xref: /freebsd/sys/dev/fxp/if_fxp.c (revision d086ded32300bc0f33fb1574d0bcfccfbc60881d)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 /*
31  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/endian.h>
40 #include <sys/mbuf.h>
41 		/* #include <sys/mutex.h> */
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/sysctl.h>
45 
46 #include <net/if.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 
50 #include <net/bpf.h>
51 #include <sys/sockio.h>
52 #include <sys/bus.h>
53 #include <machine/bus.h>
54 #include <sys/rman.h>
55 #include <machine/resource.h>
56 
57 #include <net/ethernet.h>
58 #include <net/if_arp.h>
59 
60 #include <machine/clock.h>	/* for DELAY */
61 
62 #include <net/if_types.h>
63 #include <net/if_vlan_var.h>
64 
65 #ifdef FXP_IP_CSUM_WAR
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <machine/in_cksum.h>
70 #endif
71 
72 #include <pci/pcivar.h>
73 #include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <dev/fxp/if_fxpreg.h>
79 #include <dev/fxp/if_fxpvar.h>
80 #include <dev/fxp/rcvbundl.h>
81 
82 MODULE_DEPEND(fxp, pci, 1, 1, 1);
83 MODULE_DEPEND(fxp, ether, 1, 1, 1);
84 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
85 #include "miibus_if.h"
86 
87 /*
88  * NOTE!  On the Alpha, we have an alignment constraint.  The
89  * card DMAs the packet immediately following the RFA.  However,
90  * the first thing in the packet is a 14-byte Ethernet header.
91  * This means that the packet is misaligned.  To compensate,
92  * we actually offset the RFA 2 bytes into the cluster.  This
93  * alignes the packet after the Ethernet header at a 32-bit
94  * boundary.  HOWEVER!  This means that the RFA is misaligned!
95  */
96 #define	RFA_ALIGNMENT_FUDGE	2
97 
98 /*
99  * Set initial transmit threshold at 64 (512 bytes). This is
100  * increased by 64 (512 bytes) at a time, to maximum of 192
101  * (1536 bytes), if an underrun occurs.
102  */
103 static int tx_threshold = 64;
104 
105 /*
106  * The configuration byte map has several undefined fields which
107  * must be one or must be zero.  Set up a template for these bits
108  * only, (assuming a 82557 chip) leaving the actual configuration
109  * to fxp_init.
110  *
111  * See struct fxp_cb_config for the bit definitions.
112  */
113 static u_char fxp_cb_config_template[] = {
114 	0x0, 0x0,		/* cb_status */
115 	0x0, 0x0,		/* cb_command */
116 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
117 	0x0,	/*  0 */
118 	0x0,	/*  1 */
119 	0x0,	/*  2 */
120 	0x0,	/*  3 */
121 	0x0,	/*  4 */
122 	0x0,	/*  5 */
123 	0x32,	/*  6 */
124 	0x0,	/*  7 */
125 	0x0,	/*  8 */
126 	0x0,	/*  9 */
127 	0x6,	/* 10 */
128 	0x0,	/* 11 */
129 	0x0,	/* 12 */
130 	0x0,	/* 13 */
131 	0xf2,	/* 14 */
132 	0x48,	/* 15 */
133 	0x0,	/* 16 */
134 	0x40,	/* 17 */
135 	0xf0,	/* 18 */
136 	0x0,	/* 19 */
137 	0x3f,	/* 20 */
138 	0x5	/* 21 */
139 };
140 
141 struct fxp_ident {
142 	u_int16_t	devid;
143 	char 		*name;
144 };
145 
146 /*
147  * Claim various Intel PCI device identifiers for this driver.  The
148  * sub-vendor and sub-device field are extensively used to identify
149  * particular variants, but we don't currently differentiate between
150  * them.
151  */
152 static struct fxp_ident fxp_ident_table[] = {
153     { 0x1029,		"Intel 82559 PCI/CardBus Pro/100" },
154     { 0x1030,		"Intel 82559 Pro/100 Ethernet" },
155     { 0x1031,		"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
156     { 0x1032,		"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
157     { 0x1033,		"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
158     { 0x1034,		"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
159     { 0x1035,		"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
160     { 0x1036,		"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
161     { 0x1037,		"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162     { 0x1038,		"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
163     { 0x1039,		"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
164     { 0x103A,		"Intel 82801DB (ICH4) Pro/100 Ethernet" },
165     { 0x103B,		"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
166     { 0x103C,		"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167     { 0x103D,		"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
168     { 0x103E,		"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
169     { 0x1050,		"Intel 82801BA (D865) Pro/100 VE Ethernet" },
170     { 0x1059,		"Intel 82551QM Pro/100 M Mobile Connection" },
171     { 0x1209,		"Intel 82559ER Embedded 10/100 Ethernet" },
172     { 0x1229,		"Intel 82557/8/9 EtherExpress Pro/100(B) Ethernet" },
173     { 0x2449,		"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
174     { 0,		NULL },
175 };
176 
177 #ifdef FXP_IP_CSUM_WAR
178 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
179 #else
180 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
181 #endif
182 
183 static int		fxp_probe(device_t dev);
184 static int		fxp_attach(device_t dev);
185 static int		fxp_detach(device_t dev);
186 static int		fxp_shutdown(device_t dev);
187 static int		fxp_suspend(device_t dev);
188 static int		fxp_resume(device_t dev);
189 
190 static void		fxp_intr(void *xsc);
191 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
192 			    u_int8_t statack, int count);
193 static void 		fxp_init(void *xsc);
194 static void 		fxp_init_body(struct fxp_softc *sc);
195 static void 		fxp_tick(void *xsc);
196 static void		fxp_powerstate_d0(device_t dev);
197 static void 		fxp_start(struct ifnet *ifp);
198 static void 		fxp_start_body(struct ifnet *ifp);
199 static void		fxp_stop(struct fxp_softc *sc);
200 static void 		fxp_release(struct fxp_softc *sc);
201 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
202 			    caddr_t data);
203 static void 		fxp_watchdog(struct ifnet *ifp);
204 static int		fxp_add_rfabuf(struct fxp_softc *sc,
205     			    struct fxp_rx *rxp);
206 static int		fxp_mc_addrs(struct fxp_softc *sc);
207 static void		fxp_mc_setup(struct fxp_softc *sc);
208 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
209 			    int autosize);
210 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
211 			    u_int16_t data);
212 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
213 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
214 			    int offset, int words);
215 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
216 			    int offset, int words);
217 static int		fxp_ifmedia_upd(struct ifnet *ifp);
218 static void		fxp_ifmedia_sts(struct ifnet *ifp,
219 			    struct ifmediareq *ifmr);
220 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
221 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
222 			    struct ifmediareq *ifmr);
223 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
224 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
225 			    int value);
226 static void		fxp_load_ucode(struct fxp_softc *sc);
227 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
228 			    int low, int high);
229 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
230 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
231 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
232 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
233 static __inline void	fxp_dma_wait(struct fxp_softc *sc,
234     			    volatile u_int16_t *status, bus_dma_tag_t dmat,
235 			    bus_dmamap_t map);
236 
237 static device_method_t fxp_methods[] = {
238 	/* Device interface */
239 	DEVMETHOD(device_probe,		fxp_probe),
240 	DEVMETHOD(device_attach,	fxp_attach),
241 	DEVMETHOD(device_detach,	fxp_detach),
242 	DEVMETHOD(device_shutdown,	fxp_shutdown),
243 	DEVMETHOD(device_suspend,	fxp_suspend),
244 	DEVMETHOD(device_resume,	fxp_resume),
245 
246 	/* MII interface */
247 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
248 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
249 
250 	{ 0, 0 }
251 };
252 
253 static driver_t fxp_driver = {
254 	"fxp",
255 	fxp_methods,
256 	sizeof(struct fxp_softc),
257 };
258 
259 static devclass_t fxp_devclass;
260 
261 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
262 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
263 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
264 
265 static int fxp_rnr;
266 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
267 
268 static int fxp_noflow;
269 SYSCTL_INT(_hw, OID_AUTO, fxp_noflow, CTLFLAG_RW, &fxp_noflow, 0, "fxp flow control disabled");
270 TUNABLE_INT("hw.fxp_noflow", &fxp_noflow);
271 
272 /*
273  * Wait for the previous command to be accepted (but not necessarily
274  * completed).
275  */
276 static __inline void
277 fxp_scb_wait(struct fxp_softc *sc)
278 {
279 	int i = 10000;
280 
281 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
282 		DELAY(2);
283 	if (i == 0)
284 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
285 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
286 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
287 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
288 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
289 }
290 
291 static __inline void
292 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
293 {
294 
295 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
296 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
297 		fxp_scb_wait(sc);
298 	}
299 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
300 }
301 
302 static __inline void
303 fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
304     bus_dma_tag_t dmat, bus_dmamap_t map)
305 {
306 	int i = 10000;
307 
308 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
309 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
310 		DELAY(2);
311 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
312 	}
313 	if (i == 0)
314 		device_printf(sc->dev, "DMA timeout\n");
315 }
316 
317 /*
318  * Return identification string if this is device is ours.
319  */
320 static int
321 fxp_probe(device_t dev)
322 {
323 	u_int16_t devid;
324 	struct fxp_ident *ident;
325 
326 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
327 		devid = pci_get_device(dev);
328 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
329 			if (ident->devid == devid) {
330 				device_set_desc(dev, ident->name);
331 				return (0);
332 			}
333 		}
334 	}
335 	return (ENXIO);
336 }
337 
338 static void
339 fxp_powerstate_d0(device_t dev)
340 {
341 #if __FreeBSD_version >= 430002
342 	u_int32_t iobase, membase, irq;
343 
344 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
345 		/* Save important PCI config data. */
346 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
347 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
348 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
349 
350 		/* Reset the power state. */
351 		device_printf(dev, "chip is in D%d power mode "
352 		    "-- setting to D0\n", pci_get_powerstate(dev));
353 
354 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
355 
356 		/* Restore PCI config data. */
357 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
358 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
359 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
360 	}
361 #endif
362 }
363 
364 static void
365 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
366 {
367 	u_int32_t *addr;
368 
369 	if (error)
370 		return;
371 
372 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
373 	addr = arg;
374 	*addr = segs->ds_addr;
375 }
376 
377 static int
378 fxp_attach(device_t dev)
379 {
380 	int error = 0;
381 	struct fxp_softc *sc = device_get_softc(dev);
382 	struct ifnet *ifp;
383 	struct fxp_rx *rxp;
384 	u_int32_t val;
385 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
386 	int i, rid, m1, m2, prefer_iomap, maxtxseg;
387 	int s, ipcbxmit_disable;
388 
389 	sc->dev = dev;
390 	callout_handle_init(&sc->stat_ch);
391 	sysctl_ctx_init(&sc->sysctl_ctx);
392 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
393 	    MTX_DEF);
394 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
395 	    fxp_serial_ifmedia_sts);
396 
397 	s = splimp();
398 
399 	/*
400 	 * Enable bus mastering.
