xref: /freebsd/sys/dev/fxp/if_fxp.c (revision d5fc25e5d6c52b306312784663ccad85923a9c76)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/lock.h>
48 #include <sys/module.h>
49 #include <sys/mutex.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 
55 #include <net/bpf.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_vlan_var.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 
70 #include <machine/bus.h>
71 #include <machine/in_cksum.h>
72 #include <machine/resource.h>
73 
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 
80 #include <dev/fxp/if_fxpreg.h>
81 #include <dev/fxp/if_fxpvar.h>
82 #include <dev/fxp/rcvbundl.h>
83 
84 MODULE_DEPEND(fxp, pci, 1, 1, 1);
85 MODULE_DEPEND(fxp, ether, 1, 1, 1);
86 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
87 #include "miibus_if.h"
88 
89 /*
90  * NOTE!  On the Alpha, we have an alignment constraint.  The
91  * card DMAs the packet immediately following the RFA.  However,
92  * the first thing in the packet is a 14-byte Ethernet header.
93  * This means that the packet is misaligned.  To compensate,
94  * we actually offset the RFA 2 bytes into the cluster.  This
95  * alignes the packet after the Ethernet header at a 32-bit
96  * boundary.  HOWEVER!  This means that the RFA is misaligned!
97  */
98 #define	RFA_ALIGNMENT_FUDGE	2
99 
100 /*
101  * Set initial transmit threshold at 64 (512 bytes). This is
102  * increased by 64 (512 bytes) at a time, to maximum of 192
103  * (1536 bytes), if an underrun occurs.
104  */
105 static int tx_threshold = 64;
106 
107 /*
108  * The configuration byte map has several undefined fields which
109  * must be one or must be zero.  Set up a template for these bits
110  * only, (assuming a 82557 chip) leaving the actual configuration
111  * to fxp_init.
112  *
113  * See struct fxp_cb_config for the bit definitions.
114  */
115 static u_char fxp_cb_config_template[] = {
116 	0x0, 0x0,		/* cb_status */
117 	0x0, 0x0,		/* cb_command */
118 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
119 	0x0,	/*  0 */
120 	0x0,	/*  1 */
121 	0x0,	/*  2 */
122 	0x0,	/*  3 */
123 	0x0,	/*  4 */
124 	0x0,	/*  5 */
125 	0x32,	/*  6 */
126 	0x0,	/*  7 */
127 	0x0,	/*  8 */
128 	0x0,	/*  9 */
129 	0x6,	/* 10 */
130 	0x0,	/* 11 */
131 	0x0,	/* 12 */
132 	0x0,	/* 13 */
133 	0xf2,	/* 14 */
134 	0x48,	/* 15 */
135 	0x0,	/* 16 */
136 	0x40,	/* 17 */
137 	0xf0,	/* 18 */
138 	0x0,	/* 19 */
139 	0x3f,	/* 20 */
140 	0x5	/* 21 */
141 };
142 
143 struct fxp_ident {
144 	uint16_t	devid;
145 	int16_t		revid;		/* -1 matches anything */
146 	char 		*name;
147 };
148 
149 /*
150  * Claim various Intel PCI device identifiers for this driver.  The
151  * sub-vendor and sub-device field are extensively used to identify
152  * particular variants, but we don't currently differentiate between
153  * them.
154  */
155 static struct fxp_ident fxp_ident_table[] = {
156     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
157     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
158     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
160     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
162     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
165     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
166     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
167     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
168     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
169     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
170     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
171     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
172     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
173     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
174     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
175     { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
176     { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
177     { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
178     { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
179     { 0x1091,	-1,	"Intel 82562GX Pro/100 Ethernet" },
180     { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
181     { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
182     { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
183     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
184     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
185     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
186     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
187     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
188     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
189     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
190     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
191     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
192     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
193     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
194     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
195     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
196     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
197     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
198     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
199     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
200     { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
201     { 0,	-1,	NULL },
202 };
203 
204 #ifdef FXP_IP_CSUM_WAR
205 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
206 #else
207 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
208 #endif
209 
210 static int		fxp_probe(device_t dev);
211 static int		fxp_attach(device_t dev);
212 static int		fxp_detach(device_t dev);
213 static int		fxp_shutdown(device_t dev);
214 static int		fxp_suspend(device_t dev);
215 static int		fxp_resume(device_t dev);
216 
217 static void		fxp_intr(void *xsc);
218 static void		fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
219 			    struct mbuf *m, uint16_t status, int pos);
220 static int		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
221 			    uint8_t statack, int count);
222 static void 		fxp_init(void *xsc);
223 static void 		fxp_init_body(struct fxp_softc *sc);
224 static void 		fxp_tick(void *xsc);
225 static void 		fxp_start(struct ifnet *ifp);
226 static void 		fxp_start_body(struct ifnet *ifp);
227 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
228 static void		fxp_txeof(struct fxp_softc *sc);
229 static void		fxp_stop(struct fxp_softc *sc);
230 static void 		fxp_release(struct fxp_softc *sc);
231 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
232 			    caddr_t data);
233 static void 		fxp_watchdog(struct fxp_softc *sc);
234 static void		fxp_add_rfabuf(struct fxp_softc *sc,
235     			    struct fxp_rx *rxp);
236 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
237     			    struct fxp_rx *rxp);
238 static int		fxp_new_rfabuf(struct fxp_softc *sc,
239     			    struct fxp_rx *rxp);
240 static int		fxp_mc_addrs(struct fxp_softc *sc);
241 static void		fxp_mc_setup(struct fxp_softc *sc);
242 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
243 			    int autosize);
244 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
245 			    uint16_t data);
246 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
247 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
248 			    int offset, int words);
249 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
250 			    int offset, int words);
251 static int		fxp_ifmedia_upd(struct ifnet *ifp);
252 static void		fxp_ifmedia_sts(struct ifnet *ifp,
253 			    struct ifmediareq *ifmr);
254 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
255 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
256 			    struct ifmediareq *ifmr);
257 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
258 static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
259 			    int value);
260 static void		fxp_load_ucode(struct fxp_softc *sc);
261 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
262 			    int low, int high);
263 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
264 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
265 static void 		fxp_scb_wait(struct fxp_softc *sc);
266 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
267 static void		fxp_dma_wait(struct fxp_softc *sc,
268     			    volatile uint16_t *status, bus_dma_tag_t dmat,
269 			    bus_dmamap_t map);
270 
271 static device_method_t fxp_methods[] = {
272 	/* Device interface */
273 	DEVMETHOD(device_probe,		fxp_probe),
274 	DEVMETHOD(device_attach,	fxp_attach),
275 	DEVMETHOD(device_detach,	fxp_detach),
276 	DEVMETHOD(device_shutdown,	fxp_shutdown),
277 	DEVMETHOD(device_suspend,	fxp_suspend),
278 	DEVMETHOD(device_resume,	fxp_resume),
279 
280 	/* MII interface */
281 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
282 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
283 
284 	{ 0, 0 }
285 };
286 
287 static driver_t fxp_driver = {
288 	"fxp",
289 	fxp_methods,
290 	sizeof(struct fxp_softc),
291 };
292 
293 static devclass_t fxp_devclass;
294 
295 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
296 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
297 
298 static struct resource_spec fxp_res_spec_mem[] = {
299 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
300 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
301 	{ -1, 0 }
302 };
303 
304 static struct resource_spec fxp_res_spec_io[] = {
305 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
306 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
307 	{ -1, 0 }
308 };
309 
310 /*
311  * Wait for the previous command to be accepted (but not necessarily
312  * completed).
313  */
314 static void
315 fxp_scb_wait(struct fxp_softc *sc)
316 {
317 	union {
318 		uint16_t w;
319 		uint8_t b[2];
320 	} flowctl;
321 	int i = 10000;
322 
323 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
324 		DELAY(2);
325 	if (i == 0) {
326 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
327 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
328 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
329 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
330 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
331 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
332 	}
333 }
334 
335 static void
336 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
337 {
338 
339 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
340 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
341 		fxp_scb_wait(sc);
342 	}
343 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
344 }
345 
346 static void
347 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
348     bus_dma_tag_t dmat, bus_dmamap_t map)
349 {
350 	int i = 10000;
351 
352 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
353 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
354 		DELAY(2);
355 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
356 	}
357 	if (i == 0)
358 		device_printf(sc->dev, "DMA timeout\n");
359 }
360 
361 /*
362  * Return identification string if this device is ours.
363  */
364 static int
365 fxp_probe(device_t dev)
366 {
367 	uint16_t devid;
368 	uint8_t revid;
369 	struct fxp_ident *ident;
370 
371 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
372 		devid = pci_get_device(dev);
373 		revid = pci_get_revid(dev);
374 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
375 			if (ident->devid == devid &&
376 			    (ident->revid == revid || ident->revid == -1)) {
377 				device_set_desc(dev, ident->name);
378 				return (BUS_PROBE_DEFAULT);
379 			}
380 		}
381 	}
382 	return (ENXIO);
383 }
384 
385 static void
386 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
387 {
388 	uint32_t *addr;
389 
390 	if (error)
391 		return;
392 
393 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
394 	addr = arg;
395 	*addr = segs->ds_addr;
396 }
397 
398 static int
399 fxp_attach(device_t dev)
400 {
401 	struct fxp_softc *sc;
402 	struct fxp_cb_tx *tcbp;
403 	struct fxp_tx *txp;
404 	struct fxp_rx *rxp;
405 	struct ifnet *ifp;
406 	uint32_t val;
407 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
408 	u_char eaddr[ETHER_ADDR_LEN];
409 	int i, pmc, prefer_iomap;
410 	int error;
411 
412 	error = 0;
413 	sc = device_get_softc(dev);
414 	sc->dev = dev;
415 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
416 	    MTX_DEF);
417 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
418 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
419 	    fxp_serial_ifmedia_sts);
420 
421 	ifp = sc->ifp = if_alloc(IFT_ETHER);
422 	if (ifp == NULL) {
423 		device_printf(dev, "can not if_alloc()\n");
424 		error = ENOSPC;
425 		goto fail;
426 	}
427 
428 	/*
429 	 * Enable bus mastering.
430 	 */
431 	pci_enable_busmaster(dev);
432 	val = pci_read_config(dev, PCIR_COMMAND, 2);
433 
434 	/*
435 	 * Figure out which we should try first - memory mapping or i/o mapping?
436 	 * We default to memory mapping. Then we accept an override from the
437 	 * command line. Then we check to see which one is enabled.
438 	 */
439 	prefer_iomap = 0;
440 	resource_int_value(device_get_name(dev), device_get_unit(dev),
441 	    "prefer_iomap", &prefer_iomap);
442 	if (prefer_iomap)
443 		sc->fxp_spec = fxp_res_spec_io;
444 	else
445 		sc->fxp_spec = fxp_res_spec_mem;
446 
447 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
448 	if (error) {
449 		if (sc->fxp_spec == fxp_res_spec_mem)
450 			sc->fxp_spec = fxp_res_spec_io;
451 		else
452 			sc->fxp_spec = fxp_res_spec_mem;
453 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
454 	}
455 	if (error) {
456 		device_printf(dev, "could not allocate resources\n");
457 		error = ENXIO;
458 		goto fail;
459 	}
460 
461 	if (bootverbose) {
462 		device_printf(dev, "using %s space register mapping\n",
463 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
464 	}
465 
466 	/*
467 	 * Reset to a stable state.
