xref: /freebsd/sys/dev/fxp/if_fxp.c (revision ee41f1b1cf5e3d4f586cb85b46123b416275862c)
1 /*
2  * Copyright (c) 1995, David Greenman
3  * All rights reserved.
4  *
5  * Modifications to support media selection:
6  * Copyright (c) 1997 Jason R. Thorpe.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * $FreeBSD$
31  */
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 
49 #ifdef NS
50 #include <netns/ns.h>
51 #include <netns/ns_if.h>
52 #endif
53 
54 #include <net/bpf.h>
55 #include <sys/sockio.h>
56 #include <sys/bus.h>
57 #include <machine/bus.h>
58 #include <sys/rman.h>
59 #include <machine/resource.h>
60 
61 #include <net/ethernet.h>
62 #include <net/if_arp.h>
63 
64 #include <vm/vm.h>		/* for vtophys */
65 #include <vm/pmap.h>		/* for vtophys */
66 
67 #include <pci/pcivar.h>
68 #include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
69 #include <pci/if_fxpreg.h>
70 #include <pci/if_fxpvar.h>
71 
72 #ifdef __alpha__		/* XXX */
73 /* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */
74 #undef vtophys
75 #define	vtophys(va)	alpha_XXX_dmamap((vm_offset_t)(va))
76 #endif /* __alpha__ */
77 
78 /*
79  * NOTE!  On the Alpha, we have an alignment constraint.  The
80  * card DMAs the packet immediately following the RFA.  However,
81  * the first thing in the packet is a 14-byte Ethernet header.
82  * This means that the packet is misaligned.  To compensate,
83  * we actually offset the RFA 2 bytes into the cluster.  This
84  * alignes the packet after the Ethernet header at a 32-bit
85  * boundary.  HOWEVER!  This means that the RFA is misaligned!
86  */
87 #define	RFA_ALIGNMENT_FUDGE	2
88 
89 /*
90  * Inline function to copy a 16-bit aligned 32-bit quantity.
91  */
92 static __inline void fxp_lwcopy __P((volatile u_int32_t *,
93 	volatile u_int32_t *));
94 static __inline void
95 fxp_lwcopy(src, dst)
96 	volatile u_int32_t *src, *dst;
97 {
98 #ifdef __i386__
99 	*dst = *src;
100 #else
101 	volatile u_int16_t *a = (volatile u_int16_t *)src;
102 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
103 
104 	b[0] = a[0];
105 	b[1] = a[1];
106 #endif
107 }
108 
109 /*
110  * Template for default configuration parameters.
111  * See struct fxp_cb_config for the bit definitions.
112  */
113 static u_char fxp_cb_config_template[] = {
114 	0x0, 0x0,		/* cb_status */
115 	0x80, 0x2,		/* cb_command */
116 	0xff, 0xff, 0xff, 0xff,	/* link_addr */
117 	0x16,	/*  0 */
118 	0x8,	/*  1 */
119 	0x0,	/*  2 */
120 	0x0,	/*  3 */
121 	0x0,	/*  4 */
122 	0x80,	/*  5 */
123 	0xb2,	/*  6 */
124 	0x3,	/*  7 */
125 	0x1,	/*  8 */
126 	0x0,	/*  9 */
127 	0x26,	/* 10 */
128 	0x0,	/* 11 */
129 	0x60,	/* 12 */
130 	0x0,	/* 13 */
131 	0xf2,	/* 14 */
132 	0x48,	/* 15 */
133 	0x0,	/* 16 */
134 	0x40,	/* 17 */
135 	0xf3,	/* 18 */
136 	0x0,	/* 19 */
137 	0x3f,	/* 20 */
138 	0x5	/* 21 */
139 };
140 
141 /* Supported media types. */
142 struct fxp_supported_media {
143 	const int	fsm_phy;	/* PHY type */
144 	const int	*fsm_media;	/* the media array */
145 	const int	fsm_nmedia;	/* the number of supported media */
146 	const int	fsm_defmedia;	/* default media for this PHY */
147 };
148 
149 static const int fxp_media_standard[] = {
150 	IFM_ETHER|IFM_10_T,
151 	IFM_ETHER|IFM_10_T|IFM_FDX,
152 	IFM_ETHER|IFM_100_TX,
153 	IFM_ETHER|IFM_100_TX|IFM_FDX,
154 	IFM_ETHER|IFM_AUTO,
155 };
156 #define	FXP_MEDIA_STANDARD_DEFMEDIA	(IFM_ETHER|IFM_AUTO)
157 
158 static const int fxp_media_default[] = {
159 	IFM_ETHER|IFM_MANUAL,		/* XXX IFM_AUTO ? */
160 };
161 #define	FXP_MEDIA_DEFAULT_DEFMEDIA	(IFM_ETHER|IFM_MANUAL)
162 
163 static const struct fxp_supported_media fxp_media[] = {
164 	{ FXP_PHY_DP83840, fxp_media_standard,
165 	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
166 	  FXP_MEDIA_STANDARD_DEFMEDIA },
167 	{ FXP_PHY_DP83840A, fxp_media_standard,
168 	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
169 	  FXP_MEDIA_STANDARD_DEFMEDIA },
170 	{ FXP_PHY_82553A, fxp_media_standard,
171 	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
172 	  FXP_MEDIA_STANDARD_DEFMEDIA },
173 	{ FXP_PHY_82553C, fxp_media_standard,
174 	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
175 	  FXP_MEDIA_STANDARD_DEFMEDIA },
176 	{ FXP_PHY_82555, fxp_media_standard,
177 	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
178 	  FXP_MEDIA_STANDARD_DEFMEDIA },
179 	{ FXP_PHY_82555B, fxp_media_standard,
180 	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
181 	  FXP_MEDIA_STANDARD_DEFMEDIA },
182 	{ FXP_PHY_80C24, fxp_media_default,
183 	  sizeof(fxp_media_default) / sizeof(fxp_media_default[0]),
184 	  FXP_MEDIA_DEFAULT_DEFMEDIA },
185 };
186 #define	NFXPMEDIA (sizeof(fxp_media) / sizeof(fxp_media[0]))
187 
188 static int fxp_mediachange	__P((struct ifnet *));
189 static void fxp_mediastatus	__P((struct ifnet *, struct ifmediareq *));
190 static void fxp_set_media	__P((struct fxp_softc *, int));
191 static __inline void fxp_scb_wait __P((struct fxp_softc *));
192 static __inline void fxp_dma_wait __P((volatile u_int16_t *, struct fxp_softc *sc));
193 static void fxp_intr		__P((void *));
194 static void fxp_start		__P((struct ifnet *));
195 static int fxp_ioctl		__P((struct ifnet *,
196 				     u_long, caddr_t));
197 static void fxp_init		__P((void *));
198 static void fxp_stop		__P((struct fxp_softc *));
199 static void fxp_watchdog	__P((struct ifnet *));
200 static int fxp_add_rfabuf	__P((struct fxp_softc *, struct mbuf *));
201 static int fxp_mdi_read		__P((struct fxp_softc *, int, int));
202 static void fxp_mdi_write	__P((struct fxp_softc *, int, int, int));
203 static void fxp_autosize_eeprom __P((struct fxp_softc *));
204 static void fxp_read_eeprom	__P((struct fxp_softc *, u_int16_t *,
205 				     int, int));
206 static int fxp_attach_common	__P((struct fxp_softc *, u_int8_t *));
207 static void fxp_stats_update	__P((void *));
208 static void fxp_mc_setup	__P((struct fxp_softc *));
209 
210 /*
211  * Set initial transmit threshold at 64 (512 bytes). This is
212  * increased by 64 (512 bytes) at a time, to maximum of 192
213  * (1536 bytes), if an underrun occurs.
214  */
215 static int tx_threshold = 64;
216 
217 /*
218  * Number of transmit control blocks. This determines the number
219  * of transmit buffers that can be chained in the CB list.
220  * This must be a power of two.
