xref: /freebsd/sys/dev/gem/if_gem.c (revision d429ea332342fcb98d27a350d0c4944bf9aec3f9)
1 /*-
2  * Copyright (C) 2001 Eduardo Horvath.
3  * Copyright (c) 2001-2003 Thomas Moestl
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  *	from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for Sun GEM ethernet controllers.
35  */
36 
37 #if 0
38 #define	GEM_DEBUG
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/callout.h>
45 #include <sys/endian.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/module.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 
53 #include <net/bpf.h>
54 #include <net/ethernet.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 
61 #include <machine/bus.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/gem/if_gemreg.h>
67 #include <dev/gem/if_gemvar.h>
68 
69 #define TRIES	10000
70 
71 static void	gem_start(struct ifnet *);
72 static void	gem_stop(struct ifnet *, int);
73 static int	gem_ioctl(struct ifnet *, u_long, caddr_t);
74 static void	gem_cddma_callback(void *, bus_dma_segment_t *, int, int);
75 static void	gem_rxdma_callback(void *, bus_dma_segment_t *, int,
76     bus_size_t, int);
77 static void	gem_txdma_callback(void *, bus_dma_segment_t *, int,
78     bus_size_t, int);
79 static void	gem_tick(void *);
80 static void	gem_watchdog(struct ifnet *);
81 static void	gem_init(void *);
82 static void	gem_init_regs(struct gem_softc *sc);
83 static int	gem_ringsize(int sz);
84 static int	gem_meminit(struct gem_softc *);
85 static int	gem_load_txmbuf(struct gem_softc *, struct mbuf *);
86 static void	gem_mifinit(struct gem_softc *);
87 static int	gem_bitwait(struct gem_softc *sc, bus_addr_t r,
88     u_int32_t clr, u_int32_t set);
89 static int	gem_reset_rx(struct gem_softc *);
90 static int	gem_reset_tx(struct gem_softc *);
91 static int	gem_disable_rx(struct gem_softc *);
92 static int	gem_disable_tx(struct gem_softc *);
93 static void	gem_rxdrain(struct gem_softc *);
94 static int	gem_add_rxbuf(struct gem_softc *, int);
95 static void	gem_setladrf(struct gem_softc *);
96 
97 struct mbuf	*gem_get(struct gem_softc *, int, int);
98 static void	gem_eint(struct gem_softc *, u_int);
99 static void	gem_rint(struct gem_softc *);
100 #if 0
101 static void	gem_rint_timeout(void *);
102 #endif
103 static void	gem_tint(struct gem_softc *);
104 #ifdef notyet
105 static void	gem_power(int, void *);
106 #endif
107 
108 devclass_t gem_devclass;
109 DRIVER_MODULE(miibus, gem, miibus_driver, miibus_devclass, 0, 0);
110 MODULE_DEPEND(gem, miibus, 1, 1, 1);
111 
112 #ifdef GEM_DEBUG
113 #include <sys/ktr.h>
114 #define	KTR_GEM		KTR_CT2
115 #endif
116 
117 #define	GEM_NSEGS GEM_NTXDESC
118 
119 /*
120  * gem_attach:
121  *
122  *	Attach a Gem interface to the system.
123  */
124 int
125 gem_attach(sc)
126 	struct gem_softc *sc;
127 {
128 	struct ifnet *ifp;
129 	struct mii_softc *child;
130 	int i, error;
131 	u_int32_t v;
132 
133 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
134 	if (ifp == NULL)
135 		return (ENOSPC);
136 
137 	/* Make sure the chip is stopped. */
138 	ifp->if_softc = sc;
139 	gem_reset(sc);
140 
141 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
142 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, GEM_NSEGS,
143 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->sc_pdmatag);
144 	if (error)
145 		goto fail_ifnet;
146 
147 	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
148 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MAXBSIZE,
149 	    1, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW, NULL, NULL,
150 	    &sc->sc_rdmatag);
151 	if (error)
152 		goto fail_ptag;
153 
154 	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
155 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
156 	    GEM_TD_BUFSIZE, GEM_NTXDESC, BUS_SPACE_MAXSIZE_32BIT,
157 	    BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag);
158 	if (error)
159 		goto fail_rtag;
160 
161 	error = bus_dma_tag_create(sc->sc_pdmatag, PAGE_SIZE, 0,
162 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
163 	    sizeof(struct gem_control_data), 1,
164 	    sizeof(struct gem_control_data), BUS_DMA_ALLOCNOW,
165 	    busdma_lock_mutex, &Giant, &sc->sc_cdmatag);
166 	if (error)
167 		goto fail_ttag;
168 
169 	/*
170 	 * Allocate the control data structures, and create and load the
171 	 * DMA map for it.
172 	 */
173 	if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
174 	    (void **)&sc->sc_control_data, 0, &sc->sc_cddmamap))) {
175 		device_printf(sc->sc_dev, "unable to allocate control data,"
176 		    " error = %d\n", error);
177 		goto fail_ctag;
178 	}
179 
180 	sc->sc_cddma = 0;
181 	if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
182 	    sc->sc_control_data, sizeof(struct gem_control_data),
183 	    gem_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
184 		device_printf(sc->sc_dev, "unable to load control data DMA "
185 		    "map, error = %d\n", error);
186 		goto fail_cmem;
187 	}
188 
189 	/*
190 	 * Initialize the transmit job descriptors.
191 	 */
192 	STAILQ_INIT(&sc->sc_txfreeq);
193 	STAILQ_INIT(&sc->sc_txdirtyq);
194 
195 	/*
196 	 * Create the transmit buffer DMA maps.
197 	 */
198 	error = ENOMEM;
199 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
200 		struct gem_txsoft *txs;
201 
202 		txs = &sc->sc_txsoft[i];
203 		txs->txs_mbuf = NULL;
204 		txs->txs_ndescs = 0;
205 		if ((error = bus_dmamap_create(sc->sc_tdmatag, 0,
206 		    &txs->txs_dmamap)) != 0) {
207 			device_printf(sc->sc_dev, "unable to create tx DMA map "
208 			    "%d, error = %d\n", i, error);
209 			goto fail_txd;
210 		}
211 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
212 	}
213 
214 	/*
215 	 * Create the receive buffer DMA maps.
216 	 */
217 	for (i = 0; i < GEM_NRXDESC; i++) {
218 		if ((error = bus_dmamap_create(sc->sc_rdmatag, 0,
219 		    &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
220 			device_printf(sc->sc_dev, "unable to create rx DMA map "
221 			    "%d, error = %d\n", i, error);
222 			goto fail_rxd;
223 		}
224 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
225 	}
226 
227 
228 	gem_mifinit(sc);
229 
230 	if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, gem_mediachange,
231 	    gem_mediastatus)) != 0) {
232 		device_printf(sc->sc_dev, "phy probe failed: %d\n", error);
233 		goto fail_rxd;
234 	}
235 	sc->sc_mii = device_get_softc(sc->sc_miibus);
236 
237 	/*
238 	 * From this point forward, the attachment cannot fail.  A failure
239 	 * before this point releases all resources that may have been
240 	 * allocated.
241 	 */
242 
243 	/* Get RX FIFO size */
244 	sc->sc_rxfifosize = 64 *
245 	    bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
246 
247 	/* Get TX FIFO size */
248 	v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
249 	device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n",
250 	    sc->sc_rxfifosize / 1024, v / 16);
251 
252 	/* Initialize ifnet structure. */
253 	ifp->if_softc = sc;
254 	if_initname(ifp, device_get_name(sc->sc_dev),
255 	    device_get_unit(sc->sc_dev));
256 	ifp->if_mtu = ETHERMTU;
257 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
258 	    IFF_NEEDSGIANT;
259 	ifp->if_start = gem_start;
260 	ifp->if_ioctl = gem_ioctl;
261 	ifp->if_watchdog = gem_watchdog;
262 	ifp->if_init = gem_init;
263 	ifp->if_snd.ifq_maxlen = GEM_TXQUEUELEN;
264 	/*
265 	 * Walk along the list of attached MII devices and
266 	 * establish an `MII instance' to `phy number'
267 	 * mapping. We'll use this mapping in media change
268 	 * requests to determine which phy to use to program
269 	 * the MIF configuration register.
