1 /*- 2 * Copyright (c) 1995, David Greenman 3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice unmodified, this list of conditions, and the following 11 * disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 */ 29 30 /* 31 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/endian.h> 40 #include <sys/mbuf.h> 41 /* #include <sys/mutex.h> */ 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/sysctl.h> 45 46 #include <net/if.h> 47 #include <net/if_dl.h> 48 #include <net/if_media.h> 49 50 #include <net/bpf.h> 51 #include <sys/sockio.h> 52 #include <sys/bus.h> 53 #include <machine/bus.h> 54 #include <sys/rman.h> 55 #include <machine/resource.h> 56 57 #include <net/ethernet.h> 58 #include <net/if_arp.h> 59 60 #include <machine/clock.h> /* for DELAY */ 61 62 #include <net/if_types.h> 63 #include <net/if_vlan_var.h> 64 65 #ifdef FXP_IP_CSUM_WAR 66 #include <netinet/in.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #include <machine/in_cksum.h> 70 #endif 71 72 #include <pci/pcivar.h> 73 #include <pci/pcireg.h> /* for PCIM_CMD_xxx */ 74 75 #include <dev/mii/mii.h> 76 #include <dev/mii/miivar.h> 77 78 #include <dev/fxp/if_fxpreg.h> 79 #include <dev/fxp/if_fxpvar.h> 80 #include <dev/fxp/rcvbundl.h> 81 82 MODULE_DEPEND(fxp, pci, 1, 1, 1); 83 MODULE_DEPEND(fxp, ether, 1, 1, 1); 84 MODULE_DEPEND(fxp, miibus, 1, 1, 1); 85 #include "miibus_if.h" 86 87 /* 88 * NOTE! On the Alpha, we have an alignment constraint. The 89 * card DMAs the packet immediately following the RFA. However, 90 * the first thing in the packet is a 14-byte Ethernet header. 91 * This means that the packet is misaligned. To compensate, 92 * we actually offset the RFA 2 bytes into the cluster. This 93 * alignes the packet after the Ethernet header at a 32-bit 94 * boundary. HOWEVER! This means that the RFA is misaligned! 95 */ 96 #define RFA_ALIGNMENT_FUDGE 2 97 98 /* 99 * Set initial transmit threshold at 64 (512 bytes). This is 100 * increased by 64 (512 bytes) at a time, to maximum of 192 101 * (1536 bytes), if an underrun occurs. 102 */ 103 static int tx_threshold = 64; 104 105 /* 106 * The configuration byte map has several undefined fields which 107 * must be one or must be zero. Set up a template for these bits 108 * only, (assuming a 82557 chip) leaving the actual configuration 109 * to fxp_init. 110 * 111 * See struct fxp_cb_config for the bit definitions. 112 */ 113 static u_char fxp_cb_config_template[] = { 114 0x0, 0x0, /* cb_status */ 115 0x0, 0x0, /* cb_command */ 116 0x0, 0x0, 0x0, 0x0, /* link_addr */ 117 0x0, /* 0 */ 118 0x0, /* 1 */ 119 0x0, /* 2 */ 120 0x0, /* 3 */ 121 0x0, /* 4 */ 122 0x0, /* 5 */ 123 0x32, /* 6 */ 124 0x0, /* 7 */ 125 0x0, /* 8 */ 126 0x0, /* 9 */ 127 0x6, /* 10 */ 128 0x0, /* 11 */ 129 0x0, /* 12 */ 130 0x0, /* 13 */ 131 0xf2, /* 14 */ 132 0x48, /* 15 */ 133 0x0, /* 16 */ 134 0x40, /* 17 */ 135 0xf0, /* 18 */ 136 0x0, /* 19 */ 137 0x3f, /* 20 */ 138 0x5 /* 21 */ 139 }; 140 141 struct fxp_ident { 142 u_int16_t devid; 143 char *name; 144 }; 145 146 /* 147 * Claim various Intel PCI device identifiers for this driver. The 148 * sub-vendor and sub-device field are extensively used to identify 149 * particular variants, but we don't currently differentiate between 150 * them. 151 */ 152 static struct fxp_ident fxp_ident_table[] = { 153 { 0x1029, "Intel 82559 PCI/CardBus Pro/100" }, 154 { 0x1030, "Intel 82559 Pro/100 Ethernet" }, 155 { 0x1031, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 156 { 0x1032, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 157 { 0x1033, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 158 { 0x1034, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 159 { 0x1035, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 160 { 0x1036, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 161 { 0x1037, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 162 { 0x1038, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 163 { 0x1039, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 164 { 0x103A, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 165 { 0x103B, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 166 { 0x103C, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 167 { 0x103D, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 168 { 0x103E, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 169 { 0x1050, "Intel 82801BA (D865) Pro/100 VE Ethernet" }, 170 { 0x1059, "Intel 82551QM Pro/100 M Mobile Connection" }, 171 { 0x1209, "Intel 82559ER Embedded 10/100 Ethernet" }, 172 { 0x1229, "Intel 82557/8/9 EtherExpress Pro/100(B) Ethernet" }, 173 { 0x2449, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" }, 174 { 0, NULL }, 175 }; 176 177 #ifdef FXP_IP_CSUM_WAR 178 #define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 179 #else 180 #define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 181 #endif 182 183 static int fxp_probe(device_t dev); 184 static int fxp_attach(device_t dev); 185 static int fxp_detach(device_t dev); 186 static int fxp_shutdown(device_t dev); 187 static int fxp_suspend(device_t dev); 188 static int fxp_resume(device_t dev); 189 190 static void fxp_intr(void *xsc); 191 static void fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, 192 u_int8_t statack, int count); 193 static void fxp_init(void *xsc); 194 static void fxp_init_body(struct fxp_softc *sc); 195 static void fxp_tick(void *xsc); 196 static void fxp_powerstate_d0(device_t dev); 197 static void fxp_start(struct ifnet *ifp); 198 static void fxp_start_body(struct ifnet *ifp); 199 static void fxp_stop(struct fxp_softc *sc); 200 static void fxp_release(struct fxp_softc *sc); 201 static int fxp_ioctl(struct ifnet *ifp, u_long command, 202 caddr_t data); 203 static void fxp_watchdog(struct ifnet *ifp); 204 static int fxp_add_rfabuf(struct fxp_softc *sc, 205 struct fxp_rx *rxp); 206 static int fxp_mc_addrs(struct fxp_softc *sc); 207 static void fxp_mc_setup(struct fxp_softc *sc); 208 static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, 209 int autosize); 210 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, 211 u_int16_t data); 212 static void fxp_autosize_eeprom(struct fxp_softc *sc); 213 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, 214 int offset, int words); 215 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, 216 int offset, int words); 217 static int fxp_ifmedia_upd(struct ifnet *ifp); 218 static void fxp_ifmedia_sts(struct ifnet *ifp, 219 struct ifmediareq *ifmr); 220 static int fxp_serial_ifmedia_upd(struct ifnet *ifp); 221 static void fxp_serial_ifmedia_sts(struct ifnet *ifp, 222 struct ifmediareq *ifmr); 223 static volatile int fxp_miibus_readreg(device_t dev, int phy, int reg); 224 static void fxp_miibus_writereg(device_t dev, int phy, int reg, 225 int value); 226 static void fxp_load_ucode(struct fxp_softc *sc); 227 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, 228 int low, int high); 229 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); 230 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); 231 static __inline void fxp_scb_wait(struct fxp_softc *sc); 232 static __inline void fxp_scb_cmd(struct fxp_softc *sc, int cmd); 233 static __inline void fxp_dma_wait(struct fxp_softc *sc, 234 volatile u_int16_t *status, bus_dma_tag_t dmat, 235 bus_dmamap_t map); 236 237 static device_method_t fxp_methods[] = { 238 /* Device interface */ 239 DEVMETHOD(device_probe, fxp_probe), 240 DEVMETHOD(device_attach, fxp_attach), 241 DEVMETHOD(device_detach, fxp_detach), 242 DEVMETHOD(device_shutdown, fxp_shutdown), 243 DEVMETHOD(device_suspend, fxp_suspend), 244 DEVMETHOD(device_resume, fxp_resume), 245 246 /* MII interface */ 247 DEVMETHOD(miibus_readreg, fxp_miibus_readreg), 248 DEVMETHOD(miibus_writereg, fxp_miibus_writereg), 249 250 { 0, 0 } 251 }; 252 253 static driver_t fxp_driver = { 254 "fxp", 255 fxp_methods, 256 sizeof(struct fxp_softc), 257 }; 258 259 static devclass_t fxp_devclass; 260 261 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0); 262 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0); 263 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0); 264 265 static int fxp_rnr; 266 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events"); 267 268 static int fxp_noflow; 269 SYSCTL_INT(_hw, OID_AUTO, fxp_noflow, CTLFLAG_RW, &fxp_noflow, 0, "fxp flow control disabled"); 270 TUNABLE_INT("hw.fxp_noflow", &fxp_noflow); 271 272 /* 273 * Wait for the previous command to be accepted (but not necessarily 274 * completed). 275 */ 276 static __inline void 277 fxp_scb_wait(struct fxp_softc *sc) 278 { 279 int i = 10000; 280 281 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) 282 DELAY(2); 283 if (i == 0) 284 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", 285 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), 286 CSR_READ_1(sc, FXP_CSR_SCB_STATACK), 287 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), 288 CSR_READ_2(sc, FXP_CSR_FLOWCONTROL)); 289 } 290 291 static __inline void 292 fxp_scb_cmd(struct fxp_softc *sc, int cmd) 293 { 294 295 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { 296 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); 297 fxp_scb_wait(sc); 298 } 299 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); 300 } 301 302 static __inline void 303 fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status, 304 bus_dma_tag_t dmat, bus_dmamap_t map) 305 { 306 int i = 10000; 307 308 bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD); 309 while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) { 310 DELAY(2); 311 bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD); 312 } 313 if (i == 0) 314 device_printf(sc->dev, "DMA timeout\n"); 315 } 316 317 /* 318 * Return identification string if this is device is ours. 319 */ 320 static int 321 fxp_probe(device_t dev) 322 { 323 u_int16_t devid; 324 struct fxp_ident *ident; 325 326 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) { 327 devid = pci_get_device(dev); 328 for (ident = fxp_ident_table; ident->name != NULL; ident++) { 329 if (ident->devid == devid) { 330 device_set_desc(dev, ident->name); 331 return (0); 332 } 333 } 334 } 335 return (ENXIO); 336 } 337 338 static void 339 fxp_powerstate_d0(device_t dev) 340 { 341 #if __FreeBSD_version >= 430002 342 u_int32_t iobase, membase, irq; 343 344 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 345 /* Save important PCI config data. */ 346 iobase = pci_read_config(dev, FXP_PCI_IOBA, 4); 347 membase = pci_read_config(dev, FXP_PCI_MMBA, 4); 348 irq = pci_read_config(dev, PCIR_INTLINE, 4); 349 350 /* Reset the power state. */ 351 device_printf(dev, "chip is in D%d power mode " 352 "-- setting to D0\n", pci_get_powerstate(dev)); 353 354 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 355 356 /* Restore PCI config data. */ 357 pci_write_config(dev, FXP_PCI_IOBA, iobase, 4); 358 pci_write_config(dev, FXP_PCI_MMBA, membase, 4); 359 pci_write_config(dev, PCIR_INTLINE, irq, 4); 360 } 361 #endif 362 } 363 364 static void 365 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 366 { 367 u_int32_t *addr; 368 369 if (error) 370 return; 371 372 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 373 addr = arg; 374 *addr = segs->ds_addr; 375 } 376 377 static int 378 fxp_attach(device_t dev) 379 { 380 int error = 0; 381 struct fxp_softc *sc = device_get_softc(dev); 382 struct ifnet *ifp; 383 struct fxp_rx *rxp; 384 u_int32_t val; 385 u_int16_t data, myea[ETHER_ADDR_LEN / 2]; 386 int i, rid, m1, m2, prefer_iomap, maxtxseg; 387 int s, ipcbxmit_disable; 388 389 sc->dev = dev; 390 callout_handle_init(&sc->stat_ch); 391 sysctl_ctx_init(&sc->sysctl_ctx); 392 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 393 MTX_DEF); 394 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, 395 fxp_serial_ifmedia_sts); 396 397 s = splimp(); 398 399 /* 400 * Enable bus mastering. 