xref: /freebsd/sys/dev/fxp/if_fxp.c (revision dce6e6518b85561495cff38a3074a69d29d58a55)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 /*
31  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/endian.h>
40 #include <sys/mbuf.h>
41 		/* #include <sys/mutex.h> */
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/sysctl.h>
45 
46 #include <net/if.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 
50 #include <net/bpf.h>
51 #include <sys/sockio.h>
52 #include <sys/bus.h>
53 #include <machine/bus.h>
54 #include <sys/rman.h>
55 #include <machine/resource.h>
56 
57 #include <net/ethernet.h>
58 #include <net/if_arp.h>
59 
60 #include <machine/clock.h>	/* for DELAY */
61 
62 #include <net/if_types.h>
63 #include <net/if_vlan_var.h>
64 
65 #ifdef FXP_IP_CSUM_WAR
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <machine/in_cksum.h>
70 #endif
71 
72 #include <pci/pcivar.h>
73 #include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <dev/fxp/if_fxpreg.h>
79 #include <dev/fxp/if_fxpvar.h>
80 #include <dev/fxp/rcvbundl.h>
81 
82 MODULE_DEPEND(fxp, pci, 1, 1, 1);
83 MODULE_DEPEND(fxp, ether, 1, 1, 1);
84 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
85 #include "miibus_if.h"
86 
87 /*
88  * NOTE!  On the Alpha, we have an alignment constraint.  The
89  * card DMAs the packet immediately following the RFA.  However,
90  * the first thing in the packet is a 14-byte Ethernet header.
91  * This means that the packet is misaligned.  To compensate,
92  * we actually offset the RFA 2 bytes into the cluster.  This
93  * alignes the packet after the Ethernet header at a 32-bit
94  * boundary.  HOWEVER!  This means that the RFA is misaligned!
95  */
96 #define	RFA_ALIGNMENT_FUDGE	2
97 
98 /*
99  * Set initial transmit threshold at 64 (512 bytes). This is
100  * increased by 64 (512 bytes) at a time, to maximum of 192
101  * (1536 bytes), if an underrun occurs.
102  */
103 static int tx_threshold = 64;
104 
105 /*
106  * The configuration byte map has several undefined fields which
107  * must be one or must be zero.  Set up a template for these bits
108  * only, (assuming a 82557 chip) leaving the actual configuration
109  * to fxp_init.
110  *
111  * See struct fxp_cb_config for the bit definitions.
112  */
113 static u_char fxp_cb_config_template[] = {
114 	0x0, 0x0,		/* cb_status */
115 	0x0, 0x0,		/* cb_command */
116 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
117 	0x0,	/*  0 */
118 	0x0,	/*  1 */
119 	0x0,	/*  2 */
120 	0x0,	/*  3 */
121 	0x0,	/*  4 */
122 	0x0,	/*  5 */
123 	0x32,	/*  6 */
124 	0x0,	/*  7 */
125 	0x0,	/*  8 */
126 	0x0,	/*  9 */
127 	0x6,	/* 10 */
128 	0x0,	/* 11 */
129 	0x0,	/* 12 */
130 	0x0,	/* 13 */
131 	0xf2,	/* 14 */
132 	0x48,	/* 15 */
133 	0x0,	/* 16 */
134 	0x40,	/* 17 */
135 	0xf0,	/* 18 */
136 	0x0,	/* 19 */
137 	0x3f,	/* 20 */
138 	0x5	/* 21 */
139 };
140 
141 struct fxp_ident {
142 	u_int16_t	devid;
143 	char 		*name;
144 };
145 
146 /*
147  * Claim various Intel PCI device identifiers for this driver.  The
148  * sub-vendor and sub-device field are extensively used to identify
149  * particular variants, but we don't currently differentiate between
150  * them.
151  */
152 static struct fxp_ident fxp_ident_table[] = {
153     { 0x1029,		"Intel 82559 PCI/CardBus Pro/100" },
154     { 0x1030,		"Intel 82559 Pro/100 Ethernet" },
155     { 0x1031,		"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
156     { 0x1032,		"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
157     { 0x1033,		"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
158     { 0x1034,		"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
159     { 0x1035,		"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
160     { 0x1036,		"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
161     { 0x1037,		"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162     { 0x1038,		"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
163     { 0x1039,		"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
164     { 0x103A,		"Intel 82801DB (ICH4) Pro/100 Ethernet" },
165     { 0x103B,		"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
166     { 0x103C,		"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167     { 0x103D,		"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
168     { 0x103E,		"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
169     { 0x1050,		"Intel 82801BA (D865) Pro/100 VE Ethernet" },
170     { 0x1059,		"Intel 82551QM Pro/100 M Mobile Connection" },
171     { 0x1209,		"Intel 82559ER Embedded 10/100 Ethernet" },
172     { 0x1229,		"Intel 82557/8/9 EtherExpress Pro/100(B) Ethernet" },
173     { 0x2449,		"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
174     { 0,		NULL },
175 };
176 
177 #ifdef FXP_IP_CSUM_WAR
178 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
179 #else
180 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
181 #endif
182 
183 static int		fxp_probe(device_t dev);
184 static int		fxp_attach(device_t dev);
185 static int		fxp_detach(device_t dev);
186 static int		fxp_shutdown(device_t dev);
187 static int		fxp_suspend(device_t dev);
188 static int		fxp_resume(device_t dev);
189 
190 static void		fxp_intr(void *xsc);
191 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
192 			    u_int8_t statack, int count);
193 static void 		fxp_init(void *xsc);
194 static void 		fxp_init_body(struct fxp_softc *sc);
195 static void 		fxp_tick(void *xsc);
196 #ifndef BURN_BRIDGES
197 static void		fxp_powerstate_d0(device_t dev);
198 #endif
199 static void 		fxp_start(struct ifnet *ifp);
200 static void 		fxp_start_body(struct ifnet *ifp);
201 static void		fxp_stop(struct fxp_softc *sc);
202 static void 		fxp_release(struct fxp_softc *sc);
203 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
204 			    caddr_t data);
205 static void 		fxp_watchdog(struct ifnet *ifp);
206 static int		fxp_add_rfabuf(struct fxp_softc *sc,
207     			    struct fxp_rx *rxp);
208 static int		fxp_mc_addrs(struct fxp_softc *sc);
209 static void		fxp_mc_setup(struct fxp_softc *sc);
210 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
211 			    int autosize);
212 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
213 			    u_int16_t data);
214 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
215 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
216 			    int offset, int words);
217 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
218 			    int offset, int words);
219 static int		fxp_ifmedia_upd(struct ifnet *ifp);
220 static void		fxp_ifmedia_sts(struct ifnet *ifp,
221 			    struct ifmediareq *ifmr);
222 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
223 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
224 			    struct ifmediareq *ifmr);
225 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
226 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
227 			    int value);
228 static void		fxp_load_ucode(struct fxp_softc *sc);
229 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
230 			    int low, int high);
231 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
232 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
233 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
234 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
235 static __inline void	fxp_dma_wait(struct fxp_softc *sc,
236     			    volatile u_int16_t *status, bus_dma_tag_t dmat,
237 			    bus_dmamap_t map);
238 
239 static device_method_t fxp_methods[] = {
240 	/* Device interface */
241 	DEVMETHOD(device_probe,		fxp_probe),
242 	DEVMETHOD(device_attach,	fxp_attach),
243 	DEVMETHOD(device_detach,	fxp_detach),
244 	DEVMETHOD(device_shutdown,	fxp_shutdown),
245 	DEVMETHOD(device_suspend,	fxp_suspend),
246 	DEVMETHOD(device_resume,	fxp_resume),
247 
248 	/* MII interface */
249 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
250 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
251 
252 	{ 0, 0 }
253 };
254 
255 static driver_t fxp_driver = {
256 	"fxp",
257 	fxp_methods,
258 	sizeof(struct fxp_softc),
259 };
260 
261 static devclass_t fxp_devclass;
262 
263 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
264 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
265 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
266 
267 static int fxp_rnr;
268 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
269 
270 static int fxp_noflow;
271 SYSCTL_INT(_hw, OID_AUTO, fxp_noflow, CTLFLAG_RW, &fxp_noflow, 0, "fxp flow control disabled");
272 TUNABLE_INT("hw.fxp_noflow", &fxp_noflow);
273 
274 /*
275  * Wait for the previous command to be accepted (but not necessarily
276  * completed).
277  */
278 static __inline void
279 fxp_scb_wait(struct fxp_softc *sc)
280 {
281 	int i = 10000;
282 
283 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
284 		DELAY(2);
285 	if (i == 0)
286 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
287 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
288 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
289 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
290 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
291 }
292 
293 static __inline void
294 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
295 {
296 
297 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
298 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
299 		fxp_scb_wait(sc);
300 	}
301 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
302 }
303 
304 static __inline void
305 fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
306     bus_dma_tag_t dmat, bus_dmamap_t map)
307 {
308 	int i = 10000;
309 
310 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
311 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
312 		DELAY(2);
313 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
314 	}
315 	if (i == 0)
316 		device_printf(sc->dev, "DMA timeout\n");
317 }
318 
319 /*
320  * Return identification string if this is device is ours.