270 	 */
271 	for (child = LIST_FIRST(&sc->sc_mii->mii_phys); child != NULL;
272 	     child = LIST_NEXT(child, mii_list)) {
273 		/*
274 		 * Note: we support just two PHYs: the built-in
275 		 * internal device and an external on the MII
276 		 * connector.
277 		 */
278 		if (child->mii_phy > 1 || child->mii_inst > 1) {
279 			device_printf(sc->sc_dev, "cannot accomodate "
280 			    "MII device %s at phy %d, instance %d\n",
281 			    device_get_name(child->mii_dev),
282 			    child->mii_phy, child->mii_inst);
283 			continue;
284 		}
285 
286 		sc->sc_phys[child->mii_inst] = child->mii_phy;
287 	}
288 
289 	/*
290 	 * Now select and activate the PHY we will use.
291 	 *
292 	 * The order of preference is External (MDI1),
293 	 * Internal (MDI0), Serial Link (no MII).
294 	 */
295 	if (sc->sc_phys[1]) {
296 #ifdef GEM_DEBUG
297 		printf("using external phy\n");
298 #endif
299 		sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
300 	} else {
301 #ifdef GEM_DEBUG
302 		printf("using internal phy\n");
303 #endif
304 		sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
305 	}
306 	bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
307 	    sc->sc_mif_config);
308 	/* Attach the interface. */
309 	ether_ifattach(ifp, sc->sc_enaddr);
310 
311 #if notyet
312 	/*
313 	 * Add a suspend hook to make sure we come back up after a
314 	 * resume.
315 	 */
316 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
317 	if (sc->sc_powerhook == NULL)
318 		device_printf(sc->sc_dev, "WARNING: unable to establish power "
319 		    "hook\n");
320 #endif
321 
322 	callout_init(&sc->sc_tick_ch, 0);
323 	callout_init(&sc->sc_rx_ch, 0);
324 	return (0);
325 
326 	/*
327 	 * Free any resources we've allocated during the failed attach
328 	 * attempt.  Do this in reverse order and fall through.
329 	 */
330 fail_rxd:
331 	for (i = 0; i < GEM_NRXDESC; i++) {
332 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
333 			bus_dmamap_destroy(sc->sc_rdmatag,
334 			    sc->sc_rxsoft[i].rxs_dmamap);
335 	}
336 fail_txd:
337 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
338 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
339 			bus_dmamap_destroy(sc->sc_tdmatag,
340 			    sc->sc_txsoft[i].txs_dmamap);
341 	}
342 	bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
343 fail_cmem:
344 	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
345 	    sc->sc_cddmamap);
346 fail_ctag:
347 	bus_dma_tag_destroy(sc->sc_cdmatag);
348 fail_ttag:
349 	bus_dma_tag_destroy(sc->sc_tdmatag);
350 fail_rtag:
351 	bus_dma_tag_destroy(sc->sc_rdmatag);
352 fail_ptag:
353 	bus_dma_tag_destroy(sc->sc_pdmatag);
354 fail_ifnet:
355 	if_free(ifp);
356 	return (error);
357 }
358 
359 void
360 gem_detach(sc)
361 	struct gem_softc *sc;
362 {
363 	struct ifnet *ifp = sc->sc_ifp;
364 	int i;
365 
366 	gem_stop(ifp, 1);
367 	ether_ifdetach(ifp);
368 	if_free(ifp);
369 	device_delete_child(sc->sc_dev, sc->sc_miibus);
370 
371 	for (i = 0; i < GEM_NRXDESC; i++) {
372 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
373 			bus_dmamap_destroy(sc->sc_rdmatag,
374 			    sc->sc_rxsoft[i].rxs_dmamap);
375 	}
376 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
377 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
378 			bus_dmamap_destroy(sc->sc_tdmatag,
379 			    sc->sc_txsoft[i].txs_dmamap);
380 	}
381 	GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
382 	GEM_CDSYNC(sc, BUS_DMASYNC_POSTWRITE);
383 	bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
384 	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
385 	    sc->sc_cddmamap);
386 	bus_dma_tag_destroy(sc->sc_cdmatag);
387 	bus_dma_tag_destroy(sc->sc_tdmatag);
388 	bus_dma_tag_destroy(sc->sc_rdmatag);
389 	bus_dma_tag_destroy(sc->sc_pdmatag);
390 }
391 
392 void
393 gem_suspend(sc)
394 	struct gem_softc *sc;
395 {
396 	struct ifnet *ifp = sc->sc_ifp;
397 
398 	gem_stop(ifp, 0);
399 }
400 
401 void
402 gem_resume(sc)
403 	struct gem_softc *sc;
404 {
405 	struct ifnet *ifp = sc->sc_ifp;
406 
407 	if (ifp->if_flags & IFF_UP)
408 		gem_init(ifp);
409 }
410 
411 static void
412 gem_cddma_callback(xsc, segs, nsegs, error)
413 	void *xsc;
414 	bus_dma_segment_t *segs;
415 	int nsegs;
416 	int error;
417 {
418 	struct gem_softc *sc = (struct gem_softc *)xsc;
419 
420 	if (error != 0)
421 		return;
422 	if (nsegs != 1) {
423 		/* can't happen... */
424 		panic("gem_cddma_callback: bad control buffer segment count");
425 	}
426 	sc->sc_cddma = segs[0].ds_addr;
427 }
428 
429 static void
430 gem_rxdma_callback(xsc, segs, nsegs, totsz, error)
431 	void *xsc;
432 	bus_dma_segment_t *segs;
433 	int nsegs;
434 	bus_size_t totsz;
435 	int error;
436 {
437 	struct gem_rxsoft *rxs = (struct gem_rxsoft *)xsc;
438 
439 	if (error != 0)
440 		return;
441 	KASSERT(nsegs == 1, ("gem_rxdma_callback: bad dma segment count"));
442 	rxs->rxs_paddr = segs[0].ds_addr;
443 }
444 
445 static void
446 gem_txdma_callback(xsc, segs, nsegs, totsz, error)
447 	void *xsc;
448 	bus_dma_segment_t *segs;
449 	int nsegs;
450 	bus_size_t totsz;
451 	int error;
452 {
453 	struct gem_txdma *txd = (struct gem_txdma *)xsc;
454 	struct gem_softc *sc = txd->txd_sc;
455 	struct gem_txsoft *txs = txd->txd_txs;
456 	bus_size_t len = 0;
457 	uint64_t flags = 0;
458 	int seg, nexttx;
459 
460 	if (error != 0)
461 		return;
462 	/*
463 	 * Ensure we have enough descriptors free to describe
464 	 * the packet.  Note, we always reserve one descriptor
465 	 * at the end of the ring as a termination point, to
466 	 * prevent wrap-around.
467 	 */
468 	if (nsegs > sc->sc_txfree - 1) {
469 		txs->txs_ndescs = -1;
470 		return;
471 	}
472 	txs->txs_ndescs = nsegs;
473 
474 	nexttx = txs->txs_firstdesc;
475 	/*
476 	 * Initialize the transmit descriptors.
