xref: /freebsd/sys/dev/fxp/if_fxp.c (revision d8b878873e7aa8df1972cc6a642804b17eb61087)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/lock.h>
48 #include <sys/module.h>
49 #include <sys/mutex.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 
55 #include <net/bpf.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_vlan_var.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 
70 #include <machine/bus.h>
71 #include <machine/in_cksum.h>
72 #include <machine/resource.h>
73 
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 
80 #include <dev/fxp/if_fxpreg.h>
81 #include <dev/fxp/if_fxpvar.h>
82 #include <dev/fxp/rcvbundl.h>
83 
84 MODULE_DEPEND(fxp, pci, 1, 1, 1);
85 MODULE_DEPEND(fxp, ether, 1, 1, 1);
86 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
87 #include "miibus_if.h"
88 
89 /*
90  * NOTE!  On the Alpha, we have an alignment constraint.  The
91  * card DMAs the packet immediately following the RFA.  However,
92  * the first thing in the packet is a 14-byte Ethernet header.
93  * This means that the packet is misaligned.  To compensate,
94  * we actually offset the RFA 2 bytes into the cluster.  This
95  * alignes the packet after the Ethernet header at a 32-bit
96  * boundary.  HOWEVER!  This means that the RFA is misaligned!
97  */
98 #define	RFA_ALIGNMENT_FUDGE	2
99 
100 /*
101  * Set initial transmit threshold at 64 (512 bytes). This is
102  * increased by 64 (512 bytes) at a time, to maximum of 192
103  * (1536 bytes), if an underrun occurs.
104  */
105 static int tx_threshold = 64;
106 
107 /*
108  * The configuration byte map has several undefined fields which
109  * must be one or must be zero.  Set up a template for these bits
110  * only, (assuming a 82557 chip) leaving the actual configuration
111  * to fxp_init.
112  *
113  * See struct fxp_cb_config for the bit definitions.
114  */
115 static u_char fxp_cb_config_template[] = {
116 	0x0, 0x0,		/* cb_status */
117 	0x0, 0x0,		/* cb_command */
118 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
119 	0x0,	/*  0 */
120 	0x0,	/*  1 */
121 	0x0,	/*  2 */
122 	0x0,	/*  3 */
123 	0x0,	/*  4 */
124 	0x0,	/*  5 */
125 	0x32,	/*  6 */
126 	0x0,	/*  7 */
127 	0x0,	/*  8 */
128 	0x0,	/*  9 */
129 	0x6,	/* 10 */
130 	0x0,	/* 11 */
131 	0x0,	/* 12 */
132 	0x0,	/* 13 */
133 	0xf2,	/* 14 */
134 	0x48,	/* 15 */
135 	0x0,	/* 16 */
136 	0x40,	/* 17 */
137 	0xf0,	/* 18 */
138 	0x0,	/* 19 */
139 	0x3f,	/* 20 */
140 	0x5	/* 21 */
141 };
142 
143 /*
144  * Claim various Intel PCI device identifiers for this driver.  The
145  * sub-vendor and sub-device field are extensively used to identify
146  * particular variants, but we don't currently differentiate between
147  * them.
148  */
149 static struct fxp_ident fxp_ident_table[] = {
150     { 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
151     { 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
152     { 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
153     { 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154     { 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
155     { 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156     { 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
157     { 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158     { 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159     { 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160     { 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161     { 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
162     { 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
163     { 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
164     { 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165     { 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
166     { 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
167     { 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
168     { 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
169     { 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
170     { 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
171     { 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
172     { 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
173     { 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
174     { 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
175     { 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
176     { 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
177     { 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
178     { 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
179     { 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
180     { 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
181     { 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
182     { 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
183     { 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
184     { 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
185     { 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
186     { 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
187     { 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
188     { 0x1229,	0x0d,	0, "Intel 82550 Pro/100 Ethernet" },
189     { 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
190     { 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
191     { 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
192     { 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
193     { 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
194     { 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
195     { 0,	-1,	0, NULL },
196 };
197 
198 #ifdef FXP_IP_CSUM_WAR
199 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
200 #else
201 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
202 #endif
203 
204 static int		fxp_probe(device_t dev);
205 static int		fxp_attach(device_t dev);
206 static int		fxp_detach(device_t dev);
207 static int		fxp_shutdown(device_t dev);
208 static int		fxp_suspend(device_t dev);
209 static int		fxp_resume(device_t dev);
210 
211 static struct fxp_ident	*fxp_find_ident(device_t dev);
212 static void		fxp_intr(void *xsc);
213 static void		fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
214 			    struct mbuf *m, uint16_t status, int pos);
215 static int		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
216 			    uint8_t statack, int count);
217 static void 		fxp_init(void *xsc);
218 static void 		fxp_init_body(struct fxp_softc *sc);
219 static void 		fxp_tick(void *xsc);
220 static void 		fxp_start(struct ifnet *ifp);
221 static void 		fxp_start_body(struct ifnet *ifp);
222 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
223 static void		fxp_txeof(struct fxp_softc *sc);
224 static void		fxp_stop(struct fxp_softc *sc);
225 static void 		fxp_release(struct fxp_softc *sc);
226 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
227 			    caddr_t data);
228 static void 		fxp_watchdog(struct fxp_softc *sc);
229 static void		fxp_add_rfabuf(struct fxp_softc *sc,
230     			    struct fxp_rx *rxp);
231 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
232     			    struct fxp_rx *rxp);
233 static int		fxp_new_rfabuf(struct fxp_softc *sc,
234     			    struct fxp_rx *rxp);
235 static int		fxp_mc_addrs(struct fxp_softc *sc);
236 static void		fxp_mc_setup(struct fxp_softc *sc);
237 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
238 			    int autosize);
239 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
240 			    uint16_t data);
241 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
242 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
243 			    int offset, int words);
244 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
245 			    int offset, int words);
246 static int		fxp_ifmedia_upd(struct ifnet *ifp);
247 static void		fxp_ifmedia_sts(struct ifnet *ifp,
248 			    struct ifmediareq *ifmr);
249 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
250 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
251 			    struct ifmediareq *ifmr);
252 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
253 static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
254 			    int value);
255 static void		fxp_load_ucode(struct fxp_softc *sc);
256 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
257 			    int low, int high);
258 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
259 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
260 static void 		fxp_scb_wait(struct fxp_softc *sc);
261 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
262 static void		fxp_dma_wait(struct fxp_softc *sc,
263     			    volatile uint16_t *status, bus_dma_tag_t dmat,
264 			    bus_dmamap_t map);
265 
266 static device_method_t fxp_methods[] = {
267 	/* Device interface */
268 	DEVMETHOD(device_probe,		fxp_probe),
269 	DEVMETHOD(device_attach,	fxp_attach),
270 	DEVMETHOD(device_detach,	fxp_detach),
271 	DEVMETHOD(device_shutdown,	fxp_shutdown),
272 	DEVMETHOD(device_suspend,	fxp_suspend),
273 	DEVMETHOD(device_resume,	fxp_resume),
274 
275 	/* MII interface */
276 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
277 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
278 
279 	{ 0, 0 }
280 };
281 
282 static driver_t fxp_driver = {
283 	"fxp",
284 	fxp_methods,
285 	sizeof(struct fxp_softc),
286 };
287 
288 static devclass_t fxp_devclass;
289 
290 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
291 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
292 
293 static struct resource_spec fxp_res_spec_mem[] = {
294 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
295 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
296 	{ -1, 0 }
297 };
298 
299 static struct resource_spec fxp_res_spec_io[] = {
300 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
301 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
302 	{ -1, 0 }
303 };
304 
305 /*
306  * Wait for the previous command to be accepted (but not necessarily
307  * completed).
308  */
309 static void
310 fxp_scb_wait(struct fxp_softc *sc)
311 {
312 	union {
313 		uint16_t w;
314 		uint8_t b[2];
315 	} flowctl;
316 	int i = 10000;
317 
318 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
319 		DELAY(2);
320 	if (i == 0) {
321 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
322 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
323 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
324 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
325 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
326 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
327 	}
328 }
329 
330 static void
331 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
332 {
333 
334 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
335 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
336 		fxp_scb_wait(sc);
337 	}
338 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
339 }
340 
341 static void
342 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
343     bus_dma_tag_t dmat, bus_dmamap_t map)
344 {
345 	int i;
346 
347 	for (i = 10000; i > 0; i--) {
348 		DELAY(2);
349 		bus_dmamap_sync(dmat, map,
350 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
351 		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
352 			break;
353 	}
354 	if (i == 0)
355 		device_printf(sc->dev, "DMA timeout\n");
356 }
357 
358 static struct fxp_ident *
359 fxp_find_ident(device_t dev)
360 {
361 	uint16_t devid;
362 	uint8_t revid;
363 	struct fxp_ident *ident;
364 
365 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
366 		devid = pci_get_device(dev);
367 		revid = pci_get_revid(dev);
368 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
369 			if (ident->devid == devid &&
370 			    (ident->revid == revid || ident->revid == -1)) {
371 				return (ident);
372 			}
373 		}
374 	}
375 	return (NULL);
376 }
377 
378 /*
379  * Return identification string if this device is ours.
380  */
381 static int
382 fxp_probe(device_t dev)
383 {
384 	struct fxp_ident *ident;
385 
386 	ident = fxp_find_ident(dev);
387 	if (ident != NULL) {
388 		device_set_desc(dev, ident->name);
389 		return (BUS_PROBE_DEFAULT);
390 	}
391 	return (ENXIO);
392 }
393 
394 static void
395 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
396 {
397 	uint32_t *addr;
398 
399 	if (error)
400 		return;
401 
402 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
403 	addr = arg;
404 	*addr = segs->ds_addr;
405 }
406 
407 static int
408 fxp_attach(device_t dev)
409 {
410 	struct fxp_softc *sc;
411 	struct fxp_cb_tx *tcbp;
412 	struct fxp_tx *txp;
413 	struct fxp_rx *rxp;
414 	struct ifnet *ifp;
415 	uint32_t val;
416 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
417 	u_char eaddr[ETHER_ADDR_LEN];
418 	int i, pmc, prefer_iomap;
419 	int error;
420 
421 	error = 0;
422 	sc = device_get_softc(dev);
423 	sc->dev = dev;
424 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
425 	    MTX_DEF);
426 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
427 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
428 	    fxp_serial_ifmedia_sts);
429 
430 	ifp = sc->ifp = if_alloc(IFT_ETHER);
431 	if (ifp == NULL) {
432 		device_printf(dev, "can not if_alloc()\n");
433 		error = ENOSPC;
434 		goto fail;
435 	}
436 
437 	/*
438 	 * Enable bus mastering.
439 	 */
440 	pci_enable_busmaster(dev);
441 	val = pci_read_config(dev, PCIR_COMMAND, 2);
442 
443 	/*
444 	 * Figure out which we should try first - memory mapping or i/o mapping?
445 	 * We default to memory mapping. Then we accept an override from the
446 	 * command line. Then we check to see which one is enabled.
