xref: /freebsd/sys/dev/fxp/if_fxp.c (revision f856af0466c076beef4ea9b15d088e1119a945b8)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/endian.h>
44 #include <sys/mbuf.h>
45 		/* #include <sys/mutex.h> */
46 #include <sys/kernel.h>
47 #include <sys/module.h>
48 #include <sys/socket.h>
49 #include <sys/sysctl.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 
55 #include <net/bpf.h>
56 #include <sys/sockio.h>
57 #include <sys/bus.h>
58 #include <machine/bus.h>
59 #include <sys/rman.h>
60 #include <machine/resource.h>
61 
62 #include <net/ethernet.h>
63 #include <net/if_arp.h>
64 
65 
66 #include <net/if_types.h>
67 #include <net/if_vlan_var.h>
68 
69 #ifdef FXP_IP_CSUM_WAR
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #include <machine/in_cksum.h>
74 #endif
75 
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
78 
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 
82 #include <dev/fxp/if_fxpreg.h>
83 #include <dev/fxp/if_fxpvar.h>
84 #include <dev/fxp/rcvbundl.h>
85 
86 MODULE_DEPEND(fxp, pci, 1, 1, 1);
87 MODULE_DEPEND(fxp, ether, 1, 1, 1);
88 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
89 #include "miibus_if.h"
90 
91 /*
92  * NOTE!  On the Alpha, we have an alignment constraint.  The
93  * card DMAs the packet immediately following the RFA.  However,
94  * the first thing in the packet is a 14-byte Ethernet header.
95  * This means that the packet is misaligned.  To compensate,
96  * we actually offset the RFA 2 bytes into the cluster.  This
97  * alignes the packet after the Ethernet header at a 32-bit
98  * boundary.  HOWEVER!  This means that the RFA is misaligned!
99  */
100 #define	RFA_ALIGNMENT_FUDGE	2
101 
102 /*
103  * Set initial transmit threshold at 64 (512 bytes). This is
104  * increased by 64 (512 bytes) at a time, to maximum of 192
105  * (1536 bytes), if an underrun occurs.
106  */
107 static int tx_threshold = 64;
108 
109 /*
110  * The configuration byte map has several undefined fields which
111  * must be one or must be zero.  Set up a template for these bits
112  * only, (assuming a 82557 chip) leaving the actual configuration
113  * to fxp_init.
114  *
115  * See struct fxp_cb_config for the bit definitions.
116  */
117 static u_char fxp_cb_config_template[] = {
118 	0x0, 0x0,		/* cb_status */
119 	0x0, 0x0,		/* cb_command */
120 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
121 	0x0,	/*  0 */
122 	0x0,	/*  1 */
123 	0x0,	/*  2 */
124 	0x0,	/*  3 */
125 	0x0,	/*  4 */
126 	0x0,	/*  5 */
127 	0x32,	/*  6 */
128 	0x0,	/*  7 */
129 	0x0,	/*  8 */
130 	0x0,	/*  9 */
131 	0x6,	/* 10 */
132 	0x0,	/* 11 */
133 	0x0,	/* 12 */
134 	0x0,	/* 13 */
135 	0xf2,	/* 14 */
136 	0x48,	/* 15 */
137 	0x0,	/* 16 */
138 	0x40,	/* 17 */
139 	0xf0,	/* 18 */
140 	0x0,	/* 19 */
141 	0x3f,	/* 20 */
142 	0x5	/* 21 */
143 };
144 
145 struct fxp_ident {
146 	uint16_t	devid;
147 	int16_t		revid;		/* -1 matches anything */
148 	char 		*name;
149 };
150 
151 /*
152  * Claim various Intel PCI device identifiers for this driver.  The
153  * sub-vendor and sub-device field are extensively used to identify
154  * particular variants, but we don't currently differentiate between
155  * them.
156  */
157 static struct fxp_ident fxp_ident_table[] = {
158     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
159     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
160     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
161     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
162     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
163     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
165     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
168     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
169     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
170     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
172     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
173     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
174     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
175     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
176     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
177     { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
178     { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
179     { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
180     { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
181     { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
182     { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
183     { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
184     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
185     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
186     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
187     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
188     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
189     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
190     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
191     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
192     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
193     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
194     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
195     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
196     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
197     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
198     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
199     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
200     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
201     { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
202     { 0,	-1,	NULL },
203 };
204 
205 #ifdef FXP_IP_CSUM_WAR
206 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
207 #else
208 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
209 #endif
210 
211 static int		fxp_probe(device_t dev);
212 static int		fxp_attach(device_t dev);
213 static int		fxp_detach(device_t dev);
214 static int		fxp_shutdown(device_t dev);
215 static int		fxp_suspend(device_t dev);
216 static int		fxp_resume(device_t dev);
217 
218 static void		fxp_intr(void *xsc);
219 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
220 			    uint8_t statack, int count);
221 static void 		fxp_init(void *xsc);
222 static void 		fxp_init_body(struct fxp_softc *sc);
223 static void 		fxp_tick(void *xsc);
224 static void 		fxp_start(struct ifnet *ifp);
225 static void 		fxp_start_body(struct ifnet *ifp);
226 static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
227 static void		fxp_stop(struct fxp_softc *sc);
228 static void 		fxp_release(struct fxp_softc *sc);
229 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
230 			    caddr_t data);
231 static void 		fxp_watchdog(struct fxp_softc *sc);
232 static int		fxp_add_rfabuf(struct fxp_softc *sc,
233     			    struct fxp_rx *rxp);
234 static int		fxp_mc_addrs(struct fxp_softc *sc);
235 static void		fxp_mc_setup(struct fxp_softc *sc);
236 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
237 			    int autosize);
238 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
239 			    uint16_t data);
240 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
241 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
242 			    int offset, int words);
243 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
244 			    int offset, int words);
245 static int		fxp_ifmedia_upd(struct ifnet *ifp);
246 static void		fxp_ifmedia_sts(struct ifnet *ifp,
247 			    struct ifmediareq *ifmr);
248 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
249 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
250 			    struct ifmediareq *ifmr);
251 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
252 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
253 			    int value);
254 static void		fxp_load_ucode(struct fxp_softc *sc);
255 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
256 			    int low, int high);
257 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
258 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
259 static void 		fxp_scb_wait(struct fxp_softc *sc);
260 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
261 static void		fxp_dma_wait(struct fxp_softc *sc,
262     			    volatile uint16_t *status, bus_dma_tag_t dmat,
263 			    bus_dmamap_t map);
264 
265 static device_method_t fxp_methods[] = {
266 	/* Device interface */
267 	DEVMETHOD(device_probe,		fxp_probe),
268 	DEVMETHOD(device_attach,	fxp_attach),
269 	DEVMETHOD(device_detach,	fxp_detach),
270 	DEVMETHOD(device_shutdown,	fxp_shutdown),
271 	DEVMETHOD(device_suspend,	fxp_suspend),
272 	DEVMETHOD(device_resume,	fxp_resume),
273 
274 	/* MII interface */
275 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
276 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
277 
278 	{ 0, 0 }
279 };
280 
281 static driver_t fxp_driver = {
282 	"fxp",
283 	fxp_methods,
284 	sizeof(struct fxp_softc),
285 };
286 
287 static devclass_t fxp_devclass;
288 
289 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
290 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
291 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
292 
293 static struct resource_spec fxp_res_spec_mem[] = {
294 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
295 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
296 	{ -1, 0 }
297 };
298 
299 static struct resource_spec fxp_res_spec_io[] = {
300 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
301 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
302 	{ -1, 0 }
303 };
304 
305 /*
306  * Wait for the previous command to be accepted (but not necessarily
307  * completed).
308  */
309 static void
310 fxp_scb_wait(struct fxp_softc *sc)
311 {
312 	union {
313 		uint16_t w;
314 		uint8_t b[2];
315 	} flowctl;
316 	int i = 10000;
317 
318 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
319 		DELAY(2);
320 	if (i == 0) {
321 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
322 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
323 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
324 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
325 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
326 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
327 	}
328 }
329 
330 static void
331 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
332 {
333 
334 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
335 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
336 		fxp_scb_wait(sc);
337 	}
338 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
339 }
340 
341 static void
342 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
343     bus_dma_tag_t dmat, bus_dmamap_t map)
344 {
345 	int i = 10000;
346 
347 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
348 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
349 		DELAY(2);
350 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
351 	}
352 	if (i == 0)
353 		device_printf(sc->dev, "DMA timeout\n");
354 }
355 
356 /*
357  * Return identification string if this device is ours.
358  */
359 static int
360 fxp_probe(device_t dev)
361 {
362 	uint16_t devid;
363 	uint8_t revid;
364 	struct fxp_ident *ident;
365 
366 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
367 		devid = pci_get_device(dev);
368 		revid = pci_get_revid(dev);
369 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
370 			if (ident->devid == devid &&
371 			    (ident->revid == revid || ident->revid == -1)) {
372 				device_set_desc(dev, ident->name);
373 				return (BUS_PROBE_DEFAULT);
374 			}
375 		}
376 	}
377 	return (ENXIO);
378 }
379 
380 static void
381 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
382 {
383 	uint32_t *addr;
384 
385 	if (error)
386 		return;
387 
388 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
389 	addr = arg;
390 	*addr = segs->ds_addr;
391 }
392 
393 static int
394 fxp_attach(device_t dev)
395 {
396 	struct fxp_softc *sc;
397 	struct fxp_cb_tx *tcbp;
398 	struct fxp_tx *txp;
399 	struct fxp_rx *rxp;
400 	struct ifnet *ifp;
401 	uint32_t val;
402 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
403 	u_char eaddr[ETHER_ADDR_LEN];
404 	int i, prefer_iomap;
405 	int error;
406 
407 	error = 0;
408 	sc = device_get_softc(dev);
409 	sc->dev = dev;
410 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
411 	    MTX_DEF);
412 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
413 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
414 	    fxp_serial_ifmedia_sts);
415 
416 	ifp = sc->ifp = if_alloc(IFT_ETHER);
417 	if (ifp == NULL) {
418 		device_printf(dev, "can not if_alloc()\n");
419 		error = ENOSPC;
420 		goto fail;
421 	}
422 
423 	/*
424 	 * Enable bus mastering.