321  */
322 static int
323 fxp_probe(device_t dev)
324 {
325 	u_int16_t devid;
326 	struct fxp_ident *ident;
327 
328 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
329 		devid = pci_get_device(dev);
330 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
331 			if (ident->devid == devid) {
332 				device_set_desc(dev, ident->name);
333 				return (0);
334 			}
335 		}
336 	}
337 	return (ENXIO);
338 }
339 
340 #ifndef BURN_BRIDGES
341 static void
342 fxp_powerstate_d0(device_t dev)
343 {
344 #if __FreeBSD_version >= 430002
345 	u_int32_t iobase, membase, irq;
346 
347 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
348 		/* Save important PCI config data. */
349 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
350 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
351 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
352 
353 		/* Reset the power state. */
354 		device_printf(dev, "chip is in D%d power mode "
355 		    "-- setting to D0\n", pci_get_powerstate(dev));
356 
357 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
358 
359 		/* Restore PCI config data. */
360 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
361 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
362 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
363 	}
364 #endif
365 }
366 #endif
367 
368 static void
369 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
370 {
371 	u_int32_t *addr;
372 
373 	if (error)
374 		return;
375 
376 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
377 	addr = arg;
378 	*addr = segs->ds_addr;
379 }
380 
381 static int
382 fxp_attach(device_t dev)
383 {
384 	int error = 0;
385 	struct fxp_softc *sc = device_get_softc(dev);
386 	struct ifnet *ifp;
387 	struct fxp_rx *rxp;
388 	u_int32_t val;
389 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
390 	int i, rid, m1, m2, prefer_iomap, maxtxseg;
391 	int s, ipcbxmit_disable;
392 
393 	sc->dev = dev;
394 	callout_handle_init(&sc->stat_ch);
395 	sysctl_ctx_init(&sc->sysctl_ctx);
396 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
397 	    MTX_DEF);
398 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
399 	    fxp_serial_ifmedia_sts);
400 
401 	s = splimp();
402 
403 	/*
404 	 * Enable bus mastering.
405 	 */
406 	pci_enable_busmaster(dev);
407 	val = pci_read_config(dev, PCIR_COMMAND, 2);
408 #ifndef BURN_BRIDGES
409 	fxp_powerstate_d0(dev);
410 #endif
411 	/*
412 	 * Figure out which we should try first - memory mapping or i/o mapping?
413 	 * We default to memory mapping. Then we accept an override from the
414 	 * command line. Then we check to see which one is enabled.
415 	 */
416 	m1 = PCIM_CMD_MEMEN;
417 	m2 = PCIM_CMD_PORTEN;
418 	prefer_iomap = 0;
419 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
420 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
421 		m1 = PCIM_CMD_PORTEN;
422 		m2 = PCIM_CMD_MEMEN;
423 	}
424 
425 	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
426 	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
427 	sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
428 	                                     0, ~0, 1, RF_ACTIVE);
429 	if (sc->mem == NULL) {
430 		sc->rtp =
431 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
432 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
433 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
434                                             0, ~0, 1, RF_ACTIVE);
435 	}
436 
437 	if (!sc->mem) {
438 		error = ENXIO;
439 		goto fail;
440         }
441 	if (bootverbose) {
442 		device_printf(dev, "using %s space register mapping\n",
443 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
444 	}
445 
446 	sc->sc_st = rman_get_bustag(sc->mem);
447 	sc->sc_sh = rman_get_bushandle(sc->mem);
448 
449 	/*
450 	 * Allocate our interrupt.
451 	 */
452 	rid = 0;
453 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
454 				 RF_SHAREABLE | RF_ACTIVE);
455 	if (sc->irq == NULL) {
456 		device_printf(dev, "could not map interrupt\n");
457 		error = ENXIO;
458 		goto fail;
459 	}
460 
461 	/*
462 	 * Reset to a stable state.
463 	 */
464 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
465 	DELAY(10);
466 
467 	/*
468 	 * Find out how large of an SEEPROM we have.
469 	 */
470 	fxp_autosize_eeprom(sc);
471 
472 	/*
473 	 * Determine whether we must use the 503 serial interface.
474 	 */
475 	fxp_read_eeprom(sc, &data, 6, 1);
476 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
477 	    (data & FXP_PHY_SERIAL_ONLY))
478 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
479 
480 	/*
481 	 * Create the sysctl tree
482 	 */
483 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
484 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
485 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
486 	if (sc->sysctl_tree == NULL) {
487 		error = ENXIO;
488 		goto fail;
489 	}
490 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
491 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
492 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
493 	    "FXP driver receive interrupt microcode bundling delay");
494 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
495 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
496 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
497 	    "FXP driver receive interrupt microcode bundle size limit");
498 
499 	/*
500 	 * Pull in device tunables.
501 	 */
502 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
503 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
504 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
505 	    "int_delay", &sc->tunable_int_delay);
506 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
507 	    "bundle_max", &sc->tunable_bundle_max);
508 
509 	/*
510 	 * Find out the chip revision; lump all 82557 revs together.
511 	 */
512 	fxp_read_eeprom(sc, &data, 5, 1);
513 	if ((data >> 8) == 1)
514 		sc->revision = FXP_REV_82557;
515 	else
516 		sc->revision = pci_get_revid(dev);
517 
518 	/*
519 	 * Enable workarounds for certain chip revision deficiencies.
520 	 *
521 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
522 	 * some systems based a normal 82559 design, have a defect where
523 	 * the chip can cause a PCI protocol violation if it receives
524 	 * a CU_RESUME command when it is entering the IDLE state.  The
525 	 * workaround is to disable Dynamic Standby Mode, so the chip never
526 	 * deasserts CLKRUN#, and always remains in an active state.
527 	 *
528 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
529 	 */
530 	i = pci_get_device(dev);
531 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
532 	    sc->revision >= FXP_REV_82559_A0) {
533 		fxp_read_eeprom(sc, &data, 10, 1);
534 		if (data & 0x02) {			/* STB enable */
535 			u_int16_t cksum;
536 			int i;
537 
538 			device_printf(dev,
539 			    "Disabling dynamic standby mode in EEPROM\n");
540 			data &= ~0x02;
541 			fxp_write_eeprom(sc, &data, 10, 1);
542 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
543 			cksum = 0;
544 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
545 				fxp_read_eeprom(sc, &data, i, 1);
546 				cksum += data;
547 			}
548 			i = (1 << sc->eeprom_size) - 1;
549 			cksum = 0xBABA - cksum;
550 			fxp_read_eeprom(sc, &data, i, 1);
551 			fxp_write_eeprom(sc, &cksum, i, 1);
552 			device_printf(dev,
553 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
554 			    i, data, cksum);
555 #if 1
556 			/*
557 			 * If the user elects to continue, try the software
558 			 * workaround, as it is better than nothing.
559 			 */
560 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
561 #endif
562 		}
563 	}
564 
565 	/*
566 	 * If we are not a 82557 chip, we can enable extended features.
567 	 */
568 	if (sc->revision != FXP_REV_82557) {
569 		/*
570 		 * If MWI is enabled in the PCI configuration, and there
571 		 * is a valid cacheline size (8 or 16 dwords), then tell
572 		 * the board to turn on MWI.
573 		 */
574 		if (val & PCIM_CMD_MWRICEN &&
575 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
576 			sc->flags |= FXP_FLAG_MWI_ENABLE;
577 
578 		/* turn on the extended TxCB feature */
579 		sc->flags |= FXP_FLAG_EXT_TXCB;
580 
581 		/* enable reception of long frames for VLAN */
582 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
583 	}
584 
585 	/*
586 	 * Enable use of extended RFDs and TCBs for 82550
587 	 * and later chips. Note: we need extended TXCB support
588 	 * too, but that's already enabled by the code above.
589 	 * Be careful to do this only on the right devices.
590 	 *
591 	 * At least some 82550 cards probed as "chip=0x12298086 rev=0x0d"
592 	 * truncate packets that end with an mbuf containing 1 to 3 bytes
593 	 * when used with this feature enabled in the previous version of the
594 	 * driver.  This problem appears to be fixed now that the driver
595 	 * always sets the hardware parse bit in the IPCB structure, which
596 	 * the "Intel 8255x 10/100 Mbps Ethernet Controller Family Open
597 	 * Source Software Developer Manual" says is necessary in the
598 	 * cases where packet truncation was observed.
599 	 *
600 	 * The device hint "hint.fxp.UNIT_NUMBER.ipcbxmit_disable"
601 	 * allows this feature to be disabled at boot time.
602 	 *
603 	 * If fxp is not compiled into the kernel, this feature may also
604 	 * be disabled at run time:
605 	 *    # kldunload fxp
606 	 *    # kenv hint.fxp.0.ipcbxmit_disable=1
607 	 *    # kldload fxp
608 	 */
609 
610 	if (resource_int_value("fxp", device_get_unit(dev), "ipcbxmit_disable",
611 	    &ipcbxmit_disable) != 0)
612 		ipcbxmit_disable = 0;
613 	if (ipcbxmit_disable == 0 && (sc->revision == FXP_REV_82550 ||
614 	    sc->revision == FXP_REV_82550_C)) {
615 		sc->rfa_size = sizeof (struct fxp_rfa);
616 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
617 		sc->flags |= FXP_FLAG_EXT_RFA;
618 	} else {
619 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
620 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
621 	}
622 
623 	/*
624 	 * Allocate DMA tags and DMA safe memory.
625 	 */
626 	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
627 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
628 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
629 	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
630 	if (error) {
631 		device_printf(dev, "could not allocate dma tag\n");
632 		goto fail;
633 	}
634 
635 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
636 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
637 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
638 	    &sc->fxp_stag);
639 	if (error) {
640 		device_printf(dev, "could not allocate dma tag\n");
641 		goto fail;
642 	}
643 
644 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
645 	    BUS_DMA_NOWAIT, &sc->fxp_smap);
646 	if (error)
647 		goto fail;
648 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
649 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
650 	if (error) {
651 		device_printf(dev, "could not map the stats buffer\n");
652 		goto fail;
653 	}
654 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
655 
656 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
657 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
658 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
659 	if (error) {
660 		device_printf(dev, "could not allocate dma tag\n");
661 		goto fail;
662 	}
663 
664 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
665 	    BUS_DMA_NOWAIT, &sc->cbl_map);
666 	if (error)
667 		goto fail;
668 	bzero(sc->fxp_desc.cbl_list, FXP_TXCB_SZ);
669 
670 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
671 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
672 	    &sc->fxp_desc.cbl_addr, 0);
673 	if (error) {
674 		device_printf(dev, "could not map DMA memory\n");
675 		goto fail;
676 	}
677 
678 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
679 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
680 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
681 	    &sc->mcs_tag);
682 	if (error) {
683 		device_printf(dev, "could not allocate dma tag\n");
684 		goto fail;
685 	}
686 
687 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
688 	    BUS_DMA_NOWAIT, &sc->mcs_map);
689 	if (error)
690 		goto fail;
691 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
692 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
693 	if (error) {
694 		device_printf(dev, "can't map the multicast setup command\n");
695 		goto fail;
696 	}
697 
698 	/*
699 	 * Pre-allocate the TX DMA maps.
