xref: /freebsd/sys/dev/fxp/if_fxp.c (revision fd5c6edb78cf9c2976172f537cdccc872d2784f1)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/lock.h>
48 #include <sys/module.h>
49 #include <sys/mutex.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 
55 #include <net/bpf.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_vlan_var.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 
70 #include <machine/bus.h>
71 #include <machine/in_cksum.h>
72 #include <machine/resource.h>
73 
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 
80 #include <dev/fxp/if_fxpreg.h>
81 #include <dev/fxp/if_fxpvar.h>
82 #include <dev/fxp/rcvbundl.h>
83 
84 MODULE_DEPEND(fxp, pci, 1, 1, 1);
85 MODULE_DEPEND(fxp, ether, 1, 1, 1);
86 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
87 #include "miibus_if.h"
88 
89 /*
90  * NOTE!  On !x86 we typically have an alignment constraint.  The
91  * card DMAs the packet immediately following the RFA.  However,
92  * the first thing in the packet is a 14-byte Ethernet header.
93  * This means that the packet is misaligned.  To compensate,
94  * we actually offset the RFA 2 bytes into the cluster.  This
95  * alignes the packet after the Ethernet header at a 32-bit
96  * boundary.  HOWEVER!  This means that the RFA is misaligned!
97  */
98 #define	RFA_ALIGNMENT_FUDGE	2
99 
100 /*
101  * Set initial transmit threshold at 64 (512 bytes). This is
102  * increased by 64 (512 bytes) at a time, to maximum of 192
103  * (1536 bytes), if an underrun occurs.
104  */
105 static int tx_threshold = 64;
106 
107 /*
108  * The configuration byte map has several undefined fields which
109  * must be one or must be zero.  Set up a template for these bits.
110  * The actual configuration is performed in fxp_init_body.
111  *
112  * See struct fxp_cb_config for the bit definitions.
113  */
114 static const u_char const fxp_cb_config_template[] = {
115 	0x0, 0x0,		/* cb_status */
116 	0x0, 0x0,		/* cb_command */
117 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118 	0x0,	/*  0 */
119 	0x0,	/*  1 */
120 	0x0,	/*  2 */
121 	0x0,	/*  3 */
122 	0x0,	/*  4 */
123 	0x0,	/*  5 */
124 	0x32,	/*  6 */
125 	0x0,	/*  7 */
126 	0x0,	/*  8 */
127 	0x0,	/*  9 */
128 	0x6,	/* 10 */
129 	0x0,	/* 11 */
130 	0x0,	/* 12 */
131 	0x0,	/* 13 */
132 	0xf2,	/* 14 */
133 	0x48,	/* 15 */
134 	0x0,	/* 16 */
135 	0x40,	/* 17 */
136 	0xf0,	/* 18 */
137 	0x0,	/* 19 */
138 	0x3f,	/* 20 */
139 	0x5,	/* 21 */
140 	0x0,	/* 22 */
141 	0x0,	/* 23 */
142 	0x0,	/* 24 */
143 	0x0,	/* 25 */
144 	0x0,	/* 26 */
145 	0x0,	/* 27 */
146 	0x0,	/* 28 */
147 	0x0,	/* 29 */
148 	0x0,	/* 30 */
149 	0x0	/* 31 */
150 };
151 
152 /*
153  * Claim various Intel PCI device identifiers for this driver.  The
154  * sub-vendor and sub-device field are extensively used to identify
155  * particular variants, but we don't currently differentiate between
156  * them.
157  */
158 static const struct fxp_ident const fxp_ident_table[] = {
159     { 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
160     { 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
161     { 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
162     { 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
163     { 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164     { 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165     { 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166     { 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167     { 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168     { 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169     { 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170     { 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
171     { 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
172     { 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
173     { 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174     { 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
175     { 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
176     { 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
177     { 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
178     { 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
179     { 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
180     { 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
181     { 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
182     { 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
183     { 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
184     { 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
185     { 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
186     { 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
187     { 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
188     { 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
189     { 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
190     { 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
191     { 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
192     { 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
193     { 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
194     { 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
195     { 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
196     { 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
197     { 0x1229,	0x0d,	0, "Intel 82550 Pro/100 Ethernet" },
198     { 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
199     { 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
200     { 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
201     { 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
202     { 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
203     { 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
204     { 0,	-1,	0, NULL },
205 };
206 
207 #ifdef FXP_IP_CSUM_WAR
208 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
209 #else
210 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
211 #endif
212 
213 static int		fxp_probe(device_t dev);
214 static int		fxp_attach(device_t dev);
215 static int		fxp_detach(device_t dev);
216 static int		fxp_shutdown(device_t dev);
217 static int		fxp_suspend(device_t dev);
218 static int		fxp_resume(device_t dev);
219 
220 static const struct fxp_ident *fxp_find_ident(device_t dev);
221 static void		fxp_intr(void *xsc);
222 static void		fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
223 			    struct mbuf *m, uint16_t status, int pos);
224 static int		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
225 			    uint8_t statack, int count);
226 static void 		fxp_init(void *xsc);
227 static void 		fxp_init_body(struct fxp_softc *sc, int);
228 static void 		fxp_tick(void *xsc);
229 static void 		fxp_start(struct ifnet *ifp);
230 static void 		fxp_start_body(struct ifnet *ifp);
231 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
232 static void		fxp_txeof(struct fxp_softc *sc);
233 static void		fxp_stop(struct fxp_softc *sc);
234 static void 		fxp_release(struct fxp_softc *sc);
235 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
236 			    caddr_t data);
237 static void 		fxp_watchdog(struct fxp_softc *sc);
238 static void		fxp_add_rfabuf(struct fxp_softc *sc,
239 			    struct fxp_rx *rxp);
240 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
241 			    struct fxp_rx *rxp);
242 static int		fxp_new_rfabuf(struct fxp_softc *sc,
243 			    struct fxp_rx *rxp);
244 static int		fxp_mc_addrs(struct fxp_softc *sc);
245 static void		fxp_mc_setup(struct fxp_softc *sc);
246 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
247 			    int autosize);
248 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
249 			    uint16_t data);
250 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
251 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
252 			    int offset, int words);
253 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
254 			    int offset, int words);
255 static int		fxp_ifmedia_upd(struct ifnet *ifp);
256 static void		fxp_ifmedia_sts(struct ifnet *ifp,
257 			    struct ifmediareq *ifmr);
258 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
259 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
260 			    struct ifmediareq *ifmr);
261 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
262 static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
263 			    int value);
264 static void		fxp_miibus_statchg(device_t dev);
265 static void		fxp_load_ucode(struct fxp_softc *sc);
266 static void		fxp_update_stats(struct fxp_softc *sc);
267 static void		fxp_sysctl_node(struct fxp_softc *sc);
268 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
269 			    int low, int high);
270 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
271 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
272 static void 		fxp_scb_wait(struct fxp_softc *sc);
273 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
274 static void		fxp_dma_wait(struct fxp_softc *sc,
275 			    volatile uint16_t *status, bus_dma_tag_t dmat,
276 			    bus_dmamap_t map);
277 
278 static device_method_t fxp_methods[] = {
279 	/* Device interface */
280 	DEVMETHOD(device_probe,		fxp_probe),
281 	DEVMETHOD(device_attach,	fxp_attach),
282 	DEVMETHOD(device_detach,	fxp_detach),
283 	DEVMETHOD(device_shutdown,	fxp_shutdown),
284 	DEVMETHOD(device_suspend,	fxp_suspend),
285 	DEVMETHOD(device_resume,	fxp_resume),
286 
287 	/* MII interface */
288 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
289 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
290 	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
291 
292 	{ 0, 0 }
293 };
294 
295 static driver_t fxp_driver = {
296 	"fxp",
297 	fxp_methods,
298 	sizeof(struct fxp_softc),
299 };
300 
301 static devclass_t fxp_devclass;
302 
303 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
304 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
305 
306 static struct resource_spec fxp_res_spec_mem[] = {
307 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
308 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
309 	{ -1, 0 }
310 };
311 
312 static struct resource_spec fxp_res_spec_io[] = {
313 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
314 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
315 	{ -1, 0 }
316 };
317 
318 /*
319  * Wait for the previous command to be accepted (but not necessarily
320  * completed).
321  */
322 static void
323 fxp_scb_wait(struct fxp_softc *sc)
324 {
325 	union {
326 		uint16_t w;
327 		uint8_t b[2];
328 	} flowctl;
329 	int i = 10000;
330 
331 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
332 		DELAY(2);
333 	if (i == 0) {
334 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
335 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
336 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
337 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
338 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
339 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
340 	}
341 }
342 
343 static void
344 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
345 {
346 
347 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
348 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
349 		fxp_scb_wait(sc);
350 	}
351 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
352 }
353 
354 static void
355 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
356     bus_dma_tag_t dmat, bus_dmamap_t map)
357 {
358 	int i;
359 
360 	for (i = 10000; i > 0; i--) {
361 		DELAY(2);
362 		bus_dmamap_sync(dmat, map,
363 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
364 		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
365 			break;
366 	}
367 	if (i == 0)
368 		device_printf(sc->dev, "DMA timeout\n");
369 }
370 
371 static const struct fxp_ident *
372 fxp_find_ident(device_t dev)
373 {
374 	uint16_t devid;
375 	uint8_t revid;
376 	const struct fxp_ident *ident;
377 
378 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
379 		devid = pci_get_device(dev);
380 		revid = pci_get_revid(dev);
381 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
382 			if (ident->devid == devid &&
383 			    (ident->revid == revid || ident->revid == -1)) {
384 				return (ident);
385 			}
386 		}
387 	}
388 	return (NULL);
389 }
390 
391 /*
392  * Return identification string if this device is ours.
393  */
394 static int
395 fxp_probe(device_t dev)
396 {
397 	const struct fxp_ident *ident;
398 
399 	ident = fxp_find_ident(dev);
400 	if (ident != NULL) {
401 		device_set_desc(dev, ident->name);
402 		return (BUS_PROBE_DEFAULT);
403 	}
404 	return (ENXIO);
405 }
406 
407 static void
408 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
409 {
410 	uint32_t *addr;
411 
412 	if (error)
413 		return;
414 
415 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
416 	addr = arg;
417 	*addr = segs->ds_addr;
418 }
419 
420 static int
421 fxp_attach(device_t dev)
422 {
423 	struct fxp_softc *sc;
424 	struct fxp_cb_tx *tcbp;
425 	struct fxp_tx *txp;
426 	struct fxp_rx *rxp;
427 	struct ifnet *ifp;
428 	uint32_t val;
429 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
430 	u_char eaddr[ETHER_ADDR_LEN];
431 	int error, flags, i, pmc, prefer_iomap;
432 
433 	error = 0;
434 	sc = device_get_softc(dev);
435 	sc->dev = dev;
436 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
437 	    MTX_DEF);
438 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
439 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
440 	    fxp_serial_ifmedia_sts);
441 
442 	ifp = sc->ifp = if_alloc(IFT_ETHER);
443 	if (ifp == NULL) {
444 		device_printf(dev, "can not if_alloc()\n");
445 		error = ENOSPC;
446 		goto fail;
447 	}
448 
449 	/*
450 	 * Enable bus mastering.
451 	 */
452 	pci_enable_busmaster(dev);
453 	val = pci_read_config(dev, PCIR_COMMAND, 2);
454 
455 	/*
456 	 * Figure out which we should try first - memory mapping or i/o mapping?
457 	 * We default to memory mapping. Then we accept an override from the
458 	 * command line. Then we check to see which one is enabled.
