xref: /freebsd/sys/dev/gem/if_gem.c (revision 94942af266ac119ede0ca836f9aa5a5ac0582938)
1 /*-
2  * Copyright (C) 2001 Eduardo Horvath.
3  * Copyright (c) 2001-2003 Thomas Moestl
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  *	from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for Sun GEM ethernet controllers.
35  */
36 
37 #if 0
38 #define	GEM_DEBUG
39 #endif
40 
41 #if 0	/* XXX: In case of emergency, re-enable this. */
42 #define	GEM_RINT_TIMEOUT
43 #endif
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bus.h>
48 #include <sys/callout.h>
49 #include <sys/endian.h>
50 #include <sys/mbuf.h>
51 #include <sys/malloc.h>
52 #include <sys/kernel.h>
53 #include <sys/lock.h>
54 #include <sys/module.h>
55 #include <sys/mutex.h>
56 #include <sys/socket.h>
57 #include <sys/sockio.h>
58 #include <sys/rman.h>
59 
60 #include <net/bpf.h>
61 #include <net/ethernet.h>
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_types.h>
67 #include <net/if_vlan_var.h>
68 
69 #include <machine/bus.h>
70 
71 #include <dev/mii/mii.h>
72 #include <dev/mii/miivar.h>
73 
74 #include <dev/gem/if_gemreg.h>
75 #include <dev/gem/if_gemvar.h>
76 
77 #define TRIES	10000
78 
79 static void	gem_start(struct ifnet *);
80 static void	gem_start_locked(struct ifnet *);
81 static void	gem_stop(struct ifnet *, int);
82 static int	gem_ioctl(struct ifnet *, u_long, caddr_t);
83 static void	gem_cddma_callback(void *, bus_dma_segment_t *, int, int);
84 static void	gem_txdma_callback(void *, bus_dma_segment_t *, int,
85     bus_size_t, int);
86 static void	gem_tick(void *);
87 static int	gem_watchdog(struct gem_softc *);
88 static void	gem_init(void *);
89 static void	gem_init_locked(struct gem_softc *);
90 static void	gem_init_regs(struct gem_softc *);
91 static int	gem_ringsize(int sz);
92 static int	gem_meminit(struct gem_softc *);
93 static int	gem_load_txmbuf(struct gem_softc *, struct mbuf *);
94 static void	gem_mifinit(struct gem_softc *);
95 static int	gem_bitwait(struct gem_softc *, bus_addr_t, u_int32_t,
96     u_int32_t);
97 static int	gem_reset_rx(struct gem_softc *);
98 static int	gem_reset_tx(struct gem_softc *);
99 static int	gem_disable_rx(struct gem_softc *);
100 static int	gem_disable_tx(struct gem_softc *);
101 static void	gem_rxdrain(struct gem_softc *);
102 static int	gem_add_rxbuf(struct gem_softc *, int);
103 static void	gem_setladrf(struct gem_softc *);
104 
105 struct mbuf	*gem_get(struct gem_softc *, int, int);
106 static void	gem_eint(struct gem_softc *, u_int);
107 static void	gem_rint(struct gem_softc *);
108 #ifdef GEM_RINT_TIMEOUT
109 static void	gem_rint_timeout(void *);
110 #endif
111 static void	gem_tint(struct gem_softc *);
112 #ifdef notyet
113 static void	gem_power(int, void *);
114 #endif
115 
116 devclass_t gem_devclass;
117 DRIVER_MODULE(miibus, gem, miibus_driver, miibus_devclass, 0, 0);
118 MODULE_DEPEND(gem, miibus, 1, 1, 1);
119 
120 #ifdef GEM_DEBUG
121 #include <sys/ktr.h>
122 #define	KTR_GEM		KTR_CT2
123 #endif
124 
125 #define	GEM_NSEGS GEM_NTXDESC
126 
127 /*
128  * gem_attach:
129  *
130  *	Attach a Gem interface to the system.
131  */
132 int
133 gem_attach(sc)
134 	struct gem_softc *sc;
135 {
136 	struct ifnet *ifp;
137 	struct mii_softc *child;
138 	int i, error;
139 	u_int32_t v;
140 
141 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
142 	if (ifp == NULL)
143 		return (ENOSPC);
144 
145 	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
146 #ifdef GEM_RINT_TIMEOUT
147 	callout_init_mtx(&sc->sc_rx_ch, &sc->sc_mtx, 0);
148 #endif
149 
150 	/* Make sure the chip is stopped. */
151 	ifp->if_softc = sc;
152 	GEM_LOCK(sc);
153 	gem_stop(ifp, 0);
154 	gem_reset(sc);
155 	GEM_UNLOCK(sc);
156 
157 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
158 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
159 	    MCLBYTES, GEM_NSEGS, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
160 	    &sc->sc_pdmatag);
161 	if (error)
162 		goto fail_ifnet;
163 
164 	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
165 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MAXBSIZE,
166 	    1, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW, NULL, NULL,
167 	    &sc->sc_rdmatag);
168 	if (error)
169 		goto fail_ptag;
170 
171 	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
172 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
173 	    GEM_TD_BUFSIZE, GEM_NTXDESC, BUS_SPACE_MAXSIZE_32BIT,
174 	    BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag);
175 	if (error)
176 		goto fail_rtag;
177 
178 	error = bus_dma_tag_create(sc->sc_pdmatag, PAGE_SIZE, 0,
179 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
180 	    sizeof(struct gem_control_data), 1,
181 	    sizeof(struct gem_control_data), BUS_DMA_ALLOCNOW,
182 	    busdma_lock_mutex, &sc->sc_mtx, &sc->sc_cdmatag);
183 	if (error)
184 		goto fail_ttag;
185 
186 	/*
187 	 * Allocate the control data structures, and create and load the
188 	 * DMA map for it.
189 	 */
190 	if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
191 	    (void **)&sc->sc_control_data, 0, &sc->sc_cddmamap))) {
192 		device_printf(sc->sc_dev, "unable to allocate control data,"
193 		    " error = %d\n", error);
194 		goto fail_ctag;
195 	}
196 
197 	sc->sc_cddma = 0;
198 	if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
199 	    sc->sc_control_data, sizeof(struct gem_control_data),
200 	    gem_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
201 		device_printf(sc->sc_dev, "unable to load control data DMA "
202 		    "map, error = %d\n", error);
203 		goto fail_cmem;
204 	}
205 
206 	/*
207 	 * Initialize the transmit job descriptors.
208 	 */
209 	STAILQ_INIT(&sc->sc_txfreeq);
210 	STAILQ_INIT(&sc->sc_txdirtyq);
211 
212 	/*
213 	 * Create the transmit buffer DMA maps.
214 	 */
215 	error = ENOMEM;
216 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
217 		struct gem_txsoft *txs;
218 
219 		txs = &sc->sc_txsoft[i];
220 		txs->txs_mbuf = NULL;
221 		txs->txs_ndescs = 0;
222 		if ((error = bus_dmamap_create(sc->sc_tdmatag, 0,
223 		    &txs->txs_dmamap)) != 0) {
224 			device_printf(sc->sc_dev, "unable to create tx DMA map "
225 			    "%d, error = %d\n", i, error);
226 			goto fail_txd;
227 		}
228 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
229 	}
230 
231 	/*
232 	 * Create the receive buffer DMA maps.
233 	 */
234 	for (i = 0; i < GEM_NRXDESC; i++) {
235 		if ((error = bus_dmamap_create(sc->sc_rdmatag, 0,
236 		    &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
237 			device_printf(sc->sc_dev, "unable to create rx DMA map "
238 			    "%d, error = %d\n", i, error);
239 			goto fail_rxd;
240 		}
241 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
242 	}
243 
244 	gem_mifinit(sc);
245 
246 	if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, gem_mediachange,
247 	    gem_mediastatus)) != 0) {
248 		device_printf(sc->sc_dev, "phy probe failed: %d\n", error);
249 		goto fail_rxd;
250 	}
251 	sc->sc_mii = device_get_softc(sc->sc_miibus);
252 
253 	/*
254 	 * From this point forward, the attachment cannot fail.  A failure
255 	 * before this point releases all resources that may have been
256 	 * allocated.
257 	 */
258 
259 	/* Get RX FIFO size */
260 	sc->sc_rxfifosize = 64 *
261 	    bus_read_4(sc->sc_res[0], GEM_RX_FIFO_SIZE);
262 
263 	/* Get TX FIFO size */
264 	v = bus_read_4(sc->sc_res[0], GEM_TX_FIFO_SIZE);
265 	device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n",
266 	    sc->sc_rxfifosize / 1024, v / 16);
267 
268 	/* Initialize ifnet structure. */
269 	ifp->if_softc = sc;
270 	if_initname(ifp, device_get_name(sc->sc_dev),
271 	    device_get_unit(sc->sc_dev));
272 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
273 	ifp->if_start = gem_start;
274 	ifp->if_ioctl = gem_ioctl;
275 	ifp->if_init = gem_init;
276 	ifp->if_snd.ifq_maxlen = GEM_TXQUEUELEN;
277 	/*
278 	 * Walk along the list of attached MII devices and
279 	 * establish an `MII instance' to `phy number'
280 	 * mapping. We'll use this mapping in media change
281 	 * requests to determine which phy to use to program
282 	 * the MIF configuration register.
