xref: /freebsd/sys/dev/gem/if_gem.c (revision dba6dd177bdee890cf445fbe21a5dccefd5de18e)
1 /*-
2  * Copyright (C) 2001 Eduardo Horvath.
3  * Copyright (c) 2001-2003 Thomas Moestl
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  *	from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for Sun GEM ethernet controllers.
35  */
36 
37 #if 0
38 #define	GEM_DEBUG
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/callout.h>
45 #include <sys/endian.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 
52 #include <net/bpf.h>
53 #include <net/ethernet.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 
59 #include <machine/bus.h>
60 
61 #include <dev/mii/mii.h>
62 #include <dev/mii/miivar.h>
63 
64 #include <dev/gem/if_gemreg.h>
65 #include <dev/gem/if_gemvar.h>
66 
67 #define TRIES	10000
68 
69 static void	gem_start(struct ifnet *);
70 static void	gem_stop(struct ifnet *, int);
71 static int	gem_ioctl(struct ifnet *, u_long, caddr_t);
72 static void	gem_cddma_callback(void *, bus_dma_segment_t *, int, int);
73 static void	gem_rxdma_callback(void *, bus_dma_segment_t *, int,
74     bus_size_t, int);
75 static void	gem_txdma_callback(void *, bus_dma_segment_t *, int,
76     bus_size_t, int);
77 static void	gem_tick(void *);
78 static void	gem_watchdog(struct ifnet *);
79 static void	gem_init(void *);
80 static void	gem_init_regs(struct gem_softc *sc);
81 static int	gem_ringsize(int sz);
82 static int	gem_meminit(struct gem_softc *);
83 static int	gem_load_txmbuf(struct gem_softc *, struct mbuf *);
84 static void	gem_mifinit(struct gem_softc *);
85 static int	gem_bitwait(struct gem_softc *sc, bus_addr_t r,
86     u_int32_t clr, u_int32_t set);
87 static int	gem_reset_rx(struct gem_softc *);
88 static int	gem_reset_tx(struct gem_softc *);
89 static int	gem_disable_rx(struct gem_softc *);
90 static int	gem_disable_tx(struct gem_softc *);
91 static void	gem_rxdrain(struct gem_softc *);
92 static int	gem_add_rxbuf(struct gem_softc *, int);
93 static void	gem_setladrf(struct gem_softc *);
94 
95 struct mbuf	*gem_get(struct gem_softc *, int, int);
96 static void	gem_eint(struct gem_softc *, u_int);
97 static void	gem_rint(struct gem_softc *);
98 #if 0
99 static void	gem_rint_timeout(void *);
100 #endif
101 static void	gem_tint(struct gem_softc *);
102 #ifdef notyet
103 static void	gem_power(int, void *);
104 #endif
105 
106 devclass_t gem_devclass;
107 DRIVER_MODULE(miibus, gem, miibus_driver, miibus_devclass, 0, 0);
108 MODULE_DEPEND(gem, miibus, 1, 1, 1);
109 
110 #ifdef GEM_DEBUG
111 #include <sys/ktr.h>
112 #define	KTR_GEM		KTR_CT2
113 #endif
114 
115 #define	GEM_NSEGS GEM_NTXDESC
116 
117 /*
118  * gem_attach:
119  *
120  *	Attach a Gem interface to the system.
121  */
122 int
123 gem_attach(sc)
124 	struct gem_softc *sc;
125 {
126 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
127 	struct mii_softc *child;
128 	int i, error;
129 	u_int32_t v;
130 
131 	/* Make sure the chip is stopped. */
132 	ifp->if_softc = sc;
133 	gem_reset(sc);
134 
135 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
136 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, GEM_NSEGS,
137 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->sc_pdmatag);
138 	if (error)
139 		return (error);
140 
141 	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
142 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MAXBSIZE,
143 	    1, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW, NULL, NULL,
144 	    &sc->sc_rdmatag);
145 	if (error)
146 		goto fail_ptag;
147 
148 	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
149 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
150 	    GEM_TD_BUFSIZE, GEM_NTXDESC, BUS_SPACE_MAXSIZE_32BIT,
151 	    BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag);
152 	if (error)
153 		goto fail_rtag;
154 
155 	error = bus_dma_tag_create(sc->sc_pdmatag, PAGE_SIZE, 0,
156 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
157 	    sizeof(struct gem_control_data), 1,
158 	    sizeof(struct gem_control_data), BUS_DMA_ALLOCNOW,
159 	    busdma_lock_mutex, &Giant, &sc->sc_cdmatag);
160 	if (error)
161 		goto fail_ttag;
162 
163 	/*
164 	 * Allocate the control data structures, and create and load the
165 	 * DMA map for it.
166 	 */
167 	if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
168 	    (void **)&sc->sc_control_data, 0, &sc->sc_cddmamap))) {
169 		device_printf(sc->sc_dev, "unable to allocate control data,"
170 		    " error = %d\n", error);
171 		goto fail_ctag;
172 	}
173 
174 	sc->sc_cddma = 0;
175 	if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
176 	    sc->sc_control_data, sizeof(struct gem_control_data),
177 	    gem_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
178 		device_printf(sc->sc_dev, "unable to load control data DMA "
179 		    "map, error = %d\n", error);
180 		goto fail_cmem;
181 	}
182 
183 	/*
184 	 * Initialize the transmit job descriptors.
185 	 */
186 	STAILQ_INIT(&sc->sc_txfreeq);
187 	STAILQ_INIT(&sc->sc_txdirtyq);
188 
189 	/*
190 	 * Create the transmit buffer DMA maps.
191 	 */
192 	error = ENOMEM;
193 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
194 		struct gem_txsoft *txs;
195 
196 		txs = &sc->sc_txsoft[i];
197 		txs->txs_mbuf = NULL;
198 		txs->txs_ndescs = 0;
199 		if ((error = bus_dmamap_create(sc->sc_tdmatag, 0,
200 		    &txs->txs_dmamap)) != 0) {
201 			device_printf(sc->sc_dev, "unable to create tx DMA map "
202 			    "%d, error = %d\n", i, error);
203 			goto fail_txd;
204 		}
205 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
206 	}
207 
208 	/*
209 	 * Create the receive buffer DMA maps.
210 	 */
211 	for (i = 0; i < GEM_NRXDESC; i++) {
212 		if ((error = bus_dmamap_create(sc->sc_rdmatag, 0,
213 		    &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
214 			device_printf(sc->sc_dev, "unable to create rx DMA map "
215 			    "%d, error = %d\n", i, error);
216 			goto fail_rxd;
217 		}
218 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
219 	}
220 
221 
222 	gem_mifinit(sc);
223 
224 	if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, gem_mediachange,
225 	    gem_mediastatus)) != 0) {
226 		device_printf(sc->sc_dev, "phy probe failed: %d\n", error);
227 		goto fail_rxd;
228 	}
229 	sc->sc_mii = device_get_softc(sc->sc_miibus);
230 
231 	/*
232 	 * From this point forward, the attachment cannot fail.  A failure
233 	 * before this point releases all resources that may have been
234 	 * allocated.
235 	 */
236 
237 	/* Get RX FIFO size */
238 	sc->sc_rxfifosize = 64 *
239 	    bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
240 
241 	/* Get TX FIFO size */
242 	v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
243 	device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n",
244 	    sc->sc_rxfifosize / 1024, v / 16);
245 
246 	/* Initialize ifnet structure. */
247 	ifp->if_softc = sc;
248 	if_initname(ifp, device_get_name(sc->sc_dev),
249 	    device_get_unit(sc->sc_dev));
250 	ifp->if_mtu = ETHERMTU;
251 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
252 	ifp->if_start = gem_start;
253 	ifp->if_ioctl = gem_ioctl;
254 	ifp->if_watchdog = gem_watchdog;
255 	ifp->if_init = gem_init;
256 	ifp->if_snd.ifq_maxlen = GEM_TXQUEUELEN;
257 	/*
258 	 * Walk along the list of attached MII devices and
259 	 * establish an `MII instance' to `phy number'
260 	 * mapping. We'll use this mapping in media change
261 	 * requests to determine which phy to use to program
262 	 * the MIF configuration register.