425 	 */
426 	pci_enable_busmaster(dev);
427 	val = pci_read_config(dev, PCIR_COMMAND, 2);
428 
429 	/*
430 	 * Figure out which we should try first - memory mapping or i/o mapping?
431 	 * We default to memory mapping. Then we accept an override from the
432 	 * command line. Then we check to see which one is enabled.
433 	 */
434 	prefer_iomap = 0;
435 	resource_int_value(device_get_name(dev), device_get_unit(dev),
436 	    "prefer_iomap", &prefer_iomap);
437 	if (prefer_iomap)
438 		sc->fxp_spec = fxp_res_spec_io;
439 	else
440 		sc->fxp_spec = fxp_res_spec_mem;
441 
442 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
443 	if (error) {
444 		if (sc->fxp_spec == fxp_res_spec_mem)
445 			sc->fxp_spec = fxp_res_spec_io;
446 		else
447 			sc->fxp_spec = fxp_res_spec_mem;
448 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
449 	}
450 	if (error) {
451 		device_printf(dev, "could not allocate resources\n");
452 		error = ENXIO;
453 		goto fail;
454 	}
455 
456 	if (bootverbose) {
457 		device_printf(dev, "using %s space register mapping\n",
458 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
459 	}
460 
461 	/*
462 	 * Reset to a stable state.
463 	 */
464 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
465 	DELAY(10);
466 
467 	/*
468 	 * Find out how large of an SEEPROM we have.
469 	 */
470 	fxp_autosize_eeprom(sc);
471 
472 	/*
473 	 * Find out the chip revision; lump all 82557 revs together.
474 	 */
475 	fxp_read_eeprom(sc, &data, 5, 1);
476 	if ((data >> 8) == 1)
477 		sc->revision = FXP_REV_82557;
478 	else
479 		sc->revision = pci_get_revid(dev);
480 
481 	/*
482 	 * Determine whether we must use the 503 serial interface.
483 	 */
484 	fxp_read_eeprom(sc, &data, 6, 1);
485 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
486 	    && (data & FXP_PHY_SERIAL_ONLY))
487 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
488 
489 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
490 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
491 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
492 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
493 	    "FXP driver receive interrupt microcode bundling delay");
494 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
495 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
496 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
497 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
498 	    "FXP driver receive interrupt microcode bundle size limit");
499 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
500 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
501 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
502 	    "FXP RNR events");
503 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
504 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
505 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
506 	    "FXP flow control disabled");
507 
508 	/*
509 	 * Pull in device tunables.
510 	 */
511 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
512 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
513 	sc->tunable_noflow = 1;
514 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
515 	    "int_delay", &sc->tunable_int_delay);
516 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
517 	    "bundle_max", &sc->tunable_bundle_max);
518 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
519 	    "noflow", &sc->tunable_noflow);
520 	sc->rnr = 0;
521 
522 	/*
523 	 * Enable workarounds for certain chip revision deficiencies.
524 	 *
525 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
526 	 * some systems based a normal 82559 design, have a defect where
527 	 * the chip can cause a PCI protocol violation if it receives
528 	 * a CU_RESUME command when it is entering the IDLE state.  The
529 	 * workaround is to disable Dynamic Standby Mode, so the chip never
530 	 * deasserts CLKRUN#, and always remains in an active state.
531 	 *
532 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
533 	 */
534 	i = pci_get_device(dev);
535 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
536 	    sc->revision >= FXP_REV_82559_A0) {
537 		fxp_read_eeprom(sc, &data, 10, 1);
538 		if (data & 0x02) {			/* STB enable */
539 			uint16_t cksum;
540 			int i;
541 
542 			device_printf(dev,
543 			    "Disabling dynamic standby mode in EEPROM\n");
544 			data &= ~0x02;
545 			fxp_write_eeprom(sc, &data, 10, 1);
546 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
547 			cksum = 0;
548 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
549 				fxp_read_eeprom(sc, &data, i, 1);
550 				cksum += data;
551 			}
552 			i = (1 << sc->eeprom_size) - 1;
553 			cksum = 0xBABA - cksum;
554 			fxp_read_eeprom(sc, &data, i, 1);
555 			fxp_write_eeprom(sc, &cksum, i, 1);
556 			device_printf(dev,
557 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
558 			    i, data, cksum);
559 #if 1
560 			/*
561 			 * If the user elects to continue, try the software
562 			 * workaround, as it is better than nothing.
563 			 */
564 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
565 #endif
566 		}
567 	}
568 
569 	/*
570 	 * If we are not a 82557 chip, we can enable extended features.
571 	 */
572 	if (sc->revision != FXP_REV_82557) {
573 		/*
574 		 * If MWI is enabled in the PCI configuration, and there
575 		 * is a valid cacheline size (8 or 16 dwords), then tell
576 		 * the board to turn on MWI.
577 		 */
578 		if (val & PCIM_CMD_MWRICEN &&
579 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
580 			sc->flags |= FXP_FLAG_MWI_ENABLE;
581 
582 		/* turn on the extended TxCB feature */
583 		sc->flags |= FXP_FLAG_EXT_TXCB;
584 
585 		/* enable reception of long frames for VLAN */
586 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
587 	} else {
588 		/* a hack to get long VLAN frames on a 82557 */
589 		sc->flags |= FXP_FLAG_SAVE_BAD;
590 	}
591 
592 	/*
593 	 * Enable use of extended RFDs and TCBs for 82550
594 	 * and later chips. Note: we need extended TXCB support
595 	 * too, but that's already enabled by the code above.
596 	 * Be careful to do this only on the right devices.
597 	 */
598 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
599 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
600 	    || sc->revision == FXP_REV_82551_10) {
601 		sc->rfa_size = sizeof (struct fxp_rfa);
602 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
603 		sc->flags |= FXP_FLAG_EXT_RFA;
604 	} else {
605 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
606 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
607 	}
608 
609 	/*
610 	 * Allocate DMA tags and DMA safe memory.
611 	 */
612 	sc->maxtxseg = FXP_NTXSEG;
613 	if (sc->flags & FXP_FLAG_EXT_RFA)
614 		sc->maxtxseg--;
615 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
616 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
617 	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
618 	    &sc->fxp_mtag);
619 	if (error) {
620 		device_printf(dev, "could not allocate dma tag\n");
621 		goto fail;
622 	}
623 
624 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
625 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
626 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
627 	    &sc->fxp_stag);
628 	if (error) {
629 		device_printf(dev, "could not allocate dma tag\n");
630 		goto fail;
631 	}
632 
633 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
634 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
635 	if (error)
636 		goto fail;
637 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
638 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
639 	if (error) {
640 		device_printf(dev, "could not map the stats buffer\n");
641 		goto fail;
642 	}
643 
644 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
645 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
646 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
647 	if (error) {
648 		device_printf(dev, "could not allocate dma tag\n");
649 		goto fail;
650 	}
651 
652 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
653 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
654 	if (error)
655 		goto fail;
656 
657 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
658 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
659 	    &sc->fxp_desc.cbl_addr, 0);
660 	if (error) {
661 		device_printf(dev, "could not map DMA memory\n");
662 		goto fail;
663 	}
664 
665 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
666 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
667 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
668 	    &sc->mcs_tag);
669 	if (error) {
670 		device_printf(dev, "could not allocate dma tag\n");
671 		goto fail;
672 	}
673 
674 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
675 	    BUS_DMA_NOWAIT, &sc->mcs_map);
676 	if (error)
677 		goto fail;
678 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
679 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
680 	if (error) {
681 		device_printf(dev, "can't map the multicast setup command\n");
682 		goto fail;
683 	}
684 
685 	/*
686 	 * Pre-allocate the TX DMA maps and setup the pointers to
687 	 * the TX command blocks.
688 	 */
689 	txp = sc->fxp_desc.tx_list;
690 	tcbp = sc->fxp_desc.cbl_list;
691 	for (i = 0; i < FXP_NTXCB; i++) {
692 		txp[i].tx_cb = tcbp + i;
693 		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
694 		if (error) {
695 			device_printf(dev, "can't create DMA map for TX\n");
696 			goto fail;
697 		}
698 	}
699 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
700 	if (error) {
701 		device_printf(dev, "can't create spare DMA map\n");
702 		goto fail;
703 	}
704 
705 	/*
706 	 * Pre-allocate our receive buffers.
707 	 */
708 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
709 	for (i = 0; i < FXP_NRFABUFS; i++) {
710 		rxp = &sc->fxp_desc.rx_list[i];
711 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
712 		if (error) {
713 			device_printf(dev, "can't create DMA map for RX\n");
714 			goto fail;
715 		}
716 		if (fxp_add_rfabuf(sc, rxp) != 0) {
717 			error = ENOMEM;
718 			goto fail;
719 		}
720 	}
721 
722 	/*
723 	 * Read MAC address.
724 	 */
725 	fxp_read_eeprom(sc, myea, 0, 3);
726 	eaddr[0] = myea[0] & 0xff;
727 	eaddr[1] = myea[0] >> 8;
728 	eaddr[2] = myea[1] & 0xff;
729 	eaddr[3] = myea[1] >> 8;
730 	eaddr[4] = myea[2] & 0xff;
731 	eaddr[5] = myea[2] >> 8;
732 	if (bootverbose) {
733 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
734 		    pci_get_vendor(dev), pci_get_device(dev),
735 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
736 		    pci_get_revid(dev));
737 		fxp_read_eeprom(sc, &data, 10, 1);
738 		device_printf(dev, "Dynamic Standby mode is %s\n",
739 		    data & 0x02 ? "enabled" : "disabled");
740 	}
741 
742 	/*
743 	 * If this is only a 10Mbps device, then there is no MII, and
744 	 * the PHY will use a serial interface instead.
