xref: /freebsd/sys/dev/gem/if_gem.c (revision 0b87f79976047c8f4332bbf7dc03146f6b0de79f)
1 /*
2  * Copyright (C) 2001 Eduardo Horvath.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  *	from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Driver for Sun GEM ethernet controllers.
33  */
34 
35 #define	GEM_DEBUG
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/callout.h>
41 #include <sys/endian.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 
48 #include <net/ethernet.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 
54 #include <machine/bus.h>
55 
56 #include <dev/mii/mii.h>
57 #include <dev/mii/miivar.h>
58 
59 #include <gem/if_gemreg.h>
60 #include <gem/if_gemvar.h>
61 
62 #define TRIES	10000
63 
64 static void	gem_start(struct ifnet *);
65 static void	gem_stop(struct ifnet *, int);
66 static int	gem_ioctl(struct ifnet *, u_long, caddr_t);
67 static void	gem_cddma_callback(void *, bus_dma_segment_t *, int, int);
68 static void	gem_rxdma_callback(void *, bus_dma_segment_t *, int, int);
69 static void	gem_txdma_callback(void *, bus_dma_segment_t *, int, int);
70 static void	gem_tick(void *);
71 static void	gem_watchdog(struct ifnet *);
72 static void	gem_init(void *);
73 static void	gem_init_regs(struct gem_softc *sc);
74 static int	gem_ringsize(int sz);
75 static int	gem_meminit(struct gem_softc *);
76 static int	gem_dmamap_load_mbuf(struct gem_softc *, struct mbuf *,
77     bus_dmamap_callback_t *,  struct gem_txjob *, int);
78 static void	gem_dmamap_unload_mbuf(struct gem_softc *, struct gem_txjob *);
79 static void	gem_dmamap_commit_mbuf(struct gem_softc *, struct gem_txjob *);
80 static void	gem_mifinit(struct gem_softc *);
81 static int	gem_bitwait(struct gem_softc *sc, bus_addr_t r,
82     u_int32_t clr, u_int32_t set);
83 static int	gem_reset_rx(struct gem_softc *);
84 static int	gem_reset_tx(struct gem_softc *);
85 static int	gem_disable_rx(struct gem_softc *);
86 static int	gem_disable_tx(struct gem_softc *);
87 static void	gem_rxdrain(struct gem_softc *);
88 static int	gem_add_rxbuf(struct gem_softc *, int);
89 static void	gem_setladrf(struct gem_softc *);
90 
91 struct mbuf	*gem_get(struct gem_softc *, int, int);
92 static void	gem_eint(struct gem_softc *, u_int);
93 static void	gem_rint(struct gem_softc *);
94 static void	gem_rint_timeout(void *);
95 static void	gem_tint(struct gem_softc *);
96 #ifdef notyet
97 static void	gem_power(int, void *);
98 #endif
99 
100 devclass_t gem_devclass;
101 DRIVER_MODULE(miibus, gem, miibus_driver, miibus_devclass, 0, 0);
102 MODULE_DEPEND(gem, miibus, 1, 1, 1);
103 
104 #ifdef GEM_DEBUG
105 #define	DPRINTF(sc, x)	if ((sc)->sc_arpcom.ac_if.if_flags & IFF_DEBUG) \
106 				printf x
107 #include <sys/ktr.h>
108 #define	KTR_GEM		KTR_CT2
109 #else
110 #define	DPRINTF(sc, x)	/* nothing */
111 #endif
112 
113 #define	GEM_NSEGS GEM_NTXSEGS
114 
115 /*
116  * gem_attach:
117  *
118  *	Attach a Gem interface to the system.
119  */
120 int
121 gem_attach(sc)
122 	struct gem_softc *sc;
123 {
124 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
125 	struct mii_softc *child;
126 	int i, error;
127 	u_int32_t v;
128 
129 	/* Make sure the chip is stopped. */
130 	ifp->if_softc = sc;
131 	gem_reset(sc);
132 
133 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
134 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, GEM_NSEGS,
135 	    BUS_SPACE_MAXSIZE_32BIT, 0, &sc->sc_pdmatag);
136 	if (error)
137 		return (error);
138 
139 	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
140 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MAXBSIZE,
141 	    GEM_NSEGS, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW,
142 	    &sc->sc_dmatag);
143 	if (error)
144 		goto fail_0;
145 
146 	error = bus_dma_tag_create(sc->sc_pdmatag, PAGE_SIZE, 0,
147 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
148 	    sizeof(struct gem_control_data), 1,
149 	    sizeof(struct gem_control_data), BUS_DMA_ALLOCNOW,
150 	    &sc->sc_cdmatag);
151 	if (error)
152 		goto fail_1;
153 
154 	/*
155 	 * Allocate the control data structures, and create and load the
156 	 * DMA map for it.
157 	 */
158 	if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
159 	    (void **)&sc->sc_control_data, 0, &sc->sc_cddmamap))) {
160 		device_printf(sc->sc_dev, "unable to allocate control data,"
161 		    " error = %d\n", error);
162 		goto fail_2;
163 	}
164 
165 	sc->sc_cddma = 0;
166 	if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
167 	    sc->sc_control_data, sizeof(struct gem_control_data),
168 	    gem_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
169 		device_printf(sc->sc_dev, "unable to load control data DMA "
170 		    "map, error = %d\n", error);
171 		goto fail_3;
172 	}
173 
174 	/*
175 	 * Initialize the transmit job descriptors.
176 	 */
177 	STAILQ_INIT(&sc->sc_txfreeq);
178 	STAILQ_INIT(&sc->sc_txdirtyq);
179 
180 	/*
181 	 * Create the transmit buffer DMA maps.
182 	 */
183 	error = ENOMEM;
184 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
185 		struct gem_txsoft *txs;
186 
187 		txs = &sc->sc_txsoft[i];
188 		txs->txs_mbuf = NULL;
189 		txs->txs_ndescs = 0;
190 		if ((error = bus_dmamap_create(sc->sc_dmatag, 0,
191 		    &txs->txs_dmamap)) != 0) {
192 			device_printf(sc->sc_dev, "unable to create tx DMA map "
193 			    "%d, error = %d\n", i, error);
194 			goto fail_4;
195 		}
196 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
197 	}
198 
199 	/*
200 	 * Create the receive buffer DMA maps.
201 	 */
202 	for (i = 0; i < GEM_NRXDESC; i++) {
203 		if ((error = bus_dmamap_create(sc->sc_dmatag, 0,
204 		    &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
205 			device_printf(sc->sc_dev, "unable to create rx DMA map "
206 			    "%d, error = %d\n", i, error);
207 			goto fail_5;
208 		}
209 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
210 	}
211 
212 
213 	gem_mifinit(sc);
214 
215 	if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, gem_mediachange,
216 	    gem_mediastatus)) != 0) {
217 		device_printf(sc->sc_dev, "phy probe failed: %d\n", error);
218 		goto fail_5;
219 	}
220 	sc->sc_mii = device_get_softc(sc->sc_miibus);
221 
222 	/*
223 	 * From this point forward, the attachment cannot fail.  A failure
224 	 * before this point releases all resources that may have been
225 	 * allocated.
226 	 */
227 
228 	/* Announce ourselves. */
229 	device_printf(sc->sc_dev, "Ethernet address:");
230 	for (i = 0; i < 6; i++)
231 		printf("%c%02x", i > 0 ? ':' : ' ', sc->sc_arpcom.ac_enaddr[i]);
232 
233 	/* Get RX FIFO size */
234 	sc->sc_rxfifosize = 64 *
235 	    bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
236 	printf(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
237 
238 	/* Get TX FIFO size */
239 	v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
240 	printf(", %uKB TX fifo\n", v / 16);
241 
242 	/* Initialize ifnet structure. */
243 	ifp->if_softc = sc;
244 	ifp->if_unit = device_get_unit(sc->sc_dev);
245 	ifp->if_name = "gem";
246 	ifp->if_mtu = ETHERMTU;
247 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
248 	ifp->if_start = gem_start;
249 	ifp->if_ioctl = gem_ioctl;
250 	ifp->if_watchdog = gem_watchdog;
251 	ifp->if_init = gem_init;
252 	ifp->if_output = ether_output;
253 	ifp->if_snd.ifq_maxlen = GEM_TXQUEUELEN;
254 	/*
255 	 * Walk along the list of attached MII devices and
256 	 * establish an `MII instance' to `phy number'
257 	 * mapping. We'll use this mapping in media change
258 	 * requests to determine which phy to use to program
259 	 * the MIF configuration register.
260 	 */
261 	for (child = LIST_FIRST(&sc->sc_mii->mii_phys); child != NULL;
262 	     child = LIST_NEXT(child, mii_list)) {
263 		/*
264 		 * Note: we support just two PHYs: the built-in
265 		 * internal device and an external on the MII
266 		 * connector.
