xref: /freebsd/sys/dev/hwpmc/hwpmc_cmn600.c (revision 2a0c0aea42092f89c2a5345991e6e3ce4cbef99a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2003-2008 Joseph Koshy
5  * Copyright (c) 2007 The FreeBSD Foundation
6  * Copyright (c) 2021 ARM Ltd
7  *
8  * Portions of this software were developed by A. Joseph Koshy under
9  * sponsorship from the FreeBSD Foundation and Google, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /* Arm CoreLink CMN-600 Coherent Mesh Network PMU Driver */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/pmc.h>
44 #include <sys/pmckern.h>
45 #include <sys/systm.h>
46 
47 #include <machine/cmn600_reg.h>
48 
49 struct cmn600_descr {
50 	struct pmc_descr pd_descr;  /* "base class" */
51 	void		*pd_rw_arg; /* Argument to use with read/write */
52 	struct pmc	*pd_pmc;
53 	struct pmc_hw	*pd_phw;
54 	uint32_t	 pd_nodeid;
55 	int32_t		 pd_node_type;
56 	int		 pd_local_counter;
57 
58 };
59 
60 static struct cmn600_descr **cmn600_pmcdesc;
61 
62 static struct cmn600_pmc cmn600_pmcs[CMN600_UNIT_MAX];
63 static int cmn600_units = 0;
64 
65 static inline struct cmn600_descr *
66 cmn600desc(int ri)
67 {
68 
69 	return (cmn600_pmcdesc[ri]);
70 }
71 
72 static inline int
73 class_ri2unit(int ri)
74 {
75 
76 	return (ri / CMN600_COUNTERS_N);
77 }
78 
79 #define	EVENCNTR(x)	(((x) >> POR_DT_PMEVCNT_EVENCNT_SHIFT) << \
80     POR_DTM_PMEVCNT_CNTR_WIDTH)
81 #define	ODDCNTR(x)	(((x) >> POR_DT_PMEVCNT_ODDCNT_SHIFT) << \
82     POR_DTM_PMEVCNT_CNTR_WIDTH)
83 
84 static uint64_t
85 cmn600_pmu_readcntr(void *arg, u_int nodeid, u_int xpcntr, u_int dtccntr,
86     u_int width)
87 {
88 	uint64_t dtcval, xpval;
89 
90 	KASSERT(xpcntr < 4, ("[cmn600,%d] XP counter number %d is too big."
91 	    " Max: 3", __LINE__, xpcntr));
92 	KASSERT(dtccntr < 8, ("[cmn600,%d] Global counter number %d is too"
93 	    " big. Max: 7", __LINE__, dtccntr));
94 
95 	dtcval = pmu_cmn600_rd8(arg, nodeid, NODE_TYPE_DTC,
96 	    POR_DT_PMEVCNT(dtccntr >> 1));
97 	if (width == 4) {
98 		dtcval = (dtccntr & 1) ? ODDCNTR(dtcval) : EVENCNTR(dtcval);
99 		dtcval &= 0xffffffff0000UL;
100 	} else
101 		dtcval <<= POR_DTM_PMEVCNT_CNTR_WIDTH;
102 
103 	xpval = pmu_cmn600_rd8(arg, nodeid, NODE_TYPE_XP, POR_DTM_PMEVCNT);
104 	xpval >>= xpcntr * POR_DTM_PMEVCNT_CNTR_WIDTH;
105 	xpval &= 0xffffUL;
106 	return (dtcval | xpval);
107 }
108 
109 static void
110 cmn600_pmu_writecntr(void *arg, u_int nodeid, u_int xpcntr, u_int dtccntr,
111     u_int width, uint64_t val)
112 {
113 	int shift;