283 	 */
284 	for (child = LIST_FIRST(&sc->sc_mii->mii_phys); child != NULL;
285 	     child = LIST_NEXT(child, mii_list)) {
286 		/*
287 		 * Note: we support just two PHYs: the built-in
288 		 * internal device and an external on the MII
289 		 * connector.
290 		 */
291 		if (child->mii_phy > 1 || child->mii_inst > 1) {
292 			device_printf(sc->sc_dev, "cannot accomodate "
293 			    "MII device %s at phy %d, instance %d\n",
294 			    device_get_name(child->mii_dev),
295 			    child->mii_phy, child->mii_inst);
296 			continue;
297 		}
298 
299 		sc->sc_phys[child->mii_inst] = child->mii_phy;
300 	}
301 
302 	/*
303 	 * Now select and activate the PHY we will use.
304 	 *
305 	 * The order of preference is External (MDI1),
306 	 * Internal (MDI0), Serial Link (no MII).
307 	 */
308 	if (sc->sc_phys[1]) {
309 #ifdef GEM_DEBUG
310 		printf("using external phy\n");
311 #endif
312 		sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
313 	} else {
314 #ifdef GEM_DEBUG
315 		printf("using internal phy\n");
316 #endif
317 		sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
318 	}
319 	bus_write_4(sc->sc_res[0], GEM_MIF_CONFIG,
320 	    sc->sc_mif_config);
321 	/* Attach the interface. */
322 	ether_ifattach(ifp, sc->sc_enaddr);
323 
324 #ifdef notyet
325 	/*
326 	 * Add a suspend hook to make sure we come back up after a
327 	 * resume.
328 	 */
329 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
330 	if (sc->sc_powerhook == NULL)
331 		device_printf(sc->sc_dev, "WARNING: unable to establish power "
332 		    "hook\n");
333 #endif
334 
335 	/*
336 	 * Tell the upper layer(s) we support long frames.
337 	 */
338 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
339 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
340 	ifp->if_capenable |= IFCAP_VLAN_MTU;
341 
342 	return (0);
343 
344 	/*
345 	 * Free any resources we've allocated during the failed attach
346 	 * attempt.  Do this in reverse order and fall through.
347 	 */
348 fail_rxd:
349 	for (i = 0; i < GEM_NRXDESC; i++) {
350 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
351 			bus_dmamap_destroy(sc->sc_rdmatag,
352 			    sc->sc_rxsoft[i].rxs_dmamap);
353 	}
354 fail_txd:
355 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
356 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
357 			bus_dmamap_destroy(sc->sc_tdmatag,
358 			    sc->sc_txsoft[i].txs_dmamap);
359 	}
360 	bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
361 fail_cmem:
362 	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
363 	    sc->sc_cddmamap);
364 fail_ctag:
365 	bus_dma_tag_destroy(sc->sc_cdmatag);
366 fail_ttag:
367 	bus_dma_tag_destroy(sc->sc_tdmatag);
368 fail_rtag:
369 	bus_dma_tag_destroy(sc->sc_rdmatag);
370 fail_ptag:
371 	bus_dma_tag_destroy(sc->sc_pdmatag);
372 fail_ifnet:
373 	if_free(ifp);
374 	return (error);
375 }
376 
377 void
378 gem_detach(sc)
379 	struct gem_softc *sc;
380 {
381 	struct ifnet *ifp = sc->sc_ifp;
382 	int i;
383 
384 	GEM_LOCK(sc);
385 	gem_stop(ifp, 1);
386 	GEM_UNLOCK(sc);
387 	callout_drain(&sc->sc_tick_ch);
388 #ifdef GEM_RINT_TIMEOUT
389 	callout_drain(&sc->sc_rx_ch);
390 #endif
391 	ether_ifdetach(ifp);
392 	if_free(ifp);
393 	device_delete_child(sc->sc_dev, sc->sc_miibus);
394 
395 	for (i = 0; i < GEM_NRXDESC; i++) {
396 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
397 			bus_dmamap_destroy(sc->sc_rdmatag,
398 			    sc->sc_rxsoft[i].rxs_dmamap);
399 	}
400 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
401 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
402 			bus_dmamap_destroy(sc->sc_tdmatag,
403 			    sc->sc_txsoft[i].txs_dmamap);
404 	}
405 	GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
406 	GEM_CDSYNC(sc, BUS_DMASYNC_POSTWRITE);
407 	bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
408 	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
409 	    sc->sc_cddmamap);
410 	bus_dma_tag_destroy(sc->sc_cdmatag);
411 	bus_dma_tag_destroy(sc->sc_tdmatag);
412 	bus_dma_tag_destroy(sc->sc_rdmatag);
413 	bus_dma_tag_destroy(sc->sc_pdmatag);
414 }
415 
416 void
417 gem_suspend(sc)
418 	struct gem_softc *sc;
419 {
420 	struct ifnet *ifp = sc->sc_ifp;
421 
422 	GEM_LOCK(sc);
423 	gem_stop(ifp, 0);
424 	GEM_UNLOCK(sc);
425 }
426 
427 void
428 gem_resume(sc)
429 	struct gem_softc *sc;
430 {
431 	struct ifnet *ifp = sc->sc_ifp;
432 
433 	GEM_LOCK(sc);
434 	/*
435 	 * On resume all registers have to be initialized again like
436 	 * after power-on.
437 	 */
438 	sc->sc_inited = 0;
439 	if (ifp->if_flags & IFF_UP)
440 		gem_init_locked(sc);
441 	GEM_UNLOCK(sc);
442 }
443 
444 static void
445 gem_cddma_callback(xsc, segs, nsegs, error)
446 	void *xsc;
447 	bus_dma_segment_t *segs;
448 	int nsegs;
449 	int error;
450 {
451 	struct gem_softc *sc = (struct gem_softc *)xsc;
452 
453 	if (error != 0)
454 		return;
455 	if (nsegs != 1) {
456 		/* can't happen... */
457 		panic("gem_cddma_callback: bad control buffer segment count");
458 	}
459 	sc->sc_cddma = segs[0].ds_addr;
460 }
461 
462 static void
463 gem_txdma_callback(xsc, segs, nsegs, totsz, error)
464 	void *xsc;
465 	bus_dma_segment_t *segs;
466 	int nsegs;
467 	bus_size_t totsz;
468 	int error;
469 {
470 	struct gem_txdma *txd = (struct gem_txdma *)xsc;
471 	struct gem_softc *sc = txd->txd_sc;
472 	struct gem_txsoft *txs = txd->txd_txs;
473 	bus_size_t len = 0;
474 	uint64_t flags = 0;
475 	int seg, nexttx;
476 
477 	if (error != 0)
478 		return;
479 	/*
480 	 * Ensure we have enough descriptors free to describe
481 	 * the packet.  Note, we always reserve one descriptor
482 	 * at the end of the ring as a termination point, to
483 	 * prevent wrap-around.
484 	 */
485 	if (nsegs > sc->sc_txfree - 1) {
486 		txs->txs_ndescs = -1;
487 		return;
488 	}
489 	txs->txs_ndescs = nsegs;
490 
491 	nexttx = txs->txs_firstdesc;
492 	/*
493 	 * Initialize the transmit descriptors.