267 		 */
268 		if (child->mii_phy > 1 || child->mii_inst > 1) {
269 			device_printf(sc->sc_dev, "cannot accomodate "
270 			    "MII device %s at phy %d, instance %d\n",
271 			    device_get_name(child->mii_dev),
272 			    child->mii_phy, child->mii_inst);
273 			continue;
274 		}
275 
276 		sc->sc_phys[child->mii_inst] = child->mii_phy;
277 	}
278 
279 	/*
280 	 * Now select and activate the PHY we will use.
281 	 *
282 	 * The order of preference is External (MDI1),
283 	 * Internal (MDI0), Serial Link (no MII).
284 	 */
285 	if (sc->sc_phys[1]) {
286 #ifdef GEM_DEBUG
287 		printf("using external phy\n");
288 #endif
289 		sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
290 	} else {
291 #ifdef GEM_DEBUG
292 		printf("using internal phy\n");
293 #endif
294 		sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
295 	}
296 	bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
297 	    sc->sc_mif_config);
298 	/* Attach the interface. */
299 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
300 
301 #if notyet
302 	/*
303 	 * Add a suspend hook to make sure we come back up after a
304 	 * resume.
305 	 */
306 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
307 	if (sc->sc_powerhook == NULL)
308 		device_printf(sc->sc_dev, "WARNING: unable to establish power "
309 		    "hook\n");
310 #endif
311 
312 	callout_init(&sc->sc_tick_ch, 0);
313 	callout_init(&sc->sc_rx_ch, 0);
314 	return (0);
315 
316 	/*
317 	 * Free any resources we've allocated during the failed attach
318 	 * attempt.  Do this in reverse order and fall through.
319 	 */
320 fail_5:
321 	for (i = 0; i < GEM_NRXDESC; i++) {
322 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
323 			bus_dmamap_destroy(sc->sc_dmatag,
324 			    sc->sc_rxsoft[i].rxs_dmamap);
325 	}
326 fail_4:
327 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
328 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
329 			bus_dmamap_destroy(sc->sc_dmatag,
330 			    sc->sc_txsoft[i].txs_dmamap);
331 	}
332 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
333 fail_3:
334 	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
335 	    sc->sc_cddmamap);
336 fail_2:
337 	bus_dma_tag_destroy(sc->sc_cdmatag);
338 fail_1:
339 	bus_dma_tag_destroy(sc->sc_dmatag);
340 fail_0:
341 	bus_dma_tag_destroy(sc->sc_pdmatag);
342 	return (error);
343 }
344 
345 static void
346 gem_cddma_callback(xsc, segs, nsegs, error)
347 	void *xsc;
348 	bus_dma_segment_t *segs;
349 	int nsegs;
350 	int error;
351 {
352 	struct gem_softc *sc = (struct gem_softc *)xsc;
353 
354 	if (error != 0)
355 		return;
356 	if (nsegs != 1) {
357 		/* can't happen... */
358 		panic("gem_cddma_callback: bad control buffer segment count");
359 	}
360 	sc->sc_cddma = segs[0].ds_addr;
361 }
362 
363 static void
364 gem_rxdma_callback(xsc, segs, nsegs, error)
365 	void *xsc;
366 	bus_dma_segment_t *segs;
367 	int nsegs;
368 	int error;
369 {
370 	struct gem_rxsoft *rxs = (struct gem_rxsoft *)xsc;
371 
372 	if (error != 0)
373 		return;
374 	if (nsegs != 1) {
375 		/* can't happen... */
376 		panic("gem_rxdma_callback: bad control buffer segment count");
377 	}
378 	rxs->rxs_paddr = segs[0].ds_addr;
379 }
380 
381 /*
382  * This is called multiple times in our version of dmamap_load_mbuf, but should
383  * be fit for a generic version that only calls it once.
384  */
385 static void
386 gem_txdma_callback(xsc, segs, nsegs, error)
387 	void *xsc;
388 	bus_dma_segment_t *segs;
389 	int nsegs;
390 	int error;
391 {
392 	struct gem_txdma *tx = (struct gem_txdma *)xsc;
393 	int seg;
394 
395 	tx->txd_error = error;
396 	if (error != 0)
397 		return;
398 	tx->txd_nsegs = nsegs;
399 
400 	/*
401 	 * Initialize the transmit descriptors.
402 	 */
403 	for (seg = 0; seg < nsegs;
404 	     seg++, tx->txd_nexttx = GEM_NEXTTX(tx->txd_nexttx)) {
405 		uint64_t flags;
406 
407 		DPRINTF(tx->txd_sc, ("txdma_cb: mapping seg %d (txd %d), len "
408 		    "%lx, addr %#lx (%#lx)\n",  seg, tx->txd_nexttx,
409 		    segs[seg].ds_len, segs[seg].ds_addr,
410 		    GEM_DMA_WRITE(tx->txd_sc, segs[seg].ds_addr)));
411 		CTR5(KTR_GEM, "txdma_cb: mapping seg %d (txd %d), len "
412 		    "%lx, addr %#lx (%#lx)",  seg, tx->txd_nexttx,
413 		    segs[seg].ds_len, segs[seg].ds_addr,
414 		    GEM_DMA_WRITE(tx->txd_sc, segs[seg].ds_addr));
415 		/*
416 		 * If this is the first descriptor we're
417 		 * enqueueing, set the start of packet flag,
418 		 * and the checksum stuff if we want the hardware
419 		 * to do it.
420 		 */
421 		tx->txd_sc->sc_txdescs[tx->txd_nexttx].gd_addr =
422 		    GEM_DMA_WRITE(tx->txd_sc, segs[seg].ds_addr);
423 		flags = segs[seg].ds_len & GEM_TD_BUFSIZE;
424 		if ((tx->txd_flags & GTXD_FIRST) != 0 && seg == 0) {
425 			CTR2(KTR_GEM, "txdma_cb: start of packet at seg %d, "
426 			    "tx %d", seg, tx->txd_nexttx);
427 			flags |= GEM_TD_START_OF_PACKET;
428 			if (++tx->txd_sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
429 				tx->txd_sc->sc_txwin = 0;
430 				flags |= GEM_TD_INTERRUPT_ME;
431 			}
432 		}
433 		if ((tx->txd_flags & GTXD_LAST) != 0 && seg == nsegs - 1) {
434 			CTR2(KTR_GEM, "txdma_cb: end of packet at seg %d, "
435 			    "tx %d", seg, tx->txd_nexttx);
436 			flags |= GEM_TD_END_OF_PACKET;
437 		}
438 		tx->txd_sc->sc_txdescs[tx->txd_nexttx].gd_flags =
439 		    GEM_DMA_WRITE(tx->txd_sc, flags);
440 		tx->txd_lasttx = tx->txd_nexttx;
441 	}
442 }
443 
444 static void
445 gem_tick(arg)
446 	void *arg;
447 {
448 	struct gem_softc *sc = arg;
449 	int s;
450 
451 	s = splnet();
452 	mii_tick(sc->sc_mii);
453 	splx(s);
454 
455 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
456 }
457 
458 static int
459 gem_bitwait(sc, r, clr, set)
460 	struct gem_softc *sc;
461 	bus_addr_t r;
462 	u_int32_t clr;
463 	u_int32_t set;
464 {
465 	int i;
466 	u_int32_t reg;
467 
468 	for (i = TRIES; i--; DELAY(100)) {
469 		reg = bus_space_read_4(sc->sc_bustag, sc->sc_h, r);
470 		if ((r & clr) == 0 && (r & set) == set)
471 			return (1);
472 	}
473 	return (0);
474 }
475 
476 void
477 gem_reset(sc)
478 	struct gem_softc *sc;
479 {
480 	bus_space_tag_t t = sc->sc_bustag;
481 	bus_space_handle_t h = sc->sc_h;
482 	int s;
483 
484 	s = splnet();
485 	DPRINTF(sc, ("%s: gem_reset\n", device_get_name(sc->sc_dev)));
486 	CTR1(KTR_GEM, "%s: gem_reset", device_get_name(sc->sc_dev));
487 	gem_reset_rx(sc);
488 	gem_reset_tx(sc);
489 
490 	/* Do a full reset */
491 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
492 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
493 		device_printf(sc->sc_dev, "cannot reset device\n");
494 	splx(s);
495 }
496 
497 
498 /*
499  * gem_rxdrain:
500  *
501  *	Drain the receive queue.
502  */
503 static void
504 gem_rxdrain(sc)
505 	struct gem_softc *sc;
506 {
507 	struct gem_rxsoft *rxs;
508 	int i;
509 
510 	for (i = 0; i < GEM_NRXDESC; i++) {
511 		rxs = &sc->sc_rxsoft[i];
512 		if (rxs->rxs_mbuf != NULL) {
513 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
514 			m_freem(rxs->rxs_mbuf);
515 			rxs->rxs_mbuf = NULL;
516 		}
517 	}
518 }
519 
520 /*
521  * Reset the whole thing.