114 
115 	KASSERT(xpcntr < 4, ("[cmn600,%d] XP counter number %d is too big."
116 	    " Max: 3", __LINE__, xpcntr));
117 	KASSERT(dtccntr < 8, ("[cmn600,%d] Global counter number %d is too"
118 	    " big. Max: 7", __LINE__, dtccntr));
119 
120 	if (width == 4) {
121 		shift = (dtccntr & 1) ? POR_DT_PMEVCNT_ODDCNT_SHIFT :
122 		    POR_DT_PMEVCNT_EVENCNT_SHIFT;
123 		pmu_cmn600_md8(arg, nodeid, NODE_TYPE_DTC,
124 		    POR_DT_PMEVCNT(dtccntr >> 1), 0xffffffffUL << shift,
125 		    ((val >> POR_DTM_PMEVCNT_CNTR_WIDTH) & 0xffffffff) << shift);
126 	} else
127 		pmu_cmn600_wr8(arg, nodeid, NODE_TYPE_DTC,
128 		    POR_DT_PMEVCNT(dtccntr & ~0x1), val >>
129 		    POR_DTM_PMEVCNT_CNTR_WIDTH);
130 
131 	shift = xpcntr * POR_DTM_PMEVCNT_CNTR_WIDTH;
132 	val &= 0xffffUL;
133 	pmu_cmn600_md8(arg, nodeid, NODE_TYPE_XP, POR_DTM_PMEVCNT,
134 	    0xffffUL << shift, val << shift);
135 }
136 
137 #undef	EVENCNTR
138 #undef	ODDCNTR
139 
140 /*
141  * read a pmc register
142  */
143 static int
144 cmn600_read_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t *v)
145 {
146 	int counter, local_counter, nodeid;
147 	struct cmn600_descr *desc;
148 	void *arg;
149 
150 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
151 	    ("[cmn600,%d] illegal CPU value %d", __LINE__, cpu));
152 	KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
153 	    ri));
154 
155 	counter = ri % CMN600_COUNTERS_N;
156 	desc = cmn600desc(ri);
157 	arg = desc->pd_rw_arg;
158 	nodeid = pm->pm_md.pm_cmn600.pm_cmn600_nodeid;
159 	local_counter = pm->pm_md.pm_cmn600.pm_cmn600_local_counter;
160 
161 	*v = cmn600_pmu_readcntr(arg, nodeid, local_counter, counter, 4);
162 	PMCDBG3(MDP, REA, 2, "%s id=%d -> %jd", __func__, ri, *v);
163 
164 	return (0);
165 }
166 
167 /*
168  * Write a pmc register.
169  */
170 static int
171 cmn600_write_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t v)
172 {
173 	int counter, local_counter, nodeid;
174 	struct cmn600_descr *desc;
175 	void *arg;
176 
177 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
178 	    ("[cmn600,%d] illegal CPU value %d", __LINE__, cpu));
179 	KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
180 	    ri));
181 
182 	counter = ri % CMN600_COUNTERS_N;
183 	desc = cmn600desc(ri);
184 	arg = desc->pd_rw_arg;
185 	nodeid = pm->pm_md.pm_cmn600.pm_cmn600_nodeid;
186 	local_counter = pm->pm_md.pm_cmn600.pm_cmn600_local_counter;
187 
188 	KASSERT(pm != NULL,
189 	    ("[cmn600,%d] PMC not owned (cpu%d,pmc%d)", __LINE__,
190 		cpu, ri));
191 
192 	PMCDBG4(MDP, WRI, 1, "%s cpu=%d ri=%d v=%jx", __func__, cpu, ri, v);
193 
194 	cmn600_pmu_writecntr(arg, nodeid, local_counter, counter, 4, v);
195 	return (0);
196 }
197 
198 /*
199  * configure hardware pmc according to the configuration recorded in
200  * pmc 'pm'.
201  */
202 static int
203 cmn600_config_pmc(int cpu, int ri, struct pmc *pm)
204 {
205 	struct pmc_hw *phw;
206 
207 	PMCDBG4(MDP, CFG, 1, "%s cpu=%d ri=%d pm=%p", __func__, cpu, ri, pm);
208 
209 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
210 	    ("[cmn600,%d] illegal CPU value %d", __LINE__, cpu));
211 	KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
212 	    ri));
213 
214 	phw = cmn600desc(ri)->pd_phw;
215 
216 	KASSERT(pm == NULL || phw->phw_pmc == NULL,
217 	    ("[cmn600,%d] pm=%p phw->pm=%p hwpmc not unconfigured",
218 		__LINE__, pm, phw->phw_pmc));
219 
220 	phw->phw_pmc = pm;
221 	return (0);
222 }
223 
224 /*
225  * Retrieve a configured PMC pointer from hardware state.