745 	 *
746 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
747 	 * doesn't have a programming interface of any sort.  The
748 	 * media is sensed automatically based on how the link partner
749 	 * is configured.  This is, in essence, manual configuration.
750 	 */
751 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
752 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
753 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
754 	} else {
755 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
756 		    fxp_ifmedia_sts)) {
757 	                device_printf(dev, "MII without any PHY!\n");
758 			error = ENXIO;
759 			goto fail;
760 		}
761 	}
762 
763 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
764 	ifp->if_init = fxp_init;
765 	ifp->if_softc = sc;
766 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
767 	ifp->if_ioctl = fxp_ioctl;
768 	ifp->if_start = fxp_start;
769 
770 	ifp->if_capabilities = ifp->if_capenable = 0;
771 
772 	/* Enable checksum offload for 82550 or better chips */
773 	if (sc->flags & FXP_FLAG_EXT_RFA) {
774 		ifp->if_hwassist = FXP_CSUM_FEATURES;
775 		ifp->if_capabilities |= IFCAP_HWCSUM;
776 		ifp->if_capenable |= IFCAP_HWCSUM;
777 	}
778 
779 #ifdef DEVICE_POLLING
780 	/* Inform the world we support polling. */
781 	ifp->if_capabilities |= IFCAP_POLLING;
782 #endif
783 
784 	/*
785 	 * Attach the interface.
786 	 */
787 	ether_ifattach(ifp, eaddr);
788 
789 	/*
790 	 * Tell the upper layer(s) we support long frames.
791 	 * Must appear after the call to ether_ifattach() because
792 	 * ether_ifattach() sets ifi_hdrlen to the default value.
793 	 */
794 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
795 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
796 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
797 
798 	/*
799 	 * Let the system queue as many packets as we have available
800 	 * TX descriptors.
801 	 */
802 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
803 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
804 	IFQ_SET_READY(&ifp->if_snd);
805 
806 	/*
807 	 * Hook our interrupt after all initialization is complete.
808 	 */
809 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
810 			       fxp_intr, sc, &sc->ih);
811 	if (error) {
812 		device_printf(dev, "could not setup irq\n");
813 		ether_ifdetach(sc->ifp);
814 		goto fail;
815 	}
816 
817 fail:
818 	if (error)
819 		fxp_release(sc);
820 	return (error);
821 }
822 
823 /*
824  * Release all resources.  The softc lock should not be held and the
825  * interrupt should already be torn down.
826  */
827 static void
828 fxp_release(struct fxp_softc *sc)
829 {
830 	struct fxp_rx *rxp;
831 	struct fxp_tx *txp;
832 	int i;
833 
834 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
835 	KASSERT(sc->ih == NULL,
836 	    ("fxp_release() called with intr handle still active"));
837 	if (sc->miibus)
838 		device_delete_child(sc->dev, sc->miibus);
839 	bus_generic_detach(sc->dev);
840 	ifmedia_removeall(&sc->sc_media);
841 	if (sc->fxp_desc.cbl_list) {
842 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
843 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
844 		    sc->cbl_map);
845 	}
846 	if (sc->fxp_stats) {
847 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
848 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
849 	}
850 	if (sc->mcsp) {
851 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
852 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
853 	}
854 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
855 	if (sc->fxp_mtag) {
856 		for (i = 0; i < FXP_NRFABUFS; i++) {
857 			rxp = &sc->fxp_desc.rx_list[i];
858 			if (rxp->rx_mbuf != NULL) {
859 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
860 				    BUS_DMASYNC_POSTREAD);
861 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
862 				m_freem(rxp->rx_mbuf);
863 			}
864 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
865 		}
866 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
867 		for (i = 0; i < FXP_NTXCB; i++) {
868 			txp = &sc->fxp_desc.tx_list[i];
869 			if (txp->tx_mbuf != NULL) {
870 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
871 				    BUS_DMASYNC_POSTWRITE);
872 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
873 				m_freem(txp->tx_mbuf);
874 			}
875 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
876 		}
877 		bus_dma_tag_destroy(sc->fxp_mtag);
878 	}
879 	if (sc->fxp_stag)
880 		bus_dma_tag_destroy(sc->fxp_stag);
881 	if (sc->cbl_tag)
882 		bus_dma_tag_destroy(sc->cbl_tag);
883 	if (sc->mcs_tag)
884 		bus_dma_tag_destroy(sc->mcs_tag);
885 	if (sc->ifp)
886 		if_free(sc->ifp);
887 
888 	mtx_destroy(&sc->sc_mtx);
889 }
890 
891 /*
892  * Detach interface.
893  */
894 static int
895 fxp_detach(device_t dev)
896 {
897 	struct fxp_softc *sc = device_get_softc(dev);
898 
899 #ifdef DEVICE_POLLING
900 	if (sc->ifp->if_capenable & IFCAP_POLLING)
901 		ether_poll_deregister(sc->ifp);
902 #endif
903 
904 	FXP_LOCK(sc);
905 	sc->suspended = 1;	/* Do same thing as we do for suspend */
906 	/*
907 	 * Stop DMA and drop transmit queue, but disable interrupts first.
908 	 */
909 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
910 	fxp_stop(sc);
911 	FXP_UNLOCK(sc);
912 	callout_drain(&sc->stat_ch);
913 
914 	/*
915 	 * Close down routes etc.
916 	 */
917 	ether_ifdetach(sc->ifp);
918 
919 	/*
920 	 * Unhook interrupt before dropping lock. This is to prevent
921 	 * races with fxp_intr().
922 	 */
923 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
924 	sc->ih = NULL;
925 
926 	/* Release our allocated resources. */
927 	fxp_release(sc);
928 	return (0);
929 }
930 
931 /*
932  * Device shutdown routine. Called at system shutdown after sync. The
933  * main purpose of this routine is to shut off receiver DMA so that
934  * kernel memory doesn't get clobbered during warmboot.
935  */
936 static int
937 fxp_shutdown(device_t dev)
938 {
939 	struct fxp_softc *sc = device_get_softc(dev);
940 
941 	/*
942 	 * Make sure that DMA is disabled prior to reboot. Not doing
943 	 * do could allow DMA to corrupt kernel memory during the
944 	 * reboot before the driver initializes.
945 	 */
946 	FXP_LOCK(sc);
947 	fxp_stop(sc);
948 	FXP_UNLOCK(sc);
949 	return (0);
950 }
951 
952 /*
953  * Device suspend routine.  Stop the interface and save some PCI
954  * settings in case the BIOS doesn't restore them properly on
955  * resume.
956  */
957 static int
958 fxp_suspend(device_t dev)
959 {
960 	struct fxp_softc *sc = device_get_softc(dev);
961 
962 	FXP_LOCK(sc);
963 
964 	fxp_stop(sc);
965 
966 	sc->suspended = 1;
967 
968 	FXP_UNLOCK(sc);
969 	return (0);
970 }
971 
972 /*
973  * Device resume routine. re-enable busmastering, and restart the interface if
974  * appropriate.
975  */
976 static int
977 fxp_resume(device_t dev)
978 {
979 	struct fxp_softc *sc = device_get_softc(dev);
980 	struct ifnet *ifp = sc->ifp;
981 
982 	FXP_LOCK(sc);
983 
984 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
985 	DELAY(10);
986 
987 	/* reinitialize interface if necessary */
988 	if (ifp->if_flags & IFF_UP)
989 		fxp_init_body(sc);
990 
991 	sc->suspended = 0;
992 
993 	FXP_UNLOCK(sc);
994 	return (0);
995 }
996 
997 static void
998 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
999 {
1000 	uint16_t reg;
1001 	int x;
1002 
1003 	/*
1004 	 * Shift in data.
1005 	 */
1006 	for (x = 1 << (length - 1); x; x >>= 1) {
1007 		if (data & x)
1008 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1009 		else
1010 			reg = FXP_EEPROM_EECS;
1011 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1012 		DELAY(1);
1013 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1014 		DELAY(1);
1015 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1016 		DELAY(1);
1017 	}
1018 }
1019 
1020 /*
1021  * Read from the serial EEPROM. Basically, you manually shift in
1022  * the read opcode (one bit at a time) and then shift in the address,
1023  * and then you shift out the data (all of this one bit at a time).
1024  * The word size is 16 bits, so you have to provide the address for
1025  * every 16 bits of data.
1026  */
1027 static uint16_t
1028 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1029 {
1030 	uint16_t reg, data;
1031 	int x;
1032 
1033 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1034 	/*
1035 	 * Shift in read opcode.
1036 	 */
1037 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1038 	/*
1039 	 * Shift in address.
1040 	 */
1041 	data = 0;
1042 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1043 		if (offset & x)
1044 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1045 		else
1046 			reg = FXP_EEPROM_EECS;
1047 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1048 		DELAY(1);
1049 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1050 		DELAY(1);
1051 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1052 		DELAY(1);
1053 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1054 		data++;
1055 		if (autosize && reg == 0) {
1056 			sc->eeprom_size = data;
1057 			break;
1058 		}
1059 	}
1060 	/*
1061 	 * Shift out data.
1062 	 */
1063 	data = 0;
1064 	reg = FXP_EEPROM_EECS;
1065 	for (x = 1 << 15; x; x >>= 1) {
1066 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1067 		DELAY(1);
1068 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1069 			data |= x;
1070 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1071 		DELAY(1);
1072 	}
1073 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1074 	DELAY(1);
1075 
1076 	return (data);
1077 }
1078 
1079 static void
1080 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1081 {
1082 	int i;
1083 
1084 	/*
1085 	 * Erase/write enable.