522  */
523 static void
524 gem_stop(ifp, disable)
525 	struct ifnet *ifp;
526 	int disable;
527 {
528 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
529 	struct gem_txsoft *txs;
530 
531 	DPRINTF(sc, ("%s: gem_stop\n", device_get_name(sc->sc_dev)));
532 	CTR1(KTR_GEM, "%s: gem_stop", device_get_name(sc->sc_dev));
533 
534 	callout_stop(&sc->sc_tick_ch);
535 
536 	/* XXX - Should we reset these instead? */
537 	gem_disable_tx(sc);
538 	gem_disable_rx(sc);
539 
540 	/*
541 	 * Release any queued transmit buffers.
542 	 */
543 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
544 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
545 		if (txs->txs_ndescs != 0) {
546 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
547 			if (txs->txs_mbuf != NULL) {
548 				m_freem(txs->txs_mbuf);
549 				txs->txs_mbuf = NULL;
550 			}
551 		}
552 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
553 	}
554 
555 	if (disable)
556 		gem_rxdrain(sc);
557 
558 	/*
559 	 * Mark the interface down and cancel the watchdog timer.
560 	 */
561 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
562 	ifp->if_timer = 0;
563 }
564 
565 /*
566  * Reset the receiver
567  */
568 int
569 gem_reset_rx(sc)
570 	struct gem_softc *sc;
571 {
572 	bus_space_tag_t t = sc->sc_bustag;
573 	bus_space_handle_t h = sc->sc_h;
574 
575 	/*
576 	 * Resetting while DMA is in progress can cause a bus hang, so we
577 	 * disable DMA first.
578 	 */
579 	gem_disable_rx(sc);
580 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
581 	/* Wait till it finishes */
582 	if (!gem_bitwait(sc, GEM_RX_CONFIG, 1, 0))
583 		device_printf(sc->sc_dev, "cannot disable read dma\n");
584 
585 	/* Wait 5ms extra. */
586 	DELAY(5000);
587 
588 	/* Finally, reset the ERX */
589 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
590 	/* Wait till it finishes */
591 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
592 		device_printf(sc->sc_dev, "cannot reset receiver\n");
593 		return (1);
594 	}
595 	return (0);
596 }
597 
598 
599 /*
600  * Reset the transmitter
601  */
602 static int
603 gem_reset_tx(sc)
604 	struct gem_softc *sc;
605 {
606 	bus_space_tag_t t = sc->sc_bustag;
607 	bus_space_handle_t h = sc->sc_h;
608 	int i;
609 
610 	/*
611 	 * Resetting while DMA is in progress can cause a bus hang, so we
612 	 * disable DMA first.
613 	 */
614 	gem_disable_tx(sc);
615 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
616 	/* Wait till it finishes */
617 	if (!gem_bitwait(sc, GEM_TX_CONFIG, 1, 0))
618 		device_printf(sc->sc_dev, "cannot disable read dma\n");
619 
620 	/* Wait 5ms extra. */
621 	DELAY(5000);
622 
623 	/* Finally, reset the ETX */
624 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
625 	/* Wait till it finishes */
626 	for (i = TRIES; i--; DELAY(100))
627 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
628 			break;
629 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
630 		device_printf(sc->sc_dev, "cannot reset receiver\n");
631 		return (1);
632 	}
633 	return (0);
634 }
635 
636 /*
637  * disable receiver.
638  */
639 static int
640 gem_disable_rx(sc)
641 	struct gem_softc *sc;
642 {
643 	bus_space_tag_t t = sc->sc_bustag;
644 	bus_space_handle_t h = sc->sc_h;
645 	u_int32_t cfg;
646 
647 	/* Flip the enable bit */
648 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
649 	cfg &= ~GEM_MAC_RX_ENABLE;
650 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
651 
652 	/* Wait for it to finish */
653 	return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
654 }
655 
656 /*
657  * disable transmitter.
658  */
659 static int
660 gem_disable_tx(sc)
661 	struct gem_softc *sc;
662 {
663 	bus_space_tag_t t = sc->sc_bustag;
664 	bus_space_handle_t h = sc->sc_h;
665 	u_int32_t cfg;
666 
667 	/* Flip the enable bit */
668 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
669 	cfg &= ~GEM_MAC_TX_ENABLE;
670 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
671 
672 	/* Wait for it to finish */
673 	return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
674 }
675 
676 /*
677  * Initialize interface.
678  */
679 static int
680 gem_meminit(sc)
681 	struct gem_softc *sc;
682 {
683 	struct gem_rxsoft *rxs;
684 	int i, error;
685 
686 	/*
687 	 * Initialize the transmit descriptor ring.
688 	 */
689 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
690 	for (i = 0; i < GEM_NTXDESC; i++) {
691 		sc->sc_txdescs[i].gd_flags = 0;
692 		sc->sc_txdescs[i].gd_addr = 0;
693 	}
694 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
695 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
696 	sc->sc_txfree = GEM_NTXDESC-1;
697 	sc->sc_txnext = 0;
698 	sc->sc_txwin = 0;
699 
700 	/*
701 	 * Initialize the receive descriptor and receive job
702 	 * descriptor rings.
703 	 */
704 	for (i = 0; i < GEM_NRXDESC; i++) {
705 		rxs = &sc->sc_rxsoft[i];
706 		if (rxs->rxs_mbuf == NULL) {
707 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
708 				device_printf(sc->sc_dev, "unable to "
709 				    "allocate or map rx buffer %d, error = "
710 				    "%d\n", i, error);
711 				/*
712 				 * XXX Should attempt to run with fewer receive
713 				 * XXX buffers instead of just failing.
714 				 */
715 				gem_rxdrain(sc);
716 				return (1);
717 			}
718 		} else
719 			GEM_INIT_RXDESC(sc, i);
720 	}
721 	sc->sc_rxptr = 0;
722 
723 	return (0);
724 }
725 
726 static int
727 gem_ringsize(sz)
728 	int sz;
729 {
730 	int v = 0;
731 
732 	switch (sz) {
733 	case 32:
734 		v = GEM_RING_SZ_32;
735 		break;
736 	case 64:
737 		v = GEM_RING_SZ_64;
738 		break;
739 	case 128:
740 		v = GEM_RING_SZ_128;
741 		break;
742 	case 256:
743 		v = GEM_RING_SZ_256;
744 		break;
745 	case 512:
746 		v = GEM_RING_SZ_512;
747 		break;
748 	case 1024:
749 		v = GEM_RING_SZ_1024;
750 		break;
751 	case 2048:
752 		v = GEM_RING_SZ_2048;
753 		break;
754 	case 4096:
755 		v = GEM_RING_SZ_4096;
756 		break;
757 	case 8192:
758 		v = GEM_RING_SZ_8192;
759 		break;
760 	default:
761 		printf("gem: invalid Receive Descriptor ring size\n");
762 		break;
763 	}
764 	return (v);
765 }
766 
767 /*
768  * Initialization of interface; set up initialization block
769  * and transmit/receive descriptor rings.
770  */
771 static void
772 gem_init(xsc)
773 	void *xsc;
774 {
775 	struct gem_softc *sc = (struct gem_softc *)xsc;
776 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
777 	bus_space_tag_t t = sc->sc_bustag;
778 	bus_space_handle_t h = sc->sc_h;
779 	int s;
780 	u_int32_t v;
781 
782 	s = splnet();
783 
784 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_get_name(sc->sc_dev)));
785 	CTR1(KTR_GEM, "%s: gem_init: calling stop", device_get_name(sc->sc_dev));
786 	/*
787 	 * Initialization sequence. The numbered steps below correspond
788 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
789 	 * Channel Engine manual (part of the PCIO manual).
790 	 * See also the STP2002-STQ document from Sun Microsystems.