401 	 */
402 	pci_enable_busmaster(dev);
403 	val = pci_read_config(dev, PCIR_COMMAND, 2);
404 
405 	fxp_powerstate_d0(dev);
406 
407 	/*
408 	 * Figure out which we should try first - memory mapping or i/o mapping?
409 	 * We default to memory mapping. Then we accept an override from the
410 	 * command line. Then we check to see which one is enabled.
411 	 */
412 	m1 = PCIM_CMD_MEMEN;
413 	m2 = PCIM_CMD_PORTEN;
414 	prefer_iomap = 0;
415 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
416 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
417 		m1 = PCIM_CMD_PORTEN;
418 		m2 = PCIM_CMD_MEMEN;
419 	}
420 
421 	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
422 	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
423 	sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
424 	                                     0, ~0, 1, RF_ACTIVE);
425 	if (sc->mem == NULL) {
426 		sc->rtp =
427 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
428 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
429 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
430                                             0, ~0, 1, RF_ACTIVE);
431 	}
432 
433 	if (!sc->mem) {
434 		error = ENXIO;
435 		goto fail;
436         }
437 	if (bootverbose) {
438 		device_printf(dev, "using %s space register mapping\n",
439 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
440 	}
441 
442 	sc->sc_st = rman_get_bustag(sc->mem);
443 	sc->sc_sh = rman_get_bushandle(sc->mem);
444 
445 	/*
446 	 * Allocate our interrupt.
447 	 */
448 	rid = 0;
449 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
450 				 RF_SHAREABLE | RF_ACTIVE);
451 	if (sc->irq == NULL) {
452 		device_printf(dev, "could not map interrupt\n");
453 		error = ENXIO;
454 		goto fail;
455 	}
456 
457 	/*
458 	 * Reset to a stable state.
459 	 */
460 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
461 	DELAY(10);
462 
463 	/*
464 	 * Find out how large of an SEEPROM we have.
465 	 */
466 	fxp_autosize_eeprom(sc);
467 
468 	/*
469 	 * Determine whether we must use the 503 serial interface.
470 	 */
471 	fxp_read_eeprom(sc, &data, 6, 1);
472 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
473 	    (data & FXP_PHY_SERIAL_ONLY))
474 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
475 
476 	/*
477 	 * Create the sysctl tree
478 	 */
479 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
480 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
481 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
482 	if (sc->sysctl_tree == NULL) {
483 		error = ENXIO;
484 		goto fail;
485 	}
486 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
487 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
488 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
489 	    "FXP driver receive interrupt microcode bundling delay");
490 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
491 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
492 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
493 	    "FXP driver receive interrupt microcode bundle size limit");
494 
495 	/*
496 	 * Pull in device tunables.
497 	 */
498 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
499 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
500 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
501 	    "int_delay", &sc->tunable_int_delay);
502 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
503 	    "bundle_max", &sc->tunable_bundle_max);
504 
505 	/*
506 	 * Find out the chip revision; lump all 82557 revs together.
507 	 */
508 	fxp_read_eeprom(sc, &data, 5, 1);
509 	if ((data >> 8) == 1)
510 		sc->revision = FXP_REV_82557;
511 	else
512 		sc->revision = pci_get_revid(dev);
513 
514 	/*
515 	 * Enable workarounds for certain chip revision deficiencies.
516 	 *
517 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
518 	 * some systems based a normal 82559 design, have a defect where
519 	 * the chip can cause a PCI protocol violation if it receives
520 	 * a CU_RESUME command when it is entering the IDLE state.  The
521 	 * workaround is to disable Dynamic Standby Mode, so the chip never
522 	 * deasserts CLKRUN#, and always remains in an active state.
523 	 *
524 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
525 	 */
526 	i = pci_get_device(dev);
527 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
528 	    sc->revision >= FXP_REV_82559_A0) {
529 		fxp_read_eeprom(sc, &data, 10, 1);
530 		if (data & 0x02) {			/* STB enable */
531 			u_int16_t cksum;
532 			int i;
533 
534 			device_printf(dev,
535 			    "Disabling dynamic standby mode in EEPROM\n");
536 			data &= ~0x02;
537 			fxp_write_eeprom(sc, &data, 10, 1);
538 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
539 			cksum = 0;
540 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
541 				fxp_read_eeprom(sc, &data, i, 1);
542 				cksum += data;
543 			}
544 			i = (1 << sc->eeprom_size) - 1;
545 			cksum = 0xBABA - cksum;
546 			fxp_read_eeprom(sc, &data, i, 1);
547 			fxp_write_eeprom(sc, &cksum, i, 1);
548 			device_printf(dev,
549 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
550 			    i, data, cksum);
551 #if 1
552 			/*
553 			 * If the user elects to continue, try the software
554 			 * workaround, as it is better than nothing.
555 			 */
556 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
557 #endif
558 		}
559 	}
560 
561 	/*
562 	 * If we are not a 82557 chip, we can enable extended features.
563 	 */
564 	if (sc->revision != FXP_REV_82557) {
565 		/*
566 		 * If MWI is enabled in the PCI configuration, and there
567 		 * is a valid cacheline size (8 or 16 dwords), then tell
568 		 * the board to turn on MWI.
569 		 */
570 		if (val & PCIM_CMD_MWRICEN &&
571 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
572 			sc->flags |= FXP_FLAG_MWI_ENABLE;
573 
574 		/* turn on the extended TxCB feature */
575 		sc->flags |= FXP_FLAG_EXT_TXCB;
576 
577 		/* enable reception of long frames for VLAN */
578 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
579 	}
580 
581 	/*
582 	 * Enable use of extended RFDs and TCBs for 82550
583 	 * and later chips. Note: we need extended TXCB support
584 	 * too, but that's already enabled by the code above.
585 	 * Be careful to do this only on the right devices.
586 	 *
587 	 * At least some 82550 cards probed as "chip=0x12298086 rev=0x0d"
588 	 * truncate packets that end with an mbuf containing 1 to 3 bytes
589 	 * when used with this feature enabled in the previous version of the
590 	 * driver.  This problem appears to be fixed now that the driver
591 	 * always sets the hardware parse bit in the IPCB structure, which
592 	 * the "Intel 8255x 10/100 Mbps Ethernet Controller Family Open
593 	 * Source Software Developer Manual" says is necessary in the
594 	 * cases where packet truncation was observed.
595 	 *
596 	 * The device hint "hint.fxp.UNIT_NUMBER.ipcbxmit_disable"
597 	 * allows this feature to be disabled at boot time.
598 	 *
599 	 * If fxp is not compiled into the kernel, this feature may also
600 	 * be disabled at run time:
601 	 *    # kldunload fxp
602 	 *    # kenv hint.fxp.0.ipcbxmit_disable=1
603 	 *    # kldload fxp
604 	 */
605 
606 	if (resource_int_value("fxp", device_get_unit(dev), "ipcbxmit_disable",
607 	    &ipcbxmit_disable) != 0)
608 		ipcbxmit_disable = 0;
609 	if (ipcbxmit_disable == 0 && (sc->revision == FXP_REV_82550 ||
610 	    sc->revision == FXP_REV_82550_C)) {
611 		sc->rfa_size = sizeof (struct fxp_rfa);
612 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
613 		sc->flags |= FXP_FLAG_EXT_RFA;
614 	} else {
615 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
616 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
617 	}
618 
619 	/*
620 	 * Allocate DMA tags and DMA safe memory.
621 	 */
622 	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
623 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
624 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
625 	    maxtxseg, MCLBYTES, 0, &sc->fxp_mtag);
626 	if (error) {
627 		device_printf(dev, "could not allocate dma tag\n");
628 		goto fail;
629 	}
630 
631 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
632 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
633 	    sizeof(struct fxp_stats), 0, &sc->fxp_stag);
634 	if (error) {
635 		device_printf(dev, "could not allocate dma tag\n");
636 		goto fail;
637 	}
638 
639 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
640 	    BUS_DMA_NOWAIT, &sc->fxp_smap);
641 	if (error)
642 		goto fail;
643 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
644 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
645 	if (error) {
646 		device_printf(dev, "could not map the stats buffer\n");
647 		goto fail;
648 	}
649 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
650 
651 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
652 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
653 	    FXP_TXCB_SZ, 0, &sc->cbl_tag);
654 	if (error) {
655 		device_printf(dev, "could not allocate dma tag\n");
656 		goto fail;
657 	}
658 
659 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
660 	    BUS_DMA_NOWAIT, &sc->cbl_map);
661 	if (error)
662 		goto fail;
663 	bzero(sc->fxp_desc.cbl_list, FXP_TXCB_SZ);
664 
665 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
666 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
667 	    &sc->fxp_desc.cbl_addr, 0);
668 	if (error) {
669 		device_printf(dev, "could not map DMA memory\n");
670 		goto fail;
671 	}
672 
673 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
674 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
675 	    sizeof(struct fxp_cb_mcs), 0, &sc->mcs_tag);
676 	if (error) {
677 		device_printf(dev, "could not allocate dma tag\n");
678 		goto fail;
679 	}
680 
681 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
682 	    BUS_DMA_NOWAIT, &sc->mcs_map);
683 	if (error)
684 		goto fail;
685 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
686 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
687 	if (error) {
688 		device_printf(dev, "can't map the multicast setup command\n");
689 		goto fail;
690 	}
691 
692 	/*
693 	 * Pre-allocate the TX DMA maps.
