xref: /freebsd/sys/dev/glxsb/glxsb.c (revision 2e3f49888ec8851bafb22011533217487764fdb0)
1 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
2 
3 /*
4  * Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org>
5  * Copyright (c) 2003, 2004 Theo de Raadt
6  * Copyright (c) 2003 Jason Wright
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for the security block on the AMD Geode LX processors
23  * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
24  */
25 
26 #include <sys/param.h>
27 #include <sys/systm.h>
28 #include <sys/bus.h>
29 #include <sys/errno.h>
30 #include <sys/kernel.h>
31 #include <sys/lock.h>
32 #include <sys/malloc.h>
33 #include <sys/mbuf.h>
34 #include <sys/module.h>
35 #include <sys/mutex.h>
36 #include <sys/proc.h>
37 #include <sys/random.h>
38 #include <sys/rman.h>
39 #include <sys/rwlock.h>
40 #include <sys/sysctl.h>
41 #include <sys/taskqueue.h>
42 
43 #include <machine/bus.h>
44 #include <machine/cpufunc.h>
45 #include <machine/resource.h>
46 
47 #include <dev/pci/pcivar.h>
48 #include <dev/pci/pcireg.h>
49 
50 #include <opencrypto/cryptodev.h>
51 #include <opencrypto/xform.h>
52 
53 #include "cryptodev_if.h"
54 #include "glxsb.h"
55 
56 #define PCI_VENDOR_AMD			0x1022	/* AMD */
57 #define PCI_PRODUCT_AMD_GEODE_LX_CRYPTO	0x2082	/* Geode LX Crypto */
58 
59 #define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
60 #define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
61 #define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
62 #define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
63 #define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
64 #define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
65 #define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
66 
67 						/* For GLD_MSR_CTRL: */
68 #define SB_GMC_DIV0		0x0000		/* AES update divisor values */
69 #define SB_GMC_DIV1		0x0001
70 #define SB_GMC_DIV2		0x0002
71 #define SB_GMC_DIV3		0x0003
72 #define SB_GMC_DIV_MASK		0x0003
73 #define SB_GMC_SBI		0x0004		/* AES swap bits */
74 #define SB_GMC_SBY		0x0008		/* AES swap bytes */
75 #define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
76 #define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
77 #define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
78 #define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
79 #define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
80 #define SB_GMC_T_SEL_MASK	0x0300
81 #define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
82 #define SB_GMC_T_TM		0x0800		/* RNG test mode */
83 						/*     (deterministic) */
84 
85 /* Security Block configuration/control registers (offsets from base) */
86 #define SB_CTL_A		0x0000		/* RW - SB Control A */
87 #define SB_CTL_B		0x0004		/* RW - SB Control B */
88 #define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
89 #define SB_SOURCE_A		0x0010		/* RW - Source A */
90 #define SB_DEST_A		0x0014		/* RW - Destination A */
91 #define SB_LENGTH_A		0x0018		/* RW - Length A */
92 #define SB_SOURCE_B		0x0020		/* RW - Source B */
93 #define SB_DEST_B		0x0024		/* RW - Destination B */
94 #define SB_LENGTH_B		0x0028		/* RW - Length B */
95 #define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
96 #define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
97 #define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
98 #define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
99 #define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
100 #define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
101 #define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