447 	 */
448 	prefer_iomap = 0;
449 	resource_int_value(device_get_name(dev), device_get_unit(dev),
450 	    "prefer_iomap", &prefer_iomap);
451 	if (prefer_iomap)
452 		sc->fxp_spec = fxp_res_spec_io;
453 	else
454 		sc->fxp_spec = fxp_res_spec_mem;
455 
456 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
457 	if (error) {
458 		if (sc->fxp_spec == fxp_res_spec_mem)
459 			sc->fxp_spec = fxp_res_spec_io;
460 		else
461 			sc->fxp_spec = fxp_res_spec_mem;
462 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
463 	}
464 	if (error) {
465 		device_printf(dev, "could not allocate resources\n");
466 		error = ENXIO;
467 		goto fail;
468 	}
469 
470 	if (bootverbose) {
471 		device_printf(dev, "using %s space register mapping\n",
472 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
473 	}
474 
475 	/*
476 	 * Put CU/RU idle state and prepare full reset.
477 	 */
478 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
479 	DELAY(10);
480 	/* Full reset and disable interrupts. */
481 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
482 	DELAY(10);
483 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
484 
485 	/*
486 	 * Find out how large of an SEEPROM we have.
487 	 */
488 	fxp_autosize_eeprom(sc);
489 
490 	/*
491 	 * Find out the chip revision; lump all 82557 revs together.
492 	 */
493 	sc->ident = fxp_find_ident(dev);
494 	if (sc->ident->ich > 0) {
495 		/* Assume ICH controllers are 82559. */
496 		sc->revision = FXP_REV_82559_A0;
497 	} else {
498 		fxp_read_eeprom(sc, &data, 5, 1);
499 		if ((data >> 8) == 1)
500 			sc->revision = FXP_REV_82557;
501 		else
502 			sc->revision = pci_get_revid(dev);
503 	}
504 
505 	/*
506 	 * Check availability of WOL. 82559ER does not support WOL.
507 	 */
508 	if (sc->revision >= FXP_REV_82558_A4 &&
509 	    sc->revision != FXP_REV_82559S_A) {
510 		fxp_read_eeprom(sc, &data, 10, 1);
511 		if ((data & 0x20) != 0 &&
512 		    pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0)
513 			sc->flags |= FXP_FLAG_WOLCAP;
514 	}
515 
516 	/* Receiver lock-up workaround detection. */
517 	fxp_read_eeprom(sc, &data, 3, 1);
518 	if ((data & 0x03) != 0x03) {
519 		sc->flags |= FXP_FLAG_RXBUG;
520 		device_printf(dev, "Enabling Rx lock-up workaround\n");
521 	}
522 
523 	/*
524 	 * Determine whether we must use the 503 serial interface.
525 	 */
526 	fxp_read_eeprom(sc, &data, 6, 1);
527 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
528 	    && (data & FXP_PHY_SERIAL_ONLY))
529 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
530 
531 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
532 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
533 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
534 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
535 	    "FXP driver receive interrupt microcode bundling delay");
536 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
537 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
538 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
539 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
540 	    "FXP driver receive interrupt microcode bundle size limit");
541 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
542 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
543 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
544 	    "FXP RNR events");
545 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
546 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
547 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
548 	    "FXP flow control disabled");
549 
550 	/*
551 	 * Pull in device tunables.
552 	 */
553 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
554 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
555 	sc->tunable_noflow = 1;
556 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
557 	    "int_delay", &sc->tunable_int_delay);
558 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
559 	    "bundle_max", &sc->tunable_bundle_max);
560 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
561 	    "noflow", &sc->tunable_noflow);
562 	sc->rnr = 0;
563 
564 	/*
565 	 * Enable workarounds for certain chip revision deficiencies.
566 	 *
567 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
568 	 * some systems based a normal 82559 design, have a defect where
569 	 * the chip can cause a PCI protocol violation if it receives
570 	 * a CU_RESUME command when it is entering the IDLE state.  The
571 	 * workaround is to disable Dynamic Standby Mode, so the chip never
572 	 * deasserts CLKRUN#, and always remains in an active state.
573 	 *
574 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
575 	 */
576 	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
577 	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
578 		fxp_read_eeprom(sc, &data, 10, 1);
579 		if (data & 0x02) {			/* STB enable */
580 			uint16_t cksum;
581 			int i;
582 
583 			device_printf(dev,
584 			    "Disabling dynamic standby mode in EEPROM\n");
585 			data &= ~0x02;
586 			fxp_write_eeprom(sc, &data, 10, 1);
587 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
588 			cksum = 0;
589 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
590 				fxp_read_eeprom(sc, &data, i, 1);
591 				cksum += data;
592 			}
593 			i = (1 << sc->eeprom_size) - 1;
594 			cksum = 0xBABA - cksum;
595 			fxp_read_eeprom(sc, &data, i, 1);
596 			fxp_write_eeprom(sc, &cksum, i, 1);
597 			device_printf(dev,
598 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
599 			    i, data, cksum);
600 #if 1
601 			/*
602 			 * If the user elects to continue, try the software
603 			 * workaround, as it is better than nothing.
604 			 */
605 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
606 #endif
607 		}
608 	}
609 
610 	/*
611 	 * If we are not a 82557 chip, we can enable extended features.
612 	 */
613 	if (sc->revision != FXP_REV_82557) {
614 		/*
615 		 * If MWI is enabled in the PCI configuration, and there
616 		 * is a valid cacheline size (8 or 16 dwords), then tell
617 		 * the board to turn on MWI.
618 		 */
619 		if (val & PCIM_CMD_MWRICEN &&
620 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
621 			sc->flags |= FXP_FLAG_MWI_ENABLE;
622 
623 		/* turn on the extended TxCB feature */
624 		sc->flags |= FXP_FLAG_EXT_TXCB;
625 
626 		/* enable reception of long frames for VLAN */
627 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
628 	} else {
629 		/* a hack to get long VLAN frames on a 82557 */
630 		sc->flags |= FXP_FLAG_SAVE_BAD;
631 	}
632 
633 	/* For 82559 or later chips, Rx checksum offload is supported. */
634 	if (sc->revision >= FXP_REV_82559_A0) {
635 		/* 82559ER does not support Rx checksum offloading. */
636 		if (sc->ident->devid != 0x1209)
637 			sc->flags |= FXP_FLAG_82559_RXCSUM;
638 	}
639 	/*
640 	 * Enable use of extended RFDs and TCBs for 82550
641 	 * and later chips. Note: we need extended TXCB support
642 	 * too, but that's already enabled by the code above.
643 	 * Be careful to do this only on the right devices.
644 	 */
645 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
646 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
647 	    || sc->revision == FXP_REV_82551_10) {
648 		sc->rfa_size = sizeof (struct fxp_rfa);
649 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
650 		sc->flags |= FXP_FLAG_EXT_RFA;
651 		/* Use extended RFA instead of 82559 checksum mode. */
652 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
653 	} else {
654 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
655 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
656 	}
657 
658 	/*
659 	 * Allocate DMA tags and DMA safe memory.
660 	 */
661 	sc->maxtxseg = FXP_NTXSEG;
662 	sc->maxsegsize = MCLBYTES;
663 	if (sc->flags & FXP_FLAG_EXT_RFA) {
664 		sc->maxtxseg--;
665 		sc->maxsegsize = FXP_TSO_SEGSIZE;
666 	}
667 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
668 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
669 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
670 	    sc->maxtxseg, sc->maxsegsize, 0,
671 	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
672 	if (error) {
673 		device_printf(dev, "could not create TX DMA tag\n");
674 		goto fail;
675 	}
676 
677 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
678 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
679 	    MCLBYTES, 1, MCLBYTES, 0,
680 	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
681 	if (error) {
682 		device_printf(dev, "could not create RX DMA tag\n");
683 		goto fail;
684 	}
685 
686 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
687 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
688 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
689 	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
690 	if (error) {
691 		device_printf(dev, "could not create stats DMA tag\n");
692 		goto fail;
693 	}
694 
695 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
696 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
697 	if (error) {
698 		device_printf(dev, "could not allocate stats DMA memory\n");
699 		goto fail;
700 	}
701 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
702 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
703 	if (error) {
704 		device_printf(dev, "could not load the stats DMA buffer\n");
705 		goto fail;
706 	}
707 
708 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
709 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
710 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
711 	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
712 	if (error) {
713 		device_printf(dev, "could not create TxCB DMA tag\n");
714 		goto fail;
715 	}
716 
717 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
718 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
719 	if (error) {
720 		device_printf(dev, "could not allocate TxCB DMA memory\n");
721 		goto fail;
722 	}
723 
724 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
725 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
726 	    &sc->fxp_desc.cbl_addr, 0);
727 	if (error) {
728 		device_printf(dev, "could not load TxCB DMA buffer\n");
729 		goto fail;
730 	}
731 
732 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
733 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
734 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
735 	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
736 	if (error) {
737 		device_printf(dev,
738 		    "could not create multicast setup DMA tag\n");
739 		goto fail;
740 	}
741 
742 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
743 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->mcs_map);
744 	if (error) {
745 		device_printf(dev,
746 		    "could not allocate multicast setup DMA memory\n");
747 		goto fail;
748 	}
749 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
750 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
751 	if (error) {
752 		device_printf(dev,
753 		    "can't load the multicast setup DMA buffer\n");
754 		goto fail;
755 	}
756 
757 	/*
758 	 * Pre-allocate the TX DMA maps and setup the pointers to
759 	 * the TX command blocks.
760 	 */
761 	txp = sc->fxp_desc.tx_list;
762 	tcbp = sc->fxp_desc.cbl_list;
763 	for (i = 0; i < FXP_NTXCB; i++) {
764 		txp[i].tx_cb = tcbp + i;
765 		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
766 		if (error) {
767 			device_printf(dev, "can't create DMA map for TX\n");
768 			goto fail;
769 		}
770 	}
771 	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
772 	if (error) {
773 		device_printf(dev, "can't create spare DMA map\n");
774 		goto fail;
775 	}
776 
777 	/*
778 	 * Pre-allocate our receive buffers.
779 	 */
780 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
781 	for (i = 0; i < FXP_NRFABUFS; i++) {
782 		rxp = &sc->fxp_desc.rx_list[i];
783 		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
784 		if (error) {
785 			device_printf(dev, "can't create DMA map for RX\n");
786 			goto fail;
787 		}
788 		if (fxp_new_rfabuf(sc, rxp) != 0) {
789 			error = ENOMEM;
790 			goto fail;
791 		}
792 		fxp_add_rfabuf(sc, rxp);
793 	}
794 
795 	/*
796 	 * Read MAC address.