700 	 */
701 	for (i = 0; i < FXP_NTXCB; i++) {
702 		error = bus_dmamap_create(sc->fxp_mtag, 0,
703 		    &sc->fxp_desc.tx_list[i].tx_map);
704 		if (error) {
705 			device_printf(dev, "can't create DMA map for TX\n");
706 			goto fail;
707 		}
708 	}
709 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
710 	if (error) {
711 		device_printf(dev, "can't create spare DMA map\n");
712 		goto fail;
713 	}
714 
715 	/*
716 	 * Pre-allocate our receive buffers.
717 	 */
718 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
719 	for (i = 0; i < FXP_NRFABUFS; i++) {
720 		rxp = &sc->fxp_desc.rx_list[i];
721 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
722 		if (error) {
723 			device_printf(dev, "can't create DMA map for RX\n");
724 			goto fail;
725 		}
726 		if (fxp_add_rfabuf(sc, rxp) != 0) {
727 			error = ENOMEM;
728 			goto fail;
729 		}
730 	}
731 
732 	/*
733 	 * Read MAC address.
734 	 */
735 	fxp_read_eeprom(sc, myea, 0, 3);
736 	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
737 	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
738 	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
739 	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
740 	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
741 	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
742 	device_printf(dev, "Ethernet address %6D%s\n",
743 	    sc->arpcom.ac_enaddr, ":",
744 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
745 	if (bootverbose) {
746 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
747 		    pci_get_vendor(dev), pci_get_device(dev),
748 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
749 		    pci_get_revid(dev));
750 		fxp_read_eeprom(sc, &data, 10, 1);
751 		device_printf(dev, "Dynamic Standby mode is %s\n",
752 		    data & 0x02 ? "enabled" : "disabled");
753 	}
754 
755 	/*
756 	 * If this is only a 10Mbps device, then there is no MII, and
757 	 * the PHY will use a serial interface instead.
758 	 *
759 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
760 	 * doesn't have a programming interface of any sort.  The
761 	 * media is sensed automatically based on how the link partner
762 	 * is configured.  This is, in essence, manual configuration.
763 	 */
764 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
765 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
766 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
767 	} else {
768 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
769 		    fxp_ifmedia_sts)) {
770 	                device_printf(dev, "MII without any PHY!\n");
771 			error = ENXIO;
772 			goto fail;
773 		}
774 	}
775 
776 	ifp = &sc->arpcom.ac_if;
777 	ifp->if_unit = device_get_unit(dev);
778 	ifp->if_name = "fxp";
779 	ifp->if_output = ether_output;
780 	ifp->if_baudrate = 100000000;
781 	ifp->if_init = fxp_init;
782 	ifp->if_softc = sc;
783 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
784 	ifp->if_ioctl = fxp_ioctl;
785 	ifp->if_start = fxp_start;
786 	ifp->if_watchdog = fxp_watchdog;
787 
788 	/* Enable checksum offload for 82550 or better chips */
789 	if (sc->flags & FXP_FLAG_EXT_RFA) {
790 		ifp->if_hwassist = FXP_CSUM_FEATURES;
791 		ifp->if_capabilities = IFCAP_HWCSUM;
792 		ifp->if_capenable = ifp->if_capabilities;
793 	}
794 
795 	/*
796 	 * Attach the interface.
797 	 */
798 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
799 
800 	/*
801 	 * Tell the upper layer(s) we support long frames.
802 	 */
803 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
804 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
805 
806 	/*
807 	 * Let the system queue as many packets as we have available
808 	 * TX descriptors.
809 	 */
810 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
811 
812 	/*
813 	 * Hook our interrupt after all initialization is complete.
814 	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
815 	 * however, ifp and its functions are not fully locked so MPSAFE
816 	 * should not be used unless you can handle potential data loss.
817 	 */
818 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET /*|INTR_MPSAFE*/,
819 			       fxp_intr, sc, &sc->ih);
820 	if (error) {
821 		device_printf(dev, "could not setup irq\n");
822 		ether_ifdetach(&sc->arpcom.ac_if);
823 		goto fail;
824 	}
825 
826 fail:
827 	splx(s);
828 	if (error)
829 		fxp_release(sc);
830 	return (error);
831 }
832 
833 /*
834  * Release all resources.  The softc lock should not be held and the
835  * interrupt should already be torn down.
836  */
837 static void
838 fxp_release(struct fxp_softc *sc)
839 {
840 	struct fxp_rx *rxp;
841 	struct fxp_tx *txp;
842 	int i;
843 
844 	mtx_assert(&sc->sc_mtx, MA_NOTOWNED);
845 	if (sc->ih)
846 		panic("fxp_release() called with intr handle still active");
847 	if (sc->miibus)
848 		device_delete_child(sc->dev, sc->miibus);
849 	bus_generic_detach(sc->dev);
850 	ifmedia_removeall(&sc->sc_media);
851 	if (sc->fxp_desc.cbl_list) {
852 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
853 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
854 		    sc->cbl_map);
855 	}
856 	if (sc->fxp_stats) {
857 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
858 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
859 	}
860 	if (sc->mcsp) {
861 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
862 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
863 	}
864 	if (sc->irq)
865 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
866 	if (sc->mem)
867 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
868 	if (sc->fxp_mtag) {
869 		for (i = 0; i < FXP_NRFABUFS; i++) {
870 			rxp = &sc->fxp_desc.rx_list[i];
871 			if (rxp->rx_mbuf != NULL) {
872 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
873 				    BUS_DMASYNC_POSTREAD);
874 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
875 				m_freem(rxp->rx_mbuf);
876 			}
877 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
878 		}
879 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
880 		bus_dma_tag_destroy(sc->fxp_mtag);
881 	}
882 	if (sc->fxp_stag) {
883 		for (i = 0; i < FXP_NTXCB; i++) {
884 			txp = &sc->fxp_desc.tx_list[i];
885 			if (txp->tx_mbuf != NULL) {
886 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
887 				    BUS_DMASYNC_POSTWRITE);
888 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
889 				m_freem(txp->tx_mbuf);
890 			}
891 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
892 		}
893 		bus_dma_tag_destroy(sc->fxp_stag);
894 	}
895 	if (sc->cbl_tag)
896 		bus_dma_tag_destroy(sc->cbl_tag);
897 	if (sc->mcs_tag)
898 		bus_dma_tag_destroy(sc->mcs_tag);
899 
900         sysctl_ctx_free(&sc->sysctl_ctx);
901 
902 	mtx_destroy(&sc->sc_mtx);
903 }
904 
905 /*
906  * Detach interface.
907  */
908 static int
909 fxp_detach(device_t dev)
910 {
911 	struct fxp_softc *sc = device_get_softc(dev);
912 	int s;
913 
914 	FXP_LOCK(sc);
915 	s = splimp();
916 
917 	sc->suspended = 1;	/* Do same thing as we do for suspend */
918 	/*
919 	 * Close down routes etc.
920 	 */
921 	ether_ifdetach(&sc->arpcom.ac_if);
922 
923 	/*
924 	 * Stop DMA and drop transmit queue, but disable interrupts first.
925 	 */
926 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
927 	fxp_stop(sc);
928 	FXP_UNLOCK(sc);
929 
930 	/*
931 	 * Unhook interrupt before dropping lock. This is to prevent
932 	 * races with fxp_intr().
933 	 */
934 	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
935 	sc->ih = NULL;
936 
937 	splx(s);
938 
939 	/* Release our allocated resources. */
940 	fxp_release(sc);
941 	return (0);
942 }
943 
944 /*
945  * Device shutdown routine. Called at system shutdown after sync. The
946  * main purpose of this routine is to shut off receiver DMA so that
947  * kernel memory doesn't get clobbered during warmboot.
948  */
949 static int
950 fxp_shutdown(device_t dev)
951 {
952 	/*
953 	 * Make sure that DMA is disabled prior to reboot. Not doing
954 	 * do could allow DMA to corrupt kernel memory during the
955 	 * reboot before the driver initializes.
956 	 */
957 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
958 	return (0);
959 }
960 
961 /*
962  * Device suspend routine.  Stop the interface and save some PCI
963  * settings in case the BIOS doesn't restore them properly on
964  * resume.
965  */
966 static int
967 fxp_suspend(device_t dev)
968 {
969 	struct fxp_softc *sc = device_get_softc(dev);
970 	int i, s;
971 
972 	FXP_LOCK(sc);
973 	s = splimp();
974 
975 	fxp_stop(sc);
976 
977 	for (i = 0; i < 5; i++)
978 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
979 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
980 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
981 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
982 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
983 
984 	sc->suspended = 1;
985 
986 	FXP_UNLOCK(sc);
987 	splx(s);
988 	return (0);
989 }
990 
991 /*
992  * Device resume routine.  Restore some PCI settings in case the BIOS
993  * doesn't, re-enable busmastering, and restart the interface if
994  * appropriate.
995  */
996 static int
997 fxp_resume(device_t dev)
998 {
999 	struct fxp_softc *sc = device_get_softc(dev);
1000 	struct ifnet *ifp = &sc->sc_if;
1001 	u_int16_t pci_command;
1002 	int i, s;
1003 
1004 	FXP_LOCK(sc);
1005 	s = splimp();
1006 #ifndef BURN_BRIDGES
1007 	fxp_powerstate_d0(dev);
1008 #endif
1009 	/* better way to do this? */
1010 	for (i = 0; i < 5; i++)
1011 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
1012 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1013 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1014 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1015 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1016 
1017 	/* reenable busmastering */
1018 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
1019 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1020 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
1021 
1022 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1023 	DELAY(10);
1024 
1025 	/* reinitialize interface if necessary */
1026 	if (ifp->if_flags & IFF_UP)
1027 		fxp_init_body(sc);
1028 
1029 	sc->suspended = 0;
1030 
1031 	FXP_UNLOCK(sc);
1032 	splx(s);
1033 	return (0);
1034 }
1035 
1036 static void
1037 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1038 {
1039 	u_int16_t reg;
1040 	int x;
1041 
1042 	/*
1043 	 * Shift in data.