1086 	 */
1087 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1088 	fxp_eeprom_shiftin(sc, 0x4, 3);
1089 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1090 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1091 	DELAY(1);
1092 	/*
1093 	 * Shift in write opcode, address, data.
1094 	 */
1095 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1096 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1097 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1098 	fxp_eeprom_shiftin(sc, data, 16);
1099 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1100 	DELAY(1);
1101 	/*
1102 	 * Wait for EEPROM to finish up.
1103 	 */
1104 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1105 	DELAY(1);
1106 	for (i = 0; i < 1000; i++) {
1107 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1108 			break;
1109 		DELAY(50);
1110 	}
1111 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1112 	DELAY(1);
1113 	/*
1114 	 * Erase/write disable.
1115 	 */
1116 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1117 	fxp_eeprom_shiftin(sc, 0x4, 3);
1118 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1119 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1120 	DELAY(1);
1121 }
1122 
1123 /*
1124  * From NetBSD:
1125  *
1126  * Figure out EEPROM size.
1127  *
1128  * 559's can have either 64-word or 256-word EEPROMs, the 558
1129  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1130  * talks about the existance of 16 to 256 word EEPROMs.
1131  *
1132  * The only known sizes are 64 and 256, where the 256 version is used
1133  * by CardBus cards to store CIS information.
1134  *
1135  * The address is shifted in msb-to-lsb, and after the last
1136  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1137  * after which follows the actual data. We try to detect this zero, by
1138  * probing the data-out bit in the EEPROM control register just after
1139  * having shifted in a bit. If the bit is zero, we assume we've
1140  * shifted enough address bits. The data-out should be tri-state,
1141  * before this, which should translate to a logical one.
1142  */
1143 static void
1144 fxp_autosize_eeprom(struct fxp_softc *sc)
1145 {
1146 
1147 	/* guess maximum size of 256 words */
1148 	sc->eeprom_size = 8;
1149 
1150 	/* autosize */
1151 	(void) fxp_eeprom_getword(sc, 0, 1);
1152 }
1153 
1154 static void
1155 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1156 {
1157 	int i;
1158 
1159 	for (i = 0; i < words; i++)
1160 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1161 }
1162 
1163 static void
1164 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1165 {
1166 	int i;
1167 
1168 	for (i = 0; i < words; i++)
1169 		fxp_eeprom_putword(sc, offset + i, data[i]);
1170 }
1171 
1172 /*
1173  * Grab the softc lock and call the real fxp_start_body() routine
1174  */
1175 static void
1176 fxp_start(struct ifnet *ifp)
1177 {
1178 	struct fxp_softc *sc = ifp->if_softc;
1179 
1180 	FXP_LOCK(sc);
1181 	fxp_start_body(ifp);
1182 	FXP_UNLOCK(sc);
1183 }
1184 
1185 /*
1186  * Start packet transmission on the interface.
1187  * This routine must be called with the softc lock held, and is an
1188  * internal entry point only.
1189  */
1190 static void
1191 fxp_start_body(struct ifnet *ifp)
1192 {
1193 	struct fxp_softc *sc = ifp->if_softc;
1194 	struct mbuf *mb_head;
1195 	int error, txqueued;
1196 
1197 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1198 
1199 	/*
1200 	 * See if we need to suspend xmit until the multicast filter
1201 	 * has been reprogrammed (which can only be done at the head
1202 	 * of the command chain).
1203 	 */
1204 	if (sc->need_mcsetup)
1205 		return;
1206 
1207 	/*
1208 	 * We're finished if there is nothing more to add to the list or if
1209 	 * we're all filled up with buffers to transmit.
1210 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1211 	 *       a NOP command when needed.
1212 	 */
1213 	txqueued = 0;
1214 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1215 	    sc->tx_queued < FXP_NTXCB - 1) {
1216 
1217 		/*
1218 		 * Grab a packet to transmit.
1219 		 */
1220 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1221 		if (mb_head == NULL)
1222 			break;
1223 
1224 		error = fxp_encap(sc, mb_head);
1225 		if (error)
1226 			break;
1227 		txqueued = 1;
1228 	}
1229 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1230 
1231 	/*
1232 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1233 	 * going again if suspended.
1234 	 */
1235 	if (txqueued) {
1236 		fxp_scb_wait(sc);
1237 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1238 	}
1239 }
1240 
1241 static int
1242 fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1243 {
1244 	struct ifnet *ifp;
1245 	struct mbuf *m;
1246 	struct fxp_tx *txp;
1247 	struct fxp_cb_tx *cbp;
1248 	bus_dma_segment_t segs[FXP_NTXSEG];
1249 	int chainlen, error, i, nseg;
1250 
1251 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1252 	ifp = sc->ifp;
1253 
1254 	/*
1255 	 * Get pointer to next available tx desc.
1256 	 */
1257 	txp = sc->fxp_desc.tx_last->tx_next;
1258 
1259 	/*
1260 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1261 	 * Ethernet Controller Family Open Source Software
1262 	 * Developer Manual says:
1263 	 *   Using software parsing is only allowed with legal
1264 	 *   TCP/IP or UDP/IP packets.
1265 	 *   ...
1266 	 *   For all other datagrams, hardware parsing must
1267 	 *   be used.
1268 	 * Software parsing appears to truncate ICMP and
1269 	 * fragmented UDP packets that contain one to three
1270 	 * bytes in the second (and final) mbuf of the packet.
1271 	 */
1272 	if (sc->flags & FXP_FLAG_EXT_RFA)
1273 		txp->tx_cb->ipcb_ip_activation_high =
1274 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1275 
1276 	/*
1277 	 * Deal with TCP/IP checksum offload. Note that
1278 	 * in order for TCP checksum offload to work,
1279 	 * the pseudo header checksum must have already
1280 	 * been computed and stored in the checksum field
1281 	 * in the TCP header. The stack should have
1282 	 * already done this for us.
1283 	 */
1284 	if (m_head->m_pkthdr.csum_flags) {
1285 		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1286 			txp->tx_cb->ipcb_ip_schedule =
1287 			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1288 			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1289 				txp->tx_cb->ipcb_ip_schedule |=
1290 				    FXP_IPCB_TCP_PACKET;
1291 		}
1292 
1293 #ifdef FXP_IP_CSUM_WAR
1294 		/*
1295 		 * XXX The 82550 chip appears to have trouble
1296 		 * dealing with IP header checksums in very small
1297 		 * datagrams, namely fragments from 1 to 3 bytes
1298 		 * in size. For example, say you want to transmit
1299 		 * a UDP packet of 1473 bytes. The packet will be
1300 		 * fragmented over two IP datagrams, the latter
1301 		 * containing only one byte of data. The 82550 will
1302 		 * botch the header checksum on the 1-byte fragment.
1303 		 * As long as the datagram contains 4 or more bytes
1304 		 * of data, you're ok.
1305 		 *
1306                  * The following code attempts to work around this
1307 		 * problem: if the datagram is less than 38 bytes
1308 		 * in size (14 bytes ether header, 20 bytes IP header,
1309 		 * plus 4 bytes of data), we punt and compute the IP
1310 		 * header checksum by hand. This workaround doesn't
1311 		 * work very well, however, since it can be fooled
1312 		 * by things like VLAN tags and IP options that make
1313 		 * the header sizes/offsets vary.
1314 		 */
1315 
1316 		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1317 			if (m_head->m_pkthdr.len < 38) {
1318 				struct ip *ip;
1319 				m_head->m_data += ETHER_HDR_LEN;
1320 				ip = mtod(mb_head, struct ip *);
1321 				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1322 				m_head->m_data -= ETHER_HDR_LEN;
1323 			} else {
1324 				txp->tx_cb->ipcb_ip_activation_high =
1325 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1326 				txp->tx_cb->ipcb_ip_schedule |=
1327 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1328 			}
1329 		}
1330 #endif
1331 	}
1332 
1333 	chainlen = 0;
1334 	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1335 		chainlen++;
1336 	if (chainlen > sc->maxtxseg) {
1337 		struct mbuf *mn;
1338 
1339 		/*
1340 		 * We ran out of segments. We have to recopy this
1341 		 * mbuf chain first. Bail out if we can't get the
1342 		 * new buffers.
1343 		 */
1344 		mn = m_defrag(m_head, M_DONTWAIT);
1345 		if (mn == NULL) {
1346 			m_freem(m_head);
1347 			return (-1);
1348 		} else {
1349 			m_head = mn;
1350 		}
1351 	}
1352 
1353 	/*
1354 	 * Go through each of the mbufs in the chain and initialize
1355 	 * the transmit buffer descriptors with the physical address
1356 	 * and size of the mbuf.
1357 	 */
1358 	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1359 	    m_head, segs, &nseg, 0);
1360 	if (error) {
1361 		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1362 		m_freem(m_head);
1363 		return (-1);
1364 	}
1365 
1366 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1367 
1368 	cbp = txp->tx_cb;
1369 	for (i = 0; i < nseg; i++) {
1370 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1371 		/*
1372 		 * If this is an 82550/82551, then we're using extended
1373 		 * TxCBs _and_ we're using checksum offload. This means
1374 		 * that the TxCB is really an IPCB. One major difference
1375 		 * between the two is that with plain extended TxCBs,
1376 		 * the bottom half of the TxCB contains two entries from
1377 		 * the TBD array, whereas IPCBs contain just one entry:
1378 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1379 		 * checksum offload control bits. So to make things work
1380 		 * right, we have to start filling in the TBD array
1381 		 * starting from a different place depending on whether
1382 		 * the chip is an 82550/82551 or not.