694 	 */
695 	for (i = 0; i < FXP_NTXCB; i++) {
696 		error = bus_dmamap_create(sc->fxp_mtag, 0,
697 		    &sc->fxp_desc.tx_list[i].tx_map);
698 		if (error) {
699 			device_printf(dev, "can't create DMA map for TX\n");
700 			goto fail;
701 		}
702 	}
703 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
704 	if (error) {
705 		device_printf(dev, "can't create spare DMA map\n");
706 		goto fail;
707 	}
708 
709 	/*
710 	 * Pre-allocate our receive buffers.
711 	 */
712 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
713 	for (i = 0; i < FXP_NRFABUFS; i++) {
714 		rxp = &sc->fxp_desc.rx_list[i];
715 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
716 		if (error) {
717 			device_printf(dev, "can't create DMA map for RX\n");
718 			goto fail;
719 		}
720 		if (fxp_add_rfabuf(sc, rxp) != 0) {
721 			error = ENOMEM;
722 			goto fail;
723 		}
724 	}
725 
726 	/*
727 	 * Read MAC address.
728 	 */
729 	fxp_read_eeprom(sc, myea, 0, 3);
730 	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
731 	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
732 	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
733 	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
734 	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
735 	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
736 	device_printf(dev, "Ethernet address %6D%s\n",
737 	    sc->arpcom.ac_enaddr, ":",
738 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
739 	if (bootverbose) {
740 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
741 		    pci_get_vendor(dev), pci_get_device(dev),
742 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
743 		    pci_get_revid(dev));
744 		fxp_read_eeprom(sc, &data, 10, 1);
745 		device_printf(dev, "Dynamic Standby mode is %s\n",
746 		    data & 0x02 ? "enabled" : "disabled");
747 	}
748 
749 	/*
750 	 * If this is only a 10Mbps device, then there is no MII, and
751 	 * the PHY will use a serial interface instead.
752 	 *
753 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
754 	 * doesn't have a programming interface of any sort.  The
755 	 * media is sensed automatically based on how the link partner
756 	 * is configured.  This is, in essence, manual configuration.
757 	 */
758 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
759 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
760 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
761 	} else {
762 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
763 		    fxp_ifmedia_sts)) {
764 	                device_printf(dev, "MII without any PHY!\n");
765 			error = ENXIO;
766 			goto fail;
767 		}
768 	}
769 
770 	ifp = &sc->arpcom.ac_if;
771 	ifp->if_unit = device_get_unit(dev);
772 	ifp->if_name = "fxp";
773 	ifp->if_output = ether_output;
774 	ifp->if_baudrate = 100000000;
775 	ifp->if_init = fxp_init;
776 	ifp->if_softc = sc;
777 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
778 	ifp->if_ioctl = fxp_ioctl;
779 	ifp->if_start = fxp_start;
780 	ifp->if_watchdog = fxp_watchdog;
781 
782 	/* Enable checksum offload for 82550 or better chips */
783 	if (sc->flags & FXP_FLAG_EXT_RFA) {
784 		ifp->if_hwassist = FXP_CSUM_FEATURES;
785 		ifp->if_capabilities = IFCAP_HWCSUM;
786 		ifp->if_capenable = ifp->if_capabilities;
787 	}
788 
789 	/*
790 	 * Attach the interface.
791 	 */
792 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
793 
794 	/*
795 	 * Tell the upper layer(s) we support long frames.
796 	 */
797 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
798 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
799 
800 	/*
801 	 * Let the system queue as many packets as we have available
802 	 * TX descriptors.
803 	 */
804 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
805 
806 	/*
807 	 * Hook our interrupt after all initialization is complete.
808 	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
809 	 * however, ifp and its functions are not fully locked so MPSAFE
810 	 * should not be used unless you can handle potential data loss.
811 	 */
812 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET /*|INTR_MPSAFE*/,
813 			       fxp_intr, sc, &sc->ih);
814 	if (error) {
815 		device_printf(dev, "could not setup irq\n");
816 		ether_ifdetach(&sc->arpcom.ac_if);
817 		goto fail;
818 	}
819 
820 fail:
821 	splx(s);
822 	if (error)
823 		fxp_release(sc);
824 	return (error);
825 }
826 
827 /*
828  * Release all resources.  The softc lock should not be held and the
829  * interrupt should already be torn down.
830  */
831 static void
832 fxp_release(struct fxp_softc *sc)
833 {
834 	struct fxp_rx *rxp;
835 	struct fxp_tx *txp;
836 	int i;
837 
838 	mtx_assert(&sc->sc_mtx, MA_NOTOWNED);
839 	if (sc->ih)
840 		panic("fxp_release() called with intr handle still active");
841 	if (sc->miibus)
842 		device_delete_child(sc->dev, sc->miibus);
843 	bus_generic_detach(sc->dev);
844 	ifmedia_removeall(&sc->sc_media);
845 	if (sc->fxp_desc.cbl_list) {
846 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
847 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
848 		    sc->cbl_map);
849 	}
850 	if (sc->fxp_stats) {
851 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
852 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
853 	}
854 	if (sc->mcsp) {
855 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
856 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
857 	}
858 	if (sc->irq)
859 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
860 	if (sc->mem)
861 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
862 	if (sc->fxp_mtag) {
863 		for (i = 0; i < FXP_NRFABUFS; i++) {
864 			rxp = &sc->fxp_desc.rx_list[i];
865 			if (rxp->rx_mbuf != NULL) {
866 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
867 				    BUS_DMASYNC_POSTREAD);
868 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
869 				m_freem(rxp->rx_mbuf);
870 			}
871 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
872 		}
873 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
874 		bus_dma_tag_destroy(sc->fxp_mtag);
875 	}
876 	if (sc->fxp_stag) {
877 		for (i = 0; i < FXP_NTXCB; i++) {
878 			txp = &sc->fxp_desc.tx_list[i];
879 			if (txp->tx_mbuf != NULL) {
880 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
881 				    BUS_DMASYNC_POSTWRITE);
882 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
883 				m_freem(txp->tx_mbuf);
884 			}
885 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
886 		}
887 		bus_dma_tag_destroy(sc->fxp_stag);
888 	}
889 	if (sc->cbl_tag)
890 		bus_dma_tag_destroy(sc->cbl_tag);
891 	if (sc->mcs_tag)
892 		bus_dma_tag_destroy(sc->mcs_tag);
893 
894         sysctl_ctx_free(&sc->sysctl_ctx);
895 
896 	mtx_destroy(&sc->sc_mtx);
897 }
898 
899 /*
900  * Detach interface.
901  */
902 static int
903 fxp_detach(device_t dev)
904 {
905 	struct fxp_softc *sc = device_get_softc(dev);
906 	int s;
907 
908 	FXP_LOCK(sc);
909 	s = splimp();
910 
911 	sc->suspended = 1;	/* Do same thing as we do for suspend */
912 	/*
913 	 * Close down routes etc.
914 	 */
915 	ether_ifdetach(&sc->arpcom.ac_if);
916 
917 	/*
918 	 * Stop DMA and drop transmit queue, but disable interrupts first.
919 	 */
920 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
921 	fxp_stop(sc);
922 	FXP_UNLOCK(sc);
923 
924 	/*
925 	 * Unhook interrupt before dropping lock. This is to prevent
926 	 * races with fxp_intr().
927 	 */
928 	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
929 	sc->ih = NULL;
930 
931 	splx(s);
932 
933 	/* Release our allocated resources. */
934 	fxp_release(sc);
935 	return (0);
936 }
937 
938 /*
939  * Device shutdown routine. Called at system shutdown after sync. The
940  * main purpose of this routine is to shut off receiver DMA so that
941  * kernel memory doesn't get clobbered during warmboot.
942  */
943 static int
944 fxp_shutdown(device_t dev)
945 {
946 	/*
947 	 * Make sure that DMA is disabled prior to reboot. Not doing
948 	 * do could allow DMA to corrupt kernel memory during the
949 	 * reboot before the driver initializes.
950 	 */
951 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
952 	return (0);
953 }
954 
955 /*
956  * Device suspend routine.  Stop the interface and save some PCI
957  * settings in case the BIOS doesn't restore them properly on
958  * resume.
959  */
960 static int
961 fxp_suspend(device_t dev)
962 {
963 	struct fxp_softc *sc = device_get_softc(dev);
964 	int i, s;
965 
966 	FXP_LOCK(sc);
967 	s = splimp();
968 
969 	fxp_stop(sc);
970 
971 	for (i = 0; i < 5; i++)
972 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
973 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
974 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
975 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
976 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
977 
978 	sc->suspended = 1;
979 
980 	FXP_UNLOCK(sc);
981 	splx(s);
982 	return (0);
983 }
984 
985 /*
986  * Device resume routine.  Restore some PCI settings in case the BIOS
987  * doesn't, re-enable busmastering, and restart the interface if
988  * appropriate.
989  */
990 static int
991 fxp_resume(device_t dev)
992 {
993 	struct fxp_softc *sc = device_get_softc(dev);
994 	struct ifnet *ifp = &sc->sc_if;
995 	u_int16_t pci_command;
996 	int i, s;
997 
998 	FXP_LOCK(sc);
999 	s = splimp();
1000 
1001 	fxp_powerstate_d0(dev);
1002 
1003 	/* better way to do this? */
1004 	for (i = 0; i < 5; i++)
1005 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
1006 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1007 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1008 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1009 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1010 
1011 	/* reenable busmastering */
1012 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
1013 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1014 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
1015 
1016 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1017 	DELAY(10);
1018 
1019 	/* reinitialize interface if necessary */
1020 	if (ifp->if_flags & IFF_UP)
1021 		fxp_init_body(sc);
1022 
1023 	sc->suspended = 0;
1024 
1025 	FXP_UNLOCK(sc);
1026 	splx(s);
1027 	return (0);
1028 }
1029 
1030 static void
1031 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1032 {
1033 	u_int16_t reg;
1034 	int x;
1035 
1036 	/*
1037 	 * Shift in data.
