xref: /freebsd/sys/dev/glxsb/glxsb.c (revision e9b1dc32c9bd2ebae5f9e140bfa0e0321bc366b5)
1 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
2 
3 /*
4  * Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org>
5  * Copyright (c) 2003, 2004 Theo de Raadt
6  * Copyright (c) 2003 Jason Wright
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for the security block on the AMD Geode LX processors
23  * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/bus.h>
32 #include <sys/errno.h>
33 #include <sys/kernel.h>
34 #include <sys/lock.h>
35 #include <sys/malloc.h>
36 #include <sys/mbuf.h>
37 #include <sys/module.h>
38 #include <sys/mutex.h>
39 #include <sys/proc.h>
40 #include <sys/random.h>
41 #include <sys/rman.h>
42 #include <sys/rwlock.h>
43 #include <sys/sysctl.h>
44 #include <sys/taskqueue.h>
45 
46 #include <machine/bus.h>
47 #include <machine/cpufunc.h>
48 #include <machine/resource.h>
49 
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pcireg.h>
52 
53 #include <opencrypto/cryptodev.h>
54 #include <opencrypto/cryptosoft.h>
55 #include <opencrypto/xform.h>
56 
57 #include "cryptodev_if.h"
58 #include "glxsb.h"
59 
60 #define PCI_VENDOR_AMD			0x1022	/* AMD */
61 #define PCI_PRODUCT_AMD_GEODE_LX_CRYPTO	0x2082	/* Geode LX Crypto */
62 
63 #define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
64 #define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
65 #define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
66 #define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
67 #define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
68 #define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
69 #define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
70 
71 						/* For GLD_MSR_CTRL: */
72 #define SB_GMC_DIV0		0x0000		/* AES update divisor values */
73 #define SB_GMC_DIV1		0x0001
74 #define SB_GMC_DIV2		0x0002
75 #define SB_GMC_DIV3		0x0003
76 #define SB_GMC_DIV_MASK		0x0003
77 #define SB_GMC_SBI		0x0004		/* AES swap bits */
78 #define SB_GMC_SBY		0x0008		/* AES swap bytes */
79 #define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
80 #define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
81 #define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
82 #define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
83 #define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
84 #define SB_GMC_T_SEL_MASK	0x0300
85 #define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
86 #define SB_GMC_T_TM		0x0800		/* RNG test mode */
87 						/*     (deterministic) */
88 
89 /* Security Block configuration/control registers (offsets from base) */
90 #define SB_CTL_A		0x0000		/* RW - SB Control A */
91 #define SB_CTL_B		0x0004		/* RW - SB Control B */
92 #define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
93 #define SB_SOURCE_A		0x0010		/* RW - Source A */
94 #define SB_DEST_A		0x0014		/* RW - Destination A */
95 #define SB_LENGTH_A		0x0018		/* RW - Length A */
96 #define SB_SOURCE_B		0x0020		/* RW - Source B */
97 #define SB_DEST_B		0x0024		/* RW - Destination B */
98 #define SB_LENGTH_B		0x0028		/* RW - Length B */
99 #define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
100 #define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
101 #define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
102 #define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
103 #define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
104 #define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
105 #define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
106 #define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