221  */
222 #define FXP_NTXCB	128
223 
224 /*
225  * Number of completed TX commands at which point an interrupt
226  * will be generated to garbage collect the attached buffers.
227  * Must be at least one less than FXP_NTXCB, and should be
228  * enough less so that the transmitter doesn't becomes idle
229  * during the buffer rundown (which would reduce performance).
230  */
231 #define FXP_CXINT_THRESH 120
232 
233 /*
234  * TxCB list index mask. This is used to do list wrap-around.
235  */
236 #define FXP_TXCB_MASK	(FXP_NTXCB - 1)
237 
238 /*
239  * Number of receive frame area buffers. These are large so chose
240  * wisely.
241  */
242 #define FXP_NRFABUFS	64
243 
244 /*
245  * Maximum number of seconds that the receiver can be idle before we
246  * assume it's dead and attempt to reset it by reprogramming the
247  * multicast filter. This is part of a work-around for a bug in the
248  * NIC. See fxp_stats_update().
249  */
250 #define FXP_MAX_RX_IDLE	15
251 
252 /*
253  * Wait for the previous command to be accepted (but not necessarily
254  * completed).
255  */
256 static __inline void
257 fxp_scb_wait(sc)
258 	struct fxp_softc *sc;
259 {
260 	int i = 10000;
261 
262 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
263 		DELAY(2);
264 	if (i == 0)
265 		printf("fxp%d: SCB timeout\n", FXP_UNIT(sc));
266 }
267 
268 static __inline void
269 fxp_dma_wait(status, sc)
270 	volatile u_int16_t *status;
271 	struct fxp_softc *sc;
272 {
273 	int i = 10000;
274 
275 	while (!(*status & FXP_CB_STATUS_C) && --i)
276 		DELAY(2);
277 	if (i == 0)
278 		printf("fxp%d: DMA timeout\n", FXP_UNIT(sc));
279 }
280 
281 /*
282  * Return identification string if this is device is ours.
283  */
284 static int
285 fxp_probe(device_t dev)
286 {
287 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
288 		switch (pci_get_device(dev)) {
289 
290 		case FXP_DEVICEID_i82557:
291 			device_set_desc(dev, "Intel Pro 10/100B/100+ Ethernet");
292 			return 0;
293 		case FXP_DEVICEID_i82559:
294 			device_set_desc(dev, "Intel InBusiness 10/100 Ethernet");
295 			return 0;
296 		case FXP_DEVICEID_i82559ER:
297 			device_set_desc(dev, "Intel Embedded 10/100 Ethernet");
298 			return 0;
299 		case FXP_DEVICEID_i82562:
300 			device_set_desc(dev, "Intel PLC 10/100 Ethernet");
301 			return 0;
302 		default:
303 			break;
304 		}
305 	}
306 
307 	return ENXIO;
308 }
309 
310 static int
311 fxp_attach(device_t dev)
312 {
313 	int error = 0;
314 	struct fxp_softc *sc = device_get_softc(dev);
315 	struct ifnet *ifp;
316 	u_int32_t val;
317 	int rid, m1, m2, ebitmap;
318 
319 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
320 	callout_handle_init(&sc->stat_ch);
321 
322 	FXP_LOCK(sc);
323 
324 	/*
325 	 * Enable bus mastering. Enable memory space too, in case
326 	 * BIOS/Prom forgot about it.
327 	 */
328 	val = pci_read_config(dev, PCIR_COMMAND, 2);
329 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
330 	pci_write_config(dev, PCIR_COMMAND, val, 2);
331 	val = pci_read_config(dev, PCIR_COMMAND, 2);
332 
333 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
334 		u_int32_t		iobase, membase, irq;
335 
336 		/* Save important PCI config data. */
337 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
338 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
339 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
340 
341 		/* Reset the power state. */
342 		device_printf(dev, "chip is in D%d power mode "
343 		    "-- setting to D0\n", pci_get_powerstate(dev));
344 
345 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
346 
347 		/* Restore PCI config data. */
348 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
349 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
350 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
351 	}
352 
353 	/*
354 	 * Figure out which we should try first - memory mapping or i/o mapping?
355 	 * We default to memory mapping. Then we accept an override from the
356 	 * command line. Then we check to see which one is enabled.
357 	 */
358 	m1 = PCIM_CMD_MEMEN;
359 	m2 = PCIM_CMD_PORTEN;
360 	ebitmap = 0;
361 	if (getenv_int("fxp_iomap", &ebitmap)) {
362 		if (ebitmap & (1 << device_get_unit(dev))) {
363 			m1 = PCIM_CMD_PORTEN;
364 			m2 = PCIM_CMD_MEMEN;
365 		}
366 	}
367 
368 	if (val & m1) {
369 		sc->rtp =
370 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
371 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
372 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
373 	                                     0, ~0, 1, RF_ACTIVE);
374 	}
375 	if (sc->mem == NULL && (val & m2)) {
376 		sc->rtp =
377 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
378 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
379 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
380                                             0, ~0, 1, RF_ACTIVE);
381 	}
382 
383 	if (!sc->mem) {
384 		device_printf(dev, "could not map device registers\n");
385 		error = ENXIO;
386 		goto fail;
387         }
388 	if (bootverbose) {
389 		device_printf(dev, "using %s space register mapping\n",
390 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
391 	}
392 
393 	sc->sc_st = rman_get_bustag(sc->mem);
394 	sc->sc_sh = rman_get_bushandle(sc->mem);
395 
396 	/*
397 	 * Allocate our interrupt.
398 	 */
399 	rid = 0;
400 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
401 				 RF_SHAREABLE | RF_ACTIVE);
402 	if (sc->irq == NULL) {
403 		device_printf(dev, "could not map interrupt\n");
404 		error = ENXIO;
405 		goto fail;
406 	}
407 
408 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
409 			       fxp_intr, sc, &sc->ih);
410 	if (error) {
411 		device_printf(dev, "could not setup irq\n");
412 		goto fail;
413 	}
414 
415 	/* Do generic parts of attach. */
416 	if (fxp_attach_common(sc, sc->arpcom.ac_enaddr)) {
417 		/* Failed! */
418 		bus_teardown_intr(dev, sc->irq, sc->ih);
419 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
420 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
421 		error = ENXIO;
422 		goto fail;
423 	}
424 
425 	device_printf(dev, "Ethernet address %6D%s\n",
426 	    sc->arpcom.ac_enaddr, ":", sc->phy_10Mbps_only ? ", 10Mbps" : "");
427 
428 	ifp = &sc->arpcom.ac_if;
429 	ifp->if_unit = device_get_unit(dev);
430 	ifp->if_name = "fxp";
431 	ifp->if_output = ether_output;
432 	ifp->if_baudrate = 100000000;
433 	ifp->if_init = fxp_init;
434 	ifp->if_softc = sc;
435 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
436 	ifp->if_ioctl = fxp_ioctl;
437 	ifp->if_start = fxp_start;
438 	ifp->if_watchdog = fxp_watchdog;
439 
440 	/*
441 	 * Attach the interface.
442 	 */
443 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
444 	/*
445 	 * Let the system queue as many packets as we have available
446 	 * TX descriptors.
447 	 */
448 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
449 
450 	FXP_UNLOCK(sc);
451 	return 0;
452 
453  fail:
454 	FXP_UNLOCK(sc);
455 	mtx_destroy(&sc->sc_mtx);
456 	return error;
457 }
458 
459 /*
460  * Detach interface.
461  */
462 static int
463 fxp_detach(device_t dev)
464 {
465 	struct fxp_softc *sc = device_get_softc(dev);
466 
467 	FXP_LOCK(sc);
468 
469 	/*
470 	 * Close down routes etc.
471 	 */
472 	ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
473 
474 	/*
475 	 * Stop DMA and drop transmit queue.
476 	 */
477 	fxp_stop(sc);
478 
479 	/*
480 	 * Deallocate resources.
481 	 */
482 	bus_teardown_intr(dev, sc->irq, sc->ih);
483 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
484 	bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
485 
486 	/*
487 	 * Free all the receive buffers.