459 	 */
460 	prefer_iomap = 0;
461 	resource_int_value(device_get_name(dev), device_get_unit(dev),
462 	    "prefer_iomap", &prefer_iomap);
463 	if (prefer_iomap)
464 		sc->fxp_spec = fxp_res_spec_io;
465 	else
466 		sc->fxp_spec = fxp_res_spec_mem;
467 
468 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
469 	if (error) {
470 		if (sc->fxp_spec == fxp_res_spec_mem)
471 			sc->fxp_spec = fxp_res_spec_io;
472 		else
473 			sc->fxp_spec = fxp_res_spec_mem;
474 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
475 	}
476 	if (error) {
477 		device_printf(dev, "could not allocate resources\n");
478 		error = ENXIO;
479 		goto fail;
480 	}
481 
482 	if (bootverbose) {
483 		device_printf(dev, "using %s space register mapping\n",
484 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
485 	}
486 
487 	/*
488 	 * Put CU/RU idle state and prepare full reset.
489 	 */
490 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
491 	DELAY(10);
492 	/* Full reset and disable interrupts. */
493 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
494 	DELAY(10);
495 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
496 
497 	/*
498 	 * Find out how large of an SEEPROM we have.
499 	 */
500 	fxp_autosize_eeprom(sc);
501 
502 	/*
503 	 * Find out the chip revision; lump all 82557 revs together.
504 	 */
505 	sc->ident = fxp_find_ident(dev);
506 	if (sc->ident->ich > 0) {
507 		/* Assume ICH controllers are 82559. */
508 		sc->revision = FXP_REV_82559_A0;
509 	} else {
510 		fxp_read_eeprom(sc, &data, 5, 1);
511 		if ((data >> 8) == 1)
512 			sc->revision = FXP_REV_82557;
513 		else
514 			sc->revision = pci_get_revid(dev);
515 	}
516 
517 	/*
518 	 * Check availability of WOL. 82559ER does not support WOL.
519 	 */
520 	if (sc->revision >= FXP_REV_82558_A4 &&
521 	    sc->revision != FXP_REV_82559S_A) {
522 		fxp_read_eeprom(sc, &data, 10, 1);
523 		if ((data & 0x20) != 0 &&
524 		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
525 			sc->flags |= FXP_FLAG_WOLCAP;
526 	}
527 
528 	/* Receiver lock-up workaround detection. */
529 	if (sc->revision < FXP_REV_82558_A4) {
530 		fxp_read_eeprom(sc, &data, 3, 1);
531 		if ((data & 0x03) != 0x03) {
532 			sc->flags |= FXP_FLAG_RXBUG;
533 			device_printf(dev, "Enabling Rx lock-up workaround\n");
534 		}
535 	}
536 
537 	/*
538 	 * Determine whether we must use the 503 serial interface.
539 	 */
540 	fxp_read_eeprom(sc, &data, 6, 1);
541 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
542 	    && (data & FXP_PHY_SERIAL_ONLY))
543 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
544 
545 	fxp_sysctl_node(sc);
546 	/*
547 	 * Enable workarounds for certain chip revision deficiencies.
548 	 *
549 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
550 	 * some systems based a normal 82559 design, have a defect where
551 	 * the chip can cause a PCI protocol violation if it receives
552 	 * a CU_RESUME command when it is entering the IDLE state.  The
553 	 * workaround is to disable Dynamic Standby Mode, so the chip never
554 	 * deasserts CLKRUN#, and always remains in an active state.
555 	 *
556 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
557 	 */
558 	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
559 	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
560 		fxp_read_eeprom(sc, &data, 10, 1);
561 		if (data & 0x02) {			/* STB enable */
562 			uint16_t cksum;
563 			int i;
564 
565 			device_printf(dev,
566 			    "Disabling dynamic standby mode in EEPROM\n");
567 			data &= ~0x02;
568 			fxp_write_eeprom(sc, &data, 10, 1);
569 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
570 			cksum = 0;
571 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
572 				fxp_read_eeprom(sc, &data, i, 1);
573 				cksum += data;
574 			}
575 			i = (1 << sc->eeprom_size) - 1;
576 			cksum = 0xBABA - cksum;
577 			fxp_read_eeprom(sc, &data, i, 1);
578 			fxp_write_eeprom(sc, &cksum, i, 1);
579 			device_printf(dev,
580 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
581 			    i, data, cksum);
582 #if 1
583 			/*
584 			 * If the user elects to continue, try the software
585 			 * workaround, as it is better than nothing.
586 			 */
587 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
588 #endif
589 		}
590 	}
591 
592 	/*
593 	 * If we are not a 82557 chip, we can enable extended features.
594 	 */
595 	if (sc->revision != FXP_REV_82557) {
596 		/*
597 		 * If MWI is enabled in the PCI configuration, and there
598 		 * is a valid cacheline size (8 or 16 dwords), then tell
599 		 * the board to turn on MWI.
600 		 */
601 		if (val & PCIM_CMD_MWRICEN &&
602 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
603 			sc->flags |= FXP_FLAG_MWI_ENABLE;
604 
605 		/* turn on the extended TxCB feature */
606 		sc->flags |= FXP_FLAG_EXT_TXCB;
607 
608 		/* enable reception of long frames for VLAN */
609 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
610 	} else {
611 		/* a hack to get long VLAN frames on a 82557 */
612 		sc->flags |= FXP_FLAG_SAVE_BAD;
613 	}
614 
615 	/* For 82559 or later chips, Rx checksum offload is supported. */
616 	if (sc->revision >= FXP_REV_82559_A0) {
617 		/* 82559ER does not support Rx checksum offloading. */
618 		if (sc->ident->devid != 0x1209)
619 			sc->flags |= FXP_FLAG_82559_RXCSUM;
620 	}
621 	/*
622 	 * Enable use of extended RFDs and TCBs for 82550
623 	 * and later chips. Note: we need extended TXCB support
624 	 * too, but that's already enabled by the code above.
625 	 * Be careful to do this only on the right devices.
626 	 */
627 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
628 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
629 	    || sc->revision == FXP_REV_82551_10) {
630 		sc->rfa_size = sizeof (struct fxp_rfa);
631 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
632 		sc->flags |= FXP_FLAG_EXT_RFA;
633 		/* Use extended RFA instead of 82559 checksum mode. */
634 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
635 	} else {
636 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
637 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
638 	}
639 
640 	/*
641 	 * Allocate DMA tags and DMA safe memory.
642 	 */
643 	sc->maxtxseg = FXP_NTXSEG;
644 	sc->maxsegsize = MCLBYTES;
645 	if (sc->flags & FXP_FLAG_EXT_RFA) {
646 		sc->maxtxseg--;
647 		sc->maxsegsize = FXP_TSO_SEGSIZE;
648 	}
649 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
650 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
651 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
652 	    sc->maxtxseg, sc->maxsegsize, 0,
653 	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
654 	if (error) {
655 		device_printf(dev, "could not create TX DMA tag\n");
656 		goto fail;
657 	}
658 
659 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
660 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
661 	    MCLBYTES, 1, MCLBYTES, 0,
662 	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
663 	if (error) {
664 		device_printf(dev, "could not create RX DMA tag\n");
665 		goto fail;
666 	}
667 
668 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
669 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
670 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
671 	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
672 	if (error) {
673 		device_printf(dev, "could not create stats DMA tag\n");
674 		goto fail;
675 	}
676 
677 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
678 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
679 	if (error) {
680 		device_printf(dev, "could not allocate stats DMA memory\n");
681 		goto fail;
682 	}
683 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
684 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
685 	    BUS_DMA_NOWAIT);
686 	if (error) {
687 		device_printf(dev, "could not load the stats DMA buffer\n");
688 		goto fail;
689 	}
690 
691 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
692 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
693 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
694 	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
695 	if (error) {
696 		device_printf(dev, "could not create TxCB DMA tag\n");
697 		goto fail;
698 	}
699 
700 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
701 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
702 	if (error) {
703 		device_printf(dev, "could not allocate TxCB DMA memory\n");
704 		goto fail;
705 	}
706 
707 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
708 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
709 	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
710 	if (error) {
711 		device_printf(dev, "could not load TxCB DMA buffer\n");
712 		goto fail;
713 	}
714 
715 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
716 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
717 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
718 	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
719 	if (error) {
720 		device_printf(dev,
721 		    "could not create multicast setup DMA tag\n");
722 		goto fail;
723 	}
724 
725 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
726 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
727 	if (error) {
728 		device_printf(dev,
729 		    "could not allocate multicast setup DMA memory\n");
730 		goto fail;
731 	}
732 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
733 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
734 	    BUS_DMA_NOWAIT);
735 	if (error) {
736 		device_printf(dev,
737 		    "can't load the multicast setup DMA buffer\n");
738 		goto fail;
739 	}
740 
741 	/*
742 	 * Pre-allocate the TX DMA maps and setup the pointers to
743 	 * the TX command blocks.
744 	 */
745 	txp = sc->fxp_desc.tx_list;
746 	tcbp = sc->fxp_desc.cbl_list;
747 	for (i = 0; i < FXP_NTXCB; i++) {
748 		txp[i].tx_cb = tcbp + i;
749 		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
750 		if (error) {
751 			device_printf(dev, "can't create DMA map for TX\n");
752 			goto fail;
753 		}
754 	}
755 	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
756 	if (error) {
757 		device_printf(dev, "can't create spare DMA map\n");
758 		goto fail;
759 	}
760 
761 	/*
762 	 * Pre-allocate our receive buffers.
763 	 */
764 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
765 	for (i = 0; i < FXP_NRFABUFS; i++) {
766 		rxp = &sc->fxp_desc.rx_list[i];
767 		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
768 		if (error) {
769 			device_printf(dev, "can't create DMA map for RX\n");
770 			goto fail;
771 		}
772 		if (fxp_new_rfabuf(sc, rxp) != 0) {
773 			error = ENOMEM;
774 			goto fail;
775 		}
776 		fxp_add_rfabuf(sc, rxp);
777 	}
778 
779 	/*
780 	 * Read MAC address.
781 	 */
782 	fxp_read_eeprom(sc, myea, 0, 3);
783 	eaddr[0] = myea[0] & 0xff;
784 	eaddr[1] = myea[0] >> 8;
785 	eaddr[2] = myea[1] & 0xff;
786 	eaddr[3] = myea[1] >> 8;
787 	eaddr[4] = myea[2] & 0xff;
788 	eaddr[5] = myea[2] >> 8;
789 	if (bootverbose) {
790 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
791 		    pci_get_vendor(dev), pci_get_device(dev),
792 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
793 		    pci_get_revid(dev));
794 		fxp_read_eeprom(sc, &data, 10, 1);
795 		device_printf(dev, "Dynamic Standby mode is %s\n",
796 		    data & 0x02 ? "enabled" : "disabled");
797 	}
798 
799 	/*
800 	 * If this is only a 10Mbps device, then there is no MII, and
801 	 * the PHY will use a serial interface instead.
802 	 *
803 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
804 	 * doesn't have a programming interface of any sort.  The
805 	 * media is sensed automatically based on how the link partner
806 	 * is configured.  This is, in essence, manual configuration.
807 	 */
808 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
809 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
810 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
811 	} else {
812 		/*
813 		 * i82557 wedge when isolating all of their PHYs.
814 		 */
815 		flags = MIIF_NOISOLATE;
816 		if (sc->revision >= FXP_REV_82558_A4)
817 			flags |= MIIF_DOPAUSE;
818 		error = mii_attach(dev, &sc->miibus, ifp, fxp_ifmedia_upd,
819 		    fxp_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
820 		    MII_OFFSET_ANY, flags);
821 		if (error != 0) {
822 			device_printf(dev, "attaching PHYs failed\n");
823 			goto fail;
824 		}
825 	}
826 
827 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
828 	ifp->if_init = fxp_init;
829 	ifp->if_softc = sc;
830 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
831 	ifp->if_ioctl = fxp_ioctl;
832 	ifp->if_start = fxp_start;
833 
834 	ifp->if_capabilities = ifp->if_capenable = 0;
835 
836 	/* Enable checksum offload/TSO for 82550 or better chips */
837 	if (sc->flags & FXP_FLAG_EXT_RFA) {
838 		ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
839 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
840 		ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
841 	}
842 
843 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
844 		ifp->if_capabilities |= IFCAP_RXCSUM;
845 		ifp->if_capenable |= IFCAP_RXCSUM;
846 	}
847 
848 	if (sc->flags & FXP_FLAG_WOLCAP) {
849 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
850 		ifp->if_capenable |= IFCAP_WOL_MAGIC;
851 	}
852 
853 #ifdef DEVICE_POLLING
854 	/* Inform the world we support polling. */
855 	ifp->if_capabilities |= IFCAP_POLLING;
856 #endif
857 
858 	/*
859 	 * Attach the interface.