1038 	 */
1039 	for (x = 1 << (length - 1); x; x >>= 1) {
1040 		if (data & x)
1041 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1042 		else
1043 			reg = FXP_EEPROM_EECS;
1044 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1045 		DELAY(1);
1046 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1047 		DELAY(1);
1048 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1049 		DELAY(1);
1050 	}
1051 }
1052 
1053 /*
1054  * Read from the serial EEPROM. Basically, you manually shift in
1055  * the read opcode (one bit at a time) and then shift in the address,
1056  * and then you shift out the data (all of this one bit at a time).
1057  * The word size is 16 bits, so you have to provide the address for
1058  * every 16 bits of data.
1059  */
1060 static u_int16_t
1061 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1062 {
1063 	u_int16_t reg, data;
1064 	int x;
1065 
1066 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1067 	/*
1068 	 * Shift in read opcode.
1069 	 */
1070 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1071 	/*
1072 	 * Shift in address.
1073 	 */
1074 	data = 0;
1075 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1076 		if (offset & x)
1077 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1078 		else
1079 			reg = FXP_EEPROM_EECS;
1080 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1081 		DELAY(1);
1082 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1083 		DELAY(1);
1084 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1085 		DELAY(1);
1086 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1087 		data++;
1088 		if (autosize && reg == 0) {
1089 			sc->eeprom_size = data;
1090 			break;
1091 		}
1092 	}
1093 	/*
1094 	 * Shift out data.
1095 	 */
1096 	data = 0;
1097 	reg = FXP_EEPROM_EECS;
1098 	for (x = 1 << 15; x; x >>= 1) {
1099 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1100 		DELAY(1);
1101 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1102 			data |= x;
1103 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1104 		DELAY(1);
1105 	}
1106 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1107 	DELAY(1);
1108 
1109 	return (data);
1110 }
1111 
1112 static void
1113 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1114 {
1115 	int i;
1116 
1117 	/*
1118 	 * Erase/write enable.
1119 	 */
1120 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1121 	fxp_eeprom_shiftin(sc, 0x4, 3);
1122 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1123 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1124 	DELAY(1);
1125 	/*
1126 	 * Shift in write opcode, address, data.
1127 	 */
1128 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1129 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1130 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1131 	fxp_eeprom_shiftin(sc, data, 16);
1132 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1133 	DELAY(1);
1134 	/*
1135 	 * Wait for EEPROM to finish up.
1136 	 */
1137 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1138 	DELAY(1);
1139 	for (i = 0; i < 1000; i++) {
1140 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1141 			break;
1142 		DELAY(50);
1143 	}
1144 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1145 	DELAY(1);
1146 	/*
1147 	 * Erase/write disable.
1148 	 */
1149 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1150 	fxp_eeprom_shiftin(sc, 0x4, 3);
1151 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1152 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1153 	DELAY(1);
1154 }
1155 
1156 /*
1157  * From NetBSD:
1158  *
1159  * Figure out EEPROM size.
1160  *
1161  * 559's can have either 64-word or 256-word EEPROMs, the 558
1162  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1163  * talks about the existance of 16 to 256 word EEPROMs.
1164  *
1165  * The only known sizes are 64 and 256, where the 256 version is used
1166  * by CardBus cards to store CIS information.
1167  *
1168  * The address is shifted in msb-to-lsb, and after the last
1169  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1170  * after which follows the actual data. We try to detect this zero, by
1171  * probing the data-out bit in the EEPROM control register just after
1172  * having shifted in a bit. If the bit is zero, we assume we've
1173  * shifted enough address bits. The data-out should be tri-state,
1174  * before this, which should translate to a logical one.
1175  */
1176 static void
1177 fxp_autosize_eeprom(struct fxp_softc *sc)
1178 {
1179 
1180 	/* guess maximum size of 256 words */
1181 	sc->eeprom_size = 8;
1182 
1183 	/* autosize */
1184 	(void) fxp_eeprom_getword(sc, 0, 1);
1185 }
1186 
1187 static void
1188 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1189 {
1190 	int i;
1191 
1192 	for (i = 0; i < words; i++)
1193 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1194 }
1195 
1196 static void
1197 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1198 {
1199 	int i;
1200 
1201 	for (i = 0; i < words; i++)
1202 		fxp_eeprom_putword(sc, offset + i, data[i]);
1203 }
1204 
1205 static void
1206 fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1207     bus_size_t mapsize, int error)
1208 {
1209 	struct fxp_softc *sc;
1210 	struct fxp_cb_tx *txp;
1211 	int i;
1212 
1213 	if (error)
1214 		return;
1215 
1216 	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1217 
1218 	sc = arg;
1219 	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1220 	for (i = 0; i < nseg; i++) {
1221 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1222 		/*
1223 		 * If this is an 82550/82551, then we're using extended
1224 		 * TxCBs _and_ we're using checksum offload. This means
1225 		 * that the TxCB is really an IPCB. One major difference
1226 		 * between the two is that with plain extended TxCBs,
1227 		 * the bottom half of the TxCB contains two entries from
1228 		 * the TBD array, whereas IPCBs contain just one entry:
1229 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1230 		 * checksum offload control bits. So to make things work
1231 		 * right, we have to start filling in the TBD array
1232 		 * starting from a different place depending on whether
1233 		 * the chip is an 82550/82551 or not.
1234 		 */
1235 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1236 			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1237 			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1238 		} else {
1239 			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1240 			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1241 		}
1242 	}
1243 	txp->tbd_number = nseg;
1244 }
1245 
1246 /*
1247  * Grab the softc lock and call the real fxp_start_body() routine
1248  */
1249 static void
1250 fxp_start(struct ifnet *ifp)
1251 {
1252 	struct fxp_softc *sc = ifp->if_softc;
1253 
1254 	FXP_LOCK(sc);
1255 	fxp_start_body(ifp);
1256 	FXP_UNLOCK(sc);
1257 }
1258 
1259 /*
1260  * Start packet transmission on the interface.
1261  * This routine must be called with the softc lock held, and is an
1262  * internal entry point only.
1263  */
1264 static void
1265 fxp_start_body(struct ifnet *ifp)
1266 {
1267 	struct fxp_softc *sc = ifp->if_softc;
1268 	struct fxp_tx *txp;
1269 	struct mbuf *mb_head;
1270 	int error;
1271 
1272 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1273 	/*
1274 	 * See if we need to suspend xmit until the multicast filter
1275 	 * has been reprogrammed (which can only be done at the head
1276 	 * of the command chain).
1277 	 */
1278 	if (sc->need_mcsetup) {
1279 		return;
1280 	}
1281 
1282 	txp = NULL;
1283 
1284 	/*
1285 	 * We're finished if there is nothing more to add to the list or if
1286 	 * we're all filled up with buffers to transmit.
1287 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1288 	 *       a NOP command when needed.
1289 	 */
1290 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1291 
1292 		/*
1293 		 * Grab a packet to transmit.
1294 		 */
1295 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1296 
1297 		/*
1298 		 * Get pointer to next available tx desc.
1299 		 */
1300 		txp = sc->fxp_desc.tx_last->tx_next;
1301 
1302 		/*
1303 		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1304 		 * Ethernet Controller Family Open Source Software
1305 		 * Developer Manual says:
1306 		 *   Using software parsing is only allowed with legal
1307 		 *   TCP/IP or UDP/IP packets.
1308 		 *   ...
1309 		 *   For all other datagrams, hardware parsing must
1310 		 *   be used.
1311 		 * Software parsing appears to truncate ICMP and
1312 		 * fragmented UDP packets that contain one to three
1313 		 * bytes in the second (and final) mbuf of the packet.
1314 		 */
1315 		if (sc->flags & FXP_FLAG_EXT_RFA)
1316 			txp->tx_cb->ipcb_ip_activation_high =
1317 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1318 
1319 		/*
1320 		 * Deal with TCP/IP checksum offload. Note that
1321 		 * in order for TCP checksum offload to work,
1322 		 * the pseudo header checksum must have already
1323 		 * been computed and stored in the checksum field
1324 		 * in the TCP header. The stack should have
1325 		 * already done this for us.
1326 		 */
1327 
1328 		if (mb_head->m_pkthdr.csum_flags) {
1329 			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1330 				txp->tx_cb->ipcb_ip_schedule =
1331 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1332 				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1333 					txp->tx_cb->ipcb_ip_schedule |=
1334 					    FXP_IPCB_TCP_PACKET;
1335 			}
1336 #ifdef FXP_IP_CSUM_WAR
1337 		/*
1338 		 * XXX The 82550 chip appears to have trouble
1339 		 * dealing with IP header checksums in very small
1340 		 * datagrams, namely fragments from 1 to 3 bytes
1341 		 * in size. For example, say you want to transmit
1342 		 * a UDP packet of 1473 bytes. The packet will be
1343 		 * fragmented over two IP datagrams, the latter
1344 		 * containing only one byte of data. The 82550 will
1345 		 * botch the header checksum on the 1-byte fragment.
1346 		 * As long as the datagram contains 4 or more bytes
1347 		 * of data, you're ok.
1348 		 *
1349                  * The following code attempts to work around this
1350 		 * problem: if the datagram is less than 38 bytes
1351 		 * in size (14 bytes ether header, 20 bytes IP header,
1352 		 * plus 4 bytes of data), we punt and compute the IP
1353 		 * header checksum by hand. This workaround doesn't
1354 		 * work very well, however, since it can be fooled
1355 		 * by things like VLAN tags and IP options that make
1356 		 * the header sizes/offsets vary.