401 */ 402 pci_enable_busmaster(dev); 403 val = pci_read_config(dev, PCIR_COMMAND, 2); 404 405 fxp_powerstate_d0(dev); 406 407 /* 408 * Figure out which we should try first - memory mapping or i/o mapping? 409 * We default to memory mapping. Then we accept an override from the 410 * command line. Then we check to see which one is enabled. 411 */ 412 m1 = PCIM_CMD_MEMEN; 413 m2 = PCIM_CMD_PORTEN; 414 prefer_iomap = 0; 415 if (resource_int_value(device_get_name(dev), device_get_unit(dev), 416 "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) { 417 m1 = PCIM_CMD_PORTEN; 418 m2 = PCIM_CMD_MEMEN; 419 } 420 421 sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 422 sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; 423 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd, 424 0, ~0, 1, RF_ACTIVE); 425 if (sc->mem == NULL) { 426 sc->rtp = 427 (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 428 sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; 429 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd, 430 0, ~0, 1, RF_ACTIVE); 431 } 432 433 if (!sc->mem) { 434 error = ENXIO; 435 goto fail; 436 } 437 if (bootverbose) { 438 device_printf(dev, "using %s space register mapping\n", 439 sc->rtp == SYS_RES_MEMORY? "memory" : "I/O"); 440 } 441 442 sc->sc_st = rman_get_bustag(sc->mem); 443 sc->sc_sh = rman_get_bushandle(sc->mem); 444 445 /* 446 * Allocate our interrupt. 447 */ 448 rid = 0; 449 sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 450 RF_SHAREABLE | RF_ACTIVE); 451 if (sc->irq == NULL) { 452 device_printf(dev, "could not map interrupt\n"); 453 error = ENXIO; 454 goto fail; 455 } 456 457 /* 458 * Reset to a stable state. 459 */ 460 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 461 DELAY(10); 462 463 /* 464 * Find out how large of an SEEPROM we have. 465 */ 466 fxp_autosize_eeprom(sc); 467 468 /* 469 * Determine whether we must use the 503 serial interface. 470 */ 471 fxp_read_eeprom(sc, &data, 6, 1); 472 if ((data & FXP_PHY_DEVICE_MASK) != 0 && 473 (data & FXP_PHY_SERIAL_ONLY)) 474 sc->flags |= FXP_FLAG_SERIAL_MEDIA; 475 476 /* 477 * Create the sysctl tree 478 */ 479 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 480 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 481 device_get_nameunit(dev), CTLFLAG_RD, 0, ""); 482 if (sc->sysctl_tree == NULL) { 483 error = ENXIO; 484 goto fail; 485 } 486 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 487 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, 488 &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I", 489 "FXP driver receive interrupt microcode bundling delay"); 490 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 491 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, 492 &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I", 493 "FXP driver receive interrupt microcode bundle size limit"); 494 495 /* 496 * Pull in device tunables. 497 */ 498 sc->tunable_int_delay = TUNABLE_INT_DELAY; 499 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; 500 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 501 "int_delay", &sc->tunable_int_delay); 502 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 503 "bundle_max", &sc->tunable_bundle_max); 504 505 /* 506 * Find out the chip revision; lump all 82557 revs together. 507 */ 508 fxp_read_eeprom(sc, &data, 5, 1); 509 if ((data >> 8) == 1) 510 sc->revision = FXP_REV_82557; 511 else 512 sc->revision = pci_get_revid(dev); 513 514 /* 515 * Enable workarounds for certain chip revision deficiencies. 516 * 517 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly 518 * some systems based a normal 82559 design, have a defect where 519 * the chip can cause a PCI protocol violation if it receives 520 * a CU_RESUME command when it is entering the IDLE state. The 521 * workaround is to disable Dynamic Standby Mode, so the chip never 522 * deasserts CLKRUN#, and always remains in an active state. 523 * 524 * See Intel 82801BA/82801BAM Specification Update, Errata #30. 525 */ 526 i = pci_get_device(dev); 527 if (i == 0x2449 || (i > 0x1030 && i < 0x1039) || 528 sc->revision >= FXP_REV_82559_A0) { 529 fxp_read_eeprom(sc, &data, 10, 1); 530 if (data & 0x02) { /* STB enable */ 531 u_int16_t cksum; 532 int i; 533 534 device_printf(dev, 535 "Disabling dynamic standby mode in EEPROM\n"); 536 data &= ~0x02; 537 fxp_write_eeprom(sc, &data, 10, 1); 538 device_printf(dev, "New EEPROM ID: 0x%x\n", data); 539 cksum = 0; 540 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) { 541 fxp_read_eeprom(sc, &data, i, 1); 542 cksum += data; 543 } 544 i = (1 << sc->eeprom_size) - 1; 545 cksum = 0xBABA - cksum; 546 fxp_read_eeprom(sc, &data, i, 1); 547 fxp_write_eeprom(sc, &cksum, i, 1); 548 device_printf(dev, 549 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", 550 i, data, cksum); 551 #if 1 552 /* 553 * If the user elects to continue, try the software 554 * workaround, as it is better than nothing. 555 */ 556 sc->flags |= FXP_FLAG_CU_RESUME_BUG; 557 #endif 558 } 559 } 560 561 /* 562 * If we are not a 82557 chip, we can enable extended features. 563 */ 564 if (sc->revision != FXP_REV_82557) { 565 /* 566 * If MWI is enabled in the PCI configuration, and there 567 * is a valid cacheline size (8 or 16 dwords), then tell 568 * the board to turn on MWI. 569 */ 570 if (val & PCIM_CMD_MWRICEN && 571 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) 572 sc->flags |= FXP_FLAG_MWI_ENABLE; 573 574 /* turn on the extended TxCB feature */ 575 sc->flags |= FXP_FLAG_EXT_TXCB; 576 577 /* enable reception of long frames for VLAN */ 578 sc->flags |= FXP_FLAG_LONG_PKT_EN; 579 } 580 581 /* 582 * Enable use of extended RFDs and TCBs for 82550 583 * and later chips. Note: we need extended TXCB support 584 * too, but that's already enabled by the code above. 585 * Be careful to do this only on the right devices. 586 * 587 * At least some 82550 cards probed as "chip=0x12298086 rev=0x0d" 588 * truncate packets that end with an mbuf containing 1 to 3 bytes 589 * when used with this feature enabled in the previous version of the 590 * driver. This problem appears to be fixed now that the driver 591 * always sets the hardware parse bit in the IPCB structure, which 592 * the "Intel 8255x 10/100 Mbps Ethernet Controller Family Open 593 * Source Software Developer Manual" says is necessary in the 594 * cases where packet truncation was observed. 595 * 596 * The device hint "hint.fxp.UNIT_NUMBER.ipcbxmit_disable" 597 * allows this feature to be disabled at boot time. 598 * 599 * If fxp is not compiled into the kernel, this feature may also 600 * be disabled at run time: 601 * # kldunload fxp 602 * # kenv hint.fxp.0.ipcbxmit_disable=1 603 * # kldload fxp 604 */ 605 606 if (resource_int_value("fxp", device_get_unit(dev), "ipcbxmit_disable", 607 &ipcbxmit_disable) != 0) 608 ipcbxmit_disable = 0; 609 if (ipcbxmit_disable == 0 && (sc->revision == FXP_REV_82550 || 610 sc->revision == FXP_REV_82550_C)) { 611 sc->rfa_size = sizeof (struct fxp_rfa); 612 sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT; 613 sc->flags |= FXP_FLAG_EXT_RFA; 614 } else { 615 sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN; 616 sc->tx_cmd = FXP_CB_COMMAND_XMIT; 617 } 618 619 /* 620 * Allocate DMA tags and DMA safe memory. 621 */ 622 maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG; 623 error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT, 624 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg, 625 maxtxseg, MCLBYTES, 0, &sc->fxp_mtag); 626 if (error) { 627 device_printf(dev, "could not allocate dma tag\n"); 628 goto fail; 629 } 630 631 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 632 BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1, 633 sizeof(struct fxp_stats), 0, &sc->fxp_stag); 634 if (error) { 635 device_printf(dev, "could not allocate dma tag\n"); 636 goto fail; 637 } 638 639 error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats, 640 BUS_DMA_NOWAIT, &sc->fxp_smap); 641 if (error) 642 goto fail; 643 error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats, 644 sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0); 645 if (error) { 646 device_printf(dev, "could not map the stats buffer\n"); 647 goto fail; 648 } 649 bzero(sc->fxp_stats, sizeof(struct fxp_stats)); 650 651 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 652 BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1, 653 FXP_TXCB_SZ, 0, &sc->cbl_tag); 654 if (error) { 655 device_printf(dev, "could not allocate dma tag\n"); 656 goto fail; 657 } 658 659 error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list, 660 BUS_DMA_NOWAIT, &sc->cbl_map); 661 if (error) 662 goto fail; 663 bzero(sc->fxp_desc.cbl_list, FXP_TXCB_SZ); 664 665 error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map, 666 sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr, 667 &sc->fxp_desc.cbl_addr, 0); 668 if (error) { 669 device_printf(dev, "could not map DMA memory\n"); 670 goto fail; 671 } 672 673 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 674 BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1, 675 sizeof(struct fxp_cb_mcs), 0, &sc->mcs_tag); 676 if (error) { 677 device_printf(dev, "could not allocate dma tag\n"); 678 goto fail; 679 } 680 681 error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp, 682 BUS_DMA_NOWAIT, &sc->mcs_map); 683 if (error) 684 goto fail; 685 error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp, 686 sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0); 687 if (error) { 688 device_printf(dev, "can't map the multicast setup command\n"); 689 goto fail; 690 } 691 692 /* 693 * Pre-allocate the TX DMA maps. 694 */ 695 for (i = 0; i < FXP_NTXCB; i++) { 696 error = bus_dmamap_create(sc->fxp_mtag, 0, 697 &sc->fxp_desc.tx_list[i].tx_map); 698 if (error) { 699 device_printf(dev, "can't create DMA map for TX\n"); 700 goto fail; 701 } 702 } 703 error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map); 704 if (error) { 705 device_printf(dev, "can't create spare DMA map\n"); 706 goto fail; 707 } 708 709 /* 710 * Pre-allocate our receive buffers. 