102 #define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
103 #define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
104 #define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
105 #define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
106 #define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
107 #define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
108 #define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
109 #define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
110 #define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
111 
112 						/* For SB_CTL_A and _B */
113 #define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
114 #define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
115 #define SB_CTL_DEC		0x0000		/* Decrypt */
116 #define SB_CTL_WK		0x0004		/* Use writable key (we set) */
117 #define SB_CTL_DC		0x0008		/* Destination coherent */
118 #define SB_CTL_SC		0x0010		/* Source coherent */
119 #define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
120 
121 						/* For SB_AES_INT */
122 #define SB_AI_DISABLE_AES_A	0x0001		/* Disable AES A compl int */
123 #define SB_AI_ENABLE_AES_A	0x0000		/* Enable AES A compl int */
124 #define SB_AI_DISABLE_AES_B	0x0002		/* Disable AES B compl int */
125 #define SB_AI_ENABLE_AES_B	0x0000		/* Enable AES B compl int */
126 #define SB_AI_DISABLE_EEPROM	0x0004		/* Disable EEPROM op comp int */
127 #define SB_AI_ENABLE_EEPROM	0x0000		/* Enable EEPROM op compl int */
128 #define SB_AI_AES_A_COMPLETE   0x10000		/* AES A operation complete */
129 #define SB_AI_AES_B_COMPLETE   0x20000		/* AES B operation complete */
130 #define SB_AI_EEPROM_COMPLETE  0x40000		/* EEPROM operation complete */
131 
132 #define SB_AI_CLEAR_INTR \
133 	(SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |\
134 	SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |\
135 	SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE)
136 
137 #define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
138 
139 #define SB_MEM_SIZE		0x0810		/* Size of memory block */
140 
141 #define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
142 						/* must be 16-byte aligned */
143 #define SB_AES_BLOCK_SIZE	0x0010
144 
145 /*
146  * The Geode LX security block AES acceleration doesn't perform scatter-
147  * gather: it just takes source and destination addresses.  Therefore the
148  * plain- and ciphertexts need to be contiguous.  To this end, we allocate
149  * a buffer for both, and accept the overhead of copying in and out.  If
150  * the number of bytes in one operation is bigger than allowed for by the
151  * buffer (buffer is twice the size of the max length, as it has both input
152  * and output) then we have to perform multiple encryptions/decryptions.
153  */
154 
155 #define GLXSB_MAX_AES_LEN	16384
156 
157 MALLOC_DEFINE(M_GLXSB, "glxsb_data", "Glxsb Data");
158 
159 struct glxsb_dma_map {
160 	bus_dmamap_t		dma_map;	/* DMA map */
161 	bus_dma_segment_t	dma_seg;	/* segments */
162 	int			dma_nsegs;	/* #segments */
163 	int			dma_size;	/* size */
164 	caddr_t			dma_vaddr;	/* virtual address */
165 	bus_addr_t		dma_paddr;	/* physical address */
166 };
167 
168 struct glxsb_taskop {
169 	struct glxsb_session	*to_ses;	/* crypto session */
170 	struct cryptop		*to_crp;	/* cryptop to perfom */
171 };
172 
173 struct glxsb_softc {
174 	device_t		sc_dev;		/* device backpointer */
175 	struct resource		*sc_sr;		/* resource */
176 	int			sc_rid;		/* resource rid */
177 	struct callout		sc_rngco;	/* RNG callout */
178 	int			sc_rnghz;	/* RNG callout ticks */
179 	bus_dma_tag_t		sc_dmat;	/* DMA tag */