1357 		 */
1358 
1359 			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1360 				if (mb_head->m_pkthdr.len < 38) {
1361 					struct ip *ip;
1362 					mb_head->m_data += ETHER_HDR_LEN;
1363 					ip = mtod(mb_head, struct ip *);
1364 					ip->ip_sum = in_cksum(mb_head,
1365 					    ip->ip_hl << 2);
1366 					mb_head->m_data -= ETHER_HDR_LEN;
1367 				} else {
1368 					txp->tx_cb->ipcb_ip_activation_high =
1369 					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1370 					txp->tx_cb->ipcb_ip_schedule |=
1371 					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1372 				}
1373 			}
1374 #endif
1375 		}
1376 
1377 		/*
1378 		 * Go through each of the mbufs in the chain and initialize
1379 		 * the transmit buffer descriptors with the physical address
1380 		 * and size of the mbuf.
1381 		 */
1382 		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1383 		    mb_head, fxp_dma_map_txbuf, sc, 0);
1384 
1385 		if (error && error != EFBIG) {
1386 			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1387 			    error);
1388 			m_freem(mb_head);
1389 			break;
1390 		}
1391 
1392 		if (error) {
1393 			struct mbuf *mn;
1394 
1395 			/*
1396 			 * We ran out of segments. We have to recopy this
1397 			 * mbuf chain first. Bail out if we can't get the
1398 			 * new buffers.
1399 			 */
1400 			mn = m_defrag(mb_head, M_DONTWAIT);
1401 			if (mn == NULL) {
1402 				m_freem(mb_head);
1403 				break;
1404 			} else {
1405 				mb_head = mn;
1406 			}
1407 			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1408 			    mb_head, fxp_dma_map_txbuf, sc, 0);
1409 			if (error) {
1410 				device_printf(sc->dev,
1411 				    "can't map mbuf (error %d)\n", error);
1412 				m_freem(mb_head);
1413 				break;
1414 			}
1415 		}
1416 
1417 		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1418 		    BUS_DMASYNC_PREWRITE);
1419 
1420 		txp->tx_mbuf = mb_head;
1421 		txp->tx_cb->cb_status = 0;
1422 		txp->tx_cb->byte_count = 0;
1423 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1424 			txp->tx_cb->cb_command =
1425 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1426 			    FXP_CB_COMMAND_S);
1427 		} else {
1428 			txp->tx_cb->cb_command =
1429 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1430 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1431 			/*
1432 			 * Set a 5 second timer just in case we don't hear
1433 			 * from the card again.
1434 			 */
1435 			ifp->if_timer = 5;
1436 		}
1437 		txp->tx_cb->tx_threshold = tx_threshold;
1438 
1439 		/*
1440 		 * Advance the end of list forward.
1441 		 */
1442 
1443 #ifdef __alpha__
1444 		/*
1445 		 * On platforms which can't access memory in 16-bit
1446 		 * granularities, we must prevent the card from DMA'ing
1447 		 * up the status while we update the command field.
1448 		 * This could cause us to overwrite the completion status.
1449 		 * XXX This is probably bogus and we're _not_ looking
1450 		 * for atomicity here.
1451 		 */
1452 		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1453 		    htole16(FXP_CB_COMMAND_S));
1454 #else
1455 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1456 		    htole16(~FXP_CB_COMMAND_S);
1457 #endif /*__alpha__*/
1458 		sc->fxp_desc.tx_last = txp;
1459 
1460 		/*
1461 		 * Advance the beginning of the list forward if there are
1462 		 * no other packets queued (when nothing is queued, tx_first
1463 		 * sits on the last TxCB that was sent out).
1464 		 */
1465 		if (sc->tx_queued == 0)
1466 			sc->fxp_desc.tx_first = txp;
1467 
1468 		sc->tx_queued++;
1469 
1470 		/*
1471 		 * Pass packet to bpf if there is a listener.
1472 		 */
1473 		BPF_MTAP(ifp, mb_head);
1474 	}
1475 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1476 
1477 	/*
1478 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1479 	 * going again if suspended.
1480 	 */
1481 	if (txp != NULL) {
1482 		fxp_scb_wait(sc);
1483 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1484 	}
1485 }
1486 
1487 #ifdef DEVICE_POLLING
1488 static poll_handler_t fxp_poll;
1489 
1490 static void
1491 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1492 {
1493 	struct fxp_softc *sc = ifp->if_softc;
1494 	u_int8_t statack;
1495 
1496 	FXP_LOCK(sc);
1497 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1498 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1499 		FXP_UNLOCK(sc);
1500 		return;
1501 	}
1502 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1503 	    FXP_SCB_STATACK_FR;
1504 	if (cmd == POLL_AND_CHECK_STATUS) {
1505 		u_int8_t tmp;
1506 
1507 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1508 		if (tmp == 0xff || tmp == 0) {
1509 			FXP_UNLOCK(sc);
1510 			return; /* nothing to do */
1511 		}
1512 		tmp &= ~statack;
1513 		/* ack what we can */
1514 		if (tmp != 0)
1515 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1516 		statack |= tmp;
1517 	}
1518 	fxp_intr_body(sc, ifp, statack, count);
1519 	FXP_UNLOCK(sc);
1520 }
1521 #endif /* DEVICE_POLLING */
1522 
1523 /*
1524  * Process interface interrupts.
1525  */
1526 static void
1527 fxp_intr(void *xsc)
1528 {
1529 	struct fxp_softc *sc = xsc;
1530 	struct ifnet *ifp = &sc->sc_if;
1531 	u_int8_t statack;
1532 
1533 	FXP_LOCK(sc);
1534 	if (sc->suspended) {
1535 		FXP_UNLOCK(sc);
1536 		return;
1537 	}
1538 
1539 #ifdef DEVICE_POLLING
1540 	if (ifp->if_flags & IFF_POLLING) {
1541 		FXP_UNLOCK(sc);
1542 		return;
1543 	}
1544 	if (ether_poll_register(fxp_poll, ifp)) {
1545 		/* disable interrupts */
1546 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1547 		fxp_poll(ifp, 0, 1);
1548 		FXP_UNLOCK(sc);
1549 		return;
1550 	}
1551 #endif
1552 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1553 		/*
1554 		 * It should not be possible to have all bits set; the
1555 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1556 		 * all bits are set, this may indicate that the card has
1557 		 * been physically ejected, so ignore it.
1558 		 */
1559 		if (statack == 0xff) {
1560 			FXP_UNLOCK(sc);
1561 			return;
1562 		}
1563 
1564 		/*
1565 		 * First ACK all the interrupts in this pass.
1566 		 */
1567 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1568 		fxp_intr_body(sc, ifp, statack, -1);
1569 	}
1570 	FXP_UNLOCK(sc);
1571 }
1572 
1573 static void
1574 fxp_txeof(struct fxp_softc *sc)
1575 {
1576 	struct fxp_tx *txp;
1577 
1578 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1579 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1580 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1581 	    txp = txp->tx_next) {
1582 		if (txp->tx_mbuf != NULL) {
1583 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1584 			    BUS_DMASYNC_POSTWRITE);
1585 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1586 			m_freem(txp->tx_mbuf);
1587 			txp->tx_mbuf = NULL;
1588 			/* clear this to reset csum offload bits */
1589 			txp->tx_cb->tbd[0].tb_addr = 0;
1590 		}
1591 		sc->tx_queued--;
1592 	}
1593 	sc->fxp_desc.tx_first = txp;
1594 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1595 }
1596 
1597 static void
1598 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1599     int count)
1600 {
1601 	struct mbuf *m;
1602 	struct fxp_rx *rxp;
1603 	struct fxp_rfa *rfa;
1604 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1605 
1606 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1607 	if (rnr)
1608 		fxp_rnr++;
1609 #ifdef DEVICE_POLLING
1610 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1611 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1612 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1613 		rnr = 1;
1614 	}
1615 #endif
1616 
1617 	/*
1618 	 * Free any finished transmit mbuf chains.
1619 	 *
1620 	 * Handle the CNA event likt a CXTNO event. It used to
1621 	 * be that this event (control unit not ready) was not
1622 	 * encountered, but it is now with the SMPng modifications.
1623 	 * The exact sequence of events that occur when the interface
1624 	 * is brought up are different now, and if this event
1625 	 * goes unhandled, the configuration/rxfilter setup sequence
1626 	 * can stall for several seconds. The result is that no
1627 	 * packets go out onto the wire for about 5 to 10 seconds
1628 	 * after the interface is ifconfig'ed for the first time.
1629 	 */
1630 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1631 		fxp_txeof(sc);
1632 
1633 		ifp->if_timer = 0;
1634 		if (sc->tx_queued == 0) {
1635 			if (sc->need_mcsetup)
1636 				fxp_mc_setup(sc);
1637 		}
1638 		/*
1639 		 * Try to start more packets transmitting.
1640 		 */
1641 		if (ifp->if_snd.ifq_head != NULL)
1642 			fxp_start_body(ifp);
1643 	}
1644 
1645 	/*
1646 	 * Just return if nothing happened on the receive side.
1647 	 */
1648 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1649 		return;
1650 
1651 	/*
1652 	 * Process receiver interrupts. If a no-resource (RNR)
1653 	 * condition exists, get whatever packets we can and
1654 	 * re-start the receiver.
1655 	 *
1656 	 * When using polling, we do not process the list to completion,
1657 	 * so when we get an RNR interrupt we must defer the restart
1658 	 * until we hit the last buffer with the C bit set.
1659 	 * If we run out of cycles and rfa_headm has the C bit set,
1660 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1661 	 * that the info will be used in the subsequent polling cycle.
1662 	 */
1663 	for (;;) {
1664 		rxp = sc->fxp_desc.rx_head;
1665 		m = rxp->rx_mbuf;
1666 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1667 		    RFA_ALIGNMENT_FUDGE);
1668 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1669 		    BUS_DMASYNC_POSTREAD);
1670 
1671 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1672 		if (count >= 0 && count-- == 0) {
1673 			if (rnr) {
1674 				/* Defer RNR processing until the next time. */
1675 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1676 				rnr = 0;
1677 			}
1678 			break;
1679 		}
1680 #endif /* DEVICE_POLLING */
1681 
1682 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1683 			break;
1684 
1685 		/*
1686 		 * Advance head forward.
1687 		 */
1688 		sc->fxp_desc.rx_head = rxp->rx_next;
1689 
1690 		/*
1691 		 * Add a new buffer to the receive chain.
