xref: /freebsd/sys/dev/gem/if_gem.c (revision c4f6a2a9e1b1879b618c436ab4f56ff75c73a0f5)
1 /*
2  * Copyright (C) 2001 Eduardo Horvath.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  *	from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Driver for Sun GEM ethernet controllers.
33  */
34 
35 #define	GEM_DEBUG
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/callout.h>
41 #include <sys/endian.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 
48 #include <net/ethernet.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 
54 #include <machine/bus.h>
55 
56 #include <dev/mii/mii.h>
57 #include <dev/mii/miivar.h>
58 
59 #include <gem/if_gemreg.h>
60 #include <gem/if_gemvar.h>
61 
62 #define TRIES	10000
63 
64 static void	gem_start(struct ifnet *);
65 static void	gem_stop(struct ifnet *, int);
66 static int	gem_ioctl(struct ifnet *, u_long, caddr_t);
67 static void	gem_cddma_callback(void *, bus_dma_segment_t *, int, int);
68 static void	gem_rxdma_callback(void *, bus_dma_segment_t *, int, int);
69 static void	gem_txdma_callback(void *, bus_dma_segment_t *, int, int);
70 static void	gem_tick(void *);
71 static void	gem_watchdog(struct ifnet *);
72 static void	gem_init(void *);
73 static void	gem_init_regs(struct gem_softc *sc);
74 static int	gem_ringsize(int sz);
75 static int	gem_meminit(struct gem_softc *);
76 static int	gem_dmamap_load_mbuf(struct gem_softc *, struct mbuf *,
77     bus_dmamap_callback_t *,  struct gem_txjob *, int);
78 static void	gem_dmamap_unload_mbuf(struct gem_softc *, struct gem_txjob *);
79 static void	gem_dmamap_commit_mbuf(struct gem_softc *, struct gem_txjob *);
80 static void	gem_mifinit(struct gem_softc *);
81 static int	gem_bitwait(struct gem_softc *sc, bus_addr_t r,
82     u_int32_t clr, u_int32_t set);
83 static int	gem_reset_rx(struct gem_softc *);
84 static int	gem_reset_tx(struct gem_softc *);
85 static int	gem_disable_rx(struct gem_softc *);
86 static int	gem_disable_tx(struct gem_softc *);
87 static void	gem_rxdrain(struct gem_softc *);
88 static int	gem_add_rxbuf(struct gem_softc *, int);
89 static void	gem_setladrf(struct gem_softc *);
90 
91 struct mbuf	*gem_get(struct gem_softc *, int, int);
92 static void	gem_eint(struct gem_softc *, u_int);
93 static void	gem_rint(struct gem_softc *);
94 #if 0
95 static void	gem_rint_timeout(void *);
96 #endif
97 static void	gem_tint(struct gem_softc *);
98 #ifdef notyet
99 static void	gem_power(int, void *);
100 #endif
101 
102 devclass_t gem_devclass;
103 DRIVER_MODULE(miibus, gem, miibus_driver, miibus_devclass, 0, 0);
104 MODULE_DEPEND(gem, miibus, 1, 1, 1);
105 
106 #ifdef GEM_DEBUG
107 #define	DPRINTF(sc, x)	if ((sc)->sc_arpcom.ac_if.if_flags & IFF_DEBUG) \
108 				printf x
109 #include <sys/ktr.h>
110 #define	KTR_GEM		KTR_CT2
111 #else
112 #define	DPRINTF(sc, x)	/* nothing */
113 #endif
114 
115 #define	GEM_NSEGS GEM_NTXSEGS
116 
117 /*
118  * gem_attach:
119  *
120  *	Attach a Gem interface to the system.
121  */
122 int
123 gem_attach(sc)
124 	struct gem_softc *sc;
125 {
126 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
127 	struct mii_softc *child;
128 	int i, error;
129 	u_int32_t v;
130 
131 	/* Make sure the chip is stopped. */
132 	ifp->if_softc = sc;
133 	gem_reset(sc);
134 
135 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
136 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, GEM_NSEGS,
137 	    BUS_SPACE_MAXSIZE_32BIT, 0, &sc->sc_pdmatag);
138 	if (error)
139 		return (error);
140 
141 	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
142 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MAXBSIZE,
143 	    GEM_NSEGS, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW,
144 	    &sc->sc_dmatag);
145 	if (error)
146 		goto fail_0;
147 
148 	error = bus_dma_tag_create(sc->sc_pdmatag, PAGE_SIZE, 0,
149 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
150 	    sizeof(struct gem_control_data), 1,
151 	    sizeof(struct gem_control_data), BUS_DMA_ALLOCNOW,
152 	    &sc->sc_cdmatag);
153 	if (error)
154 		goto fail_1;
155 
156 	/*
157 	 * Allocate the control data structures, and create and load the
158 	 * DMA map for it.
159 	 */
160 	if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
161 	    (void **)&sc->sc_control_data, 0, &sc->sc_cddmamap))) {
162 		device_printf(sc->sc_dev, "unable to allocate control data,"
163 		    " error = %d\n", error);
164 		goto fail_2;
165 	}
166 
167 	sc->sc_cddma = 0;
168 	if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
169 	    sc->sc_control_data, sizeof(struct gem_control_data),
170 	    gem_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
171 		device_printf(sc->sc_dev, "unable to load control data DMA "
172 		    "map, error = %d\n", error);
173 		goto fail_3;
174 	}
175 
176 	/*
177 	 * Initialize the transmit job descriptors.
178 	 */
179 	STAILQ_INIT(&sc->sc_txfreeq);
180 	STAILQ_INIT(&sc->sc_txdirtyq);
181 
182 	/*
183 	 * Create the transmit buffer DMA maps.
184 	 */
185 	error = ENOMEM;
186 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
187 		struct gem_txsoft *txs;
188 
189 		txs = &sc->sc_txsoft[i];
190 		txs->txs_mbuf = NULL;
191 		txs->txs_ndescs = 0;
192 		if ((error = bus_dmamap_create(sc->sc_dmatag, 0,
193 		    &txs->txs_dmamap)) != 0) {
194 			device_printf(sc->sc_dev, "unable to create tx DMA map "
195 			    "%d, error = %d\n", i, error);
196 			goto fail_4;
197 		}
198 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
199 	}
200 
201 	/*
202 	 * Create the receive buffer DMA maps.
203 	 */
204 	for (i = 0; i < GEM_NRXDESC; i++) {
205 		if ((error = bus_dmamap_create(sc->sc_dmatag, 0,
206 		    &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
207 			device_printf(sc->sc_dev, "unable to create rx DMA map "
208 			    "%d, error = %d\n", i, error);
209 			goto fail_5;
210 		}
211 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
212 	}
213 
214 
215 	gem_mifinit(sc);
216 
217 	if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, gem_mediachange,
218 	    gem_mediastatus)) != 0) {
219 		device_printf(sc->sc_dev, "phy probe failed: %d\n", error);
220 		goto fail_5;
221 	}
222 	sc->sc_mii = device_get_softc(sc->sc_miibus);
223 
224 	/*
225 	 * From this point forward, the attachment cannot fail.  A failure
226 	 * before this point releases all resources that may have been
227 	 * allocated.
228 	 */
229 
230 	/* Announce ourselves. */
231 	device_printf(sc->sc_dev, "Ethernet address:");
232 	for (i = 0; i < 6; i++)
233 		printf("%c%02x", i > 0 ? ':' : ' ', sc->sc_arpcom.ac_enaddr[i]);
234 
235 	/* Get RX FIFO size */
236 	sc->sc_rxfifosize = 64 *
237 	    bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
238 	printf(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
239 
240 	/* Get TX FIFO size */
241 	v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
242 	printf(", %uKB TX fifo\n", v / 16);
243 
244 	/* Initialize ifnet structure. */
245 	ifp->if_softc = sc;
246 	ifp->if_unit = device_get_unit(sc->sc_dev);
247 	ifp->if_name = "gem";
248 	ifp->if_mtu = ETHERMTU;
249 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
250 	ifp->if_start = gem_start;
251 	ifp->if_ioctl = gem_ioctl;
252 	ifp->if_watchdog = gem_watchdog;
253 	ifp->if_init = gem_init;
254 	ifp->if_output = ether_output;
255 	ifp->if_snd.ifq_maxlen = GEM_TXQUEUELEN;
256 	/*
257 	 * Walk along the list of attached MII devices and
258 	 * establish an `MII instance' to `phy number'
259 	 * mapping. We'll use this mapping in media change
260 	 * requests to determine which phy to use to program
261 	 * the MIF configuration register.
262 	 */
263 	for (child = LIST_FIRST(&sc->sc_mii->mii_phys); child != NULL;
264 	     child = LIST_NEXT(child, mii_list)) {
265 		/*
266 		 * Note: we support just two PHYs: the built-in
267 		 * internal device and an external on the MII
268 		 * connector.