477 	 */
478 	for (seg = 0; seg < nsegs;
479 	     seg++, nexttx = GEM_NEXTTX(nexttx)) {
480 #ifdef GEM_DEBUG
481 		CTR5(KTR_GEM, "txdma_cb: mapping seg %d (txd %d), len "
482 		    "%lx, addr %#lx (%#lx)",  seg, nexttx,
483 		    segs[seg].ds_len, segs[seg].ds_addr,
484 		    GEM_DMA_WRITE(sc, segs[seg].ds_addr));
485 #endif
486 
487 		if (segs[seg].ds_len == 0)
488 			continue;
489 		sc->sc_txdescs[nexttx].gd_addr =
490 		    GEM_DMA_WRITE(sc, segs[seg].ds_addr);
491 		KASSERT(segs[seg].ds_len < GEM_TD_BUFSIZE,
492 		    ("gem_txdma_callback: segment size too large!"));
493 		flags = segs[seg].ds_len & GEM_TD_BUFSIZE;
494 		if (len == 0) {
495 #ifdef GEM_DEBUG
496 			CTR2(KTR_GEM, "txdma_cb: start of packet at seg %d, "
497 			    "tx %d", seg, nexttx);
498 #endif
499 			flags |= GEM_TD_START_OF_PACKET;
500 			if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
501 				sc->sc_txwin = 0;
502 				flags |= GEM_TD_INTERRUPT_ME;
503 			}
504 		}
505 		if (len + segs[seg].ds_len == totsz) {
506 #ifdef GEM_DEBUG
507 			CTR2(KTR_GEM, "txdma_cb: end of packet at seg %d, "
508 			    "tx %d", seg, nexttx);
509 #endif
510 			flags |= GEM_TD_END_OF_PACKET;
511 		}
512 		sc->sc_txdescs[nexttx].gd_flags = GEM_DMA_WRITE(sc, flags);
513 		txs->txs_lastdesc = nexttx;
514 		len += segs[seg].ds_len;
515 	}
516 	KASSERT((flags & GEM_TD_END_OF_PACKET) != 0,
517 	    ("gem_txdma_callback: missed end of packet!"));
518 }
519 
520 static void
521 gem_tick(arg)
522 	void *arg;
523 {
524 	struct gem_softc *sc = arg;
525 	int s;
526 
527 	s = splnet();
528 	mii_tick(sc->sc_mii);
529 	splx(s);
530 
531 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
532 }
533 
534 static int
535 gem_bitwait(sc, r, clr, set)
536 	struct gem_softc *sc;
537 	bus_addr_t r;
538 	u_int32_t clr;
539 	u_int32_t set;
540 {
541 	int i;
542 	u_int32_t reg;
543 
544 	for (i = TRIES; i--; DELAY(100)) {
545 		reg = bus_space_read_4(sc->sc_bustag, sc->sc_h, r);
546 		if ((r & clr) == 0 && (r & set) == set)
547 			return (1);
548 	}
549 	return (0);
550 }
551 
552 void
553 gem_reset(sc)
554 	struct gem_softc *sc;
555 {
556 	bus_space_tag_t t = sc->sc_bustag;
557 	bus_space_handle_t h = sc->sc_h;
558 	int s;
559 
560 	s = splnet();
561 #ifdef GEM_DEBUG
562 	CTR1(KTR_GEM, "%s: gem_reset", device_get_name(sc->sc_dev));
563 #endif
564 	gem_reset_rx(sc);
565 	gem_reset_tx(sc);
566 
567 	/* Do a full reset */
568 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
569 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
570 		device_printf(sc->sc_dev, "cannot reset device\n");
571 	splx(s);
572 }
573 
574 
575 /*
576  * gem_rxdrain:
577  *
578  *	Drain the receive queue.
579  */
580 static void
581 gem_rxdrain(sc)
582 	struct gem_softc *sc;
583 {
584 	struct gem_rxsoft *rxs;
585 	int i;
586 
587 	for (i = 0; i < GEM_NRXDESC; i++) {
588 		rxs = &sc->sc_rxsoft[i];
589 		if (rxs->rxs_mbuf != NULL) {
590 			bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap,
591 			    BUS_DMASYNC_POSTREAD);
592 			bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap);
593 			m_freem(rxs->rxs_mbuf);
594 			rxs->rxs_mbuf = NULL;
595 		}
596 	}
597 }
598 
599 /*
600  * Reset the whole thing.
601  */
602 static void
603 gem_stop(ifp, disable)
604 	struct ifnet *ifp;
605 	int disable;
606 {
607 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
608 	struct gem_txsoft *txs;
609 
610 #ifdef GEM_DEBUG
611 	CTR1(KTR_GEM, "%s: gem_stop", device_get_name(sc->sc_dev));
612 #endif
613 
614 	callout_stop(&sc->sc_tick_ch);
615 
616 	/* XXX - Should we reset these instead? */
617 	gem_disable_tx(sc);
618 	gem_disable_rx(sc);
619 
620 	/*
621 	 * Release any queued transmit buffers.
622 	 */
623 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
624 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
625 		if (txs->txs_ndescs != 0) {
626 			bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
627 			    BUS_DMASYNC_POSTWRITE);
628 			bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
629 			if (txs->txs_mbuf != NULL) {
630 				m_freem(txs->txs_mbuf);
631 				txs->txs_mbuf = NULL;
632 			}
633 		}
634 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
635 	}
636 
637 	if (disable)
638 		gem_rxdrain(sc);
639 
640 	/*
641 	 * Mark the interface down and cancel the watchdog timer.
642 	 */
643 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
644 	ifp->if_timer = 0;
645 }
646 
647 /*
648  * Reset the receiver
649  */
650 int
651 gem_reset_rx(sc)
652 	struct gem_softc *sc;
653 {
654 	bus_space_tag_t t = sc->sc_bustag;
655 	bus_space_handle_t h = sc->sc_h;
656 
657 	/*
658 	 * Resetting while DMA is in progress can cause a bus hang, so we
659 	 * disable DMA first.
660 	 */
661 	gem_disable_rx(sc);
662 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
663 	/* Wait till it finishes */
664 	if (!gem_bitwait(sc, GEM_RX_CONFIG, 1, 0))
665 		device_printf(sc->sc_dev, "cannot disable read dma\n");
666 
667 	/* Wait 5ms extra. */
668 	DELAY(5000);
669 
670 	/* Finally, reset the ERX */
671 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
672 	/* Wait till it finishes */
673 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
674 		device_printf(sc->sc_dev, "cannot reset receiver\n");
675 		return (1);
676 	}
677 	return (0);
678 }
679 
680 
681 /*
682  * Reset the transmitter
683  */
684 static int
685 gem_reset_tx(sc)
686 	struct gem_softc *sc;
687 {
688 	bus_space_tag_t t = sc->sc_bustag;
689 	bus_space_handle_t h = sc->sc_h;
690 	int i;
691 
692 	/*
693 	 * Resetting while DMA is in progress can cause a bus hang, so we
694 	 * disable DMA first.
695 	 */
696 	gem_disable_tx(sc);
697 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
698 	/* Wait till it finishes */
699 	if (!gem_bitwait(sc, GEM_TX_CONFIG, 1, 0))
700 		device_printf(sc->sc_dev, "cannot disable read dma\n");
701 
702 	/* Wait 5ms extra. */
703 	DELAY(5000);
704 
705 	/* Finally, reset the ETX */
706 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
707 	/* Wait till it finishes */
708 	for (i = TRIES; i--; DELAY(100))
709 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
710 			break;
711 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
712 		device_printf(sc->sc_dev, "cannot reset receiver\n");
713 		return (1);
714 	}
715 	return (0);
716 }
717 
718 /*
719  * disable receiver.
720  */
721 static int
722 gem_disable_rx(sc)
723 	struct gem_softc *sc;
724 {
725 	bus_space_tag_t t = sc->sc_bustag;
726 	bus_space_handle_t h = sc->sc_h;
727 	u_int32_t cfg;
728 
729 	/* Flip the enable bit */
730 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
731 	cfg &= ~GEM_MAC_RX_ENABLE;
732 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
733 
734 	/* Wait for it to finish */
735 	return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
736 }
737 
738 /*
739  * disable transmitter.
