xref: /freebsd/sys/dev/fxp/if_fxp.c (revision ce4946daa5ce852d28008dac492029500ab2ee95)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/mbuf.h>
38 #include <sys/malloc.h>
39 		/* #include <sys/mutex.h> */
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 
43 #include <net/if.h>
44 #include <net/if_dl.h>
45 #include <net/if_media.h>
46 
47 #ifdef NS
48 #include <netns/ns.h>
49 #include <netns/ns_if.h>
50 #endif
51 
52 #include <net/bpf.h>
53 #include <sys/sockio.h>
54 #include <sys/bus.h>
55 #include <machine/bus.h>
56 #include <sys/rman.h>
57 #include <machine/resource.h>
58 
59 #include <net/ethernet.h>
60 #include <net/if_arp.h>
61 
62 #include <vm/vm.h>		/* for vtophys */
63 #include <vm/pmap.h>		/* for vtophys */
64 #include <machine/clock.h>	/* for DELAY */
65 
66 #include <pci/pcivar.h>
67 #include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
68 
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 
72 #include <dev/fxp/if_fxpreg.h>
73 #include <dev/fxp/if_fxpvar.h>
74 
75 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
76 #include "miibus_if.h"
77 
78 /*
79  * NOTE!  On the Alpha, we have an alignment constraint.  The
80  * card DMAs the packet immediately following the RFA.  However,
81  * the first thing in the packet is a 14-byte Ethernet header.
82  * This means that the packet is misaligned.  To compensate,
83  * we actually offset the RFA 2 bytes into the cluster.  This
84  * alignes the packet after the Ethernet header at a 32-bit
85  * boundary.  HOWEVER!  This means that the RFA is misaligned!
86  */
87 #define	RFA_ALIGNMENT_FUDGE	2
88 
89 /*
90  * Set initial transmit threshold at 64 (512 bytes). This is
91  * increased by 64 (512 bytes) at a time, to maximum of 192
92  * (1536 bytes), if an underrun occurs.
93  */
94 static int tx_threshold = 64;
95 
96 /*
97  * The configuration byte map has several undefined fields which
98  * must be one or must be zero.  Set up a template for these bits
99  * only, (assuming a 82557 chip) leaving the actual configuration
100  * to fxp_init.
101  *
102  * See struct fxp_cb_config for the bit definitions.
103  */
104 static u_char fxp_cb_config_template[] = {
105 	0x0, 0x0,		/* cb_status */
106 	0x0, 0x0,		/* cb_command */
107 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
108 	0x0,	/*  0 */
109 	0x0,	/*  1 */
110 	0x0,	/*  2 */
111 	0x0,	/*  3 */
112 	0x0,	/*  4 */
113 	0x0,	/*  5 */
114 	0x32,	/*  6 */
115 	0x0,	/*  7 */
116 	0x0,	/*  8 */
117 	0x0,	/*  9 */
118 	0x6,	/* 10 */
119 	0x0,	/* 11 */
120 	0x0,	/* 12 */
121 	0x0,	/* 13 */
122 	0xf2,	/* 14 */
123 	0x48,	/* 15 */
124 	0x0,	/* 16 */
125 	0x40,	/* 17 */
126 	0xf0,	/* 18 */
127 	0x0,	/* 19 */
128 	0x3f,	/* 20 */
129 	0x5	/* 21 */
130 };
131 
132 struct fxp_ident {
133 	u_int16_t	devid;
134 	char 		*name;
135 };
136 
137 /*
138  * Claim various Intel PCI device identifiers for this driver.  The
139  * sub-vendor and sub-device field are extensively used to identify
140  * particular variants, but we don't currently differentiate between
141  * them.
142  */
143 static struct fxp_ident fxp_ident_table[] = {
144     { 0x1229,		"Intel Pro 10/100B/100+ Ethernet" },
145     { 0x2449,		"Intel Pro/100 Ethernet" },
146     { 0x1209,		"Intel Embedded 10/100 Ethernet" },
147     { 0x1029,		"Intel Pro/100 Ethernet" },
148     { 0x1030,		"Intel Pro/100 Ethernet" },
149     { 0x1031,		"Intel Pro/100 Ethernet" },
150     { 0x1032,		"Intel Pro/100 Ethernet" },
151     { 0x1033,		"Intel Pro/100 Ethernet" },
152     { 0x1034,		"Intel Pro/100 Ethernet" },
153     { 0x1035,		"Intel Pro/100 Ethernet" },
154     { 0x1036,		"Intel Pro/100 Ethernet" },
155     { 0x1037,		"Intel Pro/100 Ethernet" },
156     { 0x1038,		"Intel Pro/100 Ethernet" },
157     { 0,		NULL },
158 };
159 
160 static int		fxp_probe(device_t dev);
161 static int		fxp_attach(device_t dev);
162 static int		fxp_detach(device_t dev);
163 static int		fxp_shutdown(device_t dev);
164 static int		fxp_suspend(device_t dev);
165 static int		fxp_resume(device_t dev);
166 
167 static void		fxp_intr(void *xsc);
168 static void 		fxp_init(void *xsc);
169 static void 		fxp_tick(void *xsc);
170 static void 		fxp_start(struct ifnet *ifp);
171 static void		fxp_stop(struct fxp_softc *sc);
172 static void 		fxp_release(struct fxp_softc *sc);
173 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
174 			    caddr_t data);
175 static void 		fxp_watchdog(struct ifnet *ifp);
176 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
177 static void		fxp_mc_setup(struct fxp_softc *sc);
178 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
179 			    int autosize);
180 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
181 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
182 			    int offset, int words);
183 static int		fxp_ifmedia_upd(struct ifnet *ifp);
184 static void		fxp_ifmedia_sts(struct ifnet *ifp,
185 			    struct ifmediareq *ifmr);
186 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
187 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
188 			    struct ifmediareq *ifmr);
189 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
190 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
191 			    int value);
192 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
193 			    volatile u_int32_t *dst);
194 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
195 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
196 			    struct fxp_softc *sc);
197 
198 static device_method_t fxp_methods[] = {
199 	/* Device interface */
200 	DEVMETHOD(device_probe,		fxp_probe),
201 	DEVMETHOD(device_attach,	fxp_attach),
202 	DEVMETHOD(device_detach,	fxp_detach),
203 	DEVMETHOD(device_shutdown,	fxp_shutdown),
204 	DEVMETHOD(device_suspend,	fxp_suspend),
205 	DEVMETHOD(device_resume,	fxp_resume),
206 
207 	/* MII interface */
208 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
209 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
210 
211 	{ 0, 0 }
212 };
213 
214 static driver_t fxp_driver = {
215 	"fxp",
216 	fxp_methods,
217 	sizeof(struct fxp_softc),
218 };
219 
220 static devclass_t fxp_devclass;
221 
222 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
223 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
224 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
225 
226 /*
227  * Inline function to copy a 16-bit aligned 32-bit quantity.