860 	 */
861 	ether_ifattach(ifp, eaddr);
862 
863 	/*
864 	 * Tell the upper layer(s) we support long frames.
865 	 * Must appear after the call to ether_ifattach() because
866 	 * ether_ifattach() sets ifi_hdrlen to the default value.
867 	 */
868 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
869 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
870 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
871 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
872 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
873 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
874 		ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
875 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
876 	}
877 
878 	/*
879 	 * Let the system queue as many packets as we have available
880 	 * TX descriptors.
881 	 */
882 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
883 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
884 	IFQ_SET_READY(&ifp->if_snd);
885 
886 	/*
887 	 * Hook our interrupt after all initialization is complete.
888 	 */
889 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
890 			       NULL, fxp_intr, sc, &sc->ih);
891 	if (error) {
892 		device_printf(dev, "could not setup irq\n");
893 		ether_ifdetach(sc->ifp);
894 		goto fail;
895 	}
896 
897 	/*
898 	 * Configure hardware to reject magic frames otherwise
899 	 * system will hang on recipt of magic frames.
900 	 */
901 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
902 		FXP_LOCK(sc);
903 		/* Clear wakeup events. */
904 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
905 		fxp_init_body(sc, 1);
906 		fxp_stop(sc);
907 		FXP_UNLOCK(sc);
908 	}
909 
910 fail:
911 	if (error)
912 		fxp_release(sc);
913 	return (error);
914 }
915 
916 /*
917  * Release all resources.  The softc lock should not be held and the
918  * interrupt should already be torn down.
919  */
920 static void
921 fxp_release(struct fxp_softc *sc)
922 {
923 	struct fxp_rx *rxp;
924 	struct fxp_tx *txp;
925 	int i;
926 
927 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
928 	KASSERT(sc->ih == NULL,
929 	    ("fxp_release() called with intr handle still active"));
930 	if (sc->miibus)
931 		device_delete_child(sc->dev, sc->miibus);
932 	bus_generic_detach(sc->dev);
933 	ifmedia_removeall(&sc->sc_media);
934 	if (sc->fxp_desc.cbl_list) {
935 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
936 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
937 		    sc->cbl_map);
938 	}
939 	if (sc->fxp_stats) {
940 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
941 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
942 	}
943 	if (sc->mcsp) {
944 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
945 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
946 	}
947 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
948 	if (sc->fxp_rxmtag) {
949 		for (i = 0; i < FXP_NRFABUFS; i++) {
950 			rxp = &sc->fxp_desc.rx_list[i];
951 			if (rxp->rx_mbuf != NULL) {
952 				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
953 				    BUS_DMASYNC_POSTREAD);
954 				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
955 				m_freem(rxp->rx_mbuf);
956 			}
957 			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
958 		}
959 		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
960 		bus_dma_tag_destroy(sc->fxp_rxmtag);
961 	}
962 	if (sc->fxp_txmtag) {
963 		for (i = 0; i < FXP_NTXCB; i++) {
964 			txp = &sc->fxp_desc.tx_list[i];
965 			if (txp->tx_mbuf != NULL) {
966 				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
967 				    BUS_DMASYNC_POSTWRITE);
968 				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
969 				m_freem(txp->tx_mbuf);
970 			}
971 			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
972 		}
973 		bus_dma_tag_destroy(sc->fxp_txmtag);
974 	}
975 	if (sc->fxp_stag)
976 		bus_dma_tag_destroy(sc->fxp_stag);
977 	if (sc->cbl_tag)
978 		bus_dma_tag_destroy(sc->cbl_tag);
979 	if (sc->mcs_tag)
980 		bus_dma_tag_destroy(sc->mcs_tag);
981 	if (sc->ifp)
982 		if_free(sc->ifp);
983 
984 	mtx_destroy(&sc->sc_mtx);
985 }
986 
987 /*
988  * Detach interface.
989  */
990 static int
991 fxp_detach(device_t dev)
992 {
993 	struct fxp_softc *sc = device_get_softc(dev);
994 
995 #ifdef DEVICE_POLLING
996 	if (sc->ifp->if_capenable & IFCAP_POLLING)
997 		ether_poll_deregister(sc->ifp);
998 #endif
999 
1000 	FXP_LOCK(sc);
1001 	/*
1002 	 * Stop DMA and drop transmit queue, but disable interrupts first.
1003 	 */
1004 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1005 	fxp_stop(sc);
1006 	FXP_UNLOCK(sc);
1007 	callout_drain(&sc->stat_ch);
1008 
1009 	/*
1010 	 * Close down routes etc.
1011 	 */
1012 	ether_ifdetach(sc->ifp);
1013 
1014 	/*
1015 	 * Unhook interrupt before dropping lock. This is to prevent
1016 	 * races with fxp_intr().
1017 	 */
1018 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1019 	sc->ih = NULL;
1020 
1021 	/* Release our allocated resources. */
1022 	fxp_release(sc);
1023 	return (0);
1024 }
1025 
1026 /*
1027  * Device shutdown routine. Called at system shutdown after sync. The
1028  * main purpose of this routine is to shut off receiver DMA so that
1029  * kernel memory doesn't get clobbered during warmboot.
1030  */
1031 static int
1032 fxp_shutdown(device_t dev)
1033 {
1034 
1035 	/*
1036 	 * Make sure that DMA is disabled prior to reboot. Not doing
1037 	 * do could allow DMA to corrupt kernel memory during the
1038 	 * reboot before the driver initializes.
1039 	 */
1040 	return (fxp_suspend(dev));
1041 }
1042 
1043 /*
1044  * Device suspend routine.  Stop the interface and save some PCI
1045  * settings in case the BIOS doesn't restore them properly on
1046  * resume.
1047  */
1048 static int
1049 fxp_suspend(device_t dev)
1050 {
1051 	struct fxp_softc *sc = device_get_softc(dev);
1052 	struct ifnet *ifp;
1053 	int pmc;
1054 	uint16_t pmstat;
1055 
1056 	FXP_LOCK(sc);
1057 
1058 	ifp = sc->ifp;
1059 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1060 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1061 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1062 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1063 			/* Request PME. */
1064 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1065 			sc->flags |= FXP_FLAG_WOL;
1066 			/* Reconfigure hardware to accept magic frames. */
1067 			fxp_init_body(sc, 1);
1068 		}
1069 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1070 	}
1071 	fxp_stop(sc);
1072 
1073 	sc->suspended = 1;
1074 
1075 	FXP_UNLOCK(sc);
1076 	return (0);
1077 }
1078 
1079 /*
1080  * Device resume routine. re-enable busmastering, and restart the interface if
1081  * appropriate.
1082  */
1083 static int
1084 fxp_resume(device_t dev)
1085 {
1086 	struct fxp_softc *sc = device_get_softc(dev);
1087 	struct ifnet *ifp = sc->ifp;
1088 	int pmc;
1089 	uint16_t pmstat;
1090 
1091 	FXP_LOCK(sc);
1092 
1093 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1094 		sc->flags &= ~FXP_FLAG_WOL;
1095 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1096 		/* Disable PME and clear PME status. */
1097 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1098 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1099 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1100 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1101 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1102 	}
1103 
1104 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1105 	DELAY(10);
1106 
1107 	/* reinitialize interface if necessary */
1108 	if (ifp->if_flags & IFF_UP)
1109 		fxp_init_body(sc, 1);
1110 
1111 	sc->suspended = 0;
1112 
1113 	FXP_UNLOCK(sc);
1114 	return (0);
1115 }
1116 
1117 static void
1118 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1119 {
1120 	uint16_t reg;
1121 	int x;
1122 
1123 	/*
1124 	 * Shift in data.
1125 	 */
1126 	for (x = 1 << (length - 1); x; x >>= 1) {
1127 		if (data & x)
1128 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1129 		else
1130 			reg = FXP_EEPROM_EECS;
1131 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1132 		DELAY(1);
1133 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1134 		DELAY(1);
1135 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1136 		DELAY(1);
1137 	}
1138 }
1139 
1140 /*
1141  * Read from the serial EEPROM. Basically, you manually shift in
1142  * the read opcode (one bit at a time) and then shift in the address,
1143  * and then you shift out the data (all of this one bit at a time).
1144  * The word size is 16 bits, so you have to provide the address for
1145  * every 16 bits of data.
1146  */
1147 static uint16_t
1148 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1149 {
1150 	uint16_t reg, data;
1151 	int x;
1152 
1153 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1154 	/*
1155 	 * Shift in read opcode.
1156 	 */
1157 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1158 	/*
1159 	 * Shift in address.
1160 	 */
1161 	data = 0;
1162 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1163 		if (offset & x)
1164 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1165 		else
1166 			reg = FXP_EEPROM_EECS;
1167 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1168 		DELAY(1);
1169 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1170 		DELAY(1);
1171 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1172 		DELAY(1);
1173 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1174 		data++;
1175 		if (autosize && reg == 0) {
1176 			sc->eeprom_size = data;
1177 			break;
1178 		}
1179 	}
1180 	/*
1181 	 * Shift out data.
1182 	 */
1183 	data = 0;
1184 	reg = FXP_EEPROM_EECS;
1185 	for (x = 1 << 15; x; x >>= 1) {
1186 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1187 		DELAY(1);
1188 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1189 			data |= x;
1190 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1191 		DELAY(1);
1192 	}
1193 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1194 	DELAY(1);
1195 
1196 	return (data);
1197 }
1198 
1199 static void
1200 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1201 {
1202 	int i;
1203 
1204 	/*
1205 	 * Erase/write enable.
1206 	 */
1207 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1208 	fxp_eeprom_shiftin(sc, 0x4, 3);
1209 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1210 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1211 	DELAY(1);
1212 	/*
1213 	 * Shift in write opcode, address, data.
1214 	 */
1215 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1216 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1217 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1218 	fxp_eeprom_shiftin(sc, data, 16);
1219 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1220 	DELAY(1);
1221 	/*
1222 	 * Wait for EEPROM to finish up.
1223 	 */
1224 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1225 	DELAY(1);
1226 	for (i = 0; i < 1000; i++) {
1227 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1228 			break;
1229 		DELAY(50);
1230 	}
1231 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1232 	DELAY(1);
1233 	/*
1234 	 * Erase/write disable.
1235 	 */
1236 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1237 	fxp_eeprom_shiftin(sc, 0x4, 3);
1238 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1239 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1240 	DELAY(1);
1241 }
1242 
1243 /*
1244  * From NetBSD:
1245  *
1246  * Figure out EEPROM size.
1247  *
1248  * 559's can have either 64-word or 256-word EEPROMs, the 558
1249  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1250  * talks about the existance of 16 to 256 word EEPROMs.
1251  *
1252  * The only known sizes are 64 and 256, where the 256 version is used
1253  * by CardBus cards to store CIS information.
1254  *
1255  * The address is shifted in msb-to-lsb, and after the last
1256  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1257  * after which follows the actual data. We try to detect this zero, by
1258  * probing the data-out bit in the EEPROM control register just after
1259  * having shifted in a bit. If the bit is zero, we assume we've
1260  * shifted enough address bits. The data-out should be tri-state,
1261  * before this, which should translate to a logical one.