494 	 */
495 	for (seg = 0; seg < nsegs;
496 	     seg++, nexttx = GEM_NEXTTX(nexttx)) {
497 #ifdef GEM_DEBUG
498 		CTR5(KTR_GEM, "txdma_cb: mapping seg %d (txd %d), len "
499 		    "%lx, addr %#lx (%#lx)",  seg, nexttx,
500 		    segs[seg].ds_len, segs[seg].ds_addr,
501 		    GEM_DMA_WRITE(sc, segs[seg].ds_addr));
502 #endif
503 
504 		if (segs[seg].ds_len == 0)
505 			continue;
506 		sc->sc_txdescs[nexttx].gd_addr =
507 		    GEM_DMA_WRITE(sc, segs[seg].ds_addr);
508 		KASSERT(segs[seg].ds_len < GEM_TD_BUFSIZE,
509 		    ("gem_txdma_callback: segment size too large!"));
510 		flags = segs[seg].ds_len & GEM_TD_BUFSIZE;
511 		if (len == 0) {
512 #ifdef GEM_DEBUG
513 			CTR2(KTR_GEM, "txdma_cb: start of packet at seg %d, "
514 			    "tx %d", seg, nexttx);
515 #endif
516 			flags |= GEM_TD_START_OF_PACKET;
517 			if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
518 				sc->sc_txwin = 0;
519 				flags |= GEM_TD_INTERRUPT_ME;
520 			}
521 		}
522 		if (len + segs[seg].ds_len == totsz) {
523 #ifdef GEM_DEBUG
524 			CTR2(KTR_GEM, "txdma_cb: end of packet at seg %d, "
525 			    "tx %d", seg, nexttx);
526 #endif
527 			flags |= GEM_TD_END_OF_PACKET;
528 		}
529 		sc->sc_txdescs[nexttx].gd_flags = GEM_DMA_WRITE(sc, flags);
530 		txs->txs_lastdesc = nexttx;
531 		len += segs[seg].ds_len;
532 	}
533 	KASSERT((flags & GEM_TD_END_OF_PACKET) != 0,
534 	    ("gem_txdma_callback: missed end of packet!"));
535 }
536 
537 static void
538 gem_tick(arg)
539 	void *arg;
540 {
541 	struct gem_softc *sc = arg;
542 
543 	GEM_LOCK_ASSERT(sc, MA_OWNED);
544 	mii_tick(sc->sc_mii);
545 
546 	if (gem_watchdog(sc) == EJUSTRETURN)
547 		return;
548 
549 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
550 }
551 
552 static int
553 gem_bitwait(sc, r, clr, set)
554 	struct gem_softc *sc;
555 	bus_addr_t r;
556 	u_int32_t clr;
557 	u_int32_t set;
558 {
559 	int i;
560 	u_int32_t reg;
561 
562 	for (i = TRIES; i--; DELAY(100)) {
563 		reg = bus_read_4(sc->sc_res[0], r);
564 		if ((r & clr) == 0 && (r & set) == set)
565 			return (1);
566 	}
567 	return (0);
568 }
569 
570 void
571 gem_reset(sc)
572 	struct gem_softc *sc;
573 {
574 
575 #ifdef GEM_DEBUG
576 	CTR1(KTR_GEM, "%s: gem_reset", device_get_name(sc->sc_dev));
577 #endif
578 	gem_reset_rx(sc);
579 	gem_reset_tx(sc);
580 
581 	/* Do a full reset */
582 	bus_write_4(sc->sc_res[0], GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
583 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
584 		device_printf(sc->sc_dev, "cannot reset device\n");
585 }
586 
587 
588 /*
589  * gem_rxdrain:
590  *
591  *	Drain the receive queue.
592  */
593 static void
594 gem_rxdrain(sc)
595 	struct gem_softc *sc;
596 {
597 	struct gem_rxsoft *rxs;
598 	int i;
599 
600 	for (i = 0; i < GEM_NRXDESC; i++) {
601 		rxs = &sc->sc_rxsoft[i];
602 		if (rxs->rxs_mbuf != NULL) {
603 			bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap,
604 			    BUS_DMASYNC_POSTREAD);
605 			bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap);
606 			m_freem(rxs->rxs_mbuf);
607 			rxs->rxs_mbuf = NULL;
608 		}
609 	}
610 }
611 
612 /*
613  * Reset the whole thing.
614  */
615 static void
616 gem_stop(ifp, disable)
617 	struct ifnet *ifp;
618 	int disable;
619 {
620 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
621 	struct gem_txsoft *txs;
622 
623 #ifdef GEM_DEBUG
624 	CTR1(KTR_GEM, "%s: gem_stop", device_get_name(sc->sc_dev));
625 #endif
626 
627 	callout_stop(&sc->sc_tick_ch);
628 #ifdef GEM_RINT_TIMEOUT
629 	callout_stop(&sc->sc_rx_ch);
630 #endif
631 
632 	/* XXX - Should we reset these instead? */
633 	gem_disable_tx(sc);
634 	gem_disable_rx(sc);
635 
636 	/*
637 	 * Release any queued transmit buffers.
638 	 */
639 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
640 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
641 		if (txs->txs_ndescs != 0) {
642 			bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
643 			    BUS_DMASYNC_POSTWRITE);
644 			bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
645 			if (txs->txs_mbuf != NULL) {
646 				m_freem(txs->txs_mbuf);
647 				txs->txs_mbuf = NULL;
648 			}
649 		}
650 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
651 	}
652 
653 	if (disable)
654 		gem_rxdrain(sc);
655 
656 	/*
657 	 * Mark the interface down and cancel the watchdog timer.
658 	 */
659 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
660 	sc->sc_wdog_timer = 0;
661 }
662 
663 /*
664  * Reset the receiver
665  */
666 int
667 gem_reset_rx(sc)
668 	struct gem_softc *sc;
669 {
670 
671 	/*
672 	 * Resetting while DMA is in progress can cause a bus hang, so we
673 	 * disable DMA first.
674 	 */
675 	gem_disable_rx(sc);
676 	bus_write_4(sc->sc_res[0], GEM_RX_CONFIG, 0);
677 	/* Wait till it finishes */
678 	if (!gem_bitwait(sc, GEM_RX_CONFIG, 1, 0))
679 		device_printf(sc->sc_dev, "cannot disable read dma\n");
680 
681 	/* Wait 5ms extra. */
682 	DELAY(5000);
683 
684 	/* Finally, reset the ERX */
685 	bus_write_4(sc->sc_res[0], GEM_RESET, GEM_RESET_RX);
686 	/* Wait till it finishes */
687 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
688 		device_printf(sc->sc_dev, "cannot reset receiver\n");
689 		return (1);
690 	}
691 	return (0);
692 }
693 
694 
695 /*
696  * Reset the transmitter
697  */
698 static int
699 gem_reset_tx(sc)
700 	struct gem_softc *sc;
701 {
702 	int i;
703 
704 	/*
705 	 * Resetting while DMA is in progress can cause a bus hang, so we
706 	 * disable DMA first.
707 	 */
708 	gem_disable_tx(sc);
709 	bus_write_4(sc->sc_res[0], GEM_TX_CONFIG, 0);
710 	/* Wait till it finishes */
711 	if (!gem_bitwait(sc, GEM_TX_CONFIG, 1, 0))
712 		device_printf(sc->sc_dev, "cannot disable read dma\n");
713 
714 	/* Wait 5ms extra. */
715 	DELAY(5000);
716 
717 	/* Finally, reset the ETX */
718 	bus_write_4(sc->sc_res[0], GEM_RESET, GEM_RESET_TX);
719 	/* Wait till it finishes */
720 	for (i = TRIES; i--; DELAY(100))
721 		if ((bus_read_4(sc->sc_res[0], GEM_RESET) & GEM_RESET_TX) == 0)
722 			break;
723 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
724 		device_printf(sc->sc_dev, "cannot reset receiver\n");
725 		return (1);
726 	}
727 	return (0);
728 }
729 
730 /*
731  * disable receiver.
732  */
733 static int
734 gem_disable_rx(sc)
735 	struct gem_softc *sc;
736 {
737 	u_int32_t cfg;
738 
739 	/* Flip the enable bit */
740 	cfg = bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG);
741 	cfg &= ~GEM_MAC_RX_ENABLE;
742 	bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, cfg);
743 
744 	/* Wait for it to finish */
745 	return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
746 }
747 
748 /*
749  * disable transmitter.
750  */
751 static int
752 gem_disable_tx(sc)
753 	struct gem_softc *sc;
754 {
755 	u_int32_t cfg;
756 
757 	/* Flip the enable bit */
758 	cfg = bus_read_4(sc->sc_res[0], GEM_MAC_TX_CONFIG);
759 	cfg &= ~GEM_MAC_TX_ENABLE;
760 	bus_write_4(sc->sc_res[0], GEM_MAC_TX_CONFIG, cfg);
761 
762 	/* Wait for it to finish */
763 	return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
764 }
765 
766 /*
767  * Initialize interface.
768  */
769 static int
770 gem_meminit(sc)
771 	struct gem_softc *sc;
772 {
773 	struct gem_rxsoft *rxs;
774 	int i, error;
775 
776 	/*
777 	 * Initialize the transmit descriptor ring.
778 	 */
779 	for (i = 0; i < GEM_NTXDESC; i++) {
780 		sc->sc_txdescs[i].gd_flags = 0;
781 		sc->sc_txdescs[i].gd_addr = 0;
782 	}
783 	sc->sc_txfree = GEM_MAXTXFREE;
784 	sc->sc_txnext = 0;
785 	sc->sc_txwin = 0;
786 
787 	/*
788 	 * Initialize the receive descriptor and receive job
789 	 * descriptor rings.
790 	 */
791 	for (i = 0; i < GEM_NRXDESC; i++) {
792 		rxs = &sc->sc_rxsoft[i];
793 		if (rxs->rxs_mbuf == NULL) {
794 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
795 				device_printf(sc->sc_dev, "unable to "
796 				    "allocate or map rx buffer %d, error = "
797 				    "%d\n", i, error);
798 				/*
799 				 * XXX Should attempt to run with fewer receive
800 				 * XXX buffers instead of just failing.