226  */
227 static int
228 cmn600_get_config(int cpu, int ri, struct pmc **ppm)
229 {
230 
231 	*ppm = cmn600desc(ri)->pd_phw->phw_pmc;
232 
233 	return (0);
234 }
235 
236 #define	CASE_DN_VER_EVT(n, id) case PMC_EV_CMN600_PMU_ ## n: { *event = id; \
237 	return (0); }
238 static int
239 cmn600_map_ev2event(int ev, int rev, int *node_type, uint8_t *event)
240 {
241 	if (ev < PMC_EV_CMN600_PMU_dn_rxreq_dvmop ||
242 	    ev > PMC_EV_CMN600_PMU_rni_rdb_ord)
243 		return (EINVAL);
244 	if (ev <= PMC_EV_CMN600_PMU_dn_rxreq_trk_full) {
245 		*node_type = NODE_TYPE_DVM;
246 		if (rev < 0x200) {
247 			switch (ev) {
248 			CASE_DN_VER_EVT(dn_rxreq_dvmop, 1);
249 			CASE_DN_VER_EVT(dn_rxreq_dvmsync, 2);
250 			CASE_DN_VER_EVT(dn_rxreq_dvmop_vmid_filtered, 3);
251 			CASE_DN_VER_EVT(dn_rxreq_retried, 4);
252 			CASE_DN_VER_EVT(dn_rxreq_trk_occupancy, 5);
253 			}
254 		} else {
255 			switch (ev) {
256 			CASE_DN_VER_EVT(dn_rxreq_tlbi_dvmop, 0x01);
257 			CASE_DN_VER_EVT(dn_rxreq_bpi_dvmop, 0x02);
258 			CASE_DN_VER_EVT(dn_rxreq_pici_dvmop, 0x03);
259 			CASE_DN_VER_EVT(dn_rxreq_vivi_dvmop, 0x04);
260 			CASE_DN_VER_EVT(dn_rxreq_dvmsync, 0x05);
261 			CASE_DN_VER_EVT(dn_rxreq_dvmop_vmid_filtered, 0x06);
262 			CASE_DN_VER_EVT(dn_rxreq_dvmop_other_filtered, 0x07);
263 			CASE_DN_VER_EVT(dn_rxreq_retried, 0x08);
264 			CASE_DN_VER_EVT(dn_rxreq_snp_sent, 0x09);
265 			CASE_DN_VER_EVT(dn_rxreq_snp_stalled, 0x0a);
266 			CASE_DN_VER_EVT(dn_rxreq_trk_full, 0x0b);
267 			CASE_DN_VER_EVT(dn_rxreq_trk_occupancy, 0x0c);
268 			}
269 		}
270 		return (EINVAL);
271 	} else if (ev <= PMC_EV_CMN600_PMU_hnf_snp_fwded) {
272 		*node_type = NODE_TYPE_HN_F;
273 		*event = ev - PMC_EV_CMN600_PMU_hnf_cache_miss;
274 		return (0);
275 	} else if (ev <= PMC_EV_CMN600_PMU_hni_pcie_serialization) {
276 		*node_type = NODE_TYPE_HN_I;
277 		*event = ev - PMC_EV_CMN600_PMU_hni_rrt_rd_occ_cnt_ovfl;
278 		return (0);
279 	} else if (ev <= PMC_EV_CMN600_PMU_xp_partial_dat_flit) {
280 		*node_type = NODE_TYPE_XP;
281 		*event = ev - PMC_EV_CMN600_PMU_xp_txflit_valid;
282 		return (0);
283 	} else if (ev <= PMC_EV_CMN600_PMU_sbsx_txrsp_stall) {
284 		*node_type = NODE_TYPE_SBSX;
285 		*event = ev - PMC_EV_CMN600_PMU_sbsx_rd_req;
286 		return (0);
287 	} else if (ev <= PMC_EV_CMN600_PMU_rnd_rdb_ord) {
288 		*node_type = NODE_TYPE_RN_D;
289 		*event = ev - PMC_EV_CMN600_PMU_rnd_s0_rdata_beats;
290 		return (0);
291 	} else if (ev <= PMC_EV_CMN600_PMU_rni_rdb_ord) {
292 		*node_type = NODE_TYPE_RN_I;
293 		*event = ev - PMC_EV_CMN600_PMU_rni_s0_rdata_beats;
294 		return (0);
295 	} else if (ev <= PMC_EV_CMN600_PMU_cxha_snphaz_occ) {
296 		*node_type = NODE_TYPE_CXHA;
297 		*event = ev - PMC_EV_CMN600_PMU_cxha_rddatbyp;
298 		return (0);
299 	} else if (ev <= PMC_EV_CMN600_PMU_cxra_ext_dat_stall) {
300 		*node_type = NODE_TYPE_CXRA;
301 		*event = ev - PMC_EV_CMN600_PMU_cxra_req_trk_occ;
302 		return (0);
303 	} else if (ev <= PMC_EV_CMN600_PMU_cxla_avg_latency_form_tx_tlp) {
304 		*node_type = NODE_TYPE_CXLA;
305 		*event = ev - PMC_EV_CMN600_PMU_cxla_rx_tlp_link0;
306 		return (0);
307 	}
308 	return (EINVAL);
309 }
310 
311 /*
312  * Check if a given allocation is feasible.