107 #define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
108 #define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
109 #define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
110 #define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
111 #define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
112 #define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
113 #define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
114 #define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
115 
116 						/* For SB_CTL_A and _B */
117 #define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
118 #define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
119 #define SB_CTL_DEC		0x0000		/* Decrypt */
120 #define SB_CTL_WK		0x0004		/* Use writable key (we set) */
121 #define SB_CTL_DC		0x0008		/* Destination coherent */
122 #define SB_CTL_SC		0x0010		/* Source coherent */
123 #define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
124 
125 						/* For SB_AES_INT */
126 #define SB_AI_DISABLE_AES_A	0x0001		/* Disable AES A compl int */
127 #define SB_AI_ENABLE_AES_A	0x0000		/* Enable AES A compl int */
128 #define SB_AI_DISABLE_AES_B	0x0002		/* Disable AES B compl int */
129 #define SB_AI_ENABLE_AES_B	0x0000		/* Enable AES B compl int */
130 #define SB_AI_DISABLE_EEPROM	0x0004		/* Disable EEPROM op comp int */
131 #define SB_AI_ENABLE_EEPROM	0x0000		/* Enable EEPROM op compl int */
132 #define SB_AI_AES_A_COMPLETE   0x10000		/* AES A operation complete */
133 #define SB_AI_AES_B_COMPLETE   0x20000		/* AES B operation complete */
134 #define SB_AI_EEPROM_COMPLETE  0x40000		/* EEPROM operation complete */
135 
136 #define SB_AI_CLEAR_INTR \
137 	(SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |\
138 	SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |\
139 	SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE)
140 
141 #define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
142 
143 #define SB_MEM_SIZE		0x0810		/* Size of memory block */
144 
145 #define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
146 						/* must be 16-byte aligned */
147 #define SB_AES_BLOCK_SIZE	0x0010
148 
149 /*
150  * The Geode LX security block AES acceleration doesn't perform scatter-
151  * gather: it just takes source and destination addresses.  Therefore the
152  * plain- and ciphertexts need to be contiguous.  To this end, we allocate
153  * a buffer for both, and accept the overhead of copying in and out.  If
154  * the number of bytes in one operation is bigger than allowed for by the
155  * buffer (buffer is twice the size of the max length, as it has both input
156  * and output) then we have to perform multiple encryptions/decryptions.
157  */
158 
159 #define GLXSB_MAX_AES_LEN	16384
160 
161 MALLOC_DEFINE(M_GLXSB, "glxsb_data", "Glxsb Data");
162 
163 struct glxsb_dma_map {
164 	bus_dmamap_t		dma_map;	/* DMA map */
165 	bus_dma_segment_t	dma_seg;	/* segments */
166 	int			dma_nsegs;	/* #segments */
167 	int			dma_size;	/* size */
168 	caddr_t			dma_vaddr;	/* virtual address */
169 	bus_addr_t		dma_paddr;	/* physical address */
170 };
171 
172 struct glxsb_taskop {
173 	struct glxsb_session	*to_ses;	/* crypto session */
174 	struct cryptop		*to_crp;	/* cryptop to perfom */
175 	struct cryptodesc	*to_enccrd;	/* enccrd to perform */
176 	struct cryptodesc	*to_maccrd;	/* maccrd to perform */
177 };
178 
179 struct glxsb_softc {
180 	device_t		sc_dev;		/* device backpointer */
181 	struct resource		*sc_sr;		/* resource */
182 	int			sc_rid;		/* resource rid */