797 	 */
798 	fxp_read_eeprom(sc, myea, 0, 3);
799 	eaddr[0] = myea[0] & 0xff;
800 	eaddr[1] = myea[0] >> 8;
801 	eaddr[2] = myea[1] & 0xff;
802 	eaddr[3] = myea[1] >> 8;
803 	eaddr[4] = myea[2] & 0xff;
804 	eaddr[5] = myea[2] >> 8;
805 	if (bootverbose) {
806 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
807 		    pci_get_vendor(dev), pci_get_device(dev),
808 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
809 		    pci_get_revid(dev));
810 		fxp_read_eeprom(sc, &data, 10, 1);
811 		device_printf(dev, "Dynamic Standby mode is %s\n",
812 		    data & 0x02 ? "enabled" : "disabled");
813 	}
814 
815 	/*
816 	 * If this is only a 10Mbps device, then there is no MII, and
817 	 * the PHY will use a serial interface instead.
818 	 *
819 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
820 	 * doesn't have a programming interface of any sort.  The
821 	 * media is sensed automatically based on how the link partner
822 	 * is configured.  This is, in essence, manual configuration.
823 	 */
824 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
825 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
826 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
827 	} else {
828 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
829 		    fxp_ifmedia_sts)) {
830 	                device_printf(dev, "MII without any PHY!\n");
831 			error = ENXIO;
832 			goto fail;
833 		}
834 	}
835 
836 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
837 	ifp->if_init = fxp_init;
838 	ifp->if_softc = sc;
839 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
840 	ifp->if_ioctl = fxp_ioctl;
841 	ifp->if_start = fxp_start;
842 
843 	ifp->if_capabilities = ifp->if_capenable = 0;
844 
845 	/* Enable checksum offload/TSO for 82550 or better chips */
846 	if (sc->flags & FXP_FLAG_EXT_RFA) {
847 		ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
848 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
849 		ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
850 	}
851 
852 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
853 		ifp->if_capabilities |= IFCAP_RXCSUM;
854 		ifp->if_capenable |= IFCAP_RXCSUM;
855 	}
856 
857 	if (sc->flags & FXP_FLAG_WOLCAP) {
858 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
859 		ifp->if_capenable |= IFCAP_WOL_MAGIC;
860 	}
861 
862 #ifdef DEVICE_POLLING
863 	/* Inform the world we support polling. */
864 	ifp->if_capabilities |= IFCAP_POLLING;
865 #endif
866 
867 	/*
868 	 * Attach the interface.
869 	 */
870 	ether_ifattach(ifp, eaddr);
871 
872 	/*
873 	 * Tell the upper layer(s) we support long frames.
874 	 * Must appear after the call to ether_ifattach() because
875 	 * ether_ifattach() sets ifi_hdrlen to the default value.
876 	 */
877 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
878 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
879 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
880 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
881 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
882 		    IFCAP_VLAN_HWCSUM;
883 		ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
884 		    IFCAP_VLAN_HWCSUM;
885 	}
886 
887 	/*
888 	 * Let the system queue as many packets as we have available
889 	 * TX descriptors.
890 	 */
891 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
892 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
893 	IFQ_SET_READY(&ifp->if_snd);
894 
895 	/*
896 	 * Hook our interrupt after all initialization is complete.
897 	 */
898 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
899 			       NULL, fxp_intr, sc, &sc->ih);
900 	if (error) {
901 		device_printf(dev, "could not setup irq\n");
902 		ether_ifdetach(sc->ifp);
903 		goto fail;
904 	}
905 
906 	/*
907 	 * Configure hardware to reject magic frames otherwise
908 	 * system will hang on recipt of magic frames.
909 	 */
910 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
911 		FXP_LOCK(sc);
912 		/* Clear wakeup events. */
913 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
914 		fxp_init_body(sc);
915 		fxp_stop(sc);
916 		FXP_UNLOCK(sc);
917 	}
918 
919 fail:
920 	if (error)
921 		fxp_release(sc);
922 	return (error);
923 }
924 
925 /*
926  * Release all resources.  The softc lock should not be held and the
927  * interrupt should already be torn down.
928  */
929 static void
930 fxp_release(struct fxp_softc *sc)
931 {
932 	struct fxp_rx *rxp;
933 	struct fxp_tx *txp;
934 	int i;
935 
936 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
937 	KASSERT(sc->ih == NULL,
938 	    ("fxp_release() called with intr handle still active"));
939 	if (sc->miibus)
940 		device_delete_child(sc->dev, sc->miibus);
941 	bus_generic_detach(sc->dev);
942 	ifmedia_removeall(&sc->sc_media);
943 	if (sc->fxp_desc.cbl_list) {
944 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
945 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
946 		    sc->cbl_map);
947 	}
948 	if (sc->fxp_stats) {
949 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
950 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
951 	}
952 	if (sc->mcsp) {
953 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
954 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
955 	}
956 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
957 	if (sc->fxp_rxmtag) {
958 		for (i = 0; i < FXP_NRFABUFS; i++) {
959 			rxp = &sc->fxp_desc.rx_list[i];
960 			if (rxp->rx_mbuf != NULL) {
961 				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
962 				    BUS_DMASYNC_POSTREAD);
963 				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
964 				m_freem(rxp->rx_mbuf);
965 			}
966 			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
967 		}
968 		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
969 		bus_dma_tag_destroy(sc->fxp_rxmtag);
970 	}
971 	if (sc->fxp_txmtag) {
972 		for (i = 0; i < FXP_NTXCB; i++) {
973 			txp = &sc->fxp_desc.tx_list[i];
974 			if (txp->tx_mbuf != NULL) {
975 				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
976 				    BUS_DMASYNC_POSTWRITE);
977 				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
978 				m_freem(txp->tx_mbuf);
979 			}
980 			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
981 		}
982 		bus_dma_tag_destroy(sc->fxp_txmtag);
983 	}
984 	if (sc->fxp_stag)
985 		bus_dma_tag_destroy(sc->fxp_stag);
986 	if (sc->cbl_tag)
987 		bus_dma_tag_destroy(sc->cbl_tag);
988 	if (sc->mcs_tag)
989 		bus_dma_tag_destroy(sc->mcs_tag);
990 	if (sc->ifp)
991 		if_free(sc->ifp);
992 
993 	mtx_destroy(&sc->sc_mtx);
994 }
995 
996 /*
997  * Detach interface.
998  */
999 static int
1000 fxp_detach(device_t dev)
1001 {
1002 	struct fxp_softc *sc = device_get_softc(dev);
1003 
1004 #ifdef DEVICE_POLLING
1005 	if (sc->ifp->if_capenable & IFCAP_POLLING)
1006 		ether_poll_deregister(sc->ifp);
1007 #endif
1008 
1009 	FXP_LOCK(sc);
1010 	/*
1011 	 * Stop DMA and drop transmit queue, but disable interrupts first.
1012 	 */
1013 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1014 	fxp_stop(sc);
1015 	FXP_UNLOCK(sc);
1016 	callout_drain(&sc->stat_ch);
1017 
1018 	/*
1019 	 * Close down routes etc.
1020 	 */
1021 	ether_ifdetach(sc->ifp);
1022 
1023 	/*
1024 	 * Unhook interrupt before dropping lock. This is to prevent
1025 	 * races with fxp_intr().
1026 	 */
1027 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1028 	sc->ih = NULL;
1029 
1030 	/* Release our allocated resources. */
1031 	fxp_release(sc);
1032 	return (0);
1033 }
1034 
1035 /*
1036  * Device shutdown routine. Called at system shutdown after sync. The
1037  * main purpose of this routine is to shut off receiver DMA so that
1038  * kernel memory doesn't get clobbered during warmboot.
1039  */
1040 static int
1041 fxp_shutdown(device_t dev)
1042 {
1043 
1044 	/*
1045 	 * Make sure that DMA is disabled prior to reboot. Not doing
1046 	 * do could allow DMA to corrupt kernel memory during the
1047 	 * reboot before the driver initializes.
1048 	 */
1049 	return (fxp_suspend(dev));
1050 }
1051 
1052 /*
1053  * Device suspend routine.  Stop the interface and save some PCI
1054  * settings in case the BIOS doesn't restore them properly on
1055  * resume.
1056  */
1057 static int
1058 fxp_suspend(device_t dev)
1059 {
1060 	struct fxp_softc *sc = device_get_softc(dev);
1061 	struct ifnet *ifp;
1062 	int pmc;
1063 	uint16_t pmstat;
1064 
1065 	FXP_LOCK(sc);
1066 
1067 	ifp = sc->ifp;
1068 	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1069 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1070 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1071 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1072 			/* Request PME. */
1073 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1074 			sc->flags |= FXP_FLAG_WOL;
1075 			/* Reconfigure hardware to accept magic frames. */
1076 			fxp_init_body(sc);
1077 		}
1078 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1079 	}
1080 	fxp_stop(sc);
1081 
1082 	sc->suspended = 1;
1083 
1084 	FXP_UNLOCK(sc);
1085 	return (0);
1086 }
1087 
1088 /*
1089  * Device resume routine. re-enable busmastering, and restart the interface if
1090  * appropriate.
1091  */
1092 static int
1093 fxp_resume(device_t dev)
1094 {
1095 	struct fxp_softc *sc = device_get_softc(dev);
1096 	struct ifnet *ifp = sc->ifp;
1097 	int pmc;
1098 	uint16_t pmstat;
1099 
1100 	FXP_LOCK(sc);
1101 
1102 	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1103 		sc->flags &= ~FXP_FLAG_WOL;
1104 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1105 		/* Disable PME and clear PME status. */
1106 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1107 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1108 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1109 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1110 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1111 	}
1112 
1113 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1114 	DELAY(10);
1115 
1116 	/* reinitialize interface if necessary */
1117 	if (ifp->if_flags & IFF_UP)
1118 		fxp_init_body(sc);
1119 
1120 	sc->suspended = 0;
1121 
1122 	FXP_UNLOCK(sc);
1123 	return (0);
1124 }
1125 
1126 static void
1127 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1128 {
1129 	uint16_t reg;
1130 	int x;
1131 
1132 	/*
1133 	 * Shift in data.
1134 	 */
1135 	for (x = 1 << (length - 1); x; x >>= 1) {
1136 		if (data & x)
1137 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1138 		else
1139 			reg = FXP_EEPROM_EECS;
1140 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1141 		DELAY(1);
1142 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1143 		DELAY(1);
1144 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1145 		DELAY(1);
1146 	}
1147 }
1148 
1149 /*
1150  * Read from the serial EEPROM. Basically, you manually shift in
1151  * the read opcode (one bit at a time) and then shift in the address,
1152  * and then you shift out the data (all of this one bit at a time).
1153  * The word size is 16 bits, so you have to provide the address for
1154  * every 16 bits of data.
1155  */
1156 static uint16_t
1157 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1158 {
1159 	uint16_t reg, data;
1160 	int x;
1161 
1162 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1163 	/*
1164 	 * Shift in read opcode.
1165 	 */
1166 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1167 	/*
1168 	 * Shift in address.
1169 	 */
1170 	data = 0;
1171 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1172 		if (offset & x)
1173 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1174 		else
1175 			reg = FXP_EEPROM_EECS;
1176 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1177 		DELAY(1);
1178 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1179 		DELAY(1);
1180 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1181 		DELAY(1);
1182 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1183 		data++;
1184 		if (autosize && reg == 0) {
1185 			sc->eeprom_size = data;
1186 			break;
1187 		}
1188 	}
1189 	/*
1190 	 * Shift out data.