791 	 */
792 
793 	/* step 1 & 2. Reset the Ethernet Channel */
794 	gem_stop(&sc->sc_arpcom.ac_if, 0);
795 	gem_reset(sc);
796 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_get_name(sc->sc_dev)));
797 	CTR1(KTR_GEM, "%s: gem_init: restarting", device_get_name(sc->sc_dev));
798 
799 	/* Re-initialize the MIF */
800 	gem_mifinit(sc);
801 
802 	/* Call MI reset function if any */
803 	if (sc->sc_hwreset)
804 		(*sc->sc_hwreset)(sc);
805 
806 	/* step 3. Setup data structures in host memory */
807 	gem_meminit(sc);
808 
809 	/* step 4. TX MAC registers & counters */
810 	gem_init_regs(sc);
811 	/* XXX: VLAN code from NetBSD temporarily removed. */
812 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
813             (ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
814 
815 	/* step 5. RX MAC registers & counters */
816 	gem_setladrf(sc);
817 
818 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
819 	/* NOTE: we use only 32-bit DMA addresses here. */
820 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
821 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
822 
823 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
824 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
825 	DPRINTF(sc, ("loading rx ring %lx, tx ring %lx, cddma %lx\n",
826 	    GEM_CDRXADDR(sc, 0), GEM_CDTXADDR(sc, 0), sc->sc_cddma));
827 	CTR3(KTR_GEM, "loading rx ring %lx, tx ring %lx, cddma %lx",
828 	    GEM_CDRXADDR(sc, 0), GEM_CDTXADDR(sc, 0), sc->sc_cddma);
829 
830 	/* step 8. Global Configuration & Interrupt Mask */
831 	bus_space_write_4(t, h, GEM_INTMASK,
832 		      ~(GEM_INTR_TX_INTME|
833 			GEM_INTR_TX_EMPTY|
834 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
835 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
836 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
837 			GEM_INTR_BERR));
838 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
839 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
840 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
841 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
842 
843 	/* step 9. ETX Configuration: use mostly default values */
844 
845 	/* Enable DMA */
846 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
847 	bus_space_write_4(t, h, GEM_TX_CONFIG,
848 		v|GEM_TX_CONFIG_TXDMA_EN|
849 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
850 
851 	/* step 10. ERX Configuration */
852 
853 	/* Encode Receive Descriptor ring size: four possible values */
854 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
855 
856 	/* Enable DMA */
857 	bus_space_write_4(t, h, GEM_RX_CONFIG,
858 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
859 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
860 		(0<<GEM_RX_CONFIG_CXM_START_SHFT));
861 	/*
862 	 * The following value is for an OFF Threshold of about 3/4 full
863 	 * and an ON Threshold of 1/4 full.
864 	 */
865 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
866 	    (3 * sc->sc_rxfifosize / 256) |
867 	    (   (sc->sc_rxfifosize / 256) << 12));
868 	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
869 
870 	/* step 11. Configure Media */
871 	mii_mediachg(sc->sc_mii);
872 
873 	/* step 12. RX_MAC Configuration Register */
874 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
875 	v |= GEM_MAC_RX_ENABLE;
876 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
877 
878 	/* step 14. Issue Transmit Pending command */
879 
880 	/* Call MI initialization function if any */
881 	if (sc->sc_hwinit)
882 		(*sc->sc_hwinit)(sc);
883 
884 	/* step 15.  Give the reciever a swift kick */
885 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
886 
887 	/* Start the one second timer. */
888 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
889 
890 	ifp->if_flags |= IFF_RUNNING;
891 	ifp->if_flags &= ~IFF_OACTIVE;
892 	ifp->if_timer = 0;
893 	sc->sc_ifflags = ifp->if_flags;
894 	splx(s);
895 }
896 
897 /*
898  * XXX: This is really a substitute for bus_dmamap_load_mbuf(), which FreeBSD
899  * does not yet have, with some adaptions for this driver.
900  * Some changes are mandated by the fact that multiple maps may needed to map
901  * a single mbuf.
902  * It should be removed once generic support is available.
903  *
904  * This is derived from NetBSD (syssrc/sys/arch/sparc64/sparc64/machdep.c), for
905  * a copyright notice see sparc64/sparc64/bus_machdep.c.
906  *
907  * Not every error condition is passed to the callback in this version, and the
908  * callback may be called more than once.
909  * It also gropes in the entails of the callback arg...
910  */
911 static int
912 gem_dmamap_load_mbuf(sc, m0, cb, txj, flags)
913 	struct gem_softc *sc;
914 	struct mbuf *m0;
915 	bus_dmamap_callback_t *cb;
916 	struct gem_txjob *txj;
917 	int flags;
918 {
919 	struct gem_txdma txd;
920 	struct gem_txsoft *txs;
921 	struct mbuf *m;
922 	void  *vaddr;
923 	int error, first = 1, len, totlen;
924 
925 	if ((m0->m_flags & M_PKTHDR) == 0)
926 		panic("gem_dmamap_load_mbuf: no packet header");
927 	totlen = m0->m_pkthdr.len;
928 	len = 0;
929 	txd.txd_sc = sc;
930 	txd.txd_nexttx = txj->txj_nexttx;
931 	txj->txj_nsegs = 0;
932 	STAILQ_INIT(&txj->txj_txsq);
933 	m = m0;
934 	while (m != NULL && len < totlen) {
935 		if (m->m_len == 0)
936 			continue;
937 		/* Get a work queue entry. */
938 		if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
939 			/*
940 			 * Ran out of descriptors, return a value that
941 			 * cannot be returned by bus_dmamap_load to notify
942 			 * the caller.
943 			 */
944 			error = -1;
945 			goto fail;
946 		}
947 		len += m->m_len;
948 		txd.txd_flags = first ? GTXD_FIRST : 0;
949 		if (m->m_next == NULL || len >= totlen)
950 			txd.txd_flags |= GTXD_LAST;
951 		vaddr = mtod(m, void *);
952 		error = bus_dmamap_load(sc->sc_dmatag, txs->txs_dmamap, vaddr,
953 		    m->m_len, cb, &txd, flags);
954 		if (error != 0 || txd.txd_error != 0)
955 			goto fail;
956 		/* Sync the DMA map. */
957 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
958 		    BUS_DMASYNC_PREWRITE);
959 		m = m->m_next;
960 		/*
961 		 * Store a pointer to the packet so we can free it later,
962 		 * and remember what txdirty will be once the packet is
963 		 * done.
964 		 */
965 		txs->txs_mbuf = first ? m0 : NULL;
966 		txs->txs_firstdesc = txj->txj_nexttx;
967 		txs->txs_lastdesc = txd.txd_lasttx;
968 		txs->txs_ndescs = txd.txd_nsegs;
969 		CTR3(KTR_GEM, "load_mbuf: setting firstdesc=%d, lastdesc=%d, "
970 		    "ndescs=%d", txs->txs_firstdesc, txs->txs_lastdesc,
971 		    txs->txs_ndescs);
972 		STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
973 		STAILQ_INSERT_TAIL(&txj->txj_txsq, txs, txs_q);
974 		txj->txj_nexttx = txd.txd_nexttx;
975 		txj->txj_nsegs += txd.txd_nsegs;
976 		first = 0;
977 	}
978 	txj->txj_lasttx = txd.txd_lasttx;
979 	return (0);
980 
981 fail:
982 	CTR1(KTR_GEM, "gem_dmamap_load_mbuf failed (%d)", error);
983 	gem_dmamap_unload_mbuf(sc, txj);
984 	return (error);
985 }
986 
987 /*
988  * Unload an mbuf using the txd the information was placed in.
989  * The tx interrupt code frees the tx segments one by one, because the txd is
990  * not available any more.
991  */
992 static void
993 gem_dmamap_unload_mbuf(sc, txj)
994 	struct gem_softc *sc;
995 	struct gem_txjob *txj;
996 {
997 	struct gem_txsoft *txs;
998 
999 	/* Readd the removed descriptors and unload the segments. */
1000 	while ((txs = STAILQ_FIRST(&txj->txj_txsq)) != NULL) {
1001 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1002 		STAILQ_REMOVE_HEAD(&txj->txj_txsq, txs_q);
1003 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1004 	}
1005 }
1006 
1007 static void
1008 gem_dmamap_commit_mbuf(sc, txj)
1009 	struct gem_softc *sc;
1010 	struct gem_txjob *txj;
1011 {
1012 	struct gem_txsoft *txs;
1013 
1014 	/* Commit the txjob by transfering the txsoft's to the txdirtyq. */
1015 	while ((txs = STAILQ_FIRST(&txj->txj_txsq)) != NULL) {
1016 		STAILQ_REMOVE_HEAD(&txj->txj_txsq, txs_q);
1017 		STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1018 	}
1019 }
1020 
1021 static void
1022 gem_init_regs(sc)
1023 	struct gem_softc *sc;
1024 {
1025 	bus_space_tag_t t = sc->sc_bustag;
1026 	bus_space_handle_t h = sc->sc_h;
1027 	const u_char *laddr = sc->sc_arpcom.ac_enaddr;
1028 	u_int32_t v;
1029 
1030 	/* These regs are not cleared on reset */
1031 	if (!sc->sc_inited) {
1032 
1033 		/* Wooo.  Magic values. */
1034 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
1035 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
1036 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
1037 
1038 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1039 		/* Max frame and max burst size */
1040 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1041 		    ETHER_MAX_LEN | (0x2000<<16));
1042 
1043 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
1044 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
1045 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1046 		/* Dunno.... */
1047 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1048 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1049 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1050 
1051 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1052 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1053 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1054 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1055 
1056 		/* MAC control addr set to 01:80:c2:00:00:01 */
1057 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1058 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1059 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1060 
1061 		/* MAC filter addr set to 0:0:0:0:0:0 */
1062 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1063 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1064 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1065 
1066 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1067 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1068 
1069 		sc->sc_inited = 1;
1070 	}
1071 
1072 	/* Counters need to be zeroed */
1073 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1074 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1075 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1076 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1077 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1078 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1079 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1080 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1081 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1082 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1083 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1084 
1085 	/* Un-pause stuff */
1086 #if 0
1087 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1088 #else
1089 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
1090 #endif
1091 
1092 	/*
1093 	 * Set the station address.