269 		 */
270 		if (child->mii_phy > 1 || child->mii_inst > 1) {
271 			device_printf(sc->sc_dev, "cannot accomodate "
272 			    "MII device %s at phy %d, instance %d\n",
273 			    device_get_name(child->mii_dev),
274 			    child->mii_phy, child->mii_inst);
275 			continue;
276 		}
277 
278 		sc->sc_phys[child->mii_inst] = child->mii_phy;
279 	}
280 
281 	/*
282 	 * Now select and activate the PHY we will use.
283 	 *
284 	 * The order of preference is External (MDI1),
285 	 * Internal (MDI0), Serial Link (no MII).
286 	 */
287 	if (sc->sc_phys[1]) {
288 #ifdef GEM_DEBUG
289 		printf("using external phy\n");
290 #endif
291 		sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
292 	} else {
293 #ifdef GEM_DEBUG
294 		printf("using internal phy\n");
295 #endif
296 		sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
297 	}
298 	bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
299 	    sc->sc_mif_config);
300 	/* Attach the interface. */
301 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
302 
303 #if notyet
304 	/*
305 	 * Add a suspend hook to make sure we come back up after a
306 	 * resume.
307 	 */
308 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
309 	if (sc->sc_powerhook == NULL)
310 		device_printf(sc->sc_dev, "WARNING: unable to establish power "
311 		    "hook\n");
312 #endif
313 
314 	callout_init(&sc->sc_tick_ch, 0);
315 	callout_init(&sc->sc_rx_ch, 0);
316 	return (0);
317 
318 	/*
319 	 * Free any resources we've allocated during the failed attach
320 	 * attempt.  Do this in reverse order and fall through.
321 	 */
322 fail_5:
323 	for (i = 0; i < GEM_NRXDESC; i++) {
324 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
325 			bus_dmamap_destroy(sc->sc_dmatag,
326 			    sc->sc_rxsoft[i].rxs_dmamap);
327 	}
328 fail_4:
329 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
330 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
331 			bus_dmamap_destroy(sc->sc_dmatag,
332 			    sc->sc_txsoft[i].txs_dmamap);
333 	}
334 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
335 fail_3:
336 	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
337 	    sc->sc_cddmamap);
338 fail_2:
339 	bus_dma_tag_destroy(sc->sc_cdmatag);
340 fail_1:
341 	bus_dma_tag_destroy(sc->sc_dmatag);
342 fail_0:
343 	bus_dma_tag_destroy(sc->sc_pdmatag);
344 	return (error);
345 }
346 
347 static void
348 gem_cddma_callback(xsc, segs, nsegs, error)
349 	void *xsc;
350 	bus_dma_segment_t *segs;
351 	int nsegs;
352 	int error;
353 {
354 	struct gem_softc *sc = (struct gem_softc *)xsc;
355 
356 	if (error != 0)
357 		return;
358 	if (nsegs != 1) {
359 		/* can't happen... */
360 		panic("gem_cddma_callback: bad control buffer segment count");
361 	}
362 	sc->sc_cddma = segs[0].ds_addr;
363 }
364 
365 static void
366 gem_rxdma_callback(xsc, segs, nsegs, error)
367 	void *xsc;
368 	bus_dma_segment_t *segs;
369 	int nsegs;
370 	int error;
371 {
372 	struct gem_rxsoft *rxs = (struct gem_rxsoft *)xsc;
373 
374 	if (error != 0)
375 		return;
376 	if (nsegs != 1) {
377 		/* can't happen... */
378 		panic("gem_rxdma_callback: bad control buffer segment count");
379 	}
380 	rxs->rxs_paddr = segs[0].ds_addr;
381 }
382 
383 /*
384  * This is called multiple times in our version of dmamap_load_mbuf, but should
385  * be fit for a generic version that only calls it once.
386  */
387 static void
388 gem_txdma_callback(xsc, segs, nsegs, error)
389 	void *xsc;
390 	bus_dma_segment_t *segs;
391 	int nsegs;
392 	int error;
393 {
394 	struct gem_txdma *tx = (struct gem_txdma *)xsc;
395 	int seg;
396 
397 	tx->txd_error = error;
398 	if (error != 0)
399 		return;
400 	tx->txd_nsegs = nsegs;
401 
402 	/*
403 	 * Initialize the transmit descriptors.
404 	 */
405 	for (seg = 0; seg < nsegs;
406 	     seg++, tx->txd_nexttx = GEM_NEXTTX(tx->txd_nexttx)) {
407 		uint64_t flags;
408 
409 		DPRINTF(tx->txd_sc, ("txdma_cb: mapping seg %d (txd %d), len "
410 		    "%lx, addr %#lx (%#lx)\n",  seg, tx->txd_nexttx,
411 		    segs[seg].ds_len, segs[seg].ds_addr,
412 		    GEM_DMA_WRITE(tx->txd_sc, segs[seg].ds_addr)));
413 		CTR5(KTR_GEM, "txdma_cb: mapping seg %d (txd %d), len "
414 		    "%lx, addr %#lx (%#lx)",  seg, tx->txd_nexttx,
415 		    segs[seg].ds_len, segs[seg].ds_addr,
416 		    GEM_DMA_WRITE(tx->txd_sc, segs[seg].ds_addr));
417 		/*
418 		 * If this is the first descriptor we're
419 		 * enqueueing, set the start of packet flag,
420 		 * and the checksum stuff if we want the hardware
421 		 * to do it.
422 		 */
423 		tx->txd_sc->sc_txdescs[tx->txd_nexttx].gd_addr =
424 		    GEM_DMA_WRITE(tx->txd_sc, segs[seg].ds_addr);
425 		flags = segs[seg].ds_len & GEM_TD_BUFSIZE;
426 		if ((tx->txd_flags & GTXD_FIRST) != 0 && seg == 0) {
427 			CTR2(KTR_GEM, "txdma_cb: start of packet at seg %d, "
428 			    "tx %d", seg, tx->txd_nexttx);
429 			flags |= GEM_TD_START_OF_PACKET;
430 			if (++tx->txd_sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
431 				tx->txd_sc->sc_txwin = 0;
432 				flags |= GEM_TD_INTERRUPT_ME;
433 			}
434 		}
435 		if ((tx->txd_flags & GTXD_LAST) != 0 && seg == nsegs - 1) {
436 			CTR2(KTR_GEM, "txdma_cb: end of packet at seg %d, "
437 			    "tx %d", seg, tx->txd_nexttx);
438 			flags |= GEM_TD_END_OF_PACKET;
439 		}
440 		tx->txd_sc->sc_txdescs[tx->txd_nexttx].gd_flags =
441 		    GEM_DMA_WRITE(tx->txd_sc, flags);
442 		tx->txd_lasttx = tx->txd_nexttx;
443 	}
444 }
445 
446 static void
447 gem_tick(arg)
448 	void *arg;
449 {
450 	struct gem_softc *sc = arg;
451 	int s;
452 
453 	s = splnet();
454 	mii_tick(sc->sc_mii);
455 	splx(s);
456 
457 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
458 }
459 
460 static int
461 gem_bitwait(sc, r, clr, set)
462 	struct gem_softc *sc;
463 	bus_addr_t r;
464 	u_int32_t clr;
465 	u_int32_t set;
466 {
467 	int i;
468 	u_int32_t reg;
469 
470 	for (i = TRIES; i--; DELAY(100)) {
471 		reg = bus_space_read_4(sc->sc_bustag, sc->sc_h, r);
472 		if ((r & clr) == 0 && (r & set) == set)
473 			return (1);
474 	}
475 	return (0);
476 }
477 
478 void
479 gem_reset(sc)
480 	struct gem_softc *sc;
481 {
482 	bus_space_tag_t t = sc->sc_bustag;
483 	bus_space_handle_t h = sc->sc_h;
484 	int s;
485 
486 	s = splnet();
487 	DPRINTF(sc, ("%s: gem_reset\n", device_get_name(sc->sc_dev)));
488 	CTR1(KTR_GEM, "%s: gem_reset", device_get_name(sc->sc_dev));
489 	gem_reset_rx(sc);
490 	gem_reset_tx(sc);
491 
492 	/* Do a full reset */
493 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
494 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
495 		device_printf(sc->sc_dev, "cannot reset device\n");
496 	splx(s);
497 }
498 
499 
500 /*
501  * gem_rxdrain:
502  *
503  *	Drain the receive queue.
504  */
505 static void
506 gem_rxdrain(sc)
507 	struct gem_softc *sc;
508 {
509 	struct gem_rxsoft *rxs;
510 	int i;
511 
512 	for (i = 0; i < GEM_NRXDESC; i++) {
513 		rxs = &sc->sc_rxsoft[i];
514 		if (rxs->rxs_mbuf != NULL) {
515 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
516 			m_freem(rxs->rxs_mbuf);
517 			rxs->rxs_mbuf = NULL;
518 		}
519 	}
520 }
521 
522 /*
523  * Reset the whole thing.