228  */
229 static __inline void
230 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
231 {
232 #ifdef __i386__
233 	*dst = *src;
234 #else
235 	volatile u_int16_t *a = (volatile u_int16_t *)src;
236 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
237 
238 	b[0] = a[0];
239 	b[1] = a[1];
240 #endif
241 }
242 
243 /*
244  * Wait for the previous command to be accepted (but not necessarily
245  * completed).
246  */
247 static __inline void
248 fxp_scb_wait(struct fxp_softc *sc)
249 {
250 	int i = 10000;
251 
252 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
253 		DELAY(2);
254 	if (i == 0)
255 		device_printf(sc->dev, "SCB timeout\n");
256 }
257 
258 static __inline void
259 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
260 {
261 	int i = 10000;
262 
263 	while (!(*status & FXP_CB_STATUS_C) && --i)
264 		DELAY(2);
265 	if (i == 0)
266 		device_printf(sc->dev, "DMA timeout\n");
267 }
268 
269 /*
270  * Return identification string if this is device is ours.
271  */
272 static int
273 fxp_probe(device_t dev)
274 {
275 	u_int16_t devid;
276 	struct fxp_ident *ident;
277 
278 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
279 		devid = pci_get_device(dev);
280 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
281 			if (ident->devid == devid) {
282 				device_set_desc(dev, ident->name);
283 				return (0);
284 			}
285 		}
286 	}
287 	return (ENXIO);
288 }
289 
290 static int
291 fxp_attach(device_t dev)
292 {
293 	int error = 0;
294 	struct fxp_softc *sc = device_get_softc(dev);
295 	struct ifnet *ifp;
296 	u_int32_t val;
297 	u_int16_t data;
298 	int i, rid, m1, m2, prefer_iomap;
299 	int s;
300 
301 	bzero(sc, sizeof(*sc));
302 	sc->dev = dev;
303 	callout_handle_init(&sc->stat_ch);
304 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
305 
306 	s = splimp();
307 
308 	/*
309 	 * Enable bus mastering. Enable memory space too, in case
310 	 * BIOS/Prom forgot about it.
311 	 */
312 	val = pci_read_config(dev, PCIR_COMMAND, 2);
313 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
314 	pci_write_config(dev, PCIR_COMMAND, val, 2);
315 	val = pci_read_config(dev, PCIR_COMMAND, 2);
316 
317 #if __FreeBSD_version >= 500000
318 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
319 		u_int32_t		iobase, membase, irq;
320 
321 		/* Save important PCI config data. */
322 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
323 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
324 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
325 
326 		/* Reset the power state. */
327 		device_printf(dev, "chip is in D%d power mode "
328 		    "-- setting to D0\n", pci_get_powerstate(dev));
329 
330 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
331 
332 		/* Restore PCI config data. */
333 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
334 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
335 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
336 	}
337 #endif
338 
339 	/*
340 	 * Figure out which we should try first - memory mapping or i/o mapping?
341 	 * We default to memory mapping. Then we accept an override from the
342 	 * command line. Then we check to see which one is enabled.
343 	 */
344 	m1 = PCIM_CMD_MEMEN;
345 	m2 = PCIM_CMD_PORTEN;
346 	prefer_iomap = 0;
347 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
348 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
349 		m1 = PCIM_CMD_PORTEN;
350 		m2 = PCIM_CMD_MEMEN;
351 	}
352 
353 	if (val & m1) {
354 		sc->rtp =
355 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
356 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
357 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
358 	                                     0, ~0, 1, RF_ACTIVE);
359 	}
360 	if (sc->mem == NULL && (val & m2)) {
361 		sc->rtp =
362 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
363 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
364 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
365                                             0, ~0, 1, RF_ACTIVE);
366 	}
367 
368 	if (!sc->mem) {
369 		device_printf(dev, "could not map device registers\n");
370 		error = ENXIO;
371 		goto fail;
372         }
373 	if (bootverbose) {
374 		device_printf(dev, "using %s space register mapping\n",
375 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
376 	}
377 
378 	sc->sc_st = rman_get_bustag(sc->mem);
379 	sc->sc_sh = rman_get_bushandle(sc->mem);
380 
381 	/*
382 	 * Allocate our interrupt.
383 	 */
384 	rid = 0;
385 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
386 				 RF_SHAREABLE | RF_ACTIVE);
387 	if (sc->irq == NULL) {
388 		device_printf(dev, "could not map interrupt\n");
389 		error = ENXIO;
390 		goto fail;
391 	}
392 
393 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
394 			       fxp_intr, sc, &sc->ih);
395 	if (error) {
396 		device_printf(dev, "could not setup irq\n");
397 		goto fail;
398 	}
399 
400 	/*
401 	 * Reset to a stable state.
