	/* XXX should panic(9) */
5204 		break;
5205 	}
5206 
5207 	return error;
5208 }
5209 
5210 /* memory pool */
5211 MALLOC_DEFINE(M_PMC, "pmc", "Memory space for the PMC module");
5212