263 	 */
264 	for (child = LIST_FIRST(&sc->sc_mii->mii_phys); child != NULL;
265 	     child = LIST_NEXT(child, mii_list)) {
266 		/*
267 		 * Note: we support just two PHYs: the built-in
268 		 * internal device and an external on the MII
269 		 * connector.
270 		 */
271 		if (child->mii_phy > 1 || child->mii_inst > 1) {
272 			device_printf(sc->sc_dev, "cannot accomodate "
273 			    "MII device %s at phy %d, instance %d\n",
274 			    device_get_name(child->mii_dev),
275 			    child->mii_phy, child->mii_inst);
276 			continue;
277 		}
278 
279 		sc->sc_phys[child->mii_inst] = child->mii_phy;
280 	}
281 
282 	/*
283 	 * Now select and activate the PHY we will use.
284 	 *
285 	 * The order of preference is External (MDI1),
286 	 * Internal (MDI0), Serial Link (no MII).
287 	 */
288 	if (sc->sc_phys[1]) {
289 #ifdef GEM_DEBUG
290 		printf("using external phy\n");
291 #endif
292 		sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
293 	} else {
294 #ifdef GEM_DEBUG
295 		printf("using internal phy\n");
296 #endif
297 		sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
298 	}
299 	bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
300 	    sc->sc_mif_config);
301 	/* Attach the interface. */
302 	ether_ifattach(ifp, sc->sc_arpcom.ac_enaddr);
303 
304 #if notyet
305 	/*
306 	 * Add a suspend hook to make sure we come back up after a
307 	 * resume.
308 	 */
309 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
310 	if (sc->sc_powerhook == NULL)
311 		device_printf(sc->sc_dev, "WARNING: unable to establish power "
312 		    "hook\n");
313 #endif
314 
315 	callout_init(&sc->sc_tick_ch, 0);
316 	callout_init(&sc->sc_rx_ch, 0);
317 	return (0);
318 
319 	/*
320 	 * Free any resources we've allocated during the failed attach
321 	 * attempt.  Do this in reverse order and fall through.
322 	 */
323 fail_rxd:
324 	for (i = 0; i < GEM_NRXDESC; i++) {
325 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
326 			bus_dmamap_destroy(sc->sc_rdmatag,
327 			    sc->sc_rxsoft[i].rxs_dmamap);
328 	}
329 fail_txd:
330 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
331 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
332 			bus_dmamap_destroy(sc->sc_tdmatag,
333 			    sc->sc_txsoft[i].txs_dmamap);
334 	}
335 	bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
336 fail_cmem:
337 	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
338 	    sc->sc_cddmamap);
339 fail_ctag:
340 	bus_dma_tag_destroy(sc->sc_cdmatag);
341 fail_ttag:
342 	bus_dma_tag_destroy(sc->sc_tdmatag);
343 fail_rtag:
344 	bus_dma_tag_destroy(sc->sc_rdmatag);
345 fail_ptag:
346 	bus_dma_tag_destroy(sc->sc_pdmatag);
347 	return (error);
348 }
349 
350 void
351 gem_detach(sc)
352 	struct gem_softc *sc;
353 {
354 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
355 	int i;
356 
357 	ether_ifdetach(ifp);
358 	gem_stop(ifp, 1);
359 	device_delete_child(sc->sc_dev, sc->sc_miibus);
360 
361 	for (i = 0; i < GEM_NRXDESC; i++) {
362 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
363 			bus_dmamap_destroy(sc->sc_rdmatag,
364 			    sc->sc_rxsoft[i].rxs_dmamap);
365 	}
366 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
367 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
368 			bus_dmamap_destroy(sc->sc_tdmatag,
369 			    sc->sc_txsoft[i].txs_dmamap);
370 	}
371 	GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
372 	GEM_CDSYNC(sc, BUS_DMASYNC_POSTWRITE);
373 	bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
374 	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
375 	    sc->sc_cddmamap);
376 	bus_dma_tag_destroy(sc->sc_cdmatag);
377 	bus_dma_tag_destroy(sc->sc_tdmatag);
378 	bus_dma_tag_destroy(sc->sc_rdmatag);
379 	bus_dma_tag_destroy(sc->sc_pdmatag);
380 }
381 
382 void
383 gem_suspend(sc)
384 	struct gem_softc *sc;
385 {
386 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
387 
388 	gem_stop(ifp, 0);
389 }
390 
391 void
392 gem_resume(sc)
393 	struct gem_softc *sc;
394 {
395 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
396 
397 	if (ifp->if_flags & IFF_UP)
398 		gem_init(ifp);
399 }
400 
401 static void
402 gem_cddma_callback(xsc, segs, nsegs, error)
403 	void *xsc;
404 	bus_dma_segment_t *segs;
405 	int nsegs;
406 	int error;
407 {
408 	struct gem_softc *sc = (struct gem_softc *)xsc;
409 
410 	if (error != 0)
411 		return;
412 	if (nsegs != 1) {
413 		/* can't happen... */
414 		panic("gem_cddma_callback: bad control buffer segment count");
415 	}
416 	sc->sc_cddma = segs[0].ds_addr;
417 }
418 
419 static void
420 gem_rxdma_callback(xsc, segs, nsegs, totsz, error)
421 	void *xsc;
422 	bus_dma_segment_t *segs;
423 	int nsegs;
424 	bus_size_t totsz;
425 	int error;
426 {
427 	struct gem_rxsoft *rxs = (struct gem_rxsoft *)xsc;
428 
429 	if (error != 0)
430 		return;
431 	KASSERT(nsegs == 1, ("gem_rxdma_callback: bad dma segment count"));
432 	rxs->rxs_paddr = segs[0].ds_addr;
433 }
434 
435 static void
436 gem_txdma_callback(xsc, segs, nsegs, totsz, error)
437 	void *xsc;
438 	bus_dma_segment_t *segs;
439 	int nsegs;
440 	bus_size_t totsz;
441 	int error;
442 {
443 	struct gem_txdma *txd = (struct gem_txdma *)xsc;
444 	struct gem_softc *sc = txd->txd_sc;
445 	struct gem_txsoft *txs = txd->txd_txs;
446 	bus_size_t len = 0;
447 	uint64_t flags = 0;
448 	int seg, nexttx;
449 
450 	if (error != 0)
451 		return;
452 	/*
453 	 * Ensure we have enough descriptors free to describe
454 	 * the packet.  Note, we always reserve one descriptor
455 	 * at the end of the ring as a termination point, to
456 	 * prevent wrap-around.
457 	 */
458 	if (nsegs > sc->sc_txfree - 1) {
459 		txs->txs_ndescs = -1;
460 		return;
461 	}
462 	txs->txs_ndescs = nsegs;
463 
464 	nexttx = txs->txs_firstdesc;
465 	/*
466 	 * Initialize the transmit descriptors.