402 	 */
403 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
404 	DELAY(10);
405 
406 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
407 	    M_DEVBUF, M_NOWAIT | M_ZERO);
408 	if (sc->cbl_base == NULL)
409 		goto failmem;
410 
411 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
412 	    M_NOWAIT | M_ZERO);
413 	if (sc->fxp_stats == NULL)
414 		goto failmem;
415 
416 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
417 	if (sc->mcsp == NULL)
418 		goto failmem;
419 
420 	/*
421 	 * Pre-allocate our receive buffers.
422 	 */
423 	for (i = 0; i < FXP_NRFABUFS; i++) {
424 		if (fxp_add_rfabuf(sc, NULL) != 0) {
425 			goto failmem;
426 		}
427 	}
428 
429 	/*
430 	 * Find out how large of an SEEPROM we have.
431 	 */
432 	fxp_autosize_eeprom(sc);
433 
434 	/*
435 	 * Determine whether we must use the 503 serial interface.
436 	 */
437 	fxp_read_eeprom(sc, &data, 6, 1);
438 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
439 	    (data & FXP_PHY_SERIAL_ONLY))
440 		sc->flags &= FXP_FLAG_SERIAL_MEDIA;
441 
442 	/*
443 	 * Find out the basic controller type; we currently only
444 	 * differentiate between a 82557 and greater.
445 	 */
446 	fxp_read_eeprom(sc, &data, 5, 1);
447 	if ((data >> 8) == 1)
448 	    sc->chip = FXP_CHIP_82557;
449 
450 	/*
451 	 * If we are not a 82557 chip, we can enable extended features.
452 	 */
453 	if (sc->chip != FXP_CHIP_82557) {
454 		/*
455 		 * If there is a valid cacheline size (8 or 16 dwords),
456 		 * then turn on MWI.
457 		 */
458 		if (pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
459 			sc->flags |= FXP_FLAG_MWI_ENABLE;
460 
461 		/* turn on the extended TxCB feature */
462 		sc->flags |= FXP_FLAG_EXT_TXCB;
463 	}
464 
465 	/*
466 	 * Read MAC address.
467 	 */
468 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
469 	device_printf(dev, "Ethernet address %6D%s\n",
470 	    sc->arpcom.ac_enaddr, ":",
471 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
472 	if (bootverbose) {
473 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x\n",
474 		    pci_get_vendor(dev), pci_get_device(dev),
475 		    pci_get_subvendor(dev), pci_get_subdevice(dev));
476 	}
477 
478 	/*
479 	 * If this is only a 10Mbps device, then there is no MII, and
480 	 * the PHY will use a serial interface instead.
481 	 *
482 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
483 	 * doesn't have a programming interface of any sort.  The
484 	 * media is sensed automatically based on how the link partner
485 	 * is configured.  This is, in essence, manual configuration.
486 	 */
487 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
488 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
489 		    fxp_serial_ifmedia_sts);
490 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
491 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
492 	} else {
493 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
494 		    fxp_ifmedia_sts)) {
495 	                device_printf(dev, "MII without any PHY!\n");
496 			error = ENXIO;
497 			goto fail;
498 		}
499 	}
500 
501 	ifp = &sc->arpcom.ac_if;
502 	ifp->if_unit = device_get_unit(dev);
503 	ifp->if_name = "fxp";
504 	ifp->if_output = ether_output;
505 	ifp->if_baudrate = 100000000;
506 	ifp->if_init = fxp_init;
507 	ifp->if_softc = sc;
508 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
509 	ifp->if_ioctl = fxp_ioctl;
510 	ifp->if_start = fxp_start;
511 	ifp->if_watchdog = fxp_watchdog;
512 
513 	/*
514 	 * Attach the interface.
515 	 */
516 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
517 
518 	/*
519 	 * Let the system queue as many packets as we have available
520 	 * TX descriptors.
521 	 */
522 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
523 
524 	splx(s);
525 	return (0);
526 
527 failmem:
528 	device_printf(dev, "Failed to malloc memory\n");
529 	error = ENOMEM;
530 fail:
531 	splx(s);
532 	fxp_release(sc);
533 	return (error);
534 }
535 
536 /*
537  * release all resources
538  */
539 static void
540 fxp_release(struct fxp_softc *sc)
541 {
542 
543 	bus_generic_detach(sc->dev);
544 	if (sc->miibus)
545 		device_delete_child(sc->dev, sc->miibus);
546 
547 	if (sc->cbl_base)
548 		free(sc->cbl_base, M_DEVBUF);
549 	if (sc->fxp_stats)
550 		free(sc->fxp_stats, M_DEVBUF);
551 	if (sc->mcsp)
552 		free(sc->mcsp, M_DEVBUF);
553 	if (sc->rfa_headm)
554 		m_freem(sc->rfa_headm);
555 
556 	if (sc->ih)
557 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
558 	if (sc->irq)
559 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
560 	if (sc->mem)
561 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
562 	mtx_destroy(&sc->sc_mtx);
563 }
564 
565 /*
566  * Detach interface.
567  */
568 static int
569 fxp_detach(device_t dev)
570 {
571 	struct fxp_softc *sc = device_get_softc(dev);
572 	int s;
573 
574 	s = splimp();
575 
576 	/*
577 	 * Stop DMA and drop transmit queue.
578 	 */
579 	fxp_stop(sc);
580 
581 	/*
582 	 * Close down routes etc.
583 	 */
584 	ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
585 
586 	/*
587 	 * Free all media structures.
588 	 */
589 	ifmedia_removeall(&sc->sc_media);
590 
591 	splx(s);
592 
593 	/* Release our allocated resources. */
594 	fxp_release(sc);
595 
596 	return (0);
597 }
598 
599 /*
600  * Device shutdown routine. Called at system shutdown after sync. The
601  * main purpose of this routine is to shut off receiver DMA so that
602  * kernel memory doesn't get clobbered during warmboot.