524  */
525 static void
526 gem_stop(ifp, disable)
527 	struct ifnet *ifp;
528 	int disable;
529 {
530 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
531 	struct gem_txsoft *txs;
532 
533 	DPRINTF(sc, ("%s: gem_stop\n", device_get_name(sc->sc_dev)));
534 	CTR1(KTR_GEM, "%s: gem_stop", device_get_name(sc->sc_dev));
535 
536 	callout_stop(&sc->sc_tick_ch);
537 
538 	/* XXX - Should we reset these instead? */
539 	gem_disable_tx(sc);
540 	gem_disable_rx(sc);
541 
542 	/*
543 	 * Release any queued transmit buffers.
544 	 */
545 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
546 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
547 		if (txs->txs_ndescs != 0) {
548 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
549 			if (txs->txs_mbuf != NULL) {
550 				m_freem(txs->txs_mbuf);
551 				txs->txs_mbuf = NULL;
552 			}
553 		}
554 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
555 	}
556 
557 	if (disable)
558 		gem_rxdrain(sc);
559 
560 	/*
561 	 * Mark the interface down and cancel the watchdog timer.
562 	 */
563 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
564 	ifp->if_timer = 0;
565 }
566 
567 /*
568  * Reset the receiver
569  */
570 int
571 gem_reset_rx(sc)
572 	struct gem_softc *sc;
573 {
574 	bus_space_tag_t t = sc->sc_bustag;
575 	bus_space_handle_t h = sc->sc_h;
576 
577 	/*
578 	 * Resetting while DMA is in progress can cause a bus hang, so we
579 	 * disable DMA first.
580 	 */
581 	gem_disable_rx(sc);
582 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
583 	/* Wait till it finishes */
584 	if (!gem_bitwait(sc, GEM_RX_CONFIG, 1, 0))
585 		device_printf(sc->sc_dev, "cannot disable read dma\n");
586 
587 	/* Wait 5ms extra. */
588 	DELAY(5000);
589 
590 	/* Finally, reset the ERX */
591 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
592 	/* Wait till it finishes */
593 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
594 		device_printf(sc->sc_dev, "cannot reset receiver\n");
595 		return (1);
596 	}
597 	return (0);
598 }
599 
600 
601 /*
602  * Reset the transmitter
603  */
604 static int
605 gem_reset_tx(sc)
606 	struct gem_softc *sc;
607 {
608 	bus_space_tag_t t = sc->sc_bustag;
609 	bus_space_handle_t h = sc->sc_h;
610 	int i;
611 
612 	/*
613 	 * Resetting while DMA is in progress can cause a bus hang, so we
614 	 * disable DMA first.
615 	 */
616 	gem_disable_tx(sc);
617 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
618 	/* Wait till it finishes */
619 	if (!gem_bitwait(sc, GEM_TX_CONFIG, 1, 0))
620 		device_printf(sc->sc_dev, "cannot disable read dma\n");
621 
622 	/* Wait 5ms extra. */
623 	DELAY(5000);
624 
625 	/* Finally, reset the ETX */
626 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
627 	/* Wait till it finishes */
628 	for (i = TRIES; i--; DELAY(100))
629 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
630 			break;
631 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
632 		device_printf(sc->sc_dev, "cannot reset receiver\n");
633 		return (1);
634 	}
635 	return (0);
636 }
637 
638 /*
639  * disable receiver.
640  */
641 static int
642 gem_disable_rx(sc)
643 	struct gem_softc *sc;
644 {
645 	bus_space_tag_t t = sc->sc_bustag;
646 	bus_space_handle_t h = sc->sc_h;
647 	u_int32_t cfg;
648 
649 	/* Flip the enable bit */
650 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
651 	cfg &= ~GEM_MAC_RX_ENABLE;
652 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
653 
654 	/* Wait for it to finish */
655 	return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
656 }
657 
658 /*
659  * disable transmitter.
660  */
661 static int
662 gem_disable_tx(sc)
663 	struct gem_softc *sc;
664 {
665 	bus_space_tag_t t = sc->sc_bustag;
666 	bus_space_handle_t h = sc->sc_h;
667 	u_int32_t cfg;
668 
669 	/* Flip the enable bit */
670 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
671 	cfg &= ~GEM_MAC_TX_ENABLE;
672 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
673 
674 	/* Wait for it to finish */
675 	return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
676 }
677 
678 /*
679  * Initialize interface.
680  */
681 static int
682 gem_meminit(sc)
683 	struct gem_softc *sc;
684 {
685 	struct gem_rxsoft *rxs;
686 	int i, error;
687 
688 	/*
689 	 * Initialize the transmit descriptor ring.
690 	 */
691 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
692 	for (i = 0; i < GEM_NTXDESC; i++) {
693 		sc->sc_txdescs[i].gd_flags = 0;
694 		sc->sc_txdescs[i].gd_addr = 0;
695 	}
696 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
697 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
698 	sc->sc_txfree = GEM_NTXDESC-1;
699 	sc->sc_txnext = 0;
700 	sc->sc_txwin = 0;
701 
702 	/*
703 	 * Initialize the receive descriptor and receive job
704 	 * descriptor rings.
705 	 */
706 	for (i = 0; i < GEM_NRXDESC; i++) {
707 		rxs = &sc->sc_rxsoft[i];
708 		if (rxs->rxs_mbuf == NULL) {
709 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
710 				device_printf(sc->sc_dev, "unable to "
711 				    "allocate or map rx buffer %d, error = "
712 				    "%d\n", i, error);
713 				/*
714 				 * XXX Should attempt to run with fewer receive
715 				 * XXX buffers instead of just failing.
716 				 */
717 				gem_rxdrain(sc);
718 				return (1);
719 			}
720 		} else
721 			GEM_INIT_RXDESC(sc, i);
722 	}
723 	sc->sc_rxptr = 0;
724 
725 	return (0);
726 }
727 
728 static int
729 gem_ringsize(sz)
730 	int sz;
731 {
732 	int v = 0;
733 
734 	switch (sz) {
735 	case 32:
736 		v = GEM_RING_SZ_32;
737 		break;
738 	case 64:
739 		v = GEM_RING_SZ_64;
740 		break;
741 	case 128:
742 		v = GEM_RING_SZ_128;
743 		break;
744 	case 256:
745 		v = GEM_RING_SZ_256;
746 		break;
747 	case 512:
748 		v = GEM_RING_SZ_512;
749 		break;
750 	case 1024:
751 		v = GEM_RING_SZ_1024;
752 		break;
753 	case 2048:
754 		v = GEM_RING_SZ_2048;
755 		break;
756 	case 4096:
757 		v = GEM_RING_SZ_4096;
758 		break;
759 	case 8192:
760 		v = GEM_RING_SZ_8192;
761 		break;
762 	default:
763 		printf("gem: invalid Receive Descriptor ring size\n");
764 		break;
765 	}
766 	return (v);
767 }
768 
769 /*
770  * Initialization of interface; set up initialization block
771  * and transmit/receive descriptor rings.
772  */
773 static void
774 gem_init(xsc)
775 	void *xsc;
776 {
777 	struct gem_softc *sc = (struct gem_softc *)xsc;
778 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
779 	bus_space_tag_t t = sc->sc_bustag;
780 	bus_space_handle_t h = sc->sc_h;
781 	int s;
782 	u_int32_t v;
783 
784 	s = splnet();
785 
786 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_get_name(sc->sc_dev)));
787 	CTR1(KTR_GEM, "%s: gem_init: calling stop", device_get_name(sc->sc_dev));
788 	/*
789 	 * Initialization sequence. The numbered steps below correspond
790 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
791 	 * Channel Engine manual (part of the PCIO manual).
792 	 * See also the STP2002-STQ document from Sun Microsystems.