467 	 */
468 	for (seg = 0; seg < nsegs;
469 	     seg++, nexttx = GEM_NEXTTX(nexttx)) {
470 #ifdef GEM_DEBUG
471 		CTR5(KTR_GEM, "txdma_cb: mapping seg %d (txd %d), len "
472 		    "%lx, addr %#lx (%#lx)",  seg, nexttx,
473 		    segs[seg].ds_len, segs[seg].ds_addr,
474 		    GEM_DMA_WRITE(sc, segs[seg].ds_addr));
475 #endif
476 
477 		if (segs[seg].ds_len == 0)
478 			continue;
479 		sc->sc_txdescs[nexttx].gd_addr =
480 		    GEM_DMA_WRITE(sc, segs[seg].ds_addr);
481 		KASSERT(segs[seg].ds_len < GEM_TD_BUFSIZE,
482 		    ("gem_txdma_callback: segment size too large!"));
483 		flags = segs[seg].ds_len & GEM_TD_BUFSIZE;
484 		if (len == 0) {
485 #ifdef GEM_DEBUG
486 			CTR2(KTR_GEM, "txdma_cb: start of packet at seg %d, "
487 			    "tx %d", seg, nexttx);
488 #endif
489 			flags |= GEM_TD_START_OF_PACKET;
490 			if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
491 				sc->sc_txwin = 0;
492 				flags |= GEM_TD_INTERRUPT_ME;
493 			}
494 		}
495 		if (len + segs[seg].ds_len == totsz) {
496 #ifdef GEM_DEBUG
497 			CTR2(KTR_GEM, "txdma_cb: end of packet at seg %d, "
498 			    "tx %d", seg, nexttx);
499 #endif
500 			flags |= GEM_TD_END_OF_PACKET;
501 		}
502 		sc->sc_txdescs[nexttx].gd_flags = GEM_DMA_WRITE(sc, flags);
503 		txs->txs_lastdesc = nexttx;
504 		len += segs[seg].ds_len;
505 	}
506 	KASSERT((flags & GEM_TD_END_OF_PACKET) != 0,
507 	    ("gem_txdma_callback: missed end of packet!"));
508 }
509 
510 static void
511 gem_tick(arg)
512 	void *arg;
513 {
514 	struct gem_softc *sc = arg;
515 	int s;
516 
517 	s = splnet();
518 	mii_tick(sc->sc_mii);
519 	splx(s);
520 
521 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
522 }
523 
524 static int
525 gem_bitwait(sc, r, clr, set)
526 	struct gem_softc *sc;
527 	bus_addr_t r;
528 	u_int32_t clr;
529 	u_int32_t set;
530 {
531 	int i;
532 	u_int32_t reg;
533 
534 	for (i = TRIES; i--; DELAY(100)) {
535 		reg = bus_space_read_4(sc->sc_bustag, sc->sc_h, r);
536 		if ((r & clr) == 0 && (r & set) == set)
537 			return (1);
538 	}
539 	return (0);
540 }
541 
542 void
543 gem_reset(sc)
544 	struct gem_softc *sc;
545 {
546 	bus_space_tag_t t = sc->sc_bustag;
547 	bus_space_handle_t h = sc->sc_h;
548 	int s;
549 
550 	s = splnet();
551 #ifdef GEM_DEBUG
552 	CTR1(KTR_GEM, "%s: gem_reset", device_get_name(sc->sc_dev));
553 #endif
554 	gem_reset_rx(sc);
555 	gem_reset_tx(sc);
556 
557 	/* Do a full reset */
558 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
559 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
560 		device_printf(sc->sc_dev, "cannot reset device\n");
561 	splx(s);
562 }
563 
564 
565 /*
566  * gem_rxdrain:
567  *
568  *	Drain the receive queue.
569  */
570 static void
571 gem_rxdrain(sc)
572 	struct gem_softc *sc;
573 {
574 	struct gem_rxsoft *rxs;
575 	int i;
576 
577 	for (i = 0; i < GEM_NRXDESC; i++) {
578 		rxs = &sc->sc_rxsoft[i];
579 		if (rxs->rxs_mbuf != NULL) {
580 			bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap,
581 			    BUS_DMASYNC_POSTREAD);
582 			bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap);
583 			m_freem(rxs->rxs_mbuf);
584 			rxs->rxs_mbuf = NULL;
585 		}
586 	}
587 }
588 
589 /*
590  * Reset the whole thing.
591  */
592 static void
593 gem_stop(ifp, disable)
594 	struct ifnet *ifp;
595 	int disable;
596 {
597 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
598 	struct gem_txsoft *txs;
599 
600 #ifdef GEM_DEBUG
601 	CTR1(KTR_GEM, "%s: gem_stop", device_get_name(sc->sc_dev));
602 #endif
603 
604 	callout_stop(&sc->sc_tick_ch);
605 
606 	/* XXX - Should we reset these instead? */
607 	gem_disable_tx(sc);
608 	gem_disable_rx(sc);
609 
610 	/*
611 	 * Release any queued transmit buffers.
612 	 */
613 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
614 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
615 		if (txs->txs_ndescs != 0) {
616 			bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
617 			    BUS_DMASYNC_POSTWRITE);
618 			bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
619 			if (txs->txs_mbuf != NULL) {
620 				m_freem(txs->txs_mbuf);
621 				txs->txs_mbuf = NULL;
622 			}
623 		}
624 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
625 	}
626 
627 	if (disable)
628 		gem_rxdrain(sc);
629 
630 	/*
631 	 * Mark the interface down and cancel the watchdog timer.
632 	 */
633 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
634 	ifp->if_timer = 0;
635 }
636 
637 /*
638  * Reset the receiver
639  */
640 int
641 gem_reset_rx(sc)
642 	struct gem_softc *sc;
643 {
644 	bus_space_tag_t t = sc->sc_bustag;
645 	bus_space_handle_t h = sc->sc_h;
646 
647 	/*
648 	 * Resetting while DMA is in progress can cause a bus hang, so we
649 	 * disable DMA first.
650 	 */
651 	gem_disable_rx(sc);
652 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
653 	/* Wait till it finishes */
654 	if (!gem_bitwait(sc, GEM_RX_CONFIG, 1, 0))
655 		device_printf(sc->sc_dev, "cannot disable read dma\n");
656 
657 	/* Wait 5ms extra. */
658 	DELAY(5000);
659 
660 	/* Finally, reset the ERX */
661 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
662 	/* Wait till it finishes */
663 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
664 		device_printf(sc->sc_dev, "cannot reset receiver\n");
665 		return (1);
666 	}
667 	return (0);
668 }
669 
670 
671 /*
672  * Reset the transmitter
673  */
674 static int
675 gem_reset_tx(sc)
676 	struct gem_softc *sc;
677 {
678 	bus_space_tag_t t = sc->sc_bustag;
679 	bus_space_handle_t h = sc->sc_h;
680 	int i;
681 
682 	/*
683 	 * Resetting while DMA is in progress can cause a bus hang, so we
684 	 * disable DMA first.
685 	 */
686 	gem_disable_tx(sc);
687 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
688 	/* Wait till it finishes */
689 	if (!gem_bitwait(sc, GEM_TX_CONFIG, 1, 0))
690 		device_printf(sc->sc_dev, "cannot disable read dma\n");
691 
692 	/* Wait 5ms extra. */
693 	DELAY(5000);
694 
695 	/* Finally, reset the ETX */
696 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
697 	/* Wait till it finishes */
698 	for (i = TRIES; i--; DELAY(100))
699 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
700 			break;
701 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
702 		device_printf(sc->sc_dev, "cannot reset receiver\n");
703 		return (1);
704 	}
705 	return (0);
706 }
707 
708 /*
709  * disable receiver.
710  */
711 static int
712 gem_disable_rx(sc)
713 	struct gem_softc *sc;
714 {
715 	bus_space_tag_t t = sc->sc_bustag;
716 	bus_space_handle_t h = sc->sc_h;
717 	u_int32_t cfg;
718 
719 	/* Flip the enable bit */
720 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
721 	cfg &= ~GEM_MAC_RX_ENABLE;
722 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
723 
724 	/* Wait for it to finish */
725 	return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
726 }
727 
728 /*
729  * disable transmitter.