603  */
604 static int
605 fxp_shutdown(device_t dev)
606 {
607 	/*
608 	 * Make sure that DMA is disabled prior to reboot. Not doing
609 	 * do could allow DMA to corrupt kernel memory during the
610 	 * reboot before the driver initializes.
611 	 */
612 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
613 	return (0);
614 }
615 
616 /*
617  * Device suspend routine.  Stop the interface and save some PCI
618  * settings in case the BIOS doesn't restore them properly on
619  * resume.
620  */
621 static int
622 fxp_suspend(device_t dev)
623 {
624 	struct fxp_softc *sc = device_get_softc(dev);
625 	int i, s;
626 
627 	s = splimp();
628 
629 	fxp_stop(sc);
630 
631 	for (i=0; i<5; i++)
632 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i*4, 4);
633 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
634 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
635 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
636 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
637 
638 	sc->suspended = 1;
639 
640 	splx(s);
641 	return (0);
642 }
643 
644 /*
645  * Device resume routine.  Restore some PCI settings in case the BIOS
646  * doesn't, re-enable busmastering, and restart the interface if
647  * appropriate.
648  */
649 static int
650 fxp_resume(device_t dev)
651 {
652 	struct fxp_softc *sc = device_get_softc(dev);
653 	struct ifnet *ifp = &sc->sc_if;
654 	u_int16_t pci_command;
655 	int i, s;
656 
657 	s = splimp();
658 
659 	/* better way to do this? */
660 	for (i=0; i<5; i++)
661 		pci_write_config(dev, PCIR_MAPS + i*4, sc->saved_maps[i], 4);
662 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
663 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
664 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
665 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
666 
667 	/* reenable busmastering */
668 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
669 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
670 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
671 
672 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
673 	DELAY(10);
674 
675 	/* reinitialize interface if necessary */
676 	if (ifp->if_flags & IFF_UP)
677 		fxp_init(sc);
678 
679 	sc->suspended = 0;
680 
681 	splx(s);
682 	return (0);
683 }
684 
685 /*
686  * Read from the serial EEPROM. Basically, you manually shift in
687  * the read opcode (one bit at a time) and then shift in the address,
688  * and then you shift out the data (all of this one bit at a time).
689  * The word size is 16 bits, so you have to provide the address for
690  * every 16 bits of data.
691  */
692 static u_int16_t
693 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
694 {
695 	u_int16_t reg, data;
696 	int x;
697 
698 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
699 	/*
700 	 * Shift in read opcode.
701 	 */
702 	for (x = 1 << 2; x; x >>= 1) {
703 		if (FXP_EEPROM_OPC_READ & x)
704 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
705 		else
706 			reg = FXP_EEPROM_EECS;
707 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
708 		DELAY(1);
709 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
710 		DELAY(1);
711 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
712 		DELAY(1);
713 	}
714 	/*
715 	 * Shift in address.
716 	 */
717 	data = 0;
718 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
719 		if (offset & x)
720 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
721 		else
722 			reg = FXP_EEPROM_EECS;
723 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
724 		DELAY(1);
725 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
726 		DELAY(1);
727 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
728 		DELAY(1);
729 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
730 		data++;
731 		if (autosize && reg == 0) {
732 			sc->eeprom_size = data;
733 			break;
734 		}
735 	}
736 	/*
737 	 * Shift out data.
738 	 */
739 	data = 0;
740 	reg = FXP_EEPROM_EECS;
741 	for (x = 1 << 15; x; x >>= 1) {
742 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
743 		DELAY(1);
744 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
745 			data |= x;
746 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
747 		DELAY(1);
748 	}
749 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
750 	DELAY(1);
751 
752 	return (data);
753 }
754 
755 /*
756  * From NetBSD:
757  *
758  * Figure out EEPROM size.
759  *
760  * 559's can have either 64-word or 256-word EEPROMs, the 558
761  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
762  * talks about the existance of 16 to 256 word EEPROMs.
763  *
764  * The only known sizes are 64 and 256, where the 256 version is used
765  * by CardBus cards to store CIS information.
766  *
767  * The address is shifted in msb-to-lsb, and after the last
768  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
769  * after which follows the actual data. We try to detect this zero, by
770  * probing the data-out bit in the EEPROM control register just after
771  * having shifted in a bit. If the bit is zero, we assume we've
772  * shifted enough address bits. The data-out should be tri-state,
773  * before this, which should translate to a logical one.
774  *
775  * Other ways to do this would be to try to read a register with known
776  * contents with a varying number of address bits, but no such
777  * register seem to be available. The high bits of register 10 are 01
778  * on the 558 and 559, but apparently not on the 557.
779  *
780  * The Linux driver computes a checksum on the EEPROM data, but the
781  * value of this checksum is not very well documented.
782  */
783 static void
784 fxp_autosize_eeprom(struct fxp_softc *sc)
785 {
786 
787 	/* guess maximum size of 256 words */
788 	sc->eeprom_size = 8;
789 
790 	/* autosize */
791 	(void) fxp_eeprom_getword(sc, 0, 1);
792 }
793 
794 static void
795 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
796 {
797 	int i;
798 
799 	for (i = 0; i < words; i++)
800 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
801 }
802 
803 /*
804  * Start packet transmission on the interface.
805  */
806 static void
807 fxp_start(struct ifnet *ifp)
808 {
809 	struct fxp_softc *sc = ifp->if_softc;
810 	struct fxp_cb_tx *txp;
811 
812 	/*
813 	 * See if we need to suspend xmit until the multicast filter
814 	 * has been reprogrammed (which can only be done at the head
815 	 * of the command chain).