1692 		 * If this fails, the old buffer is recycled
1693 		 * instead.
1694 		 */
1695 		if (fxp_add_rfabuf(sc, rxp) == 0) {
1696 			int total_len;
1697 
1698 			/*
1699 			 * Fetch packet length (the top 2 bits of
1700 			 * actual_size are flags set by the controller
1701 			 * upon completion), and drop the packet in case
1702 			 * of bogus length or CRC errors.
1703 			 */
1704 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1705 			if (total_len < sizeof(struct ether_header) ||
1706 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1707 				sc->rfa_size ||
1708 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1709 				m_freem(m);
1710 				continue;
1711 			}
1712 
1713                         /* Do IP checksum checking. */
1714 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1715 				if (rfa->rfax_csum_sts &
1716 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1717 					m->m_pkthdr.csum_flags |=
1718 					    CSUM_IP_CHECKED;
1719 				if (rfa->rfax_csum_sts &
1720 				    FXP_RFDX_CS_IP_CSUM_VALID)
1721 					m->m_pkthdr.csum_flags |=
1722 					    CSUM_IP_VALID;
1723 				if ((rfa->rfax_csum_sts &
1724 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1725 				    (rfa->rfax_csum_sts &
1726 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1727 					m->m_pkthdr.csum_flags |=
1728 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1729 					m->m_pkthdr.csum_data = 0xffff;
1730 				}
1731 			}
1732 
1733 			m->m_pkthdr.len = m->m_len = total_len;
1734 			m->m_pkthdr.rcvif = ifp;
1735 
1736 			(*ifp->if_input)(ifp, m);
1737 		}
1738 	}
1739 	if (rnr) {
1740 		fxp_scb_wait(sc);
1741 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1742 		    sc->fxp_desc.rx_head->rx_addr);
1743 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1744 	}
1745 }
1746 
1747 /*
1748  * Update packet in/out/collision statistics. The i82557 doesn't
1749  * allow you to access these counters without doing a fairly
1750  * expensive DMA to get _all_ of the statistics it maintains, so
1751  * we do this operation here only once per second. The statistics
1752  * counters in the kernel are updated from the previous dump-stats
1753  * DMA and then a new dump-stats DMA is started. The on-chip
1754  * counters are zeroed when the DMA completes. If we can't start
1755  * the DMA immediately, we don't wait - we just prepare to read
1756  * them again next time.
1757  */
1758 static void
1759 fxp_tick(void *xsc)
1760 {
1761 	struct fxp_softc *sc = xsc;
1762 	struct ifnet *ifp = &sc->sc_if;
1763 	struct fxp_stats *sp = sc->fxp_stats;
1764 	int s;
1765 
1766 	FXP_LOCK(sc);
1767 	s = splimp();
1768 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1769 	ifp->if_opackets += le32toh(sp->tx_good);
1770 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1771 	if (sp->rx_good) {
1772 		ifp->if_ipackets += le32toh(sp->rx_good);
1773 		sc->rx_idle_secs = 0;
1774 	} else {
1775 		/*
1776 		 * Receiver's been idle for another second.
1777 		 */
1778 		sc->rx_idle_secs++;
1779 	}
1780 	ifp->if_ierrors +=
1781 	    le32toh(sp->rx_crc_errors) +
1782 	    le32toh(sp->rx_alignment_errors) +
1783 	    le32toh(sp->rx_rnr_errors) +
1784 	    le32toh(sp->rx_overrun_errors);
1785 	/*
1786 	 * If any transmit underruns occured, bump up the transmit
1787 	 * threshold by another 512 bytes (64 * 8).
1788 	 */
1789 	if (sp->tx_underruns) {
1790 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1791 		if (tx_threshold < 192)
1792 			tx_threshold += 64;
1793 	}
1794 
1795 	/*
1796 	 * Release any xmit buffers that have completed DMA. This isn't
1797 	 * strictly necessary to do here, but it's advantagous for mbufs
1798 	 * with external storage to be released in a timely manner rather
1799 	 * than being defered for a potentially long time. This limits
1800 	 * the delay to a maximum of one second.
1801 	 */
1802 	fxp_txeof(sc);
1803 
1804 	/*
1805 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1806 	 * then assume the receiver has locked up and attempt to clear
1807 	 * the condition by reprogramming the multicast filter. This is
1808 	 * a work-around for a bug in the 82557 where the receiver locks
1809 	 * up if it gets certain types of garbage in the syncronization
1810 	 * bits prior to the packet header. This bug is supposed to only
1811 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1812 	 * mode as well (perhaps due to a 10/100 speed transition).
1813 	 */
1814 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1815 		sc->rx_idle_secs = 0;
1816 		fxp_mc_setup(sc);
1817 	}
1818 	/*
1819 	 * If there is no pending command, start another stats
1820 	 * dump. Otherwise punt for now.
1821 	 */
1822 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1823 		/*
1824 		 * Start another stats dump.
1825 		 */
1826 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1827 		    BUS_DMASYNC_PREREAD);
1828 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1829 	} else {
1830 		/*
1831 		 * A previous command is still waiting to be accepted.
1832 		 * Just zero our copy of the stats and wait for the
1833 		 * next timer event to update them.
1834 		 */
1835 		sp->tx_good = 0;
1836 		sp->tx_underruns = 0;
1837 		sp->tx_total_collisions = 0;
1838 
1839 		sp->rx_good = 0;
1840 		sp->rx_crc_errors = 0;
1841 		sp->rx_alignment_errors = 0;
1842 		sp->rx_rnr_errors = 0;
1843 		sp->rx_overrun_errors = 0;
1844 	}
1845 	if (sc->miibus != NULL)
1846 		mii_tick(device_get_softc(sc->miibus));
1847 
1848 	/*
1849 	 * Schedule another timeout one second from now.
1850 	 */
1851 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1852 	FXP_UNLOCK(sc);
1853 	splx(s);
1854 }
1855 
1856 /*
1857  * Stop the interface. Cancels the statistics updater and resets
1858  * the interface.
1859  */
1860 static void
1861 fxp_stop(struct fxp_softc *sc)
1862 {
1863 	struct ifnet *ifp = &sc->sc_if;
1864 	struct fxp_tx *txp;
1865 	int i;
1866 
1867 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1868 	ifp->if_timer = 0;
1869 
1870 #ifdef DEVICE_POLLING
1871 	ether_poll_deregister(ifp);
1872 #endif
1873 	/*
1874 	 * Cancel stats updater.
1875 	 */
1876 	untimeout(fxp_tick, sc, sc->stat_ch);
1877 
1878 	/*
1879 	 * Issue software reset, which also unloads the microcode.
1880 	 */
1881 	sc->flags &= ~FXP_FLAG_UCODE;
1882 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1883 	DELAY(50);
1884 
1885 	/*
1886 	 * Release any xmit buffers.
1887 	 */
1888 	txp = sc->fxp_desc.tx_list;
1889 	if (txp != NULL) {
1890 		for (i = 0; i < FXP_NTXCB; i++) {
1891  			if (txp[i].tx_mbuf != NULL) {
1892 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1893 				    BUS_DMASYNC_POSTWRITE);
1894 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1895 				m_freem(txp[i].tx_mbuf);
1896 				txp[i].tx_mbuf = NULL;
1897 				/* clear this to reset csum offload bits */
1898 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1899 			}
1900 		}
1901 	}
1902 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1903 	sc->tx_queued = 0;
1904 }
1905 
1906 /*
1907  * Watchdog/transmission transmit timeout handler. Called when a
1908  * transmission is started on the interface, but no interrupt is
1909  * received before the timeout. This usually indicates that the
1910  * card has wedged for some reason.
1911  */
1912 static void
1913 fxp_watchdog(struct ifnet *ifp)
1914 {
1915 	struct fxp_softc *sc = ifp->if_softc;
1916 
1917 	FXP_LOCK(sc);
1918 	device_printf(sc->dev, "device timeout\n");
1919 	ifp->if_oerrors++;
1920 
1921 	fxp_init_body(sc);
1922 	FXP_UNLOCK(sc);
1923 }
1924 
1925 /*
1926  * Acquire locks and then call the real initialization function.  This
1927  * is necessary because ether_ioctl() calls if_init() and this would
1928  * result in mutex recursion if the mutex was held.
1929  */
1930 static void
1931 fxp_init(void *xsc)
1932 {
1933 	struct fxp_softc *sc = xsc;
1934 
1935 	FXP_LOCK(sc);
1936 	fxp_init_body(sc);
1937 	FXP_UNLOCK(sc);
1938 }
1939 
1940 /*
1941  * Perform device initialization. This routine must be called with the
1942  * softc lock held.
1943  */
1944 static void
1945 fxp_init_body(struct fxp_softc *sc)
1946 {
1947 	struct ifnet *ifp = &sc->sc_if;
1948 	struct fxp_cb_config *cbp;
1949 	struct fxp_cb_ias *cb_ias;
1950 	struct fxp_cb_tx *tcbp;
1951 	struct fxp_tx *txp;
1952 	struct fxp_cb_mcs *mcsp;
1953 	int i, prm, s;
1954 
1955 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1956 	s = splimp();
1957 	/*
1958 	 * Cancel any pending I/O
1959 	 */
1960 	fxp_stop(sc);
1961 
1962 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1963 
1964 	/*
1965 	 * Initialize base of CBL and RFA memory. Loading with zero
1966 	 * sets it up for regular linear addressing.
1967 	 */
1968 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1969 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1970 
1971 	fxp_scb_wait(sc);
1972 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1973 
1974 	/*
1975 	 * Initialize base of dump-stats buffer.
1976 	 */
1977 	fxp_scb_wait(sc);
1978 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1979 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1980 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1981 
1982 	/*
1983 	 * Attempt to load microcode if requested.
1984 	 */
1985 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1986 		fxp_load_ucode(sc);
1987 
1988 	/*
1989 	 * Initialize the multicast address list.
1990 	 */
1991 	if (fxp_mc_addrs(sc)) {
1992 		mcsp = sc->mcsp;
1993 		mcsp->cb_status = 0;
1994 		mcsp->cb_command =
1995 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1996 		mcsp->link_addr = 0xffffffff;
1997 		/*
1998 	 	 * Start the multicast setup command.