1044 	 */
1045 	for (x = 1 << (length - 1); x; x >>= 1) {
1046 		if (data & x)
1047 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1048 		else
1049 			reg = FXP_EEPROM_EECS;
1050 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1051 		DELAY(1);
1052 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1053 		DELAY(1);
1054 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1055 		DELAY(1);
1056 	}
1057 }
1058 
1059 /*
1060  * Read from the serial EEPROM. Basically, you manually shift in
1061  * the read opcode (one bit at a time) and then shift in the address,
1062  * and then you shift out the data (all of this one bit at a time).
1063  * The word size is 16 bits, so you have to provide the address for
1064  * every 16 bits of data.
1065  */
1066 static u_int16_t
1067 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1068 {
1069 	u_int16_t reg, data;
1070 	int x;
1071 
1072 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1073 	/*
1074 	 * Shift in read opcode.
1075 	 */
1076 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1077 	/*
1078 	 * Shift in address.
1079 	 */
1080 	data = 0;
1081 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1082 		if (offset & x)
1083 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1084 		else
1085 			reg = FXP_EEPROM_EECS;
1086 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1087 		DELAY(1);
1088 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1089 		DELAY(1);
1090 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1091 		DELAY(1);
1092 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1093 		data++;
1094 		if (autosize && reg == 0) {
1095 			sc->eeprom_size = data;
1096 			break;
1097 		}
1098 	}
1099 	/*
1100 	 * Shift out data.
1101 	 */
1102 	data = 0;
1103 	reg = FXP_EEPROM_EECS;
1104 	for (x = 1 << 15; x; x >>= 1) {
1105 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1106 		DELAY(1);
1107 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1108 			data |= x;
1109 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1110 		DELAY(1);
1111 	}
1112 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1113 	DELAY(1);
1114 
1115 	return (data);
1116 }
1117 
1118 static void
1119 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1120 {
1121 	int i;
1122 
1123 	/*
1124 	 * Erase/write enable.
1125 	 */
1126 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1127 	fxp_eeprom_shiftin(sc, 0x4, 3);
1128 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1129 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1130 	DELAY(1);
1131 	/*
1132 	 * Shift in write opcode, address, data.
1133 	 */
1134 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1135 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1136 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1137 	fxp_eeprom_shiftin(sc, data, 16);
1138 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1139 	DELAY(1);
1140 	/*
1141 	 * Wait for EEPROM to finish up.
1142 	 */
1143 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1144 	DELAY(1);
1145 	for (i = 0; i < 1000; i++) {
1146 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1147 			break;
1148 		DELAY(50);
1149 	}
1150 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1151 	DELAY(1);
1152 	/*
1153 	 * Erase/write disable.
1154 	 */
1155 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1156 	fxp_eeprom_shiftin(sc, 0x4, 3);
1157 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1158 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1159 	DELAY(1);
1160 }
1161 
1162 /*
1163  * From NetBSD:
1164  *
1165  * Figure out EEPROM size.
1166  *
1167  * 559's can have either 64-word or 256-word EEPROMs, the 558
1168  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1169  * talks about the existance of 16 to 256 word EEPROMs.
1170  *
1171  * The only known sizes are 64 and 256, where the 256 version is used
1172  * by CardBus cards to store CIS information.
1173  *
1174  * The address is shifted in msb-to-lsb, and after the last
1175  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1176  * after which follows the actual data. We try to detect this zero, by
1177  * probing the data-out bit in the EEPROM control register just after
1178  * having shifted in a bit. If the bit is zero, we assume we've
1179  * shifted enough address bits. The data-out should be tri-state,
1180  * before this, which should translate to a logical one.
1181  */
1182 static void
1183 fxp_autosize_eeprom(struct fxp_softc *sc)
1184 {
1185 
1186 	/* guess maximum size of 256 words */
1187 	sc->eeprom_size = 8;
1188 
1189 	/* autosize */
1190 	(void) fxp_eeprom_getword(sc, 0, 1);
1191 }
1192 
1193 static void
1194 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1195 {
1196 	int i;
1197 
1198 	for (i = 0; i < words; i++)
1199 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1200 }
1201 
1202 static void
1203 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1204 {
1205 	int i;
1206 
1207 	for (i = 0; i < words; i++)
1208 		fxp_eeprom_putword(sc, offset + i, data[i]);
1209 }
1210 
1211 static void
1212 fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1213     bus_size_t mapsize, int error)
1214 {
1215 	struct fxp_softc *sc;
1216 	struct fxp_cb_tx *txp;
1217 	int i;
1218 
1219 	if (error)
1220 		return;
1221 
1222 	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1223 
1224 	sc = arg;
1225 	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1226 	for (i = 0; i < nseg; i++) {
1227 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1228 		/*
1229 		 * If this is an 82550/82551, then we're using extended
1230 		 * TxCBs _and_ we're using checksum offload. This means
1231 		 * that the TxCB is really an IPCB. One major difference
1232 		 * between the two is that with plain extended TxCBs,
1233 		 * the bottom half of the TxCB contains two entries from
1234 		 * the TBD array, whereas IPCBs contain just one entry:
1235 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1236 		 * checksum offload control bits. So to make things work
1237 		 * right, we have to start filling in the TBD array
1238 		 * starting from a different place depending on whether
1239 		 * the chip is an 82550/82551 or not.
1240 		 */
1241 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1242 			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1243 			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1244 		} else {
1245 			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1246 			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1247 		}
1248 	}
1249 	txp->tbd_number = nseg;
1250 }
1251 
1252 /*
1253  * Grab the softc lock and call the real fxp_start_body() routine
1254  */
1255 static void
1256 fxp_start(struct ifnet *ifp)
1257 {
1258 	struct fxp_softc *sc = ifp->if_softc;
1259 
1260 	FXP_LOCK(sc);
1261 	fxp_start_body(ifp);
1262 	FXP_UNLOCK(sc);
1263 }
1264 
1265 /*
1266  * Start packet transmission on the interface.
1267  * This routine must be called with the softc lock held, and is an
1268  * internal entry point only.
1269  */
1270 static void
1271 fxp_start_body(struct ifnet *ifp)
1272 {
1273 	struct fxp_softc *sc = ifp->if_softc;
1274 	struct fxp_tx *txp;
1275 	struct mbuf *mb_head;
1276 	int error;
1277 
1278 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1279 	/*
1280 	 * See if we need to suspend xmit until the multicast filter
1281 	 * has been reprogrammed (which can only be done at the head
1282 	 * of the command chain).
1283 	 */
1284 	if (sc->need_mcsetup) {
1285 		return;
1286 	}
1287 
1288 	txp = NULL;
1289 
1290 	/*
1291 	 * We're finished if there is nothing more to add to the list or if
1292 	 * we're all filled up with buffers to transmit.
1293 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1294 	 *       a NOP command when needed.
1295 	 */
1296 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1297 
1298 		/*
1299 		 * Grab a packet to transmit.
1300 		 */
1301 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1302 
1303 		/*
1304 		 * Get pointer to next available tx desc.
1305 		 */
1306 		txp = sc->fxp_desc.tx_last->tx_next;
1307 
1308 		/*
1309 		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1310 		 * Ethernet Controller Family Open Source Software
1311 		 * Developer Manual says:
1312 		 *   Using software parsing is only allowed with legal
1313 		 *   TCP/IP or UDP/IP packets.
1314 		 *   ...
1315 		 *   For all other datagrams, hardware parsing must
1316 		 *   be used.
1317 		 * Software parsing appears to truncate ICMP and
1318 		 * fragmented UDP packets that contain one to three
1319 		 * bytes in the second (and final) mbuf of the packet.
1320 		 */
1321 		if (sc->flags & FXP_FLAG_EXT_RFA)
1322 			txp->tx_cb->ipcb_ip_activation_high =
1323 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1324 
1325 		/*
1326 		 * Deal with TCP/IP checksum offload. Note that
1327 		 * in order for TCP checksum offload to work,
1328 		 * the pseudo header checksum must have already
1329 		 * been computed and stored in the checksum field
1330 		 * in the TCP header. The stack should have
1331 		 * already done this for us.
1332 		 */
1333 
1334 		if (mb_head->m_pkthdr.csum_flags) {
1335 			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1336 				txp->tx_cb->ipcb_ip_schedule =
1337 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1338 				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1339 					txp->tx_cb->ipcb_ip_schedule |=
1340 					    FXP_IPCB_TCP_PACKET;
1341 			}
1342 #ifdef FXP_IP_CSUM_WAR
1343 		/*
1344 		 * XXX The 82550 chip appears to have trouble
1345 		 * dealing with IP header checksums in very small
1346 		 * datagrams, namely fragments from 1 to 3 bytes
1347 		 * in size. For example, say you want to transmit
1348 		 * a UDP packet of 1473 bytes. The packet will be
1349 		 * fragmented over two IP datagrams, the latter
1350 		 * containing only one byte of data. The 82550 will
1351 		 * botch the header checksum on the 1-byte fragment.
1352 		 * As long as the datagram contains 4 or more bytes
1353 		 * of data, you're ok.
1354 		 *
1355                  * The following code attempts to work around this
1356 		 * problem: if the datagram is less than 38 bytes
1357 		 * in size (14 bytes ether header, 20 bytes IP header,
1358 		 * plus 4 bytes of data), we punt and compute the IP
1359 		 * header checksum by hand. This workaround doesn't
1360 		 * work very well, however, since it can be fooled
1361 		 * by things like VLAN tags and IP options that make
1362 		 * the header sizes/offsets vary.
1363 		 */
1364 
1365 			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1366 				if (mb_head->m_pkthdr.len < 38) {
1367 					struct ip *ip;
1368 					mb_head->m_data += ETHER_HDR_LEN;
1369 					ip = mtod(mb_head, struct ip *);
1370 					ip->ip_sum = in_cksum(mb_head,
1371 					    ip->ip_hl << 2);
1372 					mb_head->m_data -= ETHER_HDR_LEN;
1373 				} else {
1374 					txp->tx_cb->ipcb_ip_activation_high =
1375 					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1376 					txp->tx_cb->ipcb_ip_schedule |=
1377 					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1378 				}
1379 			}
1380 #endif
1381 		}
1382 
1383 		/*
1384 		 * Go through each of the mbufs in the chain and initialize
1385 		 * the transmit buffer descriptors with the physical address
1386 		 * and size of the mbuf.