793 	 */
794 
795 	/* step 1 & 2. Reset the Ethernet Channel */
796 	gem_stop(&sc->sc_arpcom.ac_if, 0);
797 	gem_reset(sc);
798 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_get_name(sc->sc_dev)));
799 	CTR1(KTR_GEM, "%s: gem_init: restarting", device_get_name(sc->sc_dev));
800 
801 	/* Re-initialize the MIF */
802 	gem_mifinit(sc);
803 
804 	/* Call MI reset function if any */
805 	if (sc->sc_hwreset)
806 		(*sc->sc_hwreset)(sc);
807 
808 	/* step 3. Setup data structures in host memory */
809 	gem_meminit(sc);
810 
811 	/* step 4. TX MAC registers & counters */
812 	gem_init_regs(sc);
813 	/* XXX: VLAN code from NetBSD temporarily removed. */
814 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
815             (ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
816 
817 	/* step 5. RX MAC registers & counters */
818 	gem_setladrf(sc);
819 
820 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
821 	/* NOTE: we use only 32-bit DMA addresses here. */
822 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
823 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
824 
825 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
826 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
827 	DPRINTF(sc, ("loading rx ring %lx, tx ring %lx, cddma %lx\n",
828 	    GEM_CDRXADDR(sc, 0), GEM_CDTXADDR(sc, 0), sc->sc_cddma));
829 	CTR3(KTR_GEM, "loading rx ring %lx, tx ring %lx, cddma %lx",
830 	    GEM_CDRXADDR(sc, 0), GEM_CDTXADDR(sc, 0), sc->sc_cddma);
831 
832 	/* step 8. Global Configuration & Interrupt Mask */
833 	bus_space_write_4(t, h, GEM_INTMASK,
834 		      ~(GEM_INTR_TX_INTME|
835 			GEM_INTR_TX_EMPTY|
836 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
837 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
838 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
839 			GEM_INTR_BERR));
840 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
841 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
842 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
843 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
844 
845 	/* step 9. ETX Configuration: use mostly default values */
846 
847 	/* Enable DMA */
848 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
849 	bus_space_write_4(t, h, GEM_TX_CONFIG,
850 		v|GEM_TX_CONFIG_TXDMA_EN|
851 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
852 
853 	/* step 10. ERX Configuration */
854 
855 	/* Encode Receive Descriptor ring size: four possible values */
856 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
857 
858 	/* Enable DMA */
859 	bus_space_write_4(t, h, GEM_RX_CONFIG,
860 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
861 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
862 		(0<<GEM_RX_CONFIG_CXM_START_SHFT));
863 	/*
864 	 * The following value is for an OFF Threshold of about 3/4 full
865 	 * and an ON Threshold of 1/4 full.
866 	 */
867 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
868 	    (3 * sc->sc_rxfifosize / 256) |
869 	    (   (sc->sc_rxfifosize / 256) << 12));
870 	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
871 
872 	/* step 11. Configure Media */
873 	mii_mediachg(sc->sc_mii);
874 
875 	/* step 12. RX_MAC Configuration Register */
876 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
877 	v |= GEM_MAC_RX_ENABLE;
878 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
879 
880 	/* step 14. Issue Transmit Pending command */
881 
882 	/* Call MI initialization function if any */
883 	if (sc->sc_hwinit)
884 		(*sc->sc_hwinit)(sc);
885 
886 	/* step 15.  Give the reciever a swift kick */
887 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
888 
889 	/* Start the one second timer. */
890 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
891 
892 	ifp->if_flags |= IFF_RUNNING;
893 	ifp->if_flags &= ~IFF_OACTIVE;
894 	ifp->if_timer = 0;
895 	sc->sc_ifflags = ifp->if_flags;
896 	splx(s);
897 }
898 
899 /*
900  * XXX: This is really a substitute for bus_dmamap_load_mbuf(), which FreeBSD
901  * does not yet have, with some adaptions for this driver.
902  * Some changes are mandated by the fact that multiple maps may needed to map
903  * a single mbuf.
904  * It should be removed once generic support is available.
905  *
906  * This is derived from NetBSD (syssrc/sys/arch/sparc64/sparc64/machdep.c), for
907  * a copyright notice see sparc64/sparc64/bus_machdep.c.
908  *
909  * Not every error condition is passed to the callback in this version, and the
910  * callback may be called more than once.
911  * It also gropes in the entails of the callback arg...
912  */
913 static int
914 gem_dmamap_load_mbuf(sc, m0, cb, txj, flags)
915 	struct gem_softc *sc;
916 	struct mbuf *m0;
917 	bus_dmamap_callback_t *cb;
918 	struct gem_txjob *txj;
919 	int flags;
920 {
921 	struct gem_txdma txd;
922 	struct gem_txsoft *txs;
923 	struct mbuf *m;
924 	void  *vaddr;
925 	int error, first = 1, len, totlen;
926 
927 	if ((m0->m_flags & M_PKTHDR) == 0)
928 		panic("gem_dmamap_load_mbuf: no packet header");
929 	totlen = m0->m_pkthdr.len;
930 	len = 0;
931 	txd.txd_sc = sc;
932 	txd.txd_nexttx = txj->txj_nexttx;
933 	txj->txj_nsegs = 0;
934 	STAILQ_INIT(&txj->txj_txsq);
935 	m = m0;
936 	while (m != NULL && len < totlen) {
937 		if (m->m_len == 0)
938 			continue;
939 		/* Get a work queue entry. */
940 		if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
941 			/*
942 			 * Ran out of descriptors, return a value that
943 			 * cannot be returned by bus_dmamap_load to notify
944 			 * the caller.
945 			 */
946 			error = -1;
947 			goto fail;
948 		}
949 		len += m->m_len;
950 		txd.txd_flags = first ? GTXD_FIRST : 0;
951 		if (m->m_next == NULL || len >= totlen)
952 			txd.txd_flags |= GTXD_LAST;
953 		vaddr = mtod(m, void *);
954 		error = bus_dmamap_load(sc->sc_dmatag, txs->txs_dmamap, vaddr,
955 		    m->m_len, cb, &txd, flags);
956 		if (error != 0 || txd.txd_error != 0)
957 			goto fail;
958 		/* Sync the DMA map. */
959 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
960 		    BUS_DMASYNC_PREWRITE);
961 		m = m->m_next;
962 		/*
963 		 * Store a pointer to the packet so we can free it later,
964 		 * and remember what txdirty will be once the packet is
965 		 * done.
966 		 */
967 		txs->txs_mbuf = first ? m0 : NULL;
968 		txs->txs_firstdesc = txj->txj_nexttx;
969 		txs->txs_lastdesc = txd.txd_lasttx;
970 		txs->txs_ndescs = txd.txd_nsegs;
971 		CTR3(KTR_GEM, "load_mbuf: setting firstdesc=%d, lastdesc=%d, "
972 		    "ndescs=%d", txs->txs_firstdesc, txs->txs_lastdesc,
973 		    txs->txs_ndescs);
974 		STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
975 		STAILQ_INSERT_TAIL(&txj->txj_txsq, txs, txs_q);
976 		txj->txj_nexttx = txd.txd_nexttx;
977 		txj->txj_nsegs += txd.txd_nsegs;
978 		first = 0;
979 	}
980 	txj->txj_lasttx = txd.txd_lasttx;
981 	return (0);
982 
983 fail:
984 	CTR1(KTR_GEM, "gem_dmamap_load_mbuf failed (%d)", error);
985 	gem_dmamap_unload_mbuf(sc, txj);
986 	return (error);
987 }
988 
989 /*
990  * Unload an mbuf using the txd the information was placed in.
991  * The tx interrupt code frees the tx segments one by one, because the txd is
992  * not available any more.
993  */
994 static void
995 gem_dmamap_unload_mbuf(sc, txj)
996 	struct gem_softc *sc;
997 	struct gem_txjob *txj;
998 {
999 	struct gem_txsoft *txs;
1000 
1001 	/* Readd the removed descriptors and unload the segments. */
1002 	while ((txs = STAILQ_FIRST(&txj->txj_txsq)) != NULL) {
1003 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1004 		STAILQ_REMOVE_HEAD(&txj->txj_txsq, txs_q);
1005 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1006 	}
1007 }
1008 
1009 static void
1010 gem_dmamap_commit_mbuf(sc, txj)
1011 	struct gem_softc *sc;
1012 	struct gem_txjob *txj;
1013 {
1014 	struct gem_txsoft *txs;
1015 
1016 	/* Commit the txjob by transfering the txsoft's to the txdirtyq. */
1017 	while ((txs = STAILQ_FIRST(&txj->txj_txsq)) != NULL) {
1018 		STAILQ_REMOVE_HEAD(&txj->txj_txsq, txs_q);
1019 		STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1020 	}
1021 }
1022 
1023 static void
1024 gem_init_regs(sc)
1025 	struct gem_softc *sc;
1026 {
1027 	bus_space_tag_t t = sc->sc_bustag;
1028 	bus_space_handle_t h = sc->sc_h;
1029 	const u_char *laddr = sc->sc_arpcom.ac_enaddr;
1030 	u_int32_t v;
1031 
1032 	/* These regs are not cleared on reset */
1033 	if (!sc->sc_inited) {
1034 
1035 		/* Wooo.  Magic values. */
1036 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
1037 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
1038 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
1039 
1040 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1041 		/* Max frame and max burst size */
1042 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1043 		    ETHER_MAX_LEN | (0x2000<<16));
1044 
1045 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
1046 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
1047 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1048 		/* Dunno.... */
1049 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1050 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1051 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1052 
1053 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1054 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1055 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1056 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1057 
1058 		/* MAC control addr set to 01:80:c2:00:00:01 */
1059 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1060 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1061 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1062 
1063 		/* MAC filter addr set to 0:0:0:0:0:0 */
1064 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1065 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1066 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1067 
1068 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1069 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1070 
1071 		sc->sc_inited = 1;
1072 	}
1073 
1074 	/* Counters need to be zeroed */
1075 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1076 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1077 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1078 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1079 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1080 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1081 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1082 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1083 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1084 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1085 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1086 
1087 	/* Un-pause stuff */
1088 #if 0
1089 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1090 #else
1091 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
1092 #endif
1093 
1094 	/*
1095 	 * Set the station address.
