xref: /freebsd/sys/dev/fxp/if_fxp.c (revision e50dfdc9abb9eebc78636ee930ece699a837de52)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 /*
31  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/endian.h>
40 #include <sys/mbuf.h>
41 		/* #include <sys/mutex.h> */
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/sysctl.h>
45 
46 #include <net/if.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 
50 #include <net/bpf.h>
51 #include <sys/sockio.h>
52 #include <sys/bus.h>
53 #include <machine/bus.h>
54 #include <sys/rman.h>
55 #include <machine/resource.h>
56 
57 #include <net/ethernet.h>
58 #include <net/if_arp.h>
59 
60 #include <machine/clock.h>	/* for DELAY */
61 
62 #include <net/if_types.h>
63 #include <net/if_vlan_var.h>
64 
65 #ifdef FXP_IP_CSUM_WAR
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <machine/in_cksum.h>
70 #endif
71 
72 #include <pci/pcivar.h>
73 #include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <dev/fxp/if_fxpreg.h>
79 #include <dev/fxp/if_fxpvar.h>
80 #include <dev/fxp/rcvbundl.h>
81 
82 MODULE_DEPEND(fxp, pci, 1, 1, 1);
83 MODULE_DEPEND(fxp, ether, 1, 1, 1);
84 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
85 #include "miibus_if.h"
86 
87 /*
88  * NOTE!  On the Alpha, we have an alignment constraint.  The
89  * card DMAs the packet immediately following the RFA.  However,
90  * the first thing in the packet is a 14-byte Ethernet header.
91  * This means that the packet is misaligned.  To compensate,
92  * we actually offset the RFA 2 bytes into the cluster.  This
93  * alignes the packet after the Ethernet header at a 32-bit
94  * boundary.  HOWEVER!  This means that the RFA is misaligned!
95  */
96 #define	RFA_ALIGNMENT_FUDGE	2
97 
98 /*
99  * Set initial transmit threshold at 64 (512 bytes). This is
100  * increased by 64 (512 bytes) at a time, to maximum of 192
101  * (1536 bytes), if an underrun occurs.
102  */
103 static int tx_threshold = 64;
104 
105 /*
106  * The configuration byte map has several undefined fields which
107  * must be one or must be zero.  Set up a template for these bits
108  * only, (assuming a 82557 chip) leaving the actual configuration
109  * to fxp_init.
110  *
111  * See struct fxp_cb_config for the bit definitions.
112  */
113 static u_char fxp_cb_config_template[] = {
114 	0x0, 0x0,		/* cb_status */
115 	0x0, 0x0,		/* cb_command */
116 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
117 	0x0,	/*  0 */
118 	0x0,	/*  1 */
119 	0x0,	/*  2 */
120 	0x0,	/*  3 */
121 	0x0,	/*  4 */
122 	0x0,	/*  5 */
123 	0x32,	/*  6 */
124 	0x0,	/*  7 */
125 	0x0,	/*  8 */
126 	0x0,	/*  9 */
127 	0x6,	/* 10 */
128 	0x0,	/* 11 */
129 	0x0,	/* 12 */
130 	0x0,	/* 13 */
131 	0xf2,	/* 14 */
132 	0x48,	/* 15 */
133 	0x0,	/* 16 */
134 	0x40,	/* 17 */
135 	0xf0,	/* 18 */
136 	0x0,	/* 19 */
137 	0x3f,	/* 20 */
138 	0x5	/* 21 */
139 };
140 
141 struct fxp_ident {
142 	u_int16_t	devid;
143 	char 		*name;
144 };
145 
146 /*
147  * Claim various Intel PCI device identifiers for this driver.  The
148  * sub-vendor and sub-device field are extensively used to identify
149  * particular variants, but we don't currently differentiate between
150  * them.
151  */
152 static struct fxp_ident fxp_ident_table[] = {
153     { 0x1029,		"Intel 82559 PCI/CardBus Pro/100" },
154     { 0x1030,		"Intel 82559 Pro/100 Ethernet" },
155     { 0x1031,		"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
156     { 0x1032,		"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
157     { 0x1033,		"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
158     { 0x1034,		"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
159     { 0x1035,		"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
160     { 0x1036,		"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
161     { 0x1037,		"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162     { 0x1038,		"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
163     { 0x1039,		"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
164     { 0x103A,		"Intel 82801DB (ICH4) Pro/100 Ethernet" },
165     { 0x103B,		"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
166     { 0x103C,		"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167     { 0x103D,		"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
168     { 0x103E,		"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
169     { 0x1059,		"Intel 82551QM Pro/100 M Mobile Connection" },
170     { 0x1209,		"Intel 82559ER Embedded 10/100 Ethernet" },
171     { 0x1229,		"Intel 82557/8/9 EtherExpress Pro/100(B) Ethernet" },
172     { 0x2449,		"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
173     { 0,		NULL },
174 };
175 
176 #ifdef FXP_IP_CSUM_WAR
177 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
178 #else
179 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
180 #endif
181 
182 static int		fxp_probe(device_t dev);
183 static int		fxp_attach(device_t dev);
184 static int		fxp_detach(device_t dev);
185 static int		fxp_shutdown(device_t dev);
186 static int		fxp_suspend(device_t dev);
187 static int		fxp_resume(device_t dev);
188 
189 static void		fxp_intr(void *xsc);
190 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
191 			    u_int8_t statack, int count);
192 static void 		fxp_init(void *xsc);
193 static void 		fxp_init_body(struct fxp_softc *sc);
194 static void 		fxp_tick(void *xsc);
195 static void		fxp_powerstate_d0(device_t dev);
196 static void 		fxp_start(struct ifnet *ifp);
197 static void 		fxp_start_body(struct ifnet *ifp);
198 static void		fxp_stop(struct fxp_softc *sc);
199 static void 		fxp_release(struct fxp_softc *sc);
200 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
201 			    caddr_t data);
202 static void 		fxp_watchdog(struct ifnet *ifp);
203 static int		fxp_add_rfabuf(struct fxp_softc *sc,
204     			    struct fxp_rx *rxp);
205 static int		fxp_mc_addrs(struct fxp_softc *sc);
206 static void		fxp_mc_setup(struct fxp_softc *sc);
207 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
208 			    int autosize);
209 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
210 			    u_int16_t data);
211 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
212 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
213 			    int offset, int words);
214 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
215 			    int offset, int words);
216 static int		fxp_ifmedia_upd(struct ifnet *ifp);
217 static void		fxp_ifmedia_sts(struct ifnet *ifp,
218 			    struct ifmediareq *ifmr);
219 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
220 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
221 			    struct ifmediareq *ifmr);
222 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
223 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
224 			    int value);
225 static void		fxp_load_ucode(struct fxp_softc *sc);
226 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
227 			    int low, int high);
228 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
229 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
230 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
231 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
232 static __inline void	fxp_dma_wait(struct fxp_softc *sc,
233     			    volatile u_int16_t *status, bus_dma_tag_t dmat,
234 			    bus_dmamap_t map);
235 
236 static device_method_t fxp_methods[] = {
237 	/* Device interface */
238 	DEVMETHOD(device_probe,		fxp_probe),
239 	DEVMETHOD(device_attach,	fxp_attach),
240 	DEVMETHOD(device_detach,	fxp_detach),
241 	DEVMETHOD(device_shutdown,	fxp_shutdown),
242 	DEVMETHOD(device_suspend,	fxp_suspend),
243 	DEVMETHOD(device_resume,	fxp_resume),
244 
245 	/* MII interface */
246 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
247 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
248 
249 	{ 0, 0 }
250 };
251 
252 static driver_t fxp_driver = {
253 	"fxp",
254 	fxp_methods,
255 	sizeof(struct fxp_softc),
256 };
257 
258 static devclass_t fxp_devclass;
259 
260 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
261 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
262 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
263 
264 static int fxp_rnr;
265 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
266 
267 /*
268  * Wait for the previous command to be accepted (but not necessarily
269  * completed).
270  */
271 static __inline void
272 fxp_scb_wait(struct fxp_softc *sc)
273 {
274 	int i = 10000;
275 
276 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
277 		DELAY(2);
278 	if (i == 0)
279 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
280 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
281 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
282 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
283 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
284 }
285 
286 static __inline void
287 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
288 {
289 
290 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
291 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
292 		fxp_scb_wait(sc);
293 	}
294 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
295 }
296 
297 static __inline void
298 fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
299     bus_dma_tag_t dmat, bus_dmamap_t map)
300 {
301 	int i = 10000;
302 
303 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
304 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
305 		DELAY(2);
306 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
307 	}
308 	if (i == 0)
309 		device_printf(sc->dev, "DMA timeout\n");
310 }
311 
312 /*
313  * Return identification string if this is device is ours.
314  */
315 static int
316 fxp_probe(device_t dev)
317 {
318 	u_int16_t devid;
319 	struct fxp_ident *ident;
320 
321 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
322 		devid = pci_get_device(dev);
323 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
324 			if (ident->devid == devid) {
325 				device_set_desc(dev, ident->name);
326 				return (0);
327 			}
328 		}
329 	}
330 	return (ENXIO);
331 }
332 
333 static void
334 fxp_powerstate_d0(device_t dev)
335 {
336 #if __FreeBSD_version >= 430002
337 	u_int32_t iobase, membase, irq;
338 
339 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
340 		/* Save important PCI config data. */
341 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
342 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
343 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
344 
345 		/* Reset the power state. */
346 		device_printf(dev, "chip is in D%d power mode "
347 		    "-- setting to D0\n", pci_get_powerstate(dev));
348 
349 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
350 
351 		/* Restore PCI config data. */
352 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
353 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
354 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
355 	}
356 #endif
357 }
358 
359 static void
360 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
361 {
362 	u_int32_t *addr;
363 
364 	if (error)
365 		return;
366 
367 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
368 	addr = arg;
369 	*addr = segs->ds_addr;
370 }
371 
372 static int
373 fxp_attach(device_t dev)
374 {
375 	int error = 0;
376 	struct fxp_softc *sc = device_get_softc(dev);
377 	struct ifnet *ifp;
378 	struct fxp_rx *rxp;
379 	u_int32_t val;
380 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
381 	int i, rid, m1, m2, prefer_iomap, maxtxseg;
382 	int s;
383 
384 	sc->dev = dev;
385 	callout_handle_init(&sc->stat_ch);
386 	sysctl_ctx_init(&sc->sysctl_ctx);
387 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
388 	    MTX_DEF);
389 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
390 	    fxp_serial_ifmedia_sts);
391 
392 	s = splimp();
393 
394 	/*
395 	 * Enable bus mastering.
