xref: /freebsd/sys/dev/fxp/if_fxp.c (revision d429ea332342fcb98d27a350d0c4944bf9aec3f9)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/endian.h>
40 #include <sys/mbuf.h>
41 		/* #include <sys/mutex.h> */
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sysctl.h>
46 
47 #include <net/if.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 
51 #include <net/bpf.h>
52 #include <sys/sockio.h>
53 #include <sys/bus.h>
54 #include <machine/bus.h>
55 #include <sys/rman.h>
56 #include <machine/resource.h>
57 
58 #include <net/ethernet.h>
59 #include <net/if_arp.h>
60 
61 #include <machine/clock.h>	/* for DELAY */
62 
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #ifdef FXP_IP_CSUM_WAR
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <machine/in_cksum.h>
71 #endif
72 
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75 
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 
79 #include <dev/fxp/if_fxpreg.h>
80 #include <dev/fxp/if_fxpvar.h>
81 #include <dev/fxp/rcvbundl.h>
82 
83 MODULE_DEPEND(fxp, pci, 1, 1, 1);
84 MODULE_DEPEND(fxp, ether, 1, 1, 1);
85 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86 #include "miibus_if.h"
87 
88 /*
89  * NOTE!  On the Alpha, we have an alignment constraint.  The
90  * card DMAs the packet immediately following the RFA.  However,
91  * the first thing in the packet is a 14-byte Ethernet header.
92  * This means that the packet is misaligned.  To compensate,
93  * we actually offset the RFA 2 bytes into the cluster.  This
94  * alignes the packet after the Ethernet header at a 32-bit
95  * boundary.  HOWEVER!  This means that the RFA is misaligned!
96  */
97 #define	RFA_ALIGNMENT_FUDGE	2
98 
99 /*
100  * Set initial transmit threshold at 64 (512 bytes). This is
101  * increased by 64 (512 bytes) at a time, to maximum of 192
102  * (1536 bytes), if an underrun occurs.
103  */
104 static int tx_threshold = 64;
105 
106 /*
107  * The configuration byte map has several undefined fields which
108  * must be one or must be zero.  Set up a template for these bits
109  * only, (assuming a 82557 chip) leaving the actual configuration
110  * to fxp_init.
111  *
112  * See struct fxp_cb_config for the bit definitions.
113  */
114 static u_char fxp_cb_config_template[] = {
115 	0x0, 0x0,		/* cb_status */
116 	0x0, 0x0,		/* cb_command */
117 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118 	0x0,	/*  0 */
119 	0x0,	/*  1 */
120 	0x0,	/*  2 */
121 	0x0,	/*  3 */
122 	0x0,	/*  4 */
123 	0x0,	/*  5 */
124 	0x32,	/*  6 */
125 	0x0,	/*  7 */
126 	0x0,	/*  8 */
127 	0x0,	/*  9 */
128 	0x6,	/* 10 */
129 	0x0,	/* 11 */
130 	0x0,	/* 12 */
131 	0x0,	/* 13 */
132 	0xf2,	/* 14 */
133 	0x48,	/* 15 */
134 	0x0,	/* 16 */
135 	0x40,	/* 17 */
136 	0xf0,	/* 18 */
137 	0x0,	/* 19 */
138 	0x3f,	/* 20 */
139 	0x5	/* 21 */
140 };
141 
142 struct fxp_ident {
143 	uint16_t	devid;
144 	int16_t		revid;		/* -1 matches anything */
145 	char 		*name;
146 };
147 
148 /*
149  * Claim various Intel PCI device identifiers for this driver.  The
150  * sub-vendor and sub-device field are extensively used to identify
151  * particular variants, but we don't currently differentiate between
152  * them.
153  */
154 static struct fxp_ident fxp_ident_table[] = {
155     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174     { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175     { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
176     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
177     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
178     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
179     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
180     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
181     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
182     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
183     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
184     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
185     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
186     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
187     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
188     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
189     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
190     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
191     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
192     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
193     { 0,	-1,	NULL },
194 };
195 
196 #ifdef FXP_IP_CSUM_WAR
197 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
198 #else
199 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
200 #endif
201 
202 static int		fxp_probe(device_t dev);
203 static int		fxp_attach(device_t dev);
204 static int		fxp_detach(device_t dev);
205 static int		fxp_shutdown(device_t dev);
206 static int		fxp_suspend(device_t dev);
207 static int		fxp_resume(device_t dev);
208 
209 static void		fxp_intr(void *xsc);
210 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
211 			    uint8_t statack, int count);
212 static void 		fxp_init(void *xsc);
213 static void 		fxp_init_body(struct fxp_softc *sc);
214 static void 		fxp_tick(void *xsc);
215 static void 		fxp_start(struct ifnet *ifp);
216 static void 		fxp_start_body(struct ifnet *ifp);
217 static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
218 static void		fxp_stop(struct fxp_softc *sc);
219 static void 		fxp_release(struct fxp_softc *sc);
220 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
221 			    caddr_t data);
222 static void 		fxp_watchdog(struct ifnet *ifp);
223 static int		fxp_add_rfabuf(struct fxp_softc *sc,
224     			    struct fxp_rx *rxp);
225 static int		fxp_mc_addrs(struct fxp_softc *sc);
226 static void		fxp_mc_setup(struct fxp_softc *sc);
227 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
228 			    int autosize);
229 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
230 			    uint16_t data);
231 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
232 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
233 			    int offset, int words);
234 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
235 			    int offset, int words);
236 static int		fxp_ifmedia_upd(struct ifnet *ifp);
237 static void		fxp_ifmedia_sts(struct ifnet *ifp,
238 			    struct ifmediareq *ifmr);
239 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
240 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
241 			    struct ifmediareq *ifmr);
242 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
243 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
244 			    int value);
245 static void		fxp_load_ucode(struct fxp_softc *sc);
246 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
247 			    int low, int high);
248 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
249 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
250 static void 		fxp_scb_wait(struct fxp_softc *sc);
251 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
252 static void		fxp_dma_wait(struct fxp_softc *sc,
253     			    volatile uint16_t *status, bus_dma_tag_t dmat,
254 			    bus_dmamap_t map);
255 
256 static device_method_t fxp_methods[] = {
257 	/* Device interface */
258 	DEVMETHOD(device_probe,		fxp_probe),
259 	DEVMETHOD(device_attach,	fxp_attach),
260 	DEVMETHOD(device_detach,	fxp_detach),
261 	DEVMETHOD(device_shutdown,	fxp_shutdown),
262 	DEVMETHOD(device_suspend,	fxp_suspend),
263 	DEVMETHOD(device_resume,	fxp_resume),
264 
265 	/* MII interface */
266 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
267 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
268 
269 	{ 0, 0 }
270 };
271 
272 static driver_t fxp_driver = {
273 	"fxp",
274 	fxp_methods,
275 	sizeof(struct fxp_softc),
276 };
277 
278 static devclass_t fxp_devclass;
279 
280 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
281 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
282 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
283 
284 /*
285  * Wait for the previous command to be accepted (but not necessarily
286  * completed).
287  */
288 static void
289 fxp_scb_wait(struct fxp_softc *sc)
290 {
291 	int i = 10000;
292 
293 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
294 		DELAY(2);
295 	if (i == 0)
296 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
297 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
298 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
299 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
300 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
301 }
302 
303 static void
304 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
305 {
306 
307 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
308 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
309 		fxp_scb_wait(sc);
310 	}
311 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
312 }
313 
314 static void
315 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
316     bus_dma_tag_t dmat, bus_dmamap_t map)
317 {
318 	int i = 10000;
319 
320 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
321 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
322 		DELAY(2);
323 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
324 	}
325 	if (i == 0)
326 		device_printf(sc->dev, "DMA timeout\n");
327 }
328 
329 /*
330  * Return identification string if this device is ours.
331  */
332 static int
333 fxp_probe(device_t dev)
334 {
335 	uint16_t devid;
336 	uint8_t revid;
337 	struct fxp_ident *ident;
338 
339 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
340 		devid = pci_get_device(dev);
341 		revid = pci_get_revid(dev);
342 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
343 			if (ident->devid == devid &&
344 			    (ident->revid == revid || ident->revid == -1)) {
345 				device_set_desc(dev, ident->name);
346 				return (BUS_PROBE_DEFAULT);
347 			}
348 		}
349 	}
350 	return (ENXIO);
351 }
352 
353 static void
354 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
355 {
356 	uint32_t *addr;
357 
358 	if (error)
359 		return;
360 
361 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
362 	addr = arg;
363 	*addr = segs->ds_addr;
364 }
365 
366 static int
367 fxp_attach(device_t dev)
368 {
369 	struct fxp_softc *sc;
370 	struct fxp_cb_tx *tcbp;
371 	struct fxp_tx *txp;
372 	struct fxp_rx *rxp;
373 	struct ifnet *ifp;
374 	uint32_t val;
375 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
376 	u_char eaddr[ETHER_ADDR_LEN];
377 	int i, rid, m1, m2, prefer_iomap;
378 	int error, s;
379 
380 	error = 0;
381 	sc = device_get_softc(dev);
382 	sc->dev = dev;
383 	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
384 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
385 	    MTX_DEF);
386 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
387 	    fxp_serial_ifmedia_sts);
388 
389 	s = splimp();
390 
391 	ifp = sc->ifp = if_alloc(IFT_ETHER);
392 	if (ifp == NULL) {
393 		device_printf(dev, "can not if_alloc()\n");
394 		error = ENOSPC;
395 		goto fail;
396 	}
397 
398 	/*
399 	 * Enable bus mastering.
400 	 */
401 	pci_enable_busmaster(dev);
402 	val = pci_read_config(dev, PCIR_COMMAND, 2);
403 
404 	/*
405 	 * Figure out which we should try first - memory mapping or i/o mapping?