1387 		 */
1388 		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1389 		    mb_head, fxp_dma_map_txbuf, sc, 0);
1390 
1391 		if (error && error != EFBIG) {
1392 			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1393 			    error);
1394 			m_freem(mb_head);
1395 			break;
1396 		}
1397 
1398 		if (error) {
1399 			struct mbuf *mn;
1400 
1401 			/*
1402 			 * We ran out of segments. We have to recopy this
1403 			 * mbuf chain first. Bail out if we can't get the
1404 			 * new buffers.
1405 			 */
1406 			mn = m_defrag(mb_head, M_DONTWAIT);
1407 			if (mn == NULL) {
1408 				m_freem(mb_head);
1409 				break;
1410 			} else {
1411 				mb_head = mn;
1412 			}
1413 			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1414 			    mb_head, fxp_dma_map_txbuf, sc, 0);
1415 			if (error) {
1416 				device_printf(sc->dev,
1417 				    "can't map mbuf (error %d)\n", error);
1418 				m_freem(mb_head);
1419 				break;
1420 			}
1421 		}
1422 
1423 		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1424 		    BUS_DMASYNC_PREWRITE);
1425 
1426 		txp->tx_mbuf = mb_head;
1427 		txp->tx_cb->cb_status = 0;
1428 		txp->tx_cb->byte_count = 0;
1429 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1430 			txp->tx_cb->cb_command =
1431 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1432 			    FXP_CB_COMMAND_S);
1433 		} else {
1434 			txp->tx_cb->cb_command =
1435 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1436 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1437 			/*
1438 			 * Set a 5 second timer just in case we don't hear
1439 			 * from the card again.
1440 			 */
1441 			ifp->if_timer = 5;
1442 		}
1443 		txp->tx_cb->tx_threshold = tx_threshold;
1444 
1445 		/*
1446 		 * Advance the end of list forward.
1447 		 */
1448 
1449 #ifdef __alpha__
1450 		/*
1451 		 * On platforms which can't access memory in 16-bit
1452 		 * granularities, we must prevent the card from DMA'ing
1453 		 * up the status while we update the command field.
1454 		 * This could cause us to overwrite the completion status.
1455 		 * XXX This is probably bogus and we're _not_ looking
1456 		 * for atomicity here.
1457 		 */
1458 		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1459 		    htole16(FXP_CB_COMMAND_S));
1460 #else
1461 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1462 		    htole16(~FXP_CB_COMMAND_S);
1463 #endif /*__alpha__*/
1464 		sc->fxp_desc.tx_last = txp;
1465 
1466 		/*
1467 		 * Advance the beginning of the list forward if there are
1468 		 * no other packets queued (when nothing is queued, tx_first
1469 		 * sits on the last TxCB that was sent out).
1470 		 */
1471 		if (sc->tx_queued == 0)
1472 			sc->fxp_desc.tx_first = txp;
1473 
1474 		sc->tx_queued++;
1475 
1476 		/*
1477 		 * Pass packet to bpf if there is a listener.
1478 		 */
1479 		BPF_MTAP(ifp, mb_head);
1480 	}
1481 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1482 
1483 	/*
1484 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1485 	 * going again if suspended.
1486 	 */
1487 	if (txp != NULL) {
1488 		fxp_scb_wait(sc);
1489 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1490 	}
1491 }
1492 
1493 #ifdef DEVICE_POLLING
1494 static poll_handler_t fxp_poll;
1495 
1496 static void
1497 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1498 {
1499 	struct fxp_softc *sc = ifp->if_softc;
1500 	u_int8_t statack;
1501 
1502 	FXP_LOCK(sc);
1503 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1504 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1505 		FXP_UNLOCK(sc);
1506 		return;
1507 	}
1508 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1509 	    FXP_SCB_STATACK_FR;
1510 	if (cmd == POLL_AND_CHECK_STATUS) {
1511 		u_int8_t tmp;
1512 
1513 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1514 		if (tmp == 0xff || tmp == 0) {
1515 			FXP_UNLOCK(sc);
1516 			return; /* nothing to do */
1517 		}
1518 		tmp &= ~statack;
1519 		/* ack what we can */
1520 		if (tmp != 0)
1521 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1522 		statack |= tmp;
1523 	}
1524 	fxp_intr_body(sc, ifp, statack, count);
1525 	FXP_UNLOCK(sc);
1526 }
1527 #endif /* DEVICE_POLLING */
1528 
1529 /*
1530  * Process interface interrupts.
1531  */
1532 static void
1533 fxp_intr(void *xsc)
1534 {
1535 	struct fxp_softc *sc = xsc;
1536 	struct ifnet *ifp = &sc->sc_if;
1537 	u_int8_t statack;
1538 
1539 	FXP_LOCK(sc);
1540 	if (sc->suspended) {
1541 		FXP_UNLOCK(sc);
1542 		return;
1543 	}
1544 
1545 #ifdef DEVICE_POLLING
1546 	if (ifp->if_flags & IFF_POLLING) {
1547 		FXP_UNLOCK(sc);
1548 		return;
1549 	}
1550 	if (ether_poll_register(fxp_poll, ifp)) {
1551 		/* disable interrupts */
1552 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1553 		fxp_poll(ifp, 0, 1);
1554 		FXP_UNLOCK(sc);
1555 		return;
1556 	}
1557 #endif
1558 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1559 		/*
1560 		 * It should not be possible to have all bits set; the
1561 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1562 		 * all bits are set, this may indicate that the card has
1563 		 * been physically ejected, so ignore it.
1564 		 */
1565 		if (statack == 0xff) {
1566 			FXP_UNLOCK(sc);
1567 			return;
1568 		}
1569 
1570 		/*
1571 		 * First ACK all the interrupts in this pass.
1572 		 */
1573 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1574 		fxp_intr_body(sc, ifp, statack, -1);
1575 	}
1576 	FXP_UNLOCK(sc);
1577 }
1578 
1579 static void
1580 fxp_txeof(struct fxp_softc *sc)
1581 {
1582 	struct fxp_tx *txp;
1583 
1584 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1585 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1586 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1587 	    txp = txp->tx_next) {
1588 		if (txp->tx_mbuf != NULL) {
1589 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1590 			    BUS_DMASYNC_POSTWRITE);
1591 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1592 			m_freem(txp->tx_mbuf);
1593 			txp->tx_mbuf = NULL;
1594 			/* clear this to reset csum offload bits */
1595 			txp->tx_cb->tbd[0].tb_addr = 0;
1596 		}
1597 		sc->tx_queued--;
1598 	}
1599 	sc->fxp_desc.tx_first = txp;
1600 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1601 }
1602 
1603 static void
1604 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1605     int count)
1606 {
1607 	struct mbuf *m;
1608 	struct fxp_rx *rxp;
1609 	struct fxp_rfa *rfa;
1610 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1611 
1612 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1613 	if (rnr)
1614 		fxp_rnr++;
1615 #ifdef DEVICE_POLLING
1616 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1617 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1618 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1619 		rnr = 1;
1620 	}
1621 #endif
1622 
1623 	/*
1624 	 * Free any finished transmit mbuf chains.
1625 	 *
1626 	 * Handle the CNA event likt a CXTNO event. It used to
1627 	 * be that this event (control unit not ready) was not
1628 	 * encountered, but it is now with the SMPng modifications.
1629 	 * The exact sequence of events that occur when the interface
1630 	 * is brought up are different now, and if this event
1631 	 * goes unhandled, the configuration/rxfilter setup sequence
1632 	 * can stall for several seconds. The result is that no
1633 	 * packets go out onto the wire for about 5 to 10 seconds
1634 	 * after the interface is ifconfig'ed for the first time.
1635 	 */
1636 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1637 		fxp_txeof(sc);
1638 
1639 		ifp->if_timer = 0;
1640 		if (sc->tx_queued == 0) {
1641 			if (sc->need_mcsetup)
1642 				fxp_mc_setup(sc);
1643 		}
1644 		/*
1645 		 * Try to start more packets transmitting.
1646 		 */
1647 		if (ifp->if_snd.ifq_head != NULL)
1648 			fxp_start_body(ifp);
1649 	}
1650 
1651 	/*
1652 	 * Just return if nothing happened on the receive side.
1653 	 */
1654 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1655 		return;
1656 
1657 	/*
1658 	 * Process receiver interrupts. If a no-resource (RNR)
1659 	 * condition exists, get whatever packets we can and
1660 	 * re-start the receiver.
1661 	 *
1662 	 * When using polling, we do not process the list to completion,
1663 	 * so when we get an RNR interrupt we must defer the restart
1664 	 * until we hit the last buffer with the C bit set.
1665 	 * If we run out of cycles and rfa_headm has the C bit set,
1666 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1667 	 * that the info will be used in the subsequent polling cycle.
1668 	 */
1669 	for (;;) {
1670 		rxp = sc->fxp_desc.rx_head;
1671 		m = rxp->rx_mbuf;
1672 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1673 		    RFA_ALIGNMENT_FUDGE);
1674 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1675 		    BUS_DMASYNC_POSTREAD);
1676 
1677 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1678 		if (count >= 0 && count-- == 0) {
1679 			if (rnr) {
1680 				/* Defer RNR processing until the next time. */
1681 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1682 				rnr = 0;
1683 			}
1684 			break;
1685 		}
1686 #endif /* DEVICE_POLLING */
1687 
1688 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1689 			break;
1690 
1691 		/*
1692 		 * Advance head forward.
1693 		 */
1694 		sc->fxp_desc.rx_head = rxp->rx_next;
1695 
1696 		/*
1697 		 * Add a new buffer to the receive chain.
1698 		 * If this fails, the old buffer is recycled
1699 		 * instead.
1700 		 */
1701 		if (fxp_add_rfabuf(sc, rxp) == 0) {
1702 			int total_len;
1703 
1704 			/*
1705 			 * Fetch packet length (the top 2 bits of
1706 			 * actual_size are flags set by the controller
1707 			 * upon completion), and drop the packet in case
1708 			 * of bogus length or CRC errors.