1262  */
1263 static void
1264 fxp_autosize_eeprom(struct fxp_softc *sc)
1265 {
1266 
1267 	/* guess maximum size of 256 words */
1268 	sc->eeprom_size = 8;
1269 
1270 	/* autosize */
1271 	(void) fxp_eeprom_getword(sc, 0, 1);
1272 }
1273 
1274 static void
1275 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1276 {
1277 	int i;
1278 
1279 	for (i = 0; i < words; i++)
1280 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1281 }
1282 
1283 static void
1284 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1285 {
1286 	int i;
1287 
1288 	for (i = 0; i < words; i++)
1289 		fxp_eeprom_putword(sc, offset + i, data[i]);
1290 }
1291 
1292 /*
1293  * Grab the softc lock and call the real fxp_start_body() routine
1294  */
1295 static void
1296 fxp_start(struct ifnet *ifp)
1297 {
1298 	struct fxp_softc *sc = ifp->if_softc;
1299 
1300 	FXP_LOCK(sc);
1301 	fxp_start_body(ifp);
1302 	FXP_UNLOCK(sc);
1303 }
1304 
1305 /*
1306  * Start packet transmission on the interface.
1307  * This routine must be called with the softc lock held, and is an
1308  * internal entry point only.
1309  */
1310 static void
1311 fxp_start_body(struct ifnet *ifp)
1312 {
1313 	struct fxp_softc *sc = ifp->if_softc;
1314 	struct mbuf *mb_head;
1315 	int txqueued;
1316 
1317 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1318 
1319 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1320 	    IFF_DRV_RUNNING)
1321 		return;
1322 
1323 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1324 		fxp_txeof(sc);
1325 	/*
1326 	 * We're finished if there is nothing more to add to the list or if
1327 	 * we're all filled up with buffers to transmit.
1328 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1329 	 *       a NOP command when needed.
1330 	 */
1331 	txqueued = 0;
1332 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1333 	    sc->tx_queued < FXP_NTXCB - 1) {
1334 
1335 		/*
1336 		 * Grab a packet to transmit.
1337 		 */
1338 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1339 		if (mb_head == NULL)
1340 			break;
1341 
1342 		if (fxp_encap(sc, &mb_head)) {
1343 			if (mb_head == NULL)
1344 				break;
1345 			IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
1346 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1347 		}
1348 		txqueued++;
1349 		/*
1350 		 * Pass packet to bpf if there is a listener.
1351 		 */
1352 		BPF_MTAP(ifp, mb_head);
1353 	}
1354 
1355 	/*
1356 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1357 	 * going again if suspended.
1358 	 */
1359 	if (txqueued > 0) {
1360 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1361 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1362 		fxp_scb_wait(sc);
1363 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1364 		/*
1365 		 * Set a 5 second timer just in case we don't hear
1366 		 * from the card again.
1367 		 */
1368 		sc->watchdog_timer = 5;
1369 	}
1370 }
1371 
1372 static int
1373 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1374 {
1375 	struct ifnet *ifp;
1376 	struct mbuf *m;
1377 	struct fxp_tx *txp;
1378 	struct fxp_cb_tx *cbp;
1379 	struct tcphdr *tcp;
1380 	bus_dma_segment_t segs[FXP_NTXSEG];
1381 	int error, i, nseg, tcp_payload;
1382 
1383 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1384 	ifp = sc->ifp;
1385 
1386 	tcp_payload = 0;
1387 	tcp = NULL;
1388 	/*
1389 	 * Get pointer to next available tx desc.
1390 	 */
1391 	txp = sc->fxp_desc.tx_last->tx_next;
1392 
1393 	/*
1394 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1395 	 * Ethernet Controller Family Open Source Software
1396 	 * Developer Manual says:
1397 	 *   Using software parsing is only allowed with legal
1398 	 *   TCP/IP or UDP/IP packets.
1399 	 *   ...
1400 	 *   For all other datagrams, hardware parsing must
1401 	 *   be used.
1402 	 * Software parsing appears to truncate ICMP and
1403 	 * fragmented UDP packets that contain one to three
1404 	 * bytes in the second (and final) mbuf of the packet.
1405 	 */
1406 	if (sc->flags & FXP_FLAG_EXT_RFA)
1407 		txp->tx_cb->ipcb_ip_activation_high =
1408 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1409 
1410 	m = *m_head;
1411 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1412 		/*
1413 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1414 		 * contained in the first active transmit buffer.
1415 		 */
1416 		struct ether_header *eh;
1417 		struct ip *ip;
1418 		uint32_t ip_off, poff;
1419 
1420 		if (M_WRITABLE(*m_head) == 0) {
1421 			/* Get a writable copy. */
1422 			m = m_dup(*m_head, M_DONTWAIT);
1423 			m_freem(*m_head);
1424 			if (m == NULL) {
1425 				*m_head = NULL;
1426 				return (ENOBUFS);
1427 			}
1428 			*m_head = m;
1429 		}
1430 		ip_off = sizeof(struct ether_header);
1431 		m = m_pullup(*m_head, ip_off);
1432 		if (m == NULL) {
1433 			*m_head = NULL;
1434 			return (ENOBUFS);
1435 		}
1436 		eh = mtod(m, struct ether_header *);
1437 		/* Check the existence of VLAN tag. */
1438 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1439 			ip_off = sizeof(struct ether_vlan_header);
1440 			m = m_pullup(m, ip_off);
1441 			if (m == NULL) {
1442 				*m_head = NULL;
1443 				return (ENOBUFS);
1444 			}
1445 		}
1446 		m = m_pullup(m, ip_off + sizeof(struct ip));
1447 		if (m == NULL) {
1448 			*m_head = NULL;
1449 			return (ENOBUFS);
1450 		}
1451 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1452 		poff = ip_off + (ip->ip_hl << 2);
1453 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1454 		if (m == NULL) {
1455 			*m_head = NULL;
1456 			return (ENOBUFS);
1457 		}
1458 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1459 		m = m_pullup(m, poff + (tcp->th_off << 2));
1460 		if (m == NULL) {
1461 			*m_head = NULL;
1462 			return (ENOBUFS);
1463 		}
1464 
1465 		/*
1466 		 * Since 82550/82551 doesn't modify IP length and pseudo
1467 		 * checksum in the first frame driver should compute it.
1468 		 */
1469 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1470 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1471 		ip->ip_sum = 0;
1472 		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1473 		    (tcp->th_off << 2));
1474 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1475 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1476 		    m->m_pkthdr.tso_segsz));
1477 		/* Compute total TCP payload. */
1478 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1479 		tcp_payload -= tcp->th_off << 2;
1480 		*m_head = m;
1481 	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1482 		/*
1483 		 * Deal with TCP/IP checksum offload. Note that
1484 		 * in order for TCP checksum offload to work,
1485 		 * the pseudo header checksum must have already
1486 		 * been computed and stored in the checksum field
1487 		 * in the TCP header. The stack should have
1488 		 * already done this for us.
1489 		 */
1490 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1491 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1492 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1493 
1494 #ifdef FXP_IP_CSUM_WAR
1495 		/*
1496 		 * XXX The 82550 chip appears to have trouble
1497 		 * dealing with IP header checksums in very small
1498 		 * datagrams, namely fragments from 1 to 3 bytes
1499 		 * in size. For example, say you want to transmit
1500 		 * a UDP packet of 1473 bytes. The packet will be
1501 		 * fragmented over two IP datagrams, the latter
1502 		 * containing only one byte of data. The 82550 will
1503 		 * botch the header checksum on the 1-byte fragment.
1504 		 * As long as the datagram contains 4 or more bytes
1505 		 * of data, you're ok.
1506 		 *
1507                  * The following code attempts to work around this
1508 		 * problem: if the datagram is less than 38 bytes
1509 		 * in size (14 bytes ether header, 20 bytes IP header,
1510 		 * plus 4 bytes of data), we punt and compute the IP
1511 		 * header checksum by hand. This workaround doesn't
1512 		 * work very well, however, since it can be fooled
1513 		 * by things like VLAN tags and IP options that make
1514 		 * the header sizes/offsets vary.
1515 		 */
1516 
1517 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1518 			if (m->m_pkthdr.len < 38) {
1519 				struct ip *ip;
1520 				m->m_data += ETHER_HDR_LEN;
1521 				ip = mtod(m, struct ip *);
1522 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1523 				m->m_data -= ETHER_HDR_LEN;
1524 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1525 			} else {
1526 				txp->tx_cb->ipcb_ip_activation_high =
1527 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1528 				txp->tx_cb->ipcb_ip_schedule |=
1529 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1530 			}
1531 		}
1532 #endif
1533 	}
1534 
1535 	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1536 	    segs, &nseg, 0);
1537 	if (error == EFBIG) {
1538 		m = m_collapse(*m_head, M_DONTWAIT, sc->maxtxseg);
1539 		if (m == NULL) {
1540 			m_freem(*m_head);
1541 			*m_head = NULL;
1542 			return (ENOMEM);
1543 		}
1544 		*m_head = m;
1545 		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1546 		    *m_head, segs, &nseg, 0);
1547 		if (error != 0) {
1548 			m_freem(*m_head);
1549 			*m_head = NULL;
1550 			return (ENOMEM);
1551 		}
1552 	} else if (error != 0)
1553 		return (error);
1554 	if (nseg == 0) {
1555 		m_freem(*m_head);
1556 		*m_head = NULL;
1557 		return (EIO);
1558 	}
1559 
1560 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1561 	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1562 
1563 	cbp = txp->tx_cb;
1564 	for (i = 0; i < nseg; i++) {
1565 		/*
1566 		 * If this is an 82550/82551, then we're using extended
1567 		 * TxCBs _and_ we're using checksum offload. This means
1568 		 * that the TxCB is really an IPCB. One major difference
1569 		 * between the two is that with plain extended TxCBs,
1570 		 * the bottom half of the TxCB contains two entries from
1571 		 * the TBD array, whereas IPCBs contain just one entry:
1572 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1573 		 * checksum offload control bits. So to make things work
1574 		 * right, we have to start filling in the TBD array
1575 		 * starting from a different place depending on whether
1576 		 * the chip is an 82550/82551 or not.
1577 		 */
1578 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1579 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1580 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1581 		} else {
1582 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1583 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1584 		}
1585 	}
1586 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1587 		/* Configure dynamic TBD for 82550/82551. */
1588 		cbp->tbd_number = 0xFF;
1589 		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1590 	} else
1591 		cbp->tbd_number = nseg;
1592 	/* Configure TSO. */
1593 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1594 		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1595 		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1596 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1597 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1598 		    FXP_IPCB_TCP_PACKET |
1599 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1600 	}
1601 	/* Configure VLAN hardware tag insertion. */
1602 	if ((m->m_flags & M_VLANTAG) != 0) {
1603 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1604 		txp->tx_cb->ipcb_ip_activation_high |=
1605 		    FXP_IPCB_INSERTVLAN_ENABLE;
1606 	}
1607 
1608 	txp->tx_mbuf = m;
1609 	txp->tx_cb->cb_status = 0;
1610 	txp->tx_cb->byte_count = 0;
1611 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1612 		txp->tx_cb->cb_command =
1613 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1614 		    FXP_CB_COMMAND_S);
1615 	else
1616 		txp->tx_cb->cb_command =
1617 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1618 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1619 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1620 		txp->tx_cb->tx_threshold = tx_threshold;
1621 
1622 	/*
1623 	 * Advance the end of list forward.
1624 	 */
1625 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1626 	sc->fxp_desc.tx_last = txp;
1627 
1628 	/*
1629 	 * Advance the beginning of the list forward if there are
1630 	 * no other packets queued (when nothing is queued, tx_first
1631 	 * sits on the last TxCB that was sent out).