180 	struct glxsb_dma_map	sc_dma;		/* DMA map */
181 	int32_t			sc_cid;		/* crypto tag */
182 	struct mtx		sc_task_mtx;	/* task mutex */
183 	struct taskqueue	*sc_tq;		/* task queue */
184 	struct task		sc_cryptotask;	/* task */
185 	struct glxsb_taskop	sc_to;		/* task's crypto operation */
186 	int			sc_task_count;	/* tasks count */
187 };
188 
189 static int glxsb_probe(device_t);
190 static int glxsb_attach(device_t);
191 static int glxsb_detach(device_t);
192 
193 static void glxsb_dmamap_cb(void *, bus_dma_segment_t *, int, int);
194 static int  glxsb_dma_alloc(struct glxsb_softc *);
195 static void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
196 static void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
197 static void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
198 
199 static void glxsb_rnd(void *);
200 static int  glxsb_crypto_setup(struct glxsb_softc *);
201 static int  glxsb_crypto_probesession(device_t,
202 	const struct crypto_session_params *);
203 static int  glxsb_crypto_newsession(device_t, crypto_session_t,
204 	const struct crypto_session_params *);
205 static void glxsb_crypto_freesession(device_t, crypto_session_t);
206 static int  glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
207 	uint32_t, const void *, int, const void *);
208 
209 static int  glxsb_crypto_encdec(struct cryptop *, struct glxsb_session *,
210 	struct glxsb_softc *);
211 
212 static void glxsb_crypto_task(void *, int);
213 static int  glxsb_crypto_process(device_t, struct cryptop *, int);
214 
215 static device_method_t glxsb_methods[] = {
216 	/* device interface */
217 	DEVMETHOD(device_probe,		glxsb_probe),
218 	DEVMETHOD(device_attach,	glxsb_attach),
219 	DEVMETHOD(device_detach,	glxsb_detach),
220 
221 	/* crypto device methods */
222 	DEVMETHOD(cryptodev_probesession,	glxsb_crypto_probesession),
223 	DEVMETHOD(cryptodev_newsession,		glxsb_crypto_newsession),
224 	DEVMETHOD(cryptodev_freesession,	glxsb_crypto_freesession),
225 	DEVMETHOD(cryptodev_process,		glxsb_crypto_process),
226 
227 	{0,0}
228 };
229 
230 static driver_t glxsb_driver = {
231 	"glxsb",
232 	glxsb_methods,
233 	sizeof(struct glxsb_softc)
234 };
235 
236 DRIVER_MODULE(glxsb, pci, glxsb_driver, 0, 0);
237 MODULE_VERSION(glxsb, 1);
238 MODULE_DEPEND(glxsb, crypto, 1, 1, 1);
239 
240 static int
241 glxsb_probe(device_t dev)
242 {
243 
244 	if (pci_get_vendor(dev) == PCI_VENDOR_AMD &&
245 	    pci_get_device(dev) == PCI_PRODUCT_AMD_GEODE_LX_CRYPTO) {
246 		device_set_desc(dev,
247 		    "AMD Geode LX Security Block (AES-128-CBC, RNG)");
248 		return (BUS_PROBE_DEFAULT);
249 	}
250 
251 	return (ENXIO);
252 }
253 
254 static int
255 glxsb_attach(device_t dev)
256 {
257 	struct glxsb_softc *sc = device_get_softc(dev);
258 	uint64_t msr;
259 
260 	sc->sc_dev = dev;
261 	msr = rdmsr(SB_GLD_MSR_CAP);
262 
263 	if ((msr & 0xFFFF00) != 0x130400) {
264 		device_printf(dev, "unknown ID 0x%x\n",
265 		    (int)((msr & 0xFFFF00) >> 16));
266 		return (ENXIO);
267 	}
268 
269 	pci_enable_busmaster(dev);
270 
271 	/* Map in the security block configuration/control registers */
272 	sc->sc_rid = PCIR_BAR(0);
273 	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rid,
274 	    RF_ACTIVE);
275 	if (sc->sc_sr == NULL) {
276 		device_printf(dev, "cannot map register space\n");
277 		return (ENXIO);
278 	}
279 
280 	/*
281 	 * Configure the Security Block.
282 	 *
283 	 * We want to enable the noise generator (T_NE), and enable the
284 	 * linear feedback shift register and whitener post-processing
285 	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
286 	 * is disabled.