1383 		 */
1384 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1385 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1386 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1387 		} else {
1388 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1389 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1390 		}
1391 	}
1392 	cbp->tbd_number = nseg;
1393 
1394 	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1395 	txp->tx_mbuf = m_head;
1396 	txp->tx_cb->cb_status = 0;
1397 	txp->tx_cb->byte_count = 0;
1398 	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1399 		txp->tx_cb->cb_command =
1400 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1401 		    FXP_CB_COMMAND_S);
1402 	} else {
1403 		txp->tx_cb->cb_command =
1404 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1405 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1406 		/*
1407 		 * Set a 5 second timer just in case we don't hear
1408 		 * from the card again.
1409 		 */
1410 		sc->watchdog_timer = 5;
1411 	}
1412 	txp->tx_cb->tx_threshold = tx_threshold;
1413 
1414 	/*
1415 	 * Advance the end of list forward.
1416 	 */
1417 
1418 #ifdef __alpha__
1419 	/*
1420 	 * On platforms which can't access memory in 16-bit
1421 	 * granularities, we must prevent the card from DMA'ing
1422 	 * up the status while we update the command field.
1423 	 * This could cause us to overwrite the completion status.
1424 	 * XXX This is probably bogus and we're _not_ looking
1425 	 * for atomicity here.
1426 	 */
1427 	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1428 	    htole16(FXP_CB_COMMAND_S));
1429 #else
1430 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1431 #endif /*__alpha__*/
1432 	sc->fxp_desc.tx_last = txp;
1433 
1434 	/*
1435 	 * Advance the beginning of the list forward if there are
1436 	 * no other packets queued (when nothing is queued, tx_first
1437 	 * sits on the last TxCB that was sent out).
1438 	 */
1439 	if (sc->tx_queued == 0)
1440 		sc->fxp_desc.tx_first = txp;
1441 
1442 	sc->tx_queued++;
1443 
1444 	/*
1445 	 * Pass packet to bpf if there is a listener.
1446 	 */
1447 	BPF_MTAP(ifp, m_head);
1448 	return (0);
1449 }
1450 
1451 #ifdef DEVICE_POLLING
1452 static poll_handler_t fxp_poll;
1453 
1454 static void
1455 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1456 {
1457 	struct fxp_softc *sc = ifp->if_softc;
1458 	uint8_t statack;
1459 
1460 	FXP_LOCK(sc);
1461 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1462 		FXP_UNLOCK(sc);
1463 		return;
1464 	}
1465 
1466 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1467 	    FXP_SCB_STATACK_FR;
1468 	if (cmd == POLL_AND_CHECK_STATUS) {
1469 		uint8_t tmp;
1470 
1471 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1472 		if (tmp == 0xff || tmp == 0) {
1473 			FXP_UNLOCK(sc);
1474 			return; /* nothing to do */
1475 		}
1476 		tmp &= ~statack;
1477 		/* ack what we can */
1478 		if (tmp != 0)
1479 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1480 		statack |= tmp;
1481 	}
1482 	fxp_intr_body(sc, ifp, statack, count);
1483 	FXP_UNLOCK(sc);
1484 }
1485 #endif /* DEVICE_POLLING */
1486 
1487 /*
1488  * Process interface interrupts.
1489  */
1490 static void
1491 fxp_intr(void *xsc)
1492 {
1493 	struct fxp_softc *sc = xsc;
1494 	struct ifnet *ifp = sc->ifp;
1495 	uint8_t statack;
1496 
1497 	FXP_LOCK(sc);
1498 	if (sc->suspended) {
1499 		FXP_UNLOCK(sc);
1500 		return;
1501 	}
1502 
1503 #ifdef DEVICE_POLLING
1504 	if (ifp->if_capenable & IFCAP_POLLING) {
1505 		FXP_UNLOCK(sc);
1506 		return;
1507 	}
1508 #endif
1509 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1510 		/*
1511 		 * It should not be possible to have all bits set; the
1512 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1513 		 * all bits are set, this may indicate that the card has
1514 		 * been physically ejected, so ignore it.
1515 		 */
1516 		if (statack == 0xff) {
1517 			FXP_UNLOCK(sc);
1518 			return;
1519 		}
1520 
1521 		/*
1522 		 * First ACK all the interrupts in this pass.
1523 		 */
1524 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1525 		fxp_intr_body(sc, ifp, statack, -1);
1526 	}
1527 	FXP_UNLOCK(sc);
1528 }
1529 
1530 static void
1531 fxp_txeof(struct fxp_softc *sc)
1532 {
1533 	struct fxp_tx *txp;
1534 
1535 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1536 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1537 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1538 	    txp = txp->tx_next) {
1539 		if (txp->tx_mbuf != NULL) {
1540 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1541 			    BUS_DMASYNC_POSTWRITE);
1542 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1543 			m_freem(txp->tx_mbuf);
1544 			txp->tx_mbuf = NULL;
1545 			/* clear this to reset csum offload bits */
1546 			txp->tx_cb->tbd[0].tb_addr = 0;
1547 		}
1548 		sc->tx_queued--;
1549 	}
1550 	sc->fxp_desc.tx_first = txp;
1551 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1552 }
1553 
1554 static void
1555 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1556     int count)
1557 {
1558 	struct mbuf *m;
1559 	struct fxp_rx *rxp;
1560 	struct fxp_rfa *rfa;
1561 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1562 	int fxp_rc = 0;
1563 
1564 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1565 	if (rnr)
1566 		sc->rnr++;
1567 #ifdef DEVICE_POLLING
1568 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1569 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1570 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1571 		rnr = 1;
1572 	}
1573 #endif
1574 
1575 	/*
1576 	 * Free any finished transmit mbuf chains.
1577 	 *
1578 	 * Handle the CNA event likt a CXTNO event. It used to
1579 	 * be that this event (control unit not ready) was not
1580 	 * encountered, but it is now with the SMPng modifications.
1581 	 * The exact sequence of events that occur when the interface
1582 	 * is brought up are different now, and if this event
1583 	 * goes unhandled, the configuration/rxfilter setup sequence
1584 	 * can stall for several seconds. The result is that no
1585 	 * packets go out onto the wire for about 5 to 10 seconds
1586 	 * after the interface is ifconfig'ed for the first time.
1587 	 */
1588 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1589 		fxp_txeof(sc);
1590 
1591 		sc->watchdog_timer = 0;
1592 		if (sc->tx_queued == 0) {
1593 			if (sc->need_mcsetup)
1594 				fxp_mc_setup(sc);
1595 		}
1596 		/*
1597 		 * Try to start more packets transmitting.
1598 		 */
1599 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1600 			fxp_start_body(ifp);
1601 	}
1602 
1603 	/*
1604 	 * Just return if nothing happened on the receive side.
1605 	 */
1606 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1607 		return;
1608 
1609 	/*
1610 	 * Process receiver interrupts. If a no-resource (RNR)
1611 	 * condition exists, get whatever packets we can and
1612 	 * re-start the receiver.
1613 	 *
1614 	 * When using polling, we do not process the list to completion,
1615 	 * so when we get an RNR interrupt we must defer the restart
1616 	 * until we hit the last buffer with the C bit set.
1617 	 * If we run out of cycles and rfa_headm has the C bit set,
1618 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1619 	 * that the info will be used in the subsequent polling cycle.
1620 	 */
1621 	for (;;) {
1622 		rxp = sc->fxp_desc.rx_head;
1623 		m = rxp->rx_mbuf;
1624 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1625 		    RFA_ALIGNMENT_FUDGE);
1626 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1627 		    BUS_DMASYNC_POSTREAD);
1628 
1629 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1630 		if (count >= 0 && count-- == 0) {
1631 			if (rnr) {
1632 				/* Defer RNR processing until the next time. */
1633 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1634 				rnr = 0;
1635 			}
1636 			break;
1637 		}
1638 #endif /* DEVICE_POLLING */
1639 
1640 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1641 			break;
1642 
1643 		/*
1644 		 * Advance head forward.
1645 		 */
1646 		sc->fxp_desc.rx_head = rxp->rx_next;
1647 
1648 		/*
1649 		 * Add a new buffer to the receive chain.
1650 		 * If this fails, the old buffer is recycled
1651 		 * instead.
1652 		 */
1653 		fxp_rc = fxp_add_rfabuf(sc, rxp);
1654 		if (fxp_rc == 0) {
1655 			int total_len;
1656 
1657 			/*
1658 			 * Fetch packet length (the top 2 bits of
1659 			 * actual_size are flags set by the controller
1660 			 * upon completion), and drop the packet in case
1661 			 * of bogus length or CRC errors.
1662 			 */
1663 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1664 			if (total_len < sizeof(struct ether_header) ||
1665 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1666 				sc->rfa_size ||
1667 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1668 				m_freem(m);
1669 				continue;
1670 			}
1671 
1672                         /* Do IP checksum checking. */
1673 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1674 				if (rfa->rfax_csum_sts &
1675 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1676 					m->m_pkthdr.csum_flags |=
1677 					    CSUM_IP_CHECKED;
1678 				if (rfa->rfax_csum_sts &
1679 				    FXP_RFDX_CS_IP_CSUM_VALID)
1680 					m->m_pkthdr.csum_flags |=
1681 					    CSUM_IP_VALID;
1682 				if ((rfa->rfax_csum_sts &
1683 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1684 				    (rfa->rfax_csum_sts &
1685 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1686 					m->m_pkthdr.csum_flags |=
1687 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1688 					m->m_pkthdr.csum_data = 0xffff;
1689 				}
1690 			}
1691 
1692 			m->m_pkthdr.len = m->m_len = total_len;
1693 			m->m_pkthdr.rcvif = ifp;
1694 
1695 			/*
1696 			 * Drop locks before calling if_input() since it
1697 			 * may re-enter fxp_start() in the netisr case.
1698 			 * This would result in a lock reversal.  Better
1699 			 * performance might be obtained by chaining all
1700 			 * packets received, dropping the lock, and then
1701 			 * calling if_input() on each one.