730  */
731 static int
732 gem_disable_tx(sc)
733 	struct gem_softc *sc;
734 {
735 	bus_space_tag_t t = sc->sc_bustag;
736 	bus_space_handle_t h = sc->sc_h;
737 	u_int32_t cfg;
738 
739 	/* Flip the enable bit */
740 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
741 	cfg &= ~GEM_MAC_TX_ENABLE;
742 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
743 
744 	/* Wait for it to finish */
745 	return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
746 }
747 
748 /*
749  * Initialize interface.
750  */
751 static int
752 gem_meminit(sc)
753 	struct gem_softc *sc;
754 {
755 	struct gem_rxsoft *rxs;
756 	int i, error;
757 
758 	/*
759 	 * Initialize the transmit descriptor ring.
760 	 */
761 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
762 	for (i = 0; i < GEM_NTXDESC; i++) {
763 		sc->sc_txdescs[i].gd_flags = 0;
764 		sc->sc_txdescs[i].gd_addr = 0;
765 	}
766 	sc->sc_txfree = GEM_MAXTXFREE;
767 	sc->sc_txnext = 0;
768 	sc->sc_txwin = 0;
769 
770 	/*
771 	 * Initialize the receive descriptor and receive job
772 	 * descriptor rings.
773 	 */
774 	for (i = 0; i < GEM_NRXDESC; i++) {
775 		rxs = &sc->sc_rxsoft[i];
776 		if (rxs->rxs_mbuf == NULL) {
777 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
778 				device_printf(sc->sc_dev, "unable to "
779 				    "allocate or map rx buffer %d, error = "
780 				    "%d\n", i, error);
781 				/*
782 				 * XXX Should attempt to run with fewer receive
783 				 * XXX buffers instead of just failing.
784 				 */
785 				gem_rxdrain(sc);
786 				return (1);
787 			}
788 		} else
789 			GEM_INIT_RXDESC(sc, i);
790 	}
791 	sc->sc_rxptr = 0;
792 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
793 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
794 
795 	return (0);
796 }
797 
798 static int
799 gem_ringsize(sz)
800 	int sz;
801 {
802 	int v = 0;
803 
804 	switch (sz) {
805 	case 32:
806 		v = GEM_RING_SZ_32;
807 		break;
808 	case 64:
809 		v = GEM_RING_SZ_64;
810 		break;
811 	case 128:
812 		v = GEM_RING_SZ_128;
813 		break;
814 	case 256:
815 		v = GEM_RING_SZ_256;
816 		break;
817 	case 512:
818 		v = GEM_RING_SZ_512;
819 		break;
820 	case 1024:
821 		v = GEM_RING_SZ_1024;
822 		break;
823 	case 2048:
824 		v = GEM_RING_SZ_2048;
825 		break;
826 	case 4096:
827 		v = GEM_RING_SZ_4096;
828 		break;
829 	case 8192:
830 		v = GEM_RING_SZ_8192;
831 		break;
832 	default:
833 		printf("gem: invalid Receive Descriptor ring size\n");
834 		break;
835 	}
836 	return (v);
837 }
838 
839 /*
840  * Initialization of interface; set up initialization block
841  * and transmit/receive descriptor rings.
842  */
843 static void
844 gem_init(xsc)
845 	void *xsc;
846 {
847 	struct gem_softc *sc = (struct gem_softc *)xsc;
848 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
849 	bus_space_tag_t t = sc->sc_bustag;
850 	bus_space_handle_t h = sc->sc_h;
851 	int s;
852 	u_int32_t v;
853 
854 	s = splnet();
855 
856 #ifdef GEM_DEBUG
857 	CTR1(KTR_GEM, "%s: gem_init: calling stop", device_get_name(sc->sc_dev));
858 #endif
859 	/*
860 	 * Initialization sequence. The numbered steps below correspond
861 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
862 	 * Channel Engine manual (part of the PCIO manual).
863 	 * See also the STP2002-STQ document from Sun Microsystems.
864 	 */
865 
866 	/* step 1 & 2. Reset the Ethernet Channel */
867 	gem_stop(&sc->sc_arpcom.ac_if, 0);
868 	gem_reset(sc);
869 #ifdef GEM_DEBUG
870 	CTR1(KTR_GEM, "%s: gem_init: restarting", device_get_name(sc->sc_dev));
871 #endif
872 
873 	/* Re-initialize the MIF */
874 	gem_mifinit(sc);
875 
876 	/* step 3. Setup data structures in host memory */
877 	gem_meminit(sc);
878 
879 	/* step 4. TX MAC registers & counters */
880 	gem_init_regs(sc);
881 	/* XXX: VLAN code from NetBSD temporarily removed. */
882 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
883             (ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
884 
885 	/* step 5. RX MAC registers & counters */
886 	gem_setladrf(sc);
887 
888 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
889 	/* NOTE: we use only 32-bit DMA addresses here. */
890 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
891 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
892 
893 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
894 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
895 #ifdef GEM_DEBUG
896 	CTR3(KTR_GEM, "loading rx ring %lx, tx ring %lx, cddma %lx",
897 	    GEM_CDRXADDR(sc, 0), GEM_CDTXADDR(sc, 0), sc->sc_cddma);
898 #endif
899 
900 	/* step 8. Global Configuration & Interrupt Mask */
901 	bus_space_write_4(t, h, GEM_INTMASK,
902 		      ~(GEM_INTR_TX_INTME|
903 			GEM_INTR_TX_EMPTY|
904 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
905 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
906 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
907 			GEM_INTR_BERR));
908 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
909 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
910 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
911 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
912 
913 	/* step 9. ETX Configuration: use mostly default values */
914 
915 	/* Enable DMA */
916 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
917 	bus_space_write_4(t, h, GEM_TX_CONFIG,
918 		v|GEM_TX_CONFIG_TXDMA_EN|
919 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
920 
921 	/* step 10. ERX Configuration */
922 
923 	/* Encode Receive Descriptor ring size: four possible values */
924 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
925 
926 	/* Enable DMA */
927 	bus_space_write_4(t, h, GEM_RX_CONFIG,
928 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
929 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
930 		(0<<GEM_RX_CONFIG_CXM_START_SHFT));
931 	/*
932 	 * The following value is for an OFF Threshold of about 3/4 full
933 	 * and an ON Threshold of 1/4 full.