183 	struct callout		sc_rngco;	/* RNG callout */
184 	int			sc_rnghz;	/* RNG callout ticks */
185 	bus_dma_tag_t		sc_dmat;	/* DMA tag */
186 	struct glxsb_dma_map	sc_dma;		/* DMA map */
187 	int32_t			sc_cid;		/* crypto tag */
188 	struct mtx		sc_task_mtx;	/* task mutex */
189 	struct taskqueue	*sc_tq;		/* task queue */
190 	struct task		sc_cryptotask;	/* task */
191 	struct glxsb_taskop	sc_to;		/* task's crypto operation */
192 	int			sc_task_count;	/* tasks count */
193 };
194 
195 static int glxsb_probe(device_t);
196 static int glxsb_attach(device_t);
197 static int glxsb_detach(device_t);
198 
199 static void glxsb_dmamap_cb(void *, bus_dma_segment_t *, int, int);
200 static int  glxsb_dma_alloc(struct glxsb_softc *);
201 static void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
202 static void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
203 static void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
204 
205 static void glxsb_rnd(void *);
206 static int  glxsb_crypto_setup(struct glxsb_softc *);
207 static int  glxsb_crypto_newsession(device_t, crypto_session_t, struct cryptoini *);
208 static void glxsb_crypto_freesession(device_t, crypto_session_t);
209 static int  glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
210 	uint32_t, void *, int, void *);
211 
212 static int  glxsb_crypto_encdec(struct cryptop *, struct cryptodesc *,
213 	struct glxsb_session *, struct glxsb_softc *);
214 
215 static void glxsb_crypto_task(void *, int);
216 static int  glxsb_crypto_process(device_t, struct cryptop *, int);
217 
218 static device_method_t glxsb_methods[] = {
219 	/* device interface */
220 	DEVMETHOD(device_probe,		glxsb_probe),
221 	DEVMETHOD(device_attach,	glxsb_attach),
222 	DEVMETHOD(device_detach,	glxsb_detach),
223 
224 	/* crypto device methods */
225 	DEVMETHOD(cryptodev_newsession,		glxsb_crypto_newsession),
226 	DEVMETHOD(cryptodev_freesession,	glxsb_crypto_freesession),
227 	DEVMETHOD(cryptodev_process,		glxsb_crypto_process),
228 
229 	{0,0}
230 };
231 
232 static driver_t glxsb_driver = {
233 	"glxsb",
234 	glxsb_methods,
235 	sizeof(struct glxsb_softc)
236 };
237 
238 static devclass_t glxsb_devclass;
239 
240 DRIVER_MODULE(glxsb, pci, glxsb_driver, glxsb_devclass, 0, 0);
241 MODULE_VERSION(glxsb, 1);
242 MODULE_DEPEND(glxsb, crypto, 1, 1, 1);
243 
244 static int
245 glxsb_probe(device_t dev)
246 {
247 
248 	if (pci_get_vendor(dev) == PCI_VENDOR_AMD &&
249 	    pci_get_device(dev) == PCI_PRODUCT_AMD_GEODE_LX_CRYPTO) {
250 		device_set_desc(dev,
251 		    "AMD Geode LX Security Block (AES-128-CBC, RNG)");
252 		return (BUS_PROBE_DEFAULT);
253 	}
254 
255 	return (ENXIO);
256 }
257 
258 static int
259 glxsb_attach(device_t dev)
260 {
261 	struct glxsb_softc *sc = device_get_softc(dev);
262 	uint64_t msr;
263 
264 	sc->sc_dev = dev;
265 	msr = rdmsr(SB_GLD_MSR_CAP);
266 
267 	if ((msr & 0xFFFF00) != 0x130400) {
268 		device_printf(dev, "unknown ID 0x%x\n",
269 		    (int)((msr & 0xFFFF00) >> 16));
270 		return (ENXIO);
271 	}
272 
273 	pci_enable_busmaster(dev);
274 
275 	/* Map in the security block configuration/control registers */
276 	sc->sc_rid = PCIR_BAR(0);
277 	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rid,
278 	    RF_ACTIVE);
279 	if (sc->sc_sr == NULL) {
280 		device_printf(dev, "cannot map register space\n");
281 		return (ENXIO);
282 	}
283 
284 	/*
285 	 * Configure the Security Block.
286 	 *
287 	 * We want to enable the noise generator (T_NE), and enable the
288 	 * linear feedback shift register and whitener post-processing
289 	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
290 	 * is disabled.