488 	 */
489 	if (sc->rfa_headm != NULL)
490 		m_freem(sc->rfa_headm);
491 
492 	/*
493 	 * Free all media structures.
494 	 */
495 	ifmedia_removeall(&sc->sc_media);
496 
497 	/*
498 	 * Free anciliary structures.
499 	 */
500 	free(sc->cbl_base, M_DEVBUF);
501 	free(sc->fxp_stats, M_DEVBUF);
502 	free(sc->mcsp, M_DEVBUF);
503 
504 	FXP_UNLOCK(sc);
505 	mtx_destroy(&sc->sc_mtx);
506 
507 	return 0;
508 }
509 
510 /*
511  * Device shutdown routine. Called at system shutdown after sync. The
512  * main purpose of this routine is to shut off receiver DMA so that
513  * kernel memory doesn't get clobbered during warmboot.
514  */
515 static int
516 fxp_shutdown(device_t dev)
517 {
518 	/*
519 	 * Make sure that DMA is disabled prior to reboot. Not doing
520 	 * do could allow DMA to corrupt kernel memory during the
521 	 * reboot before the driver initializes.
522 	 */
523 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
524 	return 0;
525 }
526 
527 /*
528  * Device suspend routine.  Stop the interface and save some PCI
529  * settings in case the BIOS doesn't restore them properly on
530  * resume.
531  */
532 static int
533 fxp_suspend(device_t dev)
534 {
535 	struct fxp_softc *sc = device_get_softc(dev);
536 	int i;
537 
538 	FXP_LOCK(sc);
539 
540 	fxp_stop(sc);
541 
542 	for (i=0; i<5; i++)
543 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i*4, 4);
544 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
545 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
546 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
547 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
548 
549 	sc->suspended = 1;
550 
551 	FXP_UNLOCK(sc);
552 
553 	return 0;
554 }
555 
556 /*
557  * Device resume routine.  Restore some PCI settings in case the BIOS
558  * doesn't, re-enable busmastering, and restart the interface if
559  * appropriate.
560  */
561 static int
562 fxp_resume(device_t dev)
563 {
564 	struct fxp_softc *sc = device_get_softc(dev);
565 	struct ifnet *ifp = &sc->sc_if;
566 	u_int16_t pci_command;
567 	int i;
568 
569 	FXP_LOCK(sc);
570 
571 	/* better way to do this? */
572 	for (i=0; i<5; i++)
573 		pci_write_config(dev, PCIR_MAPS + i*4, sc->saved_maps[i], 4);
574 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
575 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
576 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
577 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
578 
579 	/* reenable busmastering */
580 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
581 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
582 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
583 
584 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
585 	DELAY(10);
586 
587 	/* reinitialize interface if necessary */
588 	if (ifp->if_flags & IFF_UP)
589 		fxp_init(sc);
590 
591 	sc->suspended = 0;
592 
593 	FXP_UNLOCK(sc);
594 
595 	return 0;
596 }
597 
598 static device_method_t fxp_methods[] = {
599 	/* Device interface */
600 	DEVMETHOD(device_probe,		fxp_probe),
601 	DEVMETHOD(device_attach,	fxp_attach),
602 	DEVMETHOD(device_detach,	fxp_detach),
603 	DEVMETHOD(device_shutdown,	fxp_shutdown),
604 	DEVMETHOD(device_suspend,	fxp_suspend),
605 	DEVMETHOD(device_resume,	fxp_resume),
606 
607 	{ 0, 0 }
608 };
609 
610 static driver_t fxp_driver = {
611 	"fxp",
612 	fxp_methods,
613 	sizeof(struct fxp_softc),
614 };
615 
616 static devclass_t fxp_devclass;
617 
618 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
619 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
620 
621 /*
622  * Do generic parts of attach.
623  */
624 static int
625 fxp_attach_common(sc, enaddr)
626 	struct fxp_softc *sc;
627 	u_int8_t *enaddr;
628 {
629 	u_int16_t data;
630 	int i, nmedia, defmedia;
631 	const int *media;
632 
633 	/*
634 	 * Reset to a stable state.
635 	 */
636 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
637 	DELAY(10);
638 
639 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
640 	    M_DEVBUF, M_NOWAIT | M_ZERO);
641 	if (sc->cbl_base == NULL)
642 		goto fail;
643 
644 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
645 	    M_NOWAIT | M_ZERO);
646 	if (sc->fxp_stats == NULL)
647 		goto fail;
648 
649 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
650 	if (sc->mcsp == NULL)
651 		goto fail;
652 
653 	/*
654 	 * Pre-allocate our receive buffers.
655 	 */
656 	for (i = 0; i < FXP_NRFABUFS; i++) {
657 		if (fxp_add_rfabuf(sc, NULL) != 0) {
658 			goto fail;
659 		}
660 	}
661 
662 	/*
663 	 * Find out how large of an SEEPROM we have.
664 	 */
665 	fxp_autosize_eeprom(sc);
666 
667 	/*
668 	 * Get info about the primary PHY
669 	 */
670 	fxp_read_eeprom(sc, (u_int16_t *)&data, 6, 1);
671 	sc->phy_primary_addr = data & 0xff;
672 	sc->phy_primary_device = (data >> 8) & 0x3f;
673 	sc->phy_10Mbps_only = data >> 15;
674 
675 	/*
676 	 * Read MAC address.
677 	 */
678 	fxp_read_eeprom(sc, (u_int16_t *)enaddr, 0, 3);
679 
680 	/*
681 	 * Initialize the media structures.
682 	 */
683 
684 	media = fxp_media_default;
685 	nmedia = sizeof(fxp_media_default) / sizeof(fxp_media_default[0]);
686 	defmedia = FXP_MEDIA_DEFAULT_DEFMEDIA;
687 
688 	for (i = 0; i < NFXPMEDIA; i++) {
689 		if (sc->phy_primary_device == fxp_media[i].fsm_phy) {
690 			media = fxp_media[i].fsm_media;
691 			nmedia = fxp_media[i].fsm_nmedia;
692 			defmedia = fxp_media[i].fsm_defmedia;
693 		}
694 	}
695 
696 	ifmedia_init(&sc->sc_media, 0, fxp_mediachange, fxp_mediastatus);
697 	for (i = 0; i < nmedia; i++) {
698 		if (IFM_SUBTYPE(media[i]) == IFM_100_TX && sc->phy_10Mbps_only)
699 			continue;
700 		ifmedia_add(&sc->sc_media, media[i], 0, NULL);
701 	}
702 	ifmedia_set(&sc->sc_media, defmedia);
703 
704 	return (0);
705 
706  fail:
707 	printf("fxp%d: Failed to malloc memory\n", FXP_UNIT(sc));
708 	if (sc->cbl_base)
709 		free(sc->cbl_base, M_DEVBUF);
710 	if (sc->fxp_stats)
711 		free(sc->fxp_stats, M_DEVBUF);
712 	if (sc->mcsp)
713 		free(sc->mcsp, M_DEVBUF);
714 	/* frees entire chain */
715 	if (sc->rfa_headm)
716 		m_freem(sc->rfa_headm);
717 
718 	return (ENOMEM);
719 }
720 
721 /*
722  * From NetBSD:
723  *
724  * Figure out EEPROM size.
725  *
726  * 559's can have either 64-word or 256-word EEPROMs, the 558
727  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
728  * talks about the existance of 16 to 256 word EEPROMs.
729  *
730  * The only known sizes are 64 and 256, where the 256 version is used
731  * by CardBus cards to store CIS information.
732  *
733  * The address is shifted in msb-to-lsb, and after the last
734  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
735  * after which follows the actual data. We try to detect this zero, by
736  * probing the data-out bit in the EEPROM control register just after
737  * having shifted in a bit. If the bit is zero, we assume we've
738  * shifted enough address bits. The data-out should be tri-state,
739  * before this, which should translate to a logical one.
740  *
741  * Other ways to do this would be to try to read a register with known
742  * contents with a varying number of address bits, but no such
743  * register seem to be available. The high bits of register 10 are 01
744  * on the 558 and 559, but apparently not on the 557.