1702 			 */
1703 			FXP_UNLOCK(sc);
1704 			(*ifp->if_input)(ifp, m);
1705 			FXP_LOCK(sc);
1706 		} else if (fxp_rc == ENOBUFS) {
1707 			rnr = 0;
1708 			break;
1709 		}
1710 	}
1711 	if (rnr) {
1712 		fxp_scb_wait(sc);
1713 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1714 		    sc->fxp_desc.rx_head->rx_addr);
1715 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1716 	}
1717 }
1718 
1719 /*
1720  * Update packet in/out/collision statistics. The i82557 doesn't
1721  * allow you to access these counters without doing a fairly
1722  * expensive DMA to get _all_ of the statistics it maintains, so
1723  * we do this operation here only once per second. The statistics
1724  * counters in the kernel are updated from the previous dump-stats
1725  * DMA and then a new dump-stats DMA is started. The on-chip
1726  * counters are zeroed when the DMA completes. If we can't start
1727  * the DMA immediately, we don't wait - we just prepare to read
1728  * them again next time.
1729  */
1730 static void
1731 fxp_tick(void *xsc)
1732 {
1733 	struct fxp_softc *sc = xsc;
1734 	struct ifnet *ifp = sc->ifp;
1735 	struct fxp_stats *sp = sc->fxp_stats;
1736 
1737 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1738 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1739 	ifp->if_opackets += le32toh(sp->tx_good);
1740 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1741 	if (sp->rx_good) {
1742 		ifp->if_ipackets += le32toh(sp->rx_good);
1743 		sc->rx_idle_secs = 0;
1744 	} else {
1745 		/*
1746 		 * Receiver's been idle for another second.
1747 		 */
1748 		sc->rx_idle_secs++;
1749 	}
1750 	ifp->if_ierrors +=
1751 	    le32toh(sp->rx_crc_errors) +
1752 	    le32toh(sp->rx_alignment_errors) +
1753 	    le32toh(sp->rx_rnr_errors) +
1754 	    le32toh(sp->rx_overrun_errors);
1755 	/*
1756 	 * If any transmit underruns occured, bump up the transmit
1757 	 * threshold by another 512 bytes (64 * 8).
1758 	 */
1759 	if (sp->tx_underruns) {
1760 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1761 		if (tx_threshold < 192)
1762 			tx_threshold += 64;
1763 	}
1764 
1765 	/*
1766 	 * Release any xmit buffers that have completed DMA. This isn't
1767 	 * strictly necessary to do here, but it's advantagous for mbufs
1768 	 * with external storage to be released in a timely manner rather
1769 	 * than being defered for a potentially long time. This limits
1770 	 * the delay to a maximum of one second.
1771 	 */
1772 	fxp_txeof(sc);
1773 
1774 	/*
1775 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1776 	 * then assume the receiver has locked up and attempt to clear
1777 	 * the condition by reprogramming the multicast filter. This is
1778 	 * a work-around for a bug in the 82557 where the receiver locks
1779 	 * up if it gets certain types of garbage in the syncronization
1780 	 * bits prior to the packet header. This bug is supposed to only
1781 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1782 	 * mode as well (perhaps due to a 10/100 speed transition).
1783 	 */
1784 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1785 		sc->rx_idle_secs = 0;
1786 		fxp_mc_setup(sc);
1787 	}
1788 	/*
1789 	 * If there is no pending command, start another stats
1790 	 * dump. Otherwise punt for now.
1791 	 */
1792 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1793 		/*
1794 		 * Start another stats dump.
1795 		 */
1796 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1797 		    BUS_DMASYNC_PREREAD);
1798 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1799 	} else {
1800 		/*
1801 		 * A previous command is still waiting to be accepted.
1802 		 * Just zero our copy of the stats and wait for the
1803 		 * next timer event to update them.
1804 		 */
1805 		sp->tx_good = 0;
1806 		sp->tx_underruns = 0;
1807 		sp->tx_total_collisions = 0;
1808 
1809 		sp->rx_good = 0;
1810 		sp->rx_crc_errors = 0;
1811 		sp->rx_alignment_errors = 0;
1812 		sp->rx_rnr_errors = 0;
1813 		sp->rx_overrun_errors = 0;
1814 	}
1815 	if (sc->miibus != NULL)
1816 		mii_tick(device_get_softc(sc->miibus));
1817 
1818 	/*
1819 	 * Check that chip hasn't hung.
1820 	 */
1821 	fxp_watchdog(sc);
1822 
1823 	/*
1824 	 * Schedule another timeout one second from now.
1825 	 */
1826 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1827 }
1828 
1829 /*
1830  * Stop the interface. Cancels the statistics updater and resets
1831  * the interface.
1832  */
1833 static void
1834 fxp_stop(struct fxp_softc *sc)
1835 {
1836 	struct ifnet *ifp = sc->ifp;
1837 	struct fxp_tx *txp;
1838 	int i;
1839 
1840 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1841 	sc->watchdog_timer = 0;
1842 
1843 	/*
1844 	 * Cancel stats updater.
1845 	 */
1846 	callout_stop(&sc->stat_ch);
1847 
1848 	/*
1849 	 * Issue software reset, which also unloads the microcode.
1850 	 */
1851 	sc->flags &= ~FXP_FLAG_UCODE;
1852 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1853 	DELAY(50);
1854 
1855 	/*
1856 	 * Release any xmit buffers.
1857 	 */
1858 	txp = sc->fxp_desc.tx_list;
1859 	if (txp != NULL) {
1860 		for (i = 0; i < FXP_NTXCB; i++) {
1861  			if (txp[i].tx_mbuf != NULL) {
1862 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1863 				    BUS_DMASYNC_POSTWRITE);
1864 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1865 				m_freem(txp[i].tx_mbuf);
1866 				txp[i].tx_mbuf = NULL;
1867 				/* clear this to reset csum offload bits */
1868 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1869 			}
1870 		}
1871 	}
1872 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1873 	sc->tx_queued = 0;
1874 }
1875 
1876 /*
1877  * Watchdog/transmission transmit timeout handler. Called when a
1878  * transmission is started on the interface, but no interrupt is
1879  * received before the timeout. This usually indicates that the
1880  * card has wedged for some reason.
1881  */
1882 static void
1883 fxp_watchdog(struct fxp_softc *sc)
1884 {
1885 
1886 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1887 
1888 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
1889 		return;
1890 
1891 	device_printf(sc->dev, "device timeout\n");
1892 	sc->ifp->if_oerrors++;
1893 
1894 	fxp_init_body(sc);
1895 }
1896 
1897 /*
1898  * Acquire locks and then call the real initialization function.  This
1899  * is necessary because ether_ioctl() calls if_init() and this would
1900  * result in mutex recursion if the mutex was held.
1901  */
1902 static void
1903 fxp_init(void *xsc)
1904 {
1905 	struct fxp_softc *sc = xsc;
1906 
1907 	FXP_LOCK(sc);
1908 	fxp_init_body(sc);
1909 	FXP_UNLOCK(sc);
1910 }
1911 
1912 /*
1913  * Perform device initialization. This routine must be called with the
1914  * softc lock held.
1915  */
1916 static void
1917 fxp_init_body(struct fxp_softc *sc)
1918 {
1919 	struct ifnet *ifp = sc->ifp;
1920 	struct fxp_cb_config *cbp;
1921 	struct fxp_cb_ias *cb_ias;
1922 	struct fxp_cb_tx *tcbp;
1923 	struct fxp_tx *txp;
1924 	struct fxp_cb_mcs *mcsp;
1925 	int i, prm;
1926 
1927 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1928 	/*
1929 	 * Cancel any pending I/O
1930 	 */
1931 	fxp_stop(sc);
1932 
1933 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1934 
1935 	/*
1936 	 * Initialize base of CBL and RFA memory. Loading with zero
1937 	 * sets it up for regular linear addressing.
1938 	 */
1939 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1940 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1941 
1942 	fxp_scb_wait(sc);
1943 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1944 
1945 	/*
1946 	 * Initialize base of dump-stats buffer.
1947 	 */
1948 	fxp_scb_wait(sc);
1949 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1950 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1951 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1952 
1953 	/*
1954 	 * Attempt to load microcode if requested.
1955 	 */
1956 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1957 		fxp_load_ucode(sc);
1958 
1959 	/*
1960 	 * Initialize the multicast address list.
1961 	 */
1962 	if (fxp_mc_addrs(sc)) {
1963 		mcsp = sc->mcsp;
1964 		mcsp->cb_status = 0;
1965 		mcsp->cb_command =
1966 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1967 		mcsp->link_addr = 0xffffffff;
1968 		/*
1969 	 	 * Start the multicast setup command.
1970 		 */
1971 		fxp_scb_wait(sc);
1972 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1973 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1974 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1975 		/* ...and wait for it to complete. */
1976 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1977 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1978 		    BUS_DMASYNC_POSTWRITE);
1979 	}
1980 
1981 	/*
1982 	 * We temporarily use memory that contains the TxCB list to
1983 	 * construct the config CB. The TxCB list memory is rebuilt
1984 	 * later.
1985 	 */
1986 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
1987 
1988 	/*
1989 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1990 	 * zero and must be one bits in this structure and this is the easiest
1991 	 * way to initialize them all to proper values.
1992 	 */
1993 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
1994 
1995 	cbp->cb_status =	0;
1996 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1997 	    FXP_CB_COMMAND_EL);
1998 	cbp->link_addr =	0xffffffff;	/* (no) next command */
1999 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2000 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2001 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2002 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2003 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2004 	cbp->type_enable =	0;	/* actually reserved */
2005 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2006 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2007 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2008 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2009 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2010 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2011 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2012 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2013 	cbp->ci_int =		1;	/* interrupt on CU idle */
2014 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2015 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2016 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2017 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2018 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2019 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2020 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2021 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2022 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2023 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2024 	cbp->csma_dis =		0;	/* (don't) disable link */
2025 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2026 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2027 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2028 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2029 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2030 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2031 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2032 	cbp->loopback =		0;	/* (don't) loopback */
2033 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2034 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2035 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2036 	cbp->promiscuous =	prm;	/* promiscuous mode */
2037 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2038 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2039 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2040 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2041 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2042 
2043 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2044 	cbp->padding =		1;	/* (do) pad short tx packets */
2045 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2046 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2047 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2048 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2049 					/* must set wake_en in PMCSR also */
2050 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2051 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2052 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2053 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2054 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2055 
2056 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2057 		/*
2058 		 * The 82557 has no hardware flow control, the values
2059 		 * below are the defaults for the chip.