816 	 */
817 	if (sc->need_mcsetup) {
818 		return;
819 	}
820 
821 	txp = NULL;
822 
823 	/*
824 	 * We're finished if there is nothing more to add to the list or if
825 	 * we're all filled up with buffers to transmit.
826 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
827 	 *       a NOP command when needed.
828 	 */
829 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
830 		struct mbuf *m, *mb_head;
831 		int segment;
832 
833 		/*
834 		 * Grab a packet to transmit.
835 		 */
836 		IF_DEQUEUE(&ifp->if_snd, mb_head);
837 
838 		/*
839 		 * Get pointer to next available tx desc.
840 		 */
841 		txp = sc->cbl_last->next;
842 
843 		/*
844 		 * Go through each of the mbufs in the chain and initialize
845 		 * the transmit buffer descriptors with the physical address
846 		 * and size of the mbuf.
847 		 */
848 tbdinit:
849 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
850 			if (m->m_len != 0) {
851 				if (segment == FXP_NTXSEG)
852 					break;
853 				txp->tbd[segment].tb_addr =
854 				    vtophys(mtod(m, vm_offset_t));
855 				txp->tbd[segment].tb_size = m->m_len;
856 				segment++;
857 			}
858 		}
859 		if (m != NULL) {
860 			struct mbuf *mn;
861 
862 			/*
863 			 * We ran out of segments. We have to recopy this
864 			 * mbuf chain first. Bail out if we can't get the
865 			 * new buffers.
866 			 */
867 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
868 			if (mn == NULL) {
869 				m_freem(mb_head);
870 				break;
871 			}
872 			if (mb_head->m_pkthdr.len > MHLEN) {
873 				MCLGET(mn, M_DONTWAIT);
874 				if ((mn->m_flags & M_EXT) == 0) {
875 					m_freem(mn);
876 					m_freem(mb_head);
877 					break;
878 				}
879 			}
880 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
881 			    mtod(mn, caddr_t));
882 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
883 			m_freem(mb_head);
884 			mb_head = mn;
885 			goto tbdinit;
886 		}
887 
888 		txp->tbd_number = segment;
889 		txp->mb_head = mb_head;
890 		txp->cb_status = 0;
891 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
892 			txp->cb_command =
893 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
894 			    FXP_CB_COMMAND_S;
895 		} else {
896 			txp->cb_command =
897 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
898 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
899 			/*
900 			 * Set a 5 second timer just in case we don't hear
901 			 * from the card again.
902 			 */
903 			ifp->if_timer = 5;
904 		}
905 		txp->tx_threshold = tx_threshold;
906 
907 		/*
908 		 * Advance the end of list forward.
909 		 */
910 
911 #ifdef __alpha__
912 		/*
913 		 * On platforms which can't access memory in 16-bit
914 		 * granularities, we must prevent the card from DMA'ing
915 		 * up the status while we update the command field.
916 		 * This could cause us to overwrite the completion status.
917 		 */
918 		atomic_clear_short(&sc->cbl_last->cb_command,
919 		    FXP_CB_COMMAND_S);
920 #else
921 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
922 #endif /*__alpha__*/
923 		sc->cbl_last = txp;
924 
925 		/*
926 		 * Advance the beginning of the list forward if there are
927 		 * no other packets queued (when nothing is queued, cbl_first
928 		 * sits on the last TxCB that was sent out).
929 		 */
930 		if (sc->tx_queued == 0)
931 			sc->cbl_first = txp;
932 
933 		sc->tx_queued++;
934 
935 		/*
936 		 * Pass packet to bpf if there is a listener.
937 		 */
938 		if (ifp->if_bpf)
939 			bpf_mtap(ifp, mb_head);
940 	}
941 
942 	/*
943 	 * We're finished. If we added to the list, issue a RESUME to get DMA
944 	 * going again if suspended.
945 	 */
946 	if (txp != NULL) {
947 		fxp_scb_wait(sc);
948 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
949 	}
950 }
951 
952 /*
953  * Process interface interrupts.
954  */
955 static void
956 fxp_intr(void *xsc)
957 {
958 	struct fxp_softc *sc = xsc;
959 	struct ifnet *ifp = &sc->sc_if;
960 	u_int8_t statack;
961 
962 
963 	if (sc->suspended) {
964 		return;
965 	}
966 
967 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
968 		/*
969 		 * First ACK all the interrupts in this pass.
970 		 */
971 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
972 
973 		/*
974 		 * Free any finished transmit mbuf chains.
975 		 *
976 		 * Handle the CNA event likt a CXTNO event. It used to
977 		 * be that this event (control unit not ready) was not
978 		 * encountered, but it is now with the SMPng modifications.
979 		 * The exact sequence of events that occur when the interface
980 		 * is brought up are different now, and if this event
981 		 * goes unhandled, the configuration/rxfilter setup sequence
982 		 * can stall for several seconds. The result is that no
983 		 * packets go out onto the wire for about 5 to 10 seconds
984 		 * after the interface is ifconfig'ed for the first time.
985 		 */
986 		if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
987 			struct fxp_cb_tx *txp;
988 
989 			for (txp = sc->cbl_first; sc->tx_queued &&
990 			    (txp->cb_status & FXP_CB_STATUS_C) != 0;
991 			    txp = txp->next) {
992 				if (txp->mb_head != NULL) {
993 					m_freem(txp->mb_head);
994 					txp->mb_head = NULL;
995 				}
996 				sc->tx_queued--;
997 			}
998 			sc->cbl_first = txp;
999 			ifp->if_timer = 0;
1000 			if (sc->tx_queued == 0) {
1001 				if (sc->need_mcsetup)
1002 					fxp_mc_setup(sc);
1003 			}
1004 			/*
1005 			 * Try to start more packets transmitting.
1006 			 */
1007 			if (ifp->if_snd.ifq_head != NULL)
1008 				fxp_start(ifp);
1009 		}
1010 		/*
1011 		 * Process receiver interrupts. If a no-resource (RNR)
1012 		 * condition exists, get whatever packets we can and
1013 		 * re-start the receiver.