291 	 */
292 	msr = rdmsr(SB_GLD_MSR_CTRL);
293 	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
294 	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
295 #if 0
296 	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
297 #endif
298 	wrmsr(SB_GLD_MSR_CTRL, msr);
299 
300 	/* Disable interrupts */
301 	bus_write_4(sc->sc_sr, SB_AES_INT, SB_AI_CLEAR_INTR);
302 
303 	/* Allocate a contiguous DMA-able buffer to work in */
304 	if (glxsb_dma_alloc(sc) != 0)
305 		goto fail0;
306 
307 	/* Initialize our task queue */
308 	sc->sc_tq = taskqueue_create("glxsb_taskq", M_NOWAIT | M_ZERO,
309 	    taskqueue_thread_enqueue, &sc->sc_tq);
310 	if (sc->sc_tq == NULL) {
311 		device_printf(dev, "cannot create task queue\n");
312 		goto fail0;
313 	}
314 	if (taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
315 	    device_get_nameunit(dev)) != 0) {
316 		device_printf(dev, "cannot start task queue\n");
317 		goto fail1;
318 	}
319 	TASK_INIT(&sc->sc_cryptotask, 0, glxsb_crypto_task, sc);
320 
321 	/* Initialize crypto */
322 	if (glxsb_crypto_setup(sc) != 0)
323 		goto fail1;
324 
325 	/* Install a periodic collector for the "true" (AMD's word) RNG */
326 	if (hz > 100)
327 		sc->sc_rnghz = hz / 100;
328 	else
329 		sc->sc_rnghz = 1;
330 	callout_init(&sc->sc_rngco, 1);
331 	glxsb_rnd(sc);
332 
333 	return (0);
334 
335 fail1:
336 	taskqueue_free(sc->sc_tq);
337 fail0:
338 	bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr);
339 	return (ENXIO);
340 }
341 
342 static int
343 glxsb_detach(device_t dev)
344 {
345 	struct glxsb_softc *sc = device_get_softc(dev);
346 
347 	crypto_unregister_all(sc->sc_cid);
348 
349 	callout_drain(&sc->sc_rngco);
350 	taskqueue_drain(sc->sc_tq, &sc->sc_cryptotask);
351 	bus_generic_detach(dev);
352 	glxsb_dma_free(sc, &sc->sc_dma);
353 	bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr);
354 	taskqueue_free(sc->sc_tq);
355 	mtx_destroy(&sc->sc_task_mtx);
356 	return (0);
357 }
358 
359 /*
360  *	callback for bus_dmamap_load()
361  */
362 static void
363 glxsb_dmamap_cb(void *arg, bus_dma_segment_t *seg, int nseg, int error)
364 {
365 
366 	bus_addr_t *paddr = (bus_addr_t*) arg;
367 	*paddr = seg[0].ds_addr;
368 }
369 
370 static int
371 glxsb_dma_alloc(struct glxsb_softc *sc)
372 {
373 	struct glxsb_dma_map *dma = &sc->sc_dma;
374 	int rc;
375 
376 	dma->dma_nsegs = 1;
377 	dma->dma_size = GLXSB_MAX_AES_LEN * 2;
378 
379 	/* Setup DMA descriptor area */
380 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
381 				SB_AES_ALIGN, 0,	/* alignments, bounds */
382 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
383 				BUS_SPACE_MAXADDR,	/* highaddr */
384 				NULL, NULL,		/* filter, filterarg */
385 				dma->dma_size,		/* maxsize */
386 				dma->dma_nsegs,		/* nsegments */
387 				dma->dma_size,		/* maxsegsize */
388 				BUS_DMA_ALLOCNOW,	/* flags */
389 				NULL, NULL,		/* lockfunc, lockarg */
390 				&sc->sc_dmat);
391 	if (rc != 0) {
392 		device_printf(sc->sc_dev,
393 		    "cannot allocate DMA tag (%d)\n", rc);
394 		return (rc);
395 	}
396 
397 	rc = bus_dmamem_alloc(sc->sc_dmat, (void **)&dma->dma_vaddr,
398 	    BUS_DMA_NOWAIT, &dma->dma_map);
399 	if (rc != 0) {
400 		device_printf(sc->sc_dev,
401 		    "cannot allocate DMA memory of %d bytes (%d)\n",
402 			dma->dma_size, rc);
403 		goto fail0;
404 	}
405 
406 	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
407 	    dma->dma_size, glxsb_dmamap_cb, &dma->dma_paddr, BUS_DMA_NOWAIT);
408 	if (rc != 0) {
409 		device_printf(sc->sc_dev,
410 		    "cannot load DMA memory for %d bytes (%d)\n",
411 		   dma->dma_size, rc);
412 		goto fail1;
413 	}
414 
415 	return (0);
416 
417 fail1:
418 	bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map);
419 fail0:
420 	bus_dma_tag_destroy(sc->sc_dmat);
421 	return (rc);
422 }
423 
424 static void
425 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
426 {
427 
428 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
429 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
430 }
431 
432 static void
433 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
434 {
435 
436 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
437 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
438 }
439 
440 static void
441 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
442 {
443 
444 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
445 	bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map);
446 	bus_dma_tag_destroy(sc->sc_dmat);
447 }
448 
449 static void
450 glxsb_rnd(void *v)
451 {
452 	struct glxsb_softc *sc = v;
453 	uint32_t status, value;
454 
455 	status = bus_read_4(sc->sc_sr, SB_RANDOM_NUM_STATUS);
456 	if (status & SB_RNS_TRNG_VALID) {
457 		value = bus_read_4(sc->sc_sr, SB_RANDOM_NUM);
458 		/* feed with one uint32 */
459 		/* MarkM: FIX!! Check that this does not swamp the harvester! */
460 		random_harvest_queue(&value, sizeof(value), RANDOM_PURE_GLXSB);
461 	}
462 
463 	callout_reset(&sc->sc_rngco, sc->sc_rnghz, glxsb_rnd, sc);
464 }
465 
466 static int
467 glxsb_crypto_setup(struct glxsb_softc *sc)
468 {
469 
470 	sc->sc_cid = crypto_get_driverid(sc->sc_dev,
471 	    sizeof(struct glxsb_session), CRYPTOCAP_F_HARDWARE);
472 
473 	if (sc->sc_cid < 0) {
474 		device_printf(sc->sc_dev, "cannot get crypto driver id\n");
475 		return (ENOMEM);
476 	}
477 
478 	mtx_init(&sc->sc_task_mtx, "glxsb_crypto_mtx", NULL, MTX_DEF);
479 
480 	if (crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0) != 0)
481 		goto crypto_fail;
482 	if (crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0) != 0)
483 		goto crypto_fail;
484 	if (crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0) != 0)
485 		goto crypto_fail;
486 	if (crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0) != 0)
487 		goto crypto_fail;
488 	if (crypto_register(sc->sc_cid, CRYPTO_RIPEMD160_HMAC, 0, 0) != 0)
489 		goto crypto_fail;
490 	if (crypto_register(sc->sc_cid, CRYPTO_SHA2_256_HMAC, 0, 0) != 0)
491 		goto crypto_fail;
492 	if (crypto_register(sc->sc_cid, CRYPTO_SHA2_384_HMAC, 0, 0) != 0)
493 		goto crypto_fail;
494 	if (crypto_register(sc->sc_cid, CRYPTO_SHA2_512_HMAC, 0, 0) != 0)
495 		goto crypto_fail;
496 
497 	return (0);
498 
499 crypto_fail:
500 	device_printf(sc->sc_dev, "cannot register crypto\n");
501 	crypto_unregister_all(sc->sc_cid);
502 	mtx_destroy(&sc->sc_task_mtx);
503 	return (ENOMEM);
504 }
505 
506 static int
507 glxsb_crypto_newsession(device_t dev, crypto_session_t cses,
508     struct cryptoini *cri)
509 {
510 	struct glxsb_softc *sc = device_get_softc(dev);
511 	struct glxsb_session *ses;
512 	struct cryptoini *encini, *macini;
513 	int error;
514 
515 	if (sc == NULL || cri == NULL)
516 		return (EINVAL);
517 
518 	encini = macini = NULL;
519 	for (; cri != NULL; cri = cri->cri_next) {
520 		switch(cri->cri_alg) {
521 		case CRYPTO_NULL_HMAC:
522 		case CRYPTO_MD5_HMAC:
523 		case CRYPTO_SHA1_HMAC:
524 		case CRYPTO_RIPEMD160_HMAC:
525 		case CRYPTO_SHA2_256_HMAC:
526 		case CRYPTO_SHA2_384_HMAC:
527 		case CRYPTO_SHA2_512_HMAC:
528 			if (macini != NULL)
529 				return (EINVAL);
530 			macini = cri;
531 			break;
532 		case CRYPTO_AES_CBC:
533 			if (encini != NULL)
534 				return (EINVAL);
535 			encini = cri;
536 			break;
537 		default:
538 			return (EINVAL);
539 		}
540 	}
541 
542 	/*
543 	 * We only support HMAC algorithms to be able to work with
544 	 * ipsec(4), so if we are asked only for authentication without
545 	 * encryption, don't pretend we can accellerate it.