711 */ 712 sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL; 713 for (i = 0; i < FXP_NRFABUFS; i++) { 714 rxp = &sc->fxp_desc.rx_list[i]; 715 error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map); 716 if (error) { 717 device_printf(dev, "can't create DMA map for RX\n"); 718 goto fail; 719 } 720 if (fxp_add_rfabuf(sc, rxp) != 0) { 721 error = ENOMEM; 722 goto fail; 723 } 724 } 725 726 /* 727 * Read MAC address. 728 */ 729 fxp_read_eeprom(sc, myea, 0, 3); 730 sc->arpcom.ac_enaddr[0] = myea[0] & 0xff; 731 sc->arpcom.ac_enaddr[1] = myea[0] >> 8; 732 sc->arpcom.ac_enaddr[2] = myea[1] & 0xff; 733 sc->arpcom.ac_enaddr[3] = myea[1] >> 8; 734 sc->arpcom.ac_enaddr[4] = myea[2] & 0xff; 735 sc->arpcom.ac_enaddr[5] = myea[2] >> 8; 736 device_printf(dev, "Ethernet address %6D%s\n", 737 sc->arpcom.ac_enaddr, ":", 738 sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : ""); 739 if (bootverbose) { 740 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", 741 pci_get_vendor(dev), pci_get_device(dev), 742 pci_get_subvendor(dev), pci_get_subdevice(dev), 743 pci_get_revid(dev)); 744 fxp_read_eeprom(sc, &data, 10, 1); 745 device_printf(dev, "Dynamic Standby mode is %s\n", 746 data & 0x02 ? "enabled" : "disabled"); 747 } 748 749 /* 750 * If this is only a 10Mbps device, then there is no MII, and 751 * the PHY will use a serial interface instead. 752 * 753 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 754 * doesn't have a programming interface of any sort. The 755 * media is sensed automatically based on how the link partner 756 * is configured. This is, in essence, manual configuration. 757 */ 758 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { 759 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 760 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 761 } else { 762 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd, 763 fxp_ifmedia_sts)) { 764 device_printf(dev, "MII without any PHY!\n"); 765 error = ENXIO; 766 goto fail; 767 } 768 } 769 770 ifp = &sc->arpcom.ac_if; 771 ifp->if_unit = device_get_unit(dev); 772 ifp->if_name = "fxp"; 773 ifp->if_output = ether_output; 774 ifp->if_baudrate = 100000000; 775 ifp->if_init = fxp_init; 776 ifp->if_softc = sc; 777 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 778 ifp->if_ioctl = fxp_ioctl; 779 ifp->if_start = fxp_start; 780 ifp->if_watchdog = fxp_watchdog; 781 782 /* Enable checksum offload for 82550 or better chips */ 783 if (sc->flags & FXP_FLAG_EXT_RFA) { 784 ifp->if_hwassist = FXP_CSUM_FEATURES; 785 ifp->if_capabilities = IFCAP_HWCSUM; 786 ifp->if_capenable = ifp->if_capabilities; 787 } 788 789 /* 790 * Attach the interface. 791 */ 792 ether_ifattach(ifp, sc->arpcom.ac_enaddr); 793 794 /* 795 * Tell the upper layer(s) we support long frames. 796 */ 797 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 798 ifp->if_capabilities |= IFCAP_VLAN_MTU; 799 800 /* 801 * Let the system queue as many packets as we have available 802 * TX descriptors. 803 */ 804 ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1; 805 806 /* 807 * Hook our interrupt after all initialization is complete. 808 * XXX This driver has been tested with the INTR_MPSAFFE flag set 809 * however, ifp and its functions are not fully locked so MPSAFE 810 * should not be used unless you can handle potential data loss. 811 */ 812 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET /*|INTR_MPSAFE*/, 813 fxp_intr, sc, &sc->ih); 814 if (error) { 815 device_printf(dev, "could not setup irq\n"); 816 ether_ifdetach(&sc->arpcom.ac_if); 817 goto fail; 818 } 819 820 fail: 821 splx(s); 822 if (error) 823 fxp_release(sc); 824 return (error); 825 } 826 827 /* 828 * Release all resources. The softc lock should not be held and the 829 * interrupt should already be torn down. 830 */ 831 static void 832 fxp_release(struct fxp_softc *sc) 833 { 834 struct fxp_rx *rxp; 835 struct fxp_tx *txp; 836 int i; 837 838 mtx_assert(&sc->sc_mtx, MA_NOTOWNED); 839 if (sc->ih) 840 panic("fxp_release() called with intr handle still active"); 841 if (sc->miibus) 842 device_delete_child(sc->dev, sc->miibus); 843 bus_generic_detach(sc->dev); 844 ifmedia_removeall(&sc->sc_media); 845 if (sc->fxp_desc.cbl_list) { 846 bus_dmamap_unload(sc->cbl_tag, sc->cbl_map); 847 bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list, 848 sc->cbl_map); 849 } 850 if (sc->fxp_stats) { 851 bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap); 852 bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap); 853 } 854 if (sc->mcsp) { 855 bus_dmamap_unload(sc->mcs_tag, sc->mcs_map); 856 bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map); 857 } 858 if (sc->irq) 859 bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq); 860 if (sc->mem) 861 bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem); 862 if (sc->fxp_mtag) { 863 for (i = 0; i < FXP_NRFABUFS; i++) { 864 rxp = &sc->fxp_desc.rx_list[i]; 865 if (rxp->rx_mbuf != NULL) { 866 bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map, 867 BUS_DMASYNC_POSTREAD); 868 bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map); 869 m_freem(rxp->rx_mbuf); 870 } 871 bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map); 872 } 873 bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map); 874 bus_dma_tag_destroy(sc->fxp_mtag); 875 } 876 if (sc->fxp_stag) { 877 for (i = 0; i < FXP_NTXCB; i++) { 878 txp = &sc->fxp_desc.tx_list[i]; 879 if (txp->tx_mbuf != NULL) { 880 bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, 881 BUS_DMASYNC_POSTWRITE); 882 bus_dmamap_unload(sc->fxp_mtag, txp->tx_map); 883 m_freem(txp->tx_mbuf); 884 } 885 bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map); 886 } 887 bus_dma_tag_destroy(sc->fxp_stag); 888 } 889 if (sc->cbl_tag) 890 bus_dma_tag_destroy(sc->cbl_tag); 891 if (sc->mcs_tag) 892 bus_dma_tag_destroy(sc->mcs_tag); 893 894 sysctl_ctx_free(&sc->sysctl_ctx); 895 896 mtx_destroy(&sc->sc_mtx); 897 } 898 899 /* 900 * Detach interface. 901 */ 902 static int 903 fxp_detach(device_t dev) 904 { 905 struct fxp_softc *sc = device_get_softc(dev); 906 int s; 907 908 FXP_LOCK(sc); 909 s = splimp(); 910 911 sc->suspended = 1; /* Do same thing as we do for suspend */ 912 /* 913 * Close down routes etc. 914 */ 915 ether_ifdetach(&sc->arpcom.ac_if); 916 917 /* 918 * Stop DMA and drop transmit queue, but disable interrupts first. 919 */ 920 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 921 fxp_stop(sc); 922 FXP_UNLOCK(sc); 923 924 /* 925 * Unhook interrupt before dropping lock. This is to prevent 926 * races with fxp_intr(). 927 */ 928 bus_teardown_intr(sc->dev, sc->irq, sc->ih); 929 sc->ih = NULL; 930 931 splx(s); 932 933 /* Release our allocated resources. */ 934 fxp_release(sc); 935 return (0); 936 } 937 938 /* 939 * Device shutdown routine. Called at system shutdown after sync. The 940 * main purpose of this routine is to shut off receiver DMA so that 941 * kernel memory doesn't get clobbered during warmboot. 942 */ 943 static int 944 fxp_shutdown(device_t dev) 945 { 946 /* 947 * Make sure that DMA is disabled prior to reboot. Not doing 948 * do could allow DMA to corrupt kernel memory during the 949 * reboot before the driver initializes. 950 */ 951 fxp_stop((struct fxp_softc *) device_get_softc(dev)); 952 return (0); 953 } 954 955 /* 956 * Device suspend routine. Stop the interface and save some PCI 957 * settings in case the BIOS doesn't restore them properly on 958 * resume. 959 */ 960 static int 961 fxp_suspend(device_t dev) 962 { 963 struct fxp_softc *sc = device_get_softc(dev); 964 int i, s; 965 966 FXP_LOCK(sc); 967 s = splimp(); 968 969 fxp_stop(sc); 970 971 for (i = 0; i < 5; i++) 972 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4); 973 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); 974 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); 975 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 976 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 977 978 sc->suspended = 1; 979 980 FXP_UNLOCK(sc); 981 splx(s); 982 return (0); 983 } 984 985 /* 986 * Device resume routine. Restore some PCI settings in case the BIOS 987 * doesn't, re-enable busmastering, and restart the interface if 988 * appropriate. 989 */ 990 static int 991 fxp_resume(device_t dev) 992 { 993 struct fxp_softc *sc = device_get_softc(dev); 994 struct ifnet *ifp = &sc->sc_if; 995 u_int16_t pci_command; 996 int i, s; 997 998 FXP_LOCK(sc); 999 s = splimp(); 1000 1001 fxp_powerstate_d0(dev); 1002 1003 /* better way to do this? */ 1004 for (i = 0; i < 5; i++) 1005 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4); 1006 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4); 1007 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1); 1008 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1); 1009 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1); 1010 1011 /* reenable busmastering */ 1012 pci_command = pci_read_config(dev, PCIR_COMMAND, 2); 1013 pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); 1014 pci_write_config(dev, PCIR_COMMAND, pci_command, 2); 1015 1016 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 1017 DELAY(10); 1018 1019 /* reinitialize interface if necessary */ 1020 if (ifp->if_flags & IFF_UP) 1021 fxp_init_body(sc); 1022 1023 sc->suspended = 0; 1024 1025 FXP_UNLOCK(sc); 1026 splx(s); 1027 return (0); 1028 } 1029 1030 static void 1031 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) 1032 { 1033 u_int16_t reg; 1034 int x; 1035 1036 /* 1037 * Shift in data. 1038 */ 1039 for (x = 1 << (length - 1); x; x >>= 1) { 1040 if (data & x) 1041 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1042 else 1043 reg = FXP_EEPROM_EECS; 1044 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1045 DELAY(1); 1046 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1047 DELAY(1); 1048 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1049 DELAY(1); 1050 } 1051 } 1052 1053 /* 1054 * Read from the serial EEPROM. Basically, you manually shift in 1055 * the read opcode (one bit at a time) and then shift in the address, 1056 * and then you shift out the data (all of this one bit at a time). 