396 	 */
397 	pci_enable_busmaster(dev);
398 	val = pci_read_config(dev, PCIR_COMMAND, 2);
399 
400 	fxp_powerstate_d0(dev);
401 
402 	/*
403 	 * Figure out which we should try first - memory mapping or i/o mapping?
404 	 * We default to memory mapping. Then we accept an override from the
405 	 * command line. Then we check to see which one is enabled.
406 	 */
407 	m1 = PCIM_CMD_MEMEN;
408 	m2 = PCIM_CMD_PORTEN;
409 	prefer_iomap = 0;
410 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
411 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
412 		m1 = PCIM_CMD_PORTEN;
413 		m2 = PCIM_CMD_MEMEN;
414 	}
415 
416 	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
417 	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
418 	sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
419 	                                     0, ~0, 1, RF_ACTIVE);
420 	if (sc->mem == NULL) {
421 		sc->rtp =
422 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
423 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
424 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
425                                             0, ~0, 1, RF_ACTIVE);
426 	}
427 
428 	if (!sc->mem) {
429 		error = ENXIO;
430 		goto fail;
431         }
432 	if (bootverbose) {
433 		device_printf(dev, "using %s space register mapping\n",
434 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
435 	}
436 
437 	sc->sc_st = rman_get_bustag(sc->mem);
438 	sc->sc_sh = rman_get_bushandle(sc->mem);
439 
440 	/*
441 	 * Allocate our interrupt.
442 	 */
443 	rid = 0;
444 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
445 				 RF_SHAREABLE | RF_ACTIVE);
446 	if (sc->irq == NULL) {
447 		device_printf(dev, "could not map interrupt\n");
448 		error = ENXIO;
449 		goto fail;
450 	}
451 
452 	/*
453 	 * Reset to a stable state.
454 	 */
455 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
456 	DELAY(10);
457 
458 	/*
459 	 * Find out how large of an SEEPROM we have.
460 	 */
461 	fxp_autosize_eeprom(sc);
462 
463 	/*
464 	 * Determine whether we must use the 503 serial interface.
465 	 */
466 	fxp_read_eeprom(sc, &data, 6, 1);
467 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
468 	    (data & FXP_PHY_SERIAL_ONLY))
469 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
470 
471 	/*
472 	 * Create the sysctl tree
473 	 */
474 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
475 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
476 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
477 	if (sc->sysctl_tree == NULL) {
478 		error = ENXIO;
479 		goto fail;
480 	}
481 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
482 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
483 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
484 	    "FXP driver receive interrupt microcode bundling delay");
485 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
486 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
487 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
488 	    "FXP driver receive interrupt microcode bundle size limit");
489 
490 	/*
491 	 * Pull in device tunables.
492 	 */
493 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
494 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
495 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
496 	    "int_delay", &sc->tunable_int_delay);
497 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
498 	    "bundle_max", &sc->tunable_bundle_max);
499 
500 	/*
501 	 * Find out the chip revision; lump all 82557 revs together.
502 	 */
503 	fxp_read_eeprom(sc, &data, 5, 1);
504 	if ((data >> 8) == 1)
505 		sc->revision = FXP_REV_82557;
506 	else
507 		sc->revision = pci_get_revid(dev);
508 
509 	/*
510 	 * Enable workarounds for certain chip revision deficiencies.
511 	 *
512 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
513 	 * some systems based a normal 82559 design, have a defect where
514 	 * the chip can cause a PCI protocol violation if it receives
515 	 * a CU_RESUME command when it is entering the IDLE state.  The
516 	 * workaround is to disable Dynamic Standby Mode, so the chip never
517 	 * deasserts CLKRUN#, and always remains in an active state.
518 	 *
519 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
520 	 */
521 	i = pci_get_device(dev);
522 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
523 	    sc->revision >= FXP_REV_82559_A0) {
524 		fxp_read_eeprom(sc, &data, 10, 1);
525 		if (data & 0x02) {			/* STB enable */
526 			u_int16_t cksum;
527 			int i;
528 
529 			device_printf(dev,
530 			    "Disabling dynamic standby mode in EEPROM\n");
531 			data &= ~0x02;
532 			fxp_write_eeprom(sc, &data, 10, 1);
533 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
534 			cksum = 0;
535 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
536 				fxp_read_eeprom(sc, &data, i, 1);
537 				cksum += data;
538 			}
539 			i = (1 << sc->eeprom_size) - 1;
540 			cksum = 0xBABA - cksum;
541 			fxp_read_eeprom(sc, &data, i, 1);
542 			fxp_write_eeprom(sc, &cksum, i, 1);
543 			device_printf(dev,
544 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
545 			    i, data, cksum);
546 #if 1
547 			/*
548 			 * If the user elects to continue, try the software
549 			 * workaround, as it is better than nothing.
550 			 */
551 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
552 #endif
553 		}
554 	}
555 
556 	/*
557 	 * If we are not a 82557 chip, we can enable extended features.
558 	 */
559 	if (sc->revision != FXP_REV_82557) {
560 		/*
561 		 * If MWI is enabled in the PCI configuration, and there
562 		 * is a valid cacheline size (8 or 16 dwords), then tell
563 		 * the board to turn on MWI.
564 		 */
565 		if (val & PCIM_CMD_MWRICEN &&
566 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
567 			sc->flags |= FXP_FLAG_MWI_ENABLE;
568 
569 		/* turn on the extended TxCB feature */
570 		sc->flags |= FXP_FLAG_EXT_TXCB;
571 
572 		/* enable reception of long frames for VLAN */
573 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
574 	}
575 
576 	/*
577 	 * Enable use of extended RFDs and TCBs for 82550
578 	 * and later chips. Note: we need extended TXCB support
579 	 * too, but that's already enabled by the code above.
580 	 * Be careful to do this only on the right devices.
581 	 */
582 
583 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C) {
584 		sc->rfa_size = sizeof (struct fxp_rfa);
585 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
586 		sc->flags |= FXP_FLAG_EXT_RFA;
587 	} else {
588 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
589 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
590 	}
591 
592 	/*
593 	 * Allocate DMA tags and DMA safe memory.
594 	 */
595 	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
596 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
597 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
598 	    maxtxseg, MCLBYTES, 0, &sc->fxp_mtag);
599 	if (error) {
600 		device_printf(dev, "could not allocate dma tag\n");
601 		goto fail;
602 	}
603 
604 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
605 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
606 	    sizeof(struct fxp_stats), 0, &sc->fxp_stag);
607 	if (error) {
608 		device_printf(dev, "could not allocate dma tag\n");
609 		goto fail;
610 	}
611 
612 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
613 	    BUS_DMA_NOWAIT, &sc->fxp_smap);
614 	if (error)
615 		goto fail;
616 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
617 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
618 	if (error) {
619 		device_printf(dev, "could not map the stats buffer\n");
620 		goto fail;
621 	}
622 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
623 
624 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
625 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
626 	    FXP_TXCB_SZ, 0, &sc->cbl_tag);
627 	if (error) {
628 		device_printf(dev, "could not allocate dma tag\n");
629 		goto fail;
630 	}
631 
632 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
633 	    BUS_DMA_NOWAIT, &sc->cbl_map);
634 	if (error)
635 		goto fail;
636 	bzero(sc->fxp_desc.cbl_list, FXP_TXCB_SZ);
637 
638 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
639 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
640 	    &sc->fxp_desc.cbl_addr, 0);
641 	if (error) {
642 		device_printf(dev, "could not map DMA memory\n");
643 		goto fail;
644 	}
645 
646 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
647 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
648 	    sizeof(struct fxp_cb_mcs), 0, &sc->mcs_tag);
649 	if (error) {
650 		device_printf(dev, "could not allocate dma tag\n");
651 		goto fail;
652 	}
653 
654 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
655 	    BUS_DMA_NOWAIT, &sc->mcs_map);
656 	if (error)
657 		goto fail;
658 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
659 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
660 	if (error) {
661 		device_printf(dev, "can't map the multicast setup command\n");
662 		goto fail;
663 	}
664 
665 	/*
666 	 * Pre-allocate the TX DMA maps.
667 	 */
668 	for (i = 0; i < FXP_NTXCB; i++) {
669 		error = bus_dmamap_create(sc->fxp_mtag, 0,
670 		    &sc->fxp_desc.tx_list[i].tx_map);
671 		if (error) {
672 			device_printf(dev, "can't create DMA map for TX\n");
673 			goto fail;
674 		}
675 	}
676 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
677 	if (error) {
678 		device_printf(dev, "can't create spare DMA map\n");
679 		goto fail;
680 	}
681 
682 	/*
683 	 * Pre-allocate our receive buffers.
684 	 */
685 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
686 	for (i = 0; i < FXP_NRFABUFS; i++) {
687 		rxp = &sc->fxp_desc.rx_list[i];
688 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
689 		if (error) {
690 			device_printf(dev, "can't create DMA map for RX\n");
691 			goto fail;
692 		}
693 		if (fxp_add_rfabuf(sc, rxp) != 0) {
694 			error = ENOMEM;
695 			goto fail;
696 		}
697 	}
698 
699 	/*
700 	 * Read MAC address.