468 	 */
469 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
470 	DELAY(10);
471 
472 	/*
473 	 * Find out how large of an SEEPROM we have.
474 	 */
475 	fxp_autosize_eeprom(sc);
476 
477 	/*
478 	 * Find out the chip revision; lump all 82557 revs together.
479 	 */
480 	fxp_read_eeprom(sc, &data, 5, 1);
481 	if ((data >> 8) == 1)
482 		sc->revision = FXP_REV_82557;
483 	else
484 		sc->revision = pci_get_revid(dev);
485 
486 	/*
487 	 * Check availability of WOL. 82559ER does not support WOL.
488 	 */
489 	if (sc->revision >= FXP_REV_82558_A4 &&
490 	    sc->revision != FXP_REV_82559S_A) {
491 		fxp_read_eeprom(sc, &data, 10, 1);
492 		if ((data & 0x20) != 0 &&
493 		    pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0)
494 			sc->flags |= FXP_FLAG_WOLCAP;
495 	}
496 
497 	/*
498 	 * Determine whether we must use the 503 serial interface.
499 	 */
500 	fxp_read_eeprom(sc, &data, 6, 1);
501 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
502 	    && (data & FXP_PHY_SERIAL_ONLY))
503 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
504 
505 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
506 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
507 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
508 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
509 	    "FXP driver receive interrupt microcode bundling delay");
510 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
511 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
512 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
513 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
514 	    "FXP driver receive interrupt microcode bundle size limit");
515 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
516 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
517 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
518 	    "FXP RNR events");
519 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
520 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
521 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
522 	    "FXP flow control disabled");
523 
524 	/*
525 	 * Pull in device tunables.
526 	 */
527 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
528 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
529 	sc->tunable_noflow = 1;
530 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
531 	    "int_delay", &sc->tunable_int_delay);
532 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
533 	    "bundle_max", &sc->tunable_bundle_max);
534 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
535 	    "noflow", &sc->tunable_noflow);
536 	sc->rnr = 0;
537 
538 	/*
539 	 * Enable workarounds for certain chip revision deficiencies.
540 	 *
541 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
542 	 * some systems based a normal 82559 design, have a defect where
543 	 * the chip can cause a PCI protocol violation if it receives
544 	 * a CU_RESUME command when it is entering the IDLE state.  The
545 	 * workaround is to disable Dynamic Standby Mode, so the chip never
546 	 * deasserts CLKRUN#, and always remains in an active state.
547 	 *
548 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
549 	 */
550 	i = pci_get_device(dev);
551 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
552 	    sc->revision >= FXP_REV_82559_A0) {
553 		fxp_read_eeprom(sc, &data, 10, 1);
554 		if (data & 0x02) {			/* STB enable */
555 			uint16_t cksum;
556 			int i;
557 
558 			device_printf(dev,
559 			    "Disabling dynamic standby mode in EEPROM\n");
560 			data &= ~0x02;
561 			fxp_write_eeprom(sc, &data, 10, 1);
562 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
563 			cksum = 0;
564 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
565 				fxp_read_eeprom(sc, &data, i, 1);
566 				cksum += data;
567 			}
568 			i = (1 << sc->eeprom_size) - 1;
569 			cksum = 0xBABA - cksum;
570 			fxp_read_eeprom(sc, &data, i, 1);
571 			fxp_write_eeprom(sc, &cksum, i, 1);
572 			device_printf(dev,
573 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
574 			    i, data, cksum);
575 #if 1
576 			/*
577 			 * If the user elects to continue, try the software
578 			 * workaround, as it is better than nothing.
579 			 */
580 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
581 #endif
582 		}
583 	}
584 
585 	/*
586 	 * If we are not a 82557 chip, we can enable extended features.
587 	 */
588 	if (sc->revision != FXP_REV_82557) {
589 		/*
590 		 * If MWI is enabled in the PCI configuration, and there
591 		 * is a valid cacheline size (8 or 16 dwords), then tell
592 		 * the board to turn on MWI.
593 		 */
594 		if (val & PCIM_CMD_MWRICEN &&
595 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
596 			sc->flags |= FXP_FLAG_MWI_ENABLE;
597 
598 		/* turn on the extended TxCB feature */
599 		sc->flags |= FXP_FLAG_EXT_TXCB;
600 
601 		/* enable reception of long frames for VLAN */
602 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
603 	} else {
604 		/* a hack to get long VLAN frames on a 82557 */
605 		sc->flags |= FXP_FLAG_SAVE_BAD;
606 	}
607 
608 	/* For 82559 or later chips, Rx checksum offload is supported. */
609 	if (sc->revision >= FXP_REV_82559_A0)
610 		sc->flags |= FXP_FLAG_82559_RXCSUM;
611 	/*
612 	 * Enable use of extended RFDs and TCBs for 82550
613 	 * and later chips. Note: we need extended TXCB support
614 	 * too, but that's already enabled by the code above.
615 	 * Be careful to do this only on the right devices.
616 	 */
617 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
618 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
619 	    || sc->revision == FXP_REV_82551_10) {
620 		sc->rfa_size = sizeof (struct fxp_rfa);
621 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
622 		sc->flags |= FXP_FLAG_EXT_RFA;
623 		/* Use extended RFA instead of 82559 checksum mode. */
624 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
625 	} else {
626 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
627 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
628 	}
629 
630 	/*
631 	 * Allocate DMA tags and DMA safe memory.
632 	 */
633 	sc->maxtxseg = FXP_NTXSEG;
634 	sc->maxsegsize = MCLBYTES;
635 	if (sc->flags & FXP_FLAG_EXT_RFA) {
636 		sc->maxtxseg--;
637 		sc->maxsegsize = FXP_TSO_SEGSIZE;
638 	}
639 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
640 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
641 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
642 	    sc->maxtxseg, sc->maxsegsize, 0,
643 	    busdma_lock_mutex, &Giant, &sc->fxp_mtag);
644 	if (error) {
645 		device_printf(dev, "could not allocate dma tag\n");
646 		goto fail;
647 	}
648 
649 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
650 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
651 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
652 	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
653 	if (error) {
654 		device_printf(dev, "could not allocate dma tag\n");
655 		goto fail;
656 	}
657 
658 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
659 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
660 	if (error)
661 		goto fail;
662 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
663 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
664 	if (error) {
665 		device_printf(dev, "could not map the stats buffer\n");
666 		goto fail;
667 	}
668 
669 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
670 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
671 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
672 	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
673 	if (error) {
674 		device_printf(dev, "could not allocate dma tag\n");
675 		goto fail;
676 	}
677 
678 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
679 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
680 	if (error)
681 		goto fail;
682 
683 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
684 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
685 	    &sc->fxp_desc.cbl_addr, 0);
686 	if (error) {
687 		device_printf(dev, "could not map DMA memory\n");
688 		goto fail;
689 	}
690 
691 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
692 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
693 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
694 	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
695 	if (error) {
696 		device_printf(dev, "could not allocate dma tag\n");
697 		goto fail;
698 	}
699 
700 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
701 	    BUS_DMA_NOWAIT, &sc->mcs_map);
702 	if (error)
703 		goto fail;
704 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
705 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
706 	if (error) {
707 		device_printf(dev, "can't map the multicast setup command\n");
708 		goto fail;
709 	}
710 
711 	/*
712 	 * Pre-allocate the TX DMA maps and setup the pointers to
713 	 * the TX command blocks.
714 	 */
715 	txp = sc->fxp_desc.tx_list;
716 	tcbp = sc->fxp_desc.cbl_list;
717 	for (i = 0; i < FXP_NTXCB; i++) {
718 		txp[i].tx_cb = tcbp + i;
719 		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
720 		if (error) {
721 			device_printf(dev, "can't create DMA map for TX\n");
722 			goto fail;
723 		}
724 	}
725 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
726 	if (error) {
727 		device_printf(dev, "can't create spare DMA map\n");
728 		goto fail;
729 	}
730 
731 	/*
732 	 * Pre-allocate our receive buffers.
733 	 */
734 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
735 	for (i = 0; i < FXP_NRFABUFS; i++) {
736 		rxp = &sc->fxp_desc.rx_list[i];
737 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
738 		if (error) {
739 			device_printf(dev, "can't create DMA map for RX\n");
740 			goto fail;
741 		}
742 		if (fxp_new_rfabuf(sc, rxp) != 0) {
743 			error = ENOMEM;
744 			goto fail;
745 		}
746 		fxp_add_rfabuf(sc, rxp);
747 	}
748 
749 	/*
750 	 * Read MAC address.
751 	 */
752 	fxp_read_eeprom(sc, myea, 0, 3);
753 	eaddr[0] = myea[0] & 0xff;
754 	eaddr[1] = myea[0] >> 8;
755 	eaddr[2] = myea[1] & 0xff;
756 	eaddr[3] = myea[1] >> 8;
757 	eaddr[4] = myea[2] & 0xff;
758 	eaddr[5] = myea[2] >> 8;
759 	if (bootverbose) {
760 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
761 		    pci_get_vendor(dev), pci_get_device(dev),
762 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
763 		    pci_get_revid(dev));
764 		fxp_read_eeprom(sc, &data, 10, 1);
765 		device_printf(dev, "Dynamic Standby mode is %s\n",
766 		    data & 0x02 ? "enabled" : "disabled");
767 	}
768 
769 	/*
770 	 * If this is only a 10Mbps device, then there is no MII, and
771 	 * the PHY will use a serial interface instead.
772 	 *
773 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
774 	 * doesn't have a programming interface of any sort.  The
775 	 * media is sensed automatically based on how the link partner
776 	 * is configured.  This is, in essence, manual configuration.
777 	 */
778 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
779 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
780 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
781 	} else {
782 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
783 		    fxp_ifmedia_sts)) {
784 	                device_printf(dev, "MII without any PHY!\n");
785 			error = ENXIO;
786 			goto fail;
787 		}
788 	}
789 
790 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
791 	ifp->if_init = fxp_init;
792 	ifp->if_softc = sc;
793 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
794 	ifp->if_ioctl = fxp_ioctl;
795 	ifp->if_start = fxp_start;
796 
797 	ifp->if_capabilities = ifp->if_capenable = 0;
798 
799 	/* Enable checksum offload/TSO for 82550 or better chips */
800 	if (sc->flags & FXP_FLAG_EXT_RFA) {
801 		ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
802 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
803 		ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
804 	}
805 
806 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
807 		ifp->if_capabilities |= IFCAP_RXCSUM;
808 		ifp->if_capenable |= IFCAP_RXCSUM;
809 	}
810 
811 	if (sc->flags & FXP_FLAG_WOLCAP) {
812 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
813 		ifp->if_capenable |= IFCAP_WOL_MAGIC;
814 	}
815 
816 #ifdef DEVICE_POLLING
817 	/* Inform the world we support polling. */
818 	ifp->if_capabilities |= IFCAP_POLLING;
819 #endif
820 
821 	/*
822 	 * Attach the interface.