1709 			 */
1710 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1711 			if (total_len < sizeof(struct ether_header) ||
1712 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1713 				sc->rfa_size ||
1714 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1715 				m_freem(m);
1716 				continue;
1717 			}
1718 
1719                         /* Do IP checksum checking. */
1720 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1721 				if (rfa->rfax_csum_sts &
1722 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1723 					m->m_pkthdr.csum_flags |=
1724 					    CSUM_IP_CHECKED;
1725 				if (rfa->rfax_csum_sts &
1726 				    FXP_RFDX_CS_IP_CSUM_VALID)
1727 					m->m_pkthdr.csum_flags |=
1728 					    CSUM_IP_VALID;
1729 				if ((rfa->rfax_csum_sts &
1730 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1731 				    (rfa->rfax_csum_sts &
1732 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1733 					m->m_pkthdr.csum_flags |=
1734 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1735 					m->m_pkthdr.csum_data = 0xffff;
1736 				}
1737 			}
1738 
1739 			m->m_pkthdr.len = m->m_len = total_len;
1740 			m->m_pkthdr.rcvif = ifp;
1741 
1742 			/*
1743 			 * Drop locks before calling if_input() since it
1744 			 * may re-enter fxp_start() in the netisr case.
1745 			 * This would result in a lock reversal.  Better
1746 			 * performance might be obtained by chaining all
1747 			 * packets received, dropping the lock, and then
1748 			 * calling if_input() on each one.
1749 			 */
1750 			FXP_UNLOCK(sc);
1751 			(*ifp->if_input)(ifp, m);
1752 			FXP_LOCK(sc);
1753 		}
1754 	}
1755 	if (rnr) {
1756 		fxp_scb_wait(sc);
1757 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1758 		    sc->fxp_desc.rx_head->rx_addr);
1759 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1760 	}
1761 }
1762 
1763 /*
1764  * Update packet in/out/collision statistics. The i82557 doesn't
1765  * allow you to access these counters without doing a fairly
1766  * expensive DMA to get _all_ of the statistics it maintains, so
1767  * we do this operation here only once per second. The statistics
1768  * counters in the kernel are updated from the previous dump-stats
1769  * DMA and then a new dump-stats DMA is started. The on-chip
1770  * counters are zeroed when the DMA completes. If we can't start
1771  * the DMA immediately, we don't wait - we just prepare to read
1772  * them again next time.
1773  */
1774 static void
1775 fxp_tick(void *xsc)
1776 {
1777 	struct fxp_softc *sc = xsc;
1778 	struct ifnet *ifp = &sc->sc_if;
1779 	struct fxp_stats *sp = sc->fxp_stats;
1780 	int s;
1781 
1782 	FXP_LOCK(sc);
1783 	s = splimp();
1784 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1785 	ifp->if_opackets += le32toh(sp->tx_good);
1786 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1787 	if (sp->rx_good) {
1788 		ifp->if_ipackets += le32toh(sp->rx_good);
1789 		sc->rx_idle_secs = 0;
1790 	} else {
1791 		/*
1792 		 * Receiver's been idle for another second.
1793 		 */
1794 		sc->rx_idle_secs++;
1795 	}
1796 	ifp->if_ierrors +=
1797 	    le32toh(sp->rx_crc_errors) +
1798 	    le32toh(sp->rx_alignment_errors) +
1799 	    le32toh(sp->rx_rnr_errors) +
1800 	    le32toh(sp->rx_overrun_errors);
1801 	/*
1802 	 * If any transmit underruns occured, bump up the transmit
1803 	 * threshold by another 512 bytes (64 * 8).
1804 	 */
1805 	if (sp->tx_underruns) {
1806 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1807 		if (tx_threshold < 192)
1808 			tx_threshold += 64;
1809 	}
1810 
1811 	/*
1812 	 * Release any xmit buffers that have completed DMA. This isn't
1813 	 * strictly necessary to do here, but it's advantagous for mbufs
1814 	 * with external storage to be released in a timely manner rather
1815 	 * than being defered for a potentially long time. This limits
1816 	 * the delay to a maximum of one second.
1817 	 */
1818 	fxp_txeof(sc);
1819 
1820 	/*
1821 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1822 	 * then assume the receiver has locked up and attempt to clear
1823 	 * the condition by reprogramming the multicast filter. This is
1824 	 * a work-around for a bug in the 82557 where the receiver locks
1825 	 * up if it gets certain types of garbage in the syncronization
1826 	 * bits prior to the packet header. This bug is supposed to only
1827 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1828 	 * mode as well (perhaps due to a 10/100 speed transition).
1829 	 */
1830 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1831 		sc->rx_idle_secs = 0;
1832 		fxp_mc_setup(sc);
1833 	}
1834 	/*
1835 	 * If there is no pending command, start another stats
1836 	 * dump. Otherwise punt for now.
1837 	 */
1838 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1839 		/*
1840 		 * Start another stats dump.
1841 		 */
1842 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1843 		    BUS_DMASYNC_PREREAD);
1844 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1845 	} else {
1846 		/*
1847 		 * A previous command is still waiting to be accepted.
1848 		 * Just zero our copy of the stats and wait for the
1849 		 * next timer event to update them.
1850 		 */
1851 		sp->tx_good = 0;
1852 		sp->tx_underruns = 0;
1853 		sp->tx_total_collisions = 0;
1854 
1855 		sp->rx_good = 0;
1856 		sp->rx_crc_errors = 0;
1857 		sp->rx_alignment_errors = 0;
1858 		sp->rx_rnr_errors = 0;
1859 		sp->rx_overrun_errors = 0;
1860 	}
1861 	if (sc->miibus != NULL)
1862 		mii_tick(device_get_softc(sc->miibus));
1863 
1864 	/*
1865 	 * Schedule another timeout one second from now.
1866 	 */
1867 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1868 	FXP_UNLOCK(sc);
1869 	splx(s);
1870 }
1871 
1872 /*
1873  * Stop the interface. Cancels the statistics updater and resets
1874  * the interface.
1875  */
1876 static void
1877 fxp_stop(struct fxp_softc *sc)
1878 {
1879 	struct ifnet *ifp = &sc->sc_if;
1880 	struct fxp_tx *txp;
1881 	int i;
1882 
1883 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1884 	ifp->if_timer = 0;
1885 
1886 #ifdef DEVICE_POLLING
1887 	ether_poll_deregister(ifp);
1888 #endif
1889 	/*
1890 	 * Cancel stats updater.
1891 	 */
1892 	untimeout(fxp_tick, sc, sc->stat_ch);
1893 
1894 	/*
1895 	 * Issue software reset, which also unloads the microcode.
1896 	 */
1897 	sc->flags &= ~FXP_FLAG_UCODE;
1898 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1899 	DELAY(50);
1900 
1901 	/*
1902 	 * Release any xmit buffers.
1903 	 */
1904 	txp = sc->fxp_desc.tx_list;
1905 	if (txp != NULL) {
1906 		for (i = 0; i < FXP_NTXCB; i++) {
1907  			if (txp[i].tx_mbuf != NULL) {
1908 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1909 				    BUS_DMASYNC_POSTWRITE);
1910 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1911 				m_freem(txp[i].tx_mbuf);
1912 				txp[i].tx_mbuf = NULL;
1913 				/* clear this to reset csum offload bits */
1914 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1915 			}
1916 		}
1917 	}
1918 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1919 	sc->tx_queued = 0;
1920 }
1921 
1922 /*
1923  * Watchdog/transmission transmit timeout handler. Called when a
1924  * transmission is started on the interface, but no interrupt is
1925  * received before the timeout. This usually indicates that the
1926  * card has wedged for some reason.
1927  */
1928 static void
1929 fxp_watchdog(struct ifnet *ifp)
1930 {
1931 	struct fxp_softc *sc = ifp->if_softc;
1932 
1933 	FXP_LOCK(sc);
1934 	device_printf(sc->dev, "device timeout\n");
1935 	ifp->if_oerrors++;
1936 
1937 	fxp_init_body(sc);
1938 	FXP_UNLOCK(sc);
1939 }
1940 
1941 /*
1942  * Acquire locks and then call the real initialization function.  This
1943  * is necessary because ether_ioctl() calls if_init() and this would
1944  * result in mutex recursion if the mutex was held.
1945  */
1946 static void
1947 fxp_init(void *xsc)
1948 {
1949 	struct fxp_softc *sc = xsc;
1950 
1951 	FXP_LOCK(sc);
1952 	fxp_init_body(sc);
1953 	FXP_UNLOCK(sc);
1954 }
1955 
1956 /*
1957  * Perform device initialization. This routine must be called with the
1958  * softc lock held.
1959  */
1960 static void
1961 fxp_init_body(struct fxp_softc *sc)
1962 {
1963 	struct ifnet *ifp = &sc->sc_if;
1964 	struct fxp_cb_config *cbp;
1965 	struct fxp_cb_ias *cb_ias;
1966 	struct fxp_cb_tx *tcbp;
1967 	struct fxp_tx *txp;
1968 	struct fxp_cb_mcs *mcsp;
1969 	int i, prm, s;
1970 
1971 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1972 	s = splimp();
1973 	/*
1974 	 * Cancel any pending I/O
1975 	 */
1976 	fxp_stop(sc);
1977 
1978 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1979 
1980 	/*
1981 	 * Initialize base of CBL and RFA memory. Loading with zero
1982 	 * sets it up for regular linear addressing.
1983 	 */
1984 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1985 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1986 
1987 	fxp_scb_wait(sc);
1988 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1989 
1990 	/*
1991 	 * Initialize base of dump-stats buffer.
1992 	 */
1993 	fxp_scb_wait(sc);
1994 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1995 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1996 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1997 
1998 	/*
1999 	 * Attempt to load microcode if requested.
2000 	 */
2001 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
2002 		fxp_load_ucode(sc);
2003 
2004 	/*
2005 	 * Initialize the multicast address list.