546 	 */
547 	if (encini == NULL)
548 		return (EINVAL);
549 
550 	ses = crypto_get_driver_session(cses);
551 	if (encini->cri_alg == CRYPTO_AES_CBC) {
552 		if (encini->cri_klen != 128) {
553 			glxsb_crypto_freesession(sc->sc_dev, cses);
554 			return (EINVAL);
555 		}
556 		arc4rand(ses->ses_iv, sizeof(ses->ses_iv), 0);
557 		ses->ses_klen = encini->cri_klen;
558 
559 		/* Copy the key (Geode LX wants the primary key only) */
560 		bcopy(encini->cri_key, ses->ses_key, sizeof(ses->ses_key));
561 	}
562 
563 	if (macini != NULL) {
564 		error = glxsb_hash_setup(ses, macini);
565 		if (error != 0) {
566 			glxsb_crypto_freesession(sc->sc_dev, cses);
567 			return (error);
568 		}
569 	}
570 
571 	return (0);
572 }
573 
574 static void
575 glxsb_crypto_freesession(device_t dev, crypto_session_t cses)
576 {
577 	struct glxsb_softc *sc = device_get_softc(dev);
578 	struct glxsb_session *ses;
579 
580 	if (sc == NULL)
581 		return;
582 
583 	ses = crypto_get_driver_session(cses);
584 	glxsb_hash_free(ses);
585 }
586 
587 static int
588 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
589     uint32_t pdst, void *key, int len, void *iv)
590 {
591 	uint32_t status;
592 	int i;
593 
594 	if (len & 0xF) {
595 		device_printf(sc->sc_dev,
596 		    "len must be a multiple of 16 (not %d)\n", len);
597 		return (EINVAL);
598 	}
599 
600 	/* Set the source */
601 	bus_write_4(sc->sc_sr, SB_SOURCE_A, psrc);
602 
603 	/* Set the destination address */
604 	bus_write_4(sc->sc_sr, SB_DEST_A, pdst);
605 
606 	/* Set the data length */
607 	bus_write_4(sc->sc_sr, SB_LENGTH_A, len);
608 
609 	/* Set the IV */
610 	if (iv != NULL) {
611 		bus_write_region_4(sc->sc_sr, SB_CBC_IV, iv, 4);
612 		control |= SB_CTL_CBC;
613 	}
614 
615 	/* Set the key */
616 	bus_write_region_4(sc->sc_sr, SB_WKEY, key, 4);
617 
618 	/* Ask the security block to do it */
619 	bus_write_4(sc->sc_sr, SB_CTL_A,
620 	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
621 
622 	/*
623 	 * Now wait until it is done.
624 	 *
625 	 * We do a busy wait.  Obviously the number of iterations of
626 	 * the loop required to perform the AES operation depends upon
627 	 * the number of bytes to process.
628 	 *
629 	 * On a 500 MHz Geode LX we see
630 	 *
631 	 *	length (bytes)	typical max iterations
632 	 *	    16		   12
633 	 *	    64		   22
634 	 *	   256		   59
635 	 *	  1024		  212
636 	 *	  8192		1,537
637 	 *
638 	 * Since we have a maximum size of operation defined in
639 	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
640 	 * to wait.  Allow an order of magnitude longer than it should
641 	 * really take, just in case.