801 				 */
802 				gem_rxdrain(sc);
803 				return (1);
804 			}
805 		} else
806 			GEM_INIT_RXDESC(sc, i);
807 	}
808 	sc->sc_rxptr = 0;
809 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
810 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
811 
812 	return (0);
813 }
814 
815 static int
816 gem_ringsize(sz)
817 	int sz;
818 {
819 	int v = 0;
820 
821 	switch (sz) {
822 	case 32:
823 		v = GEM_RING_SZ_32;
824 		break;
825 	case 64:
826 		v = GEM_RING_SZ_64;
827 		break;
828 	case 128:
829 		v = GEM_RING_SZ_128;
830 		break;
831 	case 256:
832 		v = GEM_RING_SZ_256;
833 		break;
834 	case 512:
835 		v = GEM_RING_SZ_512;
836 		break;
837 	case 1024:
838 		v = GEM_RING_SZ_1024;
839 		break;
840 	case 2048:
841 		v = GEM_RING_SZ_2048;
842 		break;
843 	case 4096:
844 		v = GEM_RING_SZ_4096;
845 		break;
846 	case 8192:
847 		v = GEM_RING_SZ_8192;
848 		break;
849 	default:
850 		printf("gem: invalid Receive Descriptor ring size\n");
851 		break;
852 	}
853 	return (v);
854 }
855 
856 static void
857 gem_init(xsc)
858 	void *xsc;
859 {
860 	struct gem_softc *sc = (struct gem_softc *)xsc;
861 
862 	GEM_LOCK(sc);
863 	gem_init_locked(sc);
864 	GEM_UNLOCK(sc);
865 }
866 
867 /*
868  * Initialization of interface; set up initialization block
869  * and transmit/receive descriptor rings.
870  */
871 static void
872 gem_init_locked(sc)
873 	struct gem_softc *sc;
874 {
875 	struct ifnet *ifp = sc->sc_ifp;
876 	u_int32_t v;
877 
878 	GEM_LOCK_ASSERT(sc, MA_OWNED);
879 
880 #ifdef GEM_DEBUG
881 	CTR1(KTR_GEM, "%s: gem_init: calling stop", device_get_name(sc->sc_dev));
882 #endif
883 	/*
884 	 * Initialization sequence. The numbered steps below correspond
885 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
886 	 * Channel Engine manual (part of the PCIO manual).
887 	 * See also the STP2002-STQ document from Sun Microsystems.
888 	 */
889 
890 	/* step 1 & 2. Reset the Ethernet Channel */
891 	gem_stop(sc->sc_ifp, 0);
892 	gem_reset(sc);
893 #ifdef GEM_DEBUG
894 	CTR1(KTR_GEM, "%s: gem_init: restarting", device_get_name(sc->sc_dev));
895 #endif
896 
897 	/* Re-initialize the MIF */
898 	gem_mifinit(sc);
899 
900 	/* step 3. Setup data structures in host memory */
901 	gem_meminit(sc);
902 
903 	/* step 4. TX MAC registers & counters */
904 	gem_init_regs(sc);
905 
906 	/* step 5. RX MAC registers & counters */
907 	gem_setladrf(sc);
908 
909 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
910 	/* NOTE: we use only 32-bit DMA addresses here. */
911 	bus_write_4(sc->sc_res[0], GEM_TX_RING_PTR_HI, 0);
912 	bus_write_4(sc->sc_res[0], GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
913 
914 	bus_write_4(sc->sc_res[0], GEM_RX_RING_PTR_HI, 0);
915 	bus_write_4(sc->sc_res[0], GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
916 #ifdef GEM_DEBUG
917 	CTR3(KTR_GEM, "loading rx ring %lx, tx ring %lx, cddma %lx",
918 	    GEM_CDRXADDR(sc, 0), GEM_CDTXADDR(sc, 0), sc->sc_cddma);
919 #endif
920 
921 	/* step 8. Global Configuration & Interrupt Mask */
922 	bus_write_4(sc->sc_res[0], GEM_INTMASK,
923 		      ~(GEM_INTR_TX_INTME|
924 			GEM_INTR_TX_EMPTY|
925 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
926 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
927 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
928 			GEM_INTR_BERR));
929 	bus_write_4(sc->sc_res[0], GEM_MAC_RX_MASK,
930 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
931 	bus_write_4(sc->sc_res[0], GEM_MAC_TX_MASK, 0xffff); /* XXXX */
932 	bus_write_4(sc->sc_res[0], GEM_MAC_CONTROL_MASK, 0); /* XXXX */
933 
934 	/* step 9. ETX Configuration: use mostly default values */
935 
936 	/* Enable DMA */
937 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
938 	bus_write_4(sc->sc_res[0], GEM_TX_CONFIG,
939 		v|GEM_TX_CONFIG_TXDMA_EN|
940 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
941 
942 	/* step 10. ERX Configuration */
943 
944 	/* Encode Receive Descriptor ring size: four possible values */
945 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
946 
947 	/* Enable DMA */
948 	bus_write_4(sc->sc_res[0], GEM_RX_CONFIG,
949 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
950 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
951 		(0<<GEM_RX_CONFIG_CXM_START_SHFT));
952 	/*
953 	 * The following value is for an OFF Threshold of about 3/4 full
954 	 * and an ON Threshold of 1/4 full.
955 	 */
956 	bus_write_4(sc->sc_res[0], GEM_RX_PAUSE_THRESH,
957 	    (3 * sc->sc_rxfifosize / 256) |
958 	    (   (sc->sc_rxfifosize / 256) << 12));
959 	bus_write_4(sc->sc_res[0], GEM_RX_BLANKING, (6<<12)|6);
960 
961 	/* step 11. Configure Media */
962 	mii_mediachg(sc->sc_mii);
963 
964 	/* step 12. RX_MAC Configuration Register */
965 	v = bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG);
966 	v |= GEM_MAC_RX_ENABLE;
967 	bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, v);
968 
969 	/* step 14. Issue Transmit Pending command */
970 
971 	/* step 15.  Give the reciever a swift kick */
972 	bus_write_4(sc->sc_res[0], GEM_RX_KICK, GEM_NRXDESC-4);
973 
974 	/* Start the one second timer. */
975 	sc->sc_wdog_timer = 0;
976 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
977 
978 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
979 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
980 	sc->sc_ifflags = ifp->if_flags;
981 }
982 
983 static int
984 gem_load_txmbuf(sc, m0)
985 	struct gem_softc *sc;
986 	struct mbuf *m0;
987 {
988 	struct gem_txdma txd;
989 	struct gem_txsoft *txs;
990 	int error;
991 
992 	/* Get a work queue entry. */
993 	if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
994 		/* Ran out of descriptors. */
995 		return (-1);
996 	}
997 	txd.txd_sc = sc;
998 	txd.txd_txs = txs;
999 	txs->txs_firstdesc = sc->sc_txnext;
1000 	error = bus_dmamap_load_mbuf(sc->sc_tdmatag, txs->txs_dmamap, m0,
1001 	    gem_txdma_callback, &txd, BUS_DMA_NOWAIT);
1002 	if (error != 0)
1003 		goto fail;
1004 	if (txs->txs_ndescs == -1) {
1005 		error = -1;
1006 		goto fail;
1007 	}
1008 
1009 	/* Sync the DMA map. */
1010 	bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1011 	    BUS_DMASYNC_PREWRITE);
1012 
1013 #ifdef GEM_DEBUG
1014 	CTR3(KTR_GEM, "load_mbuf: setting firstdesc=%d, lastdesc=%d, "
1015 	    "ndescs=%d", txs->txs_firstdesc, txs->txs_lastdesc,
1016 	    txs->txs_ndescs);
1017 #endif
1018 	STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1019 	STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1020 	txs->txs_mbuf = m0;
1021 
1022 	sc->sc_txnext = GEM_NEXTTX(txs->txs_lastdesc);
1023 	sc->sc_txfree -= txs->txs_ndescs;
1024 	return (0);
1025 
1026 fail:
1027 #ifdef GEM_DEBUG
1028 	CTR1(KTR_GEM, "gem_load_txmbuf failed (%d)", error);
1029 #endif
1030 	bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1031 	return (error);
1032 }
1033 
1034 static void
1035 gem_init_regs(sc)
1036 	struct gem_softc *sc;
1037 {
1038 	const u_char *laddr = IF_LLADDR(sc->sc_ifp);