823 	 */
824 	ether_ifattach(ifp, eaddr);
825 
826 	/*
827 	 * Tell the upper layer(s) we support long frames.
828 	 * Must appear after the call to ether_ifattach() because
829 	 * ether_ifattach() sets ifi_hdrlen to the default value.
830 	 */
831 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
832 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
833 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
834 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
835 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
836 		    IFCAP_VLAN_HWCSUM;
837 		ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
838 		    IFCAP_VLAN_HWCSUM;
839 	}
840 
841 	/*
842 	 * Let the system queue as many packets as we have available
843 	 * TX descriptors.
844 	 */
845 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
846 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
847 	IFQ_SET_READY(&ifp->if_snd);
848 
849 	/*
850 	 * Hook our interrupt after all initialization is complete.
851 	 */
852 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
853 			       NULL, fxp_intr, sc, &sc->ih);
854 	if (error) {
855 		device_printf(dev, "could not setup irq\n");
856 		ether_ifdetach(sc->ifp);
857 		goto fail;
858 	}
859 
860 	/*
861 	 * Configure hardware to reject magic frames otherwise
862 	 * system will hang on recipt of magic frames.
863 	 */
864 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
865 		FXP_LOCK(sc);
866 		/* Clear wakeup events. */
867 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
868 		fxp_init_body(sc);
869 		fxp_stop(sc);
870 		FXP_UNLOCK(sc);
871 	}
872 
873 fail:
874 	if (error)
875 		fxp_release(sc);
876 	return (error);
877 }
878 
879 /*
880  * Release all resources.  The softc lock should not be held and the
881  * interrupt should already be torn down.
882  */
883 static void
884 fxp_release(struct fxp_softc *sc)
885 {
886 	struct fxp_rx *rxp;
887 	struct fxp_tx *txp;
888 	int i;
889 
890 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
891 	KASSERT(sc->ih == NULL,
892 	    ("fxp_release() called with intr handle still active"));
893 	if (sc->miibus)
894 		device_delete_child(sc->dev, sc->miibus);
895 	bus_generic_detach(sc->dev);
896 	ifmedia_removeall(&sc->sc_media);
897 	if (sc->fxp_desc.cbl_list) {
898 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
899 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
900 		    sc->cbl_map);
901 	}
902 	if (sc->fxp_stats) {
903 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
904 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
905 	}
906 	if (sc->mcsp) {
907 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
908 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
909 	}
910 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
911 	if (sc->fxp_mtag) {
912 		for (i = 0; i < FXP_NRFABUFS; i++) {
913 			rxp = &sc->fxp_desc.rx_list[i];
914 			if (rxp->rx_mbuf != NULL) {
915 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
916 				    BUS_DMASYNC_POSTREAD);
917 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
918 				m_freem(rxp->rx_mbuf);
919 			}
920 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
921 		}
922 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
923 		for (i = 0; i < FXP_NTXCB; i++) {
924 			txp = &sc->fxp_desc.tx_list[i];
925 			if (txp->tx_mbuf != NULL) {
926 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
927 				    BUS_DMASYNC_POSTWRITE);
928 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
929 				m_freem(txp->tx_mbuf);
930 			}
931 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
932 		}
933 		bus_dma_tag_destroy(sc->fxp_mtag);
934 	}
935 	if (sc->fxp_stag)
936 		bus_dma_tag_destroy(sc->fxp_stag);
937 	if (sc->cbl_tag)
938 		bus_dma_tag_destroy(sc->cbl_tag);
939 	if (sc->mcs_tag)
940 		bus_dma_tag_destroy(sc->mcs_tag);
941 	if (sc->ifp)
942 		if_free(sc->ifp);
943 
944 	mtx_destroy(&sc->sc_mtx);
945 }
946 
947 /*
948  * Detach interface.
949  */
950 static int
951 fxp_detach(device_t dev)
952 {
953 	struct fxp_softc *sc = device_get_softc(dev);
954 
955 #ifdef DEVICE_POLLING
956 	if (sc->ifp->if_capenable & IFCAP_POLLING)
957 		ether_poll_deregister(sc->ifp);
958 #endif
959 
960 	FXP_LOCK(sc);
961 	sc->suspended = 1;	/* Do same thing as we do for suspend */
962 	/*
963 	 * Stop DMA and drop transmit queue, but disable interrupts first.
964 	 */
965 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
966 	fxp_stop(sc);
967 	FXP_UNLOCK(sc);
968 	callout_drain(&sc->stat_ch);
969 
970 	/*
971 	 * Close down routes etc.
972 	 */
973 	ether_ifdetach(sc->ifp);
974 
975 	/*
976 	 * Unhook interrupt before dropping lock. This is to prevent
977 	 * races with fxp_intr().
978 	 */
979 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
980 	sc->ih = NULL;
981 
982 	/* Release our allocated resources. */
983 	fxp_release(sc);
984 	return (0);
985 }
986 
987 /*
988  * Device shutdown routine. Called at system shutdown after sync. The
989  * main purpose of this routine is to shut off receiver DMA so that
990  * kernel memory doesn't get clobbered during warmboot.
991  */
992 static int
993 fxp_shutdown(device_t dev)
994 {
995 
996 	/*
997 	 * Make sure that DMA is disabled prior to reboot. Not doing
998 	 * do could allow DMA to corrupt kernel memory during the
999 	 * reboot before the driver initializes.
1000 	 */
1001 	return (fxp_suspend(dev));
1002 }
1003 
1004 /*
1005  * Device suspend routine.  Stop the interface and save some PCI
1006  * settings in case the BIOS doesn't restore them properly on
1007  * resume.
1008  */
1009 static int
1010 fxp_suspend(device_t dev)
1011 {
1012 	struct fxp_softc *sc = device_get_softc(dev);
1013 	struct ifnet *ifp;
1014 	int pmc;
1015 	uint16_t pmstat;
1016 
1017 	FXP_LOCK(sc);
1018 
1019 	ifp = sc->ifp;
1020 	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1021 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1022 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1023 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1024 			/* Request PME. */
1025 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1026 			sc->flags |= FXP_FLAG_WOL;
1027 			/* Reconfigure hardware to accept magic frames. */
1028 			fxp_init_body(sc);
1029 		}
1030 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1031 	}
1032 	fxp_stop(sc);
1033 
1034 	sc->suspended = 1;
1035 
1036 	FXP_UNLOCK(sc);
1037 	return (0);
1038 }
1039 
1040 /*
1041  * Device resume routine. re-enable busmastering, and restart the interface if
1042  * appropriate.
1043  */
1044 static int
1045 fxp_resume(device_t dev)
1046 {
1047 	struct fxp_softc *sc = device_get_softc(dev);
1048 	struct ifnet *ifp = sc->ifp;
1049 	int pmc;
1050 	uint16_t pmstat;
1051 
1052 	FXP_LOCK(sc);
1053 
1054 	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1055 		sc->flags &= ~FXP_FLAG_WOL;
1056 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1057 		/* Disable PME and clear PME status. */
1058 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1059 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1060 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1061 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1062 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1063 	}
1064 
1065 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1066 	DELAY(10);
1067 
1068 	/* reinitialize interface if necessary */
1069 	if (ifp->if_flags & IFF_UP)
1070 		fxp_init_body(sc);
1071 
1072 	sc->suspended = 0;
1073 
1074 	FXP_UNLOCK(sc);
1075 	return (0);
1076 }
1077 
1078 static void
1079 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1080 {
1081 	uint16_t reg;
1082 	int x;
1083 
1084 	/*
1085 	 * Shift in data.
1086 	 */
1087 	for (x = 1 << (length - 1); x; x >>= 1) {
1088 		if (data & x)
1089 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1090 		else
1091 			reg = FXP_EEPROM_EECS;
1092 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1093 		DELAY(1);
1094 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1095 		DELAY(1);
1096 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1097 		DELAY(1);
1098 	}
1099 }
1100 
1101 /*
1102  * Read from the serial EEPROM. Basically, you manually shift in
1103  * the read opcode (one bit at a time) and then shift in the address,
1104  * and then you shift out the data (all of this one bit at a time).
1105  * The word size is 16 bits, so you have to provide the address for
1106  * every 16 bits of data.
1107  */
1108 static uint16_t
1109 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1110 {
1111 	uint16_t reg, data;
1112 	int x;
1113 
1114 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1115 	/*
1116 	 * Shift in read opcode.
1117 	 */
1118 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1119 	/*
1120 	 * Shift in address.
1121 	 */
1122 	data = 0;
1123 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1124 		if (offset & x)
1125 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1126 		else
1127 			reg = FXP_EEPROM_EECS;
1128 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1129 		DELAY(1);
1130 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1131 		DELAY(1);
1132 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1133 		DELAY(1);
1134 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1135 		data++;
1136 		if (autosize && reg == 0) {
1137 			sc->eeprom_size = data;
1138 			break;
1139 		}
1140 	}
1141 	/*
1142 	 * Shift out data.
1143 	 */
1144 	data = 0;
1145 	reg = FXP_EEPROM_EECS;
1146 	for (x = 1 << 15; x; x >>= 1) {
1147 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1148 		DELAY(1);
1149 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1150 			data |= x;
1151 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1152 		DELAY(1);
1153 	}
1154 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1155 	DELAY(1);
1156 
1157 	return (data);
1158 }
1159 
1160 static void
1161 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1162 {
1163 	int i;
1164 
1165 	/*
1166 	 * Erase/write enable.
1167 	 */
1168 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1169 	fxp_eeprom_shiftin(sc, 0x4, 3);
1170 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1171 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1172 	DELAY(1);
1173 	/*
1174 	 * Shift in write opcode, address, data.
1175 	 */
1176 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1177 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1178 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1179 	fxp_eeprom_shiftin(sc, data, 16);
1180 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1181 	DELAY(1);
1182 	/*
1183 	 * Wait for EEPROM to finish up.
1184 	 */
1185 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1186 	DELAY(1);
1187 	for (i = 0; i < 1000; i++) {
1188 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1189 			break;
1190 		DELAY(50);
1191 	}
1192 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1193 	DELAY(1);
1194 	/*
1195 	 * Erase/write disable.
1196 	 */
1197 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1198 	fxp_eeprom_shiftin(sc, 0x4, 3);
1199 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1200 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1201 	DELAY(1);
1202 }
1203 
1204 /*
1205  * From NetBSD:
1206  *
1207  * Figure out EEPROM size.
1208  *
1209  * 559's can have either 64-word or 256-word EEPROMs, the 558
1210  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1211  * talks about the existance of 16 to 256 word EEPROMs.
1212  *
1213  * The only known sizes are 64 and 256, where the 256 version is used
1214  * by CardBus cards to store CIS information.
1215  *
1216  * The address is shifted in msb-to-lsb, and after the last
1217  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1218  * after which follows the actual data. We try to detect this zero, by
1219  * probing the data-out bit in the EEPROM control register just after
1220  * having shifted in a bit. If the bit is zero, we assume we've
1221  * shifted enough address bits. The data-out should be tri-state,
1222  * before this, which should translate to a logical one.