740  */
741 static int
742 gem_disable_tx(sc)
743 	struct gem_softc *sc;
744 {
745 	bus_space_tag_t t = sc->sc_bustag;
746 	bus_space_handle_t h = sc->sc_h;
747 	u_int32_t cfg;
748 
749 	/* Flip the enable bit */
750 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
751 	cfg &= ~GEM_MAC_TX_ENABLE;
752 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
753 
754 	/* Wait for it to finish */
755 	return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
756 }
757 
758 /*
759  * Initialize interface.
760  */
761 static int
762 gem_meminit(sc)
763 	struct gem_softc *sc;
764 {
765 	struct gem_rxsoft *rxs;
766 	int i, error;
767 
768 	/*
769 	 * Initialize the transmit descriptor ring.
770 	 */
771 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
772 	for (i = 0; i < GEM_NTXDESC; i++) {
773 		sc->sc_txdescs[i].gd_flags = 0;
774 		sc->sc_txdescs[i].gd_addr = 0;
775 	}
776 	sc->sc_txfree = GEM_MAXTXFREE;
777 	sc->sc_txnext = 0;
778 	sc->sc_txwin = 0;
779 
780 	/*
781 	 * Initialize the receive descriptor and receive job
782 	 * descriptor rings.
783 	 */
784 	for (i = 0; i < GEM_NRXDESC; i++) {
785 		rxs = &sc->sc_rxsoft[i];
786 		if (rxs->rxs_mbuf == NULL) {
787 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
788 				device_printf(sc->sc_dev, "unable to "
789 				    "allocate or map rx buffer %d, error = "
790 				    "%d\n", i, error);
791 				/*
792 				 * XXX Should attempt to run with fewer receive
793 				 * XXX buffers instead of just failing.
794 				 */
795 				gem_rxdrain(sc);
796 				return (1);
797 			}
798 		} else
799 			GEM_INIT_RXDESC(sc, i);
800 	}
801 	sc->sc_rxptr = 0;
802 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
803 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
804 
805 	return (0);
806 }
807 
808 static int
809 gem_ringsize(sz)
810 	int sz;
811 {
812 	int v = 0;
813 
814 	switch (sz) {
815 	case 32:
816 		v = GEM_RING_SZ_32;
817 		break;
818 	case 64:
819 		v = GEM_RING_SZ_64;
820 		break;
821 	case 128:
822 		v = GEM_RING_SZ_128;
823 		break;
824 	case 256:
825 		v = GEM_RING_SZ_256;
826 		break;
827 	case 512:
828 		v = GEM_RING_SZ_512;
829 		break;
830 	case 1024:
831 		v = GEM_RING_SZ_1024;
832 		break;
833 	case 2048:
834 		v = GEM_RING_SZ_2048;
835 		break;
836 	case 4096:
837 		v = GEM_RING_SZ_4096;
838 		break;
839 	case 8192:
840 		v = GEM_RING_SZ_8192;
841 		break;
842 	default:
843 		printf("gem: invalid Receive Descriptor ring size\n");
844 		break;
845 	}
846 	return (v);
847 }
848 
849 /*
850  * Initialization of interface; set up initialization block
851  * and transmit/receive descriptor rings.
852  */
853 static void
854 gem_init(xsc)
855 	void *xsc;
856 {
857 	struct gem_softc *sc = (struct gem_softc *)xsc;
858 	struct ifnet *ifp = sc->sc_ifp;
859 	bus_space_tag_t t = sc->sc_bustag;
860 	bus_space_handle_t h = sc->sc_h;
861 	int s;
862 	u_int32_t v;
863 
864 	s = splnet();
865 
866 #ifdef GEM_DEBUG
867 	CTR1(KTR_GEM, "%s: gem_init: calling stop", device_get_name(sc->sc_dev));
868 #endif
869 	/*
870 	 * Initialization sequence. The numbered steps below correspond
871 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
872 	 * Channel Engine manual (part of the PCIO manual).
873 	 * See also the STP2002-STQ document from Sun Microsystems.
874 	 */
875 
876 	/* step 1 & 2. Reset the Ethernet Channel */
877 	gem_stop(sc->sc_ifp, 0);
878 	gem_reset(sc);
879 #ifdef GEM_DEBUG
880 	CTR1(KTR_GEM, "%s: gem_init: restarting", device_get_name(sc->sc_dev));
881 #endif
882 
883 	/* Re-initialize the MIF */
884 	gem_mifinit(sc);
885 
886 	/* step 3. Setup data structures in host memory */
887 	gem_meminit(sc);
888 
889 	/* step 4. TX MAC registers & counters */
890 	gem_init_regs(sc);
891 	/* XXX: VLAN code from NetBSD temporarily removed. */
892 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
893             (ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
894 
895 	/* step 5. RX MAC registers & counters */
896 	gem_setladrf(sc);
897 
898 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
899 	/* NOTE: we use only 32-bit DMA addresses here. */
900 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
901 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
902 
903 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
904 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
905 #ifdef GEM_DEBUG
906 	CTR3(KTR_GEM, "loading rx ring %lx, tx ring %lx, cddma %lx",
907 	    GEM_CDRXADDR(sc, 0), GEM_CDTXADDR(sc, 0), sc->sc_cddma);
908 #endif
909 
910 	/* step 8. Global Configuration & Interrupt Mask */
911 	bus_space_write_4(t, h, GEM_INTMASK,
912 		      ~(GEM_INTR_TX_INTME|
913 			GEM_INTR_TX_EMPTY|
914 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
915 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
916 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
917 			GEM_INTR_BERR));
918 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
919 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
920 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
921 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
922 
923 	/* step 9. ETX Configuration: use mostly default values */
924 
925 	/* Enable DMA */
926 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
927 	bus_space_write_4(t, h, GEM_TX_CONFIG,
928 		v|GEM_TX_CONFIG_TXDMA_EN|
929 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
930 
931 	/* step 10. ERX Configuration */
932 
933 	/* Encode Receive Descriptor ring size: four possible values */
934 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
935 
936 	/* Enable DMA */
937 	bus_space_write_4(t, h, GEM_RX_CONFIG,
938 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
939 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
940 		(0<<GEM_RX_CONFIG_CXM_START_SHFT));
941 	/*
942 	 * The following value is for an OFF Threshold of about 3/4 full
943 	 * and an ON Threshold of 1/4 full.