745  *
746  * The Linux driver computes a checksum on the EEPROM data, but the
747  * value of this checksum is not very well documented.
748  */
749 static void
750 fxp_autosize_eeprom(sc)
751 	struct fxp_softc *sc;
752 {
753 	u_int16_t reg;
754 	int x;
755 
756 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
757 	/*
758 	 * Shift in read opcode.
759 	 */
760 	for (x = 3; x > 0; x--) {
761 		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
762 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
763 		} else {
764 			reg = FXP_EEPROM_EECS;
765 		}
766 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
767 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
768 		    reg | FXP_EEPROM_EESK);
769 		DELAY(1);
770 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
771 		DELAY(1);
772 	}
773 	/*
774 	 * Shift in address.
775 	 * Wait for the dummy zero following a correct address shift.
776 	 */
777 	for (x = 1; x <= 8; x++) {
778 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
779 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
780 			FXP_EEPROM_EECS | FXP_EEPROM_EESK);
781 		DELAY(1);
782 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) == 0)
783 			break;
784 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
785 		DELAY(1);
786 	}
787 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
788 	DELAY(1);
789 	sc->eeprom_size = x;
790 }
791 /*
792  * Read from the serial EEPROM. Basically, you manually shift in
793  * the read opcode (one bit at a time) and then shift in the address,
794  * and then you shift out the data (all of this one bit at a time).
795  * The word size is 16 bits, so you have to provide the address for
796  * every 16 bits of data.
797  */
798 static void
799 fxp_read_eeprom(sc, data, offset, words)
800 	struct fxp_softc *sc;
801 	u_short *data;
802 	int offset;
803 	int words;
804 {
805 	u_int16_t reg;
806 	int i, x;
807 
808 	for (i = 0; i < words; i++) {
809 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
810 		/*
811 		 * Shift in read opcode.
812 		 */
813 		for (x = 3; x > 0; x--) {
814 			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
815 				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
816 			} else {
817 				reg = FXP_EEPROM_EECS;
818 			}
819 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
820 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
821 			    reg | FXP_EEPROM_EESK);
822 			DELAY(1);
823 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
824 			DELAY(1);
825 		}
826 		/*
827 		 * Shift in address.
828 		 */
829 		for (x = sc->eeprom_size; x > 0; x--) {
830 			if ((i + offset) & (1 << (x - 1))) {
831 				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
832 			} else {
833 				reg = FXP_EEPROM_EECS;
834 			}
835 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
836 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
837 			    reg | FXP_EEPROM_EESK);
838 			DELAY(1);
839 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
840 			DELAY(1);
841 		}
842 		reg = FXP_EEPROM_EECS;
843 		data[i] = 0;
844 		/*
845 		 * Shift out data.
846 		 */
847 		for (x = 16; x > 0; x--) {
848 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
849 			    reg | FXP_EEPROM_EESK);
850 			DELAY(1);
851 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
852 			    FXP_EEPROM_EEDO)
853 				data[i] |= (1 << (x - 1));
854 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
855 			DELAY(1);
856 		}
857 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
858 		DELAY(1);
859 	}
860 }
861 
862 /*
863  * Start packet transmission on the interface.
864  */
865 static void
866 fxp_start(ifp)
867 	struct ifnet *ifp;
868 {
869 	struct fxp_softc *sc = ifp->if_softc;
870 	struct fxp_cb_tx *txp;
871 
872 	FXP_LOCK(sc);
873 	/*
874 	 * See if we need to suspend xmit until the multicast filter
875 	 * has been reprogrammed (which can only be done at the head
876 	 * of the command chain).
877 	 */
878 	if (sc->need_mcsetup) {
879 		FXP_UNLOCK(sc);
880 		return;
881 	}
882 
883 	txp = NULL;
884 
885 	/*
886 	 * We're finished if there is nothing more to add to the list or if
887 	 * we're all filled up with buffers to transmit.
888 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
889 	 *       a NOP command when needed.
890 	 */
891 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
892 		struct mbuf *m, *mb_head;
893 		int segment;
894 
895 		/*
896 		 * Grab a packet to transmit.
897 		 */
898 		IF_DEQUEUE(&ifp->if_snd, mb_head);
899 
900 		/*
901 		 * Get pointer to next available tx desc.
902 		 */
903 		txp = sc->cbl_last->next;
904 
905 		/*
906 		 * Go through each of the mbufs in the chain and initialize
907 		 * the transmit buffer descriptors with the physical address
908 		 * and size of the mbuf.
909 		 */
910 tbdinit:
911 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
912 			if (m->m_len != 0) {
913 				if (segment == FXP_NTXSEG)
914 					break;
915 				txp->tbd[segment].tb_addr =
916 				    vtophys(mtod(m, vm_offset_t));
917 				txp->tbd[segment].tb_size = m->m_len;
918 				segment++;
919 			}
920 		}
921 		if (m != NULL) {
922 			struct mbuf *mn;
923 
924 			/*
925 			 * We ran out of segments. We have to recopy this mbuf
926 			 * chain first. Bail out if we can't get the new buffers.
927 			 */
928 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
929 			if (mn == NULL) {
930 				m_freem(mb_head);
931 				break;
932 			}
933 			if (mb_head->m_pkthdr.len > MHLEN) {
934 				MCLGET(mn, M_DONTWAIT);
935 				if ((mn->m_flags & M_EXT) == 0) {
936 					m_freem(mn);
937 					m_freem(mb_head);
938 					break;
939 				}
940 			}
941 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
942 			    mtod(mn, caddr_t));
943 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
944 			m_freem(mb_head);
945 			mb_head = mn;
946 			goto tbdinit;
947 		}
948 
949 		txp->tbd_number = segment;
950 		txp->mb_head = mb_head;
951 		txp->cb_status = 0;
952 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
953 			txp->cb_command =
954 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S;
955 		} else {
956 			txp->cb_command =
957 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
958 			/*
959 			 * Set a 5 second timer just in case we don't hear from the
960 			 * card again.
961 			 */
962 			ifp->if_timer = 5;
963 		}
964 		txp->tx_threshold = tx_threshold;
965 
966 		/*
967 		 * Advance the end of list forward.
968 		 */
969 
970 #ifdef __alpha__
971 		/*
972 		 * On platforms which can't access memory in 16-bit
973 		 * granularities, we must prevent the card from DMA'ing
974 		 * up the status while we update the command field.
975 		 * This could cause us to overwrite the completion status.
976 		 */
977 		atomic_clear_short(&sc->cbl_last->cb_command,
978 		    FXP_CB_COMMAND_S);
979 #else
980 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
981 #endif /*__alpha__*/
982 		sc->cbl_last = txp;
983 
984 		/*
985 		 * Advance the beginning of the list forward if there are
986 		 * no other packets queued (when nothing is queued, cbl_first
987 		 * sits on the last TxCB that was sent out).
988 		 */
989 		if (sc->tx_queued == 0)
990 			sc->cbl_first = txp;
991 
992 		sc->tx_queued++;
993 
994 		/*
995 		 * Pass packet to bpf if there is a listener.
996 		 */
997 		if (ifp->if_bpf)
998 			bpf_mtap(ifp, mb_head);
999 	}
1000 
1001 	/*
1002 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1003 	 * going again if suspended.
1004 	 */
1005 	if (txp != NULL) {
1006 		fxp_scb_wait(sc);
1007 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
1008 	}
1009 	FXP_UNLOCK(sc);
1010 }
1011 
1012 /*
1013  * Process interface interrupts.
1014  */
1015 static void
1016 fxp_intr(arg)
1017 	void *arg;
1018 {
1019 	struct fxp_softc *sc = arg;
1020 	struct ifnet *ifp = &sc->sc_if;
1021 	u_int8_t statack;
1022 
1023 	FXP_LOCK(sc);
1024 
1025 	if (sc->suspended) {
1026 		FXP_UNLOCK(sc);
1027 		return;
1028 	}
1029 
1030 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1031 		/*
1032 		 * First ACK all the interrupts in this pass.