1223  */
1224 static void
1225 fxp_autosize_eeprom(struct fxp_softc *sc)
1226 {
1227 
1228 	/* guess maximum size of 256 words */
1229 	sc->eeprom_size = 8;
1230 
1231 	/* autosize */
1232 	(void) fxp_eeprom_getword(sc, 0, 1);
1233 }
1234 
1235 static void
1236 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1237 {
1238 	int i;
1239 
1240 	for (i = 0; i < words; i++)
1241 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1242 }
1243 
1244 static void
1245 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1246 {
1247 	int i;
1248 
1249 	for (i = 0; i < words; i++)
1250 		fxp_eeprom_putword(sc, offset + i, data[i]);
1251 }
1252 
1253 /*
1254  * Grab the softc lock and call the real fxp_start_body() routine
1255  */
1256 static void
1257 fxp_start(struct ifnet *ifp)
1258 {
1259 	struct fxp_softc *sc = ifp->if_softc;
1260 
1261 	FXP_LOCK(sc);
1262 	fxp_start_body(ifp);
1263 	FXP_UNLOCK(sc);
1264 }
1265 
1266 /*
1267  * Start packet transmission on the interface.
1268  * This routine must be called with the softc lock held, and is an
1269  * internal entry point only.
1270  */
1271 static void
1272 fxp_start_body(struct ifnet *ifp)
1273 {
1274 	struct fxp_softc *sc = ifp->if_softc;
1275 	struct mbuf *mb_head;
1276 	int txqueued;
1277 
1278 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1279 
1280 	/*
1281 	 * See if we need to suspend xmit until the multicast filter
1282 	 * has been reprogrammed (which can only be done at the head
1283 	 * of the command chain).
1284 	 */
1285 	if (sc->need_mcsetup)
1286 		return;
1287 
1288 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1289 		fxp_txeof(sc);
1290 	/*
1291 	 * We're finished if there is nothing more to add to the list or if
1292 	 * we're all filled up with buffers to transmit.
1293 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1294 	 *       a NOP command when needed.
1295 	 */
1296 	txqueued = 0;
1297 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1298 	    sc->tx_queued < FXP_NTXCB - 1) {
1299 
1300 		/*
1301 		 * Grab a packet to transmit.
1302 		 */
1303 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1304 		if (mb_head == NULL)
1305 			break;
1306 
1307 		if (fxp_encap(sc, &mb_head)) {
1308 			if (mb_head == NULL)
1309 				break;
1310 			IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
1311 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1312 		}
1313 		txqueued++;
1314 		/*
1315 		 * Pass packet to bpf if there is a listener.
1316 		 */
1317 		BPF_MTAP(ifp, mb_head);
1318 	}
1319 
1320 	/*
1321 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1322 	 * going again if suspended.
1323 	 */
1324 	if (txqueued > 0) {
1325 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1326 		fxp_scb_wait(sc);
1327 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1328 		/*
1329 		 * Set a 5 second timer just in case we don't hear
1330 		 * from the card again.
1331 		 */
1332 		sc->watchdog_timer = 5;
1333 	}
1334 }
1335 
1336 static int
1337 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1338 {
1339 	struct ifnet *ifp;
1340 	struct mbuf *m;
1341 	struct fxp_tx *txp;
1342 	struct fxp_cb_tx *cbp;
1343 	struct tcphdr *tcp;
1344 	bus_dma_segment_t segs[FXP_NTXSEG];
1345 	int error, i, nseg, tcp_payload;
1346 
1347 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1348 	ifp = sc->ifp;
1349 
1350 	tcp_payload = 0;
1351 	tcp = NULL;
1352 	/*
1353 	 * Get pointer to next available tx desc.
1354 	 */
1355 	txp = sc->fxp_desc.tx_last->tx_next;
1356 
1357 	/*
1358 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1359 	 * Ethernet Controller Family Open Source Software
1360 	 * Developer Manual says:
1361 	 *   Using software parsing is only allowed with legal
1362 	 *   TCP/IP or UDP/IP packets.
1363 	 *   ...
1364 	 *   For all other datagrams, hardware parsing must
1365 	 *   be used.
1366 	 * Software parsing appears to truncate ICMP and
1367 	 * fragmented UDP packets that contain one to three
1368 	 * bytes in the second (and final) mbuf of the packet.
1369 	 */
1370 	if (sc->flags & FXP_FLAG_EXT_RFA)
1371 		txp->tx_cb->ipcb_ip_activation_high =
1372 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1373 
1374 	m = *m_head;
1375 	/*
1376 	 * Deal with TCP/IP checksum offload. Note that
1377 	 * in order for TCP checksum offload to work,
1378 	 * the pseudo header checksum must have already
1379 	 * been computed and stored in the checksum field
1380 	 * in the TCP header. The stack should have
1381 	 * already done this for us.
1382 	 */
1383 	if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1384 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1385 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1386 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1387 
1388 #ifdef FXP_IP_CSUM_WAR
1389 		/*
1390 		 * XXX The 82550 chip appears to have trouble
1391 		 * dealing with IP header checksums in very small
1392 		 * datagrams, namely fragments from 1 to 3 bytes
1393 		 * in size. For example, say you want to transmit
1394 		 * a UDP packet of 1473 bytes. The packet will be
1395 		 * fragmented over two IP datagrams, the latter
1396 		 * containing only one byte of data. The 82550 will
1397 		 * botch the header checksum on the 1-byte fragment.
1398 		 * As long as the datagram contains 4 or more bytes
1399 		 * of data, you're ok.
1400 		 *
1401                  * The following code attempts to work around this
1402 		 * problem: if the datagram is less than 38 bytes
1403 		 * in size (14 bytes ether header, 20 bytes IP header,
1404 		 * plus 4 bytes of data), we punt and compute the IP
1405 		 * header checksum by hand. This workaround doesn't
1406 		 * work very well, however, since it can be fooled
1407 		 * by things like VLAN tags and IP options that make
1408 		 * the header sizes/offsets vary.
1409 		 */
1410 
1411 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1412 			if (m->m_pkthdr.len < 38) {
1413 				struct ip *ip;
1414 				m->m_data += ETHER_HDR_LEN;
1415 				ip = mtod(m, struct ip *);
1416 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1417 				m->m_data -= ETHER_HDR_LEN;
1418 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1419 			} else {
1420 				txp->tx_cb->ipcb_ip_activation_high =
1421 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1422 				txp->tx_cb->ipcb_ip_schedule |=
1423 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1424 			}
1425 		}
1426 #endif
1427 	}
1428 
1429 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1430 		/*
1431 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1432 		 * contained in the first active transmit buffer.
1433 		 */
1434 		struct ether_header *eh;
1435 		struct ip *ip;
1436 		uint32_t ip_off, poff;
1437 
1438 		if (M_WRITABLE(*m_head) == 0) {
1439 			/* Get a writable copy. */
1440 			m = m_dup(*m_head, M_DONTWAIT);
1441 			m_freem(*m_head);
1442 			if (m == NULL) {
1443 				*m_head = NULL;
1444 				return (ENOBUFS);
1445 			}
1446 			*m_head = m;
1447 		}
1448 		ip_off = sizeof(struct ether_header);
1449 		m = m_pullup(*m_head, ip_off);
1450 		if (m == NULL) {
1451 			*m_head = NULL;
1452 			return (ENOBUFS);
1453 		}
1454 		eh = mtod(m, struct ether_header *);
1455 		/* Check the existence of VLAN tag. */
1456 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1457 			ip_off = sizeof(struct ether_vlan_header);
1458 			m = m_pullup(m, ip_off);
1459 			if (m == NULL) {
1460 				*m_head = NULL;
1461 				return (ENOBUFS);
1462 			}
1463 		}
1464 		m = m_pullup(m, ip_off + sizeof(struct ip));
1465 		if (m == NULL) {
1466 			*m_head = NULL;
1467 			return (ENOBUFS);
1468 		}
1469 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1470 		poff = ip_off + (ip->ip_hl << 2);
1471 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1472 		if (m == NULL) {
1473 			*m_head = NULL;
1474 			return (ENOBUFS);
1475 		}
1476 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1477 		m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off);
1478 		if (m == NULL) {
1479 			*m_head = NULL;
1480 			return (ENOBUFS);
1481 		}
1482 
1483 		/*
1484 		 * Since 82550/82551 doesn't modify IP length and pseudo
1485 		 * checksum in the first frame driver should compute it.
1486 		 */
1487 		ip->ip_sum = 0;
1488 		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1489 		    (tcp->th_off << 2));
1490 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1491 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1492 		    m->m_pkthdr.tso_segsz));
1493 		/* Compute total TCP payload. */
1494 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1495 		tcp_payload -= tcp->th_off << 2;
1496 		*m_head = m;
1497 	}
1498 
1499 	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map, *m_head,
1500 	    segs, &nseg, 0);
1501 	if (error == EFBIG) {
1502 		m = m_collapse(*m_head, M_DONTWAIT, sc->maxtxseg);
1503 		if (m == NULL) {
1504 			m_freem(*m_head);
1505 			*m_head = NULL;
1506 			return (ENOMEM);
1507 		}
1508 		*m_head = m;
1509 		error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1510 	    	    *m_head, segs, &nseg, 0);
1511 		if (error != 0) {
1512 			m_freem(*m_head);
1513 			*m_head = NULL;
1514 			return (ENOMEM);
1515 		}
1516 	} else if (error != 0)
1517 		return (error);
1518 	if (nseg == 0) {
1519 		m_freem(*m_head);
1520 		*m_head = NULL;
1521 		return (EIO);
1522 	}
1523 
1524 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1525 	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1526 
1527 	cbp = txp->tx_cb;
1528 	for (i = 0; i < nseg; i++) {
1529 		/*
1530 		 * If this is an 82550/82551, then we're using extended
1531 		 * TxCBs _and_ we're using checksum offload. This means
1532 		 * that the TxCB is really an IPCB. One major difference
1533 		 * between the two is that with plain extended TxCBs,
1534 		 * the bottom half of the TxCB contains two entries from
1535 		 * the TBD array, whereas IPCBs contain just one entry:
1536 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1537 		 * checksum offload control bits. So to make things work
1538 		 * right, we have to start filling in the TBD array
1539 		 * starting from a different place depending on whether
1540 		 * the chip is an 82550/82551 or not.
1541 		 */
1542 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1543 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1544 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1545 		} else {
1546 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1547 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1548 		}
1549 	}
1550 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1551 		/* Configure dynamic TBD for 82550/82551. */
1552 		cbp->tbd_number = 0xFF;
1553 		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1554 	} else
1555 		cbp->tbd_number = nseg;
1556 	/* Configure TSO. */
1557 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1558 		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1559 		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1560 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1561 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1562 		    FXP_IPCB_TCP_PACKET |
1563 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1564 	}
1565 	/* Configure VLAN hardware tag insertion. */
1566 	if ((m->m_flags & M_VLANTAG) != 0) {
1567 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1568 		txp->tx_cb->ipcb_ip_activation_high |=
1569 		    FXP_IPCB_INSERTVLAN_ENABLE;
1570 	}
1571 
1572 	txp->tx_mbuf = m;
1573 	txp->tx_cb->cb_status = 0;
1574 	txp->tx_cb->byte_count = 0;
1575 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1576 		txp->tx_cb->cb_command =
1577 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1578 		    FXP_CB_COMMAND_S);
1579 	else
1580 		txp->tx_cb->cb_command =
1581 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1582 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1583 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1584 		txp->tx_cb->tx_threshold = tx_threshold;
1585 
1586 	/*
1587 	 * Advance the end of list forward.