287 	 */
288 	msr = rdmsr(SB_GLD_MSR_CTRL);
289 	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
290 	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
291 #if 0
292 	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
293 #endif
294 	wrmsr(SB_GLD_MSR_CTRL, msr);
295 
296 	/* Disable interrupts */
297 	bus_write_4(sc->sc_sr, SB_AES_INT, SB_AI_CLEAR_INTR);
298 
299 	/* Allocate a contiguous DMA-able buffer to work in */
300 	if (glxsb_dma_alloc(sc) != 0)
301 		goto fail0;
302 
303 	/* Initialize our task queue */
304 	sc->sc_tq = taskqueue_create("glxsb_taskq", M_NOWAIT | M_ZERO,
305 	    taskqueue_thread_enqueue, &sc->sc_tq);
306 	if (sc->sc_tq == NULL) {
307 		device_printf(dev, "cannot create task queue\n");
308 		goto fail0;
309 	}
310 	if (taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
311 	    device_get_nameunit(dev)) != 0) {
312 		device_printf(dev, "cannot start task queue\n");
313 		goto fail1;
314 	}
315 	TASK_INIT(&sc->sc_cryptotask, 0, glxsb_crypto_task, sc);
316 
317 	/* Initialize crypto */
318 	if (glxsb_crypto_setup(sc) != 0)
319 		goto fail1;
320 
321 	/* Install a periodic collector for the "true" (AMD's word) RNG */
322 	if (hz > 100)
323 		sc->sc_rnghz = hz / 100;
324 	else
325 		sc->sc_rnghz = 1;
326 	callout_init(&sc->sc_rngco, 1);
327 	glxsb_rnd(sc);
328 
329 	return (0);
330 
331 fail1:
332 	taskqueue_free(sc->sc_tq);
333 fail0:
334 	bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr);
335 	return (ENXIO);
336 }
337 
338 static int
339 glxsb_detach(device_t dev)
340 {
341 	struct glxsb_softc *sc = device_get_softc(dev);
342 
343 	crypto_unregister_all(sc->sc_cid);
344 
345 	callout_drain(&sc->sc_rngco);
346 	taskqueue_drain(sc->sc_tq, &sc->sc_cryptotask);
347 	bus_generic_detach(dev);
348 	glxsb_dma_free(sc, &sc->sc_dma);
349 	bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr);
350 	taskqueue_free(sc->sc_tq);
351 	mtx_destroy(&sc->sc_task_mtx);
352 	return (0);
353 }
354 
355 /*
356  *	callback for bus_dmamap_load()
357  */
358 static void
359 glxsb_dmamap_cb(void *arg, bus_dma_segment_t *seg, int nseg, int error)
360 {
361 
362 	bus_addr_t *paddr = (bus_addr_t*) arg;
363 	*paddr = seg[0].ds_addr;
364 }
365 
366 static int
367 glxsb_dma_alloc(struct glxsb_softc *sc)
368 {
369 	struct glxsb_dma_map *dma = &sc->sc_dma;
370 	int rc;
371 
372 	dma->dma_nsegs = 1;
373 	dma->dma_size = GLXSB_MAX_AES_LEN * 2;
374 
375 	/* Setup DMA descriptor area */
376 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
377 				SB_AES_ALIGN, 0,	/* alignments, bounds */
378 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
379 				BUS_SPACE_MAXADDR,	/* highaddr */
380 				NULL, NULL,		/* filter, filterarg */
381 				dma->dma_size,		/* maxsize */
382 				dma->dma_nsegs,		/* nsegments */
383 				dma->dma_size,		/* maxsegsize */
384 				BUS_DMA_ALLOCNOW,	/* flags */
385 				NULL, NULL,		/* lockfunc, lockarg */
386 				&sc->sc_dmat);
387 	if (rc != 0) {
388 		device_printf(sc->sc_dev,
389 		    "cannot allocate DMA tag (%d)\n", rc);
390 		return (rc);
391 	}
392 
393 	rc = bus_dmamem_alloc(sc->sc_dmat, (void **)&dma->dma_vaddr,
394 	    BUS_DMA_NOWAIT, &dma->dma_map);
395 	if (rc != 0) {
396 		device_printf(sc->sc_dev,
397 		    "cannot allocate DMA memory of %d bytes (%d)\n",
398 			dma->dma_size, rc);
399 		goto fail0;
400 	}
401 