313  */
314 
315 static int
316 cmn600_allocate_pmc(int cpu, int ri, struct pmc *pm,
317     const struct pmc_op_pmcallocate *a)
318 {
319 	struct cmn600_descr *desc;
320 	const struct pmc_descr *pd;
321 	uint64_t caps __unused;
322 	int local_counter, node_type;
323 	enum pmc_event pe;
324 	void *arg;
325 	uint8_t e;
326 	int err;
327 
328 	(void) cpu;
329 
330 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
331 	    ("[cmn600,%d] illegal CPU value %d", __LINE__, cpu));
332 	KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
333 	    ri));
334 
335 	desc = cmn600desc(ri);
336 	arg = desc->pd_rw_arg;
337 	pd = &desc->pd_descr;
338 	if (cmn600_pmcs[class_ri2unit(ri)].domain != pcpu_find(cpu)->pc_domain)
339 		return (EINVAL);
340 
341 	/* check class match */
342 	if (pd->pd_class != a->pm_class)
343 		return (EINVAL);
344 
345 	caps = pm->pm_caps;
346 
347 	PMCDBG3(MDP, ALL, 1, "%s ri=%d caps=0x%x", __func__, ri, caps);
348 
349 	pe = a->pm_ev;
350 	err = cmn600_map_ev2event(pe, pmu_cmn600_rev(arg), &node_type, &e);
351 	if (err != 0)
352 		return (err);
353 	err = pmu_cmn600_alloc_localpmc(arg,
354 	    a->pm_md.pm_cmn600.pma_cmn600_nodeid, node_type, &local_counter);
355 	if (err != 0)
356 		return (err);
357 
358 	pm->pm_md.pm_cmn600.pm_cmn600_config =
359 	    a->pm_md.pm_cmn600.pma_cmn600_config;
360 	pm->pm_md.pm_cmn600.pm_cmn600_occupancy =
361 	    a->pm_md.pm_cmn600.pma_cmn600_occupancy;
362 	desc->pd_nodeid = pm->pm_md.pm_cmn600.pm_cmn600_nodeid =
363 	    a->pm_md.pm_cmn600.pma_cmn600_nodeid;
364 	desc->pd_node_type = pm->pm_md.pm_cmn600.pm_cmn600_node_type =
365 	    node_type;
366 	pm->pm_md.pm_cmn600.pm_cmn600_event = e;
367 	desc->pd_local_counter = pm->pm_md.pm_cmn600.pm_cmn600_local_counter =
368 	    local_counter;
369 
370 	return (0);
371 }
372 
373 /* Release machine dependent state associated with a PMC. */
374 
375 static int
376 cmn600_release_pmc(int cpu, int ri, struct pmc *pmc)
377 {
378 	struct cmn600_descr *desc;
379 	struct pmc_hw *phw;
380 	struct pmc *pm __diagused;
381 	int err;
382 
383 	(void) pmc;
384 
385 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
386 	    ("[cmn600,%d] illegal CPU value %d", __LINE__, cpu));
387 	KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
388 	    ri));
389 
390 	desc = cmn600desc(ri);
391 	phw = desc->pd_phw;
392 	pm  = phw->phw_pmc;
393 	err = pmu_cmn600_free_localpmc(desc->pd_rw_arg, desc->pd_nodeid,
394 	    desc->pd_node_type, desc->pd_local_counter);
395 	if (err != 0)
396 		return (err);
397 
398 	KASSERT(pm == NULL, ("[cmn600,%d] PHW pmc %p non-NULL", __LINE__, pm));
399 
400 	return (0);
401 }
402 
403 static inline uint64_t
404 cmn600_encode_source(int node_type, int counter, int port, int sub)
405 {
406 
407 	/* Calculate pmevcnt0_input_sel based on list in Table 3-794. */
408 	if (node_type == NODE_TYPE_XP)
409 		return (0x4 | counter);
410 
411 	return (((port + 1) << 4) | (sub << 2) | counter);
412 }
413 
414 /*
415  * start a PMC.