1057 * The word size is 16 bits, so you have to provide the address for 1058 * every 16 bits of data. 1059 */ 1060 static u_int16_t 1061 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) 1062 { 1063 u_int16_t reg, data; 1064 int x; 1065 1066 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1067 /* 1068 * Shift in read opcode. 1069 */ 1070 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); 1071 /* 1072 * Shift in address. 1073 */ 1074 data = 0; 1075 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { 1076 if (offset & x) 1077 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1078 else 1079 reg = FXP_EEPROM_EECS; 1080 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1081 DELAY(1); 1082 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1083 DELAY(1); 1084 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1085 DELAY(1); 1086 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; 1087 data++; 1088 if (autosize && reg == 0) { 1089 sc->eeprom_size = data; 1090 break; 1091 } 1092 } 1093 /* 1094 * Shift out data. 1095 */ 1096 data = 0; 1097 reg = FXP_EEPROM_EECS; 1098 for (x = 1 << 15; x; x >>= 1) { 1099 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1100 DELAY(1); 1101 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1102 data |= x; 1103 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1104 DELAY(1); 1105 } 1106 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1107 DELAY(1); 1108 1109 return (data); 1110 } 1111 1112 static void 1113 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data) 1114 { 1115 int i; 1116 1117 /* 1118 * Erase/write enable. 1119 */ 1120 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1121 fxp_eeprom_shiftin(sc, 0x4, 3); 1122 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); 1123 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1124 DELAY(1); 1125 /* 1126 * Shift in write opcode, address, data. 1127 */ 1128 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1129 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); 1130 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); 1131 fxp_eeprom_shiftin(sc, data, 16); 1132 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1133 DELAY(1); 1134 /* 1135 * Wait for EEPROM to finish up. 1136 */ 1137 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1138 DELAY(1); 1139 for (i = 0; i < 1000; i++) { 1140 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1141 break; 1142 DELAY(50); 1143 } 1144 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1145 DELAY(1); 1146 /* 1147 * Erase/write disable. 1148 */ 1149 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1150 fxp_eeprom_shiftin(sc, 0x4, 3); 1151 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); 1152 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1153 DELAY(1); 1154 } 1155 1156 /* 1157 * From NetBSD: 1158 * 1159 * Figure out EEPROM size. 1160 * 1161 * 559's can have either 64-word or 256-word EEPROMs, the 558 1162 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet 1163 * talks about the existance of 16 to 256 word EEPROMs. 1164 * 1165 * The only known sizes are 64 and 256, where the 256 version is used 1166 * by CardBus cards to store CIS information. 1167 * 1168 * The address is shifted in msb-to-lsb, and after the last 1169 * address-bit the EEPROM is supposed to output a `dummy zero' bit, 1170 * after which follows the actual data. We try to detect this zero, by 1171 * probing the data-out bit in the EEPROM control register just after 1172 * having shifted in a bit. If the bit is zero, we assume we've 1173 * shifted enough address bits. The data-out should be tri-state, 1174 * before this, which should translate to a logical one. 1175 */ 1176 static void 1177 fxp_autosize_eeprom(struct fxp_softc *sc) 1178 { 1179 1180 /* guess maximum size of 256 words */ 1181 sc->eeprom_size = 8; 1182 1183 /* autosize */ 1184 (void) fxp_eeprom_getword(sc, 0, 1); 1185 } 1186 1187 static void 1188 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1189 { 1190 int i; 1191 1192 for (i = 0; i < words; i++) 1193 data[i] = fxp_eeprom_getword(sc, offset + i, 0); 1194 } 1195 1196 static void 1197 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1198 { 1199 int i; 1200 1201 for (i = 0; i < words; i++) 1202 fxp_eeprom_putword(sc, offset + i, data[i]); 1203 } 1204 1205 static void 1206 fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg, 1207 bus_size_t mapsize, int error) 1208 { 1209 struct fxp_softc *sc; 1210 struct fxp_cb_tx *txp; 1211 int i; 1212 1213 if (error) 1214 return; 1215 1216 KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments")); 1217 1218 sc = arg; 1219 txp = sc->fxp_desc.tx_last->tx_next->tx_cb; 1220 for (i = 0; i < nseg; i++) { 1221 KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large")); 1222 /* 1223 * If this is an 82550/82551, then we're using extended 1224 * TxCBs _and_ we're using checksum offload. This means 1225 * that the TxCB is really an IPCB. One major difference 1226 * between the two is that with plain extended TxCBs, 1227 * the bottom half of the TxCB contains two entries from 1228 * the TBD array, whereas IPCBs contain just one entry: 1229 * one entry (8 bytes) has been sacrificed for the TCP/IP 1230 * checksum offload control bits. So to make things work 1231 * right, we have to start filling in the TBD array 1232 * starting from a different place depending on whether 1233 * the chip is an 82550/82551 or not. 1234 */ 1235 if (sc->flags & FXP_FLAG_EXT_RFA) { 1236 txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr); 1237 txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len); 1238 } else { 1239 txp->tbd[i].tb_addr = htole32(segs[i].ds_addr); 1240 txp->tbd[i].tb_size = htole32(segs[i].ds_len); 1241 } 1242 } 1243 txp->tbd_number = nseg; 1244 } 1245 1246 /* 1247 * Grab the softc lock and call the real fxp_start_body() routine 1248 */ 1249 static void 1250 fxp_start(struct ifnet *ifp) 1251 { 1252 struct fxp_softc *sc = ifp->if_softc; 1253 1254 FXP_LOCK(sc); 1255 fxp_start_body(ifp); 1256 FXP_UNLOCK(sc); 1257 } 1258 1259 /* 1260 * Start packet transmission on the interface. 1261 * This routine must be called with the softc lock held, and is an 1262 * internal entry point only. 1263 */ 1264 static void 1265 fxp_start_body(struct ifnet *ifp) 1266 { 1267 struct fxp_softc *sc = ifp->if_softc; 1268 struct fxp_tx *txp; 1269 struct mbuf *mb_head; 1270 int error; 1271 1272 mtx_assert(&sc->sc_mtx, MA_OWNED); 1273 /* 1274 * See if we need to suspend xmit until the multicast filter 1275 * has been reprogrammed (which can only be done at the head 1276 * of the command chain). 1277 */ 1278 if (sc->need_mcsetup) { 1279 return; 1280 } 1281 1282 txp = NULL; 1283 1284 /* 1285 * We're finished if there is nothing more to add to the list or if 1286 * we're all filled up with buffers to transmit. 1287 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add 1288 * a NOP command when needed. 1289 */ 1290 while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) { 1291 1292 /* 1293 * Grab a packet to transmit. 1294 */ 1295 IF_DEQUEUE(&ifp->if_snd, mb_head); 1296 1297 /* 1298 * Get pointer to next available tx desc. 1299 */ 1300 txp = sc->fxp_desc.tx_last->tx_next; 1301 1302 /* 1303 * A note in Appendix B of the Intel 8255x 10/100 Mbps 1304 * Ethernet Controller Family Open Source Software 1305 * Developer Manual says: 1306 * Using software parsing is only allowed with legal 1307 * TCP/IP or UDP/IP packets. 1308 * ... 1309 * For all other datagrams, hardware parsing must 1310 * be used. 1311 * Software parsing appears to truncate ICMP and 1312 * fragmented UDP packets that contain one to three 1313 * bytes in the second (and final) mbuf of the packet. 1314 */ 1315 if (sc->flags & FXP_FLAG_EXT_RFA) 1316 txp->tx_cb->ipcb_ip_activation_high = 1317 FXP_IPCB_HARDWAREPARSING_ENABLE; 1318 1319 /* 1320 * Deal with TCP/IP checksum offload. Note that 1321 * in order for TCP checksum offload to work, 1322 * the pseudo header checksum must have already 1323 * been computed and stored in the checksum field 1324 * in the TCP header. The stack should have 1325 * already done this for us. 1326 */ 1327 1328 if (mb_head->m_pkthdr.csum_flags) { 1329 if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1330 txp->tx_cb->ipcb_ip_schedule = 1331 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; 1332 if (mb_head->m_pkthdr.csum_flags & CSUM_TCP) 1333 txp->tx_cb->ipcb_ip_schedule |= 1334 FXP_IPCB_TCP_PACKET; 1335 } 1336 #ifdef FXP_IP_CSUM_WAR 1337 /* 1338 * XXX The 82550 chip appears to have trouble 1339 * dealing with IP header checksums in very small 1340 * datagrams, namely fragments from 1 to 3 bytes 1341 * in size. For example, say you want to transmit 1342 * a UDP packet of 1473 bytes. The packet will be 1343 * fragmented over two IP datagrams, the latter 1344 * containing only one byte of data. The 82550 will 1345 * botch the header checksum on the 1-byte fragment. 1346 * As long as the datagram contains 4 or more bytes 1347 * of data, you're ok. 1348 * 1349 * The following code attempts to work around this 1350 * problem: if the datagram is less than 38 bytes 1351 * in size (14 bytes ether header, 20 bytes IP header, 1352 * plus 4 bytes of data), we punt and compute the IP 1353 * header checksum by hand. This workaround doesn't 1354 * work very well, however, since it can be fooled 1355 * by things like VLAN tags and IP options that make 1356 * the header sizes/offsets vary. 1357 */ 1358 1359 if (mb_head->m_pkthdr.csum_flags & CSUM_IP) { 1360 if (mb_head->m_pkthdr.len < 38) { 1361 struct ip *ip; 1362 mb_head->m_data += ETHER_HDR_LEN; 1363 ip = mtod(mb_head, struct ip *); 1364 ip->ip_sum = in_cksum(mb_head, 1365 ip->ip_hl << 2); 1366 mb_head->m_data -= ETHER_HDR_LEN; 1367 } else { 1368 txp->tx_cb->ipcb_ip_activation_high = 1369 FXP_IPCB_HARDWAREPARSING_ENABLE; 1370 txp->tx_cb->ipcb_ip_schedule |= 1371 FXP_IPCB_IP_CHECKSUM_ENABLE; 1372 } 1373 } 1374 #endif 1375 } 1376 1377 /* 1378 * Go through each of the mbufs in the chain and initialize 1379 * the transmit buffer descriptors with the physical address 1380 * and size of the mbuf. 1381 */ 1382 error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map, 1383 mb_head, fxp_dma_map_txbuf, sc, 0); 1384 1385 if (error && error != EFBIG) { 1386 device_printf(sc->dev, "can't map mbuf (error %d)\n", 1387 error); 1388 m_freem(mb_head); 1389 break; 1390 } 1391 1392 if (error) { 1393 struct mbuf *mn; 1394 1395 /* 1396 * We ran out of segments. We have to recopy this 1397 * mbuf chain first. Bail out if we can't get the 1398 * new buffers. 