402 	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
403 	    dma->dma_size, glxsb_dmamap_cb, &dma->dma_paddr, BUS_DMA_NOWAIT);
404 	if (rc != 0) {
405 		device_printf(sc->sc_dev,
406 		    "cannot load DMA memory for %d bytes (%d)\n",
407 		   dma->dma_size, rc);
408 		goto fail1;
409 	}
410 
411 	return (0);
412 
413 fail1:
414 	bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map);
415 fail0:
416 	bus_dma_tag_destroy(sc->sc_dmat);
417 	return (rc);
418 }
419 
420 static void
421 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
422 {
423 
424 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
425 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
426 }
427 
428 static void
429 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
430 {
431 
432 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
433 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
434 }
435 
436 static void
437 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
438 {
439 
440 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
441 	bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map);
442 	bus_dma_tag_destroy(sc->sc_dmat);
443 }
444 
445 static void
446 glxsb_rnd(void *v)
447 {
448 	struct glxsb_softc *sc = v;
449 	uint32_t status, value;
450 
451 	status = bus_read_4(sc->sc_sr, SB_RANDOM_NUM_STATUS);
452 	if (status & SB_RNS_TRNG_VALID) {
453 		value = bus_read_4(sc->sc_sr, SB_RANDOM_NUM);
454 		/* feed with one uint32 */
455 		/* MarkM: FIX!! Check that this does not swamp the harvester! */
456 		random_harvest_queue(&value, sizeof(value), RANDOM_PURE_GLXSB);
457 	}
458 
459 	callout_reset(&sc->sc_rngco, sc->sc_rnghz, glxsb_rnd, sc);
460 }
461 
462 static int
463 glxsb_crypto_setup(struct glxsb_softc *sc)
464 {
465 
466 	sc->sc_cid = crypto_get_driverid(sc->sc_dev,
467 	    sizeof(struct glxsb_session), CRYPTOCAP_F_HARDWARE);
468 
469 	if (sc->sc_cid < 0) {
470 		device_printf(sc->sc_dev, "cannot get crypto driver id\n");
471 		return (ENOMEM);
472 	}
473 
474 	mtx_init(&sc->sc_task_mtx, "glxsb_crypto_mtx", NULL, MTX_DEF);
475 
476 	return (0);
477 }
478 
479 static int
480 glxsb_crypto_probesession(device_t dev, const struct crypto_session_params *csp)
481 {
482 
483 	if (csp->csp_flags != 0)
484 		return (EINVAL);
485 
486 	/*
487 	 * We only support HMAC algorithms to be able to work with
488 	 * ipsec(4), so if we are asked only for authentication without
489 	 * encryption, don't pretend we can accelerate it.
490 	 */
491 	switch (csp->csp_mode) {
492 	case CSP_MODE_ETA:
493 		switch (csp->csp_auth_alg) {
494 		case CRYPTO_NULL_HMAC:
495 		case CRYPTO_SHA1_HMAC:
496 		case CRYPTO_RIPEMD160_HMAC:
497 		case CRYPTO_SHA2_256_HMAC:
498 		case CRYPTO_SHA2_384_HMAC:
499 		case CRYPTO_SHA2_512_HMAC:
500 			break;
501 		default:
502 			return (EINVAL);
503 		}
504 		/* FALLTHROUGH */
505 	case CSP_MODE_CIPHER:
506 		switch (csp->csp_cipher_alg) {
507 		case CRYPTO_AES_CBC:
508 			if (csp->csp_cipher_klen * 8 != 128)
509 				return (EINVAL);
510 			break;
511 		default:
512 			return (EINVAL);
513 		}
514 	default:
515 		return (EINVAL);
516 	}
517 	return (CRYPTODEV_PROBE_HARDWARE);
518 }
519 
520 static int
521 glxsb_crypto_newsession(device_t dev, crypto_session_t cses,
522     const struct crypto_session_params *csp)
523 {
524 	struct glxsb_softc *sc = device_get_softc(dev);