1014 		 */
1015 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1016 			struct mbuf *m;
1017 			struct fxp_rfa *rfa;
1018 rcvloop:
1019 			m = sc->rfa_headm;
1020 			rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1021 			    RFA_ALIGNMENT_FUDGE);
1022 
1023 			if (rfa->rfa_status & FXP_RFA_STATUS_C) {
1024 				/*
1025 				 * Remove first packet from the chain.
1026 				 */
1027 				sc->rfa_headm = m->m_next;
1028 				m->m_next = NULL;
1029 
1030 				/*
1031 				 * Add a new buffer to the receive chain.
1032 				 * If this fails, the old buffer is recycled
1033 				 * instead.
1034 				 */
1035 				if (fxp_add_rfabuf(sc, m) == 0) {
1036 					struct ether_header *eh;
1037 					int total_len;
1038 
1039 					total_len = rfa->actual_size &
1040 					    (MCLBYTES - 1);
1041 					if (total_len <
1042 					    sizeof(struct ether_header)) {
1043 						m_freem(m);
1044 						goto rcvloop;
1045 					}
1046 					m->m_pkthdr.rcvif = ifp;
1047 					m->m_pkthdr.len = m->m_len = total_len;
1048 					eh = mtod(m, struct ether_header *);
1049 					m->m_data +=
1050 					    sizeof(struct ether_header);
1051 					m->m_len -=
1052 					    sizeof(struct ether_header);
1053 					m->m_pkthdr.len = m->m_len;
1054 					ether_input(ifp, eh, m);
1055 				}
1056 				goto rcvloop;
1057 			}
1058 			if (statack & FXP_SCB_STATACK_RNR) {
1059 				fxp_scb_wait(sc);
1060 				CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1061 				    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1062 					RFA_ALIGNMENT_FUDGE);
1063 				CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1064 				    FXP_SCB_COMMAND_RU_START);
1065 			}
1066 		}
1067 	}
1068 }
1069 
1070 /*
1071  * Update packet in/out/collision statistics. The i82557 doesn't
1072  * allow you to access these counters without doing a fairly
1073  * expensive DMA to get _all_ of the statistics it maintains, so
1074  * we do this operation here only once per second. The statistics
1075  * counters in the kernel are updated from the previous dump-stats
1076  * DMA and then a new dump-stats DMA is started. The on-chip
1077  * counters are zeroed when the DMA completes. If we can't start
1078  * the DMA immediately, we don't wait - we just prepare to read
1079  * them again next time.
1080  */
1081 static void
1082 fxp_tick(void *xsc)
1083 {
1084 	struct fxp_softc *sc = xsc;
1085 	struct ifnet *ifp = &sc->sc_if;
1086 	struct fxp_stats *sp = sc->fxp_stats;
1087 	struct fxp_cb_tx *txp;
1088 	int s;
1089 
1090 	ifp->if_opackets += sp->tx_good;
1091 	ifp->if_collisions += sp->tx_total_collisions;
1092 	if (sp->rx_good) {
1093 		ifp->if_ipackets += sp->rx_good;
1094 		sc->rx_idle_secs = 0;
1095 	} else {
1096 		/*
1097 		 * Receiver's been idle for another second.
1098 		 */
1099 		sc->rx_idle_secs++;
1100 	}
1101 	ifp->if_ierrors +=
1102 	    sp->rx_crc_errors +
1103 	    sp->rx_alignment_errors +
1104 	    sp->rx_rnr_errors +
1105 	    sp->rx_overrun_errors;
1106 	/*
1107 	 * If any transmit underruns occured, bump up the transmit
1108 	 * threshold by another 512 bytes (64 * 8).
1109 	 */
1110 	if (sp->tx_underruns) {
1111 		ifp->if_oerrors += sp->tx_underruns;
1112 		if (tx_threshold < 192)
1113 			tx_threshold += 64;
1114 	}
1115 	s = splimp();
1116 	/*
1117 	 * Release any xmit buffers that have completed DMA. This isn't
1118 	 * strictly necessary to do here, but it's advantagous for mbufs
1119 	 * with external storage to be released in a timely manner rather
1120 	 * than being defered for a potentially long time. This limits
1121 	 * the delay to a maximum of one second.
1122 	 */
1123 	for (txp = sc->cbl_first; sc->tx_queued &&
1124 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1125 	    txp = txp->next) {
1126 		if (txp->mb_head != NULL) {
1127 			m_freem(txp->mb_head);
1128 			txp->mb_head = NULL;
1129 		}
1130 		sc->tx_queued--;
1131 	}
1132 	sc->cbl_first = txp;
1133 	/*
1134 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1135 	 * then assume the receiver has locked up and attempt to clear
1136 	 * the condition by reprogramming the multicast filter. This is
1137 	 * a work-around for a bug in the 82557 where the receiver locks
1138 	 * up if it gets certain types of garbage in the syncronization
1139 	 * bits prior to the packet header. This bug is supposed to only
1140 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1141 	 * mode as well (perhaps due to a 10/100 speed transition).
1142 	 */
1143 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1144 		sc->rx_idle_secs = 0;
1145 		fxp_mc_setup(sc);
1146 	}
1147 	/*
1148 	 * If there is no pending command, start another stats
1149 	 * dump. Otherwise punt for now.
1150 	 */
1151 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1152 		/*
1153 		 * Start another stats dump.
1154 		 */
1155 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1156 		    FXP_SCB_COMMAND_CU_DUMPRESET);
1157 	} else {
1158 		/*
1159 		 * A previous command is still waiting to be accepted.
1160 		 * Just zero our copy of the stats and wait for the
1161 		 * next timer event to update them.