416  */
417 
418 static int
419 cmn600_start_pmc(int cpu, int ri, struct pmc *pm)
420 {
421 	int counter, local_counter, node_type, shift;
422 	uint64_t config, occupancy, source, xp_pmucfg;
423 	struct cmn600_descr *desc;
424 	uint8_t event, port, sub;
425 	uint16_t nodeid;
426 	void *arg;
427 
428 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
429 	    ("[cmn600,%d] illegal CPU value %d", __LINE__, cpu));
430 	KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
431 	    ri));
432 
433 	counter = ri % CMN600_COUNTERS_N;
434 	desc = cmn600desc(ri);
435 	arg = desc->pd_rw_arg;
436 
437 	PMCDBG3(MDP, STA, 1, "%s cpu=%d ri=%d", __func__, cpu, ri);
438 
439 	config = pm->pm_md.pm_cmn600.pm_cmn600_config;
440 	occupancy = pm->pm_md.pm_cmn600.pm_cmn600_occupancy;
441 	node_type = pm->pm_md.pm_cmn600.pm_cmn600_node_type;
442 	event = pm->pm_md.pm_cmn600.pm_cmn600_event;
443 	nodeid = pm->pm_md.pm_cmn600.pm_cmn600_nodeid;
444 	local_counter = pm->pm_md.pm_cmn600.pm_cmn600_local_counter;
445 	port = (nodeid >> 2) & 1;
446 	sub = nodeid & 3;
447 
448 	switch (node_type) {
449 	case NODE_TYPE_DVM:
450 	case NODE_TYPE_HN_F:
451 	case NODE_TYPE_CXHA:
452 	case NODE_TYPE_CXRA:
453 		pmu_cmn600_md8(arg, nodeid, node_type,
454 		    CMN600_COMMON_PMU_EVENT_SEL,
455 		    CMN600_COMMON_PMU_EVENT_SEL_OCC_MASK,
456 		    occupancy << CMN600_COMMON_PMU_EVENT_SEL_OCC_SHIFT);
457 		break;
458 	case NODE_TYPE_XP:
459 		/* Set PC and Interface.*/
460 		event |= config;
461 	}
462 
463 	/*
464 	 * 5.5.1 Set up PMU counters
465 	 * 1. Ensure that the NIDEN input is asserted. HW side. */
466 	/* 2. Select event of target node for one of four outputs. */
467 	pmu_cmn600_md8(arg, nodeid, node_type, CMN600_COMMON_PMU_EVENT_SEL,
468 	    0xff << (local_counter * 8),
469 	    event << (local_counter * 8));
470 
471 	xp_pmucfg = pmu_cmn600_rd8(arg, nodeid, NODE_TYPE_XP,
472 	    POR_DTM_PMU_CONFIG);
473 	/*
474 	 * 3. configure XP to connect one of four target node outputs to local
475 	 * counter.