525 	struct glxsb_session *ses;
526 	int error;
527 
528 	ses = crypto_get_driver_session(cses);
529 
530 	/* Copy the key (Geode LX wants the primary key only) */
531 	if (csp->csp_cipher_key != NULL)
532 		bcopy(csp->csp_cipher_key, ses->ses_key, sizeof(ses->ses_key));
533 
534 	if (csp->csp_auth_alg != 0) {
535 		error = glxsb_hash_setup(ses, csp);
536 		if (error != 0) {
537 			glxsb_crypto_freesession(sc->sc_dev, cses);
538 			return (error);
539 		}
540 	}
541 
542 	return (0);
543 }
544 
545 static void
546 glxsb_crypto_freesession(device_t dev, crypto_session_t cses)
547 {
548 	struct glxsb_session *ses;
549 
550 	ses = crypto_get_driver_session(cses);
551 	glxsb_hash_free(ses);
552 }
553 
554 static int
555 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
556     uint32_t pdst, const void *key, int len, const void *iv)
557 {
558 	uint32_t status;
559 	int i;
560 
561 	if (len & 0xF) {
562 		device_printf(sc->sc_dev,
563 		    "len must be a multiple of 16 (not %d)\n", len);
564 		return (EINVAL);
565 	}
566 
567 	/* Set the source */
568 	bus_write_4(sc->sc_sr, SB_SOURCE_A, psrc);
569 
570 	/* Set the destination address */
571 	bus_write_4(sc->sc_sr, SB_DEST_A, pdst);
572 
573 	/* Set the data length */
574 	bus_write_4(sc->sc_sr, SB_LENGTH_A, len);
575 
576 	/* Set the IV */
577 	if (iv != NULL) {
578 		bus_write_region_4(sc->sc_sr, SB_CBC_IV, iv, 4);
579 		control |= SB_CTL_CBC;
580 	}
581 
582 	/* Set the key */
583 	bus_write_region_4(sc->sc_sr, SB_WKEY, key, 4);
584 
585 	/* Ask the security block to do it */
586 	bus_write_4(sc->sc_sr, SB_CTL_A,
587 	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
588 
589 	/*
590 	 * Now wait until it is done.
591 	 *
592 	 * We do a busy wait.  Obviously the number of iterations of
593 	 * the loop required to perform the AES operation depends upon
594 	 * the number of bytes to process.
595 	 *
596 	 * On a 500 MHz Geode LX we see
597 	 *
598 	 *	length (bytes)	typical max iterations
599 	 *	    16		   12
600 	 *	    64		   22
601 	 *	   256		   59
602 	 *	  1024		  212
603 	 *	  8192		1,537
604 	 *
605 	 * Since we have a maximum size of operation defined in
606 	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
607 	 * to wait.  Allow an order of magnitude longer than it should
608 	 * really take, just in case.
609 	 */
610 
611 	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
612 		status = bus_read_4(sc->sc_sr, SB_CTL_A);
613 		if ((status & SB_CTL_ST) == 0)		/* Done */
614 			return (0);
615 	}
616 
617 	device_printf(sc->sc_dev, "operation failed to complete\n");
618 	return (EIO);
619 }
620 
621 static int
622 glxsb_crypto_encdec(struct cryptop *crp, struct glxsb_session *ses,
623     struct glxsb_softc *sc)
624 {
625 	char *op_src, *op_dst;
626 	const void *key;
627 	uint32_t op_psrc, op_pdst;
628 	uint8_t op_iv[SB_AES_BLOCK_SIZE];
629 	int error;
630 	int len, tlen, xlen;
631 	int offset;
632 	uint32_t control;
633 
634 	if ((crp->crp_payload_length % SB_AES_BLOCK_SIZE) != 0)
635 		return (EINVAL);
636 
637 	/* How much of our buffer will we need to use? */
638 	xlen = crp->crp_payload_length > GLXSB_MAX_AES_LEN ?
639 	    GLXSB_MAX_AES_LEN : crp->crp_payload_length;
640 
641 	/*
642 	 * XXX Check if we can have input == output on Geode LX.
643 	 * XXX In the meantime, use two separate (adjacent) buffers.