1094 	 */
1095 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1096 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1097 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1098 
1099 	/*
1100 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1101 	 */
1102 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1103 	v = GEM_MAC_XIF_TX_MII_ENA;
1104 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1105 		v |= GEM_MAC_XIF_FDPLX_LED;
1106 		if (sc->sc_flags & GEM_GIGABIT)
1107 			v |= GEM_MAC_XIF_GMII_MODE;
1108 	}
1109 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1110 }
1111 
1112 static void
1113 gem_start(ifp)
1114 	struct ifnet *ifp;
1115 {
1116 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1117 	struct mbuf *m0 = NULL, *m;
1118 	struct gem_txjob txj;
1119 	int firsttx, ofree, seg, ntx, txmfail;
1120 
1121 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1122 		return;
1123 
1124 	/*
1125 	 * Remember the previous number of free descriptors and
1126 	 * the first descriptor we'll use.
1127 	 */
1128 	ofree = sc->sc_txfree;
1129 	firsttx = sc->sc_txnext;
1130 
1131 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1132 	    device_get_name(sc->sc_dev), ofree, firsttx));
1133 	CTR3(KTR_GEM, "%s: gem_start: txfree %d, txnext %d",
1134 	    device_get_name(sc->sc_dev), ofree, firsttx);
1135 
1136 	txj.txj_nexttx = firsttx;
1137 	txj.txj_lasttx = 0;
1138 	/*
1139 	 * Loop through the send queue, setting up transmit descriptors
1140 	 * until we drain the queue, or use up all available transmit
1141 	 * descriptors.
1142 	 */
1143 	txmfail = 0;
1144 	for (ntx = 0;; ntx++) {
1145 		/*
1146 		 * Grab a packet off the queue.
1147 		 */
1148 		IF_DEQUEUE(&ifp->if_snd, m0);
1149 		if (m0 == NULL)
1150 			break;
1151 		m = NULL;
1152 
1153 		/*
1154 		 * Load the DMA map.  If this fails, the packet either
1155 		 * didn't fit in the alloted number of segments, or we were
1156 		 * short on resources.  In this case, we'll copy and try
1157 		 * again.
1158 		 */
1159 		txmfail = gem_dmamap_load_mbuf(sc, m0,
1160 		    gem_txdma_callback, &txj, BUS_DMA_NOWAIT);
1161 		if (txmfail == -1) {
1162 			IF_PREPEND(&ifp->if_snd, m0);
1163 			break;
1164 		}
1165 		if (txmfail > 0) {
1166 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1167 			if (m == NULL) {
1168 				device_printf(sc->sc_dev, "unable to "
1169 				    "allocate Tx mbuf\n");
1170 				/* Failed; requeue. */
1171 				IF_PREPEND(&ifp->if_snd, m0);
1172 				break;
1173 			}
1174 			if (m0->m_pkthdr.len > MHLEN) {
1175 				MCLGET(m, M_DONTWAIT);
1176 				if ((m->m_flags & M_EXT) == 0) {
1177 					device_printf(sc->sc_dev, "unable to "
1178 					    "allocate Tx cluster\n");
1179 					IF_PREPEND(&ifp->if_snd, m0);
1180 					m_freem(m);
1181 					break;
1182 				}
1183 			}
1184 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1185 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1186 			txmfail = gem_dmamap_load_mbuf(sc, m,
1187 			    gem_txdma_callback, &txj, BUS_DMA_NOWAIT);
1188 			if (txmfail != 0) {
1189 				if (txmfail > 0) {
1190 					device_printf(sc->sc_dev, "unable to "
1191 					    "load Tx buffer, error = %d\n",
1192 					    txmfail);
1193 				}
1194 				m_freem(m);
1195 				IF_PREPEND(&ifp->if_snd, m0);
1196 				break;
1197 			}
1198 		}
1199 
1200 		/*
1201 		 * Ensure we have enough descriptors free to describe
1202 		 * the packet.  Note, we always reserve one descriptor
1203 		 * at the end of the ring as a termination point, to
1204 		 * prevent wrap-around.
1205 		 */
1206 		if (txj.txj_nsegs > (sc->sc_txfree - 1)) {
1207 			/*
1208 			 * Not enough free descriptors to transmit this
1209 			 * packet.  We haven't committed to anything yet,
1210 			 * so just unload the DMA map, put the packet
1211 			 * back on the queue, and punt.  Notify the upper
1212 			 * layer that there are no more slots left.
1213 			 *
1214 			 * XXX We could allocate an mbuf and copy, but
1215 			 * XXX it is worth it?
1216 			 */
1217 			ifp->if_flags |= IFF_OACTIVE;
1218 			gem_dmamap_unload_mbuf(sc, &txj);
1219 			if (m != NULL)
1220 				m_freem(m);
1221 			IF_PREPEND(&ifp->if_snd, m0);
1222 			break;
1223 		}
1224 
1225 		if (m != NULL)
1226 			m_freem(m0);
1227 
1228 		/*
1229 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1230 		 */
1231 
1232 #ifdef GEM_DEBUG
1233 		if (ifp->if_flags & IFF_DEBUG) {
1234 			printf("     gem_start %p transmit chain:\n",
1235 			    STAILQ_FIRST(&txj.txj_txsq));
1236 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1237 				printf("descriptor %d:\t", seg);
1238 				printf("gd_flags:   0x%016llx\t", (long long)
1239 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1240 				printf("gd_addr: 0x%016llx\n", (long long)
1241 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1242 				if (seg == txj.txj_lasttx)
1243 					break;
1244 			}
1245 		}
1246 #endif
1247 
1248 		/* Sync the descriptors we're using. */
1249 		GEM_CDTXSYNC(sc, sc->sc_txnext, txj.txj_nsegs,
1250 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1251 
1252 		/* Advance the tx pointer. */
1253 		sc->sc_txfree -= txj.txj_nsegs;
1254 		sc->sc_txnext = txj.txj_nexttx;
1255 
1256 		gem_dmamap_commit_mbuf(sc, &txj);
1257 	}
1258 
1259 	if (txmfail == -1 || sc->sc_txfree == 0) {
1260 		ifp->if_flags |= IFF_OACTIVE;
1261 		/* No more slots left; notify upper layer. */
1262 	}
1263 
1264 	if (ntx > 0) {
1265 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1266 		    device_get_name(sc->sc_dev), txj.txj_lasttx, firsttx));
1267 		CTR3(KTR_GEM, "%s: packets enqueued, IC on %d, OWN on %d",
1268 		    device_get_name(sc->sc_dev), txj.txj_lasttx, firsttx);
1269 		/*
1270 		 * The entire packet chain is set up.
1271 		 * Kick the transmitter.
1272 		 */
1273 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1274 			device_get_name(sc->sc_dev), txj.txj_nexttx));
1275 		CTR3(KTR_GEM, "%s: gem_start: kicking tx %d=%d",
1276 		    device_get_name(sc->sc_dev), txj.txj_nexttx,
1277 		    sc->sc_txnext);
1278 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1279 			sc->sc_txnext);
1280 
1281 		/* Set a watchdog timer in case the chip flakes out. */
1282 		ifp->if_timer = 5;
1283 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1284 			device_get_name(sc->sc_dev), ifp->if_timer));
1285 		CTR2(KTR_GEM, "%s: gem_start: watchdog %d",
1286 			device_get_name(sc->sc_dev), ifp->if_timer);
1287 	}
1288 }
1289 
1290 /*
1291  * Transmit interrupt.
1292  */
1293 static void
1294 gem_tint(sc)
1295 	struct gem_softc *sc;
1296 {
1297 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1298 	bus_space_tag_t t = sc->sc_bustag;
1299 	bus_space_handle_t mac = sc->sc_h;
1300 	struct gem_txsoft *txs;
1301 	int txlast;
1302 	int progress = 0;
1303 
1304 
1305 	DPRINTF(sc, ("%s: gem_tint\n", device_get_name(sc->sc_dev)));
1306 	CTR1(KTR_GEM, "%s: gem_tint", device_get_name(sc->sc_dev));
1307 
1308 	/*
1309 	 * Unload collision counters
1310 	 */
1311 	ifp->if_collisions +=
1312 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1313 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1314 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1315 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1316 
1317 	/*
1318 	 * then clear the hardware counters.