1632 	 */
1633 	if (sc->tx_queued == 0)
1634 		sc->fxp_desc.tx_first = txp;
1635 
1636 	sc->tx_queued++;
1637 
1638 	return (0);
1639 }
1640 
1641 #ifdef DEVICE_POLLING
1642 static poll_handler_t fxp_poll;
1643 
1644 static int
1645 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1646 {
1647 	struct fxp_softc *sc = ifp->if_softc;
1648 	uint8_t statack;
1649 	int rx_npkts = 0;
1650 
1651 	FXP_LOCK(sc);
1652 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1653 		FXP_UNLOCK(sc);
1654 		return (rx_npkts);
1655 	}
1656 
1657 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1658 	    FXP_SCB_STATACK_FR;
1659 	if (cmd == POLL_AND_CHECK_STATUS) {
1660 		uint8_t tmp;
1661 
1662 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1663 		if (tmp == 0xff || tmp == 0) {
1664 			FXP_UNLOCK(sc);
1665 			return (rx_npkts); /* nothing to do */
1666 		}
1667 		tmp &= ~statack;
1668 		/* ack what we can */
1669 		if (tmp != 0)
1670 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1671 		statack |= tmp;
1672 	}
1673 	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1674 	FXP_UNLOCK(sc);
1675 	return (rx_npkts);
1676 }
1677 #endif /* DEVICE_POLLING */
1678 
1679 /*
1680  * Process interface interrupts.
1681  */
1682 static void
1683 fxp_intr(void *xsc)
1684 {
1685 	struct fxp_softc *sc = xsc;
1686 	struct ifnet *ifp = sc->ifp;
1687 	uint8_t statack;
1688 
1689 	FXP_LOCK(sc);
1690 	if (sc->suspended) {
1691 		FXP_UNLOCK(sc);
1692 		return;
1693 	}
1694 
1695 #ifdef DEVICE_POLLING
1696 	if (ifp->if_capenable & IFCAP_POLLING) {
1697 		FXP_UNLOCK(sc);
1698 		return;
1699 	}
1700 #endif
1701 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1702 		/*
1703 		 * It should not be possible to have all bits set; the
1704 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1705 		 * all bits are set, this may indicate that the card has
1706 		 * been physically ejected, so ignore it.
1707 		 */
1708 		if (statack == 0xff) {
1709 			FXP_UNLOCK(sc);
1710 			return;
1711 		}
1712 
1713 		/*
1714 		 * First ACK all the interrupts in this pass.
1715 		 */
1716 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1717 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1718 			fxp_intr_body(sc, ifp, statack, -1);
1719 	}
1720 	FXP_UNLOCK(sc);
1721 }
1722 
1723 static void
1724 fxp_txeof(struct fxp_softc *sc)
1725 {
1726 	struct ifnet *ifp;
1727 	struct fxp_tx *txp;
1728 
1729 	ifp = sc->ifp;
1730 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1731 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1732 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1733 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1734 	    txp = txp->tx_next) {
1735 		if (txp->tx_mbuf != NULL) {
1736 			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1737 			    BUS_DMASYNC_POSTWRITE);
1738 			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1739 			m_freem(txp->tx_mbuf);
1740 			txp->tx_mbuf = NULL;
1741 			/* clear this to reset csum offload bits */
1742 			txp->tx_cb->tbd[0].tb_addr = 0;
1743 		}
1744 		sc->tx_queued--;
1745 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1746 	}
1747 	sc->fxp_desc.tx_first = txp;
1748 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1749 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1750 	if (sc->tx_queued == 0)
1751 		sc->watchdog_timer = 0;
1752 }
1753 
1754 static void
1755 fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
1756     uint16_t status, int pos)
1757 {
1758 	struct ether_header *eh;
1759 	struct ip *ip;
1760 	struct udphdr *uh;
1761 	int32_t hlen, len, pktlen, temp32;
1762 	uint16_t csum, *opts;
1763 
1764 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1765 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1766 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1767 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1768 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1769 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1770 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1771 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1772 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1773 				    CSUM_PSEUDO_HDR;
1774 				m->m_pkthdr.csum_data = 0xffff;
1775 			}
1776 		}
1777 		return;
1778 	}
1779 
1780 	pktlen = m->m_pkthdr.len;
1781 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1782 		return;
1783 	eh = mtod(m, struct ether_header *);
1784 	if (eh->ether_type != htons(ETHERTYPE_IP))
1785 		return;
1786 	ip = (struct ip *)(eh + 1);
1787 	if (ip->ip_v != IPVERSION)
1788 		return;
1789 
1790 	hlen = ip->ip_hl << 2;
1791 	pktlen -= sizeof(struct ether_header);
1792 	if (hlen < sizeof(struct ip))
1793 		return;
1794 	if (ntohs(ip->ip_len) < hlen)
1795 		return;
1796 	if (ntohs(ip->ip_len) != pktlen)
1797 		return;
1798 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1799 		return;	/* can't handle fragmented packet */
1800 
1801 	switch (ip->ip_p) {
1802 	case IPPROTO_TCP:
1803 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1804 			return;
1805 		break;
1806 	case IPPROTO_UDP:
1807 		if (pktlen < (hlen + sizeof(struct udphdr)))
1808 			return;
1809 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1810 		if (uh->uh_sum == 0)
1811 			return; /* no checksum */
1812 		break;
1813 	default:
1814 		return;
1815 	}
1816 	/* Extract computed checksum. */
1817 	csum = be16dec(mtod(m, char *) + pos);
1818 	/* checksum fixup for IP options */
1819 	len = hlen - sizeof(struct ip);
1820 	if (len > 0) {
1821 		opts = (uint16_t *)(ip + 1);
1822 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1823 			temp32 = csum - *opts;
1824 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1825 			csum = temp32 & 65535;
1826 		}
1827 	}
1828 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1829 	m->m_pkthdr.csum_data = csum;
1830 }
1831 
1832 static int
1833 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1834     int count)
1835 {
1836 	struct mbuf *m;
1837 	struct fxp_rx *rxp;
1838 	struct fxp_rfa *rfa;
1839 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1840 	int rx_npkts;
1841 	uint16_t status;
1842 
1843 	rx_npkts = 0;
1844 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1845 
1846 	if (rnr)
1847 		sc->rnr++;
1848 #ifdef DEVICE_POLLING
1849 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1850 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1851 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1852 		rnr = 1;
1853 	}
1854 #endif
1855 
1856 	/*
1857 	 * Free any finished transmit mbuf chains.
1858 	 *
1859 	 * Handle the CNA event likt a CXTNO event. It used to
1860 	 * be that this event (control unit not ready) was not
1861 	 * encountered, but it is now with the SMPng modifications.
1862 	 * The exact sequence of events that occur when the interface
1863 	 * is brought up are different now, and if this event
1864 	 * goes unhandled, the configuration/rxfilter setup sequence
1865 	 * can stall for several seconds. The result is that no
1866 	 * packets go out onto the wire for about 5 to 10 seconds
1867 	 * after the interface is ifconfig'ed for the first time.
1868 	 */
1869 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1870 		fxp_txeof(sc);
1871 
1872 	/*
1873 	 * Try to start more packets transmitting.
1874 	 */
1875 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1876 		fxp_start_body(ifp);
1877 
1878 	/*
1879 	 * Just return if nothing happened on the receive side.
1880 	 */
1881 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1882 		return (rx_npkts);
1883 
1884 	/*
1885 	 * Process receiver interrupts. If a no-resource (RNR)
1886 	 * condition exists, get whatever packets we can and
1887 	 * re-start the receiver.
1888 	 *
1889 	 * When using polling, we do not process the list to completion,
1890 	 * so when we get an RNR interrupt we must defer the restart
1891 	 * until we hit the last buffer with the C bit set.
1892 	 * If we run out of cycles and rfa_headm has the C bit set,
1893 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1894 	 * that the info will be used in the subsequent polling cycle.
1895 	 */
1896 	for (;;) {
1897 		rxp = sc->fxp_desc.rx_head;
1898 		m = rxp->rx_mbuf;
1899 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1900 		    RFA_ALIGNMENT_FUDGE);
1901 		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1902 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1903 
1904 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1905 		if (count >= 0 && count-- == 0) {
1906 			if (rnr) {
1907 				/* Defer RNR processing until the next time. */
1908 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1909 				rnr = 0;
1910 			}
1911 			break;
1912 		}
1913 #endif /* DEVICE_POLLING */
1914 
1915 		status = le16toh(rfa->rfa_status);
1916 		if ((status & FXP_RFA_STATUS_C) == 0)
1917 			break;
1918 
1919 		if ((status & FXP_RFA_STATUS_RNR) != 0)
1920 			rnr++;
1921 		/*
1922 		 * Advance head forward.
1923 		 */
1924 		sc->fxp_desc.rx_head = rxp->rx_next;
1925 
1926 		/*
1927 		 * Add a new buffer to the receive chain.
1928 		 * If this fails, the old buffer is recycled
1929 		 * instead.
1930 		 */
1931 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1932 			int total_len;
1933 
1934 			/*
1935 			 * Fetch packet length (the top 2 bits of
1936 			 * actual_size are flags set by the controller
1937 			 * upon completion), and drop the packet in case
1938 			 * of bogus length or CRC errors.
1939 			 */
1940 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1941 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1942 			    (ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1943 				/* Adjust for appended checksum bytes. */
1944 				total_len -= 2;
1945 			}
1946 			if (total_len < (int)sizeof(struct ether_header) ||
1947 			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1948 			    sc->rfa_size) ||
1949 			    status & (FXP_RFA_STATUS_CRC |
1950 			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1951 				m_freem(m);
1952 				fxp_add_rfabuf(sc, rxp);
1953 				continue;
1954 			}
1955 
1956 			m->m_pkthdr.len = m->m_len = total_len;
1957 			m->m_pkthdr.rcvif = ifp;
1958 
1959                         /* Do IP checksum checking. */
1960 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1961 				fxp_rxcsum(sc, ifp, m, status, total_len);
1962 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1963 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1964 				m->m_pkthdr.ether_vtag =
1965 				    ntohs(rfa->rfax_vlan_id);
1966 				m->m_flags |= M_VLANTAG;
1967 			}
1968 			/*
1969 			 * Drop locks before calling if_input() since it
1970 			 * may re-enter fxp_start() in the netisr case.
1971 			 * This would result in a lock reversal.  Better
1972 			 * performance might be obtained by chaining all
1973 			 * packets received, dropping the lock, and then
1974 			 * calling if_input() on each one.
1975 			 */
1976 			FXP_UNLOCK(sc);
1977 			(*ifp->if_input)(ifp, m);
1978 			FXP_LOCK(sc);
1979 			rx_npkts++;
1980 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1981 				return (rx_npkts);
1982 		} else {
1983 			/* Reuse RFA and loaded DMA map. */
1984 			ifp->if_iqdrops++;
1985 			fxp_discard_rfabuf(sc, rxp);
1986 		}
1987 		fxp_add_rfabuf(sc, rxp);
1988 	}
1989 	if (rnr) {
1990 		fxp_scb_wait(sc);
1991 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1992 		    sc->fxp_desc.rx_head->rx_addr);
1993 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1994 	}
1995 	return (rx_npkts);
1996 }
1997 
1998 static void
1999 fxp_update_stats(struct fxp_softc *sc)
2000 {
2001 	struct ifnet *ifp = sc->ifp;
2002 	struct fxp_stats *sp = sc->fxp_stats;
2003 	struct fxp_hwstats *hsp;
2004 	uint32_t *status;
2005 
2006 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2007 
2008 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2009 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2010 	/* Update statistical counters. */
2011 	if (sc->revision >= FXP_REV_82559_A0)
2012 		status = &sp->completion_status;
2013 	else if (sc->revision >= FXP_REV_82558_A4)
2014 		status = (uint32_t *)&sp->tx_tco;
2015 	else
2016 		status = &sp->tx_pause;
2017 	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2018 		hsp = &sc->fxp_hwstats;
2019 		hsp->tx_good += le32toh(sp->tx_good);
2020 		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2021 		hsp->tx_latecols += le32toh(sp->tx_latecols);
2022 		hsp->tx_underruns += le32toh(sp->tx_underruns);
2023 		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2024 		hsp->tx_deffered += le32toh(sp->tx_deffered);
2025 		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2026 		hsp->tx_multiple_collisions +=
2027 		    le32toh(sp->tx_multiple_collisions);
2028 		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2029 		hsp->rx_good += le32toh(sp->rx_good);
2030 		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2031 		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2032 		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2033 		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2034 		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2035 		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2036 		hsp->tx_pause += le32toh(sp->tx_pause);
2037 		hsp->rx_pause += le32toh(sp->rx_pause);
2038 		hsp->rx_controls += le32toh(sp->rx_controls);
2039 		hsp->tx_tco += le16toh(sp->tx_tco);
2040 		hsp->rx_tco += le16toh(sp->rx_tco);
2041 
2042 		ifp->if_opackets += le32toh(sp->tx_good);
2043 		ifp->if_collisions += le32toh(sp->tx_total_collisions);
2044 		if (sp->rx_good) {
2045 			ifp->if_ipackets += le32toh(sp->rx_good);
2046 			sc->rx_idle_secs = 0;
2047 		} else if (sc->flags & FXP_FLAG_RXBUG) {
2048 			/*
2049 			 * Receiver's been idle for another second.