406 	 * We default to memory mapping. Then we accept an override from the
407 	 * command line. Then we check to see which one is enabled.
408 	 */
409 	m1 = PCIM_CMD_MEMEN;
410 	m2 = PCIM_CMD_PORTEN;
411 	prefer_iomap = 0;
412 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
413 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
414 		m1 = PCIM_CMD_PORTEN;
415 		m2 = PCIM_CMD_MEMEN;
416 	}
417 
418 	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
419 	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
420 	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
421 	if (sc->mem == NULL) {
422 		sc->rtp =
423 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
424 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
425 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
426                                             RF_ACTIVE);
427 	}
428 
429 	if (!sc->mem) {
430 		error = ENXIO;
431 		goto fail;
432         }
433 	if (bootverbose) {
434 		device_printf(dev, "using %s space register mapping\n",
435 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
436 	}
437 
438 	sc->sc_st = rman_get_bustag(sc->mem);
439 	sc->sc_sh = rman_get_bushandle(sc->mem);
440 
441 	/*
442 	 * Allocate our interrupt.
443 	 */
444 	rid = 0;
445 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
446 				 RF_SHAREABLE | RF_ACTIVE);
447 	if (sc->irq == NULL) {
448 		device_printf(dev, "could not map interrupt\n");
449 		error = ENXIO;
450 		goto fail;
451 	}
452 
453 	/*
454 	 * Reset to a stable state.
455 	 */
456 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
457 	DELAY(10);
458 
459 	/*
460 	 * Find out how large of an SEEPROM we have.
461 	 */
462 	fxp_autosize_eeprom(sc);
463 
464 	/*
465 	 * Find out the chip revision; lump all 82557 revs together.
466 	 */
467 	fxp_read_eeprom(sc, &data, 5, 1);
468 	if ((data >> 8) == 1)
469 		sc->revision = FXP_REV_82557;
470 	else
471 		sc->revision = pci_get_revid(dev);
472 
473 	/*
474 	 * Determine whether we must use the 503 serial interface.
475 	 */
476 	fxp_read_eeprom(sc, &data, 6, 1);
477 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
478 	    && (data & FXP_PHY_SERIAL_ONLY))
479 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
480 
481 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
482 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
483 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
484 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
485 	    "FXP driver receive interrupt microcode bundling delay");
486 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
487 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
488 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
489 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
490 	    "FXP driver receive interrupt microcode bundle size limit");
491 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
492 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
493 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
494 	    "FXP RNR events");
495 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
496 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
497 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
498 	    "FXP flow control disabled");
499 
500 	/*
501 	 * Pull in device tunables.
502 	 */
503 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
504 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
505 	sc->tunable_noflow = 1;
506 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
507 	    "int_delay", &sc->tunable_int_delay);
508 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
509 	    "bundle_max", &sc->tunable_bundle_max);
510 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
511 	    "noflow", &sc->tunable_noflow);
512 	sc->rnr = 0;
513 
514 	/*
515 	 * Enable workarounds for certain chip revision deficiencies.
516 	 *
517 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
518 	 * some systems based a normal 82559 design, have a defect where
519 	 * the chip can cause a PCI protocol violation if it receives
520 	 * a CU_RESUME command when it is entering the IDLE state.  The
521 	 * workaround is to disable Dynamic Standby Mode, so the chip never
522 	 * deasserts CLKRUN#, and always remains in an active state.
523 	 *
524 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
525 	 */
526 	i = pci_get_device(dev);
527 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
528 	    sc->revision >= FXP_REV_82559_A0) {
529 		fxp_read_eeprom(sc, &data, 10, 1);
530 		if (data & 0x02) {			/* STB enable */
531 			uint16_t cksum;
532 			int i;
533 
534 			device_printf(dev,
535 			    "Disabling dynamic standby mode in EEPROM\n");
536 			data &= ~0x02;
537 			fxp_write_eeprom(sc, &data, 10, 1);
538 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
539 			cksum = 0;
540 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
541 				fxp_read_eeprom(sc, &data, i, 1);
542 				cksum += data;
543 			}
544 			i = (1 << sc->eeprom_size) - 1;
545 			cksum = 0xBABA - cksum;
546 			fxp_read_eeprom(sc, &data, i, 1);
547 			fxp_write_eeprom(sc, &cksum, i, 1);
548 			device_printf(dev,
549 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
550 			    i, data, cksum);
551 #if 1
552 			/*
553 			 * If the user elects to continue, try the software
554 			 * workaround, as it is better than nothing.
555 			 */
556 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
557 #endif
558 		}
559 	}
560 
561 	/*
562 	 * If we are not a 82557 chip, we can enable extended features.
563 	 */
564 	if (sc->revision != FXP_REV_82557) {
565 		/*
566 		 * If MWI is enabled in the PCI configuration, and there
567 		 * is a valid cacheline size (8 or 16 dwords), then tell
568 		 * the board to turn on MWI.
569 		 */
570 		if (val & PCIM_CMD_MWRICEN &&
571 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
572 			sc->flags |= FXP_FLAG_MWI_ENABLE;
573 
574 		/* turn on the extended TxCB feature */
575 		sc->flags |= FXP_FLAG_EXT_TXCB;
576 
577 		/* enable reception of long frames for VLAN */
578 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
579 	} else {
580 		/* a hack to get long VLAN frames on a 82557 */
581 		sc->flags |= FXP_FLAG_SAVE_BAD;
582 	}
583 
584 	/*
585 	 * Enable use of extended RFDs and TCBs for 82550
586 	 * and later chips. Note: we need extended TXCB support
587 	 * too, but that's already enabled by the code above.
588 	 * Be careful to do this only on the right devices.
589 	 */
590 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
591 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
592 	    || sc->revision == FXP_REV_82551_10) {
593 		sc->rfa_size = sizeof (struct fxp_rfa);
594 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
595 		sc->flags |= FXP_FLAG_EXT_RFA;
596 	} else {
597 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
598 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
599 	}
600 
601 	/*
602 	 * Allocate DMA tags and DMA safe memory.
603 	 */
604 	sc->maxtxseg = FXP_NTXSEG;
605 	if (sc->flags & FXP_FLAG_EXT_RFA)
606 		sc->maxtxseg--;
607 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
608 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
609 	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
610 	    &sc->fxp_mtag);
611 	if (error) {
612 		device_printf(dev, "could not allocate dma tag\n");
613 		goto fail;
614 	}
615 
616 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
617 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
618 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
619 	    &sc->fxp_stag);
620 	if (error) {
621 		device_printf(dev, "could not allocate dma tag\n");
622 		goto fail;
623 	}
624 
625 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
626 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
627 	if (error)
628 		goto fail;
629 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
630 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
631 	if (error) {
632 		device_printf(dev, "could not map the stats buffer\n");
633 		goto fail;
634 	}
635 
636 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
637 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
638 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
639 	if (error) {
640 		device_printf(dev, "could not allocate dma tag\n");
641 		goto fail;
642 	}
643 
644 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
645 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
646 	if (error)
647 		goto fail;
648 
649 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
650 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
651 	    &sc->fxp_desc.cbl_addr, 0);
652 	if (error) {
653 		device_printf(dev, "could not map DMA memory\n");
654 		goto fail;
655 	}
656 
657 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
658 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
659 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
660 	    &sc->mcs_tag);
661 	if (error) {
662 		device_printf(dev, "could not allocate dma tag\n");
663 		goto fail;
664 	}
665 
666 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
667 	    BUS_DMA_NOWAIT, &sc->mcs_map);
668 	if (error)
669 		goto fail;
670 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
671 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
672 	if (error) {
673 		device_printf(dev, "can't map the multicast setup command\n");
674 		goto fail;
675 	}
676 
677 	/*
678 	 * Pre-allocate the TX DMA maps and setup the pointers to
679 	 * the TX command blocks.
680 	 */
681 	txp = sc->fxp_desc.tx_list;
682 	tcbp = sc->fxp_desc.cbl_list;
683 	for (i = 0; i < FXP_NTXCB; i++) {
684 		txp[i].tx_cb = tcbp + i;
685 		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
686 		if (error) {
687 			device_printf(dev, "can't create DMA map for TX\n");
688 			goto fail;
689 		}
690 	}
691 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
692 	if (error) {
693 		device_printf(dev, "can't create spare DMA map\n");
694 		goto fail;
695 	}
696 
697 	/*
698 	 * Pre-allocate our receive buffers.
699 	 */
700 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
701 	for (i = 0; i < FXP_NRFABUFS; i++) {
702 		rxp = &sc->fxp_desc.rx_list[i];
703 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
704 		if (error) {
705 			device_printf(dev, "can't create DMA map for RX\n");
706 			goto fail;
707 		}
708 		if (fxp_add_rfabuf(sc, rxp) != 0) {
709 			error = ENOMEM;
710 			goto fail;
711 		}
712 	}
713 
714 	/*
715 	 * Read MAC address.
716 	 */
717 	fxp_read_eeprom(sc, myea, 0, 3);
718 	eaddr[0] = myea[0] & 0xff;
719 	eaddr[1] = myea[0] >> 8;
720 	eaddr[2] = myea[1] & 0xff;
721 	eaddr[3] = myea[1] >> 8;
722 	eaddr[4] = myea[2] & 0xff;
723 	eaddr[5] = myea[2] >> 8;
724 	if (bootverbose) {
725 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
726 		    pci_get_vendor(dev), pci_get_device(dev),
727 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
728 		    pci_get_revid(dev));
729 		fxp_read_eeprom(sc, &data, 10, 1);
730 		device_printf(dev, "Dynamic Standby mode is %s\n",
731 		    data & 0x02 ? "enabled" : "disabled");
732 	}
733 
734 	/*
735 	 * If this is only a 10Mbps device, then there is no MII, and
736 	 * the PHY will use a serial interface instead.
737 	 *
738 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
739 	 * doesn't have a programming interface of any sort.  The
740 	 * media is sensed automatically based on how the link partner
741 	 * is configured.  This is, in essence, manual configuration.