1039 	u_int32_t v;
1040 
1041 	/* These regs are not cleared on reset */
1042 	if (!sc->sc_inited) {
1043 
1044 		/* Wooo.  Magic values. */
1045 		bus_write_4(sc->sc_res[0], GEM_MAC_IPG0, 0);
1046 		bus_write_4(sc->sc_res[0], GEM_MAC_IPG1, 8);
1047 		bus_write_4(sc->sc_res[0], GEM_MAC_IPG2, 4);
1048 
1049 		bus_write_4(sc->sc_res[0], GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1050 		/* Max frame and max burst size */
1051 		bus_write_4(sc->sc_res[0], GEM_MAC_MAC_MAX_FRAME,
1052 		    (ETHER_MAX_LEN + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) |
1053 		    (0x2000 << 16));
1054 
1055 		bus_write_4(sc->sc_res[0], GEM_MAC_PREAMBLE_LEN, 0x7);
1056 		bus_write_4(sc->sc_res[0], GEM_MAC_JAM_SIZE, 0x4);
1057 		bus_write_4(sc->sc_res[0], GEM_MAC_ATTEMPT_LIMIT, 0x10);
1058 		/* Dunno.... */
1059 		bus_write_4(sc->sc_res[0], GEM_MAC_CONTROL_TYPE, 0x8088);
1060 		bus_write_4(sc->sc_res[0], GEM_MAC_RANDOM_SEED,
1061 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1062 
1063 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1064 		bus_write_4(sc->sc_res[0], GEM_MAC_ADDR3, 0);
1065 		bus_write_4(sc->sc_res[0], GEM_MAC_ADDR4, 0);
1066 		bus_write_4(sc->sc_res[0], GEM_MAC_ADDR5, 0);
1067 
1068 		/* MAC control addr set to 01:80:c2:00:00:01 */
1069 		bus_write_4(sc->sc_res[0], GEM_MAC_ADDR6, 0x0001);
1070 		bus_write_4(sc->sc_res[0], GEM_MAC_ADDR7, 0xc200);
1071 		bus_write_4(sc->sc_res[0], GEM_MAC_ADDR8, 0x0180);
1072 
1073 		/* MAC filter addr set to 0:0:0:0:0:0 */
1074 		bus_write_4(sc->sc_res[0], GEM_MAC_ADDR_FILTER0, 0);
1075 		bus_write_4(sc->sc_res[0], GEM_MAC_ADDR_FILTER1, 0);
1076 		bus_write_4(sc->sc_res[0], GEM_MAC_ADDR_FILTER2, 0);
1077 
1078 		bus_write_4(sc->sc_res[0], GEM_MAC_ADR_FLT_MASK1_2, 0);
1079 		bus_write_4(sc->sc_res[0], GEM_MAC_ADR_FLT_MASK0, 0);
1080 
1081 		sc->sc_inited = 1;
1082 	}
1083 
1084 	/* Counters need to be zeroed */
1085 	bus_write_4(sc->sc_res[0], GEM_MAC_NORM_COLL_CNT, 0);
1086 	bus_write_4(sc->sc_res[0], GEM_MAC_FIRST_COLL_CNT, 0);
1087 	bus_write_4(sc->sc_res[0], GEM_MAC_EXCESS_COLL_CNT, 0);
1088 	bus_write_4(sc->sc_res[0], GEM_MAC_LATE_COLL_CNT, 0);
1089 	bus_write_4(sc->sc_res[0], GEM_MAC_DEFER_TMR_CNT, 0);
1090 	bus_write_4(sc->sc_res[0], GEM_MAC_PEAK_ATTEMPTS, 0);
1091 	bus_write_4(sc->sc_res[0], GEM_MAC_RX_FRAME_COUNT, 0);
1092 	bus_write_4(sc->sc_res[0], GEM_MAC_RX_LEN_ERR_CNT, 0);
1093 	bus_write_4(sc->sc_res[0], GEM_MAC_RX_ALIGN_ERR, 0);
1094 	bus_write_4(sc->sc_res[0], GEM_MAC_RX_CRC_ERR_CNT, 0);
1095 	bus_write_4(sc->sc_res[0], GEM_MAC_RX_CODE_VIOL, 0);
1096 
1097 	/* Un-pause stuff */
1098 #if 0
1099 	bus_write_4(sc->sc_res[0], GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1100 #else
1101 	bus_write_4(sc->sc_res[0], GEM_MAC_SEND_PAUSE_CMD, 0);
1102 #endif
1103 
1104 	/*
1105 	 * Set the station address.
1106 	 */
1107 	bus_write_4(sc->sc_res[0], GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1108 	bus_write_4(sc->sc_res[0], GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1109 	bus_write_4(sc->sc_res[0], GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1110 
1111 	/*
1112 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1113 	 */
1114 	sc->sc_mif_config = bus_read_4(sc->sc_res[0], GEM_MIF_CONFIG);
1115 	v = GEM_MAC_XIF_TX_MII_ENA;
1116 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1117 		v |= GEM_MAC_XIF_FDPLX_LED;
1118 		if (sc->sc_flags & GEM_GIGABIT)
1119 			v |= GEM_MAC_XIF_GMII_MODE;
1120 	}
1121 	bus_write_4(sc->sc_res[0], GEM_MAC_XIF_CONFIG, v);
1122 }
1123 
1124 static void
1125 gem_start(ifp)
1126 	struct ifnet *ifp;
1127 {
1128 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1129 
1130 	GEM_LOCK(sc);
1131 	gem_start_locked(ifp);
1132 	GEM_UNLOCK(sc);
1133 }
1134 
1135 static void
1136 gem_start_locked(ifp)
1137 	struct ifnet *ifp;
1138 {
1139 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1140 	struct mbuf *m0 = NULL;
1141 	int firsttx, ntx = 0, ofree, txmfail;
1142 
1143 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1144 	    IFF_DRV_RUNNING)
1145 		return;
1146 
1147 	/*
1148 	 * Remember the previous number of free descriptors and
1149 	 * the first descriptor we'll use.
1150 	 */
1151 	ofree = sc->sc_txfree;
1152 	firsttx = sc->sc_txnext;
1153 
1154 #ifdef GEM_DEBUG
1155 	CTR3(KTR_GEM, "%s: gem_start: txfree %d, txnext %d",
1156 	    device_get_name(sc->sc_dev), ofree, firsttx);
1157 #endif
1158 
1159 	/*
1160 	 * Loop through the send queue, setting up transmit descriptors
1161 	 * until we drain the queue, or use up all available transmit
1162 	 * descriptors.
1163 	 */
1164 	txmfail = 0;
1165 	do {
1166 		/*
1167 		 * Grab a packet off the queue.
1168 		 */
1169 		IF_DEQUEUE(&ifp->if_snd, m0);
1170 		if (m0 == NULL)
1171 			break;
1172 
1173 		txmfail = gem_load_txmbuf(sc, m0);
1174 		if (txmfail > 0) {
1175 			/* Drop the mbuf and complain. */
1176 			printf("gem_start: error %d while loading mbuf dma "
1177 			    "map\n", txmfail);
1178 			continue;
1179 		}
1180 		/* Not enough descriptors. */
1181 		if (txmfail == -1) {
1182 			if (sc->sc_txfree == GEM_MAXTXFREE)
1183 				panic("gem_start: mbuf chain too long!");
1184 			IF_PREPEND(&ifp->if_snd, m0);
1185 			break;
1186 		}
1187 
1188 		ntx++;
1189 		/* Kick the transmitter. */
1190 #ifdef GEM_DEBUG
1191 		CTR2(KTR_GEM, "%s: gem_start: kicking tx %d",
1192 		    device_get_name(sc->sc_dev), sc->sc_txnext);
1193 #endif
1194 		bus_write_4(sc->sc_res[0], GEM_TX_KICK,
1195 			sc->sc_txnext);
1196 
1197 		BPF_MTAP(ifp, m0);
1198 	} while (1);
1199 
1200 	if (txmfail == -1 || sc->sc_txfree == 0) {
1201 		/* No more slots left; notify upper layer. */
1202 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1203 	}
1204 
1205 	if (ntx > 0) {
1206 		GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
1207 
1208 #ifdef GEM_DEBUG
1209 		CTR2(KTR_GEM, "%s: packets enqueued, OWN on %d",
1210 		    device_get_name(sc->sc_dev), firsttx);
1211 #endif
1212 
1213 		/* Set a watchdog timer in case the chip flakes out. */
1214 		sc->sc_wdog_timer = 5;
1215 #ifdef GEM_DEBUG
1216 		CTR2(KTR_GEM, "%s: gem_start: watchdog %d",
1217 		    device_get_name(sc->sc_dev), sc->sc_wdog_timer);
1218 #endif
1219 	}
1220 }
1221 
1222 /*
1223  * Transmit interrupt.
1224  */
1225 static void
1226 gem_tint(sc)
1227 	struct gem_softc *sc;
1228 {
1229 	struct ifnet *ifp = sc->sc_ifp;
1230 	struct gem_txsoft *txs;
1231 	int txlast;
1232 	int progress = 0;
1233 
1234 
1235 #ifdef GEM_DEBUG
1236 	CTR1(KTR_GEM, "%s: gem_tint", device_get_name(sc->sc_dev));
1237 #endif
1238 
1239 	/*
1240 	 * Unload collision counters
1241 	 */
1242 	ifp->if_collisions +=
1243 		bus_read_4(sc->sc_res[0], GEM_MAC_NORM_COLL_CNT) +
1244 		bus_read_4(sc->sc_res[0], GEM_MAC_FIRST_COLL_CNT) +
1245 		bus_read_4(sc->sc_res[0], GEM_MAC_EXCESS_COLL_CNT) +
1246 		bus_read_4(sc->sc_res[0], GEM_MAC_LATE_COLL_CNT);
1247 
1248 	/*
1249 	 * then clear the hardware counters.