2050 			 */
2051 			sc->rx_idle_secs++;
2052 		}
2053 		ifp->if_ierrors +=
2054 		    le32toh(sp->rx_crc_errors) +
2055 		    le32toh(sp->rx_alignment_errors) +
2056 		    le32toh(sp->rx_rnr_errors) +
2057 		    le32toh(sp->rx_overrun_errors);
2058 		/*
2059 		 * If any transmit underruns occured, bump up the transmit
2060 		 * threshold by another 512 bytes (64 * 8).
2061 		 */
2062 		if (sp->tx_underruns) {
2063 			ifp->if_oerrors += le32toh(sp->tx_underruns);
2064 			if (tx_threshold < 192)
2065 				tx_threshold += 64;
2066 		}
2067 		*status = 0;
2068 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2069 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2070 	}
2071 }
2072 
2073 /*
2074  * Update packet in/out/collision statistics. The i82557 doesn't
2075  * allow you to access these counters without doing a fairly
2076  * expensive DMA to get _all_ of the statistics it maintains, so
2077  * we do this operation here only once per second. The statistics
2078  * counters in the kernel are updated from the previous dump-stats
2079  * DMA and then a new dump-stats DMA is started. The on-chip
2080  * counters are zeroed when the DMA completes. If we can't start
2081  * the DMA immediately, we don't wait - we just prepare to read
2082  * them again next time.
2083  */
2084 static void
2085 fxp_tick(void *xsc)
2086 {
2087 	struct fxp_softc *sc = xsc;
2088 	struct ifnet *ifp = sc->ifp;
2089 
2090 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2091 
2092 	/* Update statistical counters. */
2093 	fxp_update_stats(sc);
2094 
2095 	/*
2096 	 * Release any xmit buffers that have completed DMA. This isn't
2097 	 * strictly necessary to do here, but it's advantagous for mbufs
2098 	 * with external storage to be released in a timely manner rather
2099 	 * than being defered for a potentially long time. This limits
2100 	 * the delay to a maximum of one second.
2101 	 */
2102 	fxp_txeof(sc);
2103 
2104 	/*
2105 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2106 	 * then assume the receiver has locked up and attempt to clear
2107 	 * the condition by reprogramming the multicast filter. This is
2108 	 * a work-around for a bug in the 82557 where the receiver locks
2109 	 * up if it gets certain types of garbage in the syncronization
2110 	 * bits prior to the packet header. This bug is supposed to only
2111 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2112 	 * mode as well (perhaps due to a 10/100 speed transition).
2113 	 */
2114 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2115 		sc->rx_idle_secs = 0;
2116 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2117 			fxp_init_body(sc, 1);
2118 		return;
2119 	}
2120 	/*
2121 	 * If there is no pending command, start another stats
2122 	 * dump. Otherwise punt for now.
2123 	 */
2124 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2125 		/*
2126 		 * Start another stats dump.
2127 		 */
2128 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2129 	}
2130 	if (sc->miibus != NULL)
2131 		mii_tick(device_get_softc(sc->miibus));
2132 
2133 	/*
2134 	 * Check that chip hasn't hung.
2135 	 */
2136 	fxp_watchdog(sc);
2137 
2138 	/*
2139 	 * Schedule another timeout one second from now.
2140 	 */
2141 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2142 }
2143 
2144 /*
2145  * Stop the interface. Cancels the statistics updater and resets
2146  * the interface.
2147  */
2148 static void
2149 fxp_stop(struct fxp_softc *sc)
2150 {
2151 	struct ifnet *ifp = sc->ifp;
2152 	struct fxp_tx *txp;
2153 	int i;
2154 
2155 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2156 	sc->watchdog_timer = 0;
2157 
2158 	/*
2159 	 * Cancel stats updater.
2160 	 */
2161 	callout_stop(&sc->stat_ch);
2162 
2163 	/*
2164 	 * Preserve PCI configuration, configure, IA/multicast
2165 	 * setup and put RU and CU into idle state.
2166 	 */
2167 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2168 	DELAY(50);
2169 	/* Disable interrupts. */
2170 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2171 
2172 	fxp_update_stats(sc);
2173 
2174 	/*
2175 	 * Release any xmit buffers.
2176 	 */
2177 	txp = sc->fxp_desc.tx_list;
2178 	if (txp != NULL) {
2179 		for (i = 0; i < FXP_NTXCB; i++) {
2180 			if (txp[i].tx_mbuf != NULL) {
2181 				bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2182 				    BUS_DMASYNC_POSTWRITE);
2183 				bus_dmamap_unload(sc->fxp_txmtag,
2184 				    txp[i].tx_map);
2185 				m_freem(txp[i].tx_mbuf);
2186 				txp[i].tx_mbuf = NULL;
2187 				/* clear this to reset csum offload bits */
2188 				txp[i].tx_cb->tbd[0].tb_addr = 0;
2189 			}
2190 		}
2191 	}
2192 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2193 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2194 	sc->tx_queued = 0;
2195 }
2196 
2197 /*
2198  * Watchdog/transmission transmit timeout handler. Called when a
2199  * transmission is started on the interface, but no interrupt is
2200  * received before the timeout. This usually indicates that the
2201  * card has wedged for some reason.
2202  */
2203 static void
2204 fxp_watchdog(struct fxp_softc *sc)
2205 {
2206 
2207 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2208 
2209 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2210 		return;
2211 
2212 	device_printf(sc->dev, "device timeout\n");
2213 	sc->ifp->if_oerrors++;
2214 
2215 	fxp_init_body(sc, 1);
2216 }
2217 
2218 /*
2219  * Acquire locks and then call the real initialization function.  This
2220  * is necessary because ether_ioctl() calls if_init() and this would
2221  * result in mutex recursion if the mutex was held.
2222  */
2223 static void
2224 fxp_init(void *xsc)
2225 {
2226 	struct fxp_softc *sc = xsc;
2227 
2228 	FXP_LOCK(sc);
2229 	fxp_init_body(sc, 1);
2230 	FXP_UNLOCK(sc);
2231 }
2232 
2233 /*
2234  * Perform device initialization. This routine must be called with the
2235  * softc lock held.
2236  */
2237 static void
2238 fxp_init_body(struct fxp_softc *sc, int setmedia)
2239 {
2240 	struct ifnet *ifp = sc->ifp;
2241 	struct mii_data *mii;
2242 	struct fxp_cb_config *cbp;
2243 	struct fxp_cb_ias *cb_ias;
2244 	struct fxp_cb_tx *tcbp;
2245 	struct fxp_tx *txp;
2246 	int i, prm;
2247 
2248 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2249 	/*
2250 	 * Cancel any pending I/O
2251 	 */
2252 	fxp_stop(sc);
2253 
2254 	/*
2255 	 * Issue software reset, which also unloads the microcode.
2256 	 */
2257 	sc->flags &= ~FXP_FLAG_UCODE;
2258 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2259 	DELAY(50);
2260 
2261 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2262 
2263 	/*
2264 	 * Initialize base of CBL and RFA memory. Loading with zero
2265 	 * sets it up for regular linear addressing.
2266 	 */
2267 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2268 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2269 
2270 	fxp_scb_wait(sc);
2271 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2272 
2273 	/*
2274 	 * Initialize base of dump-stats buffer.
2275 	 */
2276 	fxp_scb_wait(sc);
2277 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2278 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2279 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2280 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2281 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2282 
2283 	/*
2284 	 * Attempt to load microcode if requested.
2285 	 * For ICH based controllers do not load microcode.
2286 	 */
2287 	if (sc->ident->ich == 0) {
2288 		if (ifp->if_flags & IFF_LINK0 &&
2289 		    (sc->flags & FXP_FLAG_UCODE) == 0)
2290 			fxp_load_ucode(sc);
2291 	}
2292 
2293 	/*
2294 	 * Set IFF_ALLMULTI status. It's needed in configure action
2295 	 * command.
2296 	 */
2297 	fxp_mc_addrs(sc);
2298 
2299 	/*
2300 	 * We temporarily use memory that contains the TxCB list to
2301 	 * construct the config CB. The TxCB list memory is rebuilt
2302 	 * later.
2303 	 */
2304 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2305 
2306 	/*
2307 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2308 	 * zero and must be one bits in this structure and this is the easiest
2309 	 * way to initialize them all to proper values.
2310 	 */
2311 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2312 
2313 	cbp->cb_status =	0;
2314 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2315 	    FXP_CB_COMMAND_EL);
2316 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2317 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2318 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2319 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2320 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2321 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2322 	cbp->type_enable =	0;	/* actually reserved */
2323 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2324 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2325 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2326 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2327 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2328 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2329 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2330 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2331 	cbp->ci_int =		1;	/* interrupt on CU idle */
2332 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2333 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2334 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2335 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2336 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2337 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2338 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2339 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2340 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2341 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2342 	cbp->csma_dis =		0;	/* (don't) disable link */
2343 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2344 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
2345 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2346 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2347 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2348 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2349 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2350 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2351 	cbp->loopback =		0;	/* (don't) loopback */
2352 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2353 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2354 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2355 	cbp->promiscuous =	prm;	/* promiscuous mode */
2356 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2357 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2358 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2359 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2360 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2361 
2362 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2363 	cbp->padding =		1;	/* (do) pad short tx packets */
2364 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2365 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2366 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2367 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2368 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2369 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2370 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2371 	cbp->mc_all =		ifp->if_flags & IFF_ALLMULTI ? 1 : prm;
2372 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2373 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2374 	    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2375 
2376 	if (sc->revision == FXP_REV_82557) {
2377 		/*
2378 		 * The 82557 has no hardware flow control, the values
2379 		 * below are the defaults for the chip.
2380 		 */
2381 		cbp->fc_delay_lsb =	0;
2382 		cbp->fc_delay_msb =	0x40;
2383 		cbp->pri_fc_thresh =	3;
2384 		cbp->tx_fc_dis =	0;
2385 		cbp->rx_fc_restop =	0;
2386 		cbp->rx_fc_restart =	0;
2387 		cbp->fc_filter =	0;
2388 		cbp->pri_fc_loc =	1;
2389 	} else {
2390 		/* Set pause RX FIFO threshold to 1KB. */
2391 		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2392 		/* Set pause time. */
2393 		cbp->fc_delay_lsb =	0xff;
2394 		cbp->fc_delay_msb =	0xff;
2395 		cbp->pri_fc_thresh =	3;
2396 		mii = device_get_softc(sc->miibus);
2397 		if ((IFM_OPTIONS(mii->mii_media_active) &
2398 		    IFM_ETH_TXPAUSE) != 0)
2399 			/* enable transmit FC */
2400 			cbp->tx_fc_dis = 0;
2401 		else
2402 			/* disable transmit FC */
2403 			cbp->tx_fc_dis = 1;
2404 		if ((IFM_OPTIONS(mii->mii_media_active) &
2405 		    IFM_ETH_RXPAUSE) != 0) {
2406 			/* enable FC restart/restop frames */
2407 			cbp->rx_fc_restart = 1;
2408 			cbp->rx_fc_restop = 1;
2409 		} else {
2410 			/* disable FC restart/restop frames */
2411 			cbp->rx_fc_restart = 0;
2412 			cbp->rx_fc_restop = 0;
2413 		}
2414 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2415 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2416 	}
2417 
2418 	/* Enable 82558 and 82559 extended statistics functionality. */
2419 	if (sc->revision >= FXP_REV_82558_A4) {
2420 		if (sc->revision >= FXP_REV_82559_A0) {
2421 			/*
2422 			 * Extend configuration table size to 32
2423 			 * to include TCO configuration.