1399 */ 1400 mn = m_defrag(mb_head, M_DONTWAIT); 1401 if (mn == NULL) { 1402 m_freem(mb_head); 1403 break; 1404 } else { 1405 mb_head = mn; 1406 } 1407 error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map, 1408 mb_head, fxp_dma_map_txbuf, sc, 0); 1409 if (error) { 1410 device_printf(sc->dev, 1411 "can't map mbuf (error %d)\n", error); 1412 m_freem(mb_head); 1413 break; 1414 } 1415 } 1416 1417 bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, 1418 BUS_DMASYNC_PREWRITE); 1419 1420 txp->tx_mbuf = mb_head; 1421 txp->tx_cb->cb_status = 0; 1422 txp->tx_cb->byte_count = 0; 1423 if (sc->tx_queued != FXP_CXINT_THRESH - 1) { 1424 txp->tx_cb->cb_command = 1425 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1426 FXP_CB_COMMAND_S); 1427 } else { 1428 txp->tx_cb->cb_command = 1429 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1430 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 1431 /* 1432 * Set a 5 second timer just in case we don't hear 1433 * from the card again. 1434 */ 1435 ifp->if_timer = 5; 1436 } 1437 txp->tx_cb->tx_threshold = tx_threshold; 1438 1439 /* 1440 * Advance the end of list forward. 1441 */ 1442 1443 #ifdef __alpha__ 1444 /* 1445 * On platforms which can't access memory in 16-bit 1446 * granularities, we must prevent the card from DMA'ing 1447 * up the status while we update the command field. 1448 * This could cause us to overwrite the completion status. 1449 * XXX This is probably bogus and we're _not_ looking 1450 * for atomicity here. 1451 */ 1452 atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command, 1453 htole16(FXP_CB_COMMAND_S)); 1454 #else 1455 sc->fxp_desc.tx_last->tx_cb->cb_command &= 1456 htole16(~FXP_CB_COMMAND_S); 1457 #endif /*__alpha__*/ 1458 sc->fxp_desc.tx_last = txp; 1459 1460 /* 1461 * Advance the beginning of the list forward if there are 1462 * no other packets queued (when nothing is queued, tx_first 1463 * sits on the last TxCB that was sent out). 1464 */ 1465 if (sc->tx_queued == 0) 1466 sc->fxp_desc.tx_first = txp; 1467 1468 sc->tx_queued++; 1469 1470 /* 1471 * Pass packet to bpf if there is a listener. 1472 */ 1473 BPF_MTAP(ifp, mb_head); 1474 } 1475 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 1476 1477 /* 1478 * We're finished. If we added to the list, issue a RESUME to get DMA 1479 * going again if suspended. 1480 */ 1481 if (txp != NULL) { 1482 fxp_scb_wait(sc); 1483 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 1484 } 1485 } 1486 1487 #ifdef DEVICE_POLLING 1488 static poll_handler_t fxp_poll; 1489 1490 static void 1491 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1492 { 1493 struct fxp_softc *sc = ifp->if_softc; 1494 u_int8_t statack; 1495 1496 FXP_LOCK(sc); 1497 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */ 1498 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 1499 FXP_UNLOCK(sc); 1500 return; 1501 } 1502 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA | 1503 FXP_SCB_STATACK_FR; 1504 if (cmd == POLL_AND_CHECK_STATUS) { 1505 u_int8_t tmp; 1506 1507 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); 1508 if (tmp == 0xff || tmp == 0) { 1509 FXP_UNLOCK(sc); 1510 return; /* nothing to do */ 1511 } 1512 tmp &= ~statack; 1513 /* ack what we can */ 1514 if (tmp != 0) 1515 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp); 1516 statack |= tmp; 1517 } 1518 fxp_intr_body(sc, ifp, statack, count); 1519 FXP_UNLOCK(sc); 1520 } 1521 #endif /* DEVICE_POLLING */ 1522 1523 /* 1524 * Process interface interrupts. 1525 */ 1526 static void 1527 fxp_intr(void *xsc) 1528 { 1529 struct fxp_softc *sc = xsc; 1530 struct ifnet *ifp = &sc->sc_if; 1531 u_int8_t statack; 1532 1533 FXP_LOCK(sc); 1534 if (sc->suspended) { 1535 FXP_UNLOCK(sc); 1536 return; 1537 } 1538 1539 #ifdef DEVICE_POLLING 1540 if (ifp->if_flags & IFF_POLLING) { 1541 FXP_UNLOCK(sc); 1542 return; 1543 } 1544 if (ether_poll_register(fxp_poll, ifp)) { 1545 /* disable interrupts */ 1546 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 1547 fxp_poll(ifp, 0, 1); 1548 FXP_UNLOCK(sc); 1549 return; 1550 } 1551 #endif 1552 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { 1553 /* 1554 * It should not be possible to have all bits set; the 1555 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If 1556 * all bits are set, this may indicate that the card has 1557 * been physically ejected, so ignore it. 1558 */ 1559 if (statack == 0xff) { 1560 FXP_UNLOCK(sc); 1561 return; 1562 } 1563 1564 /* 1565 * First ACK all the interrupts in this pass. 1566 */ 1567 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); 1568 fxp_intr_body(sc, ifp, statack, -1); 1569 } 1570 FXP_UNLOCK(sc); 1571 } 1572 1573 static void 1574 fxp_txeof(struct fxp_softc *sc) 1575 { 1576 struct fxp_tx *txp; 1577 1578 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD); 1579 for (txp = sc->fxp_desc.tx_first; sc->tx_queued && 1580 (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0; 1581 txp = txp->tx_next) { 1582 if (txp->tx_mbuf != NULL) { 1583 bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, 1584 BUS_DMASYNC_POSTWRITE); 1585 bus_dmamap_unload(sc->fxp_mtag, txp->tx_map); 1586 m_freem(txp->tx_mbuf); 1587 txp->tx_mbuf = NULL; 1588 /* clear this to reset csum offload bits */ 1589 txp->tx_cb->tbd[0].tb_addr = 0; 1590 } 1591 sc->tx_queued--; 1592 } 1593 sc->fxp_desc.tx_first = txp; 1594 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 1595 } 1596 1597 static void 1598 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack, 1599 int count) 1600 { 1601 struct mbuf *m; 1602 struct fxp_rx *rxp; 1603 struct fxp_rfa *rfa; 1604 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0; 1605 1606 mtx_assert(&sc->sc_mtx, MA_OWNED); 1607 if (rnr) 1608 fxp_rnr++; 1609 #ifdef DEVICE_POLLING 1610 /* Pick up a deferred RNR condition if `count' ran out last time. */ 1611 if (sc->flags & FXP_FLAG_DEFERRED_RNR) { 1612 sc->flags &= ~FXP_FLAG_DEFERRED_RNR; 1613 rnr = 1; 1614 } 1615 #endif 1616 1617 /* 1618 * Free any finished transmit mbuf chains. 1619 * 1620 * Handle the CNA event likt a CXTNO event. It used to 1621 * be that this event (control unit not ready) was not 1622 * encountered, but it is now with the SMPng modifications. 1623 * The exact sequence of events that occur when the interface 1624 * is brought up are different now, and if this event 1625 * goes unhandled, the configuration/rxfilter setup sequence 1626 * can stall for several seconds. The result is that no 1627 * packets go out onto the wire for about 5 to 10 seconds 1628 * after the interface is ifconfig'ed for the first time. 1629 */ 1630 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) { 1631 fxp_txeof(sc); 1632 1633 ifp->if_timer = 0; 1634 if (sc->tx_queued == 0) { 1635 if (sc->need_mcsetup) 1636 fxp_mc_setup(sc); 1637 } 1638 /* 1639 * Try to start more packets transmitting. 1640 */ 1641 if (ifp->if_snd.ifq_head != NULL) 1642 fxp_start_body(ifp); 1643 } 1644 1645 /* 1646 * Just return if nothing happened on the receive side. 1647 */ 1648 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0) 1649 return; 1650 1651 /* 1652 * Process receiver interrupts. If a no-resource (RNR) 1653 * condition exists, get whatever packets we can and 1654 * re-start the receiver. 1655 * 1656 * When using polling, we do not process the list to completion, 1657 * so when we get an RNR interrupt we must defer the restart 1658 * until we hit the last buffer with the C bit set. 1659 * If we run out of cycles and rfa_headm has the C bit set, 1660 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so 1661 * that the info will be used in the subsequent polling cycle. 1662 */ 1663 for (;;) { 1664 rxp = sc->fxp_desc.rx_head; 1665 m = rxp->rx_mbuf; 1666 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + 1667 RFA_ALIGNMENT_FUDGE); 1668 bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map, 1669 BUS_DMASYNC_POSTREAD); 1670 1671 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */ 1672 if (count >= 0 && count-- == 0) { 1673 if (rnr) { 1674 /* Defer RNR processing until the next time. */ 1675 sc->flags |= FXP_FLAG_DEFERRED_RNR; 1676 rnr = 0; 1677 } 1678 break; 1679 } 1680 #endif /* DEVICE_POLLING */ 1681 1682 if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0) 1683 break; 1684 1685 /* 1686 * Advance head forward. 1687 */ 1688 sc->fxp_desc.rx_head = rxp->rx_next; 1689 1690 /* 1691 * Add a new buffer to the receive chain. 1692 * If this fails, the old buffer is recycled 1693 * instead. 1694 */ 1695 if (fxp_add_rfabuf(sc, rxp) == 0) { 1696 int total_len; 1697 1698 /* 1699 * Fetch packet length (the top 2 bits of 1700 * actual_size are flags set by the controller 1701 * upon completion), and drop the packet in case 1702 * of bogus length or CRC errors. 