742 	 */
743 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
744 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
745 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
746 	} else {
747 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
748 		    fxp_ifmedia_sts)) {
749 	                device_printf(dev, "MII without any PHY!\n");
750 			error = ENXIO;
751 			goto fail;
752 		}
753 	}
754 
755 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
756 	ifp->if_baudrate = 100000000;
757 	ifp->if_init = fxp_init;
758 	ifp->if_softc = sc;
759 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
760 	ifp->if_ioctl = fxp_ioctl;
761 	ifp->if_start = fxp_start;
762 	ifp->if_watchdog = fxp_watchdog;
763 
764 	ifp->if_capabilities = ifp->if_capenable = 0;
765 
766 	/* Enable checksum offload for 82550 or better chips */
767 	if (sc->flags & FXP_FLAG_EXT_RFA) {
768 		ifp->if_hwassist = FXP_CSUM_FEATURES;
769 		ifp->if_capabilities |= IFCAP_HWCSUM;
770 		ifp->if_capenable |= IFCAP_HWCSUM;
771 	}
772 
773 #ifdef DEVICE_POLLING
774 	/* Inform the world we support polling. */
775 	ifp->if_capabilities |= IFCAP_POLLING;
776 	ifp->if_capenable |= IFCAP_POLLING;
777 #endif
778 
779 	/*
780 	 * Attach the interface.
781 	 */
782 	ether_ifattach(ifp, eaddr);
783 
784 	/*
785 	 * Tell the upper layer(s) we support long frames.
786 	 * Must appear after the call to ether_ifattach() because
787 	 * ether_ifattach() sets ifi_hdrlen to the default value.
788 	 */
789 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
790 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
791 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
792 
793 	/*
794 	 * Let the system queue as many packets as we have available
795 	 * TX descriptors.
796 	 */
797 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
798 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
799 	IFQ_SET_READY(&ifp->if_snd);
800 
801 	/*
802 	 * Hook our interrupt after all initialization is complete.
803 	 */
804 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
805 			       fxp_intr, sc, &sc->ih);
806 	if (error) {
807 		device_printf(dev, "could not setup irq\n");
808 		ether_ifdetach(sc->ifp);
809 		goto fail;
810 	}
811 
812 fail:
813 	splx(s);
814 	if (error)
815 		fxp_release(sc);
816 	return (error);
817 }
818 
819 /*
820  * Release all resources.  The softc lock should not be held and the
821  * interrupt should already be torn down.
822  */
823 static void
824 fxp_release(struct fxp_softc *sc)
825 {
826 	struct fxp_rx *rxp;
827 	struct fxp_tx *txp;
828 	int i;
829 
830 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
831 	KASSERT(sc->ih == NULL,
832 	    ("fxp_release() called with intr handle still active"));
833 	if (sc->miibus)
834 		device_delete_child(sc->dev, sc->miibus);
835 	bus_generic_detach(sc->dev);
836 	ifmedia_removeall(&sc->sc_media);
837 	if (sc->fxp_desc.cbl_list) {
838 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
839 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
840 		    sc->cbl_map);
841 	}
842 	if (sc->fxp_stats) {
843 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
844 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
845 	}
846 	if (sc->mcsp) {
847 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
848 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
849 	}
850 	if (sc->irq)
851 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
852 	if (sc->mem)
853 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
854 	if (sc->fxp_mtag) {
855 		for (i = 0; i < FXP_NRFABUFS; i++) {
856 			rxp = &sc->fxp_desc.rx_list[i];
857 			if (rxp->rx_mbuf != NULL) {
858 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
859 				    BUS_DMASYNC_POSTREAD);
860 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
861 				m_freem(rxp->rx_mbuf);
862 			}
863 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
864 		}
865 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
866 		for (i = 0; i < FXP_NTXCB; i++) {
867 			txp = &sc->fxp_desc.tx_list[i];
868 			if (txp->tx_mbuf != NULL) {
869 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
870 				    BUS_DMASYNC_POSTWRITE);
871 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
872 				m_freem(txp->tx_mbuf);
873 			}
874 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
875 		}
876 		bus_dma_tag_destroy(sc->fxp_mtag);
877 	}
878 	if (sc->fxp_stag)
879 		bus_dma_tag_destroy(sc->fxp_stag);
880 	if (sc->cbl_tag)
881 		bus_dma_tag_destroy(sc->cbl_tag);
882 	if (sc->mcs_tag)
883 		bus_dma_tag_destroy(sc->mcs_tag);
884 	if (sc->ifp)
885 		if_free(sc->ifp);
886 
887 	mtx_destroy(&sc->sc_mtx);
888 }
889 
890 /*
891  * Detach interface.
892  */
893 static int
894 fxp_detach(device_t dev)
895 {
896 	struct fxp_softc *sc = device_get_softc(dev);
897 	int s;
898 
899 	FXP_LOCK(sc);
900 	s = splimp();
901 
902 	sc->suspended = 1;	/* Do same thing as we do for suspend */
903 	/*
904 	 * Close down routes etc.
905 	 */
906 	ether_ifdetach(sc->ifp);
907 
908 	/*
909 	 * Stop DMA and drop transmit queue, but disable interrupts first.
910 	 */
911 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
912 	fxp_stop(sc);
913 	FXP_UNLOCK(sc);
914 
915 	/*
916 	 * Unhook interrupt before dropping lock. This is to prevent
917 	 * races with fxp_intr().
918 	 */
919 	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
920 	sc->ih = NULL;
921 
922 	splx(s);
923 
924 	/* Release our allocated resources. */
925 	fxp_release(sc);
926 	return (0);
927 }
928 
929 /*
930  * Device shutdown routine. Called at system shutdown after sync. The
931  * main purpose of this routine is to shut off receiver DMA so that
932  * kernel memory doesn't get clobbered during warmboot.
933  */
934 static int
935 fxp_shutdown(device_t dev)
936 {
937 	/*
938 	 * Make sure that DMA is disabled prior to reboot. Not doing
939 	 * do could allow DMA to corrupt kernel memory during the
940 	 * reboot before the driver initializes.
941 	 */
942 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
943 	return (0);
944 }
945 
946 /*
947  * Device suspend routine.  Stop the interface and save some PCI
948  * settings in case the BIOS doesn't restore them properly on
949  * resume.
950  */
951 static int
952 fxp_suspend(device_t dev)
953 {
954 	struct fxp_softc *sc = device_get_softc(dev);
955 	int s;
956 
957 	FXP_LOCK(sc);
958 	s = splimp();
959 
960 	fxp_stop(sc);
961 
962 	sc->suspended = 1;
963 
964 	FXP_UNLOCK(sc);
965 	splx(s);
966 	return (0);
967 }
968 
969 /*
970  * Device resume routine. re-enable busmastering, and restart the interface if
971  * appropriate.
972  */
973 static int
974 fxp_resume(device_t dev)
975 {
976 	struct fxp_softc *sc = device_get_softc(dev);
977 	struct ifnet *ifp = sc->ifp;
978 	uint16_t pci_command;
979 	int s;
980 
981 	FXP_LOCK(sc);
982 	s = splimp();
983 
984 	/* reenable busmastering */
985 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
986 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
987 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
988 
989 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
990 	DELAY(10);
991 
992 	/* reinitialize interface if necessary */
993 	if (ifp->if_flags & IFF_UP)
994 		fxp_init_body(sc);
995 
996 	sc->suspended = 0;
997 
998 	FXP_UNLOCK(sc);
999 	splx(s);
1000 	return (0);
1001 }
1002 
1003 static void
1004 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1005 {
1006 	uint16_t reg;
1007 	int x;
1008 
1009 	/*
1010 	 * Shift in data.
1011 	 */
1012 	for (x = 1 << (length - 1); x; x >>= 1) {
1013 		if (data & x)
1014 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1015 		else
1016 			reg = FXP_EEPROM_EECS;
1017 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1018 		DELAY(1);
1019 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1020 		DELAY(1);
1021 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1022 		DELAY(1);
1023 	}
1024 }
1025 
1026 /*
1027  * Read from the serial EEPROM. Basically, you manually shift in
1028  * the read opcode (one bit at a time) and then shift in the address,
1029  * and then you shift out the data (all of this one bit at a time).
1030  * The word size is 16 bits, so you have to provide the address for
1031  * every 16 bits of data.
1032  */
1033 static uint16_t
1034 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1035 {
1036 	uint16_t reg, data;
1037 	int x;
1038 
1039 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1040 	/*
1041 	 * Shift in read opcode.
1042 	 */
1043 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1044 	/*
1045 	 * Shift in address.
1046 	 */
1047 	data = 0;
1048 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1049 		if (offset & x)
1050 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1051 		else
1052 			reg = FXP_EEPROM_EECS;
1053 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1054 		DELAY(1);
1055 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1056 		DELAY(1);
1057 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1058 		DELAY(1);
1059 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1060 		data++;
1061 		if (autosize && reg == 0) {
1062 			sc->eeprom_size = data;
1063 			break;
1064 		}
1065 	}
1066 	/*
1067 	 * Shift out data.
1068 	 */
1069 	data = 0;
1070 	reg = FXP_EEPROM_EECS;
1071 	for (x = 1 << 15; x; x >>= 1) {
1072 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1073 		DELAY(1);
1074 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1075 			data |= x;
1076 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1077 		DELAY(1);
1078 	}
1079 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1080 	DELAY(1);
1081 
1082 	return (data);
1083 }
1084 
1085 static void
1086 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1087 {
1088 	int i;
1089 
1090 	/*
1091 	 * Erase/write enable.
1092 	 */
1093 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1094 	fxp_eeprom_shiftin(sc, 0x4, 3);
1095 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1096 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1097 	DELAY(1);
1098 	/*
1099 	 * Shift in write opcode, address, data.