1096 	 */
1097 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1098 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1099 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1100 
1101 	/*
1102 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1103 	 */
1104 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1105 	v = GEM_MAC_XIF_TX_MII_ENA;
1106 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1107 		v |= GEM_MAC_XIF_FDPLX_LED;
1108 		if (sc->sc_flags & GEM_GIGABIT)
1109 			v |= GEM_MAC_XIF_GMII_MODE;
1110 	}
1111 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1112 }
1113 
1114 static void
1115 gem_start(ifp)
1116 	struct ifnet *ifp;
1117 {
1118 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1119 	struct mbuf *m0 = NULL, *m;
1120 	struct gem_txjob txj;
1121 	int firsttx, ofree, seg, ntx, txmfail;
1122 
1123 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1124 		return;
1125 
1126 	/*
1127 	 * Remember the previous number of free descriptors and
1128 	 * the first descriptor we'll use.
1129 	 */
1130 	ofree = sc->sc_txfree;
1131 	firsttx = sc->sc_txnext;
1132 
1133 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1134 	    device_get_name(sc->sc_dev), ofree, firsttx));
1135 	CTR3(KTR_GEM, "%s: gem_start: txfree %d, txnext %d",
1136 	    device_get_name(sc->sc_dev), ofree, firsttx);
1137 
1138 	txj.txj_nexttx = firsttx;
1139 	txj.txj_lasttx = 0;
1140 	/*
1141 	 * Loop through the send queue, setting up transmit descriptors
1142 	 * until we drain the queue, or use up all available transmit
1143 	 * descriptors.
1144 	 */
1145 	txmfail = 0;
1146 	for (ntx = 0;; ntx++) {
1147 		/*
1148 		 * Grab a packet off the queue.
1149 		 */
1150 		IF_DEQUEUE(&ifp->if_snd, m0);
1151 		if (m0 == NULL)
1152 			break;
1153 		m = NULL;
1154 
1155 		/*
1156 		 * Load the DMA map.  If this fails, the packet either
1157 		 * didn't fit in the alloted number of segments, or we were
1158 		 * short on resources.  In this case, we'll copy and try
1159 		 * again.
1160 		 */
1161 		txmfail = gem_dmamap_load_mbuf(sc, m0,
1162 		    gem_txdma_callback, &txj, BUS_DMA_NOWAIT);
1163 		if (txmfail == -1) {
1164 			IF_PREPEND(&ifp->if_snd, m0);
1165 			break;
1166 		}
1167 		if (txmfail > 0) {
1168 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1169 			if (m == NULL) {
1170 				device_printf(sc->sc_dev, "unable to "
1171 				    "allocate Tx mbuf\n");
1172 				/* Failed; requeue. */
1173 				IF_PREPEND(&ifp->if_snd, m0);
1174 				break;
1175 			}
1176 			if (m0->m_pkthdr.len > MHLEN) {
1177 				MCLGET(m, M_DONTWAIT);
1178 				if ((m->m_flags & M_EXT) == 0) {
1179 					device_printf(sc->sc_dev, "unable to "
1180 					    "allocate Tx cluster\n");
1181 					IF_PREPEND(&ifp->if_snd, m0);
1182 					m_freem(m);
1183 					break;
1184 				}
1185 			}
1186 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1187 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1188 			txmfail = gem_dmamap_load_mbuf(sc, m,
1189 			    gem_txdma_callback, &txj, BUS_DMA_NOWAIT);
1190 			if (txmfail != 0) {
1191 				if (txmfail > 0) {
1192 					device_printf(sc->sc_dev, "unable to "
1193 					    "load Tx buffer, error = %d\n",
1194 					    txmfail);
1195 				}
1196 				m_freem(m);
1197 				IF_PREPEND(&ifp->if_snd, m0);
1198 				break;
1199 			}
1200 		}
1201 
1202 		/*
1203 		 * Ensure we have enough descriptors free to describe
1204 		 * the packet.  Note, we always reserve one descriptor
1205 		 * at the end of the ring as a termination point, to
1206 		 * prevent wrap-around.
1207 		 */
1208 		if (txj.txj_nsegs > (sc->sc_txfree - 1)) {
1209 			/*
1210 			 * Not enough free descriptors to transmit this
1211 			 * packet.  We haven't committed to anything yet,
1212 			 * so just unload the DMA map, put the packet
1213 			 * back on the queue, and punt.  Notify the upper
1214 			 * layer that there are no more slots left.
1215 			 *
1216 			 * XXX We could allocate an mbuf and copy, but
1217 			 * XXX it is worth it?
1218 			 */
1219 			ifp->if_flags |= IFF_OACTIVE;
1220 			gem_dmamap_unload_mbuf(sc, &txj);
1221 			if (m != NULL)
1222 				m_freem(m);
1223 			IF_PREPEND(&ifp->if_snd, m0);
1224 			break;
1225 		}
1226 
1227 		if (m != NULL)
1228 			m_freem(m0);
1229 
1230 		/*
1231 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1232 		 */
1233 
1234 #ifdef GEM_DEBUG
1235 		if (ifp->if_flags & IFF_DEBUG) {
1236 			printf("     gem_start %p transmit chain:\n",
1237 			    STAILQ_FIRST(&txj.txj_txsq));
1238 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1239 				printf("descriptor %d:\t", seg);
1240 				printf("gd_flags:   0x%016llx\t", (long long)
1241 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1242 				printf("gd_addr: 0x%016llx\n", (long long)
1243 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1244 				if (seg == txj.txj_lasttx)
1245 					break;
1246 			}
1247 		}
1248 #endif
1249 
1250 		/* Sync the descriptors we're using. */
1251 		GEM_CDTXSYNC(sc, sc->sc_txnext, txj.txj_nsegs,
1252 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1253 
1254 		/* Advance the tx pointer. */
1255 		sc->sc_txfree -= txj.txj_nsegs;
1256 		sc->sc_txnext = txj.txj_nexttx;
1257 
1258 		gem_dmamap_commit_mbuf(sc, &txj);
1259 	}
1260 
1261 	if (txmfail == -1 || sc->sc_txfree == 0) {
1262 		ifp->if_flags |= IFF_OACTIVE;
1263 		/* No more slots left; notify upper layer. */
1264 	}
1265 
1266 	if (ntx > 0) {
1267 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1268 		    device_get_name(sc->sc_dev), txj.txj_lasttx, firsttx));
1269 		CTR3(KTR_GEM, "%s: packets enqueued, IC on %d, OWN on %d",
1270 		    device_get_name(sc->sc_dev), txj.txj_lasttx, firsttx);
1271 		/*
1272 		 * The entire packet chain is set up.
1273 		 * Kick the transmitter.
1274 		 */
1275 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1276 			device_get_name(sc->sc_dev), txj.txj_nexttx));
1277 		CTR3(KTR_GEM, "%s: gem_start: kicking tx %d=%d",
1278 		    device_get_name(sc->sc_dev), txj.txj_nexttx,
1279 		    sc->sc_txnext);
1280 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1281 			sc->sc_txnext);
1282 
1283 		/* Set a watchdog timer in case the chip flakes out. */
1284 		ifp->if_timer = 5;
1285 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1286 			device_get_name(sc->sc_dev), ifp->if_timer));
1287 		CTR2(KTR_GEM, "%s: gem_start: watchdog %d",
1288 			device_get_name(sc->sc_dev), ifp->if_timer);
1289 	}
1290 }
1291 
1292 /*
1293  * Transmit interrupt.
1294  */
1295 static void
1296 gem_tint(sc)
1297 	struct gem_softc *sc;
1298 {
1299 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1300 	bus_space_tag_t t = sc->sc_bustag;
1301 	bus_space_handle_t mac = sc->sc_h;
1302 	struct gem_txsoft *txs;
1303 	int txlast;
1304 	int progress = 0;
1305 
1306 
1307 	DPRINTF(sc, ("%s: gem_tint\n", device_get_name(sc->sc_dev)));
1308 	CTR1(KTR_GEM, "%s: gem_tint", device_get_name(sc->sc_dev));
1309 
1310 	/*
1311 	 * Unload collision counters
1312 	 */
1313 	ifp->if_collisions +=
1314 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1315 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1316 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1317 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1318 
1319 	/*
1320 	 * then clear the hardware counters.