2006 	 */
2007 	if (fxp_mc_addrs(sc)) {
2008 		mcsp = sc->mcsp;
2009 		mcsp->cb_status = 0;
2010 		mcsp->cb_command =
2011 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2012 		mcsp->link_addr = 0xffffffff;
2013 		/*
2014 	 	 * Start the multicast setup command.
2015 		 */
2016 		fxp_scb_wait(sc);
2017 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2018 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2019 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2020 		/* ...and wait for it to complete. */
2021 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2022 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2023 		    BUS_DMASYNC_POSTWRITE);
2024 	}
2025 
2026 	/*
2027 	 * We temporarily use memory that contains the TxCB list to
2028 	 * construct the config CB. The TxCB list memory is rebuilt
2029 	 * later.
2030 	 */
2031 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2032 
2033 	/*
2034 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2035 	 * zero and must be one bits in this structure and this is the easiest
2036 	 * way to initialize them all to proper values.
2037 	 */
2038 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2039 
2040 	cbp->cb_status =	0;
2041 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2042 	    FXP_CB_COMMAND_EL);
2043 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2044 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2045 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2046 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2047 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2048 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2049 	cbp->type_enable =	0;	/* actually reserved */
2050 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2051 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2052 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2053 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2054 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2055 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2056 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2057 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2058 	cbp->ci_int =		1;	/* interrupt on CU idle */
2059 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2060 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2061 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2062 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
2063 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2064 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2065 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2066 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2067 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2068 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2069 	cbp->csma_dis =		0;	/* (don't) disable link */
2070 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2071 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2072 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2073 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2074 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2075 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2076 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2077 	cbp->loopback =		0;	/* (don't) loopback */
2078 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2079 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2080 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2081 	cbp->promiscuous =	prm;	/* promiscuous mode */
2082 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2083 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2084 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2085 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2086 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2087 
2088 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2089 	cbp->padding =		1;	/* (do) pad short tx packets */
2090 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2091 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2092 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2093 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2094 					/* must set wake_en in PMCSR also */
2095 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2096 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2097 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2098 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2099 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2100 
2101 	if (fxp_noflow || sc->revision == FXP_REV_82557) {
2102 		/*
2103 		 * The 82557 has no hardware flow control, the values
2104 		 * below are the defaults for the chip.
2105 		 */
2106 		cbp->fc_delay_lsb =	0;
2107 		cbp->fc_delay_msb =	0x40;
2108 		cbp->pri_fc_thresh =	3;
2109 		cbp->tx_fc_dis =	0;
2110 		cbp->rx_fc_restop =	0;
2111 		cbp->rx_fc_restart =	0;
2112 		cbp->fc_filter =	0;
2113 		cbp->pri_fc_loc =	1;
2114 	} else {
2115 		cbp->fc_delay_lsb =	0x1f;
2116 		cbp->fc_delay_msb =	0x01;
2117 		cbp->pri_fc_thresh =	3;
2118 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2119 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2120 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2121 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2122 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2123 	}
2124 
2125 	/*
2126 	 * Start the config command/DMA.
2127 	 */
2128 	fxp_scb_wait(sc);
2129 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2130 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2131 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2132 	/* ...and wait for it to complete. */
2133 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2134 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2135 
2136 	/*
2137 	 * Now initialize the station address. Temporarily use the TxCB
2138 	 * memory area like we did above for the config CB.
2139 	 */
2140 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2141 	cb_ias->cb_status = 0;
2142 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2143 	cb_ias->link_addr = 0xffffffff;
2144 	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2145 	    sizeof(sc->arpcom.ac_enaddr));
2146 
2147 	/*
2148 	 * Start the IAS (Individual Address Setup) command/DMA.
2149 	 */
2150 	fxp_scb_wait(sc);
2151 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2152 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2153 	/* ...and wait for it to complete. */
2154 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2155 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2156 
2157 	/*
2158 	 * Initialize transmit control block (TxCB) list.
2159 	 */
2160 	txp = sc->fxp_desc.tx_list;
2161 	tcbp = sc->fxp_desc.cbl_list;
2162 	bzero(tcbp, FXP_TXCB_SZ);
2163 	for (i = 0; i < FXP_NTXCB; i++) {
2164 		txp[i].tx_cb = tcbp + i;
2165 		txp[i].tx_mbuf = NULL;
2166 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2167 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2168 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2169 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2170 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2171 			tcbp[i].tbd_array_addr =
2172 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2173 		else
2174 			tcbp[i].tbd_array_addr =
2175 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2176 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2177 	}
2178 	/*
2179 	 * Set the suspend flag on the first TxCB and start the control
2180 	 * unit. It will execute the NOP and then suspend.
2181 	 */
2182 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2183 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2184 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2185 	sc->tx_queued = 1;
2186 
2187 	fxp_scb_wait(sc);
2188 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2189 
2190 	/*
2191 	 * Initialize receiver buffer area - RFA.
2192 	 */
2193 	fxp_scb_wait(sc);
2194 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2195 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2196 
2197 	/*
2198 	 * Set current media.
2199 	 */
2200 	if (sc->miibus != NULL)
2201 		mii_mediachg(device_get_softc(sc->miibus));
2202 
2203 	ifp->if_flags |= IFF_RUNNING;
2204 	ifp->if_flags &= ~IFF_OACTIVE;
2205 
2206 	/*
2207 	 * Enable interrupts.
2208 	 */
2209 #ifdef DEVICE_POLLING
2210 	/*
2211 	 * ... but only do that if we are not polling. And because (presumably)
2212 	 * the default is interrupts on, we need to disable them explicitly!
2213 	 */
2214 	if ( ifp->if_flags & IFF_POLLING )
2215 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2216 	else
2217 #endif /* DEVICE_POLLING */
2218 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2219 
2220 	/*
2221 	 * Start stats updater.
2222 	 */
2223 	sc->stat_ch = timeout(fxp_tick, sc, hz);
2224 	splx(s);
2225 }
2226 
2227 static int
2228 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2229 {
2230 
2231 	return (0);
2232 }
2233 
2234 static void
2235 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2236 {
2237 
2238 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2239 }
2240 
2241 /*
2242  * Change media according to request.
2243  */
2244 static int
2245 fxp_ifmedia_upd(struct ifnet *ifp)
2246 {
2247 	struct fxp_softc *sc = ifp->if_softc;
2248 	struct mii_data *mii;
2249 
2250 	mii = device_get_softc(sc->miibus);
2251 	mii_mediachg(mii);
2252 	return (0);
2253 }
2254 
2255 /*
2256  * Notify the world which media we're using.
2257  */
2258 static void
2259 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2260 {
2261 	struct fxp_softc *sc = ifp->if_softc;
2262 	struct mii_data *mii;
2263 
2264 	mii = device_get_softc(sc->miibus);
2265 	mii_pollstat(mii);
2266 	ifmr->ifm_active = mii->mii_media_active;
2267 	ifmr->ifm_status = mii->mii_media_status;
2268 
2269 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2270 		sc->cu_resume_bug = 1;
2271 	else
2272 		sc->cu_resume_bug = 0;
2273 }
2274 
2275 /*
2276  * Add a buffer to the end of the RFA buffer list.
2277  * Return 0 if successful, 1 for failure. A failure results in
2278  * adding the 'oldm' (if non-NULL) on to the end of the list -
2279  * tossing out its old contents and recycling it.
2280  * The RFA struct is stuck at the beginning of mbuf cluster and the
2281  * data pointer is fixed up to point just past it.
2282  */
2283 static int
2284 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2285 {
2286 	struct mbuf *m;
2287 	struct fxp_rfa *rfa, *p_rfa;
2288 	struct fxp_rx *p_rx;
2289 	bus_dmamap_t tmp_map;
2290 	int error;
2291 
2292 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2293 	if (m == NULL)
2294 		return (ENOBUFS);
2295 
2296 	/*
2297 	 * Move the data pointer up so that the incoming data packet
2298 	 * will be 32-bit aligned.
2299 	 */
2300 	m->m_data += RFA_ALIGNMENT_FUDGE;
2301 
2302 	/*
2303 	 * Get a pointer to the base of the mbuf cluster and move
2304 	 * data start past it.
2305 	 */
2306 	rfa = mtod(m, struct fxp_rfa *);
2307 	m->m_data += sc->rfa_size;
2308 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2309 
2310 	/*
2311 	 * Initialize the rest of the RFA.  Note that since the RFA
2312 	 * is misaligned, we cannot store values directly.  Instead,
2313 	 * we use an optimized, inline copy.
2314 	 */
2315 
2316 	rfa->rfa_status = 0;
2317 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2318 	rfa->actual_size = 0;
2319 
2320 	le32enc(&rfa->link_addr, 0xffffffff);
2321 	le32enc(&rfa->rbd_addr, 0xffffffff);
2322 
2323 	/* Map the RFA into DMA memory. */
2324 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2325 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2326 	    &rxp->rx_addr, 0);
2327 	if (error) {
2328 		m_freem(m);
2329 		return (error);
2330 	}
2331 
2332 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2333 	tmp_map = sc->spare_map;
2334 	sc->spare_map = rxp->rx_map;
2335 	rxp->rx_map = tmp_map;
2336 	rxp->rx_mbuf = m;
2337 
2338 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2339 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2340 
2341 	/*
2342 	 * If there are other buffers already on the list, attach this
2343 	 * one to the end by fixing up the tail to point to this one.