1100 	 */
1101 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1102 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1103 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1104 	fxp_eeprom_shiftin(sc, data, 16);
1105 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1106 	DELAY(1);
1107 	/*
1108 	 * Wait for EEPROM to finish up.
1109 	 */
1110 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1111 	DELAY(1);
1112 	for (i = 0; i < 1000; i++) {
1113 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1114 			break;
1115 		DELAY(50);
1116 	}
1117 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1118 	DELAY(1);
1119 	/*
1120 	 * Erase/write disable.
1121 	 */
1122 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1123 	fxp_eeprom_shiftin(sc, 0x4, 3);
1124 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1125 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1126 	DELAY(1);
1127 }
1128 
1129 /*
1130  * From NetBSD:
1131  *
1132  * Figure out EEPROM size.
1133  *
1134  * 559's can have either 64-word or 256-word EEPROMs, the 558
1135  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1136  * talks about the existance of 16 to 256 word EEPROMs.
1137  *
1138  * The only known sizes are 64 and 256, where the 256 version is used
1139  * by CardBus cards to store CIS information.
1140  *
1141  * The address is shifted in msb-to-lsb, and after the last
1142  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1143  * after which follows the actual data. We try to detect this zero, by
1144  * probing the data-out bit in the EEPROM control register just after
1145  * having shifted in a bit. If the bit is zero, we assume we've
1146  * shifted enough address bits. The data-out should be tri-state,
1147  * before this, which should translate to a logical one.
1148  */
1149 static void
1150 fxp_autosize_eeprom(struct fxp_softc *sc)
1151 {
1152 
1153 	/* guess maximum size of 256 words */
1154 	sc->eeprom_size = 8;
1155 
1156 	/* autosize */
1157 	(void) fxp_eeprom_getword(sc, 0, 1);
1158 }
1159 
1160 static void
1161 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1162 {
1163 	int i;
1164 
1165 	for (i = 0; i < words; i++)
1166 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1167 }
1168 
1169 static void
1170 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1171 {
1172 	int i;
1173 
1174 	for (i = 0; i < words; i++)
1175 		fxp_eeprom_putword(sc, offset + i, data[i]);
1176 }
1177 
1178 /*
1179  * Grab the softc lock and call the real fxp_start_body() routine
1180  */
1181 static void
1182 fxp_start(struct ifnet *ifp)
1183 {
1184 	struct fxp_softc *sc = ifp->if_softc;
1185 
1186 	FXP_LOCK(sc);
1187 	fxp_start_body(ifp);
1188 	FXP_UNLOCK(sc);
1189 }
1190 
1191 /*
1192  * Start packet transmission on the interface.
1193  * This routine must be called with the softc lock held, and is an
1194  * internal entry point only.
1195  */
1196 static void
1197 fxp_start_body(struct ifnet *ifp)
1198 {
1199 	struct fxp_softc *sc = ifp->if_softc;
1200 	struct mbuf *mb_head;
1201 	int error, txqueued;
1202 
1203 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1204 
1205 	/*
1206 	 * See if we need to suspend xmit until the multicast filter
1207 	 * has been reprogrammed (which can only be done at the head
1208 	 * of the command chain).
1209 	 */
1210 	if (sc->need_mcsetup)
1211 		return;
1212 
1213 	/*
1214 	 * We're finished if there is nothing more to add to the list or if
1215 	 * we're all filled up with buffers to transmit.
1216 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1217 	 *       a NOP command when needed.
1218 	 */
1219 	txqueued = 0;
1220 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1221 	    sc->tx_queued < FXP_NTXCB - 1) {
1222 
1223 		/*
1224 		 * Grab a packet to transmit.
1225 		 */
1226 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1227 		if (mb_head == NULL)
1228 			break;
1229 
1230 		error = fxp_encap(sc, mb_head);
1231 		if (error)
1232 			break;
1233 		txqueued = 1;
1234 	}
1235 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1236 
1237 	/*
1238 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1239 	 * going again if suspended.
1240 	 */
1241 	if (txqueued) {
1242 		fxp_scb_wait(sc);
1243 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1244 	}
1245 }
1246 
1247 static int
1248 fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1249 {
1250 	struct ifnet *ifp;
1251 	struct mbuf *m;
1252 	struct fxp_tx *txp;
1253 	struct fxp_cb_tx *cbp;
1254 	bus_dma_segment_t segs[FXP_NTXSEG];
1255 	int chainlen, error, i, nseg;
1256 
1257 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1258 	ifp = sc->ifp;
1259 
1260 	/*
1261 	 * Get pointer to next available tx desc.
1262 	 */
1263 	txp = sc->fxp_desc.tx_last->tx_next;
1264 
1265 	/*
1266 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1267 	 * Ethernet Controller Family Open Source Software
1268 	 * Developer Manual says:
1269 	 *   Using software parsing is only allowed with legal
1270 	 *   TCP/IP or UDP/IP packets.
1271 	 *   ...
1272 	 *   For all other datagrams, hardware parsing must
1273 	 *   be used.
1274 	 * Software parsing appears to truncate ICMP and
1275 	 * fragmented UDP packets that contain one to three
1276 	 * bytes in the second (and final) mbuf of the packet.
1277 	 */
1278 	if (sc->flags & FXP_FLAG_EXT_RFA)
1279 		txp->tx_cb->ipcb_ip_activation_high =
1280 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1281 
1282 	/*
1283 	 * Deal with TCP/IP checksum offload. Note that
1284 	 * in order for TCP checksum offload to work,
1285 	 * the pseudo header checksum must have already
1286 	 * been computed and stored in the checksum field
1287 	 * in the TCP header. The stack should have
1288 	 * already done this for us.
1289 	 */
1290 	if (m_head->m_pkthdr.csum_flags) {
1291 		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1292 			txp->tx_cb->ipcb_ip_schedule =
1293 			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1294 			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1295 				txp->tx_cb->ipcb_ip_schedule |=
1296 				    FXP_IPCB_TCP_PACKET;
1297 		}
1298 
1299 #ifdef FXP_IP_CSUM_WAR
1300 		/*
1301 		 * XXX The 82550 chip appears to have trouble
1302 		 * dealing with IP header checksums in very small
1303 		 * datagrams, namely fragments from 1 to 3 bytes
1304 		 * in size. For example, say you want to transmit
1305 		 * a UDP packet of 1473 bytes. The packet will be
1306 		 * fragmented over two IP datagrams, the latter
1307 		 * containing only one byte of data. The 82550 will
1308 		 * botch the header checksum on the 1-byte fragment.
1309 		 * As long as the datagram contains 4 or more bytes
1310 		 * of data, you're ok.
1311 		 *
1312                  * The following code attempts to work around this
1313 		 * problem: if the datagram is less than 38 bytes
1314 		 * in size (14 bytes ether header, 20 bytes IP header,
1315 		 * plus 4 bytes of data), we punt and compute the IP
1316 		 * header checksum by hand. This workaround doesn't
1317 		 * work very well, however, since it can be fooled
1318 		 * by things like VLAN tags and IP options that make
1319 		 * the header sizes/offsets vary.
1320 		 */
1321 
1322 		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1323 			if (m_head->m_pkthdr.len < 38) {
1324 				struct ip *ip;
1325 				m_head->m_data += ETHER_HDR_LEN;
1326 				ip = mtod(mb_head, struct ip *);
1327 				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1328 				m_head->m_data -= ETHER_HDR_LEN;
1329 			} else {
1330 				txp->tx_cb->ipcb_ip_activation_high =
1331 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1332 				txp->tx_cb->ipcb_ip_schedule |=
1333 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1334 			}
1335 		}
1336 #endif
1337 	}
1338 
1339 	chainlen = 0;
1340 	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1341 		chainlen++;
1342 	if (chainlen > sc->maxtxseg) {
1343 		struct mbuf *mn;
1344 
1345 		/*
1346 		 * We ran out of segments. We have to recopy this
1347 		 * mbuf chain first. Bail out if we can't get the
1348 		 * new buffers.
1349 		 */
1350 		mn = m_defrag(m_head, M_DONTWAIT);
1351 		if (mn == NULL) {
1352 			m_freem(m_head);
1353 			return (-1);
1354 		} else {
1355 			m_head = mn;
1356 		}
1357 	}
1358 
1359 	/*
1360 	 * Go through each of the mbufs in the chain and initialize
1361 	 * the transmit buffer descriptors with the physical address
1362 	 * and size of the mbuf.
1363 	 */
1364 	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1365 	    m_head, segs, &nseg, 0);
1366 	if (error) {
1367 		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1368 		m_freem(m_head);
1369 		return (-1);
1370 	}
1371 
1372 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1373 
1374 	cbp = txp->tx_cb;
1375 	for (i = 0; i < nseg; i++) {
1376 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1377 		/*
1378 		 * If this is an 82550/82551, then we're using extended
1379 		 * TxCBs _and_ we're using checksum offload. This means
1380 		 * that the TxCB is really an IPCB. One major difference
1381 		 * between the two is that with plain extended TxCBs,
1382 		 * the bottom half of the TxCB contains two entries from
1383 		 * the TBD array, whereas IPCBs contain just one entry:
1384 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1385 		 * checksum offload control bits. So to make things work
1386 		 * right, we have to start filling in the TBD array
1387 		 * starting from a different place depending on whether
1388 		 * the chip is an 82550/82551 or not.
1389 		 */
1390 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1391 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1392 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1393 		} else {
1394 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1395 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1396 		}
1397 	}
1398 	cbp->tbd_number = nseg;
1399 
1400 	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1401 	txp->tx_mbuf = m_head;
1402 	txp->tx_cb->cb_status = 0;
1403 	txp->tx_cb->byte_count = 0;
1404 	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1405 		txp->tx_cb->cb_command =
1406 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1407 		    FXP_CB_COMMAND_S);
1408 	} else {
1409 		txp->tx_cb->cb_command =
1410 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1411 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1412 		/*
1413 		 * Set a 5 second timer just in case we don't hear
1414 		 * from the card again.