701 	 */
702 	fxp_read_eeprom(sc, myea, 0, 3);
703 	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
704 	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
705 	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
706 	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
707 	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
708 	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
709 	device_printf(dev, "Ethernet address %6D%s\n",
710 	    sc->arpcom.ac_enaddr, ":",
711 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
712 	if (bootverbose) {
713 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
714 		    pci_get_vendor(dev), pci_get_device(dev),
715 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
716 		    pci_get_revid(dev));
717 		fxp_read_eeprom(sc, &data, 10, 1);
718 		device_printf(dev, "Dynamic Standby mode is %s\n",
719 		    data & 0x02 ? "enabled" : "disabled");
720 	}
721 
722 	/*
723 	 * If this is only a 10Mbps device, then there is no MII, and
724 	 * the PHY will use a serial interface instead.
725 	 *
726 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
727 	 * doesn't have a programming interface of any sort.  The
728 	 * media is sensed automatically based on how the link partner
729 	 * is configured.  This is, in essence, manual configuration.
730 	 */
731 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
732 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
733 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
734 	} else {
735 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
736 		    fxp_ifmedia_sts)) {
737 	                device_printf(dev, "MII without any PHY!\n");
738 			error = ENXIO;
739 			goto fail;
740 		}
741 	}
742 
743 	ifp = &sc->arpcom.ac_if;
744 	ifp->if_unit = device_get_unit(dev);
745 	ifp->if_name = "fxp";
746 	ifp->if_output = ether_output;
747 	ifp->if_baudrate = 100000000;
748 	ifp->if_init = fxp_init;
749 	ifp->if_softc = sc;
750 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
751 	ifp->if_ioctl = fxp_ioctl;
752 	ifp->if_start = fxp_start;
753 	ifp->if_watchdog = fxp_watchdog;
754 
755 	/* Enable checksum offload for 82550 or better chips */
756 	if (sc->flags & FXP_FLAG_EXT_RFA) {
757 		ifp->if_hwassist = FXP_CSUM_FEATURES;
758 		ifp->if_capabilities = IFCAP_HWCSUM;
759 		ifp->if_capenable = ifp->if_capabilities;
760 	}
761 
762 	/*
763 	 * Attach the interface.
764 	 */
765 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
766 
767 	/*
768 	 * Tell the upper layer(s) we support long frames.
769 	 */
770 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
771 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
772 
773 	/*
774 	 * Let the system queue as many packets as we have available
775 	 * TX descriptors.
776 	 */
777 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
778 
779 	/*
780 	 * Hook our interrupt after all initialization is complete.
781 	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
782 	 * however, ifp and its functions are not fully locked so MPSAFE
783 	 * should not be used unless you can handle potential data loss.
784 	 */
785 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET /*|INTR_MPSAFE*/,
786 			       fxp_intr, sc, &sc->ih);
787 	if (error) {
788 		device_printf(dev, "could not setup irq\n");
789 		ether_ifdetach(&sc->arpcom.ac_if);
790 		goto fail;
791 	}
792 
793 fail:
794 	splx(s);
795 	if (error)
796 		fxp_release(sc);
797 	return (error);
798 }
799 
800 /*
801  * Release all resources.  The softc lock should not be held and the
802  * interrupt should already be torn down.
803  */
804 static void
805 fxp_release(struct fxp_softc *sc)
806 {
807 	struct fxp_rx *rxp;
808 	struct fxp_tx *txp;
809 	int i;
810 
811 	mtx_assert(&sc->sc_mtx, MA_NOTOWNED);
812 	if (sc->ih)
813 		panic("fxp_release() called with intr handle still active");
814 	if (sc->miibus)
815 		device_delete_child(sc->dev, sc->miibus);
816 	bus_generic_detach(sc->dev);
817 	ifmedia_removeall(&sc->sc_media);
818 	if (sc->fxp_desc.cbl_list) {
819 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
820 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
821 		    sc->cbl_map);
822 	}
823 	if (sc->fxp_stats) {
824 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
825 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
826 	}
827 	if (sc->mcsp) {
828 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
829 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
830 	}
831 	if (sc->irq)
832 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
833 	if (sc->mem)
834 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
835 	if (sc->fxp_mtag) {
836 		for (i = 0; i < FXP_NRFABUFS; i++) {
837 			rxp = &sc->fxp_desc.rx_list[i];
838 			if (rxp->rx_mbuf != NULL) {
839 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
840 				    BUS_DMASYNC_POSTREAD);
841 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
842 				m_freem(rxp->rx_mbuf);
843 			}
844 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
845 		}
846 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
847 		bus_dma_tag_destroy(sc->fxp_mtag);
848 	}
849 	if (sc->fxp_stag) {
850 		for (i = 0; i < FXP_NTXCB; i++) {
851 			txp = &sc->fxp_desc.tx_list[i];
852 			if (txp->tx_mbuf != NULL) {
853 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
854 				    BUS_DMASYNC_POSTWRITE);
855 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
856 				m_freem(txp->tx_mbuf);
857 			}
858 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
859 		}
860 		bus_dma_tag_destroy(sc->fxp_stag);
861 	}
862 	if (sc->cbl_tag)
863 		bus_dma_tag_destroy(sc->cbl_tag);
864 	if (sc->mcs_tag)
865 		bus_dma_tag_destroy(sc->mcs_tag);
866 
867         sysctl_ctx_free(&sc->sysctl_ctx);
868 
869 	mtx_destroy(&sc->sc_mtx);
870 }
871 
872 /*
873  * Detach interface.
874  */
875 static int
876 fxp_detach(device_t dev)
877 {
878 	struct fxp_softc *sc = device_get_softc(dev);
879 	int s;
880 
881 	FXP_LOCK(sc);
882 	s = splimp();
883 	/*
884 	 * Close down routes etc.
885 	 */
886 	ether_ifdetach(&sc->arpcom.ac_if);
887 
888 	/*
889 	 * Stop DMA and drop transmit queue.
890 	 */
891 	if (bus_child_present(dev)) {
892 		/* disable interrupts */
893 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
894 		fxp_stop(sc);
895 	}
896 
897 	/*
898 	 * Unhook interrupt before dropping lock. This is to prevent
899 	 * races with fxp_intr().
900 	 */
901 	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
902 	sc->ih = NULL;
903 
904 	FXP_UNLOCK(sc);
905 	splx(s);
906 
907 	/* Release our allocated resources. */
908 	fxp_release(sc);
909 	return (0);
910 }
911 
912 /*
913  * Device shutdown routine. Called at system shutdown after sync. The
914  * main purpose of this routine is to shut off receiver DMA so that
915  * kernel memory doesn't get clobbered during warmboot.
916  */
917 static int
918 fxp_shutdown(device_t dev)
919 {
920 	/*
921 	 * Make sure that DMA is disabled prior to reboot. Not doing
922 	 * do could allow DMA to corrupt kernel memory during the
923 	 * reboot before the driver initializes.
924 	 */
925 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
926 	return (0);
927 }
928 
929 /*
930  * Device suspend routine.  Stop the interface and save some PCI
931  * settings in case the BIOS doesn't restore them properly on
932  * resume.
933  */
934 static int
935 fxp_suspend(device_t dev)
936 {
937 	struct fxp_softc *sc = device_get_softc(dev);
938 	int i, s;
939 
940 	FXP_LOCK(sc);
941 	s = splimp();
942 
943 	fxp_stop(sc);
944 
945 	for (i = 0; i < 5; i++)
946 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
947 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
948 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
949 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
950 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
951 
952 	sc->suspended = 1;
953 
954 	FXP_UNLOCK(sc);
955 	splx(s);
956 	return (0);
957 }
958 
959 /*
960  * Device resume routine.  Restore some PCI settings in case the BIOS
961  * doesn't, re-enable busmastering, and restart the interface if
962  * appropriate.
963  */
964 static int
965 fxp_resume(device_t dev)
966 {
967 	struct fxp_softc *sc = device_get_softc(dev);
968 	struct ifnet *ifp = &sc->sc_if;
969 	u_int16_t pci_command;
970 	int i, s;
971 
972 	FXP_LOCK(sc);
973 	s = splimp();
974 
975 	fxp_powerstate_d0(dev);
976 
977 	/* better way to do this? */
978 	for (i = 0; i < 5; i++)
979 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
980 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
981 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
982 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
983 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
984 
985 	/* reenable busmastering */
986 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
987 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
988 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
989 
990 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
991 	DELAY(10);
992 
993 	/* reinitialize interface if necessary */
994 	if (ifp->if_flags & IFF_UP)
995 		fxp_init_body(sc);
996 
997 	sc->suspended = 0;
998 
999 	FXP_UNLOCK(sc);
1000 	splx(s);
1001 	return (0);
1002 }
1003 
1004 static void
1005 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1006 {
1007 	u_int16_t reg;
1008 	int x;
1009 
1010 	/*
1011 	 * Shift in data.
1012 	 */
1013 	for (x = 1 << (length - 1); x; x >>= 1) {
1014 		if (data & x)
1015 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1016 		else
1017 			reg = FXP_EEPROM_EECS;
1018 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1019 		DELAY(1);
1020 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1021 		DELAY(1);
1022 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1023 		DELAY(1);
1024 	}
1025 }
1026 
1027 /*
1028  * Read from the serial EEPROM. Basically, you manually shift in
1029  * the read opcode (one bit at a time) and then shift in the address,
1030  * and then you shift out the data (all of this one bit at a time).
1031  * The word size is 16 bits, so you have to provide the address for
1032  * every 16 bits of data.
1033  */
1034 static u_int16_t
1035 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1036 {
1037 	u_int16_t reg, data;
1038 	int x;
1039 
1040 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1041 	/*
1042 	 * Shift in read opcode.