2060 		 */
2061 		cbp->fc_delay_lsb =	0;
2062 		cbp->fc_delay_msb =	0x40;
2063 		cbp->pri_fc_thresh =	3;
2064 		cbp->tx_fc_dis =	0;
2065 		cbp->rx_fc_restop =	0;
2066 		cbp->rx_fc_restart =	0;
2067 		cbp->fc_filter =	0;
2068 		cbp->pri_fc_loc =	1;
2069 	} else {
2070 		cbp->fc_delay_lsb =	0x1f;
2071 		cbp->fc_delay_msb =	0x01;
2072 		cbp->pri_fc_thresh =	3;
2073 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2074 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2075 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2076 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2077 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2078 	}
2079 
2080 	/*
2081 	 * Start the config command/DMA.
2082 	 */
2083 	fxp_scb_wait(sc);
2084 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2085 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2086 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2087 	/* ...and wait for it to complete. */
2088 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2089 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2090 
2091 	/*
2092 	 * Now initialize the station address. Temporarily use the TxCB
2093 	 * memory area like we did above for the config CB.
2094 	 */
2095 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2096 	cb_ias->cb_status = 0;
2097 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2098 	cb_ias->link_addr = 0xffffffff;
2099 	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2100 
2101 	/*
2102 	 * Start the IAS (Individual Address Setup) command/DMA.
2103 	 */
2104 	fxp_scb_wait(sc);
2105 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2106 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2107 	/* ...and wait for it to complete. */
2108 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2109 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2110 
2111 	/*
2112 	 * Initialize transmit control block (TxCB) list.
2113 	 */
2114 	txp = sc->fxp_desc.tx_list;
2115 	tcbp = sc->fxp_desc.cbl_list;
2116 	bzero(tcbp, FXP_TXCB_SZ);
2117 	for (i = 0; i < FXP_NTXCB; i++) {
2118 		txp[i].tx_mbuf = NULL;
2119 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2120 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2121 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2122 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2123 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2124 			tcbp[i].tbd_array_addr =
2125 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2126 		else
2127 			tcbp[i].tbd_array_addr =
2128 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2129 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2130 	}
2131 	/*
2132 	 * Set the suspend flag on the first TxCB and start the control
2133 	 * unit. It will execute the NOP and then suspend.
2134 	 */
2135 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2136 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2137 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2138 	sc->tx_queued = 1;
2139 
2140 	fxp_scb_wait(sc);
2141 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2142 
2143 	/*
2144 	 * Initialize receiver buffer area - RFA.
2145 	 */
2146 	fxp_scb_wait(sc);
2147 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2148 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2149 
2150 	/*
2151 	 * Set current media.
2152 	 */
2153 	if (sc->miibus != NULL)
2154 		mii_mediachg(device_get_softc(sc->miibus));
2155 
2156 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2157 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2158 
2159 	/*
2160 	 * Enable interrupts.
2161 	 */
2162 #ifdef DEVICE_POLLING
2163 	/*
2164 	 * ... but only do that if we are not polling. And because (presumably)
2165 	 * the default is interrupts on, we need to disable them explicitly!
2166 	 */
2167 	if (ifp->if_capenable & IFCAP_POLLING )
2168 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2169 	else
2170 #endif /* DEVICE_POLLING */
2171 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2172 
2173 	/*
2174 	 * Start stats updater.
2175 	 */
2176 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2177 }
2178 
2179 static int
2180 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2181 {
2182 
2183 	return (0);
2184 }
2185 
2186 static void
2187 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2188 {
2189 
2190 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2191 }
2192 
2193 /*
2194  * Change media according to request.
2195  */
2196 static int
2197 fxp_ifmedia_upd(struct ifnet *ifp)
2198 {
2199 	struct fxp_softc *sc = ifp->if_softc;
2200 	struct mii_data *mii;
2201 
2202 	mii = device_get_softc(sc->miibus);
2203 	FXP_LOCK(sc);
2204 	if (mii->mii_instance) {
2205 		struct mii_softc	*miisc;
2206 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2207 			mii_phy_reset(miisc);
2208 	}
2209 	mii_mediachg(mii);
2210 	FXP_UNLOCK(sc);
2211 	return (0);
2212 }
2213 
2214 /*
2215  * Notify the world which media we're using.
2216  */
2217 static void
2218 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2219 {
2220 	struct fxp_softc *sc = ifp->if_softc;
2221 	struct mii_data *mii;
2222 
2223 	mii = device_get_softc(sc->miibus);
2224 	FXP_LOCK(sc);
2225 	mii_pollstat(mii);
2226 	ifmr->ifm_active = mii->mii_media_active;
2227 	ifmr->ifm_status = mii->mii_media_status;
2228 
2229 	if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
2230 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2231 		sc->cu_resume_bug = 1;
2232 	else
2233 		sc->cu_resume_bug = 0;
2234 	FXP_UNLOCK(sc);
2235 }
2236 
2237 /*
2238  * Add a buffer to the end of the RFA buffer list.
2239  * Return 0 if successful, 1 for failure. A failure results in
2240  * adding the 'oldm' (if non-NULL) on to the end of the list -
2241  * tossing out its old contents and recycling it.
2242  * The RFA struct is stuck at the beginning of mbuf cluster and the
2243  * data pointer is fixed up to point just past it.
2244  */
2245 static int
2246 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2247 {
2248 	struct mbuf *m;
2249 	struct fxp_rfa *rfa, *p_rfa;
2250 	struct fxp_rx *p_rx;
2251 	bus_dmamap_t tmp_map;
2252 	int error;
2253 
2254 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2255 	if (m == NULL)
2256 		return (ENOBUFS);
2257 
2258 	/*
2259 	 * Move the data pointer up so that the incoming data packet
2260 	 * will be 32-bit aligned.
2261 	 */
2262 	m->m_data += RFA_ALIGNMENT_FUDGE;
2263 
2264 	/*
2265 	 * Get a pointer to the base of the mbuf cluster and move
2266 	 * data start past it.
2267 	 */
2268 	rfa = mtod(m, struct fxp_rfa *);
2269 	m->m_data += sc->rfa_size;
2270 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2271 
2272 	rfa->rfa_status = 0;
2273 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2274 	rfa->actual_size = 0;
2275 
2276 	/*
2277 	 * Initialize the rest of the RFA.  Note that since the RFA
2278 	 * is misaligned, we cannot store values directly.  We're thus
2279 	 * using the le32enc() function which handles endianness and
2280 	 * is also alignment-safe.
2281 	 */
2282 	le32enc(&rfa->link_addr, 0xffffffff);
2283 	le32enc(&rfa->rbd_addr, 0xffffffff);
2284 
2285 	/* Map the RFA into DMA memory. */
2286 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2287 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2288 	    &rxp->rx_addr, 0);
2289 	if (error) {
2290 		m_freem(m);
2291 		return (error);
2292 	}
2293 
2294 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2295 	tmp_map = sc->spare_map;
2296 	sc->spare_map = rxp->rx_map;
2297 	rxp->rx_map = tmp_map;
2298 	rxp->rx_mbuf = m;
2299 
2300 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2301 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2302 
2303 	/*
2304 	 * If there are other buffers already on the list, attach this
2305 	 * one to the end by fixing up the tail to point to this one.
2306 	 */
2307 	if (sc->fxp_desc.rx_head != NULL) {
2308 		p_rx = sc->fxp_desc.rx_tail;
2309 		p_rfa = (struct fxp_rfa *)
2310 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2311 		p_rx->rx_next = rxp;
2312 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2313 		p_rfa->rfa_control = 0;
2314 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2315 		    BUS_DMASYNC_PREWRITE);
2316 	} else {
2317 		rxp->rx_next = NULL;
2318 		sc->fxp_desc.rx_head = rxp;
2319 	}
2320 	sc->fxp_desc.rx_tail = rxp;
2321 	return (0);
2322 }
2323 
2324 static volatile int
2325 fxp_miibus_readreg(device_t dev, int phy, int reg)
2326 {
2327 	struct fxp_softc *sc = device_get_softc(dev);
2328 	int count = 10000;
2329 	int value;
2330 
2331 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2332 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2333 
2334 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2335 	    && count--)
2336 		DELAY(10);
2337 
2338 	if (count <= 0)
2339 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2340 
2341 	return (value & 0xffff);
2342 }
2343 
2344 static void
2345 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2346 {
2347 	struct fxp_softc *sc = device_get_softc(dev);
2348 	int count = 10000;
2349 
2350 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2351 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2352 	    (value & 0xffff));
2353 
2354 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2355 	    count--)
2356 		DELAY(10);
2357 
2358 	if (count <= 0)
2359 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2360 }
2361 
2362 static int
2363 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2364 {
2365 	struct fxp_softc *sc = ifp->if_softc;
2366 	struct ifreq *ifr = (struct ifreq *)data;
2367 	struct mii_data *mii;
2368 	int flag, mask, error = 0;
2369 
2370 	switch (command) {
2371 	case SIOCSIFFLAGS:
2372 		FXP_LOCK(sc);
2373 		if (ifp->if_flags & IFF_ALLMULTI)
2374 			sc->flags |= FXP_FLAG_ALL_MCAST;
2375 		else
2376 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2377 
2378 		/*
2379 		 * If interface is marked up and not running, then start it.