1033 		 */
1034 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1035 
1036 		/*
1037 		 * Free any finished transmit mbuf chains.
1038 		 *
1039 		 * Handle the CNA event likt a CXTNO event. It used to
1040 		 * be that this event (control unit not ready) was not
1041 		 * encountered, but it is now with the SMPng modifications.
1042 		 * The exact sequence of events that occur when the interface
1043 		 * is brought up are different now, and if this event
1044 		 * goes unhandled, the configuration/rxfilter setup sequence
1045 		 * can stall for several seconds. The result is that no
1046 		 * packets go out onto the wire for about 5 to 10 seconds
1047 		 * after the interface is ifconfig'ed for the first time.
1048 		 */
1049 		if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1050 			struct fxp_cb_tx *txp;
1051 
1052 			for (txp = sc->cbl_first; sc->tx_queued &&
1053 			    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1054 			    txp = txp->next) {
1055 				if (txp->mb_head != NULL) {
1056 					m_freem(txp->mb_head);
1057 					txp->mb_head = NULL;
1058 				}
1059 				sc->tx_queued--;
1060 			}
1061 			sc->cbl_first = txp;
1062 			ifp->if_timer = 0;
1063 			if (sc->tx_queued == 0) {
1064 				if (sc->need_mcsetup)
1065 					fxp_mc_setup(sc);
1066 			}
1067 			/*
1068 			 * Try to start more packets transmitting.
1069 			 */
1070 			if (ifp->if_snd.ifq_head != NULL)
1071 				fxp_start(ifp);
1072 		}
1073 		/*
1074 		 * Process receiver interrupts. If a no-resource (RNR)
1075 		 * condition exists, get whatever packets we can and
1076 		 * re-start the receiver.
1077 		 */
1078 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1079 			struct mbuf *m;
1080 			struct fxp_rfa *rfa;
1081 rcvloop:
1082 			m = sc->rfa_headm;
1083 			rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1084 			    RFA_ALIGNMENT_FUDGE);
1085 
1086 			if (rfa->rfa_status & FXP_RFA_STATUS_C) {
1087 				/*
1088 				 * Remove first packet from the chain.
1089 				 */
1090 				sc->rfa_headm = m->m_next;
1091 				m->m_next = NULL;
1092 
1093 				/*
1094 				 * Add a new buffer to the receive chain.
1095 				 * If this fails, the old buffer is recycled
1096 				 * instead.
1097 				 */
1098 				if (fxp_add_rfabuf(sc, m) == 0) {
1099 					struct ether_header *eh;
1100 					int total_len;
1101 
1102 					total_len = rfa->actual_size &
1103 					    (MCLBYTES - 1);
1104 					if (total_len <
1105 					    sizeof(struct ether_header)) {
1106 						m_freem(m);
1107 						goto rcvloop;
1108 					}
1109 					m->m_pkthdr.rcvif = ifp;
1110 					m->m_pkthdr.len = m->m_len = total_len;
1111 					eh = mtod(m, struct ether_header *);
1112 					m->m_data +=
1113 					    sizeof(struct ether_header);
1114 					m->m_len -=
1115 					    sizeof(struct ether_header);
1116 					m->m_pkthdr.len = m->m_len;
1117 					ether_input(ifp, eh, m);
1118 				}
1119 				goto rcvloop;
1120 			}
1121 			if (statack & FXP_SCB_STATACK_RNR) {
1122 				fxp_scb_wait(sc);
1123 				CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1124 				    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1125 					RFA_ALIGNMENT_FUDGE);
1126 				CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1127 				    FXP_SCB_COMMAND_RU_START);
1128 			}
1129 		}
1130 	}
1131 	FXP_UNLOCK(sc);
1132 }
1133 
1134 /*
1135  * Update packet in/out/collision statistics. The i82557 doesn't
1136  * allow you to access these counters without doing a fairly
1137  * expensive DMA to get _all_ of the statistics it maintains, so
1138  * we do this operation here only once per second. The statistics
1139  * counters in the kernel are updated from the previous dump-stats
1140  * DMA and then a new dump-stats DMA is started. The on-chip
1141  * counters are zeroed when the DMA completes. If we can't start
1142  * the DMA immediately, we don't wait - we just prepare to read
1143  * them again next time.
1144  */
1145 static void
1146 fxp_stats_update(arg)
1147 	void *arg;
1148 {
1149 	struct fxp_softc *sc = arg;
1150 	struct ifnet *ifp = &sc->sc_if;
1151 	struct fxp_stats *sp = sc->fxp_stats;
1152 	struct fxp_cb_tx *txp;
1153 
1154 	ifp->if_opackets += sp->tx_good;
1155 	ifp->if_collisions += sp->tx_total_collisions;
1156 	if (sp->rx_good) {
1157 		ifp->if_ipackets += sp->rx_good;
1158 		sc->rx_idle_secs = 0;
1159 	} else {
1160 		/*
1161 		 * Receiver's been idle for another second.
1162 		 */
1163 		sc->rx_idle_secs++;
1164 	}
1165 	ifp->if_ierrors +=
1166 	    sp->rx_crc_errors +
1167 	    sp->rx_alignment_errors +
1168 	    sp->rx_rnr_errors +
1169 	    sp->rx_overrun_errors;
1170 	/*
1171 	 * If any transmit underruns occured, bump up the transmit
1172 	 * threshold by another 512 bytes (64 * 8).
1173 	 */
1174 	if (sp->tx_underruns) {
1175 		ifp->if_oerrors += sp->tx_underruns;
1176 		if (tx_threshold < 192)
1177 			tx_threshold += 64;
1178 	}
1179 	FXP_LOCK(sc);
1180 	/*
1181 	 * Release any xmit buffers that have completed DMA. This isn't
1182 	 * strictly necessary to do here, but it's advantagous for mbufs
1183 	 * with external storage to be released in a timely manner rather
1184 	 * than being defered for a potentially long time. This limits
1185 	 * the delay to a maximum of one second.
1186 	 */
1187 	for (txp = sc->cbl_first; sc->tx_queued &&
1188 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1189 	    txp = txp->next) {
1190 		if (txp->mb_head != NULL) {
1191 			m_freem(txp->mb_head);
1192 			txp->mb_head = NULL;
1193 		}
1194 		sc->tx_queued--;
1195 	}
1196 	sc->cbl_first = txp;
1197 	/*
1198 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1199 	 * then assume the receiver has locked up and attempt to clear
1200 	 * the condition by reprogramming the multicast filter. This is
1201 	 * a work-around for a bug in the 82557 where the receiver locks
1202 	 * up if it gets certain types of garbage in the syncronization
1203 	 * bits prior to the packet header. This bug is supposed to only
1204 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1205 	 * mode as well (perhaps due to a 10/100 speed transition).
1206 	 */
1207 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1208 		sc->rx_idle_secs = 0;
1209 		fxp_mc_setup(sc);
1210 	}
1211 	/*
1212 	 * If there is no pending command, start another stats
1213 	 * dump. Otherwise punt for now.
1214 	 */
1215 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1216 		/*
1217 		 * Start another stats dump.
1218 		 */
1219 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1220 		    FXP_SCB_COMMAND_CU_DUMPRESET);
1221 	} else {
1222 		/*
1223 		 * A previous command is still waiting to be accepted.
1224 		 * Just zero our copy of the stats and wait for the
1225 		 * next timer event to update them.
1226 		 */
1227 		sp->tx_good = 0;
1228 		sp->tx_underruns = 0;
1229 		sp->tx_total_collisions = 0;
1230 
1231 		sp->rx_good = 0;
1232 		sp->rx_crc_errors = 0;
1233 		sp->rx_alignment_errors = 0;
1234 		sp->rx_rnr_errors = 0;
1235 		sp->rx_overrun_errors = 0;
1236 	}
1237 	FXP_UNLOCK(sc);
1238 	/*
1239 	 * Schedule another timeout one second from now.