1415 		 */
1416 		ifp->if_timer = 5;
1417 	}
1418 	txp->tx_cb->tx_threshold = tx_threshold;
1419 
1420 	/*
1421 	 * Advance the end of list forward.
1422 	 */
1423 
1424 #ifdef __alpha__
1425 	/*
1426 	 * On platforms which can't access memory in 16-bit
1427 	 * granularities, we must prevent the card from DMA'ing
1428 	 * up the status while we update the command field.
1429 	 * This could cause us to overwrite the completion status.
1430 	 * XXX This is probably bogus and we're _not_ looking
1431 	 * for atomicity here.
1432 	 */
1433 	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1434 	    htole16(FXP_CB_COMMAND_S));
1435 #else
1436 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1437 #endif /*__alpha__*/
1438 	sc->fxp_desc.tx_last = txp;
1439 
1440 	/*
1441 	 * Advance the beginning of the list forward if there are
1442 	 * no other packets queued (when nothing is queued, tx_first
1443 	 * sits on the last TxCB that was sent out).
1444 	 */
1445 	if (sc->tx_queued == 0)
1446 		sc->fxp_desc.tx_first = txp;
1447 
1448 	sc->tx_queued++;
1449 
1450 	/*
1451 	 * Pass packet to bpf if there is a listener.
1452 	 */
1453 	BPF_MTAP(ifp, m_head);
1454 	return (0);
1455 }
1456 
1457 #ifdef DEVICE_POLLING
1458 static poll_handler_t fxp_poll;
1459 
1460 static void
1461 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1462 {
1463 	struct fxp_softc *sc = ifp->if_softc;
1464 	uint8_t statack;
1465 
1466 	FXP_LOCK(sc);
1467 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1468 		ether_poll_deregister(ifp);
1469 		cmd = POLL_DEREGISTER;
1470 	}
1471 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1472 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1473 		FXP_UNLOCK(sc);
1474 		return;
1475 	}
1476 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1477 	    FXP_SCB_STATACK_FR;
1478 	if (cmd == POLL_AND_CHECK_STATUS) {
1479 		uint8_t tmp;
1480 
1481 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1482 		if (tmp == 0xff || tmp == 0) {
1483 			FXP_UNLOCK(sc);
1484 			return; /* nothing to do */
1485 		}
1486 		tmp &= ~statack;
1487 		/* ack what we can */
1488 		if (tmp != 0)
1489 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1490 		statack |= tmp;
1491 	}
1492 	fxp_intr_body(sc, ifp, statack, count);
1493 	FXP_UNLOCK(sc);
1494 }
1495 #endif /* DEVICE_POLLING */
1496 
1497 /*
1498  * Process interface interrupts.
1499  */
1500 static void
1501 fxp_intr(void *xsc)
1502 {
1503 	struct fxp_softc *sc = xsc;
1504 	struct ifnet *ifp = sc->ifp;
1505 	uint8_t statack;
1506 
1507 	FXP_LOCK(sc);
1508 	if (sc->suspended) {
1509 		FXP_UNLOCK(sc);
1510 		return;
1511 	}
1512 
1513 #ifdef DEVICE_POLLING
1514 	if (ifp->if_flags & IFF_POLLING) {
1515 		FXP_UNLOCK(sc);
1516 		return;
1517 	}
1518 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1519 	    ether_poll_register(fxp_poll, ifp)) {
1520 		/* disable interrupts */
1521 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1522 		FXP_UNLOCK(sc);
1523 		fxp_poll(ifp, 0, 1);
1524 		return;
1525 	}
1526 #endif
1527 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1528 		/*
1529 		 * It should not be possible to have all bits set; the
1530 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1531 		 * all bits are set, this may indicate that the card has
1532 		 * been physically ejected, so ignore it.
1533 		 */
1534 		if (statack == 0xff) {
1535 			FXP_UNLOCK(sc);
1536 			return;
1537 		}
1538 
1539 		/*
1540 		 * First ACK all the interrupts in this pass.
1541 		 */
1542 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1543 		fxp_intr_body(sc, ifp, statack, -1);
1544 	}
1545 	FXP_UNLOCK(sc);
1546 }
1547 
1548 static void
1549 fxp_txeof(struct fxp_softc *sc)
1550 {
1551 	struct fxp_tx *txp;
1552 
1553 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1554 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1555 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1556 	    txp = txp->tx_next) {
1557 		if (txp->tx_mbuf != NULL) {
1558 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1559 			    BUS_DMASYNC_POSTWRITE);
1560 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1561 			m_freem(txp->tx_mbuf);
1562 			txp->tx_mbuf = NULL;
1563 			/* clear this to reset csum offload bits */
1564 			txp->tx_cb->tbd[0].tb_addr = 0;
1565 		}
1566 		sc->tx_queued--;
1567 	}
1568 	sc->fxp_desc.tx_first = txp;
1569 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1570 }
1571 
1572 static void
1573 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1574     int count)
1575 {
1576 	struct mbuf *m;
1577 	struct fxp_rx *rxp;
1578 	struct fxp_rfa *rfa;
1579 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1580 	int fxp_rc = 0;
1581 
1582 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1583 	if (rnr)
1584 		sc->rnr++;
1585 #ifdef DEVICE_POLLING
1586 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1587 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1588 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1589 		rnr = 1;
1590 	}
1591 #endif
1592 
1593 	/*
1594 	 * Free any finished transmit mbuf chains.
1595 	 *
1596 	 * Handle the CNA event likt a CXTNO event. It used to
1597 	 * be that this event (control unit not ready) was not
1598 	 * encountered, but it is now with the SMPng modifications.
1599 	 * The exact sequence of events that occur when the interface
1600 	 * is brought up are different now, and if this event
1601 	 * goes unhandled, the configuration/rxfilter setup sequence
1602 	 * can stall for several seconds. The result is that no
1603 	 * packets go out onto the wire for about 5 to 10 seconds
1604 	 * after the interface is ifconfig'ed for the first time.
1605 	 */
1606 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1607 		fxp_txeof(sc);
1608 
1609 		ifp->if_timer = 0;
1610 		if (sc->tx_queued == 0) {
1611 			if (sc->need_mcsetup)
1612 				fxp_mc_setup(sc);
1613 		}
1614 		/*
1615 		 * Try to start more packets transmitting.
1616 		 */
1617 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1618 			fxp_start_body(ifp);
1619 	}
1620 
1621 	/*
1622 	 * Just return if nothing happened on the receive side.
1623 	 */
1624 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1625 		return;
1626 
1627 	/*
1628 	 * Process receiver interrupts. If a no-resource (RNR)
1629 	 * condition exists, get whatever packets we can and
1630 	 * re-start the receiver.
1631 	 *
1632 	 * When using polling, we do not process the list to completion,
1633 	 * so when we get an RNR interrupt we must defer the restart
1634 	 * until we hit the last buffer with the C bit set.
1635 	 * If we run out of cycles and rfa_headm has the C bit set,
1636 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1637 	 * that the info will be used in the subsequent polling cycle.
1638 	 */
1639 	for (;;) {
1640 		rxp = sc->fxp_desc.rx_head;
1641 		m = rxp->rx_mbuf;
1642 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1643 		    RFA_ALIGNMENT_FUDGE);
1644 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1645 		    BUS_DMASYNC_POSTREAD);
1646 
1647 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1648 		if (count >= 0 && count-- == 0) {
1649 			if (rnr) {
1650 				/* Defer RNR processing until the next time. */
1651 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1652 				rnr = 0;
1653 			}
1654 			break;
1655 		}
1656 #endif /* DEVICE_POLLING */
1657 
1658 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1659 			break;
1660 
1661 		/*
1662 		 * Advance head forward.
1663 		 */
1664 		sc->fxp_desc.rx_head = rxp->rx_next;
1665 
1666 		/*
1667 		 * Add a new buffer to the receive chain.
1668 		 * If this fails, the old buffer is recycled
1669 		 * instead.
1670 		 */
1671 		fxp_rc = fxp_add_rfabuf(sc, rxp);
1672 		if (fxp_rc == 0) {
1673 			int total_len;
1674 
1675 			/*
1676 			 * Fetch packet length (the top 2 bits of
1677 			 * actual_size are flags set by the controller
1678 			 * upon completion), and drop the packet in case
1679 			 * of bogus length or CRC errors.
1680 			 */
1681 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1682 			if (total_len < sizeof(struct ether_header) ||
1683 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1684 				sc->rfa_size ||
1685 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1686 				m_freem(m);
1687 				continue;
1688 			}
1689 
1690                         /* Do IP checksum checking. */
1691 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1692 				if (rfa->rfax_csum_sts &
1693 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1694 					m->m_pkthdr.csum_flags |=
1695 					    CSUM_IP_CHECKED;
1696 				if (rfa->rfax_csum_sts &
1697 				    FXP_RFDX_CS_IP_CSUM_VALID)
1698 					m->m_pkthdr.csum_flags |=
1699 					    CSUM_IP_VALID;
1700 				if ((rfa->rfax_csum_sts &
1701 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1702 				    (rfa->rfax_csum_sts &
1703 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1704 					m->m_pkthdr.csum_flags |=
1705 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1706 					m->m_pkthdr.csum_data = 0xffff;
1707 				}
1708 			}
1709 
1710 			m->m_pkthdr.len = m->m_len = total_len;
1711 			m->m_pkthdr.rcvif = ifp;
1712 
1713 			/*
1714 			 * Drop locks before calling if_input() since it
1715 			 * may re-enter fxp_start() in the netisr case.
1716 			 * This would result in a lock reversal.  Better
1717 			 * performance might be obtained by chaining all
1718 			 * packets received, dropping the lock, and then
1719 			 * calling if_input() on each one.