1588 	 */
1589 
1590 #ifdef __alpha__
1591 	/*
1592 	 * On platforms which can't access memory in 16-bit
1593 	 * granularities, we must prevent the card from DMA'ing
1594 	 * up the status while we update the command field.
1595 	 * This could cause us to overwrite the completion status.
1596 	 * XXX This is probably bogus and we're _not_ looking
1597 	 * for atomicity here.
1598 	 */
1599 	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1600 	    htole16(FXP_CB_COMMAND_S));
1601 #else
1602 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1603 #endif /*__alpha__*/
1604 	sc->fxp_desc.tx_last = txp;
1605 
1606 	/*
1607 	 * Advance the beginning of the list forward if there are
1608 	 * no other packets queued (when nothing is queued, tx_first
1609 	 * sits on the last TxCB that was sent out).
1610 	 */
1611 	if (sc->tx_queued == 0)
1612 		sc->fxp_desc.tx_first = txp;
1613 
1614 	sc->tx_queued++;
1615 
1616 	return (0);
1617 }
1618 
1619 #ifdef DEVICE_POLLING
1620 static poll_handler_t fxp_poll;
1621 
1622 static int
1623 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1624 {
1625 	struct fxp_softc *sc = ifp->if_softc;
1626 	uint8_t statack;
1627 	int rx_npkts = 0;
1628 
1629 	FXP_LOCK(sc);
1630 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1631 		FXP_UNLOCK(sc);
1632 		return (rx_npkts);
1633 	}
1634 
1635 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1636 	    FXP_SCB_STATACK_FR;
1637 	if (cmd == POLL_AND_CHECK_STATUS) {
1638 		uint8_t tmp;
1639 
1640 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1641 		if (tmp == 0xff || tmp == 0) {
1642 			FXP_UNLOCK(sc);
1643 			return (rx_npkts); /* nothing to do */
1644 		}
1645 		tmp &= ~statack;
1646 		/* ack what we can */
1647 		if (tmp != 0)
1648 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1649 		statack |= tmp;
1650 	}
1651 	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1652 	FXP_UNLOCK(sc);
1653 	return (rx_npkts);
1654 }
1655 #endif /* DEVICE_POLLING */
1656 
1657 /*
1658  * Process interface interrupts.
1659  */
1660 static void
1661 fxp_intr(void *xsc)
1662 {
1663 	struct fxp_softc *sc = xsc;
1664 	struct ifnet *ifp = sc->ifp;
1665 	uint8_t statack;
1666 
1667 	FXP_LOCK(sc);
1668 	if (sc->suspended) {
1669 		FXP_UNLOCK(sc);
1670 		return;
1671 	}
1672 
1673 #ifdef DEVICE_POLLING
1674 	if (ifp->if_capenable & IFCAP_POLLING) {
1675 		FXP_UNLOCK(sc);
1676 		return;
1677 	}
1678 #endif
1679 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1680 		/*
1681 		 * It should not be possible to have all bits set; the
1682 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1683 		 * all bits are set, this may indicate that the card has
1684 		 * been physically ejected, so ignore it.
1685 		 */
1686 		if (statack == 0xff) {
1687 			FXP_UNLOCK(sc);
1688 			return;
1689 		}
1690 
1691 		/*
1692 		 * First ACK all the interrupts in this pass.
1693 		 */
1694 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1695 		fxp_intr_body(sc, ifp, statack, -1);
1696 	}
1697 	FXP_UNLOCK(sc);
1698 }
1699 
1700 static void
1701 fxp_txeof(struct fxp_softc *sc)
1702 {
1703 	struct ifnet *ifp;
1704 	struct fxp_tx *txp;
1705 
1706 	ifp = sc->ifp;
1707 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1708 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1709 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1710 	    txp = txp->tx_next) {
1711 		if (txp->tx_mbuf != NULL) {
1712 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1713 			    BUS_DMASYNC_POSTWRITE);
1714 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1715 			m_freem(txp->tx_mbuf);
1716 			txp->tx_mbuf = NULL;
1717 			/* clear this to reset csum offload bits */
1718 			txp->tx_cb->tbd[0].tb_addr = 0;
1719 		}
1720 		sc->tx_queued--;
1721 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1722 	}
1723 	sc->fxp_desc.tx_first = txp;
1724 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1725 	if (sc->tx_queued == 0) {
1726 		sc->watchdog_timer = 0;
1727 		if (sc->need_mcsetup)
1728 			fxp_mc_setup(sc);
1729 	}
1730 }
1731 
1732 static void
1733 fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
1734     uint16_t status, int pos)
1735 {
1736 	struct ether_header *eh;
1737 	struct ip *ip;
1738 	struct udphdr *uh;
1739 	int32_t hlen, len, pktlen, temp32;
1740 	uint16_t csum, *opts;
1741 
1742 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1743 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1744 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1745 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1746 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1747 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1748 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1749 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1750 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1751 				    CSUM_PSEUDO_HDR;
1752 				m->m_pkthdr.csum_data = 0xffff;
1753 			}
1754 		}
1755 		return;
1756 	}
1757 
1758 	pktlen = m->m_pkthdr.len;
1759 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1760 		return;
1761 	eh = mtod(m, struct ether_header *);
1762 	if (eh->ether_type != htons(ETHERTYPE_IP))
1763 		return;
1764 	ip = (struct ip *)(eh + 1);
1765 	if (ip->ip_v != IPVERSION)
1766 		return;
1767 
1768 	hlen = ip->ip_hl << 2;
1769 	pktlen -= sizeof(struct ether_header);
1770 	if (hlen < sizeof(struct ip))
1771 		return;
1772 	if (ntohs(ip->ip_len) < hlen)
1773 		return;
1774 	if (ntohs(ip->ip_len) != pktlen)
1775 		return;
1776 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1777 		return;	/* can't handle fragmented packet */
1778 
1779 	switch (ip->ip_p) {
1780 	case IPPROTO_TCP:
1781 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1782 			return;
1783 		break;
1784 	case IPPROTO_UDP:
1785 		if (pktlen < (hlen + sizeof(struct udphdr)))
1786 			return;
1787 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1788 		if (uh->uh_sum == 0)
1789 			return; /* no checksum */
1790 		break;
1791 	default:
1792 		return;
1793 	}
1794 	/* Extract computed checksum. */
1795 	csum = be16dec(mtod(m, char *) + pos);
1796 	/* checksum fixup for IP options */
1797 	len = hlen - sizeof(struct ip);
1798 	if (len > 0) {
1799 		opts = (uint16_t *)(ip + 1);
1800 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1801 			temp32 = csum - *opts;
1802 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1803 			csum = temp32 & 65535;
1804 		}
1805 	}
1806 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1807 	m->m_pkthdr.csum_data = csum;
1808 }
1809 
1810 static int
1811 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1812     int count)
1813 {
1814 	struct mbuf *m;
1815 	struct fxp_rx *rxp;
1816 	struct fxp_rfa *rfa;
1817 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1818 	int rx_npkts;
1819 	uint16_t status;
1820 
1821 	rx_npkts = 0;
1822 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1823 
1824 	if (rnr)
1825 		sc->rnr++;
1826 #ifdef DEVICE_POLLING
1827 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1828 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1829 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1830 		rnr = 1;
1831 	}
1832 #endif
1833 
1834 	/*
1835 	 * Free any finished transmit mbuf chains.
1836 	 *
1837 	 * Handle the CNA event likt a CXTNO event. It used to
1838 	 * be that this event (control unit not ready) was not
1839 	 * encountered, but it is now with the SMPng modifications.
1840 	 * The exact sequence of events that occur when the interface
1841 	 * is brought up are different now, and if this event
1842 	 * goes unhandled, the configuration/rxfilter setup sequence
1843 	 * can stall for several seconds. The result is that no
1844 	 * packets go out onto the wire for about 5 to 10 seconds
1845 	 * after the interface is ifconfig'ed for the first time.
1846 	 */
1847 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1848 		fxp_txeof(sc);
1849 
1850 	/*
1851 	 * Try to start more packets transmitting.
1852 	 */
1853 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1854 		fxp_start_body(ifp);
1855 
1856 	/*
1857 	 * Just return if nothing happened on the receive side.
1858 	 */
1859 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1860 		return (rx_npkts);
1861 
1862 	/*
1863 	 * Process receiver interrupts. If a no-resource (RNR)
1864 	 * condition exists, get whatever packets we can and
1865 	 * re-start the receiver.
1866 	 *
1867 	 * When using polling, we do not process the list to completion,
1868 	 * so when we get an RNR interrupt we must defer the restart
1869 	 * until we hit the last buffer with the C bit set.
1870 	 * If we run out of cycles and rfa_headm has the C bit set,
1871 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1872 	 * that the info will be used in the subsequent polling cycle.
1873 	 */
1874 	for (;;) {
1875 		rxp = sc->fxp_desc.rx_head;
1876 		m = rxp->rx_mbuf;
1877 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1878 		    RFA_ALIGNMENT_FUDGE);
1879 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1880 		    BUS_DMASYNC_POSTREAD);
1881 
1882 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1883 		if (count >= 0 && count-- == 0) {
1884 			if (rnr) {
1885 				/* Defer RNR processing until the next time. */
1886 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1887 				rnr = 0;
1888 			}
1889 			break;
1890 		}
1891 #endif /* DEVICE_POLLING */
1892 
1893 		status = le16toh(rfa->rfa_status);
1894 		if ((status & FXP_RFA_STATUS_C) == 0)
1895 			break;
1896 
1897 		/*
1898 		 * Advance head forward.
1899 		 */
1900 		sc->fxp_desc.rx_head = rxp->rx_next;
1901 
1902 		/*
1903 		 * Add a new buffer to the receive chain.
1904 		 * If this fails, the old buffer is recycled
1905 		 * instead.
1906 		 */
1907 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1908 			int total_len;
1909 
1910 			/*
1911 			 * Fetch packet length (the top 2 bits of
1912 			 * actual_size are flags set by the controller
1913 			 * upon completion), and drop the packet in case
1914 			 * of bogus length or CRC errors.
1915 			 */
1916 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1917 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1918 			    (ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1919 				/* Adjust for appended checksum bytes. */
1920 				total_len -= 2;
1921 			}
1922 			if (total_len < sizeof(struct ether_header) ||
1923 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1924 				sc->rfa_size || status & FXP_RFA_STATUS_CRC) {
1925 				m_freem(m);
1926 				continue;
1927 			}
1928 
1929 			m->m_pkthdr.len = m->m_len = total_len;
1930 			m->m_pkthdr.rcvif = ifp;
1931 
1932                         /* Do IP checksum checking. */
1933 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1934 				fxp_rxcsum(sc, ifp, m, status, total_len);
1935 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1936 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1937 				m->m_pkthdr.ether_vtag =
1938 				    ntohs(rfa->rfax_vlan_id);
1939 				m->m_flags |= M_VLANTAG;
1940 			}
1941 			/*
1942 			 * Drop locks before calling if_input() since it
1943 			 * may re-enter fxp_start() in the netisr case.