644 	 */
645 	op_src = sc->sc_dma.dma_vaddr;
646 	op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
647 
648 	op_psrc = sc->sc_dma.dma_paddr;
649 	op_pdst = sc->sc_dma.dma_paddr + xlen;
650 
651 	if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op))
652 		control = SB_CTL_ENC;
653 	else
654 		control = SB_CTL_DEC;
655 
656 	crypto_read_iv(crp, op_iv);
657 
658 	offset = 0;
659 	tlen = crp->crp_payload_length;
660 
661 	if (crp->crp_cipher_key != NULL)
662 		key = crp->crp_cipher_key;
663 	else
664 		key = ses->ses_key;
665 
666 	/* Process the data in GLXSB_MAX_AES_LEN chunks */
667 	while (tlen > 0) {
668 		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
669 		crypto_copydata(crp, crp->crp_payload_start + offset, len,
670 		    op_src);
671 
672 		glxsb_dma_pre_op(sc, &sc->sc_dma);
673 
674 		error = glxsb_aes(sc, control, op_psrc, op_pdst, key, len,
675 		    op_iv);
676 
677 		glxsb_dma_post_op(sc, &sc->sc_dma);
678 		if (error != 0)
679 			return (error);
680 
681 		crypto_copyback(crp, crp->crp_payload_start + offset, len,
682 		    op_dst);
683 
684 		offset += len;
685 		tlen -= len;
686 
687 		/*
688 		 * Copy out last block for use as next iteration IV.
689 		 */
690 		if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op))
691 			bcopy(op_dst + len - sizeof(op_iv), op_iv,
692 			    sizeof(op_iv));
693 		else
694 			bcopy(op_src + len - sizeof(op_iv), op_iv,
695 			    sizeof(op_iv));
696 	} /* while */
697 
698 	/* All AES processing has now been done. */
699 	bzero(sc->sc_dma.dma_vaddr, xlen * 2);
700 
701 	return (0);
702 }
703 
704 static void
705 glxsb_crypto_task(void *arg, int pending)
706 {
707 	struct glxsb_softc *sc = arg;
708 	const struct crypto_session_params *csp;
709 	struct glxsb_session *ses;
710 	struct cryptop *crp;
711 	int error;
712 
713 	crp = sc->sc_to.to_crp;
714 	ses = sc->sc_to.to_ses;
715 	csp = crypto_get_params(crp->crp_session);
716 
717 	/* Perform data authentication if requested before encryption */
718 	if (csp->csp_mode == CSP_MODE_ETA &&
719 	    !CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
720 		error = glxsb_hash_process(ses, csp, crp);
721 		if (error != 0)
722 			goto out;
723 	}
724 
725 	error = glxsb_crypto_encdec(crp, ses, sc);
726 	if (error != 0)
727 		goto out;
728 
729 	/* Perform data authentication if requested after encryption */
730 	if (csp->csp_mode == CSP_MODE_ETA &&
731 	    CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
732 		error = glxsb_hash_process(ses, csp, crp);
733 		if (error != 0)
734 			goto out;
735 	}
736 out:
737 	mtx_lock(&sc->sc_task_mtx);
738 	sc->sc_task_count--;
739 	mtx_unlock(&sc->sc_task_mtx);
740 
741 	crp->crp_etype = error;
742 	crypto_unblock(sc->sc_cid, CRYPTO_SYMQ);
743 	crypto_done(crp);
744 }
745 
746 static int
747 glxsb_crypto_process(device_t dev, struct cryptop *crp, int hint)
748 {
749 	struct glxsb_softc *sc = device_get_softc(dev);
750 	struct glxsb_session *ses;
751 
752 	ses = crypto_get_driver_session(crp->crp_session);
753 
754 	mtx_lock(&sc->sc_task_mtx);
755 	if (sc->sc_task_count != 0) {
756 		mtx_unlock(&sc->sc_task_mtx);
757 		return (ERESTART);
758 	}
759 	sc->sc_task_count++;
760 
761 	sc->sc_to.to_crp = crp;
762 	sc->sc_to.to_ses = ses;
763 	mtx_unlock(&sc->sc_task_mtx);
764 
765 	taskqueue_enqueue(sc->sc_tq, &sc->sc_cryptotask);
766 	return(0);
767 }
768