1191 	 */
1192 	data = 0;
1193 	reg = FXP_EEPROM_EECS;
1194 	for (x = 1 << 15; x; x >>= 1) {
1195 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1196 		DELAY(1);
1197 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1198 			data |= x;
1199 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1200 		DELAY(1);
1201 	}
1202 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1203 	DELAY(1);
1204 
1205 	return (data);
1206 }
1207 
1208 static void
1209 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1210 {
1211 	int i;
1212 
1213 	/*
1214 	 * Erase/write enable.
1215 	 */
1216 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1217 	fxp_eeprom_shiftin(sc, 0x4, 3);
1218 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1219 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1220 	DELAY(1);
1221 	/*
1222 	 * Shift in write opcode, address, data.
1223 	 */
1224 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1225 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1226 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1227 	fxp_eeprom_shiftin(sc, data, 16);
1228 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1229 	DELAY(1);
1230 	/*
1231 	 * Wait for EEPROM to finish up.
1232 	 */
1233 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1234 	DELAY(1);
1235 	for (i = 0; i < 1000; i++) {
1236 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1237 			break;
1238 		DELAY(50);
1239 	}
1240 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1241 	DELAY(1);
1242 	/*
1243 	 * Erase/write disable.
1244 	 */
1245 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1246 	fxp_eeprom_shiftin(sc, 0x4, 3);
1247 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1248 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1249 	DELAY(1);
1250 }
1251 
1252 /*
1253  * From NetBSD:
1254  *
1255  * Figure out EEPROM size.
1256  *
1257  * 559's can have either 64-word or 256-word EEPROMs, the 558
1258  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1259  * talks about the existance of 16 to 256 word EEPROMs.
1260  *
1261  * The only known sizes are 64 and 256, where the 256 version is used
1262  * by CardBus cards to store CIS information.
1263  *
1264  * The address is shifted in msb-to-lsb, and after the last
1265  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1266  * after which follows the actual data. We try to detect this zero, by
1267  * probing the data-out bit in the EEPROM control register just after
1268  * having shifted in a bit. If the bit is zero, we assume we've
1269  * shifted enough address bits. The data-out should be tri-state,
1270  * before this, which should translate to a logical one.
1271  */
1272 static void
1273 fxp_autosize_eeprom(struct fxp_softc *sc)
1274 {
1275 
1276 	/* guess maximum size of 256 words */
1277 	sc->eeprom_size = 8;
1278 
1279 	/* autosize */
1280 	(void) fxp_eeprom_getword(sc, 0, 1);
1281 }
1282 
1283 static void
1284 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1285 {
1286 	int i;
1287 
1288 	for (i = 0; i < words; i++)
1289 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1290 }
1291 
1292 static void
1293 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1294 {
1295 	int i;
1296 
1297 	for (i = 0; i < words; i++)
1298 		fxp_eeprom_putword(sc, offset + i, data[i]);
1299 }
1300 
1301 /*
1302  * Grab the softc lock and call the real fxp_start_body() routine
1303  */
1304 static void
1305 fxp_start(struct ifnet *ifp)
1306 {
1307 	struct fxp_softc *sc = ifp->if_softc;
1308 
1309 	FXP_LOCK(sc);
1310 	fxp_start_body(ifp);
1311 	FXP_UNLOCK(sc);
1312 }
1313 
1314 /*
1315  * Start packet transmission on the interface.
1316  * This routine must be called with the softc lock held, and is an
1317  * internal entry point only.
1318  */
1319 static void
1320 fxp_start_body(struct ifnet *ifp)
1321 {
1322 	struct fxp_softc *sc = ifp->if_softc;
1323 	struct mbuf *mb_head;
1324 	int txqueued;
1325 
1326 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1327 
1328 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1329 	    IFF_DRV_RUNNING)
1330 		return;
1331 
1332 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1333 		fxp_txeof(sc);
1334 	/*
1335 	 * We're finished if there is nothing more to add to the list or if
1336 	 * we're all filled up with buffers to transmit.
1337 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1338 	 *       a NOP command when needed.
1339 	 */
1340 	txqueued = 0;
1341 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1342 	    sc->tx_queued < FXP_NTXCB - 1) {
1343 
1344 		/*
1345 		 * Grab a packet to transmit.
1346 		 */
1347 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1348 		if (mb_head == NULL)
1349 			break;
1350 
1351 		if (fxp_encap(sc, &mb_head)) {
1352 			if (mb_head == NULL)
1353 				break;
1354 			IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
1355 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1356 		}
1357 		txqueued++;
1358 		/*
1359 		 * Pass packet to bpf if there is a listener.
1360 		 */
1361 		BPF_MTAP(ifp, mb_head);
1362 	}
1363 
1364 	/*
1365 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1366 	 * going again if suspended.
1367 	 */
1368 	if (txqueued > 0) {
1369 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1370 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1371 		fxp_scb_wait(sc);
1372 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1373 		/*
1374 		 * Set a 5 second timer just in case we don't hear
1375 		 * from the card again.
1376 		 */
1377 		sc->watchdog_timer = 5;
1378 	}
1379 }
1380 
1381 static int
1382 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1383 {
1384 	struct ifnet *ifp;
1385 	struct mbuf *m;
1386 	struct fxp_tx *txp;
1387 	struct fxp_cb_tx *cbp;
1388 	struct tcphdr *tcp;
1389 	bus_dma_segment_t segs[FXP_NTXSEG];
1390 	int error, i, nseg, tcp_payload;
1391 
1392 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1393 	ifp = sc->ifp;
1394 
1395 	tcp_payload = 0;
1396 	tcp = NULL;
1397 	/*
1398 	 * Get pointer to next available tx desc.
1399 	 */
1400 	txp = sc->fxp_desc.tx_last->tx_next;
1401 
1402 	/*
1403 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1404 	 * Ethernet Controller Family Open Source Software
1405 	 * Developer Manual says:
1406 	 *   Using software parsing is only allowed with legal
1407 	 *   TCP/IP or UDP/IP packets.
1408 	 *   ...
1409 	 *   For all other datagrams, hardware parsing must
1410 	 *   be used.
1411 	 * Software parsing appears to truncate ICMP and
1412 	 * fragmented UDP packets that contain one to three
1413 	 * bytes in the second (and final) mbuf of the packet.
1414 	 */
1415 	if (sc->flags & FXP_FLAG_EXT_RFA)
1416 		txp->tx_cb->ipcb_ip_activation_high =
1417 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1418 
1419 	m = *m_head;
1420 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1421 		/*
1422 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1423 		 * contained in the first active transmit buffer.
1424 		 */
1425 		struct ether_header *eh;
1426 		struct ip *ip;
1427 		uint32_t ip_off, poff;
1428 
1429 		if (M_WRITABLE(*m_head) == 0) {
1430 			/* Get a writable copy. */
1431 			m = m_dup(*m_head, M_DONTWAIT);
1432 			m_freem(*m_head);
1433 			if (m == NULL) {
1434 				*m_head = NULL;
1435 				return (ENOBUFS);
1436 			}
1437 			*m_head = m;
1438 		}
1439 		ip_off = sizeof(struct ether_header);
1440 		m = m_pullup(*m_head, ip_off);
1441 		if (m == NULL) {
1442 			*m_head = NULL;
1443 			return (ENOBUFS);
1444 		}
1445 		eh = mtod(m, struct ether_header *);
1446 		/* Check the existence of VLAN tag. */
1447 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1448 			ip_off = sizeof(struct ether_vlan_header);
1449 			m = m_pullup(m, ip_off);
1450 			if (m == NULL) {
1451 				*m_head = NULL;
1452 				return (ENOBUFS);
1453 			}
1454 		}
1455 		m = m_pullup(m, ip_off + sizeof(struct ip));
1456 		if (m == NULL) {
1457 			*m_head = NULL;
1458 			return (ENOBUFS);
1459 		}
1460 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1461 		poff = ip_off + (ip->ip_hl << 2);
1462 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1463 		if (m == NULL) {
1464 			*m_head = NULL;
1465 			return (ENOBUFS);
1466 		}
1467 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1468 		m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off);
1469 		if (m == NULL) {
1470 			*m_head = NULL;
1471 			return (ENOBUFS);
1472 		}
1473 
1474 		/*
1475 		 * Since 82550/82551 doesn't modify IP length and pseudo
1476 		 * checksum in the first frame driver should compute it.
1477 		 */
1478 		ip->ip_sum = 0;
1479 		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1480 		    (tcp->th_off << 2));
1481 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1482 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1483 		    m->m_pkthdr.tso_segsz));
1484 		/* Compute total TCP payload. */
1485 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1486 		tcp_payload -= tcp->th_off << 2;
1487 		*m_head = m;
1488 	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1489 		/*
1490 		 * Deal with TCP/IP checksum offload. Note that
1491 		 * in order for TCP checksum offload to work,
1492 		 * the pseudo header checksum must have already
1493 		 * been computed and stored in the checksum field
1494 		 * in the TCP header. The stack should have
1495 		 * already done this for us.
1496 		 */
1497 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1498 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1499 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1500 
1501 #ifdef FXP_IP_CSUM_WAR
1502 		/*
1503 		 * XXX The 82550 chip appears to have trouble
1504 		 * dealing with IP header checksums in very small
1505 		 * datagrams, namely fragments from 1 to 3 bytes
1506 		 * in size. For example, say you want to transmit
1507 		 * a UDP packet of 1473 bytes. The packet will be
1508 		 * fragmented over two IP datagrams, the latter
1509 		 * containing only one byte of data. The 82550 will
1510 		 * botch the header checksum on the 1-byte fragment.
1511 		 * As long as the datagram contains 4 or more bytes
1512 		 * of data, you're ok.
1513 		 *
1514                  * The following code attempts to work around this
1515 		 * problem: if the datagram is less than 38 bytes
1516 		 * in size (14 bytes ether header, 20 bytes IP header,
1517 		 * plus 4 bytes of data), we punt and compute the IP
1518 		 * header checksum by hand. This workaround doesn't
1519 		 * work very well, however, since it can be fooled
1520 		 * by things like VLAN tags and IP options that make
1521 		 * the header sizes/offsets vary.