934 	 */
935 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
936 	    (3 * sc->sc_rxfifosize / 256) |
937 	    (   (sc->sc_rxfifosize / 256) << 12));
938 	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
939 
940 	/* step 11. Configure Media */
941 	mii_mediachg(sc->sc_mii);
942 
943 	/* step 12. RX_MAC Configuration Register */
944 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
945 	v |= GEM_MAC_RX_ENABLE;
946 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
947 
948 	/* step 14. Issue Transmit Pending command */
949 
950 	/* step 15.  Give the reciever a swift kick */
951 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
952 
953 	/* Start the one second timer. */
954 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
955 
956 	ifp->if_flags |= IFF_RUNNING;
957 	ifp->if_flags &= ~IFF_OACTIVE;
958 	ifp->if_timer = 0;
959 	sc->sc_ifflags = ifp->if_flags;
960 	splx(s);
961 }
962 
963 static int
964 gem_load_txmbuf(sc, m0)
965 	struct gem_softc *sc;
966 	struct mbuf *m0;
967 {
968 	struct gem_txdma txd;
969 	struct gem_txsoft *txs;
970 	int error;
971 
972 	/* Get a work queue entry. */
973 	if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
974 		/* Ran out of descriptors. */
975 		return (-1);
976 	}
977 	txd.txd_sc = sc;
978 	txd.txd_txs = txs;
979 	txs->txs_mbuf = m0;
980 	txs->txs_firstdesc = sc->sc_txnext;
981 	error = bus_dmamap_load_mbuf(sc->sc_tdmatag, txs->txs_dmamap, m0,
982 	    gem_txdma_callback, &txd, BUS_DMA_NOWAIT);
983 	if (error != 0)
984 		goto fail;
985 	if (txs->txs_ndescs == -1) {
986 		error = -1;
987 		goto fail;
988 	}
989 
990 	/* Sync the DMA map. */
991 	bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
992 	    BUS_DMASYNC_PREWRITE);
993 
994 #ifdef GEM_DEBUG
995 	CTR3(KTR_GEM, "load_mbuf: setting firstdesc=%d, lastdesc=%d, "
996 	    "ndescs=%d", txs->txs_firstdesc, txs->txs_lastdesc,
997 	    txs->txs_ndescs);
998 #endif
999 	STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1000 	STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1001 
1002 	sc->sc_txnext = GEM_NEXTTX(txs->txs_lastdesc);
1003 	sc->sc_txfree -= txs->txs_ndescs;
1004 	return (0);
1005 
1006 fail:
1007 #ifdef GEM_DEBUG
1008 	CTR1(KTR_GEM, "gem_load_txmbuf failed (%d)", error);
1009 #endif
1010 	bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1011 	return (error);
1012 }
1013 
1014 static void
1015 gem_init_regs(sc)
1016 	struct gem_softc *sc;
1017 {
1018 	bus_space_tag_t t = sc->sc_bustag;
1019 	bus_space_handle_t h = sc->sc_h;
1020 	const u_char *laddr = sc->sc_arpcom.ac_enaddr;
1021 	u_int32_t v;
1022 
1023 	/* These regs are not cleared on reset */
1024 	if (!sc->sc_inited) {
1025 
1026 		/* Wooo.  Magic values. */
1027 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
1028 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
1029 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
1030 
1031 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1032 		/* Max frame and max burst size */
1033 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1034 		    ETHER_MAX_LEN | (0x2000<<16));
1035 
1036 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
1037 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
1038 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1039 		/* Dunno.... */
1040 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1041 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1042 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1043 
1044 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1045 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1046 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1047 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1048 
1049 		/* MAC control addr set to 01:80:c2:00:00:01 */
1050 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1051 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1052 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1053 
1054 		/* MAC filter addr set to 0:0:0:0:0:0 */
1055 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1056 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1057 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1058 
1059 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1060 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1061 
1062 		sc->sc_inited = 1;
1063 	}
1064 
1065 	/* Counters need to be zeroed */
1066 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1067 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1068 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1069 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1070 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1071 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1072 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1073 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1074 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1075 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1076 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1077 
1078 	/* Un-pause stuff */
1079 #if 0
1080 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1081 #else
1082 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
1083 #endif
1084 
1085 	/*
1086 	 * Set the station address.
1087 	 */
1088 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1089 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1090 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1091 
1092 	/*
1093 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1094 	 */
1095 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1096 	v = GEM_MAC_XIF_TX_MII_ENA;
1097 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1098 		v |= GEM_MAC_XIF_FDPLX_LED;
1099 		if (sc->sc_flags & GEM_GIGABIT)
1100 			v |= GEM_MAC_XIF_GMII_MODE;
1101 	}
1102 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1103 }
1104 
1105 static void
1106 gem_start(ifp)
1107 	struct ifnet *ifp;
1108 {
1109 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1110 	struct mbuf *m0 = NULL;
1111 	int firsttx, ntx = 0, ofree, txmfail;
1112 
1113 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1114 		return;
1115 
1116 	/*
1117 	 * Remember the previous number of free descriptors and
1118 	 * the first descriptor we'll use.
1119 	 */
1120 	ofree = sc->sc_txfree;
1121 	firsttx = sc->sc_txnext;
1122 
1123 #ifdef GEM_DEBUG
1124 	CTR3(KTR_GEM, "%s: gem_start: txfree %d, txnext %d",
1125 	    device_get_name(sc->sc_dev), ofree, firsttx);
1126 #endif
1127 
1128 	/*
1129 	 * Loop through the send queue, setting up transmit descriptors
1130 	 * until we drain the queue, or use up all available transmit
1131 	 * descriptors.
1132 	 */
1133 	txmfail = 0;
1134 	do {
1135 		/*
1136 		 * Grab a packet off the queue.
1137 		 */
1138 		IF_DEQUEUE(&ifp->if_snd, m0);
1139 		if (m0 == NULL)
1140 			break;
1141 
1142 		txmfail = gem_load_txmbuf(sc, m0);
1143 		if (txmfail > 0) {
1144 			/* Drop the mbuf and complain. */
1145 			printf("gem_start: error %d while loading mbuf dma "
1146 			    "map\n", txmfail);
1147 			continue;
1148 		}
1149 		/* Not enough descriptors. */
1150 		if (txmfail == -1) {
1151 			if (sc->sc_txfree == GEM_MAXTXFREE)
1152 				panic("gem_start: mbuf chain too long!");
1153 			IF_PREPEND(&ifp->if_snd, m0);
1154 			break;
1155 		}
1156 
1157 		ntx++;
1158 		/* Kick the transmitter. */
1159 #ifdef GEM_DEBUG
1160 		CTR2(KTR_GEM, "%s: gem_start: kicking tx %d",
1161 		    device_get_name(sc->sc_dev), sc->sc_txnext);
1162 #endif
1163 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1164 			sc->sc_txnext);
1165 
1166 		if (ifp->if_bpf != NULL)
1167 			bpf_mtap(ifp->if_bpf, m0);
1168 	} while (1);
1169 
1170 	if (txmfail == -1 || sc->sc_txfree == 0) {
1171 		/* No more slots left; notify upper layer. */
1172 		ifp->if_flags |= IFF_OACTIVE;
1173 	}
1174 
1175 	if (ntx > 0) {
1176 		GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
1177 
1178 #ifdef GEM_DEBUG
1179 		CTR2(KTR_GEM, "%s: packets enqueued, OWN on %d",
1180 		    device_get_name(sc->sc_dev), firsttx);
1181 #endif
1182 
1183 		/* Set a watchdog timer in case the chip flakes out. */
1184 		ifp->if_timer = 5;
1185 #ifdef GEM_DEBUG
1186 		CTR2(KTR_GEM, "%s: gem_start: watchdog %d",
1187 			device_get_name(sc->sc_dev), ifp->if_timer);
1188 #endif
1189 	}
1190 }
1191 
1192 /*
1193  * Transmit interrupt.
1194  */
1195 static void
1196 gem_tint(sc)
1197 	struct gem_softc *sc;
1198 {
1199 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1200 	bus_space_tag_t t = sc->sc_bustag;
1201 	bus_space_handle_t mac = sc->sc_h;
1202 	struct gem_txsoft *txs;
1203 	int txlast;
1204 	int progress = 0;
1205 
1206 
1207 #ifdef GEM_DEBUG
1208 	CTR1(KTR_GEM, "%s: gem_tint", device_get_name(sc->sc_dev));
1209 #endif
1210 
1211 	/*
1212 	 * Unload collision counters
1213 	 */
1214 	ifp->if_collisions +=
1215 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1216 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1217 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1218 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1219 
1220 	/*
1221 	 * then clear the hardware counters.
1222 	 */
1223 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1224 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1225 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1226 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1227 
1228 	/*
1229 	 * Go through our Tx list and free mbufs for those
1230 	 * frames that have been transmitted.
1231 	 */
1232 	GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
1233 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1234 
1235 #ifdef GEM_DEBUG
1236 		if (ifp->if_flags & IFF_DEBUG) {
1237 			int i;
1238 			printf("    txsoft %p transmit chain:\n", txs);
1239 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1240 				printf("descriptor %d: ", i);
1241 				printf("gd_flags: 0x%016llx\t", (long long)
1242 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1243 				printf("gd_addr: 0x%016llx\n", (long long)
1244 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1245 				if (i == txs->txs_lastdesc)
1246 					break;
1247 			}
1248 		}
1249 #endif
1250 
1251 		/*
1252 		 * In theory, we could harveast some descriptors before
1253 		 * the ring is empty, but that's a bit complicated.