1321 	 */
1322 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1323 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1324 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1325 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1326 
1327 	/*
1328 	 * Go through our Tx list and free mbufs for those
1329 	 * frames that have been transmitted.
1330 	 */
1331 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1332 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1333 		    txs->txs_ndescs,
1334 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1335 
1336 #ifdef GEM_DEBUG
1337 		if (ifp->if_flags & IFF_DEBUG) {
1338 			int i;
1339 			printf("    txsoft %p transmit chain:\n", txs);
1340 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1341 				printf("descriptor %d: ", i);
1342 				printf("gd_flags: 0x%016llx\t", (long long)
1343 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1344 				printf("gd_addr: 0x%016llx\n", (long long)
1345 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1346 				if (i == txs->txs_lastdesc)
1347 					break;
1348 			}
1349 		}
1350 #endif
1351 
1352 		/*
1353 		 * In theory, we could harveast some descriptors before
1354 		 * the ring is empty, but that's a bit complicated.
1355 		 *
1356 		 * GEM_TX_COMPLETION points to the last descriptor
1357 		 * processed +1.
1358 		 */
1359 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1360 		DPRINTF(sc,
1361 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1362 				txs->txs_lastdesc, txlast));
1363 		CTR3(KTR_GEM, "gem_tint: txs->txs_firstdesc = %d, "
1364 		    "txs->txs_lastdesc = %d, txlast = %d",
1365 		    txs->txs_firstdesc, txs->txs_lastdesc, txlast);
1366 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1367 			if ((txlast >= txs->txs_firstdesc) &&
1368 				(txlast <= txs->txs_lastdesc))
1369 				break;
1370 		} else {
1371 			/* Ick -- this command wraps */
1372 			if ((txlast >= txs->txs_firstdesc) ||
1373 				(txlast <= txs->txs_lastdesc))
1374 				break;
1375 		}
1376 
1377 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1378 		CTR0(KTR_GEM, "gem_tint: releasing a desc");
1379 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1380 
1381 		sc->sc_txfree += txs->txs_ndescs;
1382 
1383 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1384 		    BUS_DMASYNC_POSTWRITE);
1385 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1386 		if (txs->txs_mbuf != NULL) {
1387 			m_freem(txs->txs_mbuf);
1388 			txs->txs_mbuf = NULL;
1389 		}
1390 
1391 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1392 
1393 		ifp->if_opackets++;
1394 		progress = 1;
1395 	}
1396 
1397 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1398 		"GEM_TX_DATA_PTR %llx "
1399 		"GEM_TX_COMPLETION %x\n",
1400 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1401 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1402 			GEM_TX_DATA_PTR_HI) << 32) |
1403 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
1404 			GEM_TX_DATA_PTR_LO),
1405 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1406 	CTR3(KTR_GEM, "gem_tint: GEM_TX_STATE_MACHINE %x "
1407 		"GEM_TX_DATA_PTR %llx "
1408 		"GEM_TX_COMPLETION %x",
1409 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1410 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1411 			GEM_TX_DATA_PTR_HI) << 32) |
1412 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
1413 			GEM_TX_DATA_PTR_LO),
1414 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION));
1415 
1416 	if (progress) {
1417 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1418 			sc->sc_txwin = 0;
1419 
1420 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1421 		ifp->if_flags &= ~IFF_OACTIVE;
1422 		gem_start(ifp);
1423 
1424 		if (STAILQ_EMPTY(&sc->sc_txdirtyq))
1425 			ifp->if_timer = 0;
1426 	}
1427 
1428 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1429 		device_get_name(sc->sc_dev), ifp->if_timer));
1430 	CTR2(KTR_GEM, "%s: gem_tint: watchdog %d",
1431 		device_get_name(sc->sc_dev), ifp->if_timer);
1432 }
1433 
1434 #if 0
1435 static void
1436 gem_rint_timeout(arg)
1437 	void *arg;
1438 {
1439 
1440 	gem_rint((struct gem_softc *)arg);
1441 }
1442 #endif
1443 
1444 /*
1445  * Receive interrupt.
1446  */
1447 static void
1448 gem_rint(sc)
1449 	struct gem_softc *sc;
1450 {
1451 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1452 	bus_space_tag_t t = sc->sc_bustag;
1453 	bus_space_handle_t h = sc->sc_h;
1454 	struct ether_header *eh;
1455 	struct gem_rxsoft *rxs;
1456 	struct mbuf *m;
1457 	u_int64_t rxstat;
1458 	u_int32_t rxcomp;
1459 	int i, len, progress = 0;
1460 
1461 	callout_stop(&sc->sc_rx_ch);
1462 	DPRINTF(sc, ("%s: gem_rint\n", device_get_name(sc->sc_dev)));
1463 	CTR1(KTR_GEM, "%s: gem_rint", device_get_name(sc->sc_dev));
1464 
1465 	/*
1466 	 * Read the completion register once.  This limits
1467 	 * how long the following loop can execute.
1468 	 */
1469 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1470 
1471 	/*
1472 	 * XXXX Read the lastrx only once at the top for speed.
1473 	 */
1474 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1475 		sc->sc_rxptr, rxcomp));
1476 	CTR2(KTR_GEM, "gem_rint: sc->rxptr %d, complete %d",
1477 	    sc->sc_rxptr, rxcomp);
1478 	for (i = sc->sc_rxptr; i != rxcomp;
1479 	     i = GEM_NEXTRX(i)) {
1480 		rxs = &sc->sc_rxsoft[i];
1481 
1482 		GEM_CDRXSYNC(sc, i,
1483 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1484 
1485 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1486 
1487 		if (rxstat & GEM_RD_OWN) {
1488 #if 0 /* XXX: In case of emergency, re-enable this. */
1489 			/*
1490 			 * The descriptor is still marked as owned, although
1491 			 * it is supposed to have completed. This has been
1492 			 * observed on some machines. Just exiting here
1493 			 * might leave the packet sitting around until another
1494 			 * one arrives to trigger a new interrupt, which is
1495 			 * generally undesirable, so set up a timeout.
1496 			 */
1497 			callout_reset(&sc->sc_rx_ch, GEM_RXOWN_TICKS,
1498 			    gem_rint_timeout, sc);
1499 #endif
1500 			break;
1501 		}
1502 
1503 		progress++;
1504 		ifp->if_ipackets++;
1505 
1506 		if (rxstat & GEM_RD_BAD_CRC) {
1507 			ifp->if_ierrors++;
1508 			device_printf(sc->sc_dev, "receive error: CRC error\n");
1509 			GEM_INIT_RXDESC(sc, i);
1510 			continue;
1511 		}
1512 
1513 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap,
1514 		    BUS_DMASYNC_POSTREAD);
1515 #ifdef GEM_DEBUG
1516 		if (ifp->if_flags & IFF_DEBUG) {
1517 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1518 			printf("gd_flags: 0x%016llx\t", (long long)
1519 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1520 			printf("gd_addr: 0x%016llx\n", (long long)
1521 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1522 		}
1523 #endif
1524 
1525 		/*
1526 		 * No errors; receive the packet.  Note the Gem
1527 		 * includes the CRC with every packet.
1528 		 */
1529 		len = GEM_RD_BUFLEN(rxstat);
1530 
1531 		/*
1532 		 * Allocate a new mbuf cluster.  If that fails, we are
1533 		 * out of memory, and must drop the packet and recycle
1534 		 * the buffer that's already attached to this descriptor.
1535 		 */
1536 		m = rxs->rxs_mbuf;
1537 		if (gem_add_rxbuf(sc, i) != 0) {
1538 			ifp->if_ierrors++;
1539 			GEM_INIT_RXDESC(sc, i);
1540 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap,
1541 			    BUS_DMASYNC_PREREAD);
1542 			continue;
1543 		}
1544 		m->m_data += 2; /* We're already off by two */
1545 
1546 		eh = mtod(m, struct ether_header *);
1547 		m->m_pkthdr.rcvif = ifp;
1548 		m->m_pkthdr.len = m->m_len = len - ETHER_CRC_LEN;
1549 		m_adj(m, sizeof(struct ether_header));
1550 
1551 		/* Pass it on. */
1552 		ether_input(ifp, eh, m);
1553 	}
1554 
1555 	if (progress) {
1556 		/* Update the receive pointer. */
1557 		if (i == sc->sc_rxptr) {
1558 			device_printf(sc->sc_dev, "rint: ring wrap\n");
1559 		}
1560 		sc->sc_rxptr = i;
1561 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1562 	}
1563 
1564 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1565 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1566 	CTR2(KTR_GEM, "gem_rint: done sc->rxptr %d, complete %d",
1567 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
1568 
1569 }
1570 
1571 
1572 /*
1573  * gem_add_rxbuf:
1574  *
1575  *	Add a receive buffer to the indicated descriptor.