2424 			 */
2425 			cbp->byte_count = 32;
2426 			cbp->ext_stats_dis = 1;
2427 			/* Enable TCO stats. */
2428 			cbp->tno_int_or_tco_en = 1;
2429 			cbp->gamla_rx = 1;
2430 		} else
2431 			cbp->ext_stats_dis = 0;
2432 	}
2433 
2434 	/*
2435 	 * Start the config command/DMA.
2436 	 */
2437 	fxp_scb_wait(sc);
2438 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2439 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2440 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2441 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2442 	/* ...and wait for it to complete. */
2443 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2444 
2445 	/*
2446 	 * Now initialize the station address. Temporarily use the TxCB
2447 	 * memory area like we did above for the config CB.
2448 	 */
2449 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2450 	cb_ias->cb_status = 0;
2451 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2452 	cb_ias->link_addr = 0xffffffff;
2453 	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2454 
2455 	/*
2456 	 * Start the IAS (Individual Address Setup) command/DMA.
2457 	 */
2458 	fxp_scb_wait(sc);
2459 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2460 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2461 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2462 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2463 	/* ...and wait for it to complete. */
2464 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2465 
2466 	/*
2467 	 * Initialize the multicast address list.
2468 	 */
2469 	fxp_mc_setup(sc);
2470 
2471 	/*
2472 	 * Initialize transmit control block (TxCB) list.
2473 	 */
2474 	txp = sc->fxp_desc.tx_list;
2475 	tcbp = sc->fxp_desc.cbl_list;
2476 	bzero(tcbp, FXP_TXCB_SZ);
2477 	for (i = 0; i < FXP_NTXCB; i++) {
2478 		txp[i].tx_mbuf = NULL;
2479 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2480 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2481 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2482 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2483 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2484 			tcbp[i].tbd_array_addr =
2485 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2486 		else
2487 			tcbp[i].tbd_array_addr =
2488 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2489 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2490 	}
2491 	/*
2492 	 * Set the suspend flag on the first TxCB and start the control
2493 	 * unit. It will execute the NOP and then suspend.
2494 	 */
2495 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2496 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2497 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2498 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2499 	sc->tx_queued = 1;
2500 
2501 	fxp_scb_wait(sc);
2502 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2503 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2504 
2505 	/*
2506 	 * Initialize receiver buffer area - RFA.
2507 	 */
2508 	fxp_scb_wait(sc);
2509 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2510 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2511 
2512 	if (sc->miibus != NULL && setmedia != 0)
2513 		mii_mediachg(device_get_softc(sc->miibus));
2514 
2515 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2516 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2517 
2518 	/*
2519 	 * Enable interrupts.
2520 	 */
2521 #ifdef DEVICE_POLLING
2522 	/*
2523 	 * ... but only do that if we are not polling. And because (presumably)
2524 	 * the default is interrupts on, we need to disable them explicitly!
2525 	 */
2526 	if (ifp->if_capenable & IFCAP_POLLING )
2527 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2528 	else
2529 #endif /* DEVICE_POLLING */
2530 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2531 
2532 	/*
2533 	 * Start stats updater.
2534 	 */
2535 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2536 }
2537 
2538 static int
2539 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2540 {
2541 
2542 	return (0);
2543 }
2544 
2545 static void
2546 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2547 {
2548 
2549 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2550 }
2551 
2552 /*
2553  * Change media according to request.
2554  */
2555 static int
2556 fxp_ifmedia_upd(struct ifnet *ifp)
2557 {
2558 	struct fxp_softc *sc = ifp->if_softc;
2559 	struct mii_data *mii;
2560 	struct mii_softc	*miisc;
2561 
2562 	mii = device_get_softc(sc->miibus);
2563 	FXP_LOCK(sc);
2564 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2565 		PHY_RESET(miisc);
2566 	mii_mediachg(mii);
2567 	FXP_UNLOCK(sc);
2568 	return (0);
2569 }
2570 
2571 /*
2572  * Notify the world which media we're using.
2573  */
2574 static void
2575 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2576 {
2577 	struct fxp_softc *sc = ifp->if_softc;
2578 	struct mii_data *mii;
2579 
2580 	mii = device_get_softc(sc->miibus);
2581 	FXP_LOCK(sc);
2582 	mii_pollstat(mii);
2583 	ifmr->ifm_active = mii->mii_media_active;
2584 	ifmr->ifm_status = mii->mii_media_status;
2585 
2586 	if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
2587 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2588 		sc->cu_resume_bug = 1;
2589 	else
2590 		sc->cu_resume_bug = 0;
2591 	FXP_UNLOCK(sc);
2592 }
2593 
2594 /*
2595  * Add a buffer to the end of the RFA buffer list.
2596  * Return 0 if successful, 1 for failure. A failure results in
2597  * reusing the RFA buffer.
2598  * The RFA struct is stuck at the beginning of mbuf cluster and the
2599  * data pointer is fixed up to point just past it.
2600  */
2601 static int
2602 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2603 {
2604 	struct mbuf *m;
2605 	struct fxp_rfa *rfa;
2606 	bus_dmamap_t tmp_map;
2607 	int error;
2608 
2609 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2610 	if (m == NULL)
2611 		return (ENOBUFS);
2612 
2613 	/*
2614 	 * Move the data pointer up so that the incoming data packet
2615 	 * will be 32-bit aligned.
2616 	 */
2617 	m->m_data += RFA_ALIGNMENT_FUDGE;
2618 
2619 	/*
2620 	 * Get a pointer to the base of the mbuf cluster and move
2621 	 * data start past it.
2622 	 */
2623 	rfa = mtod(m, struct fxp_rfa *);
2624 	m->m_data += sc->rfa_size;
2625 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2626 
2627 	rfa->rfa_status = 0;
2628 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2629 	rfa->actual_size = 0;
2630 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2631 	    sc->rfa_size;
2632 
2633 	/*
2634 	 * Initialize the rest of the RFA.  Note that since the RFA
2635 	 * is misaligned, we cannot store values directly.  We're thus
2636 	 * using the le32enc() function which handles endianness and
2637 	 * is also alignment-safe.
2638 	 */
2639 	le32enc(&rfa->link_addr, 0xffffffff);
2640 	le32enc(&rfa->rbd_addr, 0xffffffff);
2641 
2642 	/* Map the RFA into DMA memory. */
2643 	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2644 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2645 	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2646 	if (error) {
2647 		m_freem(m);
2648 		return (error);
2649 	}
2650 
2651 	if (rxp->rx_mbuf != NULL)
2652 		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2653 	tmp_map = sc->spare_map;
2654 	sc->spare_map = rxp->rx_map;
2655 	rxp->rx_map = tmp_map;
2656 	rxp->rx_mbuf = m;
2657 
2658 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2659 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2660 	return (0);
2661 }
2662 
2663 static void
2664 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2665 {
2666 	struct fxp_rfa *p_rfa;
2667 	struct fxp_rx *p_rx;
2668 
2669 	/*
2670 	 * If there are other buffers already on the list, attach this
2671 	 * one to the end by fixing up the tail to point to this one.
2672 	 */
2673 	if (sc->fxp_desc.rx_head != NULL) {
2674 		p_rx = sc->fxp_desc.rx_tail;
2675 		p_rfa = (struct fxp_rfa *)
2676 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2677 		p_rx->rx_next = rxp;
2678 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2679 		p_rfa->rfa_control = 0;
2680 		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2681 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2682 	} else {
2683 		rxp->rx_next = NULL;
2684 		sc->fxp_desc.rx_head = rxp;
2685 	}
2686 	sc->fxp_desc.rx_tail = rxp;
2687 }
2688 
2689 static void
2690 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2691 {
2692 	struct mbuf *m;
2693 	struct fxp_rfa *rfa;
2694 
2695 	m = rxp->rx_mbuf;
2696 	m->m_data = m->m_ext.ext_buf;
2697 	/*
2698 	 * Move the data pointer up so that the incoming data packet
2699 	 * will be 32-bit aligned.
2700 	 */
2701 	m->m_data += RFA_ALIGNMENT_FUDGE;
2702 
2703 	/*
2704 	 * Get a pointer to the base of the mbuf cluster and move
2705 	 * data start past it.
2706 	 */
2707 	rfa = mtod(m, struct fxp_rfa *);
2708 	m->m_data += sc->rfa_size;
2709 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2710 
2711 	rfa->rfa_status = 0;
2712 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2713 	rfa->actual_size = 0;
2714 
2715 	/*
2716 	 * Initialize the rest of the RFA.  Note that since the RFA
2717 	 * is misaligned, we cannot store values directly.  We're thus
2718 	 * using the le32enc() function which handles endianness and
2719 	 * is also alignment-safe.
2720 	 */
2721 	le32enc(&rfa->link_addr, 0xffffffff);
2722 	le32enc(&rfa->rbd_addr, 0xffffffff);
2723 
2724 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2725 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2726 }
2727 
2728 static int
2729 fxp_miibus_readreg(device_t dev, int phy, int reg)
2730 {
2731 	struct fxp_softc *sc = device_get_softc(dev);
2732 	int count = 10000;
2733 	int value;
2734 
2735 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2736 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2737 
2738 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2739 	    && count--)
2740 		DELAY(10);
2741 
2742 	if (count <= 0)
2743 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2744 
2745 	return (value & 0xffff);
2746 }
2747 
2748 static int
2749 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2750 {
2751 	struct fxp_softc *sc = device_get_softc(dev);
2752 	int count = 10000;
2753 
2754 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2755 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2756 	    (value & 0xffff));
2757 
2758 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2759 	    count--)
2760 		DELAY(10);
2761 
2762 	if (count <= 0)
2763 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2764 	return (0);
2765 }
2766 
2767 static void
2768 fxp_miibus_statchg(device_t dev)
2769 {
2770 	struct fxp_softc *sc;
2771 	struct mii_data *mii;
2772 	struct ifnet *ifp;
2773 
2774 	sc = device_get_softc(dev);
2775 	mii = device_get_softc(sc->miibus);
2776 	ifp = sc->ifp;
2777 	if (mii == NULL || ifp == NULL ||
2778 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2779 	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2780 	    (IFM_AVALID | IFM_ACTIVE))
2781 		return;
2782 
2783 	/*
2784 	 * Call fxp_init_body in order to adjust the flow control settings.
2785 	 * Note that the 82557 doesn't support hardware flow control.
2786 	 */
2787 	if (sc->revision == FXP_REV_82557)
2788 		return;
2789 	fxp_init_body(sc, 0);
2790 }
2791 
2792 static int
2793 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2794 {
2795 	struct fxp_softc *sc = ifp->if_softc;
2796 	struct ifreq *ifr = (struct ifreq *)data;
2797 	struct mii_data *mii;
2798 	int flag, mask, error = 0, reinit;
2799 
2800 	switch (command) {
2801 	case SIOCSIFFLAGS:
2802 		FXP_LOCK(sc);
2803 		/*
2804 		 * If interface is marked up and not running, then start it.
2805 		 * If it is marked down and running, stop it.
2806 		 * XXX If it's up then re-initialize it. This is so flags
2807 		 * such as IFF_PROMISC are handled.