1254 		 *
1255 		 * GEM_TX_COMPLETION points to the last descriptor
1256 		 * processed +1.
1257 		 */
1258 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1259 #ifdef GEM_DEBUG
1260 		CTR3(KTR_GEM, "gem_tint: txs->txs_firstdesc = %d, "
1261 		    "txs->txs_lastdesc = %d, txlast = %d",
1262 		    txs->txs_firstdesc, txs->txs_lastdesc, txlast);
1263 #endif
1264 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1265 			if ((txlast >= txs->txs_firstdesc) &&
1266 				(txlast <= txs->txs_lastdesc))
1267 				break;
1268 		} else {
1269 			/* Ick -- this command wraps */
1270 			if ((txlast >= txs->txs_firstdesc) ||
1271 				(txlast <= txs->txs_lastdesc))
1272 				break;
1273 		}
1274 
1275 #ifdef GEM_DEBUG
1276 		CTR0(KTR_GEM, "gem_tint: releasing a desc");
1277 #endif
1278 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1279 
1280 		sc->sc_txfree += txs->txs_ndescs;
1281 
1282 		bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1283 		    BUS_DMASYNC_POSTWRITE);
1284 		bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1285 		if (txs->txs_mbuf != NULL) {
1286 			m_freem(txs->txs_mbuf);
1287 			txs->txs_mbuf = NULL;
1288 		}
1289 
1290 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1291 
1292 		ifp->if_opackets++;
1293 		progress = 1;
1294 	}
1295 
1296 #ifdef GEM_DEBUG
1297 	CTR3(KTR_GEM, "gem_tint: GEM_TX_STATE_MACHINE %x "
1298 		"GEM_TX_DATA_PTR %llx "
1299 		"GEM_TX_COMPLETION %x",
1300 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1301 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1302 			GEM_TX_DATA_PTR_HI) << 32) |
1303 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
1304 			GEM_TX_DATA_PTR_LO),
1305 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION));
1306 #endif
1307 
1308 	if (progress) {
1309 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1310 			sc->sc_txwin = 0;
1311 
1312 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1313 		ifp->if_flags &= ~IFF_OACTIVE;
1314 		gem_start(ifp);
1315 
1316 		if (STAILQ_EMPTY(&sc->sc_txdirtyq))
1317 			ifp->if_timer = 0;
1318 	}
1319 
1320 #ifdef GEM_DEBUG
1321 	CTR2(KTR_GEM, "%s: gem_tint: watchdog %d",
1322 		device_get_name(sc->sc_dev), ifp->if_timer);
1323 #endif
1324 }
1325 
1326 #if 0
1327 static void
1328 gem_rint_timeout(arg)
1329 	void *arg;
1330 {
1331 
1332 	gem_rint((struct gem_softc *)arg);
1333 }
1334 #endif
1335 
1336 /*
1337  * Receive interrupt.
1338  */
1339 static void
1340 gem_rint(sc)
1341 	struct gem_softc *sc;
1342 {
1343 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1344 	bus_space_tag_t t = sc->sc_bustag;
1345 	bus_space_handle_t h = sc->sc_h;
1346 	struct gem_rxsoft *rxs;
1347 	struct mbuf *m;
1348 	u_int64_t rxstat;
1349 	u_int32_t rxcomp;
1350 	int i, len, progress = 0;
1351 
1352 	callout_stop(&sc->sc_rx_ch);
1353 #ifdef GEM_DEBUG
1354 	CTR1(KTR_GEM, "%s: gem_rint", device_get_name(sc->sc_dev));
1355 #endif
1356 
1357 	/*
1358 	 * Read the completion register once.  This limits
1359 	 * how long the following loop can execute.
1360 	 */
1361 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1362 
1363 #ifdef GEM_DEBUG
1364 	CTR2(KTR_GEM, "gem_rint: sc->rxptr %d, complete %d",
1365 	    sc->sc_rxptr, rxcomp);
1366 #endif
1367 	GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
1368 	for (i = sc->sc_rxptr; i != rxcomp;
1369 	     i = GEM_NEXTRX(i)) {
1370 		rxs = &sc->sc_rxsoft[i];
1371 
1372 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1373 
1374 		if (rxstat & GEM_RD_OWN) {
1375 #if 0 /* XXX: In case of emergency, re-enable this. */
1376 			/*
1377 			 * The descriptor is still marked as owned, although
1378 			 * it is supposed to have completed. This has been
1379 			 * observed on some machines. Just exiting here
1380 			 * might leave the packet sitting around until another
1381 			 * one arrives to trigger a new interrupt, which is
1382 			 * generally undesirable, so set up a timeout.
1383 			 */
1384 			callout_reset(&sc->sc_rx_ch, GEM_RXOWN_TICKS,
1385 			    gem_rint_timeout, sc);
1386 #endif
1387 			break;
1388 		}
1389 
1390 		progress++;
1391 		ifp->if_ipackets++;
1392 
1393 		if (rxstat & GEM_RD_BAD_CRC) {
1394 			ifp->if_ierrors++;
1395 			device_printf(sc->sc_dev, "receive error: CRC error\n");
1396 			GEM_INIT_RXDESC(sc, i);
1397 			continue;
1398 		}
1399 
1400 #ifdef GEM_DEBUG
1401 		if (ifp->if_flags & IFF_DEBUG) {
1402 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1403 			printf("gd_flags: 0x%016llx\t", (long long)
1404 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1405 			printf("gd_addr: 0x%016llx\n", (long long)
1406 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1407 		}
1408 #endif
1409 
1410 		/*
1411 		 * No errors; receive the packet.  Note the Gem
1412 		 * includes the CRC with every packet.
1413 		 */
1414 		len = GEM_RD_BUFLEN(rxstat);
1415 
1416 		/*
1417 		 * Allocate a new mbuf cluster.  If that fails, we are
1418 		 * out of memory, and must drop the packet and recycle
1419 		 * the buffer that's already attached to this descriptor.
1420 		 */
1421 		m = rxs->rxs_mbuf;
1422 		if (gem_add_rxbuf(sc, i) != 0) {
1423 			ifp->if_ierrors++;
1424 			GEM_INIT_RXDESC(sc, i);
1425 			continue;
1426 		}
1427 		m->m_data += 2; /* We're already off by two */
1428 
1429 		m->m_pkthdr.rcvif = ifp;
1430 		m->m_pkthdr.len = m->m_len = len - ETHER_CRC_LEN;
1431 
1432 		/* Pass it on. */
1433 		(*ifp->if_input)(ifp, m);
1434 	}
1435 
1436 	if (progress) {
1437 		GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
1438 		/* Update the receive pointer. */
1439 		if (i == sc->sc_rxptr) {
1440 			device_printf(sc->sc_dev, "rint: ring wrap\n");
1441 		}
1442 		sc->sc_rxptr = i;
1443 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1444 	}
1445 
1446 #ifdef GEM_DEBUG
1447 	CTR2(KTR_GEM, "gem_rint: done sc->rxptr %d, complete %d",
1448 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
1449 #endif
1450 }
1451 
1452 
1453 /*
1454  * gem_add_rxbuf:
1455  *
1456  *	Add a receive buffer to the indicated descriptor.