1944 			 * This would result in a lock reversal.  Better
1945 			 * performance might be obtained by chaining all
1946 			 * packets received, dropping the lock, and then
1947 			 * calling if_input() on each one.
1948 			 */
1949 			FXP_UNLOCK(sc);
1950 			(*ifp->if_input)(ifp, m);
1951 			FXP_LOCK(sc);
1952 			rx_npkts++;
1953 		} else {
1954 			/* Reuse RFA and loaded DMA map. */
1955 			ifp->if_iqdrops++;
1956 			fxp_discard_rfabuf(sc, rxp);
1957 		}
1958 		fxp_add_rfabuf(sc, rxp);
1959 	}
1960 	if (rnr) {
1961 		fxp_scb_wait(sc);
1962 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1963 		    sc->fxp_desc.rx_head->rx_addr);
1964 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1965 	}
1966 	return (rx_npkts);
1967 }
1968 
1969 /*
1970  * Update packet in/out/collision statistics. The i82557 doesn't
1971  * allow you to access these counters without doing a fairly
1972  * expensive DMA to get _all_ of the statistics it maintains, so
1973  * we do this operation here only once per second. The statistics
1974  * counters in the kernel are updated from the previous dump-stats
1975  * DMA and then a new dump-stats DMA is started. The on-chip
1976  * counters are zeroed when the DMA completes. If we can't start
1977  * the DMA immediately, we don't wait - we just prepare to read
1978  * them again next time.
1979  */
1980 static void
1981 fxp_tick(void *xsc)
1982 {
1983 	struct fxp_softc *sc = xsc;
1984 	struct ifnet *ifp = sc->ifp;
1985 	struct fxp_stats *sp = sc->fxp_stats;
1986 
1987 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1988 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1989 	ifp->if_opackets += le32toh(sp->tx_good);
1990 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1991 	if (sp->rx_good) {
1992 		ifp->if_ipackets += le32toh(sp->rx_good);
1993 		sc->rx_idle_secs = 0;
1994 	} else {
1995 		/*
1996 		 * Receiver's been idle for another second.
1997 		 */
1998 		sc->rx_idle_secs++;
1999 	}
2000 	ifp->if_ierrors +=
2001 	    le32toh(sp->rx_crc_errors) +
2002 	    le32toh(sp->rx_alignment_errors) +
2003 	    le32toh(sp->rx_rnr_errors) +
2004 	    le32toh(sp->rx_overrun_errors);
2005 	/*
2006 	 * If any transmit underruns occured, bump up the transmit
2007 	 * threshold by another 512 bytes (64 * 8).
2008 	 */
2009 	if (sp->tx_underruns) {
2010 		ifp->if_oerrors += le32toh(sp->tx_underruns);
2011 		if (tx_threshold < 192)
2012 			tx_threshold += 64;
2013 	}
2014 
2015 	/*
2016 	 * Release any xmit buffers that have completed DMA. This isn't
2017 	 * strictly necessary to do here, but it's advantagous for mbufs
2018 	 * with external storage to be released in a timely manner rather
2019 	 * than being defered for a potentially long time. This limits
2020 	 * the delay to a maximum of one second.
2021 	 */
2022 	fxp_txeof(sc);
2023 
2024 	/*
2025 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2026 	 * then assume the receiver has locked up and attempt to clear
2027 	 * the condition by reprogramming the multicast filter. This is
2028 	 * a work-around for a bug in the 82557 where the receiver locks
2029 	 * up if it gets certain types of garbage in the syncronization
2030 	 * bits prior to the packet header. This bug is supposed to only
2031 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2032 	 * mode as well (perhaps due to a 10/100 speed transition).
2033 	 */
2034 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2035 		sc->rx_idle_secs = 0;
2036 		fxp_mc_setup(sc);
2037 	}
2038 	/*
2039 	 * If there is no pending command, start another stats
2040 	 * dump. Otherwise punt for now.
2041 	 */
2042 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2043 		/*
2044 		 * Start another stats dump.
2045 		 */
2046 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2047 		    BUS_DMASYNC_PREREAD);
2048 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2049 	} else {
2050 		/*
2051 		 * A previous command is still waiting to be accepted.
2052 		 * Just zero our copy of the stats and wait for the
2053 		 * next timer event to update them.
2054 		 */
2055 		sp->tx_good = 0;
2056 		sp->tx_underruns = 0;
2057 		sp->tx_total_collisions = 0;
2058 
2059 		sp->rx_good = 0;
2060 		sp->rx_crc_errors = 0;
2061 		sp->rx_alignment_errors = 0;
2062 		sp->rx_rnr_errors = 0;
2063 		sp->rx_overrun_errors = 0;
2064 	}
2065 	if (sc->miibus != NULL)
2066 		mii_tick(device_get_softc(sc->miibus));
2067 
2068 	/*
2069 	 * Check that chip hasn't hung.
2070 	 */
2071 	fxp_watchdog(sc);
2072 
2073 	/*
2074 	 * Schedule another timeout one second from now.
2075 	 */
2076 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2077 }
2078 
2079 /*
2080  * Stop the interface. Cancels the statistics updater and resets
2081  * the interface.
2082  */
2083 static void
2084 fxp_stop(struct fxp_softc *sc)
2085 {
2086 	struct ifnet *ifp = sc->ifp;
2087 	struct fxp_tx *txp;
2088 	int i;
2089 
2090 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2091 	sc->watchdog_timer = 0;
2092 
2093 	/*
2094 	 * Cancel stats updater.
2095 	 */
2096 	callout_stop(&sc->stat_ch);
2097 
2098 	/*
2099 	 * Preserve PCI configuration, configure, IA/multicast
2100 	 * setup and put RU and CU into idle state.
2101 	 */
2102 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2103 	DELAY(50);
2104 	/* Disable interrupts. */
2105 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2106 
2107 	/*
2108 	 * Release any xmit buffers.
2109 	 */
2110 	txp = sc->fxp_desc.tx_list;
2111 	if (txp != NULL) {
2112 		for (i = 0; i < FXP_NTXCB; i++) {
2113  			if (txp[i].tx_mbuf != NULL) {
2114 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
2115 				    BUS_DMASYNC_POSTWRITE);
2116 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
2117 				m_freem(txp[i].tx_mbuf);
2118 				txp[i].tx_mbuf = NULL;
2119 				/* clear this to reset csum offload bits */
2120 				txp[i].tx_cb->tbd[0].tb_addr = 0;
2121 			}
2122 		}
2123 	}
2124 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2125 	sc->tx_queued = 0;
2126 }
2127 
2128 /*
2129  * Watchdog/transmission transmit timeout handler. Called when a
2130  * transmission is started on the interface, but no interrupt is
2131  * received before the timeout. This usually indicates that the
2132  * card has wedged for some reason.
2133  */
2134 static void
2135 fxp_watchdog(struct fxp_softc *sc)
2136 {
2137 
2138 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2139 
2140 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2141 		return;
2142 
2143 	device_printf(sc->dev, "device timeout\n");
2144 	sc->ifp->if_oerrors++;
2145 
2146 	fxp_init_body(sc);
2147 }
2148 
2149 /*
2150  * Acquire locks and then call the real initialization function.  This
2151  * is necessary because ether_ioctl() calls if_init() and this would
2152  * result in mutex recursion if the mutex was held.
2153  */
2154 static void
2155 fxp_init(void *xsc)
2156 {
2157 	struct fxp_softc *sc = xsc;
2158 
2159 	FXP_LOCK(sc);
2160 	fxp_init_body(sc);
2161 	FXP_UNLOCK(sc);
2162 }
2163 
2164 /*
2165  * Perform device initialization. This routine must be called with the
2166  * softc lock held.
2167  */
2168 static void
2169 fxp_init_body(struct fxp_softc *sc)
2170 {
2171 	struct ifnet *ifp = sc->ifp;
2172 	struct fxp_cb_config *cbp;
2173 	struct fxp_cb_ias *cb_ias;
2174 	struct fxp_cb_tx *tcbp;
2175 	struct fxp_tx *txp;
2176 	struct fxp_cb_mcs *mcsp;
2177 	int i, prm;
2178 
2179 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2180 	/*
2181 	 * Cancel any pending I/O
2182 	 */
2183 	fxp_stop(sc);
2184 
2185 	/*
2186 	 * Issue software reset, which also unloads the microcode.
2187 	 */
2188 	sc->flags &= ~FXP_FLAG_UCODE;
2189 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2190 	DELAY(50);
2191 
2192 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2193 
2194 	/*
2195 	 * Initialize base of CBL and RFA memory. Loading with zero
2196 	 * sets it up for regular linear addressing.
2197 	 */
2198 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2199 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2200 
2201 	fxp_scb_wait(sc);
2202 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2203 
2204 	/*
2205 	 * Initialize base of dump-stats buffer.
2206 	 */
2207 	fxp_scb_wait(sc);
2208 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
2209 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2210 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2211 
2212 	/*
2213 	 * Attempt to load microcode if requested.
2214 	 */
2215 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
2216 		fxp_load_ucode(sc);
2217 
2218 	/*
2219 	 * Initialize the multicast address list.
2220 	 */
2221 	if (fxp_mc_addrs(sc)) {
2222 		mcsp = sc->mcsp;
2223 		mcsp->cb_status = 0;
2224 		mcsp->cb_command =
2225 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2226 		mcsp->link_addr = 0xffffffff;
2227 		/*
2228 	 	 * Start the multicast setup command.
2229 		 */
2230 		fxp_scb_wait(sc);
2231 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2232 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2233 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2234 		/* ...and wait for it to complete. */
2235 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2236 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2237 		    BUS_DMASYNC_POSTWRITE);
2238 	}
2239 
2240 	/*
2241 	 * We temporarily use memory that contains the TxCB list to
2242 	 * construct the config CB. The TxCB list memory is rebuilt
2243 	 * later.
2244 	 */
2245 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2246 
2247 	/*
2248 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2249 	 * zero and must be one bits in this structure and this is the easiest
2250 	 * way to initialize them all to proper values.