1319 	 */
1320 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1321 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1322 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1323 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1324 
1325 	/*
1326 	 * Go through our Tx list and free mbufs for those
1327 	 * frames that have been transmitted.
1328 	 */
1329 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1330 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1331 		    txs->txs_ndescs,
1332 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1333 
1334 #ifdef GEM_DEBUG
1335 		if (ifp->if_flags & IFF_DEBUG) {
1336 			int i;
1337 			printf("    txsoft %p transmit chain:\n", txs);
1338 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1339 				printf("descriptor %d: ", i);
1340 				printf("gd_flags: 0x%016llx\t", (long long)
1341 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1342 				printf("gd_addr: 0x%016llx\n", (long long)
1343 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1344 				if (i == txs->txs_lastdesc)
1345 					break;
1346 			}
1347 		}
1348 #endif
1349 
1350 		/*
1351 		 * In theory, we could harveast some descriptors before
1352 		 * the ring is empty, but that's a bit complicated.
1353 		 *
1354 		 * GEM_TX_COMPLETION points to the last descriptor
1355 		 * processed +1.
1356 		 */
1357 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1358 		DPRINTF(sc,
1359 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1360 				txs->txs_lastdesc, txlast));
1361 		CTR3(KTR_GEM, "gem_tint: txs->txs_firstdesc = %d, "
1362 		    "txs->txs_lastdesc = %d, txlast = %d",
1363 		    txs->txs_firstdesc, txs->txs_lastdesc, txlast);
1364 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1365 			if ((txlast >= txs->txs_firstdesc) &&
1366 				(txlast <= txs->txs_lastdesc))
1367 				break;
1368 		} else {
1369 			/* Ick -- this command wraps */
1370 			if ((txlast >= txs->txs_firstdesc) ||
1371 				(txlast <= txs->txs_lastdesc))
1372 				break;
1373 		}
1374 
1375 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1376 		CTR0(KTR_GEM, "gem_tint: releasing a desc");
1377 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1378 
1379 		sc->sc_txfree += txs->txs_ndescs;
1380 
1381 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1382 		    BUS_DMASYNC_POSTWRITE);
1383 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1384 		if (txs->txs_mbuf != NULL) {
1385 			m_freem(txs->txs_mbuf);
1386 			txs->txs_mbuf = NULL;
1387 		}
1388 
1389 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1390 
1391 		ifp->if_opackets++;
1392 		progress = 1;
1393 	}
1394 
1395 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1396 		"GEM_TX_DATA_PTR %llx "
1397 		"GEM_TX_COMPLETION %x\n",
1398 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1399 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1400 			GEM_TX_DATA_PTR_HI) << 32) |
1401 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
1402 			GEM_TX_DATA_PTR_LO),
1403 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1404 	CTR3(KTR_GEM, "gem_tint: GEM_TX_STATE_MACHINE %x "
1405 		"GEM_TX_DATA_PTR %llx "
1406 		"GEM_TX_COMPLETION %x",
1407 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1408 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1409 			GEM_TX_DATA_PTR_HI) << 32) |
1410 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
1411 			GEM_TX_DATA_PTR_LO),
1412 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION));
1413 
1414 	if (progress) {
1415 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1416 			sc->sc_txwin = 0;
1417 
1418 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1419 		ifp->if_flags &= ~IFF_OACTIVE;
1420 		gem_start(ifp);
1421 
1422 		if (STAILQ_EMPTY(&sc->sc_txdirtyq))
1423 			ifp->if_timer = 0;
1424 	}
1425 
1426 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1427 		device_get_name(sc->sc_dev), ifp->if_timer));
1428 	CTR2(KTR_GEM, "%s: gem_tint: watchdog %d",
1429 		device_get_name(sc->sc_dev), ifp->if_timer);
1430 }
1431 
1432 static void
1433 gem_rint_timeout(arg)
1434 	void *arg;
1435 {
1436 
1437 	gem_rint((struct gem_softc *)arg);
1438 }
1439 
1440 /*
1441  * Receive interrupt.
1442  */
1443 static void
1444 gem_rint(sc)
1445 	struct gem_softc *sc;
1446 {
1447 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1448 	bus_space_tag_t t = sc->sc_bustag;
1449 	bus_space_handle_t h = sc->sc_h;
1450 	struct ether_header *eh;
1451 	struct gem_rxsoft *rxs;
1452 	struct mbuf *m;
1453 	u_int64_t rxstat;
1454 	u_int32_t rxcomp;
1455 	int i, len, progress = 0;
1456 
1457 	callout_stop(&sc->sc_rx_ch);
1458 	DPRINTF(sc, ("%s: gem_rint\n", device_get_name(sc->sc_dev)));
1459 	CTR1(KTR_GEM, "%s: gem_rint", device_get_name(sc->sc_dev));
1460 
1461 	/*
1462 	 * Read the completion register once.  This limits
1463 	 * how long the following loop can execute.
1464 	 */
1465 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1466 
1467 	/*
1468 	 * XXXX Read the lastrx only once at the top for speed.
1469 	 */
1470 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1471 		sc->sc_rxptr, rxcomp));
1472 	CTR2(KTR_GEM, "gem_rint: sc->rxptr %d, complete %d",
1473 	    sc->sc_rxptr, rxcomp);
1474 	for (i = sc->sc_rxptr; i != rxcomp;
1475 	     i = GEM_NEXTRX(i)) {
1476 		rxs = &sc->sc_rxsoft[i];
1477 
1478 		GEM_CDRXSYNC(sc, i,
1479 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1480 
1481 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1482 
1483 		if (rxstat & GEM_RD_OWN) {
1484 #if 0 /* XXX: In case of emergency, re-enable this. */
1485 			/*
1486 			 * The descriptor is still marked as owned, although
1487 			 * it is supposed to have completed. This has been
1488 			 * observed on some machines. Just exiting here
1489 			 * might leave the packet sitting around until another
1490 			 * one arrives to trigger a new interrupt, which is
1491 			 * generally undesirable, so set up a timeout.
1492 			 */
1493 			callout_reset(&sc->sc_rx_ch, GEM_RXOWN_TICKS,
1494 			    gem_rint_timeout, sc);
1495 #endif
1496 			break;
1497 		}
1498 
1499 		progress++;
1500 		ifp->if_ipackets++;
1501 
1502 		if (rxstat & GEM_RD_BAD_CRC) {
1503 			ifp->if_ierrors++;
1504 			device_printf(sc->sc_dev, "receive error: CRC error\n");
1505 			GEM_INIT_RXDESC(sc, i);
1506 			continue;
1507 		}
1508 
1509 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap,
1510 		    BUS_DMASYNC_POSTREAD);
1511 #ifdef GEM_DEBUG
1512 		if (ifp->if_flags & IFF_DEBUG) {
1513 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1514 			printf("gd_flags: 0x%016llx\t", (long long)
1515 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1516 			printf("gd_addr: 0x%016llx\n", (long long)
1517 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1518 		}
1519 #endif
1520 
1521 		/*
1522 		 * No errors; receive the packet.  Note the Gem
1523 		 * includes the CRC with every packet.
1524 		 */
1525 		len = GEM_RD_BUFLEN(rxstat);
1526 
1527 		/*
1528 		 * Allocate a new mbuf cluster.  If that fails, we are
1529 		 * out of memory, and must drop the packet and recycle
1530 		 * the buffer that's already attached to this descriptor.
1531 		 */
1532 		m = rxs->rxs_mbuf;
1533 		if (gem_add_rxbuf(sc, i) != 0) {
1534 			ifp->if_ierrors++;
1535 			GEM_INIT_RXDESC(sc, i);
1536 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap,
1537 			    BUS_DMASYNC_PREREAD);
1538 			continue;
1539 		}
1540 		m->m_data += 2; /* We're already off by two */
1541 
1542 		eh = mtod(m, struct ether_header *);
1543 		m->m_pkthdr.rcvif = ifp;
1544 		m->m_pkthdr.len = m->m_len = len - ETHER_CRC_LEN;
1545 		m_adj(m, sizeof(struct ether_header));
1546 
1547 		/* Pass it on. */
1548 		ether_input(ifp, eh, m);
1549 	}
1550 
1551 	if (progress) {
1552 		/* Update the receive pointer. */
1553 		if (i == sc->sc_rxptr) {
1554 			device_printf(sc->sc_dev, "rint: ring wrap\n");
1555 		}
1556 		sc->sc_rxptr = i;
1557 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1558 	}
1559 
1560 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1561 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1562 	CTR2(KTR_GEM, "gem_rint: done sc->rxptr %d, complete %d",
1563 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
1564 
1565 }
1566 
1567 
1568 /*
1569  * gem_add_rxbuf:
1570  *
1571  *	Add a receive buffer to the indicated descriptor.