1703 */ 1704 total_len = le16toh(rfa->actual_size) & 0x3fff; 1705 if (total_len < sizeof(struct ether_header) || 1706 total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE - 1707 sc->rfa_size || 1708 le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) { 1709 m_freem(m); 1710 continue; 1711 } 1712 1713 /* Do IP checksum checking. */ 1714 if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) { 1715 if (rfa->rfax_csum_sts & 1716 FXP_RFDX_CS_IP_CSUM_BIT_VALID) 1717 m->m_pkthdr.csum_flags |= 1718 CSUM_IP_CHECKED; 1719 if (rfa->rfax_csum_sts & 1720 FXP_RFDX_CS_IP_CSUM_VALID) 1721 m->m_pkthdr.csum_flags |= 1722 CSUM_IP_VALID; 1723 if ((rfa->rfax_csum_sts & 1724 FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) && 1725 (rfa->rfax_csum_sts & 1726 FXP_RFDX_CS_TCPUDP_CSUM_VALID)) { 1727 m->m_pkthdr.csum_flags |= 1728 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 1729 m->m_pkthdr.csum_data = 0xffff; 1730 } 1731 } 1732 1733 m->m_pkthdr.len = m->m_len = total_len; 1734 m->m_pkthdr.rcvif = ifp; 1735 1736 (*ifp->if_input)(ifp, m); 1737 } 1738 } 1739 if (rnr) { 1740 fxp_scb_wait(sc); 1741 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 1742 sc->fxp_desc.rx_head->rx_addr); 1743 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 1744 } 1745 } 1746 1747 /* 1748 * Update packet in/out/collision statistics. The i82557 doesn't 1749 * allow you to access these counters without doing a fairly 1750 * expensive DMA to get _all_ of the statistics it maintains, so 1751 * we do this operation here only once per second. The statistics 1752 * counters in the kernel are updated from the previous dump-stats 1753 * DMA and then a new dump-stats DMA is started. The on-chip 1754 * counters are zeroed when the DMA completes. If we can't start 1755 * the DMA immediately, we don't wait - we just prepare to read 1756 * them again next time. 1757 */ 1758 static void 1759 fxp_tick(void *xsc) 1760 { 1761 struct fxp_softc *sc = xsc; 1762 struct ifnet *ifp = &sc->sc_if; 1763 struct fxp_stats *sp = sc->fxp_stats; 1764 int s; 1765 1766 FXP_LOCK(sc); 1767 s = splimp(); 1768 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD); 1769 ifp->if_opackets += le32toh(sp->tx_good); 1770 ifp->if_collisions += le32toh(sp->tx_total_collisions); 1771 if (sp->rx_good) { 1772 ifp->if_ipackets += le32toh(sp->rx_good); 1773 sc->rx_idle_secs = 0; 1774 } else { 1775 /* 1776 * Receiver's been idle for another second. 1777 */ 1778 sc->rx_idle_secs++; 1779 } 1780 ifp->if_ierrors += 1781 le32toh(sp->rx_crc_errors) + 1782 le32toh(sp->rx_alignment_errors) + 1783 le32toh(sp->rx_rnr_errors) + 1784 le32toh(sp->rx_overrun_errors); 1785 /* 1786 * If any transmit underruns occured, bump up the transmit 1787 * threshold by another 512 bytes (64 * 8). 1788 */ 1789 if (sp->tx_underruns) { 1790 ifp->if_oerrors += le32toh(sp->tx_underruns); 1791 if (tx_threshold < 192) 1792 tx_threshold += 64; 1793 } 1794 1795 /* 1796 * Release any xmit buffers that have completed DMA. This isn't 1797 * strictly necessary to do here, but it's advantagous for mbufs 1798 * with external storage to be released in a timely manner rather 1799 * than being defered for a potentially long time. This limits 1800 * the delay to a maximum of one second. 1801 */ 1802 fxp_txeof(sc); 1803 1804 /* 1805 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, 1806 * then assume the receiver has locked up and attempt to clear 1807 * the condition by reprogramming the multicast filter. This is 1808 * a work-around for a bug in the 82557 where the receiver locks 1809 * up if it gets certain types of garbage in the syncronization 1810 * bits prior to the packet header. This bug is supposed to only 1811 * occur in 10Mbps mode, but has been seen to occur in 100Mbps 1812 * mode as well (perhaps due to a 10/100 speed transition). 1813 */ 1814 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { 1815 sc->rx_idle_secs = 0; 1816 fxp_mc_setup(sc); 1817 } 1818 /* 1819 * If there is no pending command, start another stats 1820 * dump. Otherwise punt for now. 1821 */ 1822 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { 1823 /* 1824 * Start another stats dump. 1825 */ 1826 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 1827 BUS_DMASYNC_PREREAD); 1828 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); 1829 } else { 1830 /* 1831 * A previous command is still waiting to be accepted. 1832 * Just zero our copy of the stats and wait for the 1833 * next timer event to update them. 1834 */ 1835 sp->tx_good = 0; 1836 sp->tx_underruns = 0; 1837 sp->tx_total_collisions = 0; 1838 1839 sp->rx_good = 0; 1840 sp->rx_crc_errors = 0; 1841 sp->rx_alignment_errors = 0; 1842 sp->rx_rnr_errors = 0; 1843 sp->rx_overrun_errors = 0; 1844 } 1845 if (sc->miibus != NULL) 1846 mii_tick(device_get_softc(sc->miibus)); 1847 1848 /* 1849 * Schedule another timeout one second from now. 1850 */ 1851 sc->stat_ch = timeout(fxp_tick, sc, hz); 1852 FXP_UNLOCK(sc); 1853 splx(s); 1854 } 1855 1856 /* 1857 * Stop the interface. Cancels the statistics updater and resets 1858 * the interface. 1859 */ 1860 static void 1861 fxp_stop(struct fxp_softc *sc) 1862 { 1863 struct ifnet *ifp = &sc->sc_if; 1864 struct fxp_tx *txp; 1865 int i; 1866 1867 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1868 ifp->if_timer = 0; 1869 1870 #ifdef DEVICE_POLLING 1871 ether_poll_deregister(ifp); 1872 #endif 1873 /* 1874 * Cancel stats updater. 1875 */ 1876 untimeout(fxp_tick, sc, sc->stat_ch); 1877 1878 /* 1879 * Issue software reset, which also unloads the microcode. 1880 */ 1881 sc->flags &= ~FXP_FLAG_UCODE; 1882 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 1883 DELAY(50); 1884 1885 /* 1886 * Release any xmit buffers. 1887 */ 1888 txp = sc->fxp_desc.tx_list; 1889 if (txp != NULL) { 1890 for (i = 0; i < FXP_NTXCB; i++) { 1891 if (txp[i].tx_mbuf != NULL) { 1892 bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map, 1893 BUS_DMASYNC_POSTWRITE); 1894 bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map); 1895 m_freem(txp[i].tx_mbuf); 1896 txp[i].tx_mbuf = NULL; 1897 /* clear this to reset csum offload bits */ 1898 txp[i].tx_cb->tbd[0].tb_addr = 0; 1899 } 1900 } 1901 } 1902 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 1903 sc->tx_queued = 0; 1904 } 1905 1906 /* 1907 * Watchdog/transmission transmit timeout handler. Called when a 1908 * transmission is started on the interface, but no interrupt is 1909 * received before the timeout. This usually indicates that the 1910 * card has wedged for some reason. 1911 */ 1912 static void 1913 fxp_watchdog(struct ifnet *ifp) 1914 { 1915 struct fxp_softc *sc = ifp->if_softc; 1916 1917 FXP_LOCK(sc); 1918 device_printf(sc->dev, "device timeout\n"); 1919 ifp->if_oerrors++; 1920 1921 fxp_init_body(sc); 1922 FXP_UNLOCK(sc); 1923 } 1924 1925 /* 1926 * Acquire locks and then call the real initialization function. This 1927 * is necessary because ether_ioctl() calls if_init() and this would 1928 * result in mutex recursion if the mutex was held. 1929 */ 1930 static void 1931 fxp_init(void *xsc) 1932 { 1933 struct fxp_softc *sc = xsc; 1934 1935 FXP_LOCK(sc); 1936 fxp_init_body(sc); 1937 FXP_UNLOCK(sc); 1938 } 1939 1940 /* 1941 * Perform device initialization. This routine must be called with the 1942 * softc lock held. 1943 */ 1944 static void 1945 fxp_init_body(struct fxp_softc *sc) 1946 { 1947 struct ifnet *ifp = &sc->sc_if; 1948 struct fxp_cb_config *cbp; 1949 struct fxp_cb_ias *cb_ias; 1950 struct fxp_cb_tx *tcbp; 1951 struct fxp_tx *txp; 1952 struct fxp_cb_mcs *mcsp; 1953 int i, prm, s; 1954 1955 mtx_assert(&sc->sc_mtx, MA_OWNED); 1956 s = splimp(); 1957 /* 1958 * Cancel any pending I/O 1959 */ 1960 fxp_stop(sc); 1961 1962 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; 1963 1964 /* 1965 * Initialize base of CBL and RFA memory. Loading with zero 1966 * sets it up for regular linear addressing. 1967 */ 1968 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 1969 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); 1970 1971 fxp_scb_wait(sc); 1972 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); 1973 1974 /* 1975 * Initialize base of dump-stats buffer. 1976 */ 1977 fxp_scb_wait(sc); 1978 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD); 1979 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr); 1980 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); 1981 1982 /* 1983 * Attempt to load microcode if requested. 1984 */ 1985 if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0) 1986 fxp_load_ucode(sc); 1987 1988 /* 1989 * Initialize the multicast address list. 1990 */ 1991 if (fxp_mc_addrs(sc)) { 1992 mcsp = sc->mcsp; 1993 mcsp->cb_status = 0; 1994 mcsp->cb_command = 1995 htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL); 1996 mcsp->link_addr = 0xffffffff; 1997 /* 1998 * Start the multicast setup command. 1999 */ 2000 fxp_scb_wait(sc); 2001 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE); 2002 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr); 2003 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2004 /* ...and wait for it to complete. */ 2005 fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map); 2006 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, 2007 BUS_DMASYNC_POSTWRITE); 2008 } 2009 2010 /* 2011 * We temporarily use memory that contains the TxCB list to 2012 * construct the config CB. The TxCB list memory is rebuilt 2013 * later. 2014 */ 2015 cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list; 2016 2017 /* 2018 * This bcopy is kind of disgusting, but there are a bunch of must be 2019 * zero and must be one bits in this structure and this is the easiest 2020 * way to initialize them all to proper values. 2021 */ 2022 bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template)); 2023 2024 cbp->cb_status = 0; 2025 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG | 2026 FXP_CB_COMMAND_EL); 2027 cbp->link_addr = 0xffffffff; /* (no) next command */ 2028 cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22; 2029 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ 2030 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ 2031 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ 2032 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; 2033 cbp->type_enable = 0; /* actually reserved */ 2034 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; 2035 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; 2036 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ 2037 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ 2038 cbp->dma_mbce = 0; /* (disable) dma max counters */ 2039 cbp->late_scb = 0; /* (don't) defer SCB update */ 2040 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ 2041 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ 2042 cbp->ci_int = 1; /* interrupt on CU idle */ 2043 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; 2044 cbp->ext_stats_dis = 1; /* disable extended counters */ 2045 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ 2046 cbp->save_bf = sc->revision == FXP_REV_82557 ? 