2251 	 */
2252 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2253 
2254 	cbp->cb_status =	0;
2255 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2256 	    FXP_CB_COMMAND_EL);
2257 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2258 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2259 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2260 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2261 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2262 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2263 	cbp->type_enable =	0;	/* actually reserved */
2264 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2265 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2266 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2267 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2268 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2269 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2270 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2271 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2272 	cbp->ci_int =		1;	/* interrupt on CU idle */
2273 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2274 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2275 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2276 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2277 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2278 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2279 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2280 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2281 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2282 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2283 	cbp->csma_dis =		0;	/* (don't) disable link */
2284 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2285 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
2286 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2287 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2288 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2289 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2290 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2291 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2292 	cbp->loopback =		0;	/* (don't) loopback */
2293 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2294 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2295 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2296 	cbp->promiscuous =	prm;	/* promiscuous mode */
2297 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2298 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2299 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2300 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2301 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2302 
2303 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2304 	cbp->padding =		1;	/* (do) pad short tx packets */
2305 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2306 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2307 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2308 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2309 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2310 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2311 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2312 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2313 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2314 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2315 	    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2316 
2317 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2318 		/*
2319 		 * The 82557 has no hardware flow control, the values
2320 		 * below are the defaults for the chip.
2321 		 */
2322 		cbp->fc_delay_lsb =	0;
2323 		cbp->fc_delay_msb =	0x40;
2324 		cbp->pri_fc_thresh =	3;
2325 		cbp->tx_fc_dis =	0;
2326 		cbp->rx_fc_restop =	0;
2327 		cbp->rx_fc_restart =	0;
2328 		cbp->fc_filter =	0;
2329 		cbp->pri_fc_loc =	1;
2330 	} else {
2331 		cbp->fc_delay_lsb =	0x1f;
2332 		cbp->fc_delay_msb =	0x01;
2333 		cbp->pri_fc_thresh =	3;
2334 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2335 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2336 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2337 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2338 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2339 	}
2340 
2341 	/*
2342 	 * Start the config command/DMA.
2343 	 */
2344 	fxp_scb_wait(sc);
2345 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2346 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2347 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2348 	/* ...and wait for it to complete. */
2349 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2350 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2351 
2352 	/*
2353 	 * Now initialize the station address. Temporarily use the TxCB
2354 	 * memory area like we did above for the config CB.
2355 	 */
2356 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2357 	cb_ias->cb_status = 0;
2358 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2359 	cb_ias->link_addr = 0xffffffff;
2360 	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2361 
2362 	/*
2363 	 * Start the IAS (Individual Address Setup) command/DMA.
2364 	 */
2365 	fxp_scb_wait(sc);
2366 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2367 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2368 	/* ...and wait for it to complete. */
2369 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2370 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2371 
2372 	/*
2373 	 * Initialize transmit control block (TxCB) list.
2374 	 */
2375 	txp = sc->fxp_desc.tx_list;
2376 	tcbp = sc->fxp_desc.cbl_list;
2377 	bzero(tcbp, FXP_TXCB_SZ);
2378 	for (i = 0; i < FXP_NTXCB; i++) {
2379 		txp[i].tx_mbuf = NULL;
2380 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2381 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2382 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2383 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2384 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2385 			tcbp[i].tbd_array_addr =
2386 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2387 		else
2388 			tcbp[i].tbd_array_addr =
2389 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2390 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2391 	}
2392 	/*
2393 	 * Set the suspend flag on the first TxCB and start the control
2394 	 * unit. It will execute the NOP and then suspend.
2395 	 */
2396 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2397 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2398 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2399 	sc->tx_queued = 1;
2400 
2401 	fxp_scb_wait(sc);
2402 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2403 
2404 	/*
2405 	 * Initialize receiver buffer area - RFA.
2406 	 */
2407 	fxp_scb_wait(sc);
2408 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2409 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2410 
2411 	/*
2412 	 * Set current media.
2413 	 */
2414 	if (sc->miibus != NULL)
2415 		mii_mediachg(device_get_softc(sc->miibus));
2416 
2417 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2418 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2419 
2420 	/*
2421 	 * Enable interrupts.
2422 	 */
2423 #ifdef DEVICE_POLLING
2424 	/*
2425 	 * ... but only do that if we are not polling. And because (presumably)
2426 	 * the default is interrupts on, we need to disable them explicitly!
2427 	 */
2428 	if (ifp->if_capenable & IFCAP_POLLING )
2429 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2430 	else
2431 #endif /* DEVICE_POLLING */
2432 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2433 
2434 	/*
2435 	 * Start stats updater.
2436 	 */
2437 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2438 }
2439 
2440 static int
2441 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2442 {
2443 
2444 	return (0);
2445 }
2446 
2447 static void
2448 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2449 {
2450 
2451 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2452 }
2453 
2454 /*
2455  * Change media according to request.
2456  */
2457 static int
2458 fxp_ifmedia_upd(struct ifnet *ifp)
2459 {
2460 	struct fxp_softc *sc = ifp->if_softc;
2461 	struct mii_data *mii;
2462 
2463 	mii = device_get_softc(sc->miibus);
2464 	FXP_LOCK(sc);
2465 	if (mii->mii_instance) {
2466 		struct mii_softc	*miisc;
2467 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2468 			mii_phy_reset(miisc);
2469 	}
2470 	mii_mediachg(mii);
2471 	FXP_UNLOCK(sc);
2472 	return (0);
2473 }
2474 
2475 /*
2476  * Notify the world which media we're using.
2477  */
2478 static void
2479 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2480 {
2481 	struct fxp_softc *sc = ifp->if_softc;
2482 	struct mii_data *mii;
2483 
2484 	mii = device_get_softc(sc->miibus);
2485 	FXP_LOCK(sc);
2486 	mii_pollstat(mii);
2487 	ifmr->ifm_active = mii->mii_media_active;
2488 	ifmr->ifm_status = mii->mii_media_status;
2489 
2490 	if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
2491 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2492 		sc->cu_resume_bug = 1;
2493 	else
2494 		sc->cu_resume_bug = 0;
2495 	FXP_UNLOCK(sc);
2496 }
2497 
2498 /*
2499  * Add a buffer to the end of the RFA buffer list.
2500  * Return 0 if successful, 1 for failure. A failure results in
2501  * reusing the RFA buffer.
2502  * The RFA struct is stuck at the beginning of mbuf cluster and the
2503  * data pointer is fixed up to point just past it.
2504  */
2505 static int
2506 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2507 {
2508 	struct mbuf *m;
2509 	struct fxp_rfa *rfa;
2510 	bus_dmamap_t tmp_map;
2511 	int error;
2512 
2513 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2514 	if (m == NULL)
2515 		return (ENOBUFS);
2516 
2517 	/*
2518 	 * Move the data pointer up so that the incoming data packet
2519 	 * will be 32-bit aligned.
2520 	 */
2521 	m->m_data += RFA_ALIGNMENT_FUDGE;
2522 
2523 	/*
2524 	 * Get a pointer to the base of the mbuf cluster and move
2525 	 * data start past it.
2526 	 */
2527 	rfa = mtod(m, struct fxp_rfa *);
2528 	m->m_data += sc->rfa_size;
2529 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2530 
2531 	rfa->rfa_status = 0;
2532 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2533 	rfa->actual_size = 0;
2534 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2535 	    sc->rfa_size;
2536 
2537 	/*
2538 	 * Initialize the rest of the RFA.  Note that since the RFA
2539 	 * is misaligned, we cannot store values directly.  We're thus
2540 	 * using the le32enc() function which handles endianness and
2541 	 * is also alignment-safe.
2542 	 */
2543 	le32enc(&rfa->link_addr, 0xffffffff);
2544 	le32enc(&rfa->rbd_addr, 0xffffffff);
2545 
2546 	/* Map the RFA into DMA memory. */
2547 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2548 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2549 	    &rxp->rx_addr, 0);
2550 	if (error) {
2551 		m_freem(m);
2552 		return (error);
2553 	}
2554 
2555 	if (rxp->rx_mbuf != NULL)
2556 		bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2557 	tmp_map = sc->spare_map;
2558 	sc->spare_map = rxp->rx_map;
2559 	rxp->rx_map = tmp_map;
2560 	rxp->rx_mbuf = m;
2561 
2562 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2563 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2564 	return (0);
2565 }
2566 
2567 static void
2568 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2569 {
2570 	struct fxp_rfa *p_rfa;
2571 	struct fxp_rx *p_rx;
2572 
2573 	/*
2574 	 * If there are other buffers already on the list, attach this
2575 	 * one to the end by fixing up the tail to point to this one.
2576 	 */
2577 	if (sc->fxp_desc.rx_head != NULL) {
2578 		p_rx = sc->fxp_desc.rx_tail;
2579 		p_rfa = (struct fxp_rfa *)
2580 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2581 		p_rx->rx_next = rxp;
2582 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2583 		p_rfa->rfa_control = 0;
2584 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2585 		    BUS_DMASYNC_PREWRITE);
2586 	} else {
2587 		rxp->rx_next = NULL;
2588 		sc->fxp_desc.rx_head = rxp;
2589 	}
2590 	sc->fxp_desc.rx_tail = rxp;
2591 }
2592 
2593 static void
2594 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2595 {
2596 	struct mbuf *m;
2597 	struct fxp_rfa *rfa;
2598 
2599 	m = rxp->rx_mbuf;
2600 	m->m_data = m->m_ext.ext_buf;
2601 	/*
2602 	 * Move the data pointer up so that the incoming data packet
2603 	 * will be 32-bit aligned.
2604 	 */
2605 	m->m_data += RFA_ALIGNMENT_FUDGE;
2606 
2607 	/*
2608 	 * Get a pointer to the base of the mbuf cluster and move
2609 	 * data start past it.
2610 	 */
2611 	rfa = mtod(m, struct fxp_rfa *);
2612 	m->m_data += sc->rfa_size;
2613 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2614 
2615 	rfa->rfa_status = 0;
2616 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2617 	rfa->actual_size = 0;
2618 
2619 	/*
2620 	 * Initialize the rest of the RFA.  Note that since the RFA
2621 	 * is misaligned, we cannot store values directly.  We're thus
2622 	 * using the le32enc() function which handles endianness and
2623 	 * is also alignment-safe.
2624 	 */
2625 	le32enc(&rfa->link_addr, 0xffffffff);
2626 	le32enc(&rfa->rbd_addr, 0xffffffff);
2627 
2628 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2629 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2630 }
2631 
2632 static int
2633 fxp_miibus_readreg(device_t dev, int phy, int reg)
2634 {
2635 	struct fxp_softc *sc = device_get_softc(dev);
2636 	int count = 10000;
2637 	int value;
2638 
2639 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2640 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2641 
2642 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2643 	    && count--)
2644 		DELAY(10);
2645 
2646 	if (count <= 0)
2647 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2648 
2649 	return (value & 0xffff);
2650 }
2651 
2652 static int
2653 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2654 {
2655 	struct fxp_softc *sc = device_get_softc(dev);
2656 	int count = 10000;
2657 
2658 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2659 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2660 	    (value & 0xffff));
2661 
2662 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2663 	    count--)
2664 		DELAY(10);
2665 
2666 	if (count <= 0)
2667 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2668 	return (0);
2669 }
2670 
2671 static int
2672 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2673 {
2674 	struct fxp_softc *sc = ifp->if_softc;
2675 	struct ifreq *ifr = (struct ifreq *)data;
2676 	struct mii_data *mii;
2677 	int flag, mask, error = 0, reinit;
2678 
2679 	switch (command) {
2680 	case SIOCSIFFLAGS:
2681 		FXP_LOCK(sc);
2682 		if (ifp->if_flags & IFF_ALLMULTI)
2683 			sc->flags |= FXP_FLAG_ALL_MCAST;
2684 		else
2685 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2686 
2687 		/*
2688 		 * If interface is marked up and not running, then start it.