944 	 */
945 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
946 	    (3 * sc->sc_rxfifosize / 256) |
947 	    (   (sc->sc_rxfifosize / 256) << 12));
948 	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
949 
950 	/* step 11. Configure Media */
951 	mii_mediachg(sc->sc_mii);
952 
953 	/* step 12. RX_MAC Configuration Register */
954 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
955 	v |= GEM_MAC_RX_ENABLE;
956 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
957 
958 	/* step 14. Issue Transmit Pending command */
959 
960 	/* step 15.  Give the reciever a swift kick */
961 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
962 
963 	/* Start the one second timer. */
964 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
965 
966 	ifp->if_flags |= IFF_RUNNING;
967 	ifp->if_flags &= ~IFF_OACTIVE;
968 	ifp->if_timer = 0;
969 	sc->sc_ifflags = ifp->if_flags;
970 	splx(s);
971 }
972 
973 static int
974 gem_load_txmbuf(sc, m0)
975 	struct gem_softc *sc;
976 	struct mbuf *m0;
977 {
978 	struct gem_txdma txd;
979 	struct gem_txsoft *txs;
980 	int error;
981 
982 	/* Get a work queue entry. */
983 	if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
984 		/* Ran out of descriptors. */
985 		return (-1);
986 	}
987 	txd.txd_sc = sc;
988 	txd.txd_txs = txs;
989 	txs->txs_mbuf = m0;
990 	txs->txs_firstdesc = sc->sc_txnext;
991 	error = bus_dmamap_load_mbuf(sc->sc_tdmatag, txs->txs_dmamap, m0,
992 	    gem_txdma_callback, &txd, BUS_DMA_NOWAIT);
993 	if (error != 0)
994 		goto fail;
995 	if (txs->txs_ndescs == -1) {
996 		error = -1;
997 		goto fail;
998 	}
999 
1000 	/* Sync the DMA map. */
1001 	bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1002 	    BUS_DMASYNC_PREWRITE);
1003 
1004 #ifdef GEM_DEBUG
1005 	CTR3(KTR_GEM, "load_mbuf: setting firstdesc=%d, lastdesc=%d, "
1006 	    "ndescs=%d", txs->txs_firstdesc, txs->txs_lastdesc,
1007 	    txs->txs_ndescs);
1008 #endif
1009 	STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1010 	STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1011 
1012 	sc->sc_txnext = GEM_NEXTTX(txs->txs_lastdesc);
1013 	sc->sc_txfree -= txs->txs_ndescs;
1014 	return (0);
1015 
1016 fail:
1017 #ifdef GEM_DEBUG
1018 	CTR1(KTR_GEM, "gem_load_txmbuf failed (%d)", error);
1019 #endif
1020 	bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1021 	return (error);
1022 }
1023 
1024 static void
1025 gem_init_regs(sc)
1026 	struct gem_softc *sc;
1027 {
1028 	bus_space_tag_t t = sc->sc_bustag;
1029 	bus_space_handle_t h = sc->sc_h;
1030 	const u_char *laddr = IFP2ENADDR(sc->sc_ifp);
1031 	u_int32_t v;
1032 
1033 	/* These regs are not cleared on reset */
1034 	if (!sc->sc_inited) {
1035 
1036 		/* Wooo.  Magic values. */
1037 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
1038 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
1039 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
1040 
1041 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1042 		/* Max frame and max burst size */
1043 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1044 		    ETHER_MAX_LEN | (0x2000<<16));
1045 
1046 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
1047 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
1048 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1049 		/* Dunno.... */
1050 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1051 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1052 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1053 
1054 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1055 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1056 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1057 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1058 
1059 		/* MAC control addr set to 01:80:c2:00:00:01 */
1060 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1061 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1062 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1063 
1064 		/* MAC filter addr set to 0:0:0:0:0:0 */
1065 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1066 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1067 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1068 
1069 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1070 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1071 
1072 		sc->sc_inited = 1;
1073 	}
1074 
1075 	/* Counters need to be zeroed */
1076 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1077 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1078 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1079 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1080 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1081 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1082 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1083 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1084 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1085 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1086 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1087 
1088 	/* Un-pause stuff */
1089 #if 0
1090 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1091 #else
1092 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
1093 #endif
1094 
1095 	/*
1096 	 * Set the station address.
1097 	 */
1098 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1099 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1100 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1101 
1102 	/*
1103 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1104 	 */
1105 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1106 	v = GEM_MAC_XIF_TX_MII_ENA;
1107 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1108 		v |= GEM_MAC_XIF_FDPLX_LED;
1109 		if (sc->sc_flags & GEM_GIGABIT)
1110 			v |= GEM_MAC_XIF_GMII_MODE;
1111 	}
1112 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1113 }
1114 
1115 static void
1116 gem_start(ifp)
1117 	struct ifnet *ifp;
1118 {
1119 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1120 	struct mbuf *m0 = NULL;
1121 	int firsttx, ntx = 0, ofree, txmfail;
1122 
1123 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1124 		return;
1125 
1126 	/*
1127 	 * Remember the previous number of free descriptors and
1128 	 * the first descriptor we'll use.
1129 	 */
1130 	ofree = sc->sc_txfree;
1131 	firsttx = sc->sc_txnext;
1132 
1133 #ifdef GEM_DEBUG
1134 	CTR3(KTR_GEM, "%s: gem_start: txfree %d, txnext %d",
1135 	    device_get_name(sc->sc_dev), ofree, firsttx);
1136 #endif
1137 
1138 	/*
1139 	 * Loop through the send queue, setting up transmit descriptors
1140 	 * until we drain the queue, or use up all available transmit
1141 	 * descriptors.
1142 	 */
1143 	txmfail = 0;
1144 	do {
1145 		/*
1146 		 * Grab a packet off the queue.
1147 		 */
1148 		IF_DEQUEUE(&ifp->if_snd, m0);
1149 		if (m0 == NULL)
1150 			break;
1151 
1152 		txmfail = gem_load_txmbuf(sc, m0);
1153 		if (txmfail > 0) {
1154 			/* Drop the mbuf and complain. */
1155 			printf("gem_start: error %d while loading mbuf dma "
1156 			    "map\n", txmfail);
1157 			continue;
1158 		}
1159 		/* Not enough descriptors. */
1160 		if (txmfail == -1) {
1161 			if (sc->sc_txfree == GEM_MAXTXFREE)
1162 				panic("gem_start: mbuf chain too long!");
1163 			IF_PREPEND(&ifp->if_snd, m0);
1164 			break;
1165 		}
1166 
1167 		ntx++;
1168 		/* Kick the transmitter. */
1169 #ifdef GEM_DEBUG
1170 		CTR2(KTR_GEM, "%s: gem_start: kicking tx %d",
1171 		    device_get_name(sc->sc_dev), sc->sc_txnext);
1172 #endif
1173 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1174 			sc->sc_txnext);
1175 
1176 		if (ifp->if_bpf != NULL)
1177 			bpf_mtap(ifp->if_bpf, m0);
1178 	} while (1);
1179 
1180 	if (txmfail == -1 || sc->sc_txfree == 0) {
1181 		/* No more slots left; notify upper layer. */
1182 		ifp->if_flags |= IFF_OACTIVE;
1183 	}
1184 
1185 	if (ntx > 0) {
1186 		GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
1187 
1188 #ifdef GEM_DEBUG
1189 		CTR2(KTR_GEM, "%s: packets enqueued, OWN on %d",
1190 		    device_get_name(sc->sc_dev), firsttx);
1191 #endif
1192 
1193 		/* Set a watchdog timer in case the chip flakes out. */
1194 		ifp->if_timer = 5;
1195 #ifdef GEM_DEBUG
1196 		CTR2(KTR_GEM, "%s: gem_start: watchdog %d",
1197 			device_get_name(sc->sc_dev), ifp->if_timer);
1198 #endif
1199 	}
1200 }
1201 
1202 /*
1203  * Transmit interrupt.
1204  */
1205 static void
1206 gem_tint(sc)
1207 	struct gem_softc *sc;
1208 {
1209 	struct ifnet *ifp = sc->sc_ifp;
1210 	bus_space_tag_t t = sc->sc_bustag;
1211 	bus_space_handle_t mac = sc->sc_h;
1212 	struct gem_txsoft *txs;
1213 	int txlast;
1214 	int progress = 0;
1215 
1216 
1217 #ifdef GEM_DEBUG
1218 	CTR1(KTR_GEM, "%s: gem_tint", device_get_name(sc->sc_dev));
1219 #endif
1220 
1221 	/*
1222 	 * Unload collision counters
1223 	 */
1224 	ifp->if_collisions +=
1225 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1226 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1227 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1228 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1229 
1230 	/*
1231 	 * then clear the hardware counters.
1232 	 */
1233 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1234 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1235 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1236 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1237 
1238 	/*
1239 	 * Go through our Tx list and free mbufs for those
1240 	 * frames that have been transmitted.