476 	 */
477 	source = cmn600_encode_source(node_type, local_counter, port, sub);
478 	shift = (local_counter * POR_DTM_PMU_CONFIG_VCNT_INPUT_SEL_WIDTH) +
479 	    POR_DTM_PMU_CONFIG_VCNT_INPUT_SEL_SHIFT;
480 	xp_pmucfg &= ~(0xffUL << shift);
481 	xp_pmucfg |= source << shift;
482 
483 	/* 4. Pair with global counters A, B, C, ..., H. */
484 	shift = (local_counter * 4) + 16;
485 	xp_pmucfg &= ~(0xfUL << shift);
486 	xp_pmucfg |= counter << shift;
487 	/* Enable pairing.*/
488 	xp_pmucfg |= 1 << (local_counter + 4);
489 
490 	/* 5. Combine local counters 0 with 1, 2 with 3 or all four. */
491 	xp_pmucfg &= ~0xeUL;
492 
493 	/* 6. Enable XP's PMU function. */
494 	xp_pmucfg |= POR_DTM_PMU_CONFIG_PMU_EN;
495 	pmu_cmn600_wr8(arg, nodeid, NODE_TYPE_XP, POR_DTM_PMU_CONFIG, xp_pmucfg);
496 	if (node_type == NODE_TYPE_CXLA)
497 		pmu_cmn600_set8(arg, nodeid, NODE_TYPE_CXLA,
498 		    POR_CXG_RA_CFG_CTL, EN_CXLA_PMUCMD_PROP);
499 
500 	/* 7. Enable DTM. */
501 	pmu_cmn600_set8(arg, nodeid, NODE_TYPE_XP, POR_DTM_CONTROL,
502 	    POR_DTM_CONTROL_DTM_ENABLE);
503 
504 	/* 8. Reset grouping of global counters. Use 32 bits. */
505 	pmu_cmn600_clr8(arg, nodeid, NODE_TYPE_DTC, POR_DT_PMCR,
506 	    POR_DT_PMCR_CNTCFG_MASK);
507 
508 	/* 9. Enable DTC. */
509 	pmu_cmn600_set8(arg, nodeid, NODE_TYPE_DTC, POR_DT_DTC_CTL,
510 	    POR_DT_DTC_CTL_DT_EN);
511 
512 	/* 10. Enable Overflow Interrupt. */
513 	pmu_cmn600_set8(arg, nodeid, NODE_TYPE_DTC, POR_DT_PMCR,
514 	    POR_DT_PMCR_OVFL_INTR_EN);
515 
516 	/* 11. Run PMC. */
517 	pmu_cmn600_set8(arg, nodeid, NODE_TYPE_DTC, POR_DT_PMCR,
518 	    POR_DT_PMCR_PMU_EN);
519 
520 	return (0);
521 }
522 
523 /*
524  * Stop a PMC.
525  */
526 
527 static int
528 cmn600_stop_pmc(int cpu, int ri, struct pmc *pm)
529 {
530 	struct cmn600_descr *desc;
531 	int local_counter;
532 	uint64_t val;
533 
534 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
535 	    ("[cmn600,%d] illegal CPU value %d", __LINE__, cpu));
536 	KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
537 	    ri));
538 
539 	desc = cmn600desc(ri);
540 
541 	PMCDBG2(MDP, STO, 1, "%s ri=%d", __func__, ri);
542 
543 	/* Disable pairing. */
544 	local_counter = pm->pm_md.pm_cmn600.pm_cmn600_local_counter;
545 	pmu_cmn600_clr8(desc->pd_rw_arg, pm->pm_md.pm_cmn600.pm_cmn600_nodeid,
546 	    NODE_TYPE_XP, POR_DTM_PMU_CONFIG, (1 << (local_counter + 4)));
547 
548 	/* Shutdown XP's DTM function if no paired counters. */
549 	val = pmu_cmn600_rd8(desc->pd_rw_arg,
550 	    pm->pm_md.pm_cmn600.pm_cmn600_nodeid, NODE_TYPE_XP,
551 	    POR_DTM_PMU_CONFIG);
552 	if ((val & 0xf0) == 0)
553 		pmu_cmn600_clr8(desc->pd_rw_arg,
554 		    pm->pm_md.pm_cmn600.pm_cmn600_nodeid, NODE_TYPE_XP,
555 		    POR_DTM_PMU_CONFIG, POR_DTM_CONTROL_DTM_ENABLE);
556 
557 	return (0);
558 }
559 
560 /*
561  * describe a PMC
562  */
563 static int
564 cmn600_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
565 {
566 	struct pmc_descr *pd;
567 	struct pmc_hw *phw;
568 
569 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
570 	    ("[cmn600,%d] illegal CPU %d", __LINE__, cpu));
571 	KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
572 	    ri));
573 
574 	phw = cmn600desc(ri)->pd_phw;
575 	pd = &cmn600desc(ri)->pd_descr;
576 
577 	strlcpy(pi->pm_name, pd->pd_name, sizeof(pi->pm_name));
578 	pi->pm_class = pd->pd_class;
579 
580 	if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
581 		pi->pm_enabled = TRUE;
582 		*ppmc          = phw->phw_pmc;
583 	} else {
584 		pi->pm_enabled = FALSE;
585 		*ppmc          = NULL;
586 	}
587 
588 	return (0);
589 }
590 
591 /*
592  * processor dependent initialization.