1162 		 */
1163 		sp->tx_good = 0;
1164 		sp->tx_underruns = 0;
1165 		sp->tx_total_collisions = 0;
1166 
1167 		sp->rx_good = 0;
1168 		sp->rx_crc_errors = 0;
1169 		sp->rx_alignment_errors = 0;
1170 		sp->rx_rnr_errors = 0;
1171 		sp->rx_overrun_errors = 0;
1172 	}
1173 
1174 	if (sc->miibus != NULL)
1175 		mii_tick(device_get_softc(sc->miibus));
1176 
1177 	/*
1178 	 * Schedule another timeout one second from now.
1179 	 */
1180 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1181 }
1182 
1183 /*
1184  * Stop the interface. Cancels the statistics updater and resets
1185  * the interface.
1186  */
1187 static void
1188 fxp_stop(struct fxp_softc *sc)
1189 {
1190 	struct ifnet *ifp = &sc->sc_if;
1191 	struct fxp_cb_tx *txp;
1192 	int i;
1193 
1194 
1195 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1196 	ifp->if_timer = 0;
1197 
1198 	/*
1199 	 * Cancel stats updater.
1200 	 */
1201 	untimeout(fxp_tick, sc, sc->stat_ch);
1202 
1203 	/*
1204 	 * Issue software reset
1205 	 */
1206 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1207 	DELAY(10);
1208 
1209 	/*
1210 	 * Release any xmit buffers.
1211 	 */
1212 	txp = sc->cbl_base;
1213 	if (txp != NULL) {
1214 		for (i = 0; i < FXP_NTXCB; i++) {
1215 			if (txp[i].mb_head != NULL) {
1216 				m_freem(txp[i].mb_head);
1217 				txp[i].mb_head = NULL;
1218 			}
1219 		}
1220 	}
1221 	sc->tx_queued = 0;
1222 
1223 	/*
1224 	 * Free all the receive buffers then reallocate/reinitialize
1225 	 */
1226 	if (sc->rfa_headm != NULL)
1227 		m_freem(sc->rfa_headm);
1228 	sc->rfa_headm = NULL;
1229 	sc->rfa_tailm = NULL;
1230 	for (i = 0; i < FXP_NRFABUFS; i++) {
1231 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1232 			/*
1233 			 * This "can't happen" - we're at splimp()
1234 			 * and we just freed all the buffers we need
1235 			 * above.
1236 			 */
1237 			panic("fxp_stop: no buffers!");
1238 		}
1239 	}
1240 }
1241 
1242 /*
1243  * Watchdog/transmission transmit timeout handler. Called when a
1244  * transmission is started on the interface, but no interrupt is
1245  * received before the timeout. This usually indicates that the
1246  * card has wedged for some reason.
1247  */
1248 static void
1249 fxp_watchdog(struct ifnet *ifp)
1250 {
1251 	struct fxp_softc *sc = ifp->if_softc;
1252 
1253 	device_printf(sc->dev, "device timeout\n");
1254 	ifp->if_oerrors++;
1255 
1256 	fxp_init(sc);
1257 }
1258 
1259 static void
1260 fxp_init(void *xsc)
1261 {
1262 	struct fxp_softc *sc = xsc;
1263 	struct ifnet *ifp = &sc->sc_if;
1264 	struct fxp_cb_config *cbp;
1265 	struct fxp_cb_ias *cb_ias;
1266 	struct fxp_cb_tx *txp;
1267 	int i, prm, s;
1268 
1269 	s = splimp();
1270 	/*
1271 	 * Cancel any pending I/O
1272 	 */
1273 	fxp_stop(sc);
1274 
1275 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1276 
1277 	/*
1278 	 * Initialize base of CBL and RFA memory. Loading with zero
1279 	 * sets it up for regular linear addressing.
1280 	 */
1281 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1282 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1283 
1284 	fxp_scb_wait(sc);
1285 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1286 
1287 	/*
1288 	 * Initialize base of dump-stats buffer.
1289 	 */
1290 	fxp_scb_wait(sc);
1291 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1292 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1293 
1294 	/*
1295 	 * We temporarily use memory that contains the TxCB list to
1296 	 * construct the config CB. The TxCB list memory is rebuilt
1297 	 * later.
1298 	 */
1299 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1300 
1301 	/*
1302 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1303 	 * zero and must be one bits in this structure and this is the easiest
1304 	 * way to initialize them all to proper values.
1305 	 */
1306 	bcopy(fxp_cb_config_template,
1307 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1308 		sizeof(fxp_cb_config_template));
1309 
1310 	cbp->cb_status =	0;
1311 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1312 	cbp->link_addr =	-1;	/* (no) next command */
1313 	cbp->byte_count =	22;	/* (22) bytes to config */
1314 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1315 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1316 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1317 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1318 	cbp->type_enable =	0;	/* actually reserved */
1319 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1320 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1321 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1322 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1323 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1324 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1325 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1326 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1327 	cbp->ci_int =		1;	/* interrupt on CU idle */
1328 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1329 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1330 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1331 	cbp->save_bf =		prm;	/* save bad frames */
1332 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1333 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1334 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1335 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1336 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1337 	cbp->csma_dis =		0;	/* (don't) disable link */
1338 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1339 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1340 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1341 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1342 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1343 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1344 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1345 	cbp->loopback =		0;	/* (don't) loopback */
1346 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1347 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1348 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1349 	cbp->promiscuous =	prm;	/* promiscuous mode */
1350 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1351 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1352 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1353 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1354 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1355 
1356 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1357 	cbp->padding =		1;	/* (do) pad short tx packets */
1358 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1359 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1360 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1361 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1362 					/* must set wake_en in PMCSR also */
1363 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1364 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1365 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1366 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1367 
1368 	if (sc->chip == FXP_CHIP_82557) {
1369 		/*
1370 		 * The 82557 has no hardware flow control, the values
1371 		 * below are the defaults for the chip.