1572  */
1573 static int
1574 gem_add_rxbuf(sc, idx)
1575 	struct gem_softc *sc;
1576 	int idx;
1577 {
1578 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1579 	struct mbuf *m;
1580 	int error;
1581 
1582 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1583 	if (m == NULL)
1584 		return (ENOBUFS);
1585 
1586 	MCLGET(m, M_DONTWAIT);
1587 	if ((m->m_flags & M_EXT) == 0) {
1588 		m_freem(m);
1589 		return (ENOBUFS);
1590 	}
1591 
1592 #ifdef GEM_DEBUG
1593 	/* bzero the packet to check dma */
1594 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1595 #endif
1596 
1597 	if (rxs->rxs_mbuf != NULL)
1598 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1599 
1600 	rxs->rxs_mbuf = m;
1601 
1602 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1603 	    m->m_ext.ext_buf, m->m_ext.ext_size, gem_rxdma_callback, rxs,
1604 	    BUS_DMA_NOWAIT);
1605 	if (error != 0 || rxs->rxs_paddr == 0) {
1606 		device_printf(sc->sc_dev, "can't load rx DMA map %d, error = "
1607 		    "%d\n", idx, error);
1608 		panic("gem_add_rxbuf");	/* XXX */
1609 	}
1610 
1611 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, BUS_DMASYNC_PREREAD);
1612 
1613 	GEM_INIT_RXDESC(sc, idx);
1614 
1615 	return (0);
1616 }
1617 
1618 
1619 static void
1620 gem_eint(sc, status)
1621 	struct gem_softc *sc;
1622 	u_int status;
1623 {
1624 
1625 	if ((status & GEM_INTR_MIF) != 0) {
1626 		device_printf(sc->sc_dev, "XXXlink status changed\n");
1627 		return;
1628 	}
1629 
1630 	device_printf(sc->sc_dev, "status=%x\n", status);
1631 }
1632 
1633 
1634 void
1635 gem_intr(v)
1636 	void *v;
1637 {
1638 	struct gem_softc *sc = (struct gem_softc *)v;
1639 	bus_space_tag_t t = sc->sc_bustag;
1640 	bus_space_handle_t seb = sc->sc_h;
1641 	u_int32_t status;
1642 
1643 	status = bus_space_read_4(t, seb, GEM_STATUS);
1644 	DPRINTF(sc, ("%s: gem_intr: cplt %x, status %x\n",
1645 		device_get_name(sc->sc_dev), (status>>19),
1646 		(u_int)status));
1647 	CTR3(KTR_GEM, "%s: gem_intr: cplt %x, status %x",
1648 		device_get_name(sc->sc_dev), (status>>19),
1649 		(u_int)status);
1650 
1651 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1652 		gem_eint(sc, status);
1653 
1654 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0)
1655 		gem_tint(sc);
1656 
1657 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1658 		gem_rint(sc);
1659 
1660 	/* We should eventually do more than just print out error stats. */
1661 	if (status & GEM_INTR_TX_MAC) {
1662 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1663 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1664 			device_printf(sc->sc_dev, "MAC tx fault, status %x\n",
1665 			    txstat);
1666 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
1667 			gem_init(sc);
1668 	}
1669 	if (status & GEM_INTR_RX_MAC) {
1670 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1671 		if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
1672 			device_printf(sc->sc_dev, "MAC rx fault, status %x\n",
1673 			    rxstat);
1674 		if ((rxstat & GEM_MAC_RX_OVERFLOW) != 0)
1675 			gem_init(sc);
1676 	}
1677 }
1678 
1679 
1680 static void
1681 gem_watchdog(ifp)
1682 	struct ifnet *ifp;
1683 {
1684 	struct gem_softc *sc = ifp->if_softc;
1685 
1686 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1687 		"GEM_MAC_RX_CONFIG %x\n",
1688 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1689 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1690 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1691 	CTR3(KTR_GEM, "gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1692 		"GEM_MAC_RX_CONFIG %x",
1693 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1694 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1695 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG));
1696 	CTR3(KTR_GEM, "gem_watchdog: GEM_TX_CONFIG %x GEM_MAC_TX_STATUS %x "
1697 		"GEM_MAC_TX_CONFIG %x",
1698 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_CONFIG),
1699 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_STATUS),
1700 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_CONFIG));
1701 
1702 	device_printf(sc->sc_dev, "device timeout\n");
1703 	++ifp->if_oerrors;
1704 
1705 	/* Try to get more packets going. */
1706 	gem_start(ifp);
1707 }
1708 
1709 /*
1710  * Initialize the MII Management Interface
1711  */
1712 static void
1713 gem_mifinit(sc)
1714 	struct gem_softc *sc;
1715 {
1716 	bus_space_tag_t t = sc->sc_bustag;
1717 	bus_space_handle_t mif = sc->sc_h;
1718 
1719 	/* Configure the MIF in frame mode */
1720 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1721 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1722 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1723 }
1724 
1725 /*
1726  * MII interface
1727  *
1728  * The GEM MII interface supports at least three different operating modes:
1729  *
1730  * Bitbang mode is implemented using data, clock and output enable registers.
1731  *
1732  * Frame mode is implemented by loading a complete frame into the frame
1733  * register and polling the valid bit for completion.
1734  *
1735  * Polling mode uses the frame register but completion is indicated by
1736  * an interrupt.
1737  *
1738  */
1739 int
1740 gem_mii_readreg(dev, phy, reg)
1741 	device_t dev;
1742 	int phy, reg;
1743 {
1744 	struct gem_softc *sc = device_get_softc(dev);
1745 	bus_space_tag_t t = sc->sc_bustag;
1746 	bus_space_handle_t mif = sc->sc_h;
1747 	int n;
1748 	u_int32_t v;
1749 
1750 #ifdef GEM_DEBUG_PHY
1751 	printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1752 #endif
1753 
1754 #if 0
1755 	/* Select the desired PHY in the MIF configuration register */
1756 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1757 	/* Clear PHY select bit */
1758 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1759 	if (phy == GEM_PHYAD_EXTERNAL)
1760 		/* Set PHY select bit to get at external device */
1761 		v |= GEM_MIF_CONFIG_PHY_SEL;
1762 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1763 #endif
1764 
1765 	/* Construct the frame command */
1766 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
1767 		GEM_MIF_FRAME_READ;
1768 
1769 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1770 	for (n = 0; n < 100; n++) {
1771 		DELAY(1);
1772 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1773 		if (v & GEM_MIF_FRAME_TA0)
1774 			return (v & GEM_MIF_FRAME_DATA);
1775 	}
1776 
1777 	device_printf(sc->sc_dev, "mii_read timeout\n");
1778 	return (0);
1779 }
1780 
1781 int
1782 gem_mii_writereg(dev, phy, reg, val)
1783 	device_t dev;
1784 	int phy, reg, val;
1785 {
1786 	struct gem_softc *sc = device_get_softc(dev);
1787 	bus_space_tag_t t = sc->sc_bustag;
1788 	bus_space_handle_t mif = sc->sc_h;
1789 	int n;
1790 	u_int32_t v;
1791 
1792 #ifdef GEM_DEBUG_PHY
1793 	printf("gem_mii_writereg: phy %d reg %d val %x\n", phy, reg, val);
1794 #endif
1795 
1796 #if 0
1797 	/* Select the desired PHY in the MIF configuration register */
1798 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1799 	/* Clear PHY select bit */
1800 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1801 	if (phy == GEM_PHYAD_EXTERNAL)
1802 		/* Set PHY select bit to get at external device */
1803 		v |= GEM_MIF_CONFIG_PHY_SEL;
1804 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1805 #endif
1806 	/* Construct the frame command */
1807 	v = GEM_MIF_FRAME_WRITE			|
1808 	    (phy << GEM_MIF_PHY_SHIFT)		|
1809 	    (reg << GEM_MIF_REG_SHIFT)		|
1810 	    (val & GEM_MIF_FRAME_DATA);
1811 
1812 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1813 	for (n = 0; n < 100; n++) {
1814 		DELAY(1);
1815 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1816 		if (v & GEM_MIF_FRAME_TA0)