593  */
594 
595 static int
596 cmn600_pcpu_init(struct pmc_mdep *md, int cpu)
597 {
598 	int first_ri, n, npmc;
599 	struct pmc_hw  *phw;
600 	struct pmc_cpu *pc;
601 	int mdep_class;
602 
603 	mdep_class = PMC_MDEP_CLASS_INDEX_CMN600;
604 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
605 	    ("[cmn600,%d] insane cpu number %d", __LINE__, cpu));
606 
607 	PMCDBG1(MDP, INI, 1, "cmn600-init cpu=%d", cpu);
608 
609 	/*
610 	 * Set the content of the hardware descriptors to a known
611 	 * state and initialize pointers in the MI per-cpu descriptor.
612 	 */
613 
614 	pc = pmc_pcpu[cpu];
615 	first_ri = md->pmd_classdep[mdep_class].pcd_ri;
616 	npmc = md->pmd_classdep[mdep_class].pcd_num;
617 
618 	for (n = 0; n < npmc; n++, phw++) {
619 		phw = cmn600desc(n)->pd_phw;
620 		phw->phw_state = PMC_PHW_CPU_TO_STATE(cpu) |
621 		    PMC_PHW_INDEX_TO_STATE(n);
622 		/* Set enabled only if unit present. */
623 		if (cmn600_pmcs[class_ri2unit(n)].arg != NULL)
624 			phw->phw_state |= PMC_PHW_FLAG_IS_ENABLED;
625 		phw->phw_pmc = NULL;
626 		pc->pc_hwpmcs[n + first_ri] = phw;
627 	}
628 	return (0);
629 }
630 
631 /*
632  * processor dependent cleanup prior to the KLD
633  * being unloaded
634  */
635 
636 static int
637 cmn600_pcpu_fini(struct pmc_mdep *md, int cpu)
638 {
639 
640 	return (0);
641 }
642 
643 static int
644 cmn600_pmu_intr(struct trapframe *tf, int unit, int i)
645 {
646 	struct pmc_cpu *pc __diagused;
647 	struct pmc_hw *phw;
648 	struct pmc *pm;
649 	int error, cpu, ri;
650 
651 	ri = i + unit * CMN600_COUNTERS_N;
652 	cpu = curcpu;
653 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
654 	    ("[cmn600,%d] CPU %d out of range", __LINE__, cpu));
655 	pc = pmc_pcpu[cpu];
656 	KASSERT(pc != NULL, ("pc != NULL"));
657 
658 	phw = cmn600desc(ri)->pd_phw;
659 	KASSERT(phw != NULL, ("phw != NULL"));
660 	pm  = phw->phw_pmc;
661 	if (pm == NULL)
662 		return (0);
663 
664 	if (!PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
665 		/* Always CPU0. */
666 		pm->pm_pcpu_state[0].pps_overflowcnt += 1;
667 		return (0);
668 	}
669 
670 	if (pm->pm_state != PMC_STATE_RUNNING)
671 		return (0);
672 
673 	error = pmc_process_interrupt(PMC_HR, pm, tf);
674 	if (error)
675 		cmn600_stop_pmc(cpu, ri, pm);
676 
677 	/* Reload sampling count */
678 	cmn600_write_pmc(cpu, ri, pm, pm->pm_sc.pm_reloadcount);
679 
680 	return (0);
681 }
682 
683 /*
684  * Initialize ourselves.