1250 	 */
1251 	bus_write_4(sc->sc_res[0], GEM_MAC_NORM_COLL_CNT, 0);
1252 	bus_write_4(sc->sc_res[0], GEM_MAC_FIRST_COLL_CNT, 0);
1253 	bus_write_4(sc->sc_res[0], GEM_MAC_EXCESS_COLL_CNT, 0);
1254 	bus_write_4(sc->sc_res[0], GEM_MAC_LATE_COLL_CNT, 0);
1255 
1256 	/*
1257 	 * Go through our Tx list and free mbufs for those
1258 	 * frames that have been transmitted.
1259 	 */
1260 	GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
1261 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1262 
1263 #ifdef GEM_DEBUG
1264 		if (ifp->if_flags & IFF_DEBUG) {
1265 			int i;
1266 			printf("    txsoft %p transmit chain:\n", txs);
1267 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1268 				printf("descriptor %d: ", i);
1269 				printf("gd_flags: 0x%016llx\t", (long long)
1270 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1271 				printf("gd_addr: 0x%016llx\n", (long long)
1272 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1273 				if (i == txs->txs_lastdesc)
1274 					break;
1275 			}
1276 		}
1277 #endif
1278 
1279 		/*
1280 		 * In theory, we could harveast some descriptors before
1281 		 * the ring is empty, but that's a bit complicated.
1282 		 *
1283 		 * GEM_TX_COMPLETION points to the last descriptor
1284 		 * processed +1.
1285 		 */
1286 		txlast = bus_read_4(sc->sc_res[0], GEM_TX_COMPLETION);
1287 #ifdef GEM_DEBUG
1288 		CTR3(KTR_GEM, "gem_tint: txs->txs_firstdesc = %d, "
1289 		    "txs->txs_lastdesc = %d, txlast = %d",
1290 		    txs->txs_firstdesc, txs->txs_lastdesc, txlast);
1291 #endif
1292 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1293 			if ((txlast >= txs->txs_firstdesc) &&
1294 				(txlast <= txs->txs_lastdesc))
1295 				break;
1296 		} else {
1297 			/* Ick -- this command wraps */
1298 			if ((txlast >= txs->txs_firstdesc) ||
1299 				(txlast <= txs->txs_lastdesc))
1300 				break;
1301 		}
1302 
1303 #ifdef GEM_DEBUG
1304 		CTR0(KTR_GEM, "gem_tint: releasing a desc");
1305 #endif
1306 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1307 
1308 		sc->sc_txfree += txs->txs_ndescs;
1309 
1310 		bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1311 		    BUS_DMASYNC_POSTWRITE);
1312 		bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1313 		if (txs->txs_mbuf != NULL) {
1314 			m_freem(txs->txs_mbuf);
1315 			txs->txs_mbuf = NULL;
1316 		}
1317 
1318 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1319 
1320 		ifp->if_opackets++;
1321 		progress = 1;
1322 	}
1323 
1324 #ifdef GEM_DEBUG
1325 	CTR3(KTR_GEM, "gem_tint: GEM_TX_STATE_MACHINE %x "
1326 		"GEM_TX_DATA_PTR %llx "
1327 		"GEM_TX_COMPLETION %x",
1328 		bus_read_4(sc->sc_res[0], GEM_TX_STATE_MACHINE),
1329 		((long long) bus_read_4(sc->sc_res[0],
1330 			GEM_TX_DATA_PTR_HI) << 32) |
1331 			     bus_read_4(sc->sc_res[0],
1332 			GEM_TX_DATA_PTR_LO),
1333 		bus_read_4(sc->sc_res[0], GEM_TX_COMPLETION));
1334 #endif
1335 
1336 	if (progress) {
1337 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1338 			sc->sc_txwin = 0;
1339 
1340 		/* Freed some descriptors, so reset IFF_DRV_OACTIVE and restart. */
1341 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1342 		gem_start_locked(ifp);
1343 
1344 		sc->sc_wdog_timer = STAILQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1345 	}
1346 
1347 #ifdef GEM_DEBUG
1348 	CTR2(KTR_GEM, "%s: gem_tint: watchdog %d",
1349 	    device_get_name(sc->sc_dev), sc->sc_wdog_timer);
1350 #endif
1351 }
1352 
1353 #ifdef GEM_RINT_TIMEOUT
1354 static void
1355 gem_rint_timeout(arg)
1356 	void *arg;
1357 {
1358 	struct gem_softc *sc = (struct gem_softc *)arg;
1359 
1360 	GEM_LOCK_ASSERT(sc, MA_OWNED);
1361 	gem_rint(sc);
1362 }
1363 #endif
1364 
1365 /*
1366  * Receive interrupt.
1367  */
1368 static void
1369 gem_rint(sc)
1370 	struct gem_softc *sc;
1371 {
1372 	struct ifnet *ifp = sc->sc_ifp;
1373 	struct gem_rxsoft *rxs;
1374 	struct mbuf *m;
1375 	u_int64_t rxstat;
1376 	u_int32_t rxcomp;
1377 	int i, len, progress = 0;
1378 
1379 #ifdef GEM_RINT_TIMEOUT
1380 	callout_stop(&sc->sc_rx_ch);
1381 #endif
1382 #ifdef GEM_DEBUG
1383 	CTR1(KTR_GEM, "%s: gem_rint", device_get_name(sc->sc_dev));
1384 #endif
1385 
1386 	/*
1387 	 * Read the completion register once.  This limits
1388 	 * how long the following loop can execute.
1389 	 */
1390 	rxcomp = bus_read_4(sc->sc_res[0], GEM_RX_COMPLETION);
1391 
1392 #ifdef GEM_DEBUG
1393 	CTR2(KTR_GEM, "gem_rint: sc->rxptr %d, complete %d",
1394 	    sc->sc_rxptr, rxcomp);
1395 #endif
1396 	GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
1397 	for (i = sc->sc_rxptr; i != rxcomp;
1398 	     i = GEM_NEXTRX(i)) {
1399 		rxs = &sc->sc_rxsoft[i];
1400 
1401 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1402 
1403 		if (rxstat & GEM_RD_OWN) {
1404 #ifdef GEM_RINT_TIMEOUT
1405 			/*
1406 			 * The descriptor is still marked as owned, although
1407 			 * it is supposed to have completed. This has been
1408 			 * observed on some machines. Just exiting here
1409 			 * might leave the packet sitting around until another
1410 			 * one arrives to trigger a new interrupt, which is
1411 			 * generally undesirable, so set up a timeout.
1412 			 */
1413 			callout_reset(&sc->sc_rx_ch, GEM_RXOWN_TICKS,
1414 			    gem_rint_timeout, sc);
1415 #endif
1416 			break;
1417 		}
1418 
1419 		progress++;
1420 		ifp->if_ipackets++;
1421 
1422 		if (rxstat & GEM_RD_BAD_CRC) {
1423 			ifp->if_ierrors++;
1424 			device_printf(sc->sc_dev, "receive error: CRC error\n");
1425 			GEM_INIT_RXDESC(sc, i);
1426 			continue;
1427 		}
1428 
1429 #ifdef GEM_DEBUG
1430 		if (ifp->if_flags & IFF_DEBUG) {
1431 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1432 			printf("gd_flags: 0x%016llx\t", (long long)
1433 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1434 			printf("gd_addr: 0x%016llx\n", (long long)
1435 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1436 		}
1437 #endif
1438 
1439 		/*
1440 		 * No errors; receive the packet.  Note the Gem
1441 		 * includes the CRC with every packet.
1442 		 */
1443 		len = GEM_RD_BUFLEN(rxstat);
1444 
1445 		/*
1446 		 * Allocate a new mbuf cluster.  If that fails, we are
1447 		 * out of memory, and must drop the packet and recycle
1448 		 * the buffer that's already attached to this descriptor.
1449 		 */
1450 		m = rxs->rxs_mbuf;
1451 		if (gem_add_rxbuf(sc, i) != 0) {
1452 			ifp->if_ierrors++;
1453 			GEM_INIT_RXDESC(sc, i);
1454 			continue;
1455 		}
1456 		m->m_data += 2; /* We're already off by two */
1457 
1458 		m->m_pkthdr.rcvif = ifp;
1459 		m->m_pkthdr.len = m->m_len = len - ETHER_CRC_LEN;
1460 
1461 		/* Pass it on. */
1462 		GEM_UNLOCK(sc);
1463 		(*ifp->if_input)(ifp, m);
1464 		GEM_LOCK(sc);
1465 	}
1466 
1467 	if (progress) {
1468 		GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
1469 		/* Update the receive pointer. */
1470 		if (i == sc->sc_rxptr) {
1471 			device_printf(sc->sc_dev, "rint: ring wrap\n");
1472 		}
1473 		sc->sc_rxptr = i;
1474 		bus_write_4(sc->sc_res[0], GEM_RX_KICK, GEM_PREVRX(i));
1475 	}
1476 
1477 #ifdef GEM_DEBUG
1478 	CTR2(KTR_GEM, "gem_rint: done sc->rxptr %d, complete %d",
1479 		sc->sc_rxptr, bus_read_4(sc->sc_res[0], GEM_RX_COMPLETION));
1480 #endif
1481 }
1482 
1483 
1484 /*
1485  * gem_add_rxbuf:
1486  *
1487  *	Add a receive buffer to the indicated descriptor.