2344 	 */
2345 	if (sc->fxp_desc.rx_head != NULL) {
2346 		p_rx = sc->fxp_desc.rx_tail;
2347 		p_rfa = (struct fxp_rfa *)
2348 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2349 		p_rx->rx_next = rxp;
2350 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2351 		p_rfa->rfa_control = 0;
2352 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2353 		    BUS_DMASYNC_PREWRITE);
2354 	} else {
2355 		rxp->rx_next = NULL;
2356 		sc->fxp_desc.rx_head = rxp;
2357 	}
2358 	sc->fxp_desc.rx_tail = rxp;
2359 	return (0);
2360 }
2361 
2362 static volatile int
2363 fxp_miibus_readreg(device_t dev, int phy, int reg)
2364 {
2365 	struct fxp_softc *sc = device_get_softc(dev);
2366 	int count = 10000;
2367 	int value;
2368 
2369 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2370 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2371 
2372 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2373 	    && count--)
2374 		DELAY(10);
2375 
2376 	if (count <= 0)
2377 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2378 
2379 	return (value & 0xffff);
2380 }
2381 
2382 static void
2383 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2384 {
2385 	struct fxp_softc *sc = device_get_softc(dev);
2386 	int count = 10000;
2387 
2388 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2389 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2390 	    (value & 0xffff));
2391 
2392 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2393 	    count--)
2394 		DELAY(10);
2395 
2396 	if (count <= 0)
2397 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2398 }
2399 
2400 static int
2401 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2402 {
2403 	struct fxp_softc *sc = ifp->if_softc;
2404 	struct ifreq *ifr = (struct ifreq *)data;
2405 	struct mii_data *mii;
2406 	int s, error = 0;
2407 
2408 	/*
2409 	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2410 	 * that by saying we're busy if the lock is already held.
2411 	 */
2412 	if (mtx_owned(&sc->sc_mtx))
2413 		return (EBUSY);
2414 
2415 	FXP_LOCK(sc);
2416 	s = splimp();
2417 
2418 	switch (command) {
2419 	case SIOCSIFFLAGS:
2420 		if (ifp->if_flags & IFF_ALLMULTI)
2421 			sc->flags |= FXP_FLAG_ALL_MCAST;
2422 		else
2423 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2424 
2425 		/*
2426 		 * If interface is marked up and not running, then start it.
2427 		 * If it is marked down and running, stop it.
2428 		 * XXX If it's up then re-initialize it. This is so flags
2429 		 * such as IFF_PROMISC are handled.
2430 		 */
2431 		if (ifp->if_flags & IFF_UP) {
2432 			fxp_init_body(sc);
2433 		} else {
2434 			if (ifp->if_flags & IFF_RUNNING)
2435 				fxp_stop(sc);
2436 		}
2437 		break;
2438 
2439 	case SIOCADDMULTI:
2440 	case SIOCDELMULTI:
2441 		if (ifp->if_flags & IFF_ALLMULTI)
2442 			sc->flags |= FXP_FLAG_ALL_MCAST;
2443 		else
2444 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2445 		/*
2446 		 * Multicast list has changed; set the hardware filter
2447 		 * accordingly.
2448 		 */
2449 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2450 			fxp_mc_setup(sc);
2451 		/*
2452 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2453 		 * again rather than else {}.
2454 		 */
2455 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2456 			fxp_init_body(sc);
2457 		error = 0;
2458 		break;
2459 
2460 	case SIOCSIFMEDIA:
2461 	case SIOCGIFMEDIA:
2462 		if (sc->miibus != NULL) {
2463 			mii = device_get_softc(sc->miibus);
2464                         error = ifmedia_ioctl(ifp, ifr,
2465                             &mii->mii_media, command);
2466 		} else {
2467                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2468 		}
2469 		break;
2470 
2471 	default:
2472 		/*
2473 		 * ether_ioctl() will eventually call fxp_start() which
2474 		 * will result in mutex recursion so drop it first.
2475 		 */
2476 		FXP_UNLOCK(sc);
2477 		error = ether_ioctl(ifp, command, data);
2478 	}
2479 	if (mtx_owned(&sc->sc_mtx))
2480 		FXP_UNLOCK(sc);
2481 	splx(s);
2482 	return (error);
2483 }
2484 
2485 /*
2486  * Fill in the multicast address list and return number of entries.
2487  */
2488 static int
2489 fxp_mc_addrs(struct fxp_softc *sc)
2490 {
2491 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2492 	struct ifnet *ifp = &sc->sc_if;
2493 	struct ifmultiaddr *ifma;
2494 	int nmcasts;
2495 
2496 	nmcasts = 0;
2497 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2498 #if __FreeBSD_version < 500000
2499 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2500 #else
2501 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2502 #endif
2503 			if (ifma->ifma_addr->sa_family != AF_LINK)
2504 				continue;
2505 			if (nmcasts >= MAXMCADDR) {
2506 				sc->flags |= FXP_FLAG_ALL_MCAST;
2507 				nmcasts = 0;
2508 				break;
2509 			}
2510 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2511 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2512 			nmcasts++;
2513 		}
2514 	}
2515 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2516 	return (nmcasts);
2517 }
2518 
2519 /*
2520  * Program the multicast filter.
2521  *
2522  * We have an artificial restriction that the multicast setup command
2523  * must be the first command in the chain, so we take steps to ensure
2524  * this. By requiring this, it allows us to keep up the performance of
2525  * the pre-initialized command ring (esp. link pointers) by not actually
2526  * inserting the mcsetup command in the ring - i.e. its link pointer
2527  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2528  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2529  * lead into the regular TxCB ring when it completes.
2530  *
2531  * This function must be called at splimp.
2532  */
2533 static void
2534 fxp_mc_setup(struct fxp_softc *sc)
2535 {
2536 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2537 	struct ifnet *ifp = &sc->sc_if;
2538 	struct fxp_tx *txp;
2539 	int count;
2540 
2541 	/*
2542 	 * If there are queued commands, we must wait until they are all
2543 	 * completed. If we are already waiting, then add a NOP command
2544 	 * with interrupt option so that we're notified when all commands
2545 	 * have been completed - fxp_start() ensures that no additional
2546 	 * TX commands will be added when need_mcsetup is true.
2547 	 */
2548 	if (sc->tx_queued) {
2549 		/*
2550 		 * need_mcsetup will be true if we are already waiting for the
2551 		 * NOP command to be completed (see below). In this case, bail.
2552 		 */
2553 		if (sc->need_mcsetup)
2554 			return;
2555 		sc->need_mcsetup = 1;
2556 
2557 		/*
2558 		 * Add a NOP command with interrupt so that we are notified
2559 		 * when all TX commands have been processed.
2560 		 */
2561 		txp = sc->fxp_desc.tx_last->tx_next;
2562 		txp->tx_mbuf = NULL;
2563 		txp->tx_cb->cb_status = 0;
2564 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2565 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2566 		/*
2567 		 * Advance the end of list forward.
2568 		 */
2569 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2570 		    htole16(~FXP_CB_COMMAND_S);
2571 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2572 		sc->fxp_desc.tx_last = txp;
2573 		sc->tx_queued++;
2574 		/*
2575 		 * Issue a resume in case the CU has just suspended.
2576 		 */
2577 		fxp_scb_wait(sc);
2578 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2579 		/*
2580 		 * Set a 5 second timer just in case we don't hear from the
2581 		 * card again.
2582 		 */
2583 		ifp->if_timer = 5;
2584 
2585 		return;
2586 	}
2587 	sc->need_mcsetup = 0;
2588 
2589 	/*
2590 	 * Initialize multicast setup descriptor.
2591 	 */
2592 	mcsp->cb_status = 0;
2593 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2594 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2595 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2596 	txp = &sc->fxp_desc.mcs_tx;
2597 	txp->tx_mbuf = NULL;
2598 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2599 	txp->tx_next = sc->fxp_desc.tx_list;
2600 	(void) fxp_mc_addrs(sc);
2601 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2602 	sc->tx_queued = 1;
2603 
2604 	/*
2605 	 * Wait until command unit is not active. This should never
2606 	 * be the case when nothing is queued, but make sure anyway.
2607 	 */
2608 	count = 100;
2609 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2610 	    FXP_SCB_CUS_ACTIVE && --count)
2611 		DELAY(10);
2612 	if (count == 0) {
2613 		device_printf(sc->dev, "command queue timeout\n");
2614 		return;
2615 	}
2616 
2617 	/*
2618 	 * Start the multicast setup command.
2619 	 */
2620 	fxp_scb_wait(sc);
2621 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2622 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2623 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2624 
2625 	ifp->if_timer = 2;
2626 	return;
2627 }
2628 
2629 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2630 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2631 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2632 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2633 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2634 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2635 
2636 #define UCODE(x)	x, sizeof(x)
2637 
2638 struct ucode {
2639 	u_int32_t	revision;
2640 	u_int32_t	*ucode;
2641 	int		length;
2642 	u_short		int_delay_offset;
2643 	u_short		bundle_max_offset;
2644 } ucode_table[] = {
2645 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2646 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2647 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2648 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2649 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2650 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2651 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2652 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2653 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2654 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2655 	{ 0, NULL, 0, 0, 0 }
2656 };
2657 
2658 static void
2659 fxp_load_ucode(struct fxp_softc *sc)
2660 {
2661 	struct ucode *uc;
2662 	struct fxp_cb_ucode *cbp;
2663 
2664 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2665 		if (sc->revision == uc->revision)
2666 			break;
2667 	if (uc->ucode == NULL)
2668 		return;
2669 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2670 	cbp->cb_status = 0;
2671 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2672 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2673 	memcpy(cbp->ucode, uc->ucode, uc->length);
2674 	if (uc->int_delay_offset)
2675 		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2676 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2677 	if (uc->bundle_max_offset)
2678 		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2679 		    htole16(sc->tunable_bundle_max);
2680 	/*
2681 	 * Download the ucode to the chip.
2682 	 */
2683 	fxp_scb_wait(sc);
2684 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2685 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2686 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2687 	/* ...and wait for it to complete. */
2688 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2689 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2690 	device_printf(sc->dev,
2691 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2692 	    sc->tunable_int_delay,
2693 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2694 	sc->flags |= FXP_FLAG_UCODE;
2695 }
2696 
2697 static int
2698 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2699 {
2700 	int error, value;
2701 
2702 	value = *(int *)arg1;
2703 	error = sysctl_handle_int(oidp, &value, 0, req);
2704 	if (error || !req->newptr)
2705 		return (error);
2706 	if (value < low || value > high)
2707 		return (EINVAL);
2708 	*(int *)arg1 = value;
2709 	return (0);
2710 }
2711 
2712 /*
2713  * Interrupt delay is expressed in microseconds, a multiplier is used
2714  * to convert this to the appropriate clock ticks before using.
2715  */
2716 static int
2717 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2718 {
2719 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2720 }
2721 
2722 static int
2723 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2724 {
2725 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2726 }
2727