1576  */
1577 static int
1578 gem_add_rxbuf(sc, idx)
1579 	struct gem_softc *sc;
1580 	int idx;
1581 {
1582 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1583 	struct mbuf *m;
1584 	int error;
1585 
1586 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1587 	if (m == NULL)
1588 		return (ENOBUFS);
1589 
1590 	MCLGET(m, M_DONTWAIT);
1591 	if ((m->m_flags & M_EXT) == 0) {
1592 		m_freem(m);
1593 		return (ENOBUFS);
1594 	}
1595 
1596 #ifdef GEM_DEBUG
1597 	/* bzero the packet to check dma */
1598 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1599 #endif
1600 
1601 	if (rxs->rxs_mbuf != NULL)
1602 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1603 
1604 	rxs->rxs_mbuf = m;
1605 
1606 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1607 	    m->m_ext.ext_buf, m->m_ext.ext_size, gem_rxdma_callback, rxs,
1608 	    BUS_DMA_NOWAIT);
1609 	if (error != 0 || rxs->rxs_paddr == 0) {
1610 		device_printf(sc->sc_dev, "can't load rx DMA map %d, error = "
1611 		    "%d\n", idx, error);
1612 		panic("gem_add_rxbuf");	/* XXX */
1613 	}
1614 
1615 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, BUS_DMASYNC_PREREAD);
1616 
1617 	GEM_INIT_RXDESC(sc, idx);
1618 
1619 	return (0);
1620 }
1621 
1622 
1623 static void
1624 gem_eint(sc, status)
1625 	struct gem_softc *sc;
1626 	u_int status;
1627 {
1628 
1629 	if ((status & GEM_INTR_MIF) != 0) {
1630 		device_printf(sc->sc_dev, "XXXlink status changed\n");
1631 		return;
1632 	}
1633 
1634 	device_printf(sc->sc_dev, "status=%x\n", status);
1635 }
1636 
1637 
1638 void
1639 gem_intr(v)
1640 	void *v;
1641 {
1642 	struct gem_softc *sc = (struct gem_softc *)v;
1643 	bus_space_tag_t t = sc->sc_bustag;
1644 	bus_space_handle_t seb = sc->sc_h;
1645 	u_int32_t status;
1646 
1647 	status = bus_space_read_4(t, seb, GEM_STATUS);
1648 	DPRINTF(sc, ("%s: gem_intr: cplt %x, status %x\n",
1649 		device_get_name(sc->sc_dev), (status>>19),
1650 		(u_int)status));
1651 	CTR3(KTR_GEM, "%s: gem_intr: cplt %x, status %x",
1652 		device_get_name(sc->sc_dev), (status>>19),
1653 		(u_int)status);
1654 
1655 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1656 		gem_eint(sc, status);
1657 
1658 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0)
1659 		gem_tint(sc);
1660 
1661 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1662 		gem_rint(sc);
1663 
1664 	/* We should eventually do more than just print out error stats. */
1665 	if (status & GEM_INTR_TX_MAC) {
1666 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1667 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1668 			device_printf(sc->sc_dev, "MAC tx fault, status %x\n",
1669 			    txstat);
1670 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
1671 			gem_init(sc);
1672 	}
1673 	if (status & GEM_INTR_RX_MAC) {
1674 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1675 		if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
1676 			device_printf(sc->sc_dev, "MAC rx fault, status %x\n",
1677 			    rxstat);
1678 		if ((rxstat & GEM_MAC_RX_OVERFLOW) != 0)
1679 			gem_init(sc);
1680 	}
1681 }
1682 
1683 
1684 static void
1685 gem_watchdog(ifp)
1686 	struct ifnet *ifp;
1687 {
1688 	struct gem_softc *sc = ifp->if_softc;
1689 
1690 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1691 		"GEM_MAC_RX_CONFIG %x\n",
1692 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1693 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1694 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1695 	CTR3(KTR_GEM, "gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1696 		"GEM_MAC_RX_CONFIG %x",
1697 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1698 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1699 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG));
1700 	CTR3(KTR_GEM, "gem_watchdog: GEM_TX_CONFIG %x GEM_MAC_TX_STATUS %x "
1701 		"GEM_MAC_TX_CONFIG %x",
1702 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_CONFIG),
1703 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_STATUS),
1704 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_CONFIG));
1705 
1706 	device_printf(sc->sc_dev, "device timeout\n");
1707 	++ifp->if_oerrors;
1708 
1709 	/* Try to get more packets going. */
1710 	gem_start(ifp);
1711 }
1712 
1713 /*
1714  * Initialize the MII Management Interface
1715  */
1716 static void
1717 gem_mifinit(sc)
1718 	struct gem_softc *sc;
1719 {
1720 	bus_space_tag_t t = sc->sc_bustag;
1721 	bus_space_handle_t mif = sc->sc_h;
1722 
1723 	/* Configure the MIF in frame mode */
1724 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1725 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1726 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1727 }
1728 
1729 /*
1730  * MII interface
1731  *
1732  * The GEM MII interface supports at least three different operating modes:
1733  *
1734  * Bitbang mode is implemented using data, clock and output enable registers.
1735  *
1736  * Frame mode is implemented by loading a complete frame into the frame
1737  * register and polling the valid bit for completion.
1738  *
1739  * Polling mode uses the frame register but completion is indicated by
1740  * an interrupt.
1741  *
1742  */
1743 int
1744 gem_mii_readreg(dev, phy, reg)
1745 	device_t dev;
1746 	int phy, reg;
1747 {
1748 	struct gem_softc *sc = device_get_softc(dev);
1749 	bus_space_tag_t t = sc->sc_bustag;
1750 	bus_space_handle_t mif = sc->sc_h;
1751 	int n;
1752 	u_int32_t v;
1753 
1754 #ifdef GEM_DEBUG_PHY
1755 	printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1756 #endif
1757 
1758 #if 0
1759 	/* Select the desired PHY in the MIF configuration register */
1760 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1761 	/* Clear PHY select bit */
1762 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1763 	if (phy == GEM_PHYAD_EXTERNAL)
1764 		/* Set PHY select bit to get at external device */
1765 		v |= GEM_MIF_CONFIG_PHY_SEL;
1766 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1767 #endif
1768 
1769 	/* Construct the frame command */
1770 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
1771 		GEM_MIF_FRAME_READ;
1772 
1773 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1774 	for (n = 0; n < 100; n++) {
1775 		DELAY(1);
1776 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1777 		if (v & GEM_MIF_FRAME_TA0)
1778 			return (v & GEM_MIF_FRAME_DATA);
1779 	}
1780 
1781 	device_printf(sc->sc_dev, "mii_read timeout\n");
1782 	return (0);
1783 }
1784 
1785 int
1786 gem_mii_writereg(dev, phy, reg, val)
1787 	device_t dev;
1788 	int phy, reg, val;
1789 {
1790 	struct gem_softc *sc = device_get_softc(dev);
1791 	bus_space_tag_t t = sc->sc_bustag;
1792 	bus_space_handle_t mif = sc->sc_h;
1793 	int n;
1794 	u_int32_t v;
1795 
1796 #ifdef GEM_DEBUG_PHY
1797 	printf("gem_mii_writereg: phy %d reg %d val %x\n", phy, reg, val);
1798 #endif
1799 
1800 #if 0
1801 	/* Select the desired PHY in the MIF configuration register */
1802 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1803 	/* Clear PHY select bit */
1804 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1805 	if (phy == GEM_PHYAD_EXTERNAL)
1806 		/* Set PHY select bit to get at external device */
1807 		v |= GEM_MIF_CONFIG_PHY_SEL;
1808 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1809 #endif
1810 	/* Construct the frame command */
1811 	v = GEM_MIF_FRAME_WRITE			|
1812 	    (phy << GEM_MIF_PHY_SHIFT)		|
1813 	    (reg << GEM_MIF_REG_SHIFT)		|
1814 	    (val & GEM_MIF_FRAME_DATA);
1815 
1816 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1817 	for (n = 0; n < 100; n++) {
1818 		DELAY(1);
1819 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1820 		if (v & GEM_MIF_FRAME_TA0)