1240 	 */
1241 	sc->stat_ch = timeout(fxp_stats_update, sc, hz);
1242 }
1243 
1244 /*
1245  * Stop the interface. Cancels the statistics updater and resets
1246  * the interface.
1247  */
1248 static void
1249 fxp_stop(sc)
1250 	struct fxp_softc *sc;
1251 {
1252 	struct ifnet *ifp = &sc->sc_if;
1253 	struct fxp_cb_tx *txp;
1254 	int i;
1255 
1256 	FXP_LOCK(sc);
1257 
1258 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1259 	ifp->if_timer = 0;
1260 
1261 	/*
1262 	 * Cancel stats updater.
1263 	 */
1264 	untimeout(fxp_stats_update, sc, sc->stat_ch);
1265 
1266 	/*
1267 	 * Issue software reset
1268 	 */
1269 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1270 	DELAY(10);
1271 
1272 	/*
1273 	 * Release any xmit buffers.
1274 	 */
1275 	txp = sc->cbl_base;
1276 	if (txp != NULL) {
1277 		for (i = 0; i < FXP_NTXCB; i++) {
1278 			if (txp[i].mb_head != NULL) {
1279 				m_freem(txp[i].mb_head);
1280 				txp[i].mb_head = NULL;
1281 			}
1282 		}
1283 	}
1284 	sc->tx_queued = 0;
1285 
1286 	/*
1287 	 * Free all the receive buffers then reallocate/reinitialize
1288 	 */
1289 	if (sc->rfa_headm != NULL)
1290 		m_freem(sc->rfa_headm);
1291 	sc->rfa_headm = NULL;
1292 	sc->rfa_tailm = NULL;
1293 	for (i = 0; i < FXP_NRFABUFS; i++) {
1294 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1295 			/*
1296 			 * This "can't happen" - we're at splimp()
1297 			 * and we just freed all the buffers we need
1298 			 * above.
1299 			 */
1300 			panic("fxp_stop: no buffers!");
1301 		}
1302 	}
1303 
1304 	FXP_UNLOCK(sc);
1305 }
1306 
1307 /*
1308  * Watchdog/transmission transmit timeout handler. Called when a
1309  * transmission is started on the interface, but no interrupt is
1310  * received before the timeout. This usually indicates that the
1311  * card has wedged for some reason.
1312  */
1313 static void
1314 fxp_watchdog(ifp)
1315 	struct ifnet *ifp;
1316 {
1317 	struct fxp_softc *sc = ifp->if_softc;
1318 
1319 	printf("fxp%d: device timeout\n", FXP_UNIT(sc));
1320 	ifp->if_oerrors++;
1321 
1322 	fxp_init(sc);
1323 }
1324 
1325 static void
1326 fxp_init(xsc)
1327 	void *xsc;
1328 {
1329 	struct fxp_softc *sc = xsc;
1330 	struct ifnet *ifp = &sc->sc_if;
1331 	struct fxp_cb_config *cbp;
1332 	struct fxp_cb_ias *cb_ias;
1333 	struct fxp_cb_tx *txp;
1334 	int i, prm;
1335 
1336 	FXP_LOCK(sc);
1337 	/*
1338 	 * Cancel any pending I/O
1339 	 */
1340 	fxp_stop(sc);
1341 
1342 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1343 
1344 	/*
1345 	 * Initialize base of CBL and RFA memory. Loading with zero
1346 	 * sets it up for regular linear addressing.
1347 	 */
1348 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1349 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1350 
1351 	fxp_scb_wait(sc);
1352 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1353 
1354 	/*
1355 	 * Initialize base of dump-stats buffer.
1356 	 */
1357 	fxp_scb_wait(sc);
1358 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1359 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1360 
1361 	/*
1362 	 * We temporarily use memory that contains the TxCB list to
1363 	 * construct the config CB. The TxCB list memory is rebuilt
1364 	 * later.
1365 	 */
1366 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1367 
1368 	/*
1369 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1370 	 * zero and must be one bits in this structure and this is the easiest
1371 	 * way to initialize them all to proper values.
1372 	 */
1373 	bcopy(fxp_cb_config_template,
1374 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1375 		sizeof(fxp_cb_config_template));
1376 
1377 	cbp->cb_status =	0;
1378 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1379 	cbp->link_addr =	-1;	/* (no) next command */
1380 	cbp->byte_count =	22;	/* (22) bytes to config */
1381 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1382 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1383 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1384 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1385 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1386 	cbp->dma_bce =		0;	/* (disable) dma max counters */
1387 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1388 	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
1389 	cbp->ci_int =		1;	/* interrupt on CU idle */
1390 	cbp->save_bf =		prm;	/* save bad frames */
1391 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1392 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1393 	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
1394 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1395 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1396 	cbp->loopback =		0;	/* (don't) loopback */
1397 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1398 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1399 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1400 	cbp->promiscuous =	prm;	/* promiscuous mode */
1401 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1402 	cbp->crscdt =		0;	/* (CRS only) */
1403 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1404 	cbp->padding =		1;	/* (do) pad short tx packets */
1405 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1406 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1407 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1408 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1409 	cbp->mc_all =		sc->all_mcasts;/* accept all multicasts */
1410 
1411 	/*
1412 	 * Start the config command/DMA.
1413 	 */
1414 	fxp_scb_wait(sc);
1415 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1416 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1417 	/* ...and wait for it to complete. */
1418 	fxp_dma_wait(&cbp->cb_status, sc);
1419 
1420 	/*
1421 	 * Now initialize the station address. Temporarily use the TxCB
1422 	 * memory area like we did above for the config CB.
1423 	 */
1424 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1425 	cb_ias->cb_status = 0;
1426 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1427 	cb_ias->link_addr = -1;
1428 	bcopy(sc->arpcom.ac_enaddr,
1429 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1430 	    sizeof(sc->arpcom.ac_enaddr));
1431 
1432 	/*
1433 	 * Start the IAS (Individual Address Setup) command/DMA.
1434 	 */
1435 	fxp_scb_wait(sc);
1436 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1437 	/* ...and wait for it to complete. */
1438 	fxp_dma_wait(&cb_ias->cb_status, sc);
1439 
1440 	/*
1441 	 * Initialize transmit control block (TxCB) list.
1442 	 */
1443 
1444 	txp = sc->cbl_base;
1445 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1446 	for (i = 0; i < FXP_NTXCB; i++) {
1447 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1448 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1449 		txp[i].link_addr = vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1450 		txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1451 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1452 	}
1453 	/*
1454 	 * Set the suspend flag on the first TxCB and start the control
1455 	 * unit. It will execute the NOP and then suspend.
1456 	 */
1457 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1458 	sc->cbl_first = sc->cbl_last = txp;
1459 	sc->tx_queued = 1;
1460 
1461 	fxp_scb_wait(sc);
1462 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1463 
1464 	/*
1465 	 * Initialize receiver buffer area - RFA.
1466 	 */
1467 	fxp_scb_wait(sc);
1468 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1469 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1470 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1471 
1472 	/*
1473 	 * Set current media.
1474 	 */
1475 	fxp_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
1476 
1477 	ifp->if_flags |= IFF_RUNNING;
1478 	ifp->if_flags &= ~IFF_OACTIVE;
1479 	FXP_UNLOCK(sc);
1480 
1481 	/*
1482 	 * Start stats updater.
1483 	 */
1484 	sc->stat_ch = timeout(fxp_stats_update, sc, hz);
1485 }
1486 
1487 static void
1488 fxp_set_media(sc, media)
1489 	struct fxp_softc *sc;
1490 	int media;
1491 {
1492 
1493 	switch (sc->phy_primary_device) {
1494 	case FXP_PHY_DP83840:
1495 	case FXP_PHY_DP83840A:
1496 		fxp_mdi_write(sc, sc->phy_primary_addr, FXP_DP83840_PCR,
1497 		    fxp_mdi_read(sc, sc->phy_primary_addr, FXP_DP83840_PCR) |
1498 		    FXP_DP83840_PCR_LED4_MODE |	/* LED4 always indicates duplex */
1499 		    FXP_DP83840_PCR_F_CONNECT |	/* force link disconnect bypass */
1500 		    FXP_DP83840_PCR_BIT10);	/* XXX I have no idea */
1501 		/* fall through */
1502 	case FXP_PHY_82553A:
1503 	case FXP_PHY_82553C: /* untested */
1504 	case FXP_PHY_82555:
1505 	case FXP_PHY_82555B:
1506 		if (IFM_SUBTYPE(media) != IFM_AUTO) {
1507 			int flags;
1508 
1509 			flags = (IFM_SUBTYPE(media) == IFM_100_TX) ?