1241 	 */
1242 	GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
1243 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1244 
1245 #ifdef GEM_DEBUG
1246 		if (ifp->if_flags & IFF_DEBUG) {
1247 			int i;
1248 			printf("    txsoft %p transmit chain:\n", txs);
1249 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1250 				printf("descriptor %d: ", i);
1251 				printf("gd_flags: 0x%016llx\t", (long long)
1252 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1253 				printf("gd_addr: 0x%016llx\n", (long long)
1254 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1255 				if (i == txs->txs_lastdesc)
1256 					break;
1257 			}
1258 		}
1259 #endif
1260 
1261 		/*
1262 		 * In theory, we could harveast some descriptors before
1263 		 * the ring is empty, but that's a bit complicated.
1264 		 *
1265 		 * GEM_TX_COMPLETION points to the last descriptor
1266 		 * processed +1.
1267 		 */
1268 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1269 #ifdef GEM_DEBUG
1270 		CTR3(KTR_GEM, "gem_tint: txs->txs_firstdesc = %d, "
1271 		    "txs->txs_lastdesc = %d, txlast = %d",
1272 		    txs->txs_firstdesc, txs->txs_lastdesc, txlast);
1273 #endif
1274 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1275 			if ((txlast >= txs->txs_firstdesc) &&
1276 				(txlast <= txs->txs_lastdesc))
1277 				break;
1278 		} else {
1279 			/* Ick -- this command wraps */
1280 			if ((txlast >= txs->txs_firstdesc) ||
1281 				(txlast <= txs->txs_lastdesc))
1282 				break;
1283 		}
1284 
1285 #ifdef GEM_DEBUG
1286 		CTR0(KTR_GEM, "gem_tint: releasing a desc");
1287 #endif
1288 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1289 
1290 		sc->sc_txfree += txs->txs_ndescs;
1291 
1292 		bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1293 		    BUS_DMASYNC_POSTWRITE);
1294 		bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1295 		if (txs->txs_mbuf != NULL) {
1296 			m_freem(txs->txs_mbuf);
1297 			txs->txs_mbuf = NULL;
1298 		}
1299 
1300 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1301 
1302 		ifp->if_opackets++;
1303 		progress = 1;
1304 	}
1305 
1306 #ifdef GEM_DEBUG
1307 	CTR3(KTR_GEM, "gem_tint: GEM_TX_STATE_MACHINE %x "
1308 		"GEM_TX_DATA_PTR %llx "
1309 		"GEM_TX_COMPLETION %x",
1310 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1311 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1312 			GEM_TX_DATA_PTR_HI) << 32) |
1313 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
1314 			GEM_TX_DATA_PTR_LO),
1315 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION));
1316 #endif
1317 
1318 	if (progress) {
1319 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1320 			sc->sc_txwin = 0;
1321 
1322 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1323 		ifp->if_flags &= ~IFF_OACTIVE;
1324 		gem_start(ifp);
1325 
1326 		if (STAILQ_EMPTY(&sc->sc_txdirtyq))
1327 			ifp->if_timer = 0;
1328 	}
1329 
1330 #ifdef GEM_DEBUG
1331 	CTR2(KTR_GEM, "%s: gem_tint: watchdog %d",
1332 		device_get_name(sc->sc_dev), ifp->if_timer);
1333 #endif
1334 }
1335 
1336 #if 0
1337 static void
1338 gem_rint_timeout(arg)
1339 	void *arg;
1340 {
1341 
1342 	gem_rint((struct gem_softc *)arg);
1343 }
1344 #endif
1345 
1346 /*
1347  * Receive interrupt.
1348  */
1349 static void
1350 gem_rint(sc)
1351 	struct gem_softc *sc;
1352 {
1353 	struct ifnet *ifp = sc->sc_ifp;
1354 	bus_space_tag_t t = sc->sc_bustag;
1355 	bus_space_handle_t h = sc->sc_h;
1356 	struct gem_rxsoft *rxs;
1357 	struct mbuf *m;
1358 	u_int64_t rxstat;
1359 	u_int32_t rxcomp;
1360 	int i, len, progress = 0;
1361 
1362 	callout_stop(&sc->sc_rx_ch);
1363 #ifdef GEM_DEBUG
1364 	CTR1(KTR_GEM, "%s: gem_rint", device_get_name(sc->sc_dev));
1365 #endif
1366 
1367 	/*
1368 	 * Read the completion register once.  This limits
1369 	 * how long the following loop can execute.
1370 	 */
1371 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1372 
1373 #ifdef GEM_DEBUG
1374 	CTR2(KTR_GEM, "gem_rint: sc->rxptr %d, complete %d",
1375 	    sc->sc_rxptr, rxcomp);
1376 #endif
1377 	GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
1378 	for (i = sc->sc_rxptr; i != rxcomp;
1379 	     i = GEM_NEXTRX(i)) {
1380 		rxs = &sc->sc_rxsoft[i];
1381 
1382 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1383 
1384 		if (rxstat & GEM_RD_OWN) {
1385 #if 0 /* XXX: In case of emergency, re-enable this. */
1386 			/*
1387 			 * The descriptor is still marked as owned, although
1388 			 * it is supposed to have completed. This has been
1389 			 * observed on some machines. Just exiting here
1390 			 * might leave the packet sitting around until another
1391 			 * one arrives to trigger a new interrupt, which is
1392 			 * generally undesirable, so set up a timeout.
1393 			 */
1394 			callout_reset(&sc->sc_rx_ch, GEM_RXOWN_TICKS,
1395 			    gem_rint_timeout, sc);
1396 #endif
1397 			break;
1398 		}
1399 
1400 		progress++;
1401 		ifp->if_ipackets++;
1402 
1403 		if (rxstat & GEM_RD_BAD_CRC) {
1404 			ifp->if_ierrors++;
1405 			device_printf(sc->sc_dev, "receive error: CRC error\n");
1406 			GEM_INIT_RXDESC(sc, i);
1407 			continue;
1408 		}
1409 
1410 #ifdef GEM_DEBUG
1411 		if (ifp->if_flags & IFF_DEBUG) {
1412 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1413 			printf("gd_flags: 0x%016llx\t", (long long)
1414 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1415 			printf("gd_addr: 0x%016llx\n", (long long)
1416 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1417 		}
1418 #endif
1419 
1420 		/*
1421 		 * No errors; receive the packet.  Note the Gem
1422 		 * includes the CRC with every packet.
1423 		 */
1424 		len = GEM_RD_BUFLEN(rxstat);
1425 
1426 		/*
1427 		 * Allocate a new mbuf cluster.  If that fails, we are
1428 		 * out of memory, and must drop the packet and recycle
1429 		 * the buffer that's already attached to this descriptor.
1430 		 */
1431 		m = rxs->rxs_mbuf;
1432 		if (gem_add_rxbuf(sc, i) != 0) {
1433 			ifp->if_ierrors++;
1434 			GEM_INIT_RXDESC(sc, i);
1435 			continue;
1436 		}
1437 		m->m_data += 2; /* We're already off by two */
1438 
1439 		m->m_pkthdr.rcvif = ifp;
1440 		m->m_pkthdr.len = m->m_len = len - ETHER_CRC_LEN;
1441 
1442 		/* Pass it on. */
1443 		(*ifp->if_input)(ifp, m);
1444 	}
1445 
1446 	if (progress) {
1447 		GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
1448 		/* Update the receive pointer. */
1449 		if (i == sc->sc_rxptr) {
1450 			device_printf(sc->sc_dev, "rint: ring wrap\n");
1451 		}
1452 		sc->sc_rxptr = i;
1453 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1454 	}
1455 
1456 #ifdef GEM_DEBUG
1457 	CTR2(KTR_GEM, "gem_rint: done sc->rxptr %d, complete %d",
1458 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
1459 #endif
1460 }
1461 
1462 
1463 /*
1464  * gem_add_rxbuf:
1465  *
1466  *	Add a receive buffer to the indicated descriptor.