1821 			return (1);
1822 	}
1823 
1824 	device_printf(sc->sc_dev, "mii_write timeout\n");
1825 	return (0);
1826 }
1827 
1828 void
1829 gem_mii_statchg(dev)
1830 	device_t dev;
1831 {
1832 	struct gem_softc *sc = device_get_softc(dev);
1833 #ifdef GEM_DEBUG
1834 	int instance = IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media);
1835 #endif
1836 	bus_space_tag_t t = sc->sc_bustag;
1837 	bus_space_handle_t mac = sc->sc_h;
1838 	u_int32_t v;
1839 
1840 #ifdef GEM_DEBUG
1841 	if (sc->sc_debug)
1842 		printf("gem_mii_statchg: status change: phy = %d\n",
1843 			sc->sc_phys[instance]);
1844 #endif
1845 
1846 	/* Set tx full duplex options */
1847 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1848 	DELAY(10000); /* reg must be cleared and delay before changing. */
1849 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1850 		GEM_MAC_TX_ENABLE;
1851 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) {
1852 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1853 	}
1854 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1855 
1856 	/* XIF Configuration */
1857  /* We should really calculate all this rather than rely on defaults */
1858 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1859 	v = GEM_MAC_XIF_LINK_LED;
1860 	v |= GEM_MAC_XIF_TX_MII_ENA;
1861 
1862 	/* If an external transceiver is connected, enable its MII drivers */
1863 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1864 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1865 		/* External MII needs echo disable if half duplex. */
1866 		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
1867 			/* turn on full duplex LED */
1868 			v |= GEM_MAC_XIF_FDPLX_LED;
1869 		else
1870 	 		/* half duplex -- disable echo */
1871 	 		v |= GEM_MAC_XIF_ECHO_DISABL;
1872 
1873 		if (IFM_SUBTYPE(sc->sc_mii->mii_media_active) == IFM_1000_T)
1874 			v |= GEM_MAC_XIF_GMII_MODE;
1875 		else
1876 			v &= ~GEM_MAC_XIF_GMII_MODE;
1877 	} else {
1878 		/* Internal MII needs buf enable */
1879 		v |= GEM_MAC_XIF_MII_BUF_ENA;
1880 	}
1881 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1882 }
1883 
1884 int
1885 gem_mediachange(ifp)
1886 	struct ifnet *ifp;
1887 {
1888 	struct gem_softc *sc = ifp->if_softc;
1889 
1890 	/* XXX Add support for serial media. */
1891 
1892 	return (mii_mediachg(sc->sc_mii));
1893 }
1894 
1895 void
1896 gem_mediastatus(ifp, ifmr)
1897 	struct ifnet *ifp;
1898 	struct ifmediareq *ifmr;
1899 {
1900 	struct gem_softc *sc = ifp->if_softc;
1901 
1902 	if ((ifp->if_flags & IFF_UP) == 0)
1903 		return;
1904 
1905 	mii_pollstat(sc->sc_mii);
1906 	ifmr->ifm_active = sc->sc_mii->mii_media_active;
1907 	ifmr->ifm_status = sc->sc_mii->mii_media_status;
1908 }
1909 
1910 /*
1911  * Process an ioctl request.
1912  */
1913 static int
1914 gem_ioctl(ifp, cmd, data)
1915 	struct ifnet *ifp;
1916 	u_long cmd;
1917 	caddr_t data;
1918 {
1919 	struct gem_softc *sc = ifp->if_softc;
1920 	struct ifreq *ifr = (struct ifreq *)data;
1921 	int s, error = 0;
1922 
1923 	switch (cmd) {
1924 	case SIOCSIFADDR:
1925 	case SIOCGIFADDR:
1926 	case SIOCSIFMTU:
1927 		error = ether_ioctl(ifp, cmd, data);
1928 		break;
1929 	case SIOCSIFFLAGS:
1930 		if (ifp->if_flags & IFF_UP) {
1931 			if ((sc->sc_ifflags ^ ifp->if_flags) == IFF_PROMISC)
1932 				gem_setladrf(sc);
1933 			else
1934 				gem_init(sc);
1935 		} else {
1936 			if (ifp->if_flags & IFF_RUNNING)
1937 				gem_stop(ifp, 0);
1938 		}
1939 		sc->sc_ifflags = ifp->if_flags;
1940 		error = 0;
1941 		break;
1942 	case SIOCADDMULTI:
1943 	case SIOCDELMULTI:
1944 		gem_setladrf(sc);
1945 		error = 0;
1946 		break;
1947 	case SIOCGIFMEDIA:
1948 	case SIOCSIFMEDIA:
1949 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
1950 		break;
1951 	default:
1952 		error = ENOTTY;
1953 		break;
1954 	}
1955 
1956 	/* Try to get things going again */
1957 	if (ifp->if_flags & IFF_UP)
1958 		gem_start(ifp);
1959 	splx(s);
1960 	return (error);
1961 }
1962 
1963 /*
1964  * Set up the logical address filter.
1965  */
1966 static void
1967 gem_setladrf(sc)
1968 	struct gem_softc *sc;
1969 {
1970 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1971 	struct ifmultiaddr *inm;
1972 	struct sockaddr_dl *sdl;
1973 	bus_space_tag_t t = sc->sc_bustag;
1974 	bus_space_handle_t h = sc->sc_h;
1975 	u_char *cp;
1976 	u_int32_t crc;
1977 	u_int32_t hash[16];
1978 	u_int32_t v;
1979 	int len;
1980 	int i;
1981 
1982 	/* Get current RX configuration */
1983 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1984 
1985 	/*
1986 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
1987 	 * and hash filter.  Depending on the case, the right bit will be
1988 	 * enabled.
1989 	 */
1990 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
1991 	    GEM_MAC_RX_PROMISC_GRP);
1992 
1993 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1994 		/* Turn on promiscuous mode */
1995 		v |= GEM_MAC_RX_PROMISCUOUS;
1996 		goto chipit;
1997 	}
1998 	if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
1999 		hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
2000 		ifp->if_flags |= IFF_ALLMULTI;
2001 		v |= GEM_MAC_RX_PROMISC_GRP;
2002 		goto chipit;
2003 	}
2004 
2005 	/*
2006 	 * Set up multicast address filter by passing all multicast addresses
2007 	 * through a crc generator, and then using the high order 8 bits as an
2008 	 * index into the 256 bit logical address filter.  The high order 4
2009 	 * bits selects the word, while the other 4 bits select the bit within
2010 	 * the word (where bit 0 is the MSB).
2011 	 */
2012 
2013 	/* Clear hash table */
2014 	memset(hash, 0, sizeof(hash));
2015 
2016 	TAILQ_FOREACH(inm, &sc->sc_arpcom.ac_if.if_multiaddrs, ifma_link) {
2017 		if (inm->ifma_addr->sa_family != AF_LINK)
2018 			continue;
2019 		sdl = (struct sockaddr_dl *)inm->ifma_addr;
2020 		cp = LLADDR(sdl);
2021 		crc = 0xffffffff;
2022 		for (len = sdl->sdl_alen; --len >= 0;) {
2023 			int octet = *cp++;
2024 			int i;
2025 
2026 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
2027 			for (i = 0; i < 8; i++) {
2028 				if ((crc & 1) ^ (octet & 1)) {
2029 					crc >>= 1;
2030 					crc ^= MC_POLY_LE;
2031 				} else {
2032 					crc >>= 1;
2033 				}
2034 				octet >>= 1;
2035 			}
2036 		}
2037 		/* Just want the 8 most significant bits. */
2038 		crc >>= 24;
2039 
2040 		/* Set the corresponding bit in the filter. */
2041 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2042 	}
2043 
2044 	v |= GEM_MAC_RX_HASH_FILTER;
2045 	ifp->if_flags &= ~IFF_ALLMULTI;
2046 
2047 	/* Now load the hash table into the chip (if we are using it) */
2048 	for (i = 0; i < 16; i++) {
2049 		bus_space_write_4(t, h,
2050 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2051 		    hash[i]);
2052 	}
2053 
2054 chipit:
2055 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2056 }
2057 
2058 #if notyet
2059 
2060 /*
2061  * gem_power:
2062  *
2063  *	Power management (suspend/resume) hook.
2064  */
2065 void
2066 static gem_power(why, arg)
2067 	int why;
2068 	void *arg;
2069 {
2070 	struct gem_softc *sc = arg;
2071 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2072 	int s;
2073 
2074 	s = splnet();
2075 	switch (why) {
2076 	case PWR_SUSPEND:
2077 	case PWR_STANDBY:
2078 		gem_stop(ifp, 1);
2079 		if (sc->sc_power != NULL)
2080 			(*sc->sc_power)(sc, why);
2081 		break;
2082 	case PWR_RESUME:
2083 		if (ifp->if_flags & IFF_UP) {
2084 			if (sc->sc_power != NULL)
2085 				(*sc->sc_power)(sc, why);
2086 			gem_init(ifp);
2087 		}
2088 		break;
2089 	case PWR_SOFTSUSPEND:
2090 	case PWR_SOFTSTANDBY:
2091 	case PWR_SOFTRESUME:
2092 		break;
2093 	}
2094 	splx(s);
2095 }
2096 #endif
2097