642 	 */
643 
644 	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
645 		status = bus_read_4(sc->sc_sr, SB_CTL_A);
646 		if ((status & SB_CTL_ST) == 0)		/* Done */
647 			return (0);
648 	}
649 
650 	device_printf(sc->sc_dev, "operation failed to complete\n");
651 	return (EIO);
652 }
653 
654 static int
655 glxsb_crypto_encdec(struct cryptop *crp, struct cryptodesc *crd,
656     struct glxsb_session *ses, struct glxsb_softc *sc)
657 {
658 	char *op_src, *op_dst;
659 	uint32_t op_psrc, op_pdst;
660 	uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
661 	int error;
662 	int len, tlen, xlen;
663 	int offset;
664 	uint32_t control;
665 
666 	if (crd == NULL || (crd->crd_len % SB_AES_BLOCK_SIZE) != 0)
667 		return (EINVAL);
668 
669 	/* How much of our buffer will we need to use? */
670 	xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
671 	    GLXSB_MAX_AES_LEN : crd->crd_len;
672 
673 	/*
674 	 * XXX Check if we can have input == output on Geode LX.
675 	 * XXX In the meantime, use two separate (adjacent) buffers.
676 	 */
677 	op_src = sc->sc_dma.dma_vaddr;
678 	op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
679 
680 	op_psrc = sc->sc_dma.dma_paddr;
681 	op_pdst = sc->sc_dma.dma_paddr + xlen;
682 
683 	if (crd->crd_flags & CRD_F_ENCRYPT) {
684 		control = SB_CTL_ENC;
685 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
686 			bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
687 		else
688 			bcopy(ses->ses_iv, op_iv, sizeof(op_iv));
689 
690 		if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
691 			crypto_copyback(crp->crp_flags, crp->crp_buf,
692 			    crd->crd_inject, sizeof(op_iv), op_iv);
693 		}
694 	} else {
695 		control = SB_CTL_DEC;
696 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
697 			bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
698 		else {
699 			crypto_copydata(crp->crp_flags, crp->crp_buf,
700 			    crd->crd_inject, sizeof(op_iv), op_iv);
701 		}
702 	}
703 
704 	offset = 0;
705 	tlen = crd->crd_len;
706 	piv = op_iv;
707 
708 	/* Process the data in GLXSB_MAX_AES_LEN chunks */
709 	while (tlen > 0) {
710 		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
711 		crypto_copydata(crp->crp_flags, crp->crp_buf,
712 		    crd->crd_skip + offset, len, op_src);
713 
714 		glxsb_dma_pre_op(sc, &sc->sc_dma);
715 
716 		error = glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
717 		    len, op_iv);
718 
719 		glxsb_dma_post_op(sc, &sc->sc_dma);
720 		if (error != 0)
721 			return (error);
722 
723 		crypto_copyback(crp->crp_flags, crp->crp_buf,
724 		    crd->crd_skip + offset, len, op_dst);
725 
726 		offset += len;
727 		tlen -= len;
728 
729 		if (tlen <= 0) {	/* Ideally, just == 0 */
730 			/* Finished - put the IV in session IV */
731 			piv = ses->ses_iv;
732 		}
733 
734 		/*
735 		 * Copy out last block for use as next iteration/session IV.
736 		 *
737 		 * piv is set to op_iv[] before the loop starts, but is
738 		 * set to ses->ses_iv if we're going to exit the loop this
739 		 * time.