1488  */
1489 static int
1490 gem_add_rxbuf(sc, idx)
1491 	struct gem_softc *sc;
1492 	int idx;
1493 {
1494 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1495 	struct mbuf *m;
1496 	bus_dma_segment_t segs[1];
1497 	int error, nsegs;
1498 
1499 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1500 	if (m == NULL)
1501 		return (ENOBUFS);
1502 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1503 
1504 #ifdef GEM_DEBUG
1505 	/* bzero the packet to check dma */
1506 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1507 #endif
1508 
1509 	if (rxs->rxs_mbuf != NULL) {
1510 		bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap,
1511 		    BUS_DMASYNC_POSTREAD);
1512 		bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap);
1513 	}
1514 
1515 	rxs->rxs_mbuf = m;
1516 
1517 	error = bus_dmamap_load_mbuf_sg(sc->sc_rdmatag, rxs->rxs_dmamap,
1518 	    m, segs, &nsegs, BUS_DMA_NOWAIT);
1519 	/* If nsegs is wrong then the stack is corrupt. */
1520 	KASSERT(nsegs == 1, ("Too many segments returned!"));
1521 	if (error != 0) {
1522 		device_printf(sc->sc_dev, "can't load rx DMA map %d, error = "
1523 		    "%d\n", idx, error);
1524 		m_freem(m);
1525 		return (ENOBUFS);
1526 	}
1527 	rxs->rxs_paddr = segs[0].ds_addr;
1528 
1529 	bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap, BUS_DMASYNC_PREREAD);
1530 
1531 	GEM_INIT_RXDESC(sc, idx);
1532 
1533 	return (0);
1534 }
1535 
1536 
1537 static void
1538 gem_eint(sc, status)
1539 	struct gem_softc *sc;
1540 	u_int status;
1541 {
1542 
1543 	if ((status & GEM_INTR_MIF) != 0) {
1544 		device_printf(sc->sc_dev, "XXXlink status changed\n");
1545 		return;
1546 	}
1547 
1548 	device_printf(sc->sc_dev, "status=%x\n", status);
1549 }
1550 
1551 
1552 void
1553 gem_intr(v)
1554 	void *v;
1555 {
1556 	struct gem_softc *sc = (struct gem_softc *)v;
1557 	u_int32_t status;
1558 
1559 	GEM_LOCK(sc);
1560 	status = bus_read_4(sc->sc_res[0], GEM_STATUS);
1561 #ifdef GEM_DEBUG
1562 	CTR3(KTR_GEM, "%s: gem_intr: cplt %x, status %x",
1563 		device_get_name(sc->sc_dev), (status>>19),
1564 		(u_int)status);
1565 #endif
1566 
1567 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1568 		gem_eint(sc, status);
1569 
1570 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0)
1571 		gem_tint(sc);
1572 
1573 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1574 		gem_rint(sc);
1575 
1576 	/* We should eventually do more than just print out error stats. */
1577 	if (status & GEM_INTR_TX_MAC) {
1578 		int txstat = bus_read_4(sc->sc_res[0], GEM_MAC_TX_STATUS);
1579 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1580 			device_printf(sc->sc_dev, "MAC tx fault, status %x\n",
1581 			    txstat);
1582 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
1583 			gem_init_locked(sc);
1584 	}
1585 	if (status & GEM_INTR_RX_MAC) {
1586 		int rxstat = bus_read_4(sc->sc_res[0], GEM_MAC_RX_STATUS);
1587 		/*
1588 		 * On some chip revisions GEM_MAC_RX_OVERFLOW happen often
1589 		 * due to a silicon bug so handle them silently.
1590 		 */
1591 		if (rxstat & GEM_MAC_RX_OVERFLOW)
1592 			gem_init_locked(sc);
1593 		else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
1594 			device_printf(sc->sc_dev, "MAC rx fault, status %x\n",
1595 			    rxstat);
1596 	}
1597 	GEM_UNLOCK(sc);
1598 }
1599 
1600 static int
1601 gem_watchdog(sc)
1602 	struct gem_softc *sc;
1603 {
1604 
1605 	GEM_LOCK_ASSERT(sc, MA_OWNED);
1606 
1607 #ifdef GEM_DEBUG
1608 	CTR3(KTR_GEM, "gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1609 		"GEM_MAC_RX_CONFIG %x",
1610 		bus_read_4(sc->sc_res[0], GEM_RX_CONFIG),
1611 		bus_read_4(sc->sc_res[0], GEM_MAC_RX_STATUS),
1612 		bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG));
1613 	CTR3(KTR_GEM, "gem_watchdog: GEM_TX_CONFIG %x GEM_MAC_TX_STATUS %x "
1614 		"GEM_MAC_TX_CONFIG %x",
1615 		bus_read_4(sc->sc_res[0], GEM_TX_CONFIG),
1616 		bus_read_4(sc->sc_res[0], GEM_MAC_TX_STATUS),
1617 		bus_read_4(sc->sc_res[0], GEM_MAC_TX_CONFIG));
1618 #endif
1619 
1620 	if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0)
1621 		return (0);
1622 
1623 	device_printf(sc->sc_dev, "device timeout\n");
1624 	++sc->sc_ifp->if_oerrors;
1625 
1626 	/* Try to get more packets going. */
1627 	gem_init_locked(sc);
1628 	return (EJUSTRETURN);
1629 }
1630 
1631 /*
1632  * Initialize the MII Management Interface
1633  */
1634 static void
1635 gem_mifinit(sc)
1636 	struct gem_softc *sc;
1637 {
1638 
1639 	/* Configure the MIF in frame mode */
1640 	sc->sc_mif_config = bus_read_4(sc->sc_res[0], GEM_MIF_CONFIG);
1641 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1642 	bus_write_4(sc->sc_res[0], GEM_MIF_CONFIG, sc->sc_mif_config);
1643 }
1644 
1645 /*
1646  * MII interface
1647  *
1648  * The GEM MII interface supports at least three different operating modes:
1649  *
1650  * Bitbang mode is implemented using data, clock and output enable registers.
1651  *
1652  * Frame mode is implemented by loading a complete frame into the frame
1653  * register and polling the valid bit for completion.
1654  *
1655  * Polling mode uses the frame register but completion is indicated by
1656  * an interrupt.