1043 	 */
1044 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1045 	/*
1046 	 * Shift in address.
1047 	 */
1048 	data = 0;
1049 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1050 		if (offset & x)
1051 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1052 		else
1053 			reg = FXP_EEPROM_EECS;
1054 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1055 		DELAY(1);
1056 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1057 		DELAY(1);
1058 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1059 		DELAY(1);
1060 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1061 		data++;
1062 		if (autosize && reg == 0) {
1063 			sc->eeprom_size = data;
1064 			break;
1065 		}
1066 	}
1067 	/*
1068 	 * Shift out data.
1069 	 */
1070 	data = 0;
1071 	reg = FXP_EEPROM_EECS;
1072 	for (x = 1 << 15; x; x >>= 1) {
1073 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1074 		DELAY(1);
1075 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1076 			data |= x;
1077 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1078 		DELAY(1);
1079 	}
1080 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1081 	DELAY(1);
1082 
1083 	return (data);
1084 }
1085 
1086 static void
1087 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1088 {
1089 	int i;
1090 
1091 	/*
1092 	 * Erase/write enable.
1093 	 */
1094 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1095 	fxp_eeprom_shiftin(sc, 0x4, 3);
1096 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1097 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1098 	DELAY(1);
1099 	/*
1100 	 * Shift in write opcode, address, data.
1101 	 */
1102 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1103 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1104 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1105 	fxp_eeprom_shiftin(sc, data, 16);
1106 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1107 	DELAY(1);
1108 	/*
1109 	 * Wait for EEPROM to finish up.
1110 	 */
1111 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1112 	DELAY(1);
1113 	for (i = 0; i < 1000; i++) {
1114 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1115 			break;
1116 		DELAY(50);
1117 	}
1118 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1119 	DELAY(1);
1120 	/*
1121 	 * Erase/write disable.
1122 	 */
1123 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1124 	fxp_eeprom_shiftin(sc, 0x4, 3);
1125 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1126 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1127 	DELAY(1);
1128 }
1129 
1130 /*
1131  * From NetBSD:
1132  *
1133  * Figure out EEPROM size.
1134  *
1135  * 559's can have either 64-word or 256-word EEPROMs, the 558
1136  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1137  * talks about the existance of 16 to 256 word EEPROMs.
1138  *
1139  * The only known sizes are 64 and 256, where the 256 version is used
1140  * by CardBus cards to store CIS information.
1141  *
1142  * The address is shifted in msb-to-lsb, and after the last
1143  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1144  * after which follows the actual data. We try to detect this zero, by
1145  * probing the data-out bit in the EEPROM control register just after
1146  * having shifted in a bit. If the bit is zero, we assume we've
1147  * shifted enough address bits. The data-out should be tri-state,
1148  * before this, which should translate to a logical one.
1149  */
1150 static void
1151 fxp_autosize_eeprom(struct fxp_softc *sc)
1152 {
1153 
1154 	/* guess maximum size of 256 words */
1155 	sc->eeprom_size = 8;
1156 
1157 	/* autosize */
1158 	(void) fxp_eeprom_getword(sc, 0, 1);
1159 }
1160 
1161 static void
1162 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1163 {
1164 	int i;
1165 
1166 	for (i = 0; i < words; i++)
1167 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1168 }
1169 
1170 static void
1171 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1172 {
1173 	int i;
1174 
1175 	for (i = 0; i < words; i++)
1176 		fxp_eeprom_putword(sc, offset + i, data[i]);
1177 }
1178 
1179 static void
1180 fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1181     bus_size_t mapsize, int error)
1182 {
1183 	struct fxp_softc *sc;
1184 	struct fxp_cb_tx *txp;
1185 	int i;
1186 
1187 	if (error)
1188 		return;
1189 
1190 	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1191 
1192 	sc = arg;
1193 	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1194 	for (i = 0; i < nseg; i++) {
1195 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1196 		/*
1197 		 * If this is an 82550/82551, then we're using extended
1198 		 * TxCBs _and_ we're using checksum offload. This means
1199 		 * that the TxCB is really an IPCB. One major difference
1200 		 * between the two is that with plain extended TxCBs,
1201 		 * the bottom half of the TxCB contains two entries from
1202 		 * the TBD array, whereas IPCBs contain just one entry:
1203 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1204 		 * checksum offload control bits. So to make things work
1205 		 * right, we have to start filling in the TBD array
1206 		 * starting from a different place depending on whether
1207 		 * the chip is an 82550/82551 or not.
1208 		 */
1209 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1210 			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1211 			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1212 		} else {
1213 			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1214 			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1215 		}
1216 	}
1217 	txp->tbd_number = nseg;
1218 }
1219 
1220 /*
1221  * Grab the softc lock and call the real fxp_start_body() routine
1222  */
1223 static void
1224 fxp_start(struct ifnet *ifp)
1225 {
1226 	struct fxp_softc *sc = ifp->if_softc;
1227 
1228 	FXP_LOCK(sc);
1229 	fxp_start_body(ifp);
1230 	FXP_UNLOCK(sc);
1231 }
1232 
1233 /*
1234  * Start packet transmission on the interface.
1235  * This routine must be called with the softc lock held, and is an
1236  * internal entry point only.
1237  */
1238 static void
1239 fxp_start_body(struct ifnet *ifp)
1240 {
1241 	struct fxp_softc *sc = ifp->if_softc;
1242 	struct fxp_tx *txp;
1243 	struct mbuf *mb_head;
1244 	int error;
1245 
1246 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1247 	/*
1248 	 * See if we need to suspend xmit until the multicast filter
1249 	 * has been reprogrammed (which can only be done at the head
1250 	 * of the command chain).
1251 	 */
1252 	if (sc->need_mcsetup) {
1253 		return;
1254 	}
1255 
1256 	txp = NULL;
1257 
1258 	/*
1259 	 * We're finished if there is nothing more to add to the list or if
1260 	 * we're all filled up with buffers to transmit.
1261 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1262 	 *       a NOP command when needed.
1263 	 */
1264 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1265 
1266 		/*
1267 		 * Grab a packet to transmit.
1268 		 */
1269 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1270 
1271 		/*
1272 		 * Get pointer to next available tx desc.
1273 		 */
1274 		txp = sc->fxp_desc.tx_last->tx_next;
1275 
1276 		/*
1277 		 * Deal with TCP/IP checksum offload. Note that
1278 		 * in order for TCP checksum offload to work,
1279 		 * the pseudo header checksum must have already
1280 		 * been computed and stored in the checksum field
1281 		 * in the TCP header. The stack should have
1282 		 * already done this for us.
1283 		 */
1284 
1285 		if (mb_head->m_pkthdr.csum_flags) {
1286 			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1287 				txp->tx_cb->ipcb_ip_activation_high =
1288 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1289 				txp->tx_cb->ipcb_ip_schedule =
1290 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1291 				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1292 					txp->tx_cb->ipcb_ip_schedule |=
1293 					    FXP_IPCB_TCP_PACKET;
1294 			}
1295 #ifdef FXP_IP_CSUM_WAR
1296 		/*
1297 		 * XXX The 82550 chip appears to have trouble
1298 		 * dealing with IP header checksums in very small
1299 		 * datagrams, namely fragments from 1 to 3 bytes
1300 		 * in size. For example, say you want to transmit
1301 		 * a UDP packet of 1473 bytes. The packet will be
1302 		 * fragmented over two IP datagrams, the latter
1303 		 * containing only one byte of data. The 82550 will
1304 		 * botch the header checksum on the 1-byte fragment.
1305 		 * As long as the datagram contains 4 or more bytes
1306 		 * of data, you're ok.
1307 		 *
1308                  * The following code attempts to work around this
1309 		 * problem: if the datagram is less than 38 bytes
1310 		 * in size (14 bytes ether header, 20 bytes IP header,
1311 		 * plus 4 bytes of data), we punt and compute the IP
1312 		 * header checksum by hand. This workaround doesn't
1313 		 * work very well, however, since it can be fooled
1314 		 * by things like VLAN tags and IP options that make
1315 		 * the header sizes/offsets vary.
1316 		 */
1317 
1318 			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1319 				if (mb_head->m_pkthdr.len < 38) {
1320 					struct ip *ip;
1321 					mb_head->m_data += ETHER_HDR_LEN;
1322 					ip = mtod(mb_head, struct ip *);
1323 					ip->ip_sum = in_cksum(mb_head,
1324 					    ip->ip_hl << 2);
1325 					mb_head->m_data -= ETHER_HDR_LEN;
1326 				} else {
1327 					txp->tx_cb->ipcb_ip_activation_high =
1328 					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1329 					txp->tx_cb->ipcb_ip_schedule |=
1330 					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1331 				}
1332 			}
1333 #endif
1334 		}
1335 
1336 		/*
1337 		 * Go through each of the mbufs in the chain and initialize
1338 		 * the transmit buffer descriptors with the physical address
1339 		 * and size of the mbuf.
1340 		 */
1341 		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1342 		    mb_head, fxp_dma_map_txbuf, sc, 0);
1343 
1344 		if (error && error != EFBIG) {
1345 			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1346 			    error);
1347 			m_freem(mb_head);
1348 			break;
1349 		}
1350 
1351 		if (error) {
1352 			struct mbuf *mn;
1353 
1354 			/*
1355 			 * We ran out of segments. We have to recopy this
1356 			 * mbuf chain first. Bail out if we can't get the
1357 			 * new buffers.