1467  */
1468 static int
1469 gem_add_rxbuf(sc, idx)
1470 	struct gem_softc *sc;
1471 	int idx;
1472 {
1473 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1474 	struct mbuf *m;
1475 	int error;
1476 
1477 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1478 	if (m == NULL)
1479 		return (ENOBUFS);
1480 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1481 
1482 #ifdef GEM_DEBUG
1483 	/* bzero the packet to check dma */
1484 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1485 #endif
1486 
1487 	if (rxs->rxs_mbuf != NULL) {
1488 		bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap,
1489 		    BUS_DMASYNC_POSTREAD);
1490 		bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap);
1491 	}
1492 
1493 	rxs->rxs_mbuf = m;
1494 
1495 	error = bus_dmamap_load_mbuf(sc->sc_rdmatag, rxs->rxs_dmamap,
1496 	    m, gem_rxdma_callback, rxs, BUS_DMA_NOWAIT);
1497 	if (error != 0 || rxs->rxs_paddr == 0) {
1498 		device_printf(sc->sc_dev, "can't load rx DMA map %d, error = "
1499 		    "%d\n", idx, error);
1500 		panic("gem_add_rxbuf");	/* XXX */
1501 	}
1502 
1503 	bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap, BUS_DMASYNC_PREREAD);
1504 
1505 	GEM_INIT_RXDESC(sc, idx);
1506 
1507 	return (0);
1508 }
1509 
1510 
1511 static void
1512 gem_eint(sc, status)
1513 	struct gem_softc *sc;
1514 	u_int status;
1515 {
1516 
1517 	if ((status & GEM_INTR_MIF) != 0) {
1518 		device_printf(sc->sc_dev, "XXXlink status changed\n");
1519 		return;
1520 	}
1521 
1522 	device_printf(sc->sc_dev, "status=%x\n", status);
1523 }
1524 
1525 
1526 void
1527 gem_intr(v)
1528 	void *v;
1529 {
1530 	struct gem_softc *sc = (struct gem_softc *)v;
1531 	bus_space_tag_t t = sc->sc_bustag;
1532 	bus_space_handle_t seb = sc->sc_h;
1533 	u_int32_t status;
1534 
1535 	status = bus_space_read_4(t, seb, GEM_STATUS);
1536 #ifdef GEM_DEBUG
1537 	CTR3(KTR_GEM, "%s: gem_intr: cplt %x, status %x",
1538 		device_get_name(sc->sc_dev), (status>>19),
1539 		(u_int)status);
1540 #endif
1541 
1542 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1543 		gem_eint(sc, status);
1544 
1545 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0)
1546 		gem_tint(sc);
1547 
1548 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1549 		gem_rint(sc);
1550 
1551 	/* We should eventually do more than just print out error stats. */
1552 	if (status & GEM_INTR_TX_MAC) {
1553 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1554 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1555 			device_printf(sc->sc_dev, "MAC tx fault, status %x\n",
1556 			    txstat);
1557 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
1558 			gem_init(sc);
1559 	}
1560 	if (status & GEM_INTR_RX_MAC) {
1561 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1562 		if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
1563 			device_printf(sc->sc_dev, "MAC rx fault, status %x\n",
1564 			    rxstat);
1565 		if ((rxstat & GEM_MAC_RX_OVERFLOW) != 0)
1566 			gem_init(sc);
1567 	}
1568 }
1569 
1570 
1571 static void
1572 gem_watchdog(ifp)
1573 	struct ifnet *ifp;
1574 {
1575 	struct gem_softc *sc = ifp->if_softc;
1576 
1577 #ifdef GEM_DEBUG
1578 	CTR3(KTR_GEM, "gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1579 		"GEM_MAC_RX_CONFIG %x",
1580 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1581 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1582 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG));
1583 	CTR3(KTR_GEM, "gem_watchdog: GEM_TX_CONFIG %x GEM_MAC_TX_STATUS %x "
1584 		"GEM_MAC_TX_CONFIG %x",
1585 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_CONFIG),
1586 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_STATUS),
1587 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_CONFIG));
1588 #endif
1589 
1590 	device_printf(sc->sc_dev, "device timeout\n");
1591 	++ifp->if_oerrors;
1592 
1593 	/* Try to get more packets going. */
1594 	gem_start(ifp);
1595 }
1596 
1597 /*
1598  * Initialize the MII Management Interface
1599  */
1600 static void
1601 gem_mifinit(sc)
1602 	struct gem_softc *sc;
1603 {
1604 	bus_space_tag_t t = sc->sc_bustag;
1605 	bus_space_handle_t mif = sc->sc_h;
1606 
1607 	/* Configure the MIF in frame mode */
1608 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1609 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1610 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1611 }
1612 
1613 /*
1614  * MII interface
1615  *
1616  * The GEM MII interface supports at least three different operating modes:
1617  *
1618  * Bitbang mode is implemented using data, clock and output enable registers.
1619  *
1620  * Frame mode is implemented by loading a complete frame into the frame
1621  * register and polling the valid bit for completion.
1622  *
1623  * Polling mode uses the frame register but completion is indicated by
1624  * an interrupt.
1625  *
1626  */
1627 int
1628 gem_mii_readreg(dev, phy, reg)
1629 	device_t dev;
1630 	int phy, reg;
1631 {
1632 	struct gem_softc *sc = device_get_softc(dev);
1633 	bus_space_tag_t t = sc->sc_bustag;
1634 	bus_space_handle_t mif = sc->sc_h;
1635 	int n;
1636 	u_int32_t v;
1637 
1638 #ifdef GEM_DEBUG_PHY
1639 	printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1640 #endif
1641 
1642 #if 0
1643 	/* Select the desired PHY in the MIF configuration register */
1644 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1645 	/* Clear PHY select bit */
1646 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1647 	if (phy == GEM_PHYAD_EXTERNAL)
1648 		/* Set PHY select bit to get at external device */
1649 		v |= GEM_MIF_CONFIG_PHY_SEL;
1650 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1651 #endif
1652 
1653 	/* Construct the frame command */
1654 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
1655 		GEM_MIF_FRAME_READ;
1656 
1657 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1658 	for (n = 0; n < 100; n++) {
1659 		DELAY(1);
1660 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1661 		if (v & GEM_MIF_FRAME_TA0)
1662 			return (v & GEM_MIF_FRAME_DATA);
1663 	}
1664 
1665 	device_printf(sc->sc_dev, "mii_read timeout\n");
1666 	return (0);
1667 }
1668 
1669 int
1670 gem_mii_writereg(dev, phy, reg, val)
1671 	device_t dev;
1672 	int phy, reg, val;
1673 {
1674 	struct gem_softc *sc = device_get_softc(dev);
1675 	bus_space_tag_t t = sc->sc_bustag;
1676 	bus_space_handle_t mif = sc->sc_h;
1677 	int n;
1678 	u_int32_t v;
1679 
1680 #ifdef GEM_DEBUG_PHY
1681 	printf("gem_mii_writereg: phy %d reg %d val %x\n", phy, reg, val);
1682 #endif
1683 
1684 #if 0
1685 	/* Select the desired PHY in the MIF configuration register */
1686 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1687 	/* Clear PHY select bit */
1688 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1689 	if (phy == GEM_PHYAD_EXTERNAL)
1690 		/* Set PHY select bit to get at external device */