1720 			 */
1721 			FXP_UNLOCK(sc);
1722 			(*ifp->if_input)(ifp, m);
1723 			FXP_LOCK(sc);
1724 		} else if (fxp_rc == ENOBUFS) {
1725 			rnr = 0;
1726 			break;
1727 		}
1728 	}
1729 	if (rnr) {
1730 		fxp_scb_wait(sc);
1731 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1732 		    sc->fxp_desc.rx_head->rx_addr);
1733 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1734 	}
1735 }
1736 
1737 /*
1738  * Update packet in/out/collision statistics. The i82557 doesn't
1739  * allow you to access these counters without doing a fairly
1740  * expensive DMA to get _all_ of the statistics it maintains, so
1741  * we do this operation here only once per second. The statistics
1742  * counters in the kernel are updated from the previous dump-stats
1743  * DMA and then a new dump-stats DMA is started. The on-chip
1744  * counters are zeroed when the DMA completes. If we can't start
1745  * the DMA immediately, we don't wait - we just prepare to read
1746  * them again next time.
1747  */
1748 static void
1749 fxp_tick(void *xsc)
1750 {
1751 	struct fxp_softc *sc = xsc;
1752 	struct ifnet *ifp = sc->ifp;
1753 	struct fxp_stats *sp = sc->fxp_stats;
1754 	int s;
1755 
1756 	FXP_LOCK(sc);
1757 	s = splimp();
1758 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1759 	ifp->if_opackets += le32toh(sp->tx_good);
1760 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1761 	if (sp->rx_good) {
1762 		ifp->if_ipackets += le32toh(sp->rx_good);
1763 		sc->rx_idle_secs = 0;
1764 	} else {
1765 		/*
1766 		 * Receiver's been idle for another second.
1767 		 */
1768 		sc->rx_idle_secs++;
1769 	}
1770 	ifp->if_ierrors +=
1771 	    le32toh(sp->rx_crc_errors) +
1772 	    le32toh(sp->rx_alignment_errors) +
1773 	    le32toh(sp->rx_rnr_errors) +
1774 	    le32toh(sp->rx_overrun_errors);
1775 	/*
1776 	 * If any transmit underruns occured, bump up the transmit
1777 	 * threshold by another 512 bytes (64 * 8).
1778 	 */
1779 	if (sp->tx_underruns) {
1780 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1781 		if (tx_threshold < 192)
1782 			tx_threshold += 64;
1783 	}
1784 
1785 	/*
1786 	 * Release any xmit buffers that have completed DMA. This isn't
1787 	 * strictly necessary to do here, but it's advantagous for mbufs
1788 	 * with external storage to be released in a timely manner rather
1789 	 * than being defered for a potentially long time. This limits
1790 	 * the delay to a maximum of one second.
1791 	 */
1792 	fxp_txeof(sc);
1793 
1794 	/*
1795 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1796 	 * then assume the receiver has locked up and attempt to clear
1797 	 * the condition by reprogramming the multicast filter. This is
1798 	 * a work-around for a bug in the 82557 where the receiver locks
1799 	 * up if it gets certain types of garbage in the syncronization
1800 	 * bits prior to the packet header. This bug is supposed to only
1801 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1802 	 * mode as well (perhaps due to a 10/100 speed transition).
1803 	 */
1804 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1805 		sc->rx_idle_secs = 0;
1806 		fxp_mc_setup(sc);
1807 	}
1808 	/*
1809 	 * If there is no pending command, start another stats
1810 	 * dump. Otherwise punt for now.
1811 	 */
1812 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1813 		/*
1814 		 * Start another stats dump.
1815 		 */
1816 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1817 		    BUS_DMASYNC_PREREAD);
1818 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1819 	} else {
1820 		/*
1821 		 * A previous command is still waiting to be accepted.
1822 		 * Just zero our copy of the stats and wait for the
1823 		 * next timer event to update them.
1824 		 */
1825 		sp->tx_good = 0;
1826 		sp->tx_underruns = 0;
1827 		sp->tx_total_collisions = 0;
1828 
1829 		sp->rx_good = 0;
1830 		sp->rx_crc_errors = 0;
1831 		sp->rx_alignment_errors = 0;
1832 		sp->rx_rnr_errors = 0;
1833 		sp->rx_overrun_errors = 0;
1834 	}
1835 	if (sc->miibus != NULL)
1836 		mii_tick(device_get_softc(sc->miibus));
1837 
1838 	/*
1839 	 * Schedule another timeout one second from now.
1840 	 */
1841 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1842 	FXP_UNLOCK(sc);
1843 	splx(s);
1844 }
1845 
1846 /*
1847  * Stop the interface. Cancels the statistics updater and resets
1848  * the interface.
1849  */
1850 static void
1851 fxp_stop(struct fxp_softc *sc)
1852 {
1853 	struct ifnet *ifp = sc->ifp;
1854 	struct fxp_tx *txp;
1855 	int i;
1856 
1857 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1858 	ifp->if_timer = 0;
1859 
1860 #ifdef DEVICE_POLLING
1861 	ether_poll_deregister(ifp);
1862 #endif
1863 	/*
1864 	 * Cancel stats updater.
1865 	 */
1866 	callout_stop(&sc->stat_ch);
1867 
1868 	/*
1869 	 * Issue software reset, which also unloads the microcode.
1870 	 */
1871 	sc->flags &= ~FXP_FLAG_UCODE;
1872 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1873 	DELAY(50);
1874 
1875 	/*
1876 	 * Release any xmit buffers.
1877 	 */
1878 	txp = sc->fxp_desc.tx_list;
1879 	if (txp != NULL) {
1880 		for (i = 0; i < FXP_NTXCB; i++) {
1881  			if (txp[i].tx_mbuf != NULL) {
1882 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1883 				    BUS_DMASYNC_POSTWRITE);
1884 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1885 				m_freem(txp[i].tx_mbuf);
1886 				txp[i].tx_mbuf = NULL;
1887 				/* clear this to reset csum offload bits */
1888 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1889 			}
1890 		}
1891 	}
1892 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1893 	sc->tx_queued = 0;
1894 }
1895 
1896 /*
1897  * Watchdog/transmission transmit timeout handler. Called when a
1898  * transmission is started on the interface, but no interrupt is
1899  * received before the timeout. This usually indicates that the
1900  * card has wedged for some reason.
1901  */
1902 static void
1903 fxp_watchdog(struct ifnet *ifp)
1904 {
1905 	struct fxp_softc *sc = ifp->if_softc;
1906 
1907 	FXP_LOCK(sc);
1908 	device_printf(sc->dev, "device timeout\n");
1909 	ifp->if_oerrors++;
1910 
1911 	fxp_init_body(sc);
1912 	FXP_UNLOCK(sc);
1913 }
1914 
1915 /*
1916  * Acquire locks and then call the real initialization function.  This
1917  * is necessary because ether_ioctl() calls if_init() and this would
1918  * result in mutex recursion if the mutex was held.
1919  */
1920 static void
1921 fxp_init(void *xsc)
1922 {
1923 	struct fxp_softc *sc = xsc;
1924 
1925 	FXP_LOCK(sc);
1926 	fxp_init_body(sc);
1927 	FXP_UNLOCK(sc);
1928 }
1929 
1930 /*
1931  * Perform device initialization. This routine must be called with the
1932  * softc lock held.
1933  */
1934 static void
1935 fxp_init_body(struct fxp_softc *sc)
1936 {
1937 	struct ifnet *ifp = sc->ifp;
1938 	struct fxp_cb_config *cbp;
1939 	struct fxp_cb_ias *cb_ias;
1940 	struct fxp_cb_tx *tcbp;
1941 	struct fxp_tx *txp;
1942 	struct fxp_cb_mcs *mcsp;
1943 	int i, prm, s;
1944 
1945 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1946 	s = splimp();
1947 	/*
1948 	 * Cancel any pending I/O
1949 	 */
1950 	fxp_stop(sc);
1951 
1952 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1953 
1954 	/*
1955 	 * Initialize base of CBL and RFA memory. Loading with zero
1956 	 * sets it up for regular linear addressing.
1957 	 */
1958 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1959 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1960 
1961 	fxp_scb_wait(sc);
1962 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1963 
1964 	/*
1965 	 * Initialize base of dump-stats buffer.
1966 	 */
1967 	fxp_scb_wait(sc);
1968 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1969 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1970 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1971 
1972 	/*
1973 	 * Attempt to load microcode if requested.
1974 	 */
1975 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1976 		fxp_load_ucode(sc);
1977 
1978 	/*
1979 	 * Initialize the multicast address list.
1980 	 */
1981 	if (fxp_mc_addrs(sc)) {
1982 		mcsp = sc->mcsp;
1983 		mcsp->cb_status = 0;
1984 		mcsp->cb_command =
1985 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1986 		mcsp->link_addr = 0xffffffff;
1987 		/*
1988 	 	 * Start the multicast setup command.
1989 		 */
1990 		fxp_scb_wait(sc);
1991 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1992 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1993 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1994 		/* ...and wait for it to complete. */
1995 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1996 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1997 		    BUS_DMASYNC_POSTWRITE);
1998 	}
1999 
2000 	/*
2001 	 * We temporarily use memory that contains the TxCB list to
2002 	 * construct the config CB. The TxCB list memory is rebuilt
2003 	 * later.
2004 	 */
2005 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2006 
2007 	/*
2008 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2009 	 * zero and must be one bits in this structure and this is the easiest
2010 	 * way to initialize them all to proper values.