1817 			return (1);
1818 	}
1819 
1820 	device_printf(sc->sc_dev, "mii_write timeout\n");
1821 	return (0);
1822 }
1823 
1824 void
1825 gem_mii_statchg(dev)
1826 	device_t dev;
1827 {
1828 	struct gem_softc *sc = device_get_softc(dev);
1829 #ifdef GEM_DEBUG
1830 	int instance = IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media);
1831 #endif
1832 	bus_space_tag_t t = sc->sc_bustag;
1833 	bus_space_handle_t mac = sc->sc_h;
1834 	u_int32_t v;
1835 
1836 #ifdef GEM_DEBUG
1837 	if (sc->sc_debug)
1838 		printf("gem_mii_statchg: status change: phy = %d\n",
1839 			sc->sc_phys[instance]);
1840 #endif
1841 
1842 	/* Set tx full duplex options */
1843 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1844 	DELAY(10000); /* reg must be cleared and delay before changing. */
1845 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1846 		GEM_MAC_TX_ENABLE;
1847 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) {
1848 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1849 	}
1850 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1851 
1852 	/* XIF Configuration */
1853  /* We should really calculate all this rather than rely on defaults */
1854 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1855 	v = GEM_MAC_XIF_LINK_LED;
1856 	v |= GEM_MAC_XIF_TX_MII_ENA;
1857 
1858 	/* If an external transceiver is connected, enable its MII drivers */
1859 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1860 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1861 		/* External MII needs echo disable if half duplex. */
1862 		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
1863 			/* turn on full duplex LED */
1864 			v |= GEM_MAC_XIF_FDPLX_LED;
1865 		else
1866 	 		/* half duplex -- disable echo */
1867 	 		v |= GEM_MAC_XIF_ECHO_DISABL;
1868 
1869 		if (IFM_SUBTYPE(sc->sc_mii->mii_media_active) == IFM_1000_T)
1870 			v |= GEM_MAC_XIF_GMII_MODE;
1871 		else
1872 			v &= ~GEM_MAC_XIF_GMII_MODE;
1873 	} else {
1874 		/* Internal MII needs buf enable */
1875 		v |= GEM_MAC_XIF_MII_BUF_ENA;
1876 	}
1877 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1878 }
1879 
1880 int
1881 gem_mediachange(ifp)
1882 	struct ifnet *ifp;
1883 {
1884 	struct gem_softc *sc = ifp->if_softc;
1885 
1886 	/* XXX Add support for serial media. */
1887 
1888 	return (mii_mediachg(sc->sc_mii));
1889 }
1890 
1891 void
1892 gem_mediastatus(ifp, ifmr)
1893 	struct ifnet *ifp;
1894 	struct ifmediareq *ifmr;
1895 {
1896 	struct gem_softc *sc = ifp->if_softc;
1897 
1898 	if ((ifp->if_flags & IFF_UP) == 0)
1899 		return;
1900 
1901 	mii_pollstat(sc->sc_mii);
1902 	ifmr->ifm_active = sc->sc_mii->mii_media_active;
1903 	ifmr->ifm_status = sc->sc_mii->mii_media_status;
1904 }
1905 
1906 /*
1907  * Process an ioctl request.
1908  */
1909 static int
1910 gem_ioctl(ifp, cmd, data)
1911 	struct ifnet *ifp;
1912 	u_long cmd;
1913 	caddr_t data;
1914 {
1915 	struct gem_softc *sc = ifp->if_softc;
1916 	struct ifreq *ifr = (struct ifreq *)data;
1917 	int s, error = 0;
1918 
1919 	switch (cmd) {
1920 	case SIOCSIFADDR:
1921 	case SIOCGIFADDR:
1922 	case SIOCSIFMTU:
1923 		error = ether_ioctl(ifp, cmd, data);
1924 		break;
1925 	case SIOCSIFFLAGS:
1926 		if (ifp->if_flags & IFF_UP) {
1927 			if ((sc->sc_ifflags ^ ifp->if_flags) == IFF_PROMISC)
1928 				gem_setladrf(sc);
1929 			else
1930 				gem_init(sc);
1931 		} else {
1932 			if (ifp->if_flags & IFF_RUNNING)
1933 				gem_stop(ifp, 0);
1934 		}
1935 		sc->sc_ifflags = ifp->if_flags;
1936 		error = 0;
1937 		break;
1938 	case SIOCADDMULTI:
1939 	case SIOCDELMULTI:
1940 		gem_setladrf(sc);
1941 		error = 0;
1942 		break;
1943 	case SIOCGIFMEDIA:
1944 	case SIOCSIFMEDIA:
1945 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
1946 		break;
1947 	default:
1948 		error = ENOTTY;
1949 		break;
1950 	}
1951 
1952 	/* Try to get things going again */
1953 	if (ifp->if_flags & IFF_UP)
1954 		gem_start(ifp);
1955 	splx(s);
1956 	return (error);
1957 }
1958 
1959 /*
1960  * Set up the logical address filter.
1961  */
1962 static void
1963 gem_setladrf(sc)
1964 	struct gem_softc *sc;
1965 {
1966 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1967 	struct ifmultiaddr *inm;
1968 	struct sockaddr_dl *sdl;
1969 	bus_space_tag_t t = sc->sc_bustag;
1970 	bus_space_handle_t h = sc->sc_h;
1971 	u_char *cp;
1972 	u_int32_t crc;
1973 	u_int32_t hash[16];
1974 	u_int32_t v;
1975 	int len;
1976 	int i;
1977 
1978 	/* Get current RX configuration */
1979 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1980 
1981 	/*
1982 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
1983 	 * and hash filter.  Depending on the case, the right bit will be
1984 	 * enabled.
1985 	 */
1986 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
1987 	    GEM_MAC_RX_PROMISC_GRP);
1988 
1989 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1990 		/* Turn on promiscuous mode */
1991 		v |= GEM_MAC_RX_PROMISCUOUS;
1992 		goto chipit;
1993 	}
1994 	if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
1995 		hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1996 		ifp->if_flags |= IFF_ALLMULTI;
1997 		v |= GEM_MAC_RX_PROMISC_GRP;
1998 		goto chipit;
1999 	}
2000 
2001 	/*
2002 	 * Set up multicast address filter by passing all multicast addresses
2003 	 * through a crc generator, and then using the high order 8 bits as an
2004 	 * index into the 256 bit logical address filter.  The high order 4
2005 	 * bits selects the word, while the other 4 bits select the bit within
2006 	 * the word (where bit 0 is the MSB).
2007 	 */
2008 
2009 	/* Clear hash table */
2010 	memset(hash, 0, sizeof(hash));
2011 
2012 	TAILQ_FOREACH(inm, &sc->sc_arpcom.ac_if.if_multiaddrs, ifma_link) {
2013 		if (inm->ifma_addr->sa_family != AF_LINK)
2014 			continue;
2015 		sdl = (struct sockaddr_dl *)inm->ifma_addr;
2016 		cp = LLADDR(sdl);
2017 		crc = 0xffffffff;
2018 		for (len = sdl->sdl_alen; --len >= 0;) {
2019 			int octet = *cp++;
2020 			int i;
2021 
2022 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
2023 			for (i = 0; i < 8; i++) {
2024 				if ((crc & 1) ^ (octet & 1)) {
2025 					crc >>= 1;
2026 					crc ^= MC_POLY_LE;
2027 				} else {
2028 					crc >>= 1;
2029 				}
2030 				octet >>= 1;
2031 			}
2032 		}
2033 		/* Just want the 8 most significant bits. */
2034 		crc >>= 24;
2035 
2036 		/* Set the corresponding bit in the filter. */
2037 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2038 	}
2039 
2040 	v |= GEM_MAC_RX_HASH_FILTER;
2041 	ifp->if_flags &= ~IFF_ALLMULTI;
2042 
2043 	/* Now load the hash table into the chip (if we are using it) */
2044 	for (i = 0; i < 16; i++) {
2045 		bus_space_write_4(t, h,
2046 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2047 		    hash[i]);
2048 	}
2049 
2050 chipit:
2051 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2052 }
2053 
2054 #if notyet
2055 
2056 /*
2057  * gem_power:
2058  *
2059  *	Power management (suspend/resume) hook.
2060  */
2061 void
2062 static gem_power(why, arg)
2063 	int why;
2064 	void *arg;
2065 {
2066 	struct gem_softc *sc = arg;
2067 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2068 	int s;
2069 
2070 	s = splnet();
2071 	switch (why) {
2072 	case PWR_SUSPEND:
2073 	case PWR_STANDBY:
2074 		gem_stop(ifp, 1);
2075 		if (sc->sc_power != NULL)
2076 			(*sc->sc_power)(sc, why);
2077 		break;
2078 	case PWR_RESUME:
2079 		if (ifp->if_flags & IFF_UP) {
2080 			if (sc->sc_power != NULL)
2081 				(*sc->sc_power)(sc, why);
2082 			gem_init(ifp);
2083 		}
2084 		break;
2085 	case PWR_SOFTSUSPEND:
2086 	case PWR_SOFTSTANDBY:
2087 	case PWR_SOFTRESUME:
2088 		break;
2089 	}
2090 	splx(s);
2091 }
2092 #endif
2093