1510 			    FXP_PHY_BMCR_SPEED_100M : 0;
1511 			flags |= (media & IFM_FDX) ?
1512 			    FXP_PHY_BMCR_FULLDUPLEX : 0;
1513 			fxp_mdi_write(sc, sc->phy_primary_addr,
1514 			    FXP_PHY_BMCR,
1515 			    (fxp_mdi_read(sc, sc->phy_primary_addr,
1516 			    FXP_PHY_BMCR) &
1517 			    ~(FXP_PHY_BMCR_AUTOEN | FXP_PHY_BMCR_SPEED_100M |
1518 			     FXP_PHY_BMCR_FULLDUPLEX)) | flags);
1519 		} else {
1520 			fxp_mdi_write(sc, sc->phy_primary_addr,
1521 			    FXP_PHY_BMCR,
1522 			    (fxp_mdi_read(sc, sc->phy_primary_addr,
1523 			    FXP_PHY_BMCR) | FXP_PHY_BMCR_AUTOEN));
1524 		}
1525 		break;
1526 	/*
1527 	 * The Seeq 80c24 doesn't have a PHY programming interface, so do
1528 	 * nothing.
1529 	 */
1530 	case FXP_PHY_80C24:
1531 		break;
1532 	default:
1533 		printf("fxp%d: warning: unsupported PHY, type = %d, addr = %d\n",
1534 		     FXP_UNIT(sc), sc->phy_primary_device,
1535 		     sc->phy_primary_addr);
1536 	}
1537 }
1538 
1539 /*
1540  * Change media according to request.
1541  */
1542 int
1543 fxp_mediachange(ifp)
1544 	struct ifnet *ifp;
1545 {
1546 	struct fxp_softc *sc = ifp->if_softc;
1547 	struct ifmedia *ifm = &sc->sc_media;
1548 
1549 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1550 		return (EINVAL);
1551 
1552 	fxp_set_media(sc, ifm->ifm_media);
1553 	return (0);
1554 }
1555 
1556 /*
1557  * Notify the world which media we're using.
1558  */
1559 void
1560 fxp_mediastatus(ifp, ifmr)
1561 	struct ifnet *ifp;
1562 	struct ifmediareq *ifmr;
1563 {
1564 	struct fxp_softc *sc = ifp->if_softc;
1565 	int flags, stsflags;
1566 
1567 	switch (sc->phy_primary_device) {
1568 	case FXP_PHY_82555:
1569 	case FXP_PHY_82555B:
1570 	case FXP_PHY_DP83840:
1571 	case FXP_PHY_DP83840A:
1572 		ifmr->ifm_status = IFM_AVALID; /* IFM_ACTIVE will be valid */
1573 		ifmr->ifm_active = IFM_ETHER;
1574 		/*
1575 		 * the following is not an error.
1576 		 * You need to read this register twice to get current
1577 		 * status. This is correct documented behaviour, the
1578 		 * first read gets latched values.
1579 		 */
1580 		stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS);
1581 		stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS);
1582 		if (stsflags & FXP_PHY_STS_LINK_STS)
1583 				ifmr->ifm_status |= IFM_ACTIVE;
1584 
1585 		/*
1586 		 * If we are in auto mode, then try report the result.
1587 		 */
1588 		flags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_BMCR);
1589 		if (flags & FXP_PHY_BMCR_AUTOEN) {
1590 			ifmr->ifm_active |= IFM_AUTO; /* XXX presently 0 */
1591 			if (stsflags & FXP_PHY_STS_AUTO_DONE) {
1592 				/*
1593 				 * Intel and National parts report
1594 				 * differently on what they found.
1595 				 */
1596 				if ((sc->phy_primary_device == FXP_PHY_82555)
1597 				|| (sc->phy_primary_device == FXP_PHY_82555B)) {
1598 					flags = fxp_mdi_read(sc,
1599 						sc->phy_primary_addr,
1600 						FXP_PHY_USC);
1601 
1602 					if (flags & FXP_PHY_USC_SPEED)
1603 						ifmr->ifm_active |= IFM_100_TX;
1604 					else
1605 						ifmr->ifm_active |= IFM_10_T;
1606 
1607 					if (flags & FXP_PHY_USC_DUPLEX)
1608 						ifmr->ifm_active |= IFM_FDX;
1609 				} else { /* it's National. only know speed  */
1610 					flags = fxp_mdi_read(sc,
1611 						sc->phy_primary_addr,
1612 						FXP_DP83840_PAR);
1613 
1614 					if (flags & FXP_DP83840_PAR_SPEED_10)
1615 						ifmr->ifm_active |= IFM_10_T;
1616 					else
1617 						ifmr->ifm_active |= IFM_100_TX;
1618 				}
1619 			}
1620 		} else { /* in manual mode.. just report what we were set to */
1621 			if (flags & FXP_PHY_BMCR_SPEED_100M)
1622 				ifmr->ifm_active |= IFM_100_TX;
1623 			else
1624 				ifmr->ifm_active |= IFM_10_T;
1625 
1626 			if (flags & FXP_PHY_BMCR_FULLDUPLEX)
1627 				ifmr->ifm_active |= IFM_FDX;
1628 		}
1629 		break;
1630 
1631 	case FXP_PHY_80C24:
1632 	default:
1633 		ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; /* XXX IFM_AUTO ? */
1634 	}
1635 }
1636 
1637 /*
1638  * Add a buffer to the end of the RFA buffer list.
1639  * Return 0 if successful, 1 for failure. A failure results in
1640  * adding the 'oldm' (if non-NULL) on to the end of the list -
1641  * tossing out its old contents and recycling it.
1642  * The RFA struct is stuck at the beginning of mbuf cluster and the
1643  * data pointer is fixed up to point just past it.
1644  */
1645 static int
1646 fxp_add_rfabuf(sc, oldm)
1647 	struct fxp_softc *sc;
1648 	struct mbuf *oldm;
1649 {
1650 	u_int32_t v;
1651 	struct mbuf *m;
1652 	struct fxp_rfa *rfa, *p_rfa;
1653 
1654 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1655 	if (m != NULL) {
1656 		MCLGET(m, M_DONTWAIT);
1657 		if ((m->m_flags & M_EXT) == 0) {
1658 			m_freem(m);
1659 			if (oldm == NULL)
1660 				return 1;
1661 			m = oldm;
1662 			m->m_data = m->m_ext.ext_buf;
1663 		}
1664 	} else {
1665 		if (oldm == NULL)
1666 			return 1;
1667 		m = oldm;
1668 		m->m_data = m->m_ext.ext_buf;
1669 	}
1670 
1671 	/*
1672 	 * Move the data pointer up so that the incoming data packet
1673 	 * will be 32-bit aligned.
1674 	 */
1675 	m->m_data += RFA_ALIGNMENT_FUDGE;
1676 
1677 	/*
1678 	 * Get a pointer to the base of the mbuf cluster and move
1679 	 * data start past it.
1680 	 */
1681 	rfa = mtod(m, struct fxp_rfa *);
1682 	m->m_data += sizeof(struct fxp_rfa);
1683 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1684 
1685 	/*
1686 	 * Initialize the rest of the RFA.  Note that since the RFA
1687 	 * is misaligned, we cannot store values directly.  Instead,
1688 	 * we use an optimized, inline copy.
1689 	 */
1690 
1691 	rfa->rfa_status = 0;
1692 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1693 	rfa->actual_size = 0;
1694 
1695 	v = -1;
1696 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1697 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1698 
1699 	/*
1700 	 * If there are other buffers already on the list, attach this
1701 	 * one to the end by fixing up the tail to point to this one.