1358 			 */
1359 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1360 			if (mn == NULL) {
1361 				m_freem(mb_head);
1362 				break;
1363 			}
1364 			if (mb_head->m_pkthdr.len > MHLEN) {
1365 				MCLGET(mn, M_DONTWAIT);
1366 				if ((mn->m_flags & M_EXT) == 0) {
1367 					m_freem(mn);
1368 					m_freem(mb_head);
1369 					break;
1370 				}
1371 			}
1372 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1373 			    mtod(mn, caddr_t));
1374 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1375 			m_freem(mb_head);
1376 			mb_head = mn;
1377 			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1378 			    mb_head, fxp_dma_map_txbuf, sc, 0);
1379 			if (error) {
1380 				device_printf(sc->dev,
1381 				    "can't map mbuf (error %d)\n", error);
1382 				m_freem(mb_head);
1383 				break;
1384 			}
1385 		}
1386 
1387 		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1388 		    BUS_DMASYNC_PREWRITE);
1389 
1390 		txp->tx_mbuf = mb_head;
1391 		txp->tx_cb->cb_status = 0;
1392 		txp->tx_cb->byte_count = 0;
1393 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1394 			txp->tx_cb->cb_command =
1395 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1396 			    FXP_CB_COMMAND_S);
1397 		} else {
1398 			txp->tx_cb->cb_command =
1399 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1400 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1401 			/*
1402 			 * Set a 5 second timer just in case we don't hear
1403 			 * from the card again.
1404 			 */
1405 			ifp->if_timer = 5;
1406 		}
1407 		txp->tx_cb->tx_threshold = tx_threshold;
1408 
1409 		/*
1410 		 * Advance the end of list forward.
1411 		 */
1412 
1413 #ifdef __alpha__
1414 		/*
1415 		 * On platforms which can't access memory in 16-bit
1416 		 * granularities, we must prevent the card from DMA'ing
1417 		 * up the status while we update the command field.
1418 		 * This could cause us to overwrite the completion status.
1419 		 * XXX This is probably bogus and we're _not_ looking
1420 		 * for atomicity here.
1421 		 */
1422 		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1423 		    htole16(FXP_CB_COMMAND_S));
1424 #else
1425 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1426 		    htole16(~FXP_CB_COMMAND_S);
1427 #endif /*__alpha__*/
1428 		sc->fxp_desc.tx_last = txp;
1429 
1430 		/*
1431 		 * Advance the beginning of the list forward if there are
1432 		 * no other packets queued (when nothing is queued, tx_first
1433 		 * sits on the last TxCB that was sent out).
1434 		 */
1435 		if (sc->tx_queued == 0)
1436 			sc->fxp_desc.tx_first = txp;
1437 
1438 		sc->tx_queued++;
1439 
1440 		/*
1441 		 * Pass packet to bpf if there is a listener.
1442 		 */
1443 		BPF_MTAP(ifp, mb_head);
1444 	}
1445 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1446 
1447 	/*
1448 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1449 	 * going again if suspended.
1450 	 */
1451 	if (txp != NULL) {
1452 		fxp_scb_wait(sc);
1453 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1454 	}
1455 }
1456 
1457 #ifdef DEVICE_POLLING
1458 static poll_handler_t fxp_poll;
1459 
1460 static void
1461 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1462 {
1463 	struct fxp_softc *sc = ifp->if_softc;
1464 	u_int8_t statack;
1465 
1466 	FXP_LOCK(sc);
1467 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1468 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1469 		FXP_UNLOCK(sc);
1470 		return;
1471 	}
1472 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1473 	    FXP_SCB_STATACK_FR;
1474 	if (cmd == POLL_AND_CHECK_STATUS) {
1475 		u_int8_t tmp;
1476 
1477 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1478 		if (tmp == 0xff || tmp == 0) {
1479 			FXP_UNLOCK(sc);
1480 			return; /* nothing to do */
1481 		}
1482 		tmp &= ~statack;
1483 		/* ack what we can */
1484 		if (tmp != 0)
1485 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1486 		statack |= tmp;
1487 	}
1488 	fxp_intr_body(sc, ifp, statack, count);
1489 	FXP_UNLOCK(sc);
1490 }
1491 #endif /* DEVICE_POLLING */
1492 
1493 /*
1494  * Process interface interrupts.
1495  */
1496 static void
1497 fxp_intr(void *xsc)
1498 {
1499 	struct fxp_softc *sc = xsc;
1500 	struct ifnet *ifp = &sc->sc_if;
1501 	u_int8_t statack;
1502 
1503 	FXP_LOCK(sc);
1504 #ifdef DEVICE_POLLING
1505 	if (ifp->if_flags & IFF_POLLING) {
1506 		FXP_UNLOCK(sc);
1507 		return;
1508 	}
1509 	if (ether_poll_register(fxp_poll, ifp)) {
1510 		/* disable interrupts */
1511 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1512 		fxp_poll(ifp, 0, 1);
1513 		FXP_UNLOCK(sc);
1514 		return;
1515 	}
1516 #endif
1517 
1518 	if (sc->suspended) {
1519 		FXP_UNLOCK(sc);
1520 		return;
1521 	}
1522 
1523 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1524 		/*
1525 		 * It should not be possible to have all bits set; the
1526 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1527 		 * all bits are set, this may indicate that the card has
1528 		 * been physically ejected, so ignore it.
1529 		 */
1530 		if (statack == 0xff) {
1531 			FXP_UNLOCK(sc);
1532 			return;
1533 		}
1534 
1535 		/*
1536 		 * First ACK all the interrupts in this pass.
1537 		 */
1538 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1539 		fxp_intr_body(sc, ifp, statack, -1);
1540 	}
1541 	FXP_UNLOCK(sc);
1542 }
1543 
1544 static void
1545 fxp_txeof(struct fxp_softc *sc)
1546 {
1547 	struct fxp_tx *txp;
1548 
1549 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1550 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1551 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1552 	    txp = txp->tx_next) {
1553 		if (txp->tx_mbuf != NULL) {
1554 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1555 			    BUS_DMASYNC_POSTWRITE);
1556 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1557 			m_freem(txp->tx_mbuf);
1558 			txp->tx_mbuf = NULL;
1559 			/* clear this to reset csum offload bits */
1560 			txp->tx_cb->tbd[0].tb_addr = 0;
1561 		}
1562 		sc->tx_queued--;
1563 	}
1564 	sc->fxp_desc.tx_first = txp;
1565 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1566 }
1567 
1568 static void
1569 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1570     int count)
1571 {
1572 	struct mbuf *m;
1573 	struct fxp_rx *rxp;
1574 	struct fxp_rfa *rfa;
1575 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1576 
1577 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1578 	if (rnr)
1579 		fxp_rnr++;
1580 #ifdef DEVICE_POLLING
1581 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1582 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1583 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1584 		rnr = 1;
1585 	}
1586 #endif
1587 
1588 	/*
1589 	 * Free any finished transmit mbuf chains.
1590 	 *
1591 	 * Handle the CNA event likt a CXTNO event. It used to
1592 	 * be that this event (control unit not ready) was not
1593 	 * encountered, but it is now with the SMPng modifications.
1594 	 * The exact sequence of events that occur when the interface
1595 	 * is brought up are different now, and if this event
1596 	 * goes unhandled, the configuration/rxfilter setup sequence
1597 	 * can stall for several seconds. The result is that no
1598 	 * packets go out onto the wire for about 5 to 10 seconds
1599 	 * after the interface is ifconfig'ed for the first time.
1600 	 */
1601 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1602 		fxp_txeof(sc);
1603 
1604 		ifp->if_timer = 0;
1605 		if (sc->tx_queued == 0) {
1606 			if (sc->need_mcsetup)
1607 				fxp_mc_setup(sc);
1608 		}
1609 		/*
1610 		 * Try to start more packets transmitting.
1611 		 */
1612 		if (ifp->if_snd.ifq_head != NULL)
1613 			fxp_start_body(ifp);
1614 	}
1615 
1616 	/*
1617 	 * Just return if nothing happened on the receive side.
1618 	 */
1619 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1620 		return;
1621 
1622 	/*
1623 	 * Process receiver interrupts. If a no-resource (RNR)
1624 	 * condition exists, get whatever packets we can and
1625 	 * re-start the receiver.
1626 	 *
1627 	 * When using polling, we do not process the list to completion,
1628 	 * so when we get an RNR interrupt we must defer the restart
1629 	 * until we hit the last buffer with the C bit set.
1630 	 * If we run out of cycles and rfa_headm has the C bit set,
1631 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1632 	 * that the info will be used in the subsequent polling cycle.
1633 	 */
1634 	for (;;) {
1635 		rxp = sc->fxp_desc.rx_head;
1636 		m = rxp->rx_mbuf;
1637 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1638 		    RFA_ALIGNMENT_FUDGE);
1639 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1640 		    BUS_DMASYNC_POSTREAD);
1641 
1642 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1643 		if (count >= 0 && count-- == 0) {
1644 			if (rnr) {
1645 				/* Defer RNR processing until the next time. */
1646 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1647 				rnr = 0;
1648 			}
1649 			break;
1650 		}
1651 #endif /* DEVICE_POLLING */
1652 
1653 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1654 			break;
1655 
1656 		/*
1657 		 * Advance head forward.
1658 		 */
1659 		sc->fxp_desc.rx_head = rxp->rx_next;
1660 
1661 		/*
1662 		 * Add a new buffer to the receive chain.
1663 		 * If this fails, the old buffer is recycled
1664 		 * instead.
1665 		 */
1666 		if (fxp_add_rfabuf(sc, rxp) == 0) {
1667 			int total_len;
1668 
1669 			/*
1670 			 * Fetch packet length (the top 2 bits of
1671 			 * actual_size are flags set by the controller
1672 			 * upon completion), and drop the packet in case
1673 			 * of bogus length or CRC errors.