2011 	 */
2012 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2013 
2014 	cbp->cb_status =	0;
2015 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2016 	    FXP_CB_COMMAND_EL);
2017 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2018 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2019 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2020 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2021 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2022 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2023 	cbp->type_enable =	0;	/* actually reserved */
2024 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2025 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2026 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2027 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2028 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2029 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2030 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2031 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2032 	cbp->ci_int =		1;	/* interrupt on CU idle */
2033 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2034 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2035 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2036 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2037 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2038 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2039 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2040 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2041 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2042 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2043 	cbp->csma_dis =		0;	/* (don't) disable link */
2044 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2045 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2046 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2047 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2048 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2049 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2050 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2051 	cbp->loopback =		0;	/* (don't) loopback */
2052 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2053 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2054 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2055 	cbp->promiscuous =	prm;	/* promiscuous mode */
2056 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2057 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2058 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2059 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2060 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2061 
2062 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2063 	cbp->padding =		1;	/* (do) pad short tx packets */
2064 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2065 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2066 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2067 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2068 					/* must set wake_en in PMCSR also */
2069 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2070 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2071 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2072 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2073 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2074 
2075 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2076 		/*
2077 		 * The 82557 has no hardware flow control, the values
2078 		 * below are the defaults for the chip.
2079 		 */
2080 		cbp->fc_delay_lsb =	0;
2081 		cbp->fc_delay_msb =	0x40;
2082 		cbp->pri_fc_thresh =	3;
2083 		cbp->tx_fc_dis =	0;
2084 		cbp->rx_fc_restop =	0;
2085 		cbp->rx_fc_restart =	0;
2086 		cbp->fc_filter =	0;
2087 		cbp->pri_fc_loc =	1;
2088 	} else {
2089 		cbp->fc_delay_lsb =	0x1f;
2090 		cbp->fc_delay_msb =	0x01;
2091 		cbp->pri_fc_thresh =	3;
2092 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2093 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2094 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2095 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2096 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2097 	}
2098 
2099 	/*
2100 	 * Start the config command/DMA.
2101 	 */
2102 	fxp_scb_wait(sc);
2103 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2104 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2105 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2106 	/* ...and wait for it to complete. */
2107 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2108 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2109 
2110 	/*
2111 	 * Now initialize the station address. Temporarily use the TxCB
2112 	 * memory area like we did above for the config CB.
2113 	 */
2114 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2115 	cb_ias->cb_status = 0;
2116 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2117 	cb_ias->link_addr = 0xffffffff;
2118 	bcopy(IFP2ENADDR(sc->ifp), cb_ias->macaddr,
2119 	    sizeof(IFP2ENADDR(sc->ifp)));
2120 
2121 	/*
2122 	 * Start the IAS (Individual Address Setup) command/DMA.
2123 	 */
2124 	fxp_scb_wait(sc);
2125 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2126 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2127 	/* ...and wait for it to complete. */
2128 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2129 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2130 
2131 	/*
2132 	 * Initialize transmit control block (TxCB) list.
2133 	 */
2134 	txp = sc->fxp_desc.tx_list;
2135 	tcbp = sc->fxp_desc.cbl_list;
2136 	bzero(tcbp, FXP_TXCB_SZ);
2137 	for (i = 0; i < FXP_NTXCB; i++) {
2138 		txp[i].tx_mbuf = NULL;
2139 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2140 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2141 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2142 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2143 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2144 			tcbp[i].tbd_array_addr =
2145 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2146 		else
2147 			tcbp[i].tbd_array_addr =
2148 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2149 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2150 	}
2151 	/*
2152 	 * Set the suspend flag on the first TxCB and start the control
2153 	 * unit. It will execute the NOP and then suspend.
2154 	 */
2155 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2156 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2157 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2158 	sc->tx_queued = 1;
2159 
2160 	fxp_scb_wait(sc);
2161 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2162 
2163 	/*
2164 	 * Initialize receiver buffer area - RFA.
2165 	 */
2166 	fxp_scb_wait(sc);
2167 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2168 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2169 
2170 	/*
2171 	 * Set current media.
2172 	 */
2173 	if (sc->miibus != NULL)
2174 		mii_mediachg(device_get_softc(sc->miibus));
2175 
2176 	ifp->if_flags |= IFF_RUNNING;
2177 	ifp->if_flags &= ~IFF_OACTIVE;
2178 
2179 	/*
2180 	 * Enable interrupts.
2181 	 */
2182 #ifdef DEVICE_POLLING
2183 	/*
2184 	 * ... but only do that if we are not polling. And because (presumably)
2185 	 * the default is interrupts on, we need to disable them explicitly!
2186 	 */
2187 	if ( ifp->if_flags & IFF_POLLING )
2188 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2189 	else
2190 #endif /* DEVICE_POLLING */
2191 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2192 
2193 	/*
2194 	 * Start stats updater.
2195 	 */
2196 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2197 	splx(s);
2198 }
2199 
2200 static int
2201 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2202 {
2203 
2204 	return (0);
2205 }
2206 
2207 static void
2208 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2209 {
2210 
2211 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2212 }
2213 
2214 /*
2215  * Change media according to request.
2216  */
2217 static int
2218 fxp_ifmedia_upd(struct ifnet *ifp)
2219 {
2220 	struct fxp_softc *sc = ifp->if_softc;
2221 	struct mii_data *mii;
2222 
2223 	mii = device_get_softc(sc->miibus);
2224 	mii_mediachg(mii);
2225 	return (0);
2226 }
2227 
2228 /*
2229  * Notify the world which media we're using.
2230  */
2231 static void
2232 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2233 {
2234 	struct fxp_softc *sc = ifp->if_softc;
2235 	struct mii_data *mii;
2236 
2237 	mii = device_get_softc(sc->miibus);
2238 	mii_pollstat(mii);
2239 	ifmr->ifm_active = mii->mii_media_active;
2240 	ifmr->ifm_status = mii->mii_media_status;
2241 
2242 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2243 		sc->cu_resume_bug = 1;
2244 	else
2245 		sc->cu_resume_bug = 0;
2246 }
2247 
2248 /*
2249  * Add a buffer to the end of the RFA buffer list.
2250  * Return 0 if successful, 1 for failure. A failure results in
2251  * adding the 'oldm' (if non-NULL) on to the end of the list -
2252  * tossing out its old contents and recycling it.
2253  * The RFA struct is stuck at the beginning of mbuf cluster and the
2254  * data pointer is fixed up to point just past it.
2255  */
2256 static int
2257 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2258 {
2259 	struct mbuf *m;
2260 	struct fxp_rfa *rfa, *p_rfa;
2261 	struct fxp_rx *p_rx;
2262 	bus_dmamap_t tmp_map;
2263 	int error;
2264 
2265 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2266 	if (m == NULL)
2267 		return (ENOBUFS);
2268 
2269 	/*
2270 	 * Move the data pointer up so that the incoming data packet
2271 	 * will be 32-bit aligned.
2272 	 */
2273 	m->m_data += RFA_ALIGNMENT_FUDGE;
2274 
2275 	/*
2276 	 * Get a pointer to the base of the mbuf cluster and move
2277 	 * data start past it.
2278 	 */
2279 	rfa = mtod(m, struct fxp_rfa *);
2280 	m->m_data += sc->rfa_size;
2281 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2282 
2283 	rfa->rfa_status = 0;
2284 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2285 	rfa->actual_size = 0;
2286 
2287 	/*
2288 	 * Initialize the rest of the RFA.  Note that since the RFA
2289 	 * is misaligned, we cannot store values directly.  We're thus
2290 	 * using the le32enc() function which handles endianness and
2291 	 * is also alignment-safe.
2292 	 */
2293 	le32enc(&rfa->link_addr, 0xffffffff);
2294 	le32enc(&rfa->rbd_addr, 0xffffffff);
2295 
2296 	/* Map the RFA into DMA memory. */
2297 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2298 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2299 	    &rxp->rx_addr, 0);
2300 	if (error) {
2301 		m_freem(m);
2302 		return (error);
2303 	}
2304 
2305 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2306 	tmp_map = sc->spare_map;
2307 	sc->spare_map = rxp->rx_map;
2308 	rxp->rx_map = tmp_map;
2309 	rxp->rx_mbuf = m;
2310 
2311 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2312 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2313 
2314 	/*
2315 	 * If there are other buffers already on the list, attach this
2316 	 * one to the end by fixing up the tail to point to this one.
2317 	 */
2318 	if (sc->fxp_desc.rx_head != NULL) {
2319 		p_rx = sc->fxp_desc.rx_tail;
2320 		p_rfa = (struct fxp_rfa *)
2321 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2322 		p_rx->rx_next = rxp;
2323 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2324 		p_rfa->rfa_control = 0;
2325 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2326 		    BUS_DMASYNC_PREWRITE);
2327 	} else {
2328 		rxp->rx_next = NULL;
2329 		sc->fxp_desc.rx_head = rxp;
2330 	}
2331 	sc->fxp_desc.rx_tail = rxp;
2332 	return (0);
2333 }
2334 
2335 static volatile int
2336 fxp_miibus_readreg(device_t dev, int phy, int reg)
2337 {
2338 	struct fxp_softc *sc = device_get_softc(dev);
2339 	int count = 10000;
2340 	int value;
2341 
2342 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2343 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2344 
2345 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2346 	    && count--)
2347 		DELAY(10);
2348 
2349 	if (count <= 0)
2350 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2351 
2352 	return (value & 0xffff);
2353 }
2354 
2355 static void
2356 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2357 {
2358 	struct fxp_softc *sc = device_get_softc(dev);
2359 	int count = 10000;
2360 
2361 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2362 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2363 	    (value & 0xffff));
2364 
2365 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2366 	    count--)
2367 		DELAY(10);
2368 
2369 	if (count <= 0)
2370 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2371 }
2372 
2373 static int
2374 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2375 {
2376 	struct fxp_softc *sc = ifp->if_softc;
2377 	struct ifreq *ifr = (struct ifreq *)data;
2378 	struct mii_data *mii;
2379 	int flag, mask, s, error = 0;
2380 
2381 	/*
2382 	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2383 	 * that by saying we're busy if the lock is already held.