1657  *
1658  */
1659 int
1660 gem_mii_readreg(dev, phy, reg)
1661 	device_t dev;
1662 	int phy, reg;
1663 {
1664 	struct gem_softc *sc = device_get_softc(dev);
1665 	int n;
1666 	u_int32_t v;
1667 
1668 #ifdef GEM_DEBUG_PHY
1669 	printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1670 #endif
1671 
1672 #if 0
1673 	/* Select the desired PHY in the MIF configuration register */
1674 	v = bus_read_4(sc->sc_res[0], GEM_MIF_CONFIG);
1675 	/* Clear PHY select bit */
1676 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1677 	if (phy == GEM_PHYAD_EXTERNAL)
1678 		/* Set PHY select bit to get at external device */
1679 		v |= GEM_MIF_CONFIG_PHY_SEL;
1680 	bus_write_4(sc->sc_res[0], GEM_MIF_CONFIG, v);
1681 #endif
1682 
1683 	/* Construct the frame command */
1684 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
1685 		GEM_MIF_FRAME_READ;
1686 
1687 	bus_write_4(sc->sc_res[0], GEM_MIF_FRAME, v);
1688 	for (n = 0; n < 100; n++) {
1689 		DELAY(1);
1690 		v = bus_read_4(sc->sc_res[0], GEM_MIF_FRAME);
1691 		if (v & GEM_MIF_FRAME_TA0)
1692 			return (v & GEM_MIF_FRAME_DATA);
1693 	}
1694 
1695 	device_printf(sc->sc_dev, "mii_read timeout\n");
1696 	return (0);
1697 }
1698 
1699 int
1700 gem_mii_writereg(dev, phy, reg, val)
1701 	device_t dev;
1702 	int phy, reg, val;
1703 {
1704 	struct gem_softc *sc = device_get_softc(dev);
1705 	int n;
1706 	u_int32_t v;
1707 
1708 #ifdef GEM_DEBUG_PHY
1709 	printf("gem_mii_writereg: phy %d reg %d val %x\n", phy, reg, val);
1710 #endif
1711 
1712 #if 0
1713 	/* Select the desired PHY in the MIF configuration register */
1714 	v = bus_read_4(sc->sc_res[0], GEM_MIF_CONFIG);
1715 	/* Clear PHY select bit */
1716 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1717 	if (phy == GEM_PHYAD_EXTERNAL)
1718 		/* Set PHY select bit to get at external device */
1719 		v |= GEM_MIF_CONFIG_PHY_SEL;
1720 	bus_write_4(sc->sc_res[0], GEM_MIF_CONFIG, v);
1721 #endif
1722 	/* Construct the frame command */
1723 	v = GEM_MIF_FRAME_WRITE			|
1724 	    (phy << GEM_MIF_PHY_SHIFT)		|
1725 	    (reg << GEM_MIF_REG_SHIFT)		|
1726 	    (val & GEM_MIF_FRAME_DATA);
1727 
1728 	bus_write_4(sc->sc_res[0], GEM_MIF_FRAME, v);
1729 	for (n = 0; n < 100; n++) {
1730 		DELAY(1);
1731 		v = bus_read_4(sc->sc_res[0], GEM_MIF_FRAME);
1732 		if (v & GEM_MIF_FRAME_TA0)
1733 			return (1);
1734 	}
1735 
1736 	device_printf(sc->sc_dev, "mii_write timeout\n");
1737 	return (0);
1738 }
1739 
1740 void
1741 gem_mii_statchg(dev)
1742 	device_t dev;
1743 {
1744 	struct gem_softc *sc = device_get_softc(dev);
1745 #ifdef GEM_DEBUG
1746 	int instance;
1747 #endif
1748 	u_int32_t v;
1749 
1750 #ifdef GEM_DEBUG
1751 	instance = IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media);
1752 	if (sc->sc_debug)
1753 		printf("gem_mii_statchg: status change: phy = %d\n",
1754 			sc->sc_phys[instance]);
1755 #endif
1756 
1757 	/* Set tx full duplex options */
1758 	bus_write_4(sc->sc_res[0], GEM_MAC_TX_CONFIG, 0);
1759 	DELAY(10000); /* reg must be cleared and delay before changing. */
1760 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1761 		GEM_MAC_TX_ENABLE;
1762 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) {
1763 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1764 	}
1765 	bus_write_4(sc->sc_res[0], GEM_MAC_TX_CONFIG, v);
1766 
1767 	/* XIF Configuration */
1768 	v = GEM_MAC_XIF_LINK_LED;
1769 	v |= GEM_MAC_XIF_TX_MII_ENA;
1770 
1771 	/* If an external transceiver is connected, enable its MII drivers */
1772 	sc->sc_mif_config = bus_read_4(sc->sc_res[0], GEM_MIF_CONFIG);
1773 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1774 		/* External MII needs echo disable if half duplex. */
1775 		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
1776 			/* turn on full duplex LED */
1777 			v |= GEM_MAC_XIF_FDPLX_LED;
1778 		else
1779 	 		/* half duplex -- disable echo */
1780 	 		v |= GEM_MAC_XIF_ECHO_DISABL;
1781 
1782 		if (IFM_SUBTYPE(sc->sc_mii->mii_media_active) == IFM_1000_T)
1783 			v |= GEM_MAC_XIF_GMII_MODE;
1784 		else
1785 			v &= ~GEM_MAC_XIF_GMII_MODE;
1786 	} else {
1787 		/* Internal MII needs buf enable */
1788 		v |= GEM_MAC_XIF_MII_BUF_ENA;
1789 	}
1790 	bus_write_4(sc->sc_res[0], GEM_MAC_XIF_CONFIG, v);
1791 }
1792 
1793 int
1794 gem_mediachange(ifp)
1795 	struct ifnet *ifp;
1796 {
1797 	struct gem_softc *sc = ifp->if_softc;
1798 	int error;
1799 
1800 	/* XXX Add support for serial media. */
1801 
1802 	GEM_LOCK(sc);
1803 	error = mii_mediachg(sc->sc_mii);
1804 	GEM_UNLOCK(sc);
1805 	return (error);
1806 }
1807 
1808 void
1809 gem_mediastatus(ifp, ifmr)
1810 	struct ifnet *ifp;
1811 	struct ifmediareq *ifmr;
1812 {
1813 	struct gem_softc *sc = ifp->if_softc;
1814 
1815 	GEM_LOCK(sc);
1816 	if ((ifp->if_flags & IFF_UP) == 0) {
1817 		GEM_UNLOCK(sc);
1818 		return;
1819 	}
1820 
1821 	mii_pollstat(sc->sc_mii);
1822 	ifmr->ifm_active = sc->sc_mii->mii_media_active;
1823 	ifmr->ifm_status = sc->sc_mii->mii_media_status;
1824 	GEM_UNLOCK(sc);
1825 }
1826 
1827 /*
1828  * Process an ioctl request.
1829  */
1830 static int
1831 gem_ioctl(ifp, cmd, data)
1832 	struct ifnet *ifp;
1833 	u_long cmd;
1834 	caddr_t data;
1835 {
1836 	struct gem_softc *sc = ifp->if_softc;
1837 	struct ifreq *ifr = (struct ifreq *)data;
1838 	int error = 0;
1839 
1840 	switch (cmd) {
1841 	case SIOCSIFFLAGS:
1842 		GEM_LOCK(sc);
1843 		if (ifp->if_flags & IFF_UP) {
1844 			if ((sc->sc_ifflags ^ ifp->if_flags) == IFF_PROMISC)
1845 				gem_setladrf(sc);
1846 			else
1847 				gem_init_locked(sc);
1848 		} else {
1849 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1850 				gem_stop(ifp, 0);
1851 		}
1852 		sc->sc_ifflags = ifp->if_flags;
1853 		GEM_UNLOCK(sc);
1854 		break;
1855 	case SIOCADDMULTI:
1856 	case SIOCDELMULTI:
1857 		GEM_LOCK(sc);
1858 		gem_setladrf(sc);
1859 		GEM_UNLOCK(sc);
1860 		break;
1861 	case SIOCGIFMEDIA:
1862 	case SIOCSIFMEDIA:
1863 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
1864 		break;
1865 	default:
1866 		error = ether_ioctl(ifp, cmd, data);
1867 		break;
1868 	}
1869 
1870 	/* Try to get things going again */
1871 	GEM_LOCK(sc);
1872 	if (ifp->if_flags & IFF_UP)
1873 		gem_start_locked(ifp);
1874 	GEM_UNLOCK(sc);
1875 	return (error);
1876 }
1877 
1878 /*
1879  * Set up the logical address filter.
1880  */
1881 static void
1882 gem_setladrf(sc)
1883 	struct gem_softc *sc;
1884 {
1885 	struct ifnet *ifp = sc->sc_ifp;
1886 	struct ifmultiaddr *inm;
1887 	u_int32_t crc;
1888 	u_int32_t hash[16];
1889 	u_int32_t v;
1890 	int i;
1891 
1892 	GEM_LOCK_ASSERT(sc, MA_OWNED);
1893 
1894 	/* Get current RX configuration */
1895 	v = bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG);
1896 
1897 	/*
1898 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
1899 	 * and hash filter.  Depending on the case, the right bit will be
1900 	 * enabled.
1901 	 */
1902 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
1903 	    GEM_MAC_RX_PROMISC_GRP);
1904 
1905 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1906 		/* Turn on promiscuous mode */
1907 		v |= GEM_MAC_RX_PROMISCUOUS;
1908 		goto chipit;
1909 	}
1910 	if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
1911 		hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1912 		ifp->if_flags |= IFF_ALLMULTI;
1913 		v |= GEM_MAC_RX_PROMISC_GRP;
1914 		goto chipit;
1915 	}
1916 
1917 	/*
1918 	 * Set up multicast address filter by passing all multicast addresses
1919 	 * through a crc generator, and then using the high order 8 bits as an
1920 	 * index into the 256 bit logical address filter.  The high order 4
1921 	 * bits selects the word, while the other 4 bits select the bit within
1922 	 * the word (where bit 0 is the MSB).
1923 	 */
1924 
1925 	/* Clear hash table */
1926 	memset(hash, 0, sizeof(hash));
1927 
1928 	IF_ADDR_LOCK(ifp);
1929 	TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) {
1930 		if (inm->ifma_addr->sa_family != AF_LINK)
1931 			continue;
1932 		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1933 		    inm->ifma_addr), ETHER_ADDR_LEN);
1934 
1935 		/* Just want the 8 most significant bits. */
1936 		crc >>= 24;
1937 
1938 		/* Set the corresponding bit in the filter. */
1939 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
1940 	}
1941 	IF_ADDR_UNLOCK(ifp);
1942 
1943 	v |= GEM_MAC_RX_HASH_FILTER;
1944 	ifp->if_flags &= ~IFF_ALLMULTI;
1945 
1946 	/* Now load the hash table into the chip (if we are using it) */
1947 	for (i = 0; i < 16; i++) {
1948 		bus_write_4(sc->sc_res[0],
1949 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
1950 		    hash[i]);
1951 	}
1952 
1953 chipit:
1954 	bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, v);
1955 }
1956