1674 			 */
1675 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1676 			if (total_len < sizeof(struct ether_header) ||
1677 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1678 				sc->rfa_size ||
1679 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1680 				m_freem(m);
1681 				continue;
1682 			}
1683 
1684                         /* Do IP checksum checking. */
1685 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1686 				if (rfa->rfax_csum_sts &
1687 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1688 					m->m_pkthdr.csum_flags |=
1689 					    CSUM_IP_CHECKED;
1690 				if (rfa->rfax_csum_sts &
1691 				    FXP_RFDX_CS_IP_CSUM_VALID)
1692 					m->m_pkthdr.csum_flags |=
1693 					    CSUM_IP_VALID;
1694 				if ((rfa->rfax_csum_sts &
1695 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1696 				    (rfa->rfax_csum_sts &
1697 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1698 					m->m_pkthdr.csum_flags |=
1699 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1700 					m->m_pkthdr.csum_data = 0xffff;
1701 				}
1702 			}
1703 
1704 			m->m_pkthdr.len = m->m_len = total_len;
1705 			m->m_pkthdr.rcvif = ifp;
1706 
1707 			(*ifp->if_input)(ifp, m);
1708 		}
1709 	}
1710 	if (rnr) {
1711 		fxp_scb_wait(sc);
1712 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1713 		    sc->fxp_desc.rx_head->rx_addr);
1714 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1715 	}
1716 }
1717 
1718 /*
1719  * Update packet in/out/collision statistics. The i82557 doesn't
1720  * allow you to access these counters without doing a fairly
1721  * expensive DMA to get _all_ of the statistics it maintains, so
1722  * we do this operation here only once per second. The statistics
1723  * counters in the kernel are updated from the previous dump-stats
1724  * DMA and then a new dump-stats DMA is started. The on-chip
1725  * counters are zeroed when the DMA completes. If we can't start
1726  * the DMA immediately, we don't wait - we just prepare to read
1727  * them again next time.
1728  */
1729 static void
1730 fxp_tick(void *xsc)
1731 {
1732 	struct fxp_softc *sc = xsc;
1733 	struct ifnet *ifp = &sc->sc_if;
1734 	struct fxp_stats *sp = sc->fxp_stats;
1735 	int s;
1736 
1737 	FXP_LOCK(sc);
1738 	s = splimp();
1739 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1740 	ifp->if_opackets += le32toh(sp->tx_good);
1741 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1742 	if (sp->rx_good) {
1743 		ifp->if_ipackets += le32toh(sp->rx_good);
1744 		sc->rx_idle_secs = 0;
1745 	} else {
1746 		/*
1747 		 * Receiver's been idle for another second.
1748 		 */
1749 		sc->rx_idle_secs++;
1750 	}
1751 	ifp->if_ierrors +=
1752 	    le32toh(sp->rx_crc_errors) +
1753 	    le32toh(sp->rx_alignment_errors) +
1754 	    le32toh(sp->rx_rnr_errors) +
1755 	    le32toh(sp->rx_overrun_errors);
1756 	/*
1757 	 * If any transmit underruns occured, bump up the transmit
1758 	 * threshold by another 512 bytes (64 * 8).
1759 	 */
1760 	if (sp->tx_underruns) {
1761 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1762 		if (tx_threshold < 192)
1763 			tx_threshold += 64;
1764 	}
1765 
1766 	/*
1767 	 * Release any xmit buffers that have completed DMA. This isn't
1768 	 * strictly necessary to do here, but it's advantagous for mbufs
1769 	 * with external storage to be released in a timely manner rather
1770 	 * than being defered for a potentially long time. This limits
1771 	 * the delay to a maximum of one second.
1772 	 */
1773 	fxp_txeof(sc);
1774 
1775 	/*
1776 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1777 	 * then assume the receiver has locked up and attempt to clear
1778 	 * the condition by reprogramming the multicast filter. This is
1779 	 * a work-around for a bug in the 82557 where the receiver locks
1780 	 * up if it gets certain types of garbage in the syncronization
1781 	 * bits prior to the packet header. This bug is supposed to only
1782 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1783 	 * mode as well (perhaps due to a 10/100 speed transition).
1784 	 */
1785 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1786 		sc->rx_idle_secs = 0;
1787 		fxp_mc_setup(sc);
1788 	}
1789 	/*
1790 	 * If there is no pending command, start another stats
1791 	 * dump. Otherwise punt for now.
1792 	 */
1793 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1794 		/*
1795 		 * Start another stats dump.
1796 		 */
1797 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1798 		    BUS_DMASYNC_PREREAD);
1799 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1800 	} else {
1801 		/*
1802 		 * A previous command is still waiting to be accepted.
1803 		 * Just zero our copy of the stats and wait for the
1804 		 * next timer event to update them.
1805 		 */
1806 		sp->tx_good = 0;
1807 		sp->tx_underruns = 0;
1808 		sp->tx_total_collisions = 0;
1809 
1810 		sp->rx_good = 0;
1811 		sp->rx_crc_errors = 0;
1812 		sp->rx_alignment_errors = 0;
1813 		sp->rx_rnr_errors = 0;
1814 		sp->rx_overrun_errors = 0;
1815 	}
1816 	if (sc->miibus != NULL)
1817 		mii_tick(device_get_softc(sc->miibus));
1818 
1819 	/*
1820 	 * Schedule another timeout one second from now.
1821 	 */
1822 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1823 	FXP_UNLOCK(sc);
1824 	splx(s);
1825 }
1826 
1827 /*
1828  * Stop the interface. Cancels the statistics updater and resets
1829  * the interface.
1830  */
1831 static void
1832 fxp_stop(struct fxp_softc *sc)
1833 {
1834 	struct ifnet *ifp = &sc->sc_if;
1835 	struct fxp_tx *txp;
1836 	int i;
1837 
1838 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1839 	ifp->if_timer = 0;
1840 
1841 #ifdef DEVICE_POLLING
1842 	ether_poll_deregister(ifp);
1843 #endif
1844 	/*
1845 	 * Cancel stats updater.
1846 	 */
1847 	untimeout(fxp_tick, sc, sc->stat_ch);
1848 
1849 	/*
1850 	 * Issue software reset, which also unloads the microcode.
1851 	 */
1852 	sc->flags &= ~FXP_FLAG_UCODE;
1853 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1854 	DELAY(50);
1855 
1856 	/*
1857 	 * Release any xmit buffers.
1858 	 */
1859 	txp = sc->fxp_desc.tx_list;
1860 	if (txp != NULL) {
1861 		for (i = 0; i < FXP_NTXCB; i++) {
1862 			if (txp[i].tx_mbuf != NULL) {
1863 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1864 				    BUS_DMASYNC_POSTWRITE);
1865 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1866 				m_freem(txp[i].tx_mbuf);
1867 				txp[i].tx_mbuf = NULL;
1868 				/* clear this to reset csum offload bits */
1869 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1870 			}
1871 		}
1872 	}
1873 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1874 	sc->tx_queued = 0;
1875 }
1876 
1877 /*
1878  * Watchdog/transmission transmit timeout handler. Called when a
1879  * transmission is started on the interface, but no interrupt is
1880  * received before the timeout. This usually indicates that the
1881  * card has wedged for some reason.
1882  */
1883 static void
1884 fxp_watchdog(struct ifnet *ifp)
1885 {
1886 	struct fxp_softc *sc = ifp->if_softc;
1887 
1888 	FXP_LOCK(sc);
1889 	device_printf(sc->dev, "device timeout\n");
1890 	ifp->if_oerrors++;
1891 
1892 	fxp_init_body(sc);
1893 	FXP_UNLOCK(sc);
1894 }
1895 
1896 /*
1897  * Acquire locks and then call the real initialization function.  This
1898  * is necessary because ether_ioctl() calls if_init() and this would
1899  * result in mutex recursion if the mutex was held.
1900  */
1901 static void
1902 fxp_init(void *xsc)
1903 {
1904 	struct fxp_softc *sc = xsc;
1905 
1906 	FXP_LOCK(sc);
1907 	fxp_init_body(sc);
1908 	FXP_UNLOCK(sc);
1909 }
1910 
1911 /*
1912  * Perform device initialization. This routine must be called with the
1913  * softc lock held.
1914  */
1915 static void
1916 fxp_init_body(struct fxp_softc *sc)
1917 {
1918 	struct ifnet *ifp = &sc->sc_if;
1919 	struct fxp_cb_config *cbp;
1920 	struct fxp_cb_ias *cb_ias;
1921 	struct fxp_cb_tx *tcbp;
1922 	struct fxp_tx *txp;
1923 	struct fxp_cb_mcs *mcsp;
1924 	int i, prm, s;
1925 
1926 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1927 	s = splimp();
1928 	/*
1929 	 * Cancel any pending I/O
1930 	 */
1931 	fxp_stop(sc);
1932 
1933 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1934 
1935 	/*
1936 	 * Initialize base of CBL and RFA memory. Loading with zero
1937 	 * sets it up for regular linear addressing.
1938 	 */
1939 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1940 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1941 
1942 	fxp_scb_wait(sc);
1943 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1944 
1945 	/*
1946 	 * Initialize base of dump-stats buffer.
1947 	 */
1948 	fxp_scb_wait(sc);
1949 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1950 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1951 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1952 
1953 	/*
1954 	 * Attempt to load microcode if requested.
1955 	 */
1956 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1957 		fxp_load_ucode(sc);
1958 
1959 	/*
1960 	 * Initialize the multicast address list.
1961 	 */
1962 	if (fxp_mc_addrs(sc)) {
1963 		mcsp = sc->mcsp;
1964 		mcsp->cb_status = 0;
1965 		mcsp->cb_command =
1966 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1967 		mcsp->link_addr = 0xffffffff;
1968 		/*
1969 	 	 * Start the multicast setup command.
1970 		 */
1971 		fxp_scb_wait(sc);
1972 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1973 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1974 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1975 		/* ...and wait for it to complete. */
1976 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1977 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1978 		    BUS_DMASYNC_POSTWRITE);
1979 	}
1980 
1981 	/*
1982 	 * We temporarily use memory that contains the TxCB list to
1983 	 * construct the config CB. The TxCB list memory is rebuilt
1984 	 * later.