2384 	 */
2385 	if (FXP_LOCKED(sc))
2386 		return (EBUSY);
2387 
2388 	FXP_LOCK(sc);
2389 	s = splimp();
2390 
2391 	switch (command) {
2392 	case SIOCSIFFLAGS:
2393 		if (ifp->if_flags & IFF_ALLMULTI)
2394 			sc->flags |= FXP_FLAG_ALL_MCAST;
2395 		else
2396 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2397 
2398 		/*
2399 		 * If interface is marked up and not running, then start it.
2400 		 * If it is marked down and running, stop it.
2401 		 * XXX If it's up then re-initialize it. This is so flags
2402 		 * such as IFF_PROMISC are handled.
2403 		 */
2404 		if (ifp->if_flags & IFF_UP) {
2405 			fxp_init_body(sc);
2406 		} else {
2407 			if (ifp->if_flags & IFF_RUNNING)
2408 				fxp_stop(sc);
2409 		}
2410 		break;
2411 
2412 	case SIOCADDMULTI:
2413 	case SIOCDELMULTI:
2414 		if (ifp->if_flags & IFF_ALLMULTI)
2415 			sc->flags |= FXP_FLAG_ALL_MCAST;
2416 		else
2417 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2418 		/*
2419 		 * Multicast list has changed; set the hardware filter
2420 		 * accordingly.
2421 		 */
2422 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2423 			fxp_mc_setup(sc);
2424 		/*
2425 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2426 		 * again rather than else {}.
2427 		 */
2428 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2429 			fxp_init_body(sc);
2430 		error = 0;
2431 		break;
2432 
2433 	case SIOCSIFMEDIA:
2434 	case SIOCGIFMEDIA:
2435 		if (sc->miibus != NULL) {
2436 			mii = device_get_softc(sc->miibus);
2437                         error = ifmedia_ioctl(ifp, ifr,
2438                             &mii->mii_media, command);
2439 		} else {
2440                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2441 		}
2442 		break;
2443 
2444 	case SIOCSIFCAP:
2445 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2446 		if (mask & IFCAP_POLLING)
2447 			ifp->if_capenable ^= IFCAP_POLLING;
2448 		if (mask & IFCAP_VLAN_MTU) {
2449 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2450 			if (sc->revision != FXP_REV_82557)
2451 				flag = FXP_FLAG_LONG_PKT_EN;
2452 			else /* a hack to get long frames on the old chip */
2453 				flag = FXP_FLAG_SAVE_BAD;
2454 			sc->flags ^= flag;
2455 			if (ifp->if_flags & IFF_UP)
2456 				fxp_init_body(sc);
2457 		}
2458 		break;
2459 
2460 	default:
2461 		/*
2462 		 * ether_ioctl() will eventually call fxp_start() which
2463 		 * will result in mutex recursion so drop it first.
2464 		 */
2465 		FXP_UNLOCK(sc);
2466 		error = ether_ioctl(ifp, command, data);
2467 	}
2468 	if (FXP_LOCKED(sc))
2469 		FXP_UNLOCK(sc);
2470 	splx(s);
2471 	return (error);
2472 }
2473 
2474 /*
2475  * Fill in the multicast address list and return number of entries.
2476  */
2477 static int
2478 fxp_mc_addrs(struct fxp_softc *sc)
2479 {
2480 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2481 	struct ifnet *ifp = sc->ifp;
2482 	struct ifmultiaddr *ifma;
2483 	int nmcasts;
2484 
2485 	nmcasts = 0;
2486 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2487 #if __FreeBSD_version < 500000
2488 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2489 #else
2490 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2491 #endif
2492 			if (ifma->ifma_addr->sa_family != AF_LINK)
2493 				continue;
2494 			if (nmcasts >= MAXMCADDR) {
2495 				sc->flags |= FXP_FLAG_ALL_MCAST;
2496 				nmcasts = 0;
2497 				break;
2498 			}
2499 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2500 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2501 			nmcasts++;
2502 		}
2503 	}
2504 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2505 	return (nmcasts);
2506 }
2507 
2508 /*
2509  * Program the multicast filter.
2510  *
2511  * We have an artificial restriction that the multicast setup command
2512  * must be the first command in the chain, so we take steps to ensure
2513  * this. By requiring this, it allows us to keep up the performance of
2514  * the pre-initialized command ring (esp. link pointers) by not actually
2515  * inserting the mcsetup command in the ring - i.e. its link pointer
2516  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2517  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2518  * lead into the regular TxCB ring when it completes.
2519  *
2520  * This function must be called at splimp.
2521  */
2522 static void
2523 fxp_mc_setup(struct fxp_softc *sc)
2524 {
2525 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2526 	struct ifnet *ifp = sc->ifp;
2527 	struct fxp_tx *txp;
2528 	int count;
2529 
2530 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2531 	/*
2532 	 * If there are queued commands, we must wait until they are all
2533 	 * completed. If we are already waiting, then add a NOP command
2534 	 * with interrupt option so that we're notified when all commands
2535 	 * have been completed - fxp_start() ensures that no additional
2536 	 * TX commands will be added when need_mcsetup is true.
2537 	 */
2538 	if (sc->tx_queued) {
2539 		/*
2540 		 * need_mcsetup will be true if we are already waiting for the
2541 		 * NOP command to be completed (see below). In this case, bail.
2542 		 */
2543 		if (sc->need_mcsetup)
2544 			return;
2545 		sc->need_mcsetup = 1;
2546 
2547 		/*
2548 		 * Add a NOP command with interrupt so that we are notified
2549 		 * when all TX commands have been processed.
2550 		 */
2551 		txp = sc->fxp_desc.tx_last->tx_next;
2552 		txp->tx_mbuf = NULL;
2553 		txp->tx_cb->cb_status = 0;
2554 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2555 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2556 		/*
2557 		 * Advance the end of list forward.
2558 		 */
2559 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2560 		    htole16(~FXP_CB_COMMAND_S);
2561 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2562 		sc->fxp_desc.tx_last = txp;
2563 		sc->tx_queued++;
2564 		/*
2565 		 * Issue a resume in case the CU has just suspended.
2566 		 */
2567 		fxp_scb_wait(sc);
2568 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2569 		/*
2570 		 * Set a 5 second timer just in case we don't hear from the
2571 		 * card again.
2572 		 */
2573 		ifp->if_timer = 5;
2574 
2575 		return;
2576 	}
2577 	sc->need_mcsetup = 0;
2578 
2579 	/*
2580 	 * Initialize multicast setup descriptor.
2581 	 */
2582 	mcsp->cb_status = 0;
2583 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2584 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2585 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2586 	txp = &sc->fxp_desc.mcs_tx;
2587 	txp->tx_mbuf = NULL;
2588 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2589 	txp->tx_next = sc->fxp_desc.tx_list;
2590 	(void) fxp_mc_addrs(sc);
2591 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2592 	sc->tx_queued = 1;
2593 
2594 	/*
2595 	 * Wait until command unit is not active. This should never
2596 	 * be the case when nothing is queued, but make sure anyway.
2597 	 */
2598 	count = 100;
2599 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2600 	    FXP_SCB_CUS_ACTIVE && --count)
2601 		DELAY(10);
2602 	if (count == 0) {
2603 		device_printf(sc->dev, "command queue timeout\n");
2604 		return;
2605 	}
2606 
2607 	/*
2608 	 * Start the multicast setup command.
2609 	 */
2610 	fxp_scb_wait(sc);
2611 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2612 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2613 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2614 
2615 	ifp->if_timer = 2;
2616 	return;
2617 }
2618 
2619 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2620 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2621 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2622 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2623 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2624 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2625 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2626 
2627 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2628 
2629 struct ucode {
2630 	uint32_t	revision;
2631 	uint32_t	*ucode;
2632 	int		length;
2633 	u_short		int_delay_offset;
2634 	u_short		bundle_max_offset;
2635 } ucode_table[] = {
2636 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2637 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2638 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2639 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2640 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2641 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2642 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2643 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2644 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2645 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2646 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2647 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2648 	{ 0, NULL, 0, 0, 0 }
2649 };
2650 
2651 static void
2652 fxp_load_ucode(struct fxp_softc *sc)
2653 {
2654 	struct ucode *uc;
2655 	struct fxp_cb_ucode *cbp;
2656 	int i;
2657 
2658 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2659 		if (sc->revision == uc->revision)
2660 			break;
2661 	if (uc->ucode == NULL)
2662 		return;
2663 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2664 	cbp->cb_status = 0;
2665 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2666 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2667 	for (i = 0; i < uc->length; i++)
2668 		cbp->ucode[i] = htole32(uc->ucode[i]);
2669 	if (uc->int_delay_offset)
2670 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2671 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2672 	if (uc->bundle_max_offset)
2673 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2674 		    htole16(sc->tunable_bundle_max);
2675 	/*
2676 	 * Download the ucode to the chip.
2677 	 */
2678 	fxp_scb_wait(sc);
2679 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2680 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2681 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2682 	/* ...and wait for it to complete. */
2683 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2684 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2685 	device_printf(sc->dev,
2686 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2687 	    sc->tunable_int_delay,
2688 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2689 	sc->flags |= FXP_FLAG_UCODE;
2690 }
2691 
2692 static int
2693 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2694 {
2695 	int error, value;
2696 
2697 	value = *(int *)arg1;
2698 	error = sysctl_handle_int(oidp, &value, 0, req);
2699 	if (error || !req->newptr)
2700 		return (error);
2701 	if (value < low || value > high)
2702 		return (EINVAL);
2703 	*(int *)arg1 = value;
2704 	return (0);
2705 }
2706 
2707 /*
2708  * Interrupt delay is expressed in microseconds, a multiplier is used
2709  * to convert this to the appropriate clock ticks before using.
2710  */
2711 static int
2712 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2713 {
2714 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2715 }
2716 
2717 static int
2718 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2719 {
2720 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2721 }
2722