740 		 */
741 		if (crd->crd_flags & CRD_F_ENCRYPT)
742 			bcopy(op_dst + len - sizeof(op_iv), piv, sizeof(op_iv));
743 		else {
744 			/* Decryption, only need this if another iteration */
745 			if (tlen > 0) {
746 				bcopy(op_src + len - sizeof(op_iv), piv,
747 				    sizeof(op_iv));
748 			}
749 		}
750 	} /* while */
751 
752 	/* All AES processing has now been done. */
753 	bzero(sc->sc_dma.dma_vaddr, xlen * 2);
754 
755 	return (0);
756 }
757 
758 static void
759 glxsb_crypto_task(void *arg, int pending)
760 {
761 	struct glxsb_softc *sc = arg;
762 	struct glxsb_session *ses;
763 	struct cryptop *crp;
764 	struct cryptodesc *enccrd, *maccrd;
765 	int error;
766 
767 	maccrd = sc->sc_to.to_maccrd;
768 	enccrd = sc->sc_to.to_enccrd;
769 	crp = sc->sc_to.to_crp;
770 	ses = sc->sc_to.to_ses;
771 
772 	/* Perform data authentication if requested before encryption */
773 	if (maccrd != NULL && maccrd->crd_next == enccrd) {
774 		error = glxsb_hash_process(ses, maccrd, crp);
775 		if (error != 0)
776 			goto out;
777 	}
778 
779 	error = glxsb_crypto_encdec(crp, enccrd, ses, sc);
780 	if (error != 0)
781 		goto out;
782 
783 	/* Perform data authentication if requested after encryption */
784 	if (maccrd != NULL && enccrd->crd_next == maccrd) {
785 		error = glxsb_hash_process(ses, maccrd, crp);
786 		if (error != 0)
787 			goto out;
788 	}
789 out:
790 	mtx_lock(&sc->sc_task_mtx);
791 	sc->sc_task_count--;
792 	mtx_unlock(&sc->sc_task_mtx);
793 
794 	crp->crp_etype = error;
795 	crypto_unblock(sc->sc_cid, CRYPTO_SYMQ);
796 	crypto_done(crp);
797 }
798 
799 static int
800 glxsb_crypto_process(device_t dev, struct cryptop *crp, int hint)
801 {
802 	struct glxsb_softc *sc = device_get_softc(dev);
803 	struct glxsb_session *ses;
804 	struct cryptodesc *crd, *enccrd, *maccrd;
805 	int error = 0;
806 
807 	enccrd = maccrd = NULL;
808 
809 	/* Sanity check. */
810 	if (crp == NULL)
811 		return (EINVAL);
812 
813 	if (crp->crp_callback == NULL || crp->crp_desc == NULL) {
814 		error = EINVAL;
815 		goto fail;
816 	}
817 
818 	for (crd = crp->crp_desc; crd != NULL; crd = crd->crd_next) {
819 		switch (crd->crd_alg) {
820 		case CRYPTO_NULL_HMAC:
821 		case CRYPTO_MD5_HMAC:
822 		case CRYPTO_SHA1_HMAC:
823 		case CRYPTO_RIPEMD160_HMAC:
824 		case CRYPTO_SHA2_256_HMAC:
825 		case CRYPTO_SHA2_384_HMAC:
826 		case CRYPTO_SHA2_512_HMAC:
827 			if (maccrd != NULL) {
828 				error = EINVAL;
829 				goto fail;
830 			}
831 			maccrd = crd;
832 			break;
833 		case CRYPTO_AES_CBC:
834 			if (enccrd != NULL) {
835 				error = EINVAL;
836 				goto fail;
837 			}
838 			enccrd = crd;
839 			break;
840 		default:
841 			error = EINVAL;
842 			goto fail;
843 		}
844 	}
845 
846 	if (enccrd == NULL || enccrd->crd_len % AES_BLOCK_LEN != 0) {
847 		error = EINVAL;
848 		goto fail;
849 	}
850 
851 	ses = crypto_get_driver_session(crp->crp_session);
852 
853 	mtx_lock(&sc->sc_task_mtx);
854 	if (sc->sc_task_count != 0) {
855 		mtx_unlock(&sc->sc_task_mtx);
856 		return (ERESTART);
857 	}
858 	sc->sc_task_count++;
859 
860 	sc->sc_to.to_maccrd = maccrd;
861 	sc->sc_to.to_enccrd = enccrd;
862 	sc->sc_to.to_crp = crp;
863 	sc->sc_to.to_ses = ses;
864 	mtx_unlock(&sc->sc_task_mtx);
865 
866 	taskqueue_enqueue(sc->sc_tq, &sc->sc_cryptotask);
867 	return(0);
868 
869 fail:
870 	crp->crp_etype = error;
871 	crypto_done(crp);
872 	return (error);
873 }
874