1985 	 */
1986 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
1987 
1988 	/*
1989 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1990 	 * zero and must be one bits in this structure and this is the easiest
1991 	 * way to initialize them all to proper values.
1992 	 */
1993 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
1994 
1995 	cbp->cb_status =	0;
1996 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1997 	    FXP_CB_COMMAND_EL);
1998 	cbp->link_addr =	0xffffffff;	/* (no) next command */
1999 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2000 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2001 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2002 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2003 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2004 	cbp->type_enable =	0;	/* actually reserved */
2005 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2006 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2007 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2008 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2009 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2010 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2011 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2012 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2013 	cbp->ci_int =		1;	/* interrupt on CU idle */
2014 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2015 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2016 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2017 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
2018 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2019 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2020 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2021 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2022 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2023 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2024 	cbp->csma_dis =		0;	/* (don't) disable link */
2025 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2026 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2027 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2028 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2029 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2030 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2031 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2032 	cbp->loopback =		0;	/* (don't) loopback */
2033 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2034 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2035 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2036 	cbp->promiscuous =	prm;	/* promiscuous mode */
2037 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2038 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2039 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2040 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2041 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2042 
2043 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2044 	cbp->padding =		1;	/* (do) pad short tx packets */
2045 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2046 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2047 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2048 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2049 					/* must set wake_en in PMCSR also */
2050 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2051 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2052 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2053 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2054 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2055 
2056 	if (sc->revision == FXP_REV_82557) {
2057 		/*
2058 		 * The 82557 has no hardware flow control, the values
2059 		 * below are the defaults for the chip.
2060 		 */
2061 		cbp->fc_delay_lsb =	0;
2062 		cbp->fc_delay_msb =	0x40;
2063 		cbp->pri_fc_thresh =	3;
2064 		cbp->tx_fc_dis =	0;
2065 		cbp->rx_fc_restop =	0;
2066 		cbp->rx_fc_restart =	0;
2067 		cbp->fc_filter =	0;
2068 		cbp->pri_fc_loc =	1;
2069 	} else {
2070 		cbp->fc_delay_lsb =	0x1f;
2071 		cbp->fc_delay_msb =	0x01;
2072 		cbp->pri_fc_thresh =	3;
2073 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2074 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2075 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2076 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2077 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2078 	}
2079 
2080 	/*
2081 	 * Start the config command/DMA.
2082 	 */
2083 	fxp_scb_wait(sc);
2084 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2085 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2086 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2087 	/* ...and wait for it to complete. */
2088 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2089 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2090 
2091 	/*
2092 	 * Now initialize the station address. Temporarily use the TxCB
2093 	 * memory area like we did above for the config CB.
2094 	 */
2095 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2096 	cb_ias->cb_status = 0;
2097 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2098 	cb_ias->link_addr = 0xffffffff;
2099 	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2100 	    sizeof(sc->arpcom.ac_enaddr));
2101 
2102 	/*
2103 	 * Start the IAS (Individual Address Setup) command/DMA.
2104 	 */
2105 	fxp_scb_wait(sc);
2106 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2107 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2108 	/* ...and wait for it to complete. */
2109 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2110 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2111 
2112 	/*
2113 	 * Initialize transmit control block (TxCB) list.
2114 	 */
2115 	txp = sc->fxp_desc.tx_list;
2116 	tcbp = sc->fxp_desc.cbl_list;
2117 	bzero(tcbp, FXP_TXCB_SZ);
2118 	for (i = 0; i < FXP_NTXCB; i++) {
2119 		txp[i].tx_cb = tcbp + i;
2120 		txp[i].tx_mbuf = NULL;
2121 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2122 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2123 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2124 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2125 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2126 			tcbp[i].tbd_array_addr =
2127 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2128 		else
2129 			tcbp[i].tbd_array_addr =
2130 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2131 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2132 	}
2133 	/*
2134 	 * Set the suspend flag on the first TxCB and start the control
2135 	 * unit. It will execute the NOP and then suspend.
2136 	 */
2137 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2138 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2139 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2140 	sc->tx_queued = 1;
2141 
2142 	fxp_scb_wait(sc);
2143 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2144 
2145 	/*
2146 	 * Initialize receiver buffer area - RFA.
2147 	 */
2148 	fxp_scb_wait(sc);
2149 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2150 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2151 
2152 	/*
2153 	 * Set current media.
2154 	 */
2155 	if (sc->miibus != NULL)
2156 		mii_mediachg(device_get_softc(sc->miibus));
2157 
2158 	ifp->if_flags |= IFF_RUNNING;
2159 	ifp->if_flags &= ~IFF_OACTIVE;
2160 
2161 	/*
2162 	 * Enable interrupts.
2163 	 */
2164 #ifdef DEVICE_POLLING
2165 	/*
2166 	 * ... but only do that if we are not polling. And because (presumably)
2167 	 * the default is interrupts on, we need to disable them explicitly!
2168 	 */
2169 	if ( ifp->if_flags & IFF_POLLING )
2170 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2171 	else
2172 #endif /* DEVICE_POLLING */
2173 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2174 
2175 	/*
2176 	 * Start stats updater.
2177 	 */
2178 	sc->stat_ch = timeout(fxp_tick, sc, hz);
2179 	splx(s);
2180 }
2181 
2182 static int
2183 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2184 {
2185 
2186 	return (0);
2187 }
2188 
2189 static void
2190 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2191 {
2192 
2193 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2194 }
2195 
2196 /*
2197  * Change media according to request.
2198  */
2199 static int
2200 fxp_ifmedia_upd(struct ifnet *ifp)
2201 {
2202 	struct fxp_softc *sc = ifp->if_softc;
2203 	struct mii_data *mii;
2204 
2205 	mii = device_get_softc(sc->miibus);
2206 	mii_mediachg(mii);
2207 	return (0);
2208 }
2209 
2210 /*
2211  * Notify the world which media we're using.
2212  */
2213 static void
2214 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2215 {
2216 	struct fxp_softc *sc = ifp->if_softc;
2217 	struct mii_data *mii;
2218 
2219 	mii = device_get_softc(sc->miibus);
2220 	mii_pollstat(mii);
2221 	ifmr->ifm_active = mii->mii_media_active;
2222 	ifmr->ifm_status = mii->mii_media_status;
2223 
2224 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2225 		sc->cu_resume_bug = 1;
2226 	else
2227 		sc->cu_resume_bug = 0;
2228 }
2229 
2230 /*
2231  * Add a buffer to the end of the RFA buffer list.
2232  * Return 0 if successful, 1 for failure. A failure results in
2233  * adding the 'oldm' (if non-NULL) on to the end of the list -
2234  * tossing out its old contents and recycling it.
2235  * The RFA struct is stuck at the beginning of mbuf cluster and the
2236  * data pointer is fixed up to point just past it.
2237  */
2238 static int
2239 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2240 {
2241 	struct mbuf *m;
2242 	struct fxp_rfa *rfa, *p_rfa;
2243 	struct fxp_rx *p_rx;
2244 	bus_dmamap_t tmp_map;
2245 	int error;
2246 
2247 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2248 	if (m == NULL)
2249 		return (ENOBUFS);
2250 
2251 	/*
2252 	 * Move the data pointer up so that the incoming data packet
2253 	 * will be 32-bit aligned.
2254 	 */
2255 	m->m_data += RFA_ALIGNMENT_FUDGE;
2256 
2257 	/*
2258 	 * Get a pointer to the base of the mbuf cluster and move
2259 	 * data start past it.
2260 	 */
2261 	rfa = mtod(m, struct fxp_rfa *);
2262 	m->m_data += sc->rfa_size;
2263 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2264 
2265 	/*
2266 	 * Initialize the rest of the RFA.  Note that since the RFA
2267 	 * is misaligned, we cannot store values directly.  Instead,
2268 	 * we use an optimized, inline copy.
2269 	 */
2270 
2271 	rfa->rfa_status = 0;
2272 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2273 	rfa->actual_size = 0;
2274 
2275 	le32enc(&rfa->link_addr, 0xffffffff);
2276 	le32enc(&rfa->rbd_addr, 0xffffffff);
2277 
2278 	/* Map the RFA into DMA memory. */
2279 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2280 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2281 	    &rxp->rx_addr, 0);
2282 	if (error) {
2283 		m_freem(m);
2284 		return (error);
2285 	}
2286 
2287 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2288 	tmp_map = sc->spare_map;
2289 	sc->spare_map = rxp->rx_map;
2290 	rxp->rx_map = tmp_map;
2291 	rxp->rx_mbuf = m;
2292 
2293 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2294 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2295 
2296 	/*
2297 	 * If there are other buffers already on the list, attach this
2298 	 * one to the end by fixing up the tail to point to this one.