1457  */
1458 static int
1459 gem_add_rxbuf(sc, idx)
1460 	struct gem_softc *sc;
1461 	int idx;
1462 {
1463 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1464 	struct mbuf *m;
1465 	int error;
1466 
1467 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1468 	if (m == NULL)
1469 		return (ENOBUFS);
1470 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1471 
1472 #ifdef GEM_DEBUG
1473 	/* bzero the packet to check dma */
1474 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1475 #endif
1476 
1477 	if (rxs->rxs_mbuf != NULL) {
1478 		bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap,
1479 		    BUS_DMASYNC_POSTREAD);
1480 		bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap);
1481 	}
1482 
1483 	rxs->rxs_mbuf = m;
1484 
1485 	error = bus_dmamap_load_mbuf(sc->sc_rdmatag, rxs->rxs_dmamap,
1486 	    m, gem_rxdma_callback, rxs, BUS_DMA_NOWAIT);
1487 	if (error != 0 || rxs->rxs_paddr == 0) {
1488 		device_printf(sc->sc_dev, "can't load rx DMA map %d, error = "
1489 		    "%d\n", idx, error);
1490 		panic("gem_add_rxbuf");	/* XXX */
1491 	}
1492 
1493 	bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap, BUS_DMASYNC_PREREAD);
1494 
1495 	GEM_INIT_RXDESC(sc, idx);
1496 
1497 	return (0);
1498 }
1499 
1500 
1501 static void
1502 gem_eint(sc, status)
1503 	struct gem_softc *sc;
1504 	u_int status;
1505 {
1506 
1507 	if ((status & GEM_INTR_MIF) != 0) {
1508 		device_printf(sc->sc_dev, "XXXlink status changed\n");
1509 		return;
1510 	}
1511 
1512 	device_printf(sc->sc_dev, "status=%x\n", status);
1513 }
1514 
1515 
1516 void
1517 gem_intr(v)
1518 	void *v;
1519 {
1520 	struct gem_softc *sc = (struct gem_softc *)v;
1521 	bus_space_tag_t t = sc->sc_bustag;
1522 	bus_space_handle_t seb = sc->sc_h;
1523 	u_int32_t status;
1524 
1525 	status = bus_space_read_4(t, seb, GEM_STATUS);
1526 #ifdef GEM_DEBUG
1527 	CTR3(KTR_GEM, "%s: gem_intr: cplt %x, status %x",
1528 		device_get_name(sc->sc_dev), (status>>19),
1529 		(u_int)status);
1530 #endif
1531 
1532 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1533 		gem_eint(sc, status);
1534 
1535 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0)
1536 		gem_tint(sc);
1537 
1538 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1539 		gem_rint(sc);
1540 
1541 	/* We should eventually do more than just print out error stats. */
1542 	if (status & GEM_INTR_TX_MAC) {
1543 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1544 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1545 			device_printf(sc->sc_dev, "MAC tx fault, status %x\n",
1546 			    txstat);
1547 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
1548 			gem_init(sc);
1549 	}
1550 	if (status & GEM_INTR_RX_MAC) {
1551 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1552 		if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
1553 			device_printf(sc->sc_dev, "MAC rx fault, status %x\n",
1554 			    rxstat);
1555 		if ((rxstat & GEM_MAC_RX_OVERFLOW) != 0)
1556 			gem_init(sc);
1557 	}
1558 }
1559 
1560 
1561 static void
1562 gem_watchdog(ifp)
1563 	struct ifnet *ifp;
1564 {
1565 	struct gem_softc *sc = ifp->if_softc;
1566 
1567 #ifdef GEM_DEBUG
1568 	CTR3(KTR_GEM, "gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1569 		"GEM_MAC_RX_CONFIG %x",
1570 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1571 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1572 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG));
1573 	CTR3(KTR_GEM, "gem_watchdog: GEM_TX_CONFIG %x GEM_MAC_TX_STATUS %x "
1574 		"GEM_MAC_TX_CONFIG %x",
1575 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_CONFIG),
1576 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_STATUS),
1577 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_CONFIG));
1578 #endif
1579 
1580 	device_printf(sc->sc_dev, "device timeout\n");
1581 	++ifp->if_oerrors;
1582 
1583 	/* Try to get more packets going. */
1584 	gem_start(ifp);
1585 }
1586 
1587 /*
1588  * Initialize the MII Management Interface
1589  */
1590 static void
1591 gem_mifinit(sc)
1592 	struct gem_softc *sc;
1593 {
1594 	bus_space_tag_t t = sc->sc_bustag;
1595 	bus_space_handle_t mif = sc->sc_h;
1596 
1597 	/* Configure the MIF in frame mode */
1598 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1599 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1600 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1601 }
1602 
1603 /*
1604  * MII interface
1605  *
1606  * The GEM MII interface supports at least three different operating modes:
1607  *
1608  * Bitbang mode is implemented using data, clock and output enable registers.
1609  *
1610  * Frame mode is implemented by loading a complete frame into the frame
1611  * register and polling the valid bit for completion.
1612  *
1613  * Polling mode uses the frame register but completion is indicated by
1614  * an interrupt.
1615  *
1616  */
1617 int
1618 gem_mii_readreg(dev, phy, reg)
1619 	device_t dev;
1620 	int phy, reg;
1621 {
1622 	struct gem_softc *sc = device_get_softc(dev);
1623 	bus_space_tag_t t = sc->sc_bustag;
1624 	bus_space_handle_t mif = sc->sc_h;
1625 	int n;
1626 	u_int32_t v;
1627 
1628 #ifdef GEM_DEBUG_PHY
1629 	printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1630 #endif
1631 
1632 #if 0
1633 	/* Select the desired PHY in the MIF configuration register */
1634 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1635 	/* Clear PHY select bit */
1636 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1637 	if (phy == GEM_PHYAD_EXTERNAL)
1638 		/* Set PHY select bit to get at external device */
1639 		v |= GEM_MIF_CONFIG_PHY_SEL;
1640 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1641 #endif
1642 
1643 	/* Construct the frame command */
1644 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
1645 		GEM_MIF_FRAME_READ;
1646 
1647 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1648 	for (n = 0; n < 100; n++) {
1649 		DELAY(1);
1650 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1651 		if (v & GEM_MIF_FRAME_TA0)
1652 			return (v & GEM_MIF_FRAME_DATA);
1653 	}
1654 
1655 	device_printf(sc->sc_dev, "mii_read timeout\n");
1656 	return (0);
1657 }
1658 
1659 int
1660 gem_mii_writereg(dev, phy, reg, val)
1661 	device_t dev;
1662 	int phy, reg, val;
1663 {
1664 	struct gem_softc *sc = device_get_softc(dev);
1665 	bus_space_tag_t t = sc->sc_bustag;
1666 	bus_space_handle_t mif = sc->sc_h;
1667 	int n;
1668 	u_int32_t v;
1669 
1670 #ifdef GEM_DEBUG_PHY
1671 	printf("gem_mii_writereg: phy %d reg %d val %x\n", phy, reg, val);
1672 #endif
1673 
1674 #if 0
1675 	/* Select the desired PHY in the MIF configuration register */
1676 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1677 	/* Clear PHY select bit */
1678 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1679 	if (phy == GEM_PHYAD_EXTERNAL)
1680 		/* Set PHY select bit to get at external device */
1681 		v |= GEM_MIF_CONFIG_PHY_SEL;
1682 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1683 #endif
1684 	/* Construct the frame command */
1685 	v = GEM_MIF_FRAME_WRITE			|
1686 	    (phy << GEM_MIF_PHY_SHIFT)		|