1522 		 */
1523 
1524 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1525 			if (m->m_pkthdr.len < 38) {
1526 				struct ip *ip;
1527 				m->m_data += ETHER_HDR_LEN;
1528 				ip = mtod(m, struct ip *);
1529 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1530 				m->m_data -= ETHER_HDR_LEN;
1531 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1532 			} else {
1533 				txp->tx_cb->ipcb_ip_activation_high =
1534 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1535 				txp->tx_cb->ipcb_ip_schedule |=
1536 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1537 			}
1538 		}
1539 #endif
1540 	}
1541 
1542 	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1543 	    segs, &nseg, 0);
1544 	if (error == EFBIG) {
1545 		m = m_collapse(*m_head, M_DONTWAIT, sc->maxtxseg);
1546 		if (m == NULL) {
1547 			m_freem(*m_head);
1548 			*m_head = NULL;
1549 			return (ENOMEM);
1550 		}
1551 		*m_head = m;
1552 		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1553 	    	    *m_head, segs, &nseg, 0);
1554 		if (error != 0) {
1555 			m_freem(*m_head);
1556 			*m_head = NULL;
1557 			return (ENOMEM);
1558 		}
1559 	} else if (error != 0)
1560 		return (error);
1561 	if (nseg == 0) {
1562 		m_freem(*m_head);
1563 		*m_head = NULL;
1564 		return (EIO);
1565 	}
1566 
1567 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1568 	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1569 
1570 	cbp = txp->tx_cb;
1571 	for (i = 0; i < nseg; i++) {
1572 		/*
1573 		 * If this is an 82550/82551, then we're using extended
1574 		 * TxCBs _and_ we're using checksum offload. This means
1575 		 * that the TxCB is really an IPCB. One major difference
1576 		 * between the two is that with plain extended TxCBs,
1577 		 * the bottom half of the TxCB contains two entries from
1578 		 * the TBD array, whereas IPCBs contain just one entry:
1579 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1580 		 * checksum offload control bits. So to make things work
1581 		 * right, we have to start filling in the TBD array
1582 		 * starting from a different place depending on whether
1583 		 * the chip is an 82550/82551 or not.
1584 		 */
1585 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1586 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1587 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1588 		} else {
1589 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1590 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1591 		}
1592 	}
1593 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1594 		/* Configure dynamic TBD for 82550/82551. */
1595 		cbp->tbd_number = 0xFF;
1596 		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1597 	} else
1598 		cbp->tbd_number = nseg;
1599 	/* Configure TSO. */
1600 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1601 		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1602 		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1603 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1604 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1605 		    FXP_IPCB_TCP_PACKET |
1606 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1607 	}
1608 	/* Configure VLAN hardware tag insertion. */
1609 	if ((m->m_flags & M_VLANTAG) != 0) {
1610 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1611 		txp->tx_cb->ipcb_ip_activation_high |=
1612 		    FXP_IPCB_INSERTVLAN_ENABLE;
1613 	}
1614 
1615 	txp->tx_mbuf = m;
1616 	txp->tx_cb->cb_status = 0;
1617 	txp->tx_cb->byte_count = 0;
1618 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1619 		txp->tx_cb->cb_command =
1620 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1621 		    FXP_CB_COMMAND_S);
1622 	else
1623 		txp->tx_cb->cb_command =
1624 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1625 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1626 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1627 		txp->tx_cb->tx_threshold = tx_threshold;
1628 
1629 	/*
1630 	 * Advance the end of list forward.
1631 	 */
1632 
1633 #ifdef __alpha__
1634 	/*
1635 	 * On platforms which can't access memory in 16-bit
1636 	 * granularities, we must prevent the card from DMA'ing
1637 	 * up the status while we update the command field.
1638 	 * This could cause us to overwrite the completion status.
1639 	 * XXX This is probably bogus and we're _not_ looking
1640 	 * for atomicity here.
1641 	 */
1642 	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1643 	    htole16(FXP_CB_COMMAND_S));
1644 #else
1645 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1646 #endif /*__alpha__*/
1647 	sc->fxp_desc.tx_last = txp;
1648 
1649 	/*
1650 	 * Advance the beginning of the list forward if there are
1651 	 * no other packets queued (when nothing is queued, tx_first
1652 	 * sits on the last TxCB that was sent out).
1653 	 */
1654 	if (sc->tx_queued == 0)
1655 		sc->fxp_desc.tx_first = txp;
1656 
1657 	sc->tx_queued++;
1658 
1659 	return (0);
1660 }
1661 
1662 #ifdef DEVICE_POLLING
1663 static poll_handler_t fxp_poll;
1664 
1665 static int
1666 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1667 {
1668 	struct fxp_softc *sc = ifp->if_softc;
1669 	uint8_t statack;
1670 	int rx_npkts = 0;
1671 
1672 	FXP_LOCK(sc);
1673 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1674 		FXP_UNLOCK(sc);
1675 		return (rx_npkts);
1676 	}
1677 
1678 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1679 	    FXP_SCB_STATACK_FR;
1680 	if (cmd == POLL_AND_CHECK_STATUS) {
1681 		uint8_t tmp;
1682 
1683 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1684 		if (tmp == 0xff || tmp == 0) {
1685 			FXP_UNLOCK(sc);
1686 			return (rx_npkts); /* nothing to do */
1687 		}
1688 		tmp &= ~statack;
1689 		/* ack what we can */
1690 		if (tmp != 0)
1691 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1692 		statack |= tmp;
1693 	}
1694 	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1695 	FXP_UNLOCK(sc);
1696 	return (rx_npkts);
1697 }
1698 #endif /* DEVICE_POLLING */
1699 
1700 /*
1701  * Process interface interrupts.
1702  */
1703 static void
1704 fxp_intr(void *xsc)
1705 {
1706 	struct fxp_softc *sc = xsc;
1707 	struct ifnet *ifp = sc->ifp;
1708 	uint8_t statack;
1709 
1710 	FXP_LOCK(sc);
1711 	if (sc->suspended) {
1712 		FXP_UNLOCK(sc);
1713 		return;
1714 	}
1715 
1716 #ifdef DEVICE_POLLING
1717 	if (ifp->if_capenable & IFCAP_POLLING) {
1718 		FXP_UNLOCK(sc);
1719 		return;
1720 	}
1721 #endif
1722 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1723 		/*
1724 		 * It should not be possible to have all bits set; the
1725 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1726 		 * all bits are set, this may indicate that the card has
1727 		 * been physically ejected, so ignore it.
1728 		 */
1729 		if (statack == 0xff) {
1730 			FXP_UNLOCK(sc);
1731 			return;
1732 		}
1733 
1734 		/*
1735 		 * First ACK all the interrupts in this pass.
1736 		 */
1737 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1738 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1739 			fxp_intr_body(sc, ifp, statack, -1);
1740 	}
1741 	FXP_UNLOCK(sc);
1742 }
1743 
1744 static void
1745 fxp_txeof(struct fxp_softc *sc)
1746 {
1747 	struct ifnet *ifp;
1748 	struct fxp_tx *txp;
1749 
1750 	ifp = sc->ifp;
1751 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1752 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1753 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1754 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1755 	    txp = txp->tx_next) {
1756 		if (txp->tx_mbuf != NULL) {
1757 			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1758 			    BUS_DMASYNC_POSTWRITE);
1759 			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1760 			m_freem(txp->tx_mbuf);
1761 			txp->tx_mbuf = NULL;
1762 			/* clear this to reset csum offload bits */
1763 			txp->tx_cb->tbd[0].tb_addr = 0;
1764 		}
1765 		sc->tx_queued--;
1766 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1767 	}
1768 	sc->fxp_desc.tx_first = txp;
1769 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1770 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1771 	if (sc->tx_queued == 0)
1772 		sc->watchdog_timer = 0;
1773 }
1774 
1775 static void
1776 fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
1777     uint16_t status, int pos)
1778 {
1779 	struct ether_header *eh;
1780 	struct ip *ip;
1781 	struct udphdr *uh;
1782 	int32_t hlen, len, pktlen, temp32;
1783 	uint16_t csum, *opts;
1784 
1785 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1786 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1787 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1788 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1789 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1790 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1791 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1792 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1793 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1794 				    CSUM_PSEUDO_HDR;
1795 				m->m_pkthdr.csum_data = 0xffff;
1796 			}
1797 		}
1798 		return;
1799 	}
1800 
1801 	pktlen = m->m_pkthdr.len;
1802 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1803 		return;
1804 	eh = mtod(m, struct ether_header *);
1805 	if (eh->ether_type != htons(ETHERTYPE_IP))
1806 		return;
1807 	ip = (struct ip *)(eh + 1);
1808 	if (ip->ip_v != IPVERSION)
1809 		return;
1810 
1811 	hlen = ip->ip_hl << 2;
1812 	pktlen -= sizeof(struct ether_header);
1813 	if (hlen < sizeof(struct ip))
1814 		return;
1815 	if (ntohs(ip->ip_len) < hlen)
1816 		return;
1817 	if (ntohs(ip->ip_len) != pktlen)
1818 		return;
1819 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1820 		return;	/* can't handle fragmented packet */
1821 
1822 	switch (ip->ip_p) {
1823 	case IPPROTO_TCP:
1824 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1825 			return;
1826 		break;
1827 	case IPPROTO_UDP:
1828 		if (pktlen < (hlen + sizeof(struct udphdr)))
1829 			return;
1830 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1831 		if (uh->uh_sum == 0)
1832 			return; /* no checksum */
1833 		break;
1834 	default:
1835 		return;
1836 	}
1837 	/* Extract computed checksum. */
1838 	csum = be16dec(mtod(m, char *) + pos);
1839 	/* checksum fixup for IP options */
1840 	len = hlen - sizeof(struct ip);
1841 	if (len > 0) {
1842 		opts = (uint16_t *)(ip + 1);
1843 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1844 			temp32 = csum - *opts;
1845 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1846 			csum = temp32 & 65535;
1847 		}
1848 	}
1849 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1850 	m->m_pkthdr.csum_data = csum;
1851 }
1852 
1853 static int
1854 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1855     int count)
1856 {
1857 	struct mbuf *m;
1858 	struct fxp_rx *rxp;
1859 	struct fxp_rfa *rfa;
1860 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1861 	int rx_npkts;
1862 	uint16_t status;
1863 
1864 	rx_npkts = 0;
1865 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1866 
1867 	if (rnr)
1868 		sc->rnr++;
1869 #ifdef DEVICE_POLLING
1870 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1871 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1872 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1873 		rnr = 1;
1874 	}
1875 #endif
1876 
1877 	/*
1878 	 * Free any finished transmit mbuf chains.
1879 	 *
1880 	 * Handle the CNA event likt a CXTNO event. It used to
1881 	 * be that this event (control unit not ready) was not
1882 	 * encountered, but it is now with the SMPng modifications.
1883 	 * The exact sequence of events that occur when the interface
1884 	 * is brought up are different now, and if this event
1885 	 * goes unhandled, the configuration/rxfilter setup sequence
1886 	 * can stall for several seconds. The result is that no
1887 	 * packets go out onto the wire for about 5 to 10 seconds
1888 	 * after the interface is ifconfig'ed for the first time.
1889 	 */
1890 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1891 		fxp_txeof(sc);
1892 
1893 	/*
1894 	 * Try to start more packets transmitting.
1895 	 */
1896 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1897 		fxp_start_body(ifp);
1898 
1899 	/*
1900 	 * Just return if nothing happened on the receive side.
1901 	 */
1902 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1903 		return (rx_npkts);
1904 
1905 	/*
1906 	 * Process receiver interrupts. If a no-resource (RNR)
1907 	 * condition exists, get whatever packets we can and
1908 	 * re-start the receiver.