2808 		 */
2809 		if (ifp->if_flags & IFF_UP) {
2810 			if (((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) &&
2811 			    ((ifp->if_flags ^ sc->if_flags) &
2812 			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0)
2813 				fxp_init_body(sc, 1);
2814 			else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2815 				fxp_init_body(sc, 1);
2816 		} else {
2817 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2818 				fxp_stop(sc);
2819 		}
2820 		sc->if_flags = ifp->if_flags;
2821 		FXP_UNLOCK(sc);
2822 		break;
2823 
2824 	case SIOCADDMULTI:
2825 	case SIOCDELMULTI:
2826 		FXP_LOCK(sc);
2827 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2828 			fxp_init_body(sc, 0);
2829 		FXP_UNLOCK(sc);
2830 		break;
2831 
2832 	case SIOCSIFMEDIA:
2833 	case SIOCGIFMEDIA:
2834 		if (sc->miibus != NULL) {
2835 			mii = device_get_softc(sc->miibus);
2836                         error = ifmedia_ioctl(ifp, ifr,
2837                             &mii->mii_media, command);
2838 		} else {
2839                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2840 		}
2841 		break;
2842 
2843 	case SIOCSIFCAP:
2844 		reinit = 0;
2845 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2846 #ifdef DEVICE_POLLING
2847 		if (mask & IFCAP_POLLING) {
2848 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2849 				error = ether_poll_register(fxp_poll, ifp);
2850 				if (error)
2851 					return(error);
2852 				FXP_LOCK(sc);
2853 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2854 				    FXP_SCB_INTR_DISABLE);
2855 				ifp->if_capenable |= IFCAP_POLLING;
2856 				FXP_UNLOCK(sc);
2857 			} else {
2858 				error = ether_poll_deregister(ifp);
2859 				/* Enable interrupts in any case */
2860 				FXP_LOCK(sc);
2861 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2862 				ifp->if_capenable &= ~IFCAP_POLLING;
2863 				FXP_UNLOCK(sc);
2864 			}
2865 		}
2866 #endif
2867 		FXP_LOCK(sc);
2868 		if ((mask & IFCAP_TXCSUM) != 0 &&
2869 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2870 			ifp->if_capenable ^= IFCAP_TXCSUM;
2871 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2872 				ifp->if_hwassist |= FXP_CSUM_FEATURES;
2873 			else
2874 				ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
2875 		}
2876 		if ((mask & IFCAP_RXCSUM) != 0 &&
2877 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
2878 			ifp->if_capenable ^= IFCAP_RXCSUM;
2879 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2880 				reinit++;
2881 		}
2882 		if ((mask & IFCAP_TSO4) != 0 &&
2883 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2884 			ifp->if_capenable ^= IFCAP_TSO4;
2885 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2886 				ifp->if_hwassist |= CSUM_TSO;
2887 			else
2888 				ifp->if_hwassist &= ~CSUM_TSO;
2889 		}
2890 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2891 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2892 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2893 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2894 		    (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
2895 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2896 			if (sc->revision != FXP_REV_82557)
2897 				flag = FXP_FLAG_LONG_PKT_EN;
2898 			else /* a hack to get long frames on the old chip */
2899 				flag = FXP_FLAG_SAVE_BAD;
2900 			sc->flags ^= flag;
2901 			if (ifp->if_flags & IFF_UP)
2902 				reinit++;
2903 		}
2904 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2905 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2906 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2907 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2908 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2909 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2910 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2911 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2912 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2913 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2914 				ifp->if_capenable &=
2915 				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2916 			reinit++;
2917 		}
2918 		if (reinit > 0 && ifp->if_flags & IFF_UP)
2919 			fxp_init_body(sc, 1);
2920 		FXP_UNLOCK(sc);
2921 		VLAN_CAPABILITIES(ifp);
2922 		break;
2923 
2924 	default:
2925 		error = ether_ioctl(ifp, command, data);
2926 	}
2927 	return (error);
2928 }
2929 
2930 /*
2931  * Fill in the multicast address list and return number of entries.
2932  */
2933 static int
2934 fxp_mc_addrs(struct fxp_softc *sc)
2935 {
2936 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2937 	struct ifnet *ifp = sc->ifp;
2938 	struct ifmultiaddr *ifma;
2939 	int nmcasts;
2940 
2941 	nmcasts = 0;
2942 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2943 		if_maddr_rlock(ifp);
2944 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2945 			if (ifma->ifma_addr->sa_family != AF_LINK)
2946 				continue;
2947 			if (nmcasts >= MAXMCADDR) {
2948 				ifp->if_flags |= IFF_ALLMULTI;
2949 				nmcasts = 0;
2950 				break;
2951 			}
2952 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2953 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2954 			nmcasts++;
2955 		}
2956 		if_maddr_runlock(ifp);
2957 	}
2958 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2959 	return (nmcasts);
2960 }
2961 
2962 /*
2963  * Program the multicast filter.
2964  *
2965  * We have an artificial restriction that the multicast setup command
2966  * must be the first command in the chain, so we take steps to ensure
2967  * this. By requiring this, it allows us to keep up the performance of
2968  * the pre-initialized command ring (esp. link pointers) by not actually
2969  * inserting the mcsetup command in the ring - i.e. its link pointer
2970  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2971  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2972  * lead into the regular TxCB ring when it completes.
2973  */
2974 static void
2975 fxp_mc_setup(struct fxp_softc *sc)
2976 {
2977 	struct fxp_cb_mcs *mcsp;
2978 	int count;
2979 
2980 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2981 
2982 	mcsp = sc->mcsp;
2983 	mcsp->cb_status = 0;
2984 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2985 	mcsp->link_addr = 0xffffffff;
2986 	fxp_mc_addrs(sc);
2987 
2988 	/*
2989 	 * Wait until command unit is idle. This should never be the
2990 	 * case when nothing is queued, but make sure anyway.
2991 	 */
2992 	count = 100;
2993 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
2994 	    FXP_SCB_CUS_IDLE && --count)
2995 		DELAY(10);
2996 	if (count == 0) {
2997 		device_printf(sc->dev, "command queue timeout\n");
2998 		return;
2999 	}
3000 
3001 	/*
3002 	 * Start the multicast setup command.
3003 	 */
3004 	fxp_scb_wait(sc);
3005 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3006 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3007 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3008 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3009 	/* ...and wait for it to complete. */
3010 	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3011 }
3012 
3013 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3014 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3015 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3016 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3017 #ifdef notyet
3018 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3019 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3020 #endif
3021 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3022 
3023 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3024 
3025 static const struct ucode {
3026 	uint32_t	revision;
3027 	uint32_t	*ucode;
3028 	int		length;
3029 	u_short		int_delay_offset;
3030 	u_short		bundle_max_offset;
3031 } const ucode_table[] = {
3032 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3033 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3034 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3035 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3036 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3037 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3038 #ifdef notyet
3039 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3040 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3041 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3042 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3043 #endif
3044 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3045 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3046 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3047 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3048 	{ 0, NULL, 0, 0, 0 }
3049 };
3050 
3051 static void
3052 fxp_load_ucode(struct fxp_softc *sc)
3053 {
3054 	const struct ucode *uc;
3055 	struct fxp_cb_ucode *cbp;
3056 	int i;
3057 
3058 	for (uc = ucode_table; uc->ucode != NULL; uc++)
3059 		if (sc->revision == uc->revision)
3060 			break;
3061 	if (uc->ucode == NULL)
3062 		return;
3063 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3064 	cbp->cb_status = 0;
3065 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3066 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3067 	for (i = 0; i < uc->length; i++)
3068 		cbp->ucode[i] = htole32(uc->ucode[i]);
3069 	if (uc->int_delay_offset)
3070 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3071 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3072 	if (uc->bundle_max_offset)
3073 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3074 		    htole16(sc->tunable_bundle_max);
3075 	/*
3076 	 * Download the ucode to the chip.
3077 	 */
3078 	fxp_scb_wait(sc);
3079 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3080 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3081 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3082 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3083 	/* ...and wait for it to complete. */
3084 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3085 	device_printf(sc->dev,
3086 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3087 	    sc->tunable_int_delay,
3088 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3089 	sc->flags |= FXP_FLAG_UCODE;
3090 }
3091 
3092 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3093 	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3094 
3095 static void
3096 fxp_sysctl_node(struct fxp_softc *sc)
3097 {
3098 	struct sysctl_ctx_list *ctx;
3099 	struct sysctl_oid_list *child, *parent;
3100 	struct sysctl_oid *tree;
3101 	struct fxp_hwstats *hsp;
3102 
3103 	ctx = device_get_sysctl_ctx(sc->dev);
3104 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3105 
3106 	SYSCTL_ADD_PROC(ctx, child,
3107 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
3108 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3109 	    "FXP driver receive interrupt microcode bundling delay");
3110 	SYSCTL_ADD_PROC(ctx, child,
3111 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
3112 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3113 	    "FXP driver receive interrupt microcode bundle size limit");
3114 	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3115 	    "FXP RNR events");
3116 
3117 	/*
3118 	 * Pull in device tunables.
3119 	 */
3120 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3121 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3122 	(void) resource_int_value(device_get_name(sc->dev),
3123 	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3124 	(void) resource_int_value(device_get_name(sc->dev),
3125 	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3126 	sc->rnr = 0;
3127 
3128 	hsp = &sc->fxp_hwstats;
3129 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3130 	    NULL, "FXP statistics");
3131 	parent = SYSCTL_CHILDREN(tree);
3132 
3133 	/* Rx MAC statistics. */
3134 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3135 	    NULL, "Rx MAC statistics");
3136 	child = SYSCTL_CHILDREN(tree);
3137 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3138 	    &hsp->rx_good, "Good frames");
3139 	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3140 	    &hsp->rx_crc_errors, "CRC errors");
3141 	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3142 	    &hsp->rx_alignment_errors, "Alignment errors");
3143 	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3144 	    &hsp->rx_rnr_errors, "RNR errors");
3145 	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3146 	    &hsp->rx_overrun_errors, "Overrun errors");
3147 	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3148 	    &hsp->rx_cdt_errors, "Collision detect errors");
3149 	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3150 	    &hsp->rx_shortframes, "Short frame errors");
3151 	if (sc->revision >= FXP_REV_82558_A4) {
3152 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3153 		    &hsp->rx_pause, "Pause frames");
3154 		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3155 		    &hsp->rx_controls, "Unsupported control frames");
3156 	}
3157 	if (sc->revision >= FXP_REV_82559_A0)
3158 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3159 		    &hsp->rx_tco, "TCO frames");
3160 
3161 	/* Tx MAC statistics. */
3162 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3163 	    NULL, "Tx MAC statistics");
3164 	child = SYSCTL_CHILDREN(tree);
3165 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3166 	    &hsp->tx_good, "Good frames");
3167 	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3168 	    &hsp->tx_maxcols, "Maximum collisions errors");
3169 	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3170 	    &hsp->tx_latecols, "Late collisions errors");
3171 	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3172 	    &hsp->tx_underruns, "Underrun errors");
3173 	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3174 	    &hsp->tx_lostcrs, "Lost carrier sense");
3175 	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3176 	    &hsp->tx_deffered, "Deferred");
3177 	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3178 	    &hsp->tx_single_collisions, "Single collisions");
3179 	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3180 	    &hsp->tx_multiple_collisions, "Multiple collisions");
3181 	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3182 	    &hsp->tx_total_collisions, "Total collisions");
3183 	if (sc->revision >= FXP_REV_82558_A4)
3184 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3185 		    &hsp->tx_pause, "Pause frames");
3186 	if (sc->revision >= FXP_REV_82559_A0)
3187 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3188 		    &hsp->tx_tco, "TCO frames");
3189 }
3190 
3191 #undef FXP_SYSCTL_STAT_ADD
3192 
3193 static int
3194 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3195 {
3196 	int error, value;
3197 
3198 	value = *(int *)arg1;
3199 	error = sysctl_handle_int(oidp, &value, 0, req);
3200 	if (error || !req->newptr)
3201 		return (error);
3202 	if (value < low || value > high)
3203 		return (EINVAL);
3204 	*(int *)arg1 = value;
3205 	return (0);
3206 }
3207 
3208 /*
3209  * Interrupt delay is expressed in microseconds, a multiplier is used
3210  * to convert this to the appropriate clock ticks before using.
3211  */
3212 static int
3213 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3214 {
3215 
3216 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3217 }
3218 
3219 static int
3220 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3221 {
3222 
3223 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3224 }
3225