1 : prm; 2047 cbp->disc_short_rx = !prm; /* discard short packets */ 2048 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ 2049 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ 2050 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */ 2051 cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2052 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; 2053 cbp->csma_dis = 0; /* (don't) disable link */ 2054 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */ 2055 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ 2056 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ 2057 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ 2058 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ 2059 cbp->nsai = 1; /* (don't) disable source addr insert */ 2060 cbp->preamble_length = 2; /* (7 byte) preamble */ 2061 cbp->loopback = 0; /* (don't) loopback */ 2062 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ 2063 cbp->linear_pri_mode = 0; /* (wait after xmit only) */ 2064 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ 2065 cbp->promiscuous = prm; /* promiscuous mode */ 2066 cbp->bcast_disable = 0; /* (don't) disable broadcasts */ 2067 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ 2068 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ 2069 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ 2070 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; 2071 2072 cbp->stripping = !prm; /* truncate rx packet to byte count */ 2073 cbp->padding = 1; /* (do) pad short tx packets */ 2074 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ 2075 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; 2076 cbp->ia_wake_en = 0; /* (don't) wake up on address match */ 2077 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */ 2078 /* must set wake_en in PMCSR also */ 2079 cbp->force_fdx = 0; /* (don't) force full duplex */ 2080 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ 2081 cbp->multi_ia = 0; /* (don't) accept multiple IAs */ 2082 cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0; 2083 cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2084 2085 if (fxp_noflow || sc->revision == FXP_REV_82557) { 2086 /* 2087 * The 82557 has no hardware flow control, the values 2088 * below are the defaults for the chip. 2089 */ 2090 cbp->fc_delay_lsb = 0; 2091 cbp->fc_delay_msb = 0x40; 2092 cbp->pri_fc_thresh = 3; 2093 cbp->tx_fc_dis = 0; 2094 cbp->rx_fc_restop = 0; 2095 cbp->rx_fc_restart = 0; 2096 cbp->fc_filter = 0; 2097 cbp->pri_fc_loc = 1; 2098 } else { 2099 cbp->fc_delay_lsb = 0x1f; 2100 cbp->fc_delay_msb = 0x01; 2101 cbp->pri_fc_thresh = 3; 2102 cbp->tx_fc_dis = 0; /* enable transmit FC */ 2103 cbp->rx_fc_restop = 1; /* enable FC restop frames */ 2104 cbp->rx_fc_restart = 1; /* enable FC restart frames */ 2105 cbp->fc_filter = !prm; /* drop FC frames to host */ 2106 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ 2107 } 2108 2109 /* 2110 * Start the config command/DMA. 2111 */ 2112 fxp_scb_wait(sc); 2113 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 2114 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2115 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2116 /* ...and wait for it to complete. */ 2117 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 2118 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE); 2119 2120 /* 2121 * Now initialize the station address. Temporarily use the TxCB 2122 * memory area like we did above for the config CB. 2123 */ 2124 cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list; 2125 cb_ias->cb_status = 0; 2126 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL); 2127 cb_ias->link_addr = 0xffffffff; 2128 bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr, 2129 sizeof(sc->arpcom.ac_enaddr)); 2130 2131 /* 2132 * Start the IAS (Individual Address Setup) command/DMA. 2133 */ 2134 fxp_scb_wait(sc); 2135 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 2136 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2137 /* ...and wait for it to complete. */ 2138 fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map); 2139 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE); 2140 2141 /* 2142 * Initialize transmit control block (TxCB) list. 2143 */ 2144 txp = sc->fxp_desc.tx_list; 2145 tcbp = sc->fxp_desc.cbl_list; 2146 bzero(tcbp, FXP_TXCB_SZ); 2147 for (i = 0; i < FXP_NTXCB; i++) { 2148 txp[i].tx_cb = tcbp + i; 2149 txp[i].tx_mbuf = NULL; 2150 tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK); 2151 tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP); 2152 tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr + 2153 (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx))); 2154 if (sc->flags & FXP_FLAG_EXT_TXCB) 2155 tcbp[i].tbd_array_addr = 2156 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2])); 2157 else 2158 tcbp[i].tbd_array_addr = 2159 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0])); 2160 txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK]; 2161 } 2162 /* 2163 * Set the suspend flag on the first TxCB and start the control 2164 * unit. It will execute the NOP and then suspend. 2165 */ 2166 tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S); 2167 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 2168 sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp; 2169 sc->tx_queued = 1; 2170 2171 fxp_scb_wait(sc); 2172 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2173 2174 /* 2175 * Initialize receiver buffer area - RFA. 2176 */ 2177 fxp_scb_wait(sc); 2178 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr); 2179 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 2180 2181 /* 2182 * Set current media. 2183 */ 2184 if (sc->miibus != NULL) 2185 mii_mediachg(device_get_softc(sc->miibus)); 2186 2187 ifp->if_flags |= IFF_RUNNING; 2188 ifp->if_flags &= ~IFF_OACTIVE; 2189 2190 /* 2191 * Enable interrupts. 2192 */ 2193 #ifdef DEVICE_POLLING 2194 /* 2195 * ... but only do that if we are not polling. And because (presumably) 2196 * the default is interrupts on, we need to disable them explicitly! 2197 */ 2198 if ( ifp->if_flags & IFF_POLLING ) 2199 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 2200 else 2201 #endif /* DEVICE_POLLING */ 2202 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2203 2204 /* 2205 * Start stats updater. 2206 */ 2207 sc->stat_ch = timeout(fxp_tick, sc, hz); 2208 splx(s); 2209 } 2210 2211 static int 2212 fxp_serial_ifmedia_upd(struct ifnet *ifp) 2213 { 2214 2215 return (0); 2216 } 2217 2218 static void 2219 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2220 { 2221 2222 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2223 } 2224 2225 /* 2226 * Change media according to request. 2227 */ 2228 static int 2229 fxp_ifmedia_upd(struct ifnet *ifp) 2230 { 2231 struct fxp_softc *sc = ifp->if_softc; 2232 struct mii_data *mii; 2233 2234 mii = device_get_softc(sc->miibus); 2235 mii_mediachg(mii); 2236 return (0); 2237 } 2238 2239 /* 2240 * Notify the world which media we're using. 2241 */ 2242 static void 2243 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2244 { 2245 struct fxp_softc *sc = ifp->if_softc; 2246 struct mii_data *mii; 2247 2248 mii = device_get_softc(sc->miibus); 2249 mii_pollstat(mii); 2250 ifmr->ifm_active = mii->mii_media_active; 2251 ifmr->ifm_status = mii->mii_media_status; 2252 2253 if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG) 2254 sc->cu_resume_bug = 1; 2255 else 2256 sc->cu_resume_bug = 0; 2257 } 2258 2259 /* 2260 * Add a buffer to the end of the RFA buffer list. 2261 * Return 0 if successful, 1 for failure. A failure results in 2262 * adding the 'oldm' (if non-NULL) on to the end of the list - 2263 * tossing out its old contents and recycling it. 2264 * The RFA struct is stuck at the beginning of mbuf cluster and the 2265 * data pointer is fixed up to point just past it. 2266 */ 2267 static int 2268 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2269 { 2270 struct mbuf *m; 2271 struct fxp_rfa *rfa, *p_rfa; 2272 struct fxp_rx *p_rx; 2273 bus_dmamap_t tmp_map; 2274 int error; 2275 2276 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2277 if (m == NULL) 2278 return (ENOBUFS); 2279 2280 /* 2281 * Move the data pointer up so that the incoming data packet 2282 * will be 32-bit aligned. 2283 */ 2284 m->m_data += RFA_ALIGNMENT_FUDGE; 2285 2286 /* 2287 * Get a pointer to the base of the mbuf cluster and move 2288 * data start past it. 2289 */ 2290 rfa = mtod(m, struct fxp_rfa *); 2291 m->m_data += sc->rfa_size; 2292 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); 2293 2294 /* 2295 * Initialize the rest of the RFA. Note that since the RFA 2296 * is misaligned, we cannot store values directly. Instead, 2297 * we use an optimized, inline copy. 2298 */ 2299 2300 rfa->rfa_status = 0; 2301 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); 2302 rfa->actual_size = 0; 2303 2304 le32enc(&rfa->link_addr, 0xffffffff); 2305 le32enc(&rfa->rbd_addr, 0xffffffff); 2306 2307 /* Map the RFA into DMA memory. */ 2308 error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa, 2309 MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr, 2310 &rxp->rx_addr, 0); 2311 if (error) { 2312 m_freem(m); 2313 return (error); 2314 } 2315 2316 bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map); 2317 tmp_map = sc->spare_map; 2318 sc->spare_map = rxp->rx_map; 2319 rxp->rx_map = tmp_map; 2320 rxp->rx_mbuf = m; 2321 2322 bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map, 2323 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2324 2325 /* 2326 * If there are other buffers already on the list, attach this 2327 * one to the end by fixing up the tail to point to this one. 2328 */ 2329 if (sc->fxp_desc.rx_head != NULL) { 2330 p_rx = sc->fxp_desc.rx_tail; 2331 p_rfa = (struct fxp_rfa *) 2332 (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); 2333 p_rx->rx_next = rxp; 2334 le32enc(&p_rfa->link_addr, rxp->rx_addr); 2335 p_rfa->rfa_control = 0; 2336 bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map, 2337 BUS_DMASYNC_PREWRITE); 2338 } else { 2339 rxp->rx_next = NULL; 2340 sc->fxp_desc.rx_head = rxp; 2341 } 2342 sc->fxp_desc.rx_tail = rxp; 2343 return (0); 2344 } 2345 2346 static volatile int 2347 fxp_miibus_readreg(device_t dev, int phy, int reg) 2348 { 2349 struct fxp_softc *sc = device_get_softc(dev); 2350 int count = 10000; 2351 int value; 2352 2353 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2354 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); 2355 2356 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 2357 && count--) 2358 DELAY(10); 2359 2360 if (count <= 0) 2361 device_printf(dev, "fxp_miibus_readreg: timed out\n"); 2362 2363 return (value & 0xffff); 2364 } 2365 2366 static void 2367 fxp_miibus_writereg(device_t dev, int phy, int reg, int value) 2368 { 2369 struct fxp_softc *sc = device_get_softc(dev); 2370 int count = 10000; 2371 2372 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2373 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | 2374 (value & 0xffff)); 2375 2376 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && 2377 count--) 2378 DELAY(10); 2379 2380 if (count <= 0) 2381 device_printf(dev, "fxp_miibus_writereg: timed out\n"); 2382 } 2383 2384 static int 2385 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2386 { 2387 struct fxp_softc *sc = ifp->if_softc; 2388 struct ifreq *ifr = (struct ifreq *)data; 2389 struct mii_data *mii; 2390 int s, error = 0; 2391 2392 /* 2393 * Detaching causes us to call ioctl with the mutex owned. Preclude 2394 * that by saying we're busy if the lock is already held. 2395 */ 2396 if (mtx_owned(&sc->sc_mtx)) 2397 return (EBUSY); 2398 2399 FXP_LOCK(sc); 2400 s = splimp(); 2401 2402 switch (command) { 2403 case SIOCSIFFLAGS: 2404 if (ifp->if_flags & IFF_ALLMULTI) 2405 sc->flags |= FXP_FLAG_ALL_MCAST; 2406 else 2407 sc->flags &= ~FXP_FLAG_ALL_MCAST; 2408 2409 /* 2410 * If interface is marked up and not running, then start it. 2411 * If it is marked down and running, stop it. 2412 * XXX If it's up then re-initialize it. This is so flags 2413 * such as IFF_PROMISC are handled. 