1909 	 *
1910 	 * When using polling, we do not process the list to completion,
1911 	 * so when we get an RNR interrupt we must defer the restart
1912 	 * until we hit the last buffer with the C bit set.
1913 	 * If we run out of cycles and rfa_headm has the C bit set,
1914 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1915 	 * that the info will be used in the subsequent polling cycle.
1916 	 */
1917 	for (;;) {
1918 		rxp = sc->fxp_desc.rx_head;
1919 		m = rxp->rx_mbuf;
1920 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1921 		    RFA_ALIGNMENT_FUDGE);
1922 		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1923 		    BUS_DMASYNC_POSTREAD);
1924 
1925 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1926 		if (count >= 0 && count-- == 0) {
1927 			if (rnr) {
1928 				/* Defer RNR processing until the next time. */
1929 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1930 				rnr = 0;
1931 			}
1932 			break;
1933 		}
1934 #endif /* DEVICE_POLLING */
1935 
1936 		status = le16toh(rfa->rfa_status);
1937 		if ((status & FXP_RFA_STATUS_C) == 0)
1938 			break;
1939 
1940 		/*
1941 		 * Advance head forward.
1942 		 */
1943 		sc->fxp_desc.rx_head = rxp->rx_next;
1944 
1945 		/*
1946 		 * Add a new buffer to the receive chain.
1947 		 * If this fails, the old buffer is recycled
1948 		 * instead.
1949 		 */
1950 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1951 			int total_len;
1952 
1953 			/*
1954 			 * Fetch packet length (the top 2 bits of
1955 			 * actual_size are flags set by the controller
1956 			 * upon completion), and drop the packet in case
1957 			 * of bogus length or CRC errors.
1958 			 */
1959 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1960 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1961 			    (ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1962 				/* Adjust for appended checksum bytes. */
1963 				total_len -= 2;
1964 			}
1965 			if (total_len < sizeof(struct ether_header) ||
1966 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1967 				sc->rfa_size || status & FXP_RFA_STATUS_CRC) {
1968 				m_freem(m);
1969 				continue;
1970 			}
1971 
1972 			m->m_pkthdr.len = m->m_len = total_len;
1973 			m->m_pkthdr.rcvif = ifp;
1974 
1975                         /* Do IP checksum checking. */
1976 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1977 				fxp_rxcsum(sc, ifp, m, status, total_len);
1978 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1979 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1980 				m->m_pkthdr.ether_vtag =
1981 				    ntohs(rfa->rfax_vlan_id);
1982 				m->m_flags |= M_VLANTAG;
1983 			}
1984 			/*
1985 			 * Drop locks before calling if_input() since it
1986 			 * may re-enter fxp_start() in the netisr case.
1987 			 * This would result in a lock reversal.  Better
1988 			 * performance might be obtained by chaining all
1989 			 * packets received, dropping the lock, and then
1990 			 * calling if_input() on each one.
1991 			 */
1992 			FXP_UNLOCK(sc);
1993 			(*ifp->if_input)(ifp, m);
1994 			FXP_LOCK(sc);
1995 			rx_npkts++;
1996 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1997 				return (rx_npkts);
1998 		} else {
1999 			/* Reuse RFA and loaded DMA map. */
2000 			ifp->if_iqdrops++;
2001 			fxp_discard_rfabuf(sc, rxp);
2002 		}
2003 		fxp_add_rfabuf(sc, rxp);
2004 	}
2005 	if (rnr) {
2006 		fxp_scb_wait(sc);
2007 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2008 		    sc->fxp_desc.rx_head->rx_addr);
2009 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2010 	}
2011 	return (rx_npkts);
2012 }
2013 
2014 /*
2015  * Update packet in/out/collision statistics. The i82557 doesn't
2016  * allow you to access these counters without doing a fairly
2017  * expensive DMA to get _all_ of the statistics it maintains, so
2018  * we do this operation here only once per second. The statistics
2019  * counters in the kernel are updated from the previous dump-stats
2020  * DMA and then a new dump-stats DMA is started. The on-chip
2021  * counters are zeroed when the DMA completes. If we can't start
2022  * the DMA immediately, we don't wait - we just prepare to read
2023  * them again next time.
2024  */
2025 static void
2026 fxp_tick(void *xsc)
2027 {
2028 	struct fxp_softc *sc = xsc;
2029 	struct ifnet *ifp = sc->ifp;
2030 	struct fxp_stats *sp = sc->fxp_stats;
2031 
2032 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2033 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
2034 	ifp->if_opackets += le32toh(sp->tx_good);
2035 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
2036 	if (sp->rx_good) {
2037 		ifp->if_ipackets += le32toh(sp->rx_good);
2038 		sc->rx_idle_secs = 0;
2039 	} else if (sc->flags & FXP_FLAG_RXBUG) {
2040 		/*
2041 		 * Receiver's been idle for another second.
2042 		 */
2043 		sc->rx_idle_secs++;
2044 	}
2045 	ifp->if_ierrors +=
2046 	    le32toh(sp->rx_crc_errors) +
2047 	    le32toh(sp->rx_alignment_errors) +
2048 	    le32toh(sp->rx_rnr_errors) +
2049 	    le32toh(sp->rx_overrun_errors);
2050 	/*
2051 	 * If any transmit underruns occured, bump up the transmit
2052 	 * threshold by another 512 bytes (64 * 8).
2053 	 */
2054 	if (sp->tx_underruns) {
2055 		ifp->if_oerrors += le32toh(sp->tx_underruns);
2056 		if (tx_threshold < 192)
2057 			tx_threshold += 64;
2058 	}
2059 
2060 	/*
2061 	 * Release any xmit buffers that have completed DMA. This isn't
2062 	 * strictly necessary to do here, but it's advantagous for mbufs
2063 	 * with external storage to be released in a timely manner rather
2064 	 * than being defered for a potentially long time. This limits
2065 	 * the delay to a maximum of one second.
2066 	 */
2067 	fxp_txeof(sc);
2068 
2069 	/*
2070 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2071 	 * then assume the receiver has locked up and attempt to clear
2072 	 * the condition by reprogramming the multicast filter. This is
2073 	 * a work-around for a bug in the 82557 where the receiver locks
2074 	 * up if it gets certain types of garbage in the syncronization
2075 	 * bits prior to the packet header. This bug is supposed to only
2076 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2077 	 * mode as well (perhaps due to a 10/100 speed transition).
2078 	 */
2079 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2080 		sc->rx_idle_secs = 0;
2081 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2082 			fxp_init_body(sc);
2083 		return;
2084 	}
2085 	/*
2086 	 * If there is no pending command, start another stats
2087 	 * dump. Otherwise punt for now.
2088 	 */
2089 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2090 		/*
2091 		 * Start another stats dump.
2092 		 */
2093 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2094 		    BUS_DMASYNC_PREREAD);
2095 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2096 	} else {
2097 		/*
2098 		 * A previous command is still waiting to be accepted.
2099 		 * Just zero our copy of the stats and wait for the
2100 		 * next timer event to update them.
2101 		 */
2102 		sp->tx_good = 0;
2103 		sp->tx_underruns = 0;
2104 		sp->tx_total_collisions = 0;
2105 
2106 		sp->rx_good = 0;
2107 		sp->rx_crc_errors = 0;
2108 		sp->rx_alignment_errors = 0;
2109 		sp->rx_rnr_errors = 0;
2110 		sp->rx_overrun_errors = 0;
2111 	}
2112 	if (sc->miibus != NULL)
2113 		mii_tick(device_get_softc(sc->miibus));
2114 
2115 	/*
2116 	 * Check that chip hasn't hung.
2117 	 */
2118 	fxp_watchdog(sc);
2119 
2120 	/*
2121 	 * Schedule another timeout one second from now.
2122 	 */
2123 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2124 }
2125 
2126 /*
2127  * Stop the interface. Cancels the statistics updater and resets
2128  * the interface.
2129  */
2130 static void
2131 fxp_stop(struct fxp_softc *sc)
2132 {
2133 	struct ifnet *ifp = sc->ifp;
2134 	struct fxp_tx *txp;
2135 	int i;
2136 
2137 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2138 	sc->watchdog_timer = 0;
2139 
2140 	/*
2141 	 * Cancel stats updater.
2142 	 */
2143 	callout_stop(&sc->stat_ch);
2144 
2145 	/*
2146 	 * Preserve PCI configuration, configure, IA/multicast
2147 	 * setup and put RU and CU into idle state.
2148 	 */
2149 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2150 	DELAY(50);
2151 	/* Disable interrupts. */
2152 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2153 
2154 	/*
2155 	 * Release any xmit buffers.
2156 	 */
2157 	txp = sc->fxp_desc.tx_list;
2158 	if (txp != NULL) {
2159 		for (i = 0; i < FXP_NTXCB; i++) {
2160  			if (txp[i].tx_mbuf != NULL) {
2161 				bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2162 				    BUS_DMASYNC_POSTWRITE);
2163 				bus_dmamap_unload(sc->fxp_txmtag,
2164 				    txp[i].tx_map);
2165 				m_freem(txp[i].tx_mbuf);
2166 				txp[i].tx_mbuf = NULL;
2167 				/* clear this to reset csum offload bits */
2168 				txp[i].tx_cb->tbd[0].tb_addr = 0;
2169 			}
2170 		}
2171 	}
2172 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2173 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2174 	sc->tx_queued = 0;
2175 }
2176 
2177 /*
2178  * Watchdog/transmission transmit timeout handler. Called when a
2179  * transmission is started on the interface, but no interrupt is
2180  * received before the timeout. This usually indicates that the
2181  * card has wedged for some reason.
2182  */
2183 static void
2184 fxp_watchdog(struct fxp_softc *sc)
2185 {
2186 
2187 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2188 
2189 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2190 		return;
2191 
2192 	device_printf(sc->dev, "device timeout\n");
2193 	sc->ifp->if_oerrors++;
2194 
2195 	fxp_init_body(sc);
2196 }
2197 
2198 /*
2199  * Acquire locks and then call the real initialization function.  This
2200  * is necessary because ether_ioctl() calls if_init() and this would
2201  * result in mutex recursion if the mutex was held.
2202  */
2203 static void
2204 fxp_init(void *xsc)
2205 {
2206 	struct fxp_softc *sc = xsc;
2207 
2208 	FXP_LOCK(sc);
2209 	fxp_init_body(sc);
2210 	FXP_UNLOCK(sc);
2211 }
2212 
2213 /*
2214  * Perform device initialization. This routine must be called with the
2215  * softc lock held.
2216  */
2217 static void
2218 fxp_init_body(struct fxp_softc *sc)
2219 {
2220 	struct ifnet *ifp = sc->ifp;
2221 	struct fxp_cb_config *cbp;
2222 	struct fxp_cb_ias *cb_ias;
2223 	struct fxp_cb_tx *tcbp;
2224 	struct fxp_tx *txp;
2225 	int i, prm;
2226 
2227 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2228 	/*
2229 	 * Cancel any pending I/O
2230 	 */
2231 	fxp_stop(sc);
2232 
2233 	/*
2234 	 * Issue software reset, which also unloads the microcode.