2380 		 * If it is marked down and running, stop it.
2381 		 * XXX If it's up then re-initialize it. This is so flags
2382 		 * such as IFF_PROMISC are handled.
2383 		 */
2384 		if (ifp->if_flags & IFF_UP) {
2385 			fxp_init_body(sc);
2386 		} else {
2387 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2388 				fxp_stop(sc);
2389 		}
2390 		FXP_UNLOCK(sc);
2391 		break;
2392 
2393 	case SIOCADDMULTI:
2394 	case SIOCDELMULTI:
2395 		FXP_LOCK(sc);
2396 		if (ifp->if_flags & IFF_ALLMULTI)
2397 			sc->flags |= FXP_FLAG_ALL_MCAST;
2398 		else
2399 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2400 		/*
2401 		 * Multicast list has changed; set the hardware filter
2402 		 * accordingly.
2403 		 */
2404 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2405 			fxp_mc_setup(sc);
2406 		/*
2407 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2408 		 * again rather than else {}.
2409 		 */
2410 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2411 			fxp_init_body(sc);
2412 		FXP_UNLOCK(sc);
2413 		error = 0;
2414 		break;
2415 
2416 	case SIOCSIFMEDIA:
2417 	case SIOCGIFMEDIA:
2418 		if (sc->miibus != NULL) {
2419 			mii = device_get_softc(sc->miibus);
2420                         error = ifmedia_ioctl(ifp, ifr,
2421                             &mii->mii_media, command);
2422 		} else {
2423                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2424 		}
2425 		break;
2426 
2427 	case SIOCSIFCAP:
2428 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2429 #ifdef DEVICE_POLLING
2430 		if (mask & IFCAP_POLLING) {
2431 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2432 				error = ether_poll_register(fxp_poll, ifp);
2433 				if (error)
2434 					return(error);
2435 				FXP_LOCK(sc);
2436 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2437 				    FXP_SCB_INTR_DISABLE);
2438 				ifp->if_capenable |= IFCAP_POLLING;
2439 				FXP_UNLOCK(sc);
2440 			} else {
2441 				error = ether_poll_deregister(ifp);
2442 				/* Enable interrupts in any case */
2443 				FXP_LOCK(sc);
2444 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2445 				ifp->if_capenable &= ~IFCAP_POLLING;
2446 				FXP_UNLOCK(sc);
2447 			}
2448 		}
2449 #endif
2450 		if (mask & IFCAP_VLAN_MTU) {
2451 			FXP_LOCK(sc);
2452 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2453 			if (sc->revision != FXP_REV_82557)
2454 				flag = FXP_FLAG_LONG_PKT_EN;
2455 			else /* a hack to get long frames on the old chip */
2456 				flag = FXP_FLAG_SAVE_BAD;
2457 			sc->flags ^= flag;
2458 			if (ifp->if_flags & IFF_UP)
2459 				fxp_init_body(sc);
2460 			FXP_UNLOCK(sc);
2461 		}
2462 		break;
2463 
2464 	default:
2465 		error = ether_ioctl(ifp, command, data);
2466 	}
2467 	return (error);
2468 }
2469 
2470 /*
2471  * Fill in the multicast address list and return number of entries.
2472  */
2473 static int
2474 fxp_mc_addrs(struct fxp_softc *sc)
2475 {
2476 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2477 	struct ifnet *ifp = sc->ifp;
2478 	struct ifmultiaddr *ifma;
2479 	int nmcasts;
2480 
2481 	nmcasts = 0;
2482 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2483 		IF_ADDR_LOCK(ifp);
2484 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2485 			if (ifma->ifma_addr->sa_family != AF_LINK)
2486 				continue;
2487 			if (nmcasts >= MAXMCADDR) {
2488 				sc->flags |= FXP_FLAG_ALL_MCAST;
2489 				nmcasts = 0;
2490 				break;
2491 			}
2492 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2493 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2494 			nmcasts++;
2495 		}
2496 		IF_ADDR_UNLOCK(ifp);
2497 	}
2498 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2499 	return (nmcasts);
2500 }
2501 
2502 /*
2503  * Program the multicast filter.
2504  *
2505  * We have an artificial restriction that the multicast setup command
2506  * must be the first command in the chain, so we take steps to ensure
2507  * this. By requiring this, it allows us to keep up the performance of
2508  * the pre-initialized command ring (esp. link pointers) by not actually
2509  * inserting the mcsetup command in the ring - i.e. its link pointer
2510  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2511  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2512  * lead into the regular TxCB ring when it completes.
2513  *
2514  * This function must be called at splimp.
2515  */
2516 static void
2517 fxp_mc_setup(struct fxp_softc *sc)
2518 {
2519 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2520 	struct fxp_tx *txp;
2521 	int count;
2522 
2523 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2524 	/*
2525 	 * If there are queued commands, we must wait until they are all
2526 	 * completed. If we are already waiting, then add a NOP command
2527 	 * with interrupt option so that we're notified when all commands
2528 	 * have been completed - fxp_start() ensures that no additional
2529 	 * TX commands will be added when need_mcsetup is true.
2530 	 */
2531 	if (sc->tx_queued) {
2532 		/*
2533 		 * need_mcsetup will be true if we are already waiting for the
2534 		 * NOP command to be completed (see below). In this case, bail.
2535 		 */
2536 		if (sc->need_mcsetup)
2537 			return;
2538 		sc->need_mcsetup = 1;
2539 
2540 		/*
2541 		 * Add a NOP command with interrupt so that we are notified
2542 		 * when all TX commands have been processed.
2543 		 */
2544 		txp = sc->fxp_desc.tx_last->tx_next;
2545 		txp->tx_mbuf = NULL;
2546 		txp->tx_cb->cb_status = 0;
2547 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2548 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2549 		/*
2550 		 * Advance the end of list forward.
2551 		 */
2552 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2553 		    htole16(~FXP_CB_COMMAND_S);
2554 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2555 		sc->fxp_desc.tx_last = txp;
2556 		sc->tx_queued++;
2557 		/*
2558 		 * Issue a resume in case the CU has just suspended.
2559 		 */
2560 		fxp_scb_wait(sc);
2561 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2562 		/*
2563 		 * Set a 5 second timer just in case we don't hear from the
2564 		 * card again.
2565 		 */
2566 		sc->watchdog_timer = 5;
2567 
2568 		return;
2569 	}
2570 	sc->need_mcsetup = 0;
2571 
2572 	/*
2573 	 * Initialize multicast setup descriptor.
2574 	 */
2575 	mcsp->cb_status = 0;
2576 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2577 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2578 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2579 	txp = &sc->fxp_desc.mcs_tx;
2580 	txp->tx_mbuf = NULL;
2581 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2582 	txp->tx_next = sc->fxp_desc.tx_list;
2583 	(void) fxp_mc_addrs(sc);
2584 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2585 	sc->tx_queued = 1;
2586 
2587 	/*
2588 	 * Wait until command unit is not active. This should never
2589 	 * be the case when nothing is queued, but make sure anyway.
2590 	 */
2591 	count = 100;
2592 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2593 	    FXP_SCB_CUS_ACTIVE && --count)
2594 		DELAY(10);
2595 	if (count == 0) {
2596 		device_printf(sc->dev, "command queue timeout\n");
2597 		return;
2598 	}
2599 
2600 	/*
2601 	 * Start the multicast setup command.
2602 	 */
2603 	fxp_scb_wait(sc);
2604 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2605 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2606 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2607 
2608 	sc->watchdog_timer = 2;
2609 	return;
2610 }
2611 
2612 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2613 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2614 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2615 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2616 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2617 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2618 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2619 
2620 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2621 
2622 struct ucode {
2623 	uint32_t	revision;
2624 	uint32_t	*ucode;
2625 	int		length;
2626 	u_short		int_delay_offset;
2627 	u_short		bundle_max_offset;
2628 } ucode_table[] = {
2629 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2630 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2631 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2632 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2633 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2634 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2635 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2636 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2637 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2638 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2639 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2640 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2641 	{ 0, NULL, 0, 0, 0 }
2642 };
2643 
2644 static void
2645 fxp_load_ucode(struct fxp_softc *sc)
2646 {
2647 	struct ucode *uc;
2648 	struct fxp_cb_ucode *cbp;
2649 	int i;
2650 
2651 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2652 		if (sc->revision == uc->revision)
2653 			break;
2654 	if (uc->ucode == NULL)
2655 		return;
2656 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2657 	cbp->cb_status = 0;
2658 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2659 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2660 	for (i = 0; i < uc->length; i++)
2661 		cbp->ucode[i] = htole32(uc->ucode[i]);
2662 	if (uc->int_delay_offset)
2663 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2664 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2665 	if (uc->bundle_max_offset)
2666 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2667 		    htole16(sc->tunable_bundle_max);
2668 	/*
2669 	 * Download the ucode to the chip.
2670 	 */
2671 	fxp_scb_wait(sc);
2672 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2673 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2674 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2675 	/* ...and wait for it to complete. */
2676 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2677 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2678 	device_printf(sc->dev,
2679 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2680 	    sc->tunable_int_delay,
2681 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2682 	sc->flags |= FXP_FLAG_UCODE;
2683 }
2684 
2685 static int
2686 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2687 {
2688 	int error, value;
2689 
2690 	value = *(int *)arg1;
2691 	error = sysctl_handle_int(oidp, &value, 0, req);
2692 	if (error || !req->newptr)
2693 		return (error);
2694 	if (value < low || value > high)
2695 		return (EINVAL);
2696 	*(int *)arg1 = value;
2697 	return (0);
2698 }
2699 
2700 /*
2701  * Interrupt delay is expressed in microseconds, a multiplier is used
2702  * to convert this to the appropriate clock ticks before using.
2703  */
2704 static int
2705 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2706 {
2707 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2708 }
2709 
2710 static int
2711 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2712 {
2713 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2714 }
2715