2414 */ 2415 if (ifp->if_flags & IFF_UP) { 2416 fxp_init_body(sc); 2417 } else { 2418 if (ifp->if_flags & IFF_RUNNING) 2419 fxp_stop(sc); 2420 } 2421 break; 2422 2423 case SIOCADDMULTI: 2424 case SIOCDELMULTI: 2425 if (ifp->if_flags & IFF_ALLMULTI) 2426 sc->flags |= FXP_FLAG_ALL_MCAST; 2427 else 2428 sc->flags &= ~FXP_FLAG_ALL_MCAST; 2429 /* 2430 * Multicast list has changed; set the hardware filter 2431 * accordingly. 2432 */ 2433 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) 2434 fxp_mc_setup(sc); 2435 /* 2436 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it 2437 * again rather than else {}. 2438 */ 2439 if (sc->flags & FXP_FLAG_ALL_MCAST) 2440 fxp_init_body(sc); 2441 error = 0; 2442 break; 2443 2444 case SIOCSIFMEDIA: 2445 case SIOCGIFMEDIA: 2446 if (sc->miibus != NULL) { 2447 mii = device_get_softc(sc->miibus); 2448 error = ifmedia_ioctl(ifp, ifr, 2449 &mii->mii_media, command); 2450 } else { 2451 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); 2452 } 2453 break; 2454 2455 default: 2456 /* 2457 * ether_ioctl() will eventually call fxp_start() which 2458 * will result in mutex recursion so drop it first. 2459 */ 2460 FXP_UNLOCK(sc); 2461 error = ether_ioctl(ifp, command, data); 2462 } 2463 if (mtx_owned(&sc->sc_mtx)) 2464 FXP_UNLOCK(sc); 2465 splx(s); 2466 return (error); 2467 } 2468 2469 /* 2470 * Fill in the multicast address list and return number of entries. 2471 */ 2472 static int 2473 fxp_mc_addrs(struct fxp_softc *sc) 2474 { 2475 struct fxp_cb_mcs *mcsp = sc->mcsp; 2476 struct ifnet *ifp = &sc->sc_if; 2477 struct ifmultiaddr *ifma; 2478 int nmcasts; 2479 2480 nmcasts = 0; 2481 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) { 2482 #if __FreeBSD_version < 500000 2483 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2484 #else 2485 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2486 #endif 2487 if (ifma->ifma_addr->sa_family != AF_LINK) 2488 continue; 2489 if (nmcasts >= MAXMCADDR) { 2490 sc->flags |= FXP_FLAG_ALL_MCAST; 2491 nmcasts = 0; 2492 break; 2493 } 2494 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 2495 &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN); 2496 nmcasts++; 2497 } 2498 } 2499 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN); 2500 return (nmcasts); 2501 } 2502 2503 /* 2504 * Program the multicast filter. 2505 * 2506 * We have an artificial restriction that the multicast setup command 2507 * must be the first command in the chain, so we take steps to ensure 2508 * this. By requiring this, it allows us to keep up the performance of 2509 * the pre-initialized command ring (esp. link pointers) by not actually 2510 * inserting the mcsetup command in the ring - i.e. its link pointer 2511 * points to the TxCB ring, but the mcsetup descriptor itself is not part 2512 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it 2513 * lead into the regular TxCB ring when it completes. 2514 * 2515 * This function must be called at splimp. 2516 */ 2517 static void 2518 fxp_mc_setup(struct fxp_softc *sc) 2519 { 2520 struct fxp_cb_mcs *mcsp = sc->mcsp; 2521 struct ifnet *ifp = &sc->sc_if; 2522 struct fxp_tx *txp; 2523 int count; 2524 2525 /* 2526 * If there are queued commands, we must wait until they are all 2527 * completed. If we are already waiting, then add a NOP command 2528 * with interrupt option so that we're notified when all commands 2529 * have been completed - fxp_start() ensures that no additional 2530 * TX commands will be added when need_mcsetup is true. 2531 */ 2532 if (sc->tx_queued) { 2533 /* 2534 * need_mcsetup will be true if we are already waiting for the 2535 * NOP command to be completed (see below). In this case, bail. 2536 */ 2537 if (sc->need_mcsetup) 2538 return; 2539 sc->need_mcsetup = 1; 2540 2541 /* 2542 * Add a NOP command with interrupt so that we are notified 2543 * when all TX commands have been processed. 2544 */ 2545 txp = sc->fxp_desc.tx_last->tx_next; 2546 txp->tx_mbuf = NULL; 2547 txp->tx_cb->cb_status = 0; 2548 txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP | 2549 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 2550 /* 2551 * Advance the end of list forward. 2552 */ 2553 sc->fxp_desc.tx_last->tx_cb->cb_command &= 2554 htole16(~FXP_CB_COMMAND_S); 2555 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 2556 sc->fxp_desc.tx_last = txp; 2557 sc->tx_queued++; 2558 /* 2559 * Issue a resume in case the CU has just suspended. 2560 */ 2561 fxp_scb_wait(sc); 2562 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 2563 /* 2564 * Set a 5 second timer just in case we don't hear from the 2565 * card again. 2566 */ 2567 ifp->if_timer = 5; 2568 2569 return; 2570 } 2571 sc->need_mcsetup = 0; 2572 2573 /* 2574 * Initialize multicast setup descriptor. 2575 */ 2576 mcsp->cb_status = 0; 2577 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | 2578 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 2579 mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr); 2580 txp = &sc->fxp_desc.mcs_tx; 2581 txp->tx_mbuf = NULL; 2582 txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp; 2583 txp->tx_next = sc->fxp_desc.tx_list; 2584 (void) fxp_mc_addrs(sc); 2585 sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp; 2586 sc->tx_queued = 1; 2587 2588 /* 2589 * Wait until command unit is not active. This should never 2590 * be the case when nothing is queued, but make sure anyway. 2591 */ 2592 count = 100; 2593 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) == 2594 FXP_SCB_CUS_ACTIVE && --count) 2595 DELAY(10); 2596 if (count == 0) { 2597 device_printf(sc->dev, "command queue timeout\n"); 2598 return; 2599 } 2600 2601 /* 2602 * Start the multicast setup command. 2603 */ 2604 fxp_scb_wait(sc); 2605 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE); 2606 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr); 2607 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2608 2609 ifp->if_timer = 2; 2610 return; 2611 } 2612 2613 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; 2614 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; 2615 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; 2616 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; 2617 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; 2618 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; 2619 2620 #define UCODE(x) x, sizeof(x) 2621 2622 struct ucode { 2623 u_int32_t revision; 2624 u_int32_t *ucode; 2625 int length; 2626 u_short int_delay_offset; 2627 u_short bundle_max_offset; 2628 } ucode_table[] = { 2629 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, 2630 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, 2631 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), 2632 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, 2633 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), 2634 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, 2635 { FXP_REV_82550, UCODE(fxp_ucode_d102), 2636 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, 2637 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), 2638 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, 2639 { 0, NULL, 0, 0, 0 } 2640 }; 2641 2642 static void 2643 fxp_load_ucode(struct fxp_softc *sc) 2644 { 2645 struct ucode *uc; 2646 struct fxp_cb_ucode *cbp; 2647 2648 for (uc = ucode_table; uc->ucode != NULL; uc++) 2649 if (sc->revision == uc->revision) 2650 break; 2651 if (uc->ucode == NULL) 2652 return; 2653 cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list; 2654 cbp->cb_status = 0; 2655 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL); 2656 cbp->link_addr = 0xffffffff; /* (no) next command */ 2657 memcpy(cbp->ucode, uc->ucode, uc->length); 2658 if (uc->int_delay_offset) 2659 *(u_int16_t *)&cbp->ucode[uc->int_delay_offset] = 2660 htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2); 2661 if (uc->bundle_max_offset) 2662 *(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] = 2663 htole16(sc->tunable_bundle_max); 2664 /* 2665 * Download the ucode to the chip. 2666 */ 2667 fxp_scb_wait(sc); 2668 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 2669 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2670 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2671 /* ...and wait for it to complete. */ 2672 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 2673 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE); 2674 device_printf(sc->dev, 2675 "Microcode loaded, int_delay: %d usec bundle_max: %d\n", 2676 sc->tunable_int_delay, 2677 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); 2678 sc->flags |= FXP_FLAG_UCODE; 2679 } 2680 2681 static int 2682 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 2683 { 2684 int error, value; 2685 2686 value = *(int *)arg1; 2687 error = sysctl_handle_int(oidp, &value, 0, req); 2688 if (error || !req->newptr) 2689 return (error); 2690 if (value < low || value > high) 2691 return (EINVAL); 2692 *(int *)arg1 = value; 2693 return (0); 2694 } 2695 2696 /* 2697 * Interrupt delay is expressed in microseconds, a multiplier is used 2698 * to convert this to the appropriate clock ticks before using. 2699 */ 2700 static int 2701 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) 2702 { 2703 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); 2704 } 2705 2706 static int 2707 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) 2708 { 2709 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); 2710 } 2711