1691 		v |= GEM_MIF_CONFIG_PHY_SEL;
1692 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1693 #endif
1694 	/* Construct the frame command */
1695 	v = GEM_MIF_FRAME_WRITE			|
1696 	    (phy << GEM_MIF_PHY_SHIFT)		|
1697 	    (reg << GEM_MIF_REG_SHIFT)		|
1698 	    (val & GEM_MIF_FRAME_DATA);
1699 
1700 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1701 	for (n = 0; n < 100; n++) {
1702 		DELAY(1);
1703 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1704 		if (v & GEM_MIF_FRAME_TA0)
1705 			return (1);
1706 	}
1707 
1708 	device_printf(sc->sc_dev, "mii_write timeout\n");
1709 	return (0);
1710 }
1711 
1712 void
1713 gem_mii_statchg(dev)
1714 	device_t dev;
1715 {
1716 	struct gem_softc *sc = device_get_softc(dev);
1717 #ifdef GEM_DEBUG
1718 	int instance = IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media);
1719 #endif
1720 	bus_space_tag_t t = sc->sc_bustag;
1721 	bus_space_handle_t mac = sc->sc_h;
1722 	u_int32_t v;
1723 
1724 #ifdef GEM_DEBUG
1725 	if (sc->sc_debug)
1726 		printf("gem_mii_statchg: status change: phy = %d\n",
1727 			sc->sc_phys[instance]);
1728 #endif
1729 
1730 	/* Set tx full duplex options */
1731 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1732 	DELAY(10000); /* reg must be cleared and delay before changing. */
1733 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1734 		GEM_MAC_TX_ENABLE;
1735 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) {
1736 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1737 	}
1738 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1739 
1740 	/* XIF Configuration */
1741  /* We should really calculate all this rather than rely on defaults */
1742 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1743 	v = GEM_MAC_XIF_LINK_LED;
1744 	v |= GEM_MAC_XIF_TX_MII_ENA;
1745 
1746 	/* If an external transceiver is connected, enable its MII drivers */
1747 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1748 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1749 		/* External MII needs echo disable if half duplex. */
1750 		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
1751 			/* turn on full duplex LED */
1752 			v |= GEM_MAC_XIF_FDPLX_LED;
1753 		else
1754 	 		/* half duplex -- disable echo */
1755 	 		v |= GEM_MAC_XIF_ECHO_DISABL;
1756 
1757 		if (IFM_SUBTYPE(sc->sc_mii->mii_media_active) == IFM_1000_T)
1758 			v |= GEM_MAC_XIF_GMII_MODE;
1759 		else
1760 			v &= ~GEM_MAC_XIF_GMII_MODE;
1761 	} else {
1762 		/* Internal MII needs buf enable */
1763 		v |= GEM_MAC_XIF_MII_BUF_ENA;
1764 	}
1765 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1766 }
1767 
1768 int
1769 gem_mediachange(ifp)
1770 	struct ifnet *ifp;
1771 {
1772 	struct gem_softc *sc = ifp->if_softc;
1773 
1774 	/* XXX Add support for serial media. */
1775 
1776 	return (mii_mediachg(sc->sc_mii));
1777 }
1778 
1779 void
1780 gem_mediastatus(ifp, ifmr)
1781 	struct ifnet *ifp;
1782 	struct ifmediareq *ifmr;
1783 {
1784 	struct gem_softc *sc = ifp->if_softc;
1785 
1786 	if ((ifp->if_flags & IFF_UP) == 0)
1787 		return;
1788 
1789 	mii_pollstat(sc->sc_mii);
1790 	ifmr->ifm_active = sc->sc_mii->mii_media_active;
1791 	ifmr->ifm_status = sc->sc_mii->mii_media_status;
1792 }
1793 
1794 /*
1795  * Process an ioctl request.
1796  */
1797 static int
1798 gem_ioctl(ifp, cmd, data)
1799 	struct ifnet *ifp;
1800 	u_long cmd;
1801 	caddr_t data;
1802 {
1803 	struct gem_softc *sc = ifp->if_softc;
1804 	struct ifreq *ifr = (struct ifreq *)data;
1805 	int s, error = 0;
1806 
1807 	switch (cmd) {
1808 	case SIOCSIFADDR:
1809 	case SIOCGIFADDR:
1810 	case SIOCSIFMTU:
1811 		error = ether_ioctl(ifp, cmd, data);
1812 		break;
1813 	case SIOCSIFFLAGS:
1814 		if (ifp->if_flags & IFF_UP) {
1815 			if ((sc->sc_ifflags ^ ifp->if_flags) == IFF_PROMISC)
1816 				gem_setladrf(sc);
1817 			else
1818 				gem_init(sc);
1819 		} else {
1820 			if (ifp->if_flags & IFF_RUNNING)
1821 				gem_stop(ifp, 0);
1822 		}
1823 		sc->sc_ifflags = ifp->if_flags;
1824 		error = 0;
1825 		break;
1826 	case SIOCADDMULTI:
1827 	case SIOCDELMULTI:
1828 		gem_setladrf(sc);
1829 		error = 0;
1830 		break;
1831 	case SIOCGIFMEDIA:
1832 	case SIOCSIFMEDIA:
1833 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
1834 		break;
1835 	default:
1836 		error = ENOTTY;
1837 		break;
1838 	}
1839 
1840 	/* Try to get things going again */
1841 	if (ifp->if_flags & IFF_UP)
1842 		gem_start(ifp);
1843 	splx(s);
1844 	return (error);
1845 }
1846 
1847 /*
1848  * Set up the logical address filter.
1849  */
1850 static void
1851 gem_setladrf(sc)
1852 	struct gem_softc *sc;
1853 {
1854 	struct ifnet *ifp = sc->sc_ifp;
1855 	struct ifmultiaddr *inm;
1856 	bus_space_tag_t t = sc->sc_bustag;
1857 	bus_space_handle_t h = sc->sc_h;
1858 	u_int32_t crc;
1859 	u_int32_t hash[16];
1860 	u_int32_t v;
1861 	int i;
1862 
1863 	/* Get current RX configuration */
1864 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1865 
1866 	/*
1867 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
1868 	 * and hash filter.  Depending on the case, the right bit will be
1869 	 * enabled.
1870 	 */
1871 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
1872 	    GEM_MAC_RX_PROMISC_GRP);
1873 
1874 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1875 		/* Turn on promiscuous mode */
1876 		v |= GEM_MAC_RX_PROMISCUOUS;
1877 		goto chipit;
1878 	}
1879 	if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
1880 		hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1881 		ifp->if_flags |= IFF_ALLMULTI;
1882 		v |= GEM_MAC_RX_PROMISC_GRP;
1883 		goto chipit;
1884 	}
1885 
1886 	/*
1887 	 * Set up multicast address filter by passing all multicast addresses
1888 	 * through a crc generator, and then using the high order 8 bits as an
1889 	 * index into the 256 bit logical address filter.  The high order 4
1890 	 * bits selects the word, while the other 4 bits select the bit within
1891 	 * the word (where bit 0 is the MSB).
1892 	 */
1893 
1894 	/* Clear hash table */
1895 	memset(hash, 0, sizeof(hash));
1896 
1897 	TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) {
1898 		if (inm->ifma_addr->sa_family != AF_LINK)
1899 			continue;
1900 		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1901 		    inm->ifma_addr), ETHER_ADDR_LEN);
1902 
1903 		/* Just want the 8 most significant bits. */
1904 		crc >>= 24;
1905 
1906 		/* Set the corresponding bit in the filter. */
1907 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
1908 	}
1909 
1910 	v |= GEM_MAC_RX_HASH_FILTER;
1911 	ifp->if_flags &= ~IFF_ALLMULTI;
1912 
1913 	/* Now load the hash table into the chip (if we are using it) */
1914 	for (i = 0; i < 16; i++) {
1915 		bus_space_write_4(t, h,
1916 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
1917 		    hash[i]);
1918 	}
1919 
1920 chipit:
1921 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1922 }
1923