2235 	 */
2236 	sc->flags &= ~FXP_FLAG_UCODE;
2237 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2238 	DELAY(50);
2239 
2240 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2241 
2242 	/*
2243 	 * Initialize base of CBL and RFA memory. Loading with zero
2244 	 * sets it up for regular linear addressing.
2245 	 */
2246 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2247 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2248 
2249 	fxp_scb_wait(sc);
2250 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2251 
2252 	/*
2253 	 * Initialize base of dump-stats buffer.
2254 	 */
2255 	fxp_scb_wait(sc);
2256 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
2257 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2258 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2259 
2260 	/*
2261 	 * Attempt to load microcode if requested.
2262 	 * For ICH based controllers do not load microcode.
2263 	 */
2264 	if (sc->ident->ich == 0) {
2265 		if (ifp->if_flags & IFF_LINK0 &&
2266 		    (sc->flags & FXP_FLAG_UCODE) == 0)
2267 			fxp_load_ucode(sc);
2268 	}
2269 
2270 	/*
2271 	 * Set IFF_ALLMULTI status. It's needed in configure action
2272 	 * command.
2273 	 */
2274 	fxp_mc_addrs(sc);
2275 
2276 	/*
2277 	 * We temporarily use memory that contains the TxCB list to
2278 	 * construct the config CB. The TxCB list memory is rebuilt
2279 	 * later.
2280 	 */
2281 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2282 
2283 	/*
2284 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2285 	 * zero and must be one bits in this structure and this is the easiest
2286 	 * way to initialize them all to proper values.
2287 	 */
2288 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2289 
2290 	cbp->cb_status =	0;
2291 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2292 	    FXP_CB_COMMAND_EL);
2293 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2294 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2295 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2296 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2297 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2298 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2299 	cbp->type_enable =	0;	/* actually reserved */
2300 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2301 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2302 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2303 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2304 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2305 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2306 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2307 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2308 	cbp->ci_int =		1;	/* interrupt on CU idle */
2309 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2310 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2311 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2312 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2313 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2314 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2315 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2316 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2317 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2318 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2319 	cbp->csma_dis =		0;	/* (don't) disable link */
2320 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2321 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
2322 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2323 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2324 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2325 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2326 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2327 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2328 	cbp->loopback =		0;	/* (don't) loopback */
2329 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2330 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2331 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2332 	cbp->promiscuous =	prm;	/* promiscuous mode */
2333 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2334 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2335 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2336 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2337 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2338 
2339 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2340 	cbp->padding =		1;	/* (do) pad short tx packets */
2341 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2342 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2343 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2344 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2345 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2346 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2347 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2348 	cbp->mc_all =		ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
2349 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2350 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2351 	    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2352 
2353 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2354 		/*
2355 		 * The 82557 has no hardware flow control, the values
2356 		 * below are the defaults for the chip.
2357 		 */
2358 		cbp->fc_delay_lsb =	0;
2359 		cbp->fc_delay_msb =	0x40;
2360 		cbp->pri_fc_thresh =	3;
2361 		cbp->tx_fc_dis =	0;
2362 		cbp->rx_fc_restop =	0;
2363 		cbp->rx_fc_restart =	0;
2364 		cbp->fc_filter =	0;
2365 		cbp->pri_fc_loc =	1;
2366 	} else {
2367 		cbp->fc_delay_lsb =	0x1f;
2368 		cbp->fc_delay_msb =	0x01;
2369 		cbp->pri_fc_thresh =	3;
2370 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2371 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2372 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2373 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2374 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2375 	}
2376 
2377 	/*
2378 	 * Start the config command/DMA.
2379 	 */
2380 	fxp_scb_wait(sc);
2381 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2382 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2383 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2384 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2385 	/* ...and wait for it to complete. */
2386 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2387 
2388 	/*
2389 	 * Now initialize the station address. Temporarily use the TxCB
2390 	 * memory area like we did above for the config CB.
2391 	 */
2392 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2393 	cb_ias->cb_status = 0;
2394 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2395 	cb_ias->link_addr = 0xffffffff;
2396 	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2397 
2398 	/*
2399 	 * Start the IAS (Individual Address Setup) command/DMA.
2400 	 */
2401 	fxp_scb_wait(sc);
2402 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2403 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2404 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2405 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2406 	/* ...and wait for it to complete. */
2407 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2408 
2409 	/*
2410 	 * Initialize the multicast address list.
2411 	 */
2412 	fxp_mc_setup(sc);
2413 
2414 	/*
2415 	 * Initialize transmit control block (TxCB) list.
2416 	 */
2417 	txp = sc->fxp_desc.tx_list;
2418 	tcbp = sc->fxp_desc.cbl_list;
2419 	bzero(tcbp, FXP_TXCB_SZ);
2420 	for (i = 0; i < FXP_NTXCB; i++) {
2421 		txp[i].tx_mbuf = NULL;
2422 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2423 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2424 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2425 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2426 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2427 			tcbp[i].tbd_array_addr =
2428 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2429 		else
2430 			tcbp[i].tbd_array_addr =
2431 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2432 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2433 	}
2434 	/*
2435 	 * Set the suspend flag on the first TxCB and start the control
2436 	 * unit. It will execute the NOP and then suspend.
2437 	 */
2438 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2439 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2440 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2441 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2442 	sc->tx_queued = 1;
2443 
2444 	fxp_scb_wait(sc);
2445 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2446 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2447 
2448 	/*
2449 	 * Initialize receiver buffer area - RFA.
2450 	 */
2451 	fxp_scb_wait(sc);
2452 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2453 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2454 
2455 	/*
2456 	 * Set current media.
2457 	 */
2458 	if (sc->miibus != NULL)
2459 		mii_mediachg(device_get_softc(sc->miibus));
2460 
2461 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2462 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2463 
2464 	/*
2465 	 * Enable interrupts.
2466 	 */
2467 #ifdef DEVICE_POLLING
2468 	/*
2469 	 * ... but only do that if we are not polling. And because (presumably)
2470 	 * the default is interrupts on, we need to disable them explicitly!
2471 	 */
2472 	if (ifp->if_capenable & IFCAP_POLLING )
2473 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2474 	else
2475 #endif /* DEVICE_POLLING */
2476 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2477 
2478 	/*
2479 	 * Start stats updater.
2480 	 */
2481 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2482 }
2483 
2484 static int
2485 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2486 {
2487 
2488 	return (0);
2489 }
2490 
2491 static void
2492 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2493 {
2494 
2495 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2496 }
2497 
2498 /*
2499  * Change media according to request.
2500  */
2501 static int
2502 fxp_ifmedia_upd(struct ifnet *ifp)
2503 {
2504 	struct fxp_softc *sc = ifp->if_softc;
2505 	struct mii_data *mii;
2506 
2507 	mii = device_get_softc(sc->miibus);
2508 	FXP_LOCK(sc);
2509 	if (mii->mii_instance) {
2510 		struct mii_softc	*miisc;
2511 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2512 			mii_phy_reset(miisc);
2513 	}
2514 	mii_mediachg(mii);
2515 	FXP_UNLOCK(sc);
2516 	return (0);
2517 }
2518 
2519 /*
2520  * Notify the world which media we're using.
2521  */
2522 static void
2523 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2524 {
2525 	struct fxp_softc *sc = ifp->if_softc;
2526 	struct mii_data *mii;
2527 
2528 	mii = device_get_softc(sc->miibus);
2529 	FXP_LOCK(sc);
2530 	mii_pollstat(mii);
2531 	ifmr->ifm_active = mii->mii_media_active;
2532 	ifmr->ifm_status = mii->mii_media_status;
2533 
2534 	if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
2535 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2536 		sc->cu_resume_bug = 1;
2537 	else
2538 		sc->cu_resume_bug = 0;
2539 	FXP_UNLOCK(sc);
2540 }
2541 
2542 /*
2543  * Add a buffer to the end of the RFA buffer list.
2544  * Return 0 if successful, 1 for failure. A failure results in
2545  * reusing the RFA buffer.
2546  * The RFA struct is stuck at the beginning of mbuf cluster and the
2547  * data pointer is fixed up to point just past it.
2548  */
2549 static int
2550 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2551 {
2552 	struct mbuf *m;
2553 	struct fxp_rfa *rfa;
2554 	bus_dmamap_t tmp_map;
2555 	int error;
2556 
2557 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2558 	if (m == NULL)
2559 		return (ENOBUFS);
2560 
2561 	/*
2562 	 * Move the data pointer up so that the incoming data packet
2563 	 * will be 32-bit aligned.
2564 	 */
2565 	m->m_data += RFA_ALIGNMENT_FUDGE;
2566 
2567 	/*
2568 	 * Get a pointer to the base of the mbuf cluster and move
2569 	 * data start past it.
2570 	 */
2571 	rfa = mtod(m, struct fxp_rfa *);
2572 	m->m_data += sc->rfa_size;
2573 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2574 
2575 	rfa->rfa_status = 0;
2576 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2577 	rfa->actual_size = 0;
2578 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2579 	    sc->rfa_size;
2580 
2581 	/*
2582 	 * Initialize the rest of the RFA.  Note that since the RFA
2583 	 * is misaligned, we cannot store values directly.  We're thus
2584 	 * using the le32enc() function which handles endianness and
2585 	 * is also alignment-safe.
2586 	 */
2587 	le32enc(&rfa->link_addr, 0xffffffff);
2588 	le32enc(&rfa->rbd_addr, 0xffffffff);
2589 
2590 	/* Map the RFA into DMA memory. */
2591 	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2592 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2593 	    &rxp->rx_addr, 0);
2594 	if (error) {
2595 		m_freem(m);
2596 		return (error);
2597 	}
2598 
2599 	if (rxp->rx_mbuf != NULL)
2600 		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2601 	tmp_map = sc->spare_map;
2602 	sc->spare_map = rxp->rx_map;
2603 	rxp->rx_map = tmp_map;
2604 	rxp->rx_mbuf = m;
2605 
2606 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2607 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2608 	return (0);
2609 }
2610 
2611 static void
2612 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2613 {
2614 	struct fxp_rfa *p_rfa;
2615 	struct fxp_rx *p_rx;
2616 
2617 	/*
2618 	 * If there are other buffers already on the list, attach this
2619 	 * one to the end by fixing up the tail to point to this one.
2620 	 */
2621 	if (sc->fxp_desc.rx_head != NULL) {
2622 		p_rx = sc->fxp_desc.rx_tail;
2623 		p_rfa = (struct fxp_rfa *)
2624 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2625 		p_rx->rx_next = rxp;
2626 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2627 		p_rfa->rfa_control = 0;
2628 		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2629 		    BUS_DMASYNC_PREWRITE);
2630 	} else {
2631 		rxp->rx_next = NULL;
2632 		sc->fxp_desc.rx_head = rxp;
2633 	}
2634 	sc->fxp_desc.rx_tail = rxp;
2635 }
2636 
2637 static void
2638 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2639 {
2640 	struct mbuf *m;
2641 	struct fxp_rfa *rfa;
2642 
2643 	m = rxp->rx_mbuf;
2644 	m->m_data = m->m_ext.ext_buf;
2645 	/*
2646 	 * Move the data pointer up so that the incoming data packet
2647 	 * will be 32-bit aligned.