1687 	    (reg << GEM_MIF_REG_SHIFT)		|
1688 	    (val & GEM_MIF_FRAME_DATA);
1689 
1690 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1691 	for (n = 0; n < 100; n++) {
1692 		DELAY(1);
1693 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1694 		if (v & GEM_MIF_FRAME_TA0)
1695 			return (1);
1696 	}
1697 
1698 	device_printf(sc->sc_dev, "mii_write timeout\n");
1699 	return (0);
1700 }
1701 
1702 void
1703 gem_mii_statchg(dev)
1704 	device_t dev;
1705 {
1706 	struct gem_softc *sc = device_get_softc(dev);
1707 #ifdef GEM_DEBUG
1708 	int instance = IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media);
1709 #endif
1710 	bus_space_tag_t t = sc->sc_bustag;
1711 	bus_space_handle_t mac = sc->sc_h;
1712 	u_int32_t v;
1713 
1714 #ifdef GEM_DEBUG
1715 	if (sc->sc_debug)
1716 		printf("gem_mii_statchg: status change: phy = %d\n",
1717 			sc->sc_phys[instance]);
1718 #endif
1719 
1720 	/* Set tx full duplex options */
1721 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1722 	DELAY(10000); /* reg must be cleared and delay before changing. */
1723 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1724 		GEM_MAC_TX_ENABLE;
1725 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) {
1726 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1727 	}
1728 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1729 
1730 	/* XIF Configuration */
1731  /* We should really calculate all this rather than rely on defaults */
1732 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1733 	v = GEM_MAC_XIF_LINK_LED;
1734 	v |= GEM_MAC_XIF_TX_MII_ENA;
1735 
1736 	/* If an external transceiver is connected, enable its MII drivers */
1737 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1738 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1739 		/* External MII needs echo disable if half duplex. */
1740 		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
1741 			/* turn on full duplex LED */
1742 			v |= GEM_MAC_XIF_FDPLX_LED;
1743 		else
1744 	 		/* half duplex -- disable echo */
1745 	 		v |= GEM_MAC_XIF_ECHO_DISABL;
1746 
1747 		if (IFM_SUBTYPE(sc->sc_mii->mii_media_active) == IFM_1000_T)
1748 			v |= GEM_MAC_XIF_GMII_MODE;
1749 		else
1750 			v &= ~GEM_MAC_XIF_GMII_MODE;
1751 	} else {
1752 		/* Internal MII needs buf enable */
1753 		v |= GEM_MAC_XIF_MII_BUF_ENA;
1754 	}
1755 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1756 }
1757 
1758 int
1759 gem_mediachange(ifp)
1760 	struct ifnet *ifp;
1761 {
1762 	struct gem_softc *sc = ifp->if_softc;
1763 
1764 	/* XXX Add support for serial media. */
1765 
1766 	return (mii_mediachg(sc->sc_mii));
1767 }
1768 
1769 void
1770 gem_mediastatus(ifp, ifmr)
1771 	struct ifnet *ifp;
1772 	struct ifmediareq *ifmr;
1773 {
1774 	struct gem_softc *sc = ifp->if_softc;
1775 
1776 	if ((ifp->if_flags & IFF_UP) == 0)
1777 		return;
1778 
1779 	mii_pollstat(sc->sc_mii);
1780 	ifmr->ifm_active = sc->sc_mii->mii_media_active;
1781 	ifmr->ifm_status = sc->sc_mii->mii_media_status;
1782 }
1783 
1784 /*
1785  * Process an ioctl request.
1786  */
1787 static int
1788 gem_ioctl(ifp, cmd, data)
1789 	struct ifnet *ifp;
1790 	u_long cmd;
1791 	caddr_t data;
1792 {
1793 	struct gem_softc *sc = ifp->if_softc;
1794 	struct ifreq *ifr = (struct ifreq *)data;
1795 	int s, error = 0;
1796 
1797 	switch (cmd) {
1798 	case SIOCSIFADDR:
1799 	case SIOCGIFADDR:
1800 	case SIOCSIFMTU:
1801 		error = ether_ioctl(ifp, cmd, data);
1802 		break;
1803 	case SIOCSIFFLAGS:
1804 		if (ifp->if_flags & IFF_UP) {
1805 			if ((sc->sc_ifflags ^ ifp->if_flags) == IFF_PROMISC)
1806 				gem_setladrf(sc);
1807 			else
1808 				gem_init(sc);
1809 		} else {
1810 			if (ifp->if_flags & IFF_RUNNING)
1811 				gem_stop(ifp, 0);
1812 		}
1813 		sc->sc_ifflags = ifp->if_flags;
1814 		error = 0;
1815 		break;
1816 	case SIOCADDMULTI:
1817 	case SIOCDELMULTI:
1818 		gem_setladrf(sc);
1819 		error = 0;
1820 		break;
1821 	case SIOCGIFMEDIA:
1822 	case SIOCSIFMEDIA:
1823 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
1824 		break;
1825 	default:
1826 		error = ENOTTY;
1827 		break;
1828 	}
1829 
1830 	/* Try to get things going again */
1831 	if (ifp->if_flags & IFF_UP)
1832 		gem_start(ifp);
1833 	splx(s);
1834 	return (error);
1835 }
1836 
1837 /*
1838  * Set up the logical address filter.
1839  */
1840 static void
1841 gem_setladrf(sc)
1842 	struct gem_softc *sc;
1843 {
1844 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1845 	struct ifmultiaddr *inm;
1846 	struct sockaddr_dl *sdl;
1847 	bus_space_tag_t t = sc->sc_bustag;
1848 	bus_space_handle_t h = sc->sc_h;
1849 	u_char *cp;
1850 	u_int32_t crc;
1851 	u_int32_t hash[16];
1852 	u_int32_t v;
1853 	int len;
1854 	int i;
1855 
1856 	/* Get current RX configuration */
1857 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1858 
1859 	/*
1860 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
1861 	 * and hash filter.  Depending on the case, the right bit will be
1862 	 * enabled.
1863 	 */
1864 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
1865 	    GEM_MAC_RX_PROMISC_GRP);
1866 
1867 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1868 		/* Turn on promiscuous mode */
1869 		v |= GEM_MAC_RX_PROMISCUOUS;
1870 		goto chipit;
1871 	}
1872 	if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
1873 		hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1874 		ifp->if_flags |= IFF_ALLMULTI;
1875 		v |= GEM_MAC_RX_PROMISC_GRP;
1876 		goto chipit;
1877 	}
1878 
1879 	/*
1880 	 * Set up multicast address filter by passing all multicast addresses
1881 	 * through a crc generator, and then using the high order 8 bits as an
1882 	 * index into the 256 bit logical address filter.  The high order 4
1883 	 * bits selects the word, while the other 4 bits select the bit within
1884 	 * the word (where bit 0 is the MSB).
1885 	 */
1886 
1887 	/* Clear hash table */
1888 	memset(hash, 0, sizeof(hash));
1889 
1890 	TAILQ_FOREACH(inm, &sc->sc_arpcom.ac_if.if_multiaddrs, ifma_link) {
1891 		if (inm->ifma_addr->sa_family != AF_LINK)
1892 			continue;
1893 		sdl = (struct sockaddr_dl *)inm->ifma_addr;
1894 		cp = LLADDR(sdl);
1895 		crc = 0xffffffff;
1896 		for (len = sdl->sdl_alen; --len >= 0;) {
1897 			int octet = *cp++;
1898 			int i;
1899 
1900 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1901 			for (i = 0; i < 8; i++) {
1902 				if ((crc & 1) ^ (octet & 1)) {
1903 					crc >>= 1;
1904 					crc ^= MC_POLY_LE;
1905 				} else {
1906 					crc >>= 1;
1907 				}
1908 				octet >>= 1;
1909 			}
1910 		}
1911 		/* Just want the 8 most significant bits. */
1912 		crc >>= 24;
1913 
1914 		/* Set the corresponding bit in the filter. */
1915 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
1916 	}
1917 
1918 	v |= GEM_MAC_RX_HASH_FILTER;
1919 	ifp->if_flags &= ~IFF_ALLMULTI;
1920 
1921 	/* Now load the hash table into the chip (if we are using it) */
1922 	for (i = 0; i < 16; i++) {
1923 		bus_space_write_4(t, h,
1924 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
1925 		    hash[i]);
1926 	}
1927 
1928 chipit:
1929 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1930 }
1931