1702 	 */
1703 	if (sc->rfa_headm != NULL) {
1704 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1705 		    RFA_ALIGNMENT_FUDGE);
1706 		sc->rfa_tailm->m_next = m;
1707 		v = vtophys(rfa);
1708 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1709 		p_rfa->rfa_control = 0;
1710 	} else {
1711 		sc->rfa_headm = m;
1712 	}
1713 	sc->rfa_tailm = m;
1714 
1715 	return (m == oldm);
1716 }
1717 
1718 static volatile int
1719 fxp_mdi_read(sc, phy, reg)
1720 	struct fxp_softc *sc;
1721 	int phy;
1722 	int reg;
1723 {
1724 	int count = 10000;
1725 	int value;
1726 
1727 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1728 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1729 
1730 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1731 	    && count--)
1732 		DELAY(10);
1733 
1734 	if (count <= 0)
1735 		printf("fxp%d: fxp_mdi_read: timed out\n", FXP_UNIT(sc));
1736 
1737 	return (value & 0xffff);
1738 }
1739 
1740 static void
1741 fxp_mdi_write(sc, phy, reg, value)
1742 	struct fxp_softc *sc;
1743 	int phy;
1744 	int reg;
1745 	int value;
1746 {
1747 	int count = 10000;
1748 
1749 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1750 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1751 	    (value & 0xffff));
1752 
1753 	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1754 	    count--)
1755 		DELAY(10);
1756 
1757 	if (count <= 0)
1758 		printf("fxp%d: fxp_mdi_write: timed out\n", FXP_UNIT(sc));
1759 }
1760 
1761 static int
1762 fxp_ioctl(ifp, command, data)
1763 	struct ifnet *ifp;
1764 	u_long command;
1765 	caddr_t data;
1766 {
1767 	struct fxp_softc *sc = ifp->if_softc;
1768 	struct ifreq *ifr = (struct ifreq *)data;
1769 	int error = 0;
1770 
1771 	FXP_LOCK(sc);
1772 
1773 	switch (command) {
1774 
1775 	case SIOCSIFADDR:
1776 	case SIOCGIFADDR:
1777 	case SIOCSIFMTU:
1778 		error = ether_ioctl(ifp, command, data);
1779 		break;
1780 
1781 	case SIOCSIFFLAGS:
1782 		sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1783 
1784 		/*
1785 		 * If interface is marked up and not running, then start it.
1786 		 * If it is marked down and running, stop it.
1787 		 * XXX If it's up then re-initialize it. This is so flags
1788 		 * such as IFF_PROMISC are handled.
1789 		 */
1790 		if (ifp->if_flags & IFF_UP) {
1791 			fxp_init(sc);
1792 		} else {
1793 			if (ifp->if_flags & IFF_RUNNING)
1794 				fxp_stop(sc);
1795 		}
1796 		break;
1797 
1798 	case SIOCADDMULTI:
1799 	case SIOCDELMULTI:
1800 		sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1801 		/*
1802 		 * Multicast list has changed; set the hardware filter
1803 		 * accordingly.
1804 		 */
1805 		if (!sc->all_mcasts)
1806 			fxp_mc_setup(sc);
1807 		/*
1808 		 * fxp_mc_setup() can turn on sc->all_mcasts, so check it
1809 		 * again rather than else {}.
1810 		 */
1811 		if (sc->all_mcasts)
1812 			fxp_init(sc);
1813 		error = 0;
1814 		break;
1815 
1816 	case SIOCSIFMEDIA:
1817 	case SIOCGIFMEDIA:
1818 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1819 		break;
1820 
1821 	default:
1822 		error = EINVAL;
1823 	}
1824 	FXP_UNLOCK(sc);
1825 	return (error);
1826 }
1827 
1828 /*
1829  * Program the multicast filter.
1830  *
1831  * We have an artificial restriction that the multicast setup command
1832  * must be the first command in the chain, so we take steps to ensure
1833  * this. By requiring this, it allows us to keep up the performance of
1834  * the pre-initialized command ring (esp. link pointers) by not actually
1835  * inserting the mcsetup command in the ring - i.e. its link pointer
1836  * points to the TxCB ring, but the mcsetup descriptor itself is not part
1837  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
1838  * lead into the regular TxCB ring when it completes.
1839  *
1840  * This function must be called at splimp.
1841  */
1842 static void
1843 fxp_mc_setup(sc)
1844 	struct fxp_softc *sc;
1845 {
1846 	struct fxp_cb_mcs *mcsp = sc->mcsp;
1847 	struct ifnet *ifp = &sc->sc_if;
1848 	struct ifmultiaddr *ifma;
1849 	int nmcasts;
1850 	int count;
1851 
1852 	/*
1853 	 * If there are queued commands, we must wait until they are all
1854 	 * completed. If we are already waiting, then add a NOP command
1855 	 * with interrupt option so that we're notified when all commands
1856 	 * have been completed - fxp_start() ensures that no additional
1857 	 * TX commands will be added when need_mcsetup is true.
1858 	 */
1859 	if (sc->tx_queued) {
1860 		struct fxp_cb_tx *txp;
1861 
1862 		/*
1863 		 * need_mcsetup will be true if we are already waiting for the
1864 		 * NOP command to be completed (see below). In this case, bail.
1865 		 */
1866 		if (sc->need_mcsetup)
1867 			return;
1868 		sc->need_mcsetup = 1;
1869 
1870 		/*
1871 		 * Add a NOP command with interrupt so that we are notified when all
1872 		 * TX commands have been processed.
1873 		 */
1874 		txp = sc->cbl_last->next;
1875 		txp->mb_head = NULL;
1876 		txp->cb_status = 0;
1877 		txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1878 		/*
1879 		 * Advance the end of list forward.
1880 		 */
1881 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1882 		sc->cbl_last = txp;
1883 		sc->tx_queued++;
1884 		/*
1885 		 * Issue a resume in case the CU has just suspended.
1886 		 */
1887 		fxp_scb_wait(sc);
1888 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
1889 		/*
1890 		 * Set a 5 second timer just in case we don't hear from the
1891 		 * card again.
1892 		 */
1893 		ifp->if_timer = 5;
1894 
1895 		return;
1896 	}
1897 	sc->need_mcsetup = 0;
1898 
1899 	/*
1900 	 * Initialize multicast setup descriptor.
1901 	 */
1902 	mcsp->next = sc->cbl_base;
1903 	mcsp->mb_head = NULL;
1904 	mcsp->cb_status = 0;
1905 	mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1906 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
1907 
1908 	nmcasts = 0;
1909 	if (!sc->all_mcasts) {
1910 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1911 			if (ifma->ifma_addr->sa_family != AF_LINK)
1912 				continue;
1913 			if (nmcasts >= MAXMCADDR) {
1914 				sc->all_mcasts = 1;
1915 				nmcasts = 0;
1916 				break;
1917 			}
1918 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1919 			    (void *)(uintptr_t)(volatile void *)
1920 				&sc->mcsp->mc_addr[nmcasts][0], 6);
1921 			nmcasts++;
1922 		}
1923 	}
1924 	mcsp->mc_cnt = nmcasts * 6;
1925 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
1926 	sc->tx_queued = 1;
1927 
1928 	/*
1929 	 * Wait until command unit is not active. This should never
1930 	 * be the case when nothing is queued, but make sure anyway.
1931 	 */
1932 	count = 100;
1933 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1934 	    FXP_SCB_CUS_ACTIVE && --count)
1935 		DELAY(10);
1936 	if (count == 0) {
1937 		printf("fxp%d: command queue timeout\n", FXP_UNIT(sc));
1938 		return;
1939 	}
1940 
1941 	/*
1942 	 * Start the multicast setup command.
1943 	 */
1944 	fxp_scb_wait(sc);
1945 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1946 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1947 
1948 	ifp->if_timer = 2;
1949 	return;
1950 }
1951