2648 	 */
2649 	m->m_data += RFA_ALIGNMENT_FUDGE;
2650 
2651 	/*
2652 	 * Get a pointer to the base of the mbuf cluster and move
2653 	 * data start past it.
2654 	 */
2655 	rfa = mtod(m, struct fxp_rfa *);
2656 	m->m_data += sc->rfa_size;
2657 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2658 
2659 	rfa->rfa_status = 0;
2660 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2661 	rfa->actual_size = 0;
2662 
2663 	/*
2664 	 * Initialize the rest of the RFA.  Note that since the RFA
2665 	 * is misaligned, we cannot store values directly.  We're thus
2666 	 * using the le32enc() function which handles endianness and
2667 	 * is also alignment-safe.
2668 	 */
2669 	le32enc(&rfa->link_addr, 0xffffffff);
2670 	le32enc(&rfa->rbd_addr, 0xffffffff);
2671 
2672 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2673 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2674 }
2675 
2676 static int
2677 fxp_miibus_readreg(device_t dev, int phy, int reg)
2678 {
2679 	struct fxp_softc *sc = device_get_softc(dev);
2680 	int count = 10000;
2681 	int value;
2682 
2683 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2684 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2685 
2686 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2687 	    && count--)
2688 		DELAY(10);
2689 
2690 	if (count <= 0)
2691 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2692 
2693 	return (value & 0xffff);
2694 }
2695 
2696 static int
2697 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2698 {
2699 	struct fxp_softc *sc = device_get_softc(dev);
2700 	int count = 10000;
2701 
2702 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2703 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2704 	    (value & 0xffff));
2705 
2706 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2707 	    count--)
2708 		DELAY(10);
2709 
2710 	if (count <= 0)
2711 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2712 	return (0);
2713 }
2714 
2715 static int
2716 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2717 {
2718 	struct fxp_softc *sc = ifp->if_softc;
2719 	struct ifreq *ifr = (struct ifreq *)data;
2720 	struct mii_data *mii;
2721 	int flag, mask, error = 0, reinit;
2722 
2723 	switch (command) {
2724 	case SIOCSIFFLAGS:
2725 		FXP_LOCK(sc);
2726 		/*
2727 		 * If interface is marked up and not running, then start it.
2728 		 * If it is marked down and running, stop it.
2729 		 * XXX If it's up then re-initialize it. This is so flags
2730 		 * such as IFF_PROMISC are handled.
2731 		 */
2732 		if (ifp->if_flags & IFF_UP) {
2733 			if (((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) &&
2734 			    ((ifp->if_flags ^ sc->if_flags) &
2735 			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0)
2736 				fxp_init_body(sc);
2737 			else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2738 				fxp_init_body(sc);
2739 		} else {
2740 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2741 				fxp_stop(sc);
2742 		}
2743 		sc->if_flags = ifp->if_flags;
2744 		FXP_UNLOCK(sc);
2745 		break;
2746 
2747 	case SIOCADDMULTI:
2748 	case SIOCDELMULTI:
2749 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2750 			fxp_init(sc);
2751 		break;
2752 
2753 	case SIOCSIFMEDIA:
2754 	case SIOCGIFMEDIA:
2755 		if (sc->miibus != NULL) {
2756 			mii = device_get_softc(sc->miibus);
2757                         error = ifmedia_ioctl(ifp, ifr,
2758                             &mii->mii_media, command);
2759 		} else {
2760                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2761 		}
2762 		break;
2763 
2764 	case SIOCSIFCAP:
2765 		reinit = 0;
2766 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2767 #ifdef DEVICE_POLLING
2768 		if (mask & IFCAP_POLLING) {
2769 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2770 				error = ether_poll_register(fxp_poll, ifp);
2771 				if (error)
2772 					return(error);
2773 				FXP_LOCK(sc);
2774 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2775 				    FXP_SCB_INTR_DISABLE);
2776 				ifp->if_capenable |= IFCAP_POLLING;
2777 				FXP_UNLOCK(sc);
2778 			} else {
2779 				error = ether_poll_deregister(ifp);
2780 				/* Enable interrupts in any case */
2781 				FXP_LOCK(sc);
2782 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2783 				ifp->if_capenable &= ~IFCAP_POLLING;
2784 				FXP_UNLOCK(sc);
2785 			}
2786 		}
2787 #endif
2788 		FXP_LOCK(sc);
2789 		if ((mask & IFCAP_TXCSUM) != 0 &&
2790 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2791 			ifp->if_capenable ^= IFCAP_TXCSUM;
2792 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2793 				ifp->if_hwassist |= FXP_CSUM_FEATURES;
2794 			else
2795 				ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
2796 		}
2797 		if ((mask & IFCAP_RXCSUM) != 0 &&
2798 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
2799 			ifp->if_capenable ^= IFCAP_RXCSUM;
2800 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2801 				reinit++;
2802 		}
2803 		if ((mask & IFCAP_TSO4) != 0 &&
2804 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2805 			ifp->if_capenable ^= IFCAP_TSO4;
2806 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2807 				ifp->if_hwassist |= CSUM_TSO;
2808 			else
2809 				ifp->if_hwassist &= ~CSUM_TSO;
2810 		}
2811 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2812 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2813 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2814 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2815 		    (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
2816 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2817 			if (sc->revision != FXP_REV_82557)
2818 				flag = FXP_FLAG_LONG_PKT_EN;
2819 			else /* a hack to get long frames on the old chip */
2820 				flag = FXP_FLAG_SAVE_BAD;
2821 			sc->flags ^= flag;
2822 			if (ifp->if_flags & IFF_UP)
2823 				reinit++;
2824 		}
2825 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2826 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2827 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2828 				reinit++;
2829 		}
2830 		if (reinit > 0 && ifp->if_flags & IFF_UP)
2831 			fxp_init_body(sc);
2832 		FXP_UNLOCK(sc);
2833 		VLAN_CAPABILITIES(ifp);
2834 		break;
2835 
2836 	default:
2837 		error = ether_ioctl(ifp, command, data);
2838 	}
2839 	return (error);
2840 }
2841 
2842 /*
2843  * Fill in the multicast address list and return number of entries.
2844  */
2845 static int
2846 fxp_mc_addrs(struct fxp_softc *sc)
2847 {
2848 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2849 	struct ifnet *ifp = sc->ifp;
2850 	struct ifmultiaddr *ifma;
2851 	int nmcasts;
2852 
2853 	nmcasts = 0;
2854 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2855 		if_maddr_rlock(ifp);
2856 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2857 			if (ifma->ifma_addr->sa_family != AF_LINK)
2858 				continue;
2859 			if (nmcasts >= MAXMCADDR) {
2860 				ifp->if_flags |= IFF_ALLMULTI;
2861 				nmcasts = 0;
2862 				break;
2863 			}
2864 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2865 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2866 			nmcasts++;
2867 		}
2868 		if_maddr_runlock(ifp);
2869 	}
2870 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2871 	return (nmcasts);
2872 }
2873 
2874 /*
2875  * Program the multicast filter.
2876  *
2877  * We have an artificial restriction that the multicast setup command
2878  * must be the first command in the chain, so we take steps to ensure
2879  * this. By requiring this, it allows us to keep up the performance of
2880  * the pre-initialized command ring (esp. link pointers) by not actually
2881  * inserting the mcsetup command in the ring - i.e. its link pointer
2882  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2883  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2884  * lead into the regular TxCB ring when it completes.
2885  */
2886 static void
2887 fxp_mc_setup(struct fxp_softc *sc)
2888 {
2889 	struct fxp_cb_mcs *mcsp;
2890 	int count;
2891 
2892 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2893 
2894 	mcsp = sc->mcsp;
2895 	mcsp->cb_status = 0;
2896 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2897 	mcsp->link_addr = 0xffffffff;
2898 	fxp_mc_addrs(sc);
2899 
2900 	/*
2901 	 * Wait until command unit is idle. This should never be the
2902 	 * case when nothing is queued, but make sure anyway.
2903 	 */
2904 	count = 100;
2905 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
2906 	    FXP_SCB_CUS_IDLE && --count)
2907 		DELAY(10);
2908 	if (count == 0) {
2909 		device_printf(sc->dev, "command queue timeout\n");
2910 		return;
2911 	}
2912 
2913 	/*
2914 	 * Start the multicast setup command.
2915 	 */
2916 	fxp_scb_wait(sc);
2917 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2918 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2919 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2920 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2921 	/* ...and wait for it to complete. */
2922 	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2923 }
2924 
2925 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2926 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2927 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2928 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2929 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2930 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2931 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2932 
2933 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2934 
2935 struct ucode {
2936 	uint32_t	revision;
2937 	uint32_t	*ucode;
2938 	int		length;
2939 	u_short		int_delay_offset;
2940 	u_short		bundle_max_offset;
2941 } ucode_table[] = {
2942 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2943 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2944 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2945 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2946 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2947 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2948 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2949 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2950 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2951 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2952 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2953 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2954 	{ 0, NULL, 0, 0, 0 }
2955 };
2956 
2957 static void
2958 fxp_load_ucode(struct fxp_softc *sc)
2959 {
2960 	struct ucode *uc;
2961 	struct fxp_cb_ucode *cbp;
2962 	int i;
2963 
2964 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2965 		if (sc->revision == uc->revision)
2966 			break;
2967 	if (uc->ucode == NULL)
2968 		return;
2969 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2970 	cbp->cb_status = 0;
2971 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2972 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2973 	for (i = 0; i < uc->length; i++)
2974 		cbp->ucode[i] = htole32(uc->ucode[i]);
2975 	if (uc->int_delay_offset)
2976 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2977 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2978 	if (uc->bundle_max_offset)
2979 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2980 		    htole16(sc->tunable_bundle_max);
2981 	/*
2982 	 * Download the ucode to the chip.
2983 	 */
2984 	fxp_scb_wait(sc);
2985 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2986 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2987 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2988 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2989 	/* ...and wait for it to complete. */
2990 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2991 	device_printf(sc->dev,
2992 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2993 	    sc->tunable_int_delay,
2994 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2995 	sc->flags |= FXP_FLAG_UCODE;
2996 }
2997 
2998 static int
2999 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3000 {
3001 	int error, value;
3002 
3003 	value = *(int *)arg1;
3004 	error = sysctl_handle_int(oidp, &value, 0, req);
3005 	if (error || !req->newptr)
3006 		return (error);
3007 	if (value < low || value > high)
3008 		return (EINVAL);
3009 	*(int *)arg1 = value;
3010 	return (0);
3011 }
3012 
3013 /*
3014  * Interrupt delay is expressed in microseconds, a multiplier is used
3015  * to convert this to the appropriate clock ticks before using.
3016  */
3017 static int
3018 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3019 {
3020 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3021 }
3022 
3023 static int
3024 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3025 {
3026 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3027 }
3028