2689 		 * If it is marked down and running, stop it.
2690 		 * XXX If it's up then re-initialize it. This is so flags
2691 		 * such as IFF_PROMISC are handled.
2692 		 */
2693 		if (ifp->if_flags & IFF_UP) {
2694 			fxp_init_body(sc);
2695 		} else {
2696 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2697 				fxp_stop(sc);
2698 		}
2699 		FXP_UNLOCK(sc);
2700 		break;
2701 
2702 	case SIOCADDMULTI:
2703 	case SIOCDELMULTI:
2704 		FXP_LOCK(sc);
2705 		if (ifp->if_flags & IFF_ALLMULTI)
2706 			sc->flags |= FXP_FLAG_ALL_MCAST;
2707 		else
2708 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2709 		/*
2710 		 * Multicast list has changed; set the hardware filter
2711 		 * accordingly.
2712 		 */
2713 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2714 			fxp_mc_setup(sc);
2715 		/*
2716 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2717 		 * again rather than else {}.
2718 		 */
2719 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2720 			fxp_init_body(sc);
2721 		FXP_UNLOCK(sc);
2722 		error = 0;
2723 		break;
2724 
2725 	case SIOCSIFMEDIA:
2726 	case SIOCGIFMEDIA:
2727 		if (sc->miibus != NULL) {
2728 			mii = device_get_softc(sc->miibus);
2729                         error = ifmedia_ioctl(ifp, ifr,
2730                             &mii->mii_media, command);
2731 		} else {
2732                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2733 		}
2734 		break;
2735 
2736 	case SIOCSIFCAP:
2737 		reinit = 0;
2738 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2739 #ifdef DEVICE_POLLING
2740 		if (mask & IFCAP_POLLING) {
2741 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2742 				error = ether_poll_register(fxp_poll, ifp);
2743 				if (error)
2744 					return(error);
2745 				FXP_LOCK(sc);
2746 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2747 				    FXP_SCB_INTR_DISABLE);
2748 				ifp->if_capenable |= IFCAP_POLLING;
2749 				FXP_UNLOCK(sc);
2750 			} else {
2751 				error = ether_poll_deregister(ifp);
2752 				/* Enable interrupts in any case */
2753 				FXP_LOCK(sc);
2754 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2755 				ifp->if_capenable &= ~IFCAP_POLLING;
2756 				FXP_UNLOCK(sc);
2757 			}
2758 		}
2759 #endif
2760 		FXP_LOCK(sc);
2761 		if ((mask & IFCAP_TXCSUM) != 0 &&
2762 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2763 			ifp->if_capenable ^= IFCAP_TXCSUM;
2764 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2765 				ifp->if_hwassist |= FXP_CSUM_FEATURES;
2766 			else
2767 				ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
2768 		}
2769 		if ((mask & IFCAP_RXCSUM) != 0 &&
2770 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
2771 			ifp->if_capenable ^= IFCAP_RXCSUM;
2772 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2773 				reinit++;
2774 		}
2775 		if ((mask & IFCAP_TSO4) != 0 &&
2776 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2777 			ifp->if_capenable ^= IFCAP_TSO4;
2778 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2779 				ifp->if_hwassist |= CSUM_TSO;
2780 			else
2781 				ifp->if_hwassist &= ~CSUM_TSO;
2782 		}
2783 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2784 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2785 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2786 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2787 		    (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
2788 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2789 			if (sc->revision != FXP_REV_82557)
2790 				flag = FXP_FLAG_LONG_PKT_EN;
2791 			else /* a hack to get long frames on the old chip */
2792 				flag = FXP_FLAG_SAVE_BAD;
2793 			sc->flags ^= flag;
2794 			if (ifp->if_flags & IFF_UP)
2795 				reinit++;
2796 		}
2797 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2798 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2799 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2800 				reinit++;
2801 		}
2802 		if (reinit > 0 && ifp->if_flags & IFF_UP)
2803 			fxp_init_body(sc);
2804 		FXP_UNLOCK(sc);
2805 		VLAN_CAPABILITIES(ifp);
2806 		break;
2807 
2808 	default:
2809 		error = ether_ioctl(ifp, command, data);
2810 	}
2811 	return (error);
2812 }
2813 
2814 /*
2815  * Fill in the multicast address list and return number of entries.
2816  */
2817 static int
2818 fxp_mc_addrs(struct fxp_softc *sc)
2819 {
2820 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2821 	struct ifnet *ifp = sc->ifp;
2822 	struct ifmultiaddr *ifma;
2823 	int nmcasts;
2824 
2825 	nmcasts = 0;
2826 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2827 		IF_ADDR_LOCK(ifp);
2828 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2829 			if (ifma->ifma_addr->sa_family != AF_LINK)
2830 				continue;
2831 			if (nmcasts >= MAXMCADDR) {
2832 				sc->flags |= FXP_FLAG_ALL_MCAST;
2833 				nmcasts = 0;
2834 				break;
2835 			}
2836 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2837 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2838 			nmcasts++;
2839 		}
2840 		IF_ADDR_UNLOCK(ifp);
2841 	}
2842 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2843 	return (nmcasts);
2844 }
2845 
2846 /*
2847  * Program the multicast filter.
2848  *
2849  * We have an artificial restriction that the multicast setup command
2850  * must be the first command in the chain, so we take steps to ensure
2851  * this. By requiring this, it allows us to keep up the performance of
2852  * the pre-initialized command ring (esp. link pointers) by not actually
2853  * inserting the mcsetup command in the ring - i.e. its link pointer
2854  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2855  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2856  * lead into the regular TxCB ring when it completes.
2857  *
2858  * This function must be called at splimp.
2859  */
2860 static void
2861 fxp_mc_setup(struct fxp_softc *sc)
2862 {
2863 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2864 	struct fxp_tx *txp;
2865 	int count;
2866 
2867 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2868 	/*
2869 	 * If there are queued commands, we must wait until they are all
2870 	 * completed. If we are already waiting, then add a NOP command
2871 	 * with interrupt option so that we're notified when all commands
2872 	 * have been completed - fxp_start() ensures that no additional
2873 	 * TX commands will be added when need_mcsetup is true.
2874 	 */
2875 	if (sc->tx_queued) {
2876 		/*
2877 		 * need_mcsetup will be true if we are already waiting for the
2878 		 * NOP command to be completed (see below). In this case, bail.
2879 		 */
2880 		if (sc->need_mcsetup)
2881 			return;
2882 		sc->need_mcsetup = 1;
2883 
2884 		/*
2885 		 * Add a NOP command with interrupt so that we are notified
2886 		 * when all TX commands have been processed.
2887 		 */
2888 		txp = sc->fxp_desc.tx_last->tx_next;
2889 		txp->tx_mbuf = NULL;
2890 		txp->tx_cb->cb_status = 0;
2891 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2892 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2893 		/*
2894 		 * Advance the end of list forward.
2895 		 */
2896 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2897 		    htole16(~FXP_CB_COMMAND_S);
2898 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2899 		sc->fxp_desc.tx_last = txp;
2900 		sc->tx_queued++;
2901 		/*
2902 		 * Issue a resume in case the CU has just suspended.
2903 		 */
2904 		fxp_scb_wait(sc);
2905 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2906 		/*
2907 		 * Set a 5 second timer just in case we don't hear from the
2908 		 * card again.
2909 		 */
2910 		sc->watchdog_timer = 5;
2911 
2912 		return;
2913 	}
2914 	sc->need_mcsetup = 0;
2915 
2916 	/*
2917 	 * Initialize multicast setup descriptor.
2918 	 */
2919 	mcsp->cb_status = 0;
2920 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2921 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2922 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2923 	txp = &sc->fxp_desc.mcs_tx;
2924 	txp->tx_mbuf = NULL;
2925 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2926 	txp->tx_next = sc->fxp_desc.tx_list;
2927 	(void) fxp_mc_addrs(sc);
2928 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2929 	sc->tx_queued = 1;
2930 
2931 	/*
2932 	 * Wait until command unit is not active. This should never
2933 	 * be the case when nothing is queued, but make sure anyway.
2934 	 */
2935 	count = 100;
2936 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2937 	    FXP_SCB_CUS_ACTIVE && --count)
2938 		DELAY(10);
2939 	if (count == 0) {
2940 		device_printf(sc->dev, "command queue timeout\n");
2941 		return;
2942 	}
2943 
2944 	/*
2945 	 * Start the multicast setup command.
2946 	 */
2947 	fxp_scb_wait(sc);
2948 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2949 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2950 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2951 
2952 	sc->watchdog_timer = 2;
2953 	return;
2954 }
2955 
2956 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2957 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2958 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2959 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2960 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2961 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2962 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2963 
2964 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2965 
2966 struct ucode {
2967 	uint32_t	revision;
2968 	uint32_t	*ucode;
2969 	int		length;
2970 	u_short		int_delay_offset;
2971 	u_short		bundle_max_offset;
2972 } ucode_table[] = {
2973 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2974 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2975 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2976 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2977 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2978 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2979 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2980 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2981 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2982 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2983 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2984 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2985 	{ 0, NULL, 0, 0, 0 }
2986 };
2987 
2988 static void
2989 fxp_load_ucode(struct fxp_softc *sc)
2990 {
2991 	struct ucode *uc;
2992 	struct fxp_cb_ucode *cbp;
2993 	int i;
2994 
2995 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2996 		if (sc->revision == uc->revision)
2997 			break;
2998 	if (uc->ucode == NULL)
2999 		return;
3000 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3001 	cbp->cb_status = 0;
3002 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3003 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3004 	for (i = 0; i < uc->length; i++)
3005 		cbp->ucode[i] = htole32(uc->ucode[i]);
3006 	if (uc->int_delay_offset)
3007 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3008 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3009 	if (uc->bundle_max_offset)
3010 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3011 		    htole16(sc->tunable_bundle_max);
3012 	/*
3013 	 * Download the ucode to the chip.
3014 	 */
3015 	fxp_scb_wait(sc);
3016 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
3017 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3018 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3019 	/* ...and wait for it to complete. */
3020 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3021 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
3022 	device_printf(sc->dev,
3023 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3024 	    sc->tunable_int_delay,
3025 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3026 	sc->flags |= FXP_FLAG_UCODE;
3027 }
3028 
3029 static int
3030 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3031 {
3032 	int error, value;
3033 
3034 	value = *(int *)arg1;
3035 	error = sysctl_handle_int(oidp, &value, 0, req);
3036 	if (error || !req->newptr)
3037 		return (error);
3038 	if (value < low || value > high)
3039 		return (EINVAL);
3040 	*(int *)arg1 = value;
3041 	return (0);
3042 }
3043 
3044 /*
3045  * Interrupt delay is expressed in microseconds, a multiplier is used
3046  * to convert this to the appropriate clock ticks before using.
3047  */
3048 static int
3049 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3050 {
3051 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3052 }
3053 
3054 static int
3055 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3056 {
3057 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3058 }
3059