1999 		 */
2000 		fxp_scb_wait(sc);
2001 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2002 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2003 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2004 		/* ...and wait for it to complete. */
2005 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2006 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2007 		    BUS_DMASYNC_POSTWRITE);
2008 	}
2009 
2010 	/*
2011 	 * We temporarily use memory that contains the TxCB list to
2012 	 * construct the config CB. The TxCB list memory is rebuilt
2013 	 * later.
2014 	 */
2015 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2016 
2017 	/*
2018 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2019 	 * zero and must be one bits in this structure and this is the easiest
2020 	 * way to initialize them all to proper values.
2021 	 */
2022 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2023 
2024 	cbp->cb_status =	0;
2025 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2026 	    FXP_CB_COMMAND_EL);
2027 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2028 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2029 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2030 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2031 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2032 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2033 	cbp->type_enable =	0;	/* actually reserved */
2034 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2035 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2036 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2037 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2038 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2039 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2040 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2041 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2042 	cbp->ci_int =		1;	/* interrupt on CU idle */
2043 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2044 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2045 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2046 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
2047 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2048 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2049 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2050 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2051 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2052 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2053 	cbp->csma_dis =		0;	/* (don't) disable link */
2054 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2055 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2056 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2057 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2058 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2059 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2060 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2061 	cbp->loopback =		0;	/* (don't) loopback */
2062 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2063 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2064 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2065 	cbp->promiscuous =	prm;	/* promiscuous mode */
2066 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2067 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2068 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2069 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2070 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2071 
2072 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2073 	cbp->padding =		1;	/* (do) pad short tx packets */
2074 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2075 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2076 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2077 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2078 					/* must set wake_en in PMCSR also */
2079 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2080 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2081 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2082 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2083 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2084 
2085 	if (fxp_noflow || sc->revision == FXP_REV_82557) {
2086 		/*
2087 		 * The 82557 has no hardware flow control, the values
2088 		 * below are the defaults for the chip.
2089 		 */
2090 		cbp->fc_delay_lsb =	0;
2091 		cbp->fc_delay_msb =	0x40;
2092 		cbp->pri_fc_thresh =	3;
2093 		cbp->tx_fc_dis =	0;
2094 		cbp->rx_fc_restop =	0;
2095 		cbp->rx_fc_restart =	0;
2096 		cbp->fc_filter =	0;
2097 		cbp->pri_fc_loc =	1;
2098 	} else {
2099 		cbp->fc_delay_lsb =	0x1f;
2100 		cbp->fc_delay_msb =	0x01;
2101 		cbp->pri_fc_thresh =	3;
2102 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2103 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2104 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2105 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2106 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2107 	}
2108 
2109 	/*
2110 	 * Start the config command/DMA.
2111 	 */
2112 	fxp_scb_wait(sc);
2113 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2114 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2115 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2116 	/* ...and wait for it to complete. */
2117 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2118 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2119 
2120 	/*
2121 	 * Now initialize the station address. Temporarily use the TxCB
2122 	 * memory area like we did above for the config CB.
2123 	 */
2124 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2125 	cb_ias->cb_status = 0;
2126 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2127 	cb_ias->link_addr = 0xffffffff;
2128 	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2129 	    sizeof(sc->arpcom.ac_enaddr));
2130 
2131 	/*
2132 	 * Start the IAS (Individual Address Setup) command/DMA.
2133 	 */
2134 	fxp_scb_wait(sc);
2135 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2136 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2137 	/* ...and wait for it to complete. */
2138 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2139 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2140 
2141 	/*
2142 	 * Initialize transmit control block (TxCB) list.
2143 	 */
2144 	txp = sc->fxp_desc.tx_list;
2145 	tcbp = sc->fxp_desc.cbl_list;
2146 	bzero(tcbp, FXP_TXCB_SZ);
2147 	for (i = 0; i < FXP_NTXCB; i++) {
2148 		txp[i].tx_cb = tcbp + i;
2149 		txp[i].tx_mbuf = NULL;
2150 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2151 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2152 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2153 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2154 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2155 			tcbp[i].tbd_array_addr =
2156 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2157 		else
2158 			tcbp[i].tbd_array_addr =
2159 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2160 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2161 	}
2162 	/*
2163 	 * Set the suspend flag on the first TxCB and start the control
2164 	 * unit. It will execute the NOP and then suspend.
2165 	 */
2166 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2167 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2168 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2169 	sc->tx_queued = 1;
2170 
2171 	fxp_scb_wait(sc);
2172 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2173 
2174 	/*
2175 	 * Initialize receiver buffer area - RFA.
2176 	 */
2177 	fxp_scb_wait(sc);
2178 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2179 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2180 
2181 	/*
2182 	 * Set current media.
2183 	 */
2184 	if (sc->miibus != NULL)
2185 		mii_mediachg(device_get_softc(sc->miibus));
2186 
2187 	ifp->if_flags |= IFF_RUNNING;
2188 	ifp->if_flags &= ~IFF_OACTIVE;
2189 
2190 	/*
2191 	 * Enable interrupts.
2192 	 */
2193 #ifdef DEVICE_POLLING
2194 	/*
2195 	 * ... but only do that if we are not polling. And because (presumably)
2196 	 * the default is interrupts on, we need to disable them explicitly!
2197 	 */
2198 	if ( ifp->if_flags & IFF_POLLING )
2199 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2200 	else
2201 #endif /* DEVICE_POLLING */
2202 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2203 
2204 	/*
2205 	 * Start stats updater.
2206 	 */
2207 	sc->stat_ch = timeout(fxp_tick, sc, hz);
2208 	splx(s);
2209 }
2210 
2211 static int
2212 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2213 {
2214 
2215 	return (0);
2216 }
2217 
2218 static void
2219 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2220 {
2221 
2222 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2223 }
2224 
2225 /*
2226  * Change media according to request.
2227  */
2228 static int
2229 fxp_ifmedia_upd(struct ifnet *ifp)
2230 {
2231 	struct fxp_softc *sc = ifp->if_softc;
2232 	struct mii_data *mii;
2233 
2234 	mii = device_get_softc(sc->miibus);
2235 	mii_mediachg(mii);
2236 	return (0);
2237 }
2238 
2239 /*
2240  * Notify the world which media we're using.
2241  */
2242 static void
2243 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2244 {
2245 	struct fxp_softc *sc = ifp->if_softc;
2246 	struct mii_data *mii;
2247 
2248 	mii = device_get_softc(sc->miibus);
2249 	mii_pollstat(mii);
2250 	ifmr->ifm_active = mii->mii_media_active;
2251 	ifmr->ifm_status = mii->mii_media_status;
2252 
2253 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2254 		sc->cu_resume_bug = 1;
2255 	else
2256 		sc->cu_resume_bug = 0;
2257 }
2258 
2259 /*
2260  * Add a buffer to the end of the RFA buffer list.
2261  * Return 0 if successful, 1 for failure. A failure results in
2262  * adding the 'oldm' (if non-NULL) on to the end of the list -
2263  * tossing out its old contents and recycling it.
2264  * The RFA struct is stuck at the beginning of mbuf cluster and the
2265  * data pointer is fixed up to point just past it.
2266  */
2267 static int
2268 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2269 {
2270 	struct mbuf *m;
2271 	struct fxp_rfa *rfa, *p_rfa;
2272 	struct fxp_rx *p_rx;
2273 	bus_dmamap_t tmp_map;
2274 	int error;
2275 
2276 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2277 	if (m == NULL)
2278 		return (ENOBUFS);
2279 
2280 	/*
2281 	 * Move the data pointer up so that the incoming data packet
2282 	 * will be 32-bit aligned.
2283 	 */
2284 	m->m_data += RFA_ALIGNMENT_FUDGE;
2285 
2286 	/*
2287 	 * Get a pointer to the base of the mbuf cluster and move
2288 	 * data start past it.
2289 	 */
2290 	rfa = mtod(m, struct fxp_rfa *);
2291 	m->m_data += sc->rfa_size;
2292 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2293 
2294 	/*
2295 	 * Initialize the rest of the RFA.  Note that since the RFA
2296 	 * is misaligned, we cannot store values directly.  Instead,
2297 	 * we use an optimized, inline copy.
2298 	 */
2299 
2300 	rfa->rfa_status = 0;
2301 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2302 	rfa->actual_size = 0;
2303 
2304 	le32enc(&rfa->link_addr, 0xffffffff);
2305 	le32enc(&rfa->rbd_addr, 0xffffffff);
2306 
2307 	/* Map the RFA into DMA memory. */
2308 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2309 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2310 	    &rxp->rx_addr, 0);
2311 	if (error) {
2312 		m_freem(m);
2313 		return (error);
2314 	}
2315 
2316 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2317 	tmp_map = sc->spare_map;
2318 	sc->spare_map = rxp->rx_map;
2319 	rxp->rx_map = tmp_map;
2320 	rxp->rx_mbuf = m;
2321 
2322 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2323 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2324 
2325 	/*
2326 	 * If there are other buffers already on the list, attach this
2327 	 * one to the end by fixing up the tail to point to this one.
2328 	 */
2329 	if (sc->fxp_desc.rx_head != NULL) {
2330 		p_rx = sc->fxp_desc.rx_tail;
2331 		p_rfa = (struct fxp_rfa *)
2332 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2333 		p_rx->rx_next = rxp;
2334 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2335 		p_rfa->rfa_control = 0;
2336 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2337 		    BUS_DMASYNC_PREWRITE);
2338 	} else {
2339 		rxp->rx_next = NULL;
2340 		sc->fxp_desc.rx_head = rxp;
2341 	}
2342 	sc->fxp_desc.rx_tail = rxp;
2343 	return (0);
2344 }
2345 
2346 static volatile int
2347 fxp_miibus_readreg(device_t dev, int phy, int reg)
2348 {
2349 	struct fxp_softc *sc = device_get_softc(dev);
2350 	int count = 10000;
2351 	int value;
2352 
2353 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2354 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2355 
2356 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2357 	    && count--)
2358 		DELAY(10);
2359 
2360 	if (count <= 0)
2361 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2362 
2363 	return (value & 0xffff);
2364 }
2365 
2366 static void
2367 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2368 {
2369 	struct fxp_softc *sc = device_get_softc(dev);
2370 	int count = 10000;
2371 
2372 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2373 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2374 	    (value & 0xffff));
2375 
2376 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2377 	    count--)
2378 		DELAY(10);
2379 
2380 	if (count <= 0)
2381 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2382 }
2383 
2384 static int
2385 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2386 {
2387 	struct fxp_softc *sc = ifp->if_softc;
2388 	struct ifreq *ifr = (struct ifreq *)data;
2389 	struct mii_data *mii;
2390 	int s, error = 0;
2391 
2392 	/*
2393 	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2394 	 * that by saying we're busy if the lock is already held.