2299 	 */
2300 	if (sc->fxp_desc.rx_head != NULL) {
2301 		p_rx = sc->fxp_desc.rx_tail;
2302 		p_rfa = (struct fxp_rfa *)
2303 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2304 		p_rx->rx_next = rxp;
2305 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2306 		p_rfa->rfa_control = 0;
2307 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2308 		    BUS_DMASYNC_PREWRITE);
2309 	} else {
2310 		rxp->rx_next = NULL;
2311 		sc->fxp_desc.rx_head = rxp;
2312 	}
2313 	sc->fxp_desc.rx_tail = rxp;
2314 	return (0);
2315 }
2316 
2317 static volatile int
2318 fxp_miibus_readreg(device_t dev, int phy, int reg)
2319 {
2320 	struct fxp_softc *sc = device_get_softc(dev);
2321 	int count = 10000;
2322 	int value;
2323 
2324 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2325 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2326 
2327 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2328 	    && count--)
2329 		DELAY(10);
2330 
2331 	if (count <= 0)
2332 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2333 
2334 	return (value & 0xffff);
2335 }
2336 
2337 static void
2338 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2339 {
2340 	struct fxp_softc *sc = device_get_softc(dev);
2341 	int count = 10000;
2342 
2343 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2344 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2345 	    (value & 0xffff));
2346 
2347 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2348 	    count--)
2349 		DELAY(10);
2350 
2351 	if (count <= 0)
2352 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2353 }
2354 
2355 static int
2356 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2357 {
2358 	struct fxp_softc *sc = ifp->if_softc;
2359 	struct ifreq *ifr = (struct ifreq *)data;
2360 	struct mii_data *mii;
2361 	int s, error = 0;
2362 
2363 	FXP_LOCK(sc);
2364 	s = splimp();
2365 
2366 	switch (command) {
2367 	case SIOCSIFFLAGS:
2368 		if (ifp->if_flags & IFF_ALLMULTI)
2369 			sc->flags |= FXP_FLAG_ALL_MCAST;
2370 		else
2371 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2372 
2373 		/*
2374 		 * If interface is marked up and not running, then start it.
2375 		 * If it is marked down and running, stop it.
2376 		 * XXX If it's up then re-initialize it. This is so flags
2377 		 * such as IFF_PROMISC are handled.
2378 		 */
2379 		if (ifp->if_flags & IFF_UP) {
2380 			fxp_init_body(sc);
2381 		} else {
2382 			if (ifp->if_flags & IFF_RUNNING)
2383 				fxp_stop(sc);
2384 		}
2385 		break;
2386 
2387 	case SIOCADDMULTI:
2388 	case SIOCDELMULTI:
2389 		if (ifp->if_flags & IFF_ALLMULTI)
2390 			sc->flags |= FXP_FLAG_ALL_MCAST;
2391 		else
2392 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2393 		/*
2394 		 * Multicast list has changed; set the hardware filter
2395 		 * accordingly.
2396 		 */
2397 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2398 			fxp_mc_setup(sc);
2399 		/*
2400 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2401 		 * again rather than else {}.
2402 		 */
2403 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2404 			fxp_init_body(sc);
2405 		error = 0;
2406 		break;
2407 
2408 	case SIOCSIFMEDIA:
2409 	case SIOCGIFMEDIA:
2410 		if (sc->miibus != NULL) {
2411 			mii = device_get_softc(sc->miibus);
2412                         error = ifmedia_ioctl(ifp, ifr,
2413                             &mii->mii_media, command);
2414 		} else {
2415                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2416 		}
2417 		break;
2418 
2419 	default:
2420 		/*
2421 		 * ether_ioctl() will eventually call fxp_start() which
2422 		 * will result in mutex recursion so drop it first.
2423 		 */
2424 		FXP_UNLOCK(sc);
2425 		error = ether_ioctl(ifp, command, data);
2426 	}
2427 	if (mtx_owned(&sc->sc_mtx))
2428 		FXP_UNLOCK(sc);
2429 	splx(s);
2430 	return (error);
2431 }
2432 
2433 /*
2434  * Fill in the multicast address list and return number of entries.
2435  */
2436 static int
2437 fxp_mc_addrs(struct fxp_softc *sc)
2438 {
2439 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2440 	struct ifnet *ifp = &sc->sc_if;
2441 	struct ifmultiaddr *ifma;
2442 	int nmcasts;
2443 
2444 	nmcasts = 0;
2445 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2446 #if __FreeBSD_version < 500000
2447 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2448 #else
2449 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2450 #endif
2451 			if (ifma->ifma_addr->sa_family != AF_LINK)
2452 				continue;
2453 			if (nmcasts >= MAXMCADDR) {
2454 				sc->flags |= FXP_FLAG_ALL_MCAST;
2455 				nmcasts = 0;
2456 				break;
2457 			}
2458 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2459 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2460 			nmcasts++;
2461 		}
2462 	}
2463 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2464 	return (nmcasts);
2465 }
2466 
2467 /*
2468  * Program the multicast filter.
2469  *
2470  * We have an artificial restriction that the multicast setup command
2471  * must be the first command in the chain, so we take steps to ensure
2472  * this. By requiring this, it allows us to keep up the performance of
2473  * the pre-initialized command ring (esp. link pointers) by not actually
2474  * inserting the mcsetup command in the ring - i.e. its link pointer
2475  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2476  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2477  * lead into the regular TxCB ring when it completes.
2478  *
2479  * This function must be called at splimp.
2480  */
2481 static void
2482 fxp_mc_setup(struct fxp_softc *sc)
2483 {
2484 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2485 	struct ifnet *ifp = &sc->sc_if;
2486 	struct fxp_tx *txp;
2487 	int count;
2488 
2489 	/*
2490 	 * If there are queued commands, we must wait until they are all
2491 	 * completed. If we are already waiting, then add a NOP command
2492 	 * with interrupt option so that we're notified when all commands
2493 	 * have been completed - fxp_start() ensures that no additional
2494 	 * TX commands will be added when need_mcsetup is true.
2495 	 */
2496 	if (sc->tx_queued) {
2497 		/*
2498 		 * need_mcsetup will be true if we are already waiting for the
2499 		 * NOP command to be completed (see below). In this case, bail.
2500 		 */
2501 		if (sc->need_mcsetup)
2502 			return;
2503 		sc->need_mcsetup = 1;
2504 
2505 		/*
2506 		 * Add a NOP command with interrupt so that we are notified
2507 		 * when all TX commands have been processed.
2508 		 */
2509 		txp = sc->fxp_desc.tx_last->tx_next;
2510 		txp->tx_mbuf = NULL;
2511 		txp->tx_cb->cb_status = 0;
2512 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2513 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2514 		/*
2515 		 * Advance the end of list forward.
2516 		 */
2517 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2518 		    htole16(~FXP_CB_COMMAND_S);
2519 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2520 		sc->fxp_desc.tx_last = txp;
2521 		sc->tx_queued++;
2522 		/*
2523 		 * Issue a resume in case the CU has just suspended.
2524 		 */
2525 		fxp_scb_wait(sc);
2526 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2527 		/*
2528 		 * Set a 5 second timer just in case we don't hear from the
2529 		 * card again.
2530 		 */
2531 		ifp->if_timer = 5;
2532 
2533 		return;
2534 	}
2535 	sc->need_mcsetup = 0;
2536 
2537 	/*
2538 	 * Initialize multicast setup descriptor.
2539 	 */
2540 	mcsp->cb_status = 0;
2541 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2542 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2543 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2544 	txp = &sc->fxp_desc.mcs_tx;
2545 	txp->tx_mbuf = NULL;
2546 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2547 	txp->tx_next = sc->fxp_desc.tx_list;
2548 	(void) fxp_mc_addrs(sc);
2549 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2550 	sc->tx_queued = 1;
2551 
2552 	/*
2553 	 * Wait until command unit is not active. This should never
2554 	 * be the case when nothing is queued, but make sure anyway.
2555 	 */
2556 	count = 100;
2557 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2558 	    FXP_SCB_CUS_ACTIVE && --count)
2559 		DELAY(10);
2560 	if (count == 0) {
2561 		device_printf(sc->dev, "command queue timeout\n");
2562 		return;
2563 	}
2564 
2565 	/*
2566 	 * Start the multicast setup command.
2567 	 */
2568 	fxp_scb_wait(sc);
2569 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2570 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2571 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2572 
2573 	ifp->if_timer = 2;
2574 	return;
2575 }
2576 
2577 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2578 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2579 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2580 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2581 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2582 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2583 
2584 #define UCODE(x)	x, sizeof(x)
2585 
2586 struct ucode {
2587 	u_int32_t	revision;
2588 	u_int32_t	*ucode;
2589 	int		length;
2590 	u_short		int_delay_offset;
2591 	u_short		bundle_max_offset;
2592 } ucode_table[] = {
2593 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2594 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2595 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2596 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2597 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2598 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2599 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2600 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2601 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2602 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2603 	{ 0, NULL, 0, 0, 0 }
2604 };
2605 
2606 static void
2607 fxp_load_ucode(struct fxp_softc *sc)
2608 {
2609 	struct ucode *uc;
2610 	struct fxp_cb_ucode *cbp;
2611 
2612 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2613 		if (sc->revision == uc->revision)
2614 			break;
2615 	if (uc->ucode == NULL)
2616 		return;
2617 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2618 	cbp->cb_status = 0;
2619 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2620 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2621 	memcpy(cbp->ucode, uc->ucode, uc->length);
2622 	if (uc->int_delay_offset)
2623 		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2624 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2625 	if (uc->bundle_max_offset)
2626 		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2627 		    htole16(sc->tunable_bundle_max);
2628 	/*
2629 	 * Download the ucode to the chip.
2630 	 */
2631 	fxp_scb_wait(sc);
2632 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2633 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2634 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2635 	/* ...and wait for it to complete. */
2636 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2637 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2638 	device_printf(sc->dev,
2639 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2640 	    sc->tunable_int_delay,
2641 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2642 	sc->flags |= FXP_FLAG_UCODE;
2643 }
2644 
2645 static int
2646 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2647 {
2648 	int error, value;
2649 
2650 	value = *(int *)arg1;
2651 	error = sysctl_handle_int(oidp, &value, 0, req);
2652 	if (error || !req->newptr)
2653 		return (error);
2654 	if (value < low || value > high)
2655 		return (EINVAL);
2656 	*(int *)arg1 = value;
2657 	return (0);
2658 }
2659 
2660 /*
2661  * Interrupt delay is expressed in microseconds, a multiplier is used
2662  * to convert this to the appropriate clock ticks before using.
2663  */
2664 static int
2665 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2666 {
2667 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2668 }
2669 
2670 static int
2671 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2672 {
2673 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2674 }
2675