685  */
686 static int
687 cmn600_init_pmc_units(void)
688 {
689 	int i;
690 
691 	if (cmn600_units > 0) { /* Already initialized. */
692 		return (0);
693 	}
694 
695 	cmn600_units = cmn600_pmc_nunits();
696 	if (cmn600_units == 0)
697 		return (ENOENT);
698 
699 	for (i = 0; i < cmn600_units; i++) {
700 		if (cmn600_pmc_getunit(i, &cmn600_pmcs[i].arg,
701 		    &cmn600_pmcs[i].domain) != 0)
702 			cmn600_pmcs[i].arg = NULL;
703 	}
704 	return (0);
705 }
706 
707 int
708 pmc_cmn600_nclasses(void)
709 {
710 
711 	if (cmn600_pmc_nunits() > 0)
712 		return (1);
713 	return (0);
714 }
715 
716 int
717 pmc_cmn600_initialize(struct pmc_mdep *md)
718 {
719 	struct pmc_classdep *pcd;
720 	int i, npmc, unit;
721 
722 	cmn600_init_pmc_units();
723 	KASSERT(md != NULL, ("[cmn600,%d] md is NULL", __LINE__));
724 	KASSERT(cmn600_units < CMN600_UNIT_MAX,
725 	    ("[cmn600,%d] cmn600_units too big", __LINE__));
726 
727 	PMCDBG0(MDP,INI,1, "cmn600-initialize");
728 
729 	npmc = CMN600_COUNTERS_N * cmn600_units;
730 	pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_CMN600];
731 
732 	pcd->pcd_caps		= PMC_CAP_SYSTEM | PMC_CAP_READ |
733 	    PMC_CAP_WRITE | PMC_CAP_QUALIFIER | PMC_CAP_INTERRUPT |
734 	    PMC_CAP_DOMWIDE;
735 	pcd->pcd_class	= PMC_CLASS_CMN600_PMU;
736 	pcd->pcd_num	= npmc;
737 	pcd->pcd_ri	= md->pmd_npmc;
738 	pcd->pcd_width	= 48;
739 
740 	pcd->pcd_allocate_pmc	= cmn600_allocate_pmc;
741 	pcd->pcd_config_pmc	= cmn600_config_pmc;
742 	pcd->pcd_describe	= cmn600_describe;
743 	pcd->pcd_get_config	= cmn600_get_config;
744 	pcd->pcd_get_msr	= NULL;
745 	pcd->pcd_pcpu_fini	= cmn600_pcpu_fini;
746 	pcd->pcd_pcpu_init	= cmn600_pcpu_init;
747 	pcd->pcd_read_pmc	= cmn600_read_pmc;
748 	pcd->pcd_release_pmc	= cmn600_release_pmc;
749 	pcd->pcd_start_pmc	= cmn600_start_pmc;
750 	pcd->pcd_stop_pmc	= cmn600_stop_pmc;
751 	pcd->pcd_write_pmc	= cmn600_write_pmc;
752 
753 	md->pmd_npmc	       += npmc;
754 	cmn600_pmcdesc = malloc(sizeof(struct cmn600_descr *) * npmc *
755 	    CMN600_PMU_DEFAULT_UNITS_N, M_PMC, M_WAITOK|M_ZERO);
756 	for (i = 0; i < npmc; i++) {
757 		cmn600_pmcdesc[i] = malloc(sizeof(struct cmn600_descr), M_PMC,
758 		    M_WAITOK|M_ZERO);
759 
760 		unit = i / CMN600_COUNTERS_N;
761 		KASSERT(unit >= 0, ("unit >= 0"));
762 		KASSERT(cmn600_pmcs[unit].arg != NULL, ("arg != NULL"));
763 
764 		cmn600_pmcdesc[i]->pd_rw_arg = cmn600_pmcs[unit].arg;
765 		cmn600_pmcdesc[i]->pd_descr.pd_class =
766 		    PMC_CLASS_CMN600_PMU;
767 		cmn600_pmcdesc[i]->pd_descr.pd_caps = pcd->pcd_caps;
768 		cmn600_pmcdesc[i]->pd_phw = (struct pmc_hw *)malloc(
769 		    sizeof(struct pmc_hw), M_PMC, M_WAITOK|M_ZERO);
770 		snprintf(cmn600_pmcdesc[i]->pd_descr.pd_name, 63,
771 		    "CMN600_%d", i);
772 		cmn600_pmu_intr_cb(cmn600_pmcs[unit].arg, cmn600_pmu_intr);
773 	}
774 
775 	return (0);
776 }
777 
778 void
779 pmc_cmn600_finalize(struct pmc_mdep *md)
780 {
781 	struct pmc_classdep *pcd;
782 	int i, npmc;
783 
784 	KASSERT(md->pmd_classdep[PMC_MDEP_CLASS_INDEX_CMN600].pcd_class ==
785 	    PMC_CLASS_CMN600_PMU, ("[cmn600,%d] pmc class mismatch",
786 	    __LINE__));
787 
788 	pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_CMN600];
789 
790 	npmc = pcd->pcd_num;
791 	for (i = 0; i < npmc; i++) {
792 		free(cmn600_pmcdesc[i]->pd_phw, M_PMC);
793 		free(cmn600_pmcdesc[i], M_PMC);
794 	}
795 	free(cmn600_pmcdesc, M_PMC);
796 	cmn600_pmcdesc = NULL;
797 }
798 
799 MODULE_DEPEND(pmc, cmn600, 1, 1, 1);
800