2395 	 */
2396 	if (mtx_owned(&sc->sc_mtx))
2397 		return (EBUSY);
2398 
2399 	FXP_LOCK(sc);
2400 	s = splimp();
2401 
2402 	switch (command) {
2403 	case SIOCSIFFLAGS:
2404 		if (ifp->if_flags & IFF_ALLMULTI)
2405 			sc->flags |= FXP_FLAG_ALL_MCAST;
2406 		else
2407 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2408 
2409 		/*
2410 		 * If interface is marked up and not running, then start it.
2411 		 * If it is marked down and running, stop it.
2412 		 * XXX If it's up then re-initialize it. This is so flags
2413 		 * such as IFF_PROMISC are handled.
2414 		 */
2415 		if (ifp->if_flags & IFF_UP) {
2416 			fxp_init_body(sc);
2417 		} else {
2418 			if (ifp->if_flags & IFF_RUNNING)
2419 				fxp_stop(sc);
2420 		}
2421 		break;
2422 
2423 	case SIOCADDMULTI:
2424 	case SIOCDELMULTI:
2425 		if (ifp->if_flags & IFF_ALLMULTI)
2426 			sc->flags |= FXP_FLAG_ALL_MCAST;
2427 		else
2428 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2429 		/*
2430 		 * Multicast list has changed; set the hardware filter
2431 		 * accordingly.
2432 		 */
2433 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2434 			fxp_mc_setup(sc);
2435 		/*
2436 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2437 		 * again rather than else {}.
2438 		 */
2439 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2440 			fxp_init_body(sc);
2441 		error = 0;
2442 		break;
2443 
2444 	case SIOCSIFMEDIA:
2445 	case SIOCGIFMEDIA:
2446 		if (sc->miibus != NULL) {
2447 			mii = device_get_softc(sc->miibus);
2448                         error = ifmedia_ioctl(ifp, ifr,
2449                             &mii->mii_media, command);
2450 		} else {
2451                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2452 		}
2453 		break;
2454 
2455 	default:
2456 		/*
2457 		 * ether_ioctl() will eventually call fxp_start() which
2458 		 * will result in mutex recursion so drop it first.
2459 		 */
2460 		FXP_UNLOCK(sc);
2461 		error = ether_ioctl(ifp, command, data);
2462 	}
2463 	if (mtx_owned(&sc->sc_mtx))
2464 		FXP_UNLOCK(sc);
2465 	splx(s);
2466 	return (error);
2467 }
2468 
2469 /*
2470  * Fill in the multicast address list and return number of entries.
2471  */
2472 static int
2473 fxp_mc_addrs(struct fxp_softc *sc)
2474 {
2475 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2476 	struct ifnet *ifp = &sc->sc_if;
2477 	struct ifmultiaddr *ifma;
2478 	int nmcasts;
2479 
2480 	nmcasts = 0;
2481 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2482 #if __FreeBSD_version < 500000
2483 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2484 #else
2485 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2486 #endif
2487 			if (ifma->ifma_addr->sa_family != AF_LINK)
2488 				continue;
2489 			if (nmcasts >= MAXMCADDR) {
2490 				sc->flags |= FXP_FLAG_ALL_MCAST;
2491 				nmcasts = 0;
2492 				break;
2493 			}
2494 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2495 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2496 			nmcasts++;
2497 		}
2498 	}
2499 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2500 	return (nmcasts);
2501 }
2502 
2503 /*
2504  * Program the multicast filter.
2505  *
2506  * We have an artificial restriction that the multicast setup command
2507  * must be the first command in the chain, so we take steps to ensure
2508  * this. By requiring this, it allows us to keep up the performance of
2509  * the pre-initialized command ring (esp. link pointers) by not actually
2510  * inserting the mcsetup command in the ring - i.e. its link pointer
2511  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2512  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2513  * lead into the regular TxCB ring when it completes.
2514  *
2515  * This function must be called at splimp.
2516  */
2517 static void
2518 fxp_mc_setup(struct fxp_softc *sc)
2519 {
2520 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2521 	struct ifnet *ifp = &sc->sc_if;
2522 	struct fxp_tx *txp;
2523 	int count;
2524 
2525 	/*
2526 	 * If there are queued commands, we must wait until they are all
2527 	 * completed. If we are already waiting, then add a NOP command
2528 	 * with interrupt option so that we're notified when all commands
2529 	 * have been completed - fxp_start() ensures that no additional
2530 	 * TX commands will be added when need_mcsetup is true.
2531 	 */
2532 	if (sc->tx_queued) {
2533 		/*
2534 		 * need_mcsetup will be true if we are already waiting for the
2535 		 * NOP command to be completed (see below). In this case, bail.
2536 		 */
2537 		if (sc->need_mcsetup)
2538 			return;
2539 		sc->need_mcsetup = 1;
2540 
2541 		/*
2542 		 * Add a NOP command with interrupt so that we are notified
2543 		 * when all TX commands have been processed.
2544 		 */
2545 		txp = sc->fxp_desc.tx_last->tx_next;
2546 		txp->tx_mbuf = NULL;
2547 		txp->tx_cb->cb_status = 0;
2548 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2549 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2550 		/*
2551 		 * Advance the end of list forward.
2552 		 */
2553 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2554 		    htole16(~FXP_CB_COMMAND_S);
2555 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2556 		sc->fxp_desc.tx_last = txp;
2557 		sc->tx_queued++;
2558 		/*
2559 		 * Issue a resume in case the CU has just suspended.
2560 		 */
2561 		fxp_scb_wait(sc);
2562 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2563 		/*
2564 		 * Set a 5 second timer just in case we don't hear from the
2565 		 * card again.
2566 		 */
2567 		ifp->if_timer = 5;
2568 
2569 		return;
2570 	}
2571 	sc->need_mcsetup = 0;
2572 
2573 	/*
2574 	 * Initialize multicast setup descriptor.
2575 	 */
2576 	mcsp->cb_status = 0;
2577 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2578 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2579 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2580 	txp = &sc->fxp_desc.mcs_tx;
2581 	txp->tx_mbuf = NULL;
2582 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2583 	txp->tx_next = sc->fxp_desc.tx_list;
2584 	(void) fxp_mc_addrs(sc);
2585 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2586 	sc->tx_queued = 1;
2587 
2588 	/*
2589 	 * Wait until command unit is not active. This should never
2590 	 * be the case when nothing is queued, but make sure anyway.
2591 	 */
2592 	count = 100;
2593 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2594 	    FXP_SCB_CUS_ACTIVE && --count)
2595 		DELAY(10);
2596 	if (count == 0) {
2597 		device_printf(sc->dev, "command queue timeout\n");
2598 		return;
2599 	}
2600 
2601 	/*
2602 	 * Start the multicast setup command.
2603 	 */
2604 	fxp_scb_wait(sc);
2605 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2606 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2607 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2608 
2609 	ifp->if_timer = 2;
2610 	return;
2611 }
2612 
2613 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2614 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2615 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2616 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2617 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2618 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2619 
2620 #define UCODE(x)	x, sizeof(x)
2621 
2622 struct ucode {
2623 	u_int32_t	revision;
2624 	u_int32_t	*ucode;
2625 	int		length;
2626 	u_short		int_delay_offset;
2627 	u_short		bundle_max_offset;
2628 } ucode_table[] = {
2629 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2630 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2631 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2632 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2633 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2634 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2635 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2636 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2637 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2638 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2639 	{ 0, NULL, 0, 0, 0 }
2640 };
2641 
2642 static void
2643 fxp_load_ucode(struct fxp_softc *sc)
2644 {
2645 	struct ucode *uc;
2646 	struct fxp_cb_ucode *cbp;
2647 
2648 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2649 		if (sc->revision == uc->revision)
2650 			break;
2651 	if (uc->ucode == NULL)
2652 		return;
2653 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2654 	cbp->cb_status = 0;
2655 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2656 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2657 	memcpy(cbp->ucode, uc->ucode, uc->length);
2658 	if (uc->int_delay_offset)
2659 		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2660 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2661 	if (uc->bundle_max_offset)
2662 		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2663 		    htole16(sc->tunable_bundle_max);
2664 	/*
2665 	 * Download the ucode to the chip.
2666 	 */
2667 	fxp_scb_wait(sc);
2668 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2669 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2670 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2671 	/* ...and wait for it to complete. */
2672 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2673 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2674 	device_printf(sc->dev,
2675 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2676 	    sc->tunable_int_delay,
2677 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2678 	sc->flags |= FXP_FLAG_UCODE;
2679 }
2680 
2681 static int
2682 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2683 {
2684 	int error, value;
2685 
2686 	value = *(int *)arg1;
2687 	error = sysctl_handle_int(oidp, &value, 0, req);
2688 	if (error || !req->newptr)
2689 		return (error);
2690 	if (value < low || value > high)
2691 		return (EINVAL);
2692 	*(int *)arg1 = value;
2693 	return (0);
2694 }
2695 
2696 /*
2697  * Interrupt delay is expressed in microseconds, a multiplier is used
2698  * to convert this to the appropriate clock ticks before using.
2699  */
2700 static int
2701 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2702 {
2703 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2704 }
2705 
2706 static int
2707 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2708 {
2709 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2710 }
2711