1372 		 */
1373 		cbp->fc_delay_lsb =	0;
1374 		cbp->fc_delay_msb =	0x40;
1375 		cbp->pri_fc_thresh =	3;
1376 		cbp->tx_fc_dis =	0;
1377 		cbp->rx_fc_restop =	0;
1378 		cbp->rx_fc_restart =	0;
1379 		cbp->fc_filter =	0;
1380 		cbp->pri_fc_loc =	1;
1381 	} else {
1382 		cbp->fc_delay_lsb =	0x1f;
1383 		cbp->fc_delay_msb =	0x01;
1384 		cbp->pri_fc_thresh =	3;
1385 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1386 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1387 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1388 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1389 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1390 	}
1391 
1392 	/*
1393 	 * Start the config command/DMA.
1394 	 */
1395 	fxp_scb_wait(sc);
1396 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1397 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1398 	/* ...and wait for it to complete. */
1399 	fxp_dma_wait(&cbp->cb_status, sc);
1400 
1401 	/*
1402 	 * Now initialize the station address. Temporarily use the TxCB
1403 	 * memory area like we did above for the config CB.
1404 	 */
1405 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1406 	cb_ias->cb_status = 0;
1407 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1408 	cb_ias->link_addr = -1;
1409 	bcopy(sc->arpcom.ac_enaddr,
1410 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1411 	    sizeof(sc->arpcom.ac_enaddr));
1412 
1413 	/*
1414 	 * Start the IAS (Individual Address Setup) command/DMA.
1415 	 */
1416 	fxp_scb_wait(sc);
1417 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1418 	/* ...and wait for it to complete. */
1419 	fxp_dma_wait(&cb_ias->cb_status, sc);
1420 
1421 	/*
1422 	 * Initialize transmit control block (TxCB) list.
1423 	 */
1424 
1425 	txp = sc->cbl_base;
1426 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1427 	for (i = 0; i < FXP_NTXCB; i++) {
1428 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1429 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1430 		txp[i].link_addr =
1431 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1432 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1433 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1434 		else
1435 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1436 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1437 	}
1438 	/*
1439 	 * Set the suspend flag on the first TxCB and start the control
1440 	 * unit. It will execute the NOP and then suspend.
1441 	 */
1442 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1443 	sc->cbl_first = sc->cbl_last = txp;
1444 	sc->tx_queued = 1;
1445 
1446 	fxp_scb_wait(sc);
1447 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1448 
1449 	/*
1450 	 * Initialize receiver buffer area - RFA.
1451 	 */
1452 	fxp_scb_wait(sc);
1453 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1454 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1455 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1456 
1457 	/*
1458 	 * Set current media.
1459 	 */
1460 	if (sc->miibus != NULL)
1461 		mii_mediachg(device_get_softc(sc->miibus));
1462 
1463 	ifp->if_flags |= IFF_RUNNING;
1464 	ifp->if_flags &= ~IFF_OACTIVE;
1465 	splx(s);
1466 
1467 	/*
1468 	 * Start stats updater.
1469 	 */
1470 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1471 }
1472 
1473 static int
1474 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1475 {
1476 
1477 	return (0);
1478 }
1479 
1480 static void
1481 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1482 {
1483 
1484 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1485 }
1486 
1487 /*
1488  * Change media according to request.
1489  */
1490 static int
1491 fxp_ifmedia_upd(struct ifnet *ifp)
1492 {
1493 	struct fxp_softc *sc = ifp->if_softc;
1494 	struct mii_data *mii;
1495 
1496 	mii = device_get_softc(sc->miibus);
1497 	mii_mediachg(mii);
1498 	return (0);
1499 }
1500 
1501 /*
1502  * Notify the world which media we're using.
1503  */
1504 static void
1505 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1506 {
1507 	struct fxp_softc *sc = ifp->if_softc;
1508 	struct mii_data *mii;
1509 
1510 	mii = device_get_softc(sc->miibus);
1511 	mii_pollstat(mii);
1512 	ifmr->ifm_active = mii->mii_media_active;
1513 	ifmr->ifm_status = mii->mii_media_status;
1514 }
1515 
1516 /*
1517  * Add a buffer to the end of the RFA buffer list.
1518  * Return 0 if successful, 1 for failure. A failure results in
1519  * adding the 'oldm' (if non-NULL) on to the end of the list -
1520  * tossing out its old contents and recycling it.
1521  * The RFA struct is stuck at the beginning of mbuf cluster and the
1522  * data pointer is fixed up to point just past it.
1523  */
1524 static int
1525 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1526 {
1527 	u_int32_t v;
1528 	struct mbuf *m;
1529 	struct fxp_rfa *rfa, *p_rfa;
1530 
1531 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1532 	if (m != NULL) {
1533 		MCLGET(m, M_DONTWAIT);
1534 		if ((m->m_flags & M_EXT) == 0) {
1535 			m_freem(m);
1536 			if (oldm == NULL)
1537 				return 1;
1538 			m = oldm;
1539 			m->m_data = m->m_ext.ext_buf;
1540 		}
1541 	} else {
1542 		if (oldm == NULL)
1543 			return 1;
1544 		m = oldm;
1545 		m->m_data = m->m_ext.ext_buf;
1546 	}
1547 
1548 	/*
1549 	 * Move the data pointer up so that the incoming data packet
1550 	 * will be 32-bit aligned.
1551 	 */
1552 	m->m_data += RFA_ALIGNMENT_FUDGE;
1553 
1554 	/*
1555 	 * Get a pointer to the base of the mbuf cluster and move
1556 	 * data start past it.
1557 	 */
1558 	rfa = mtod(m, struct fxp_rfa *);
1559 	m->m_data += sizeof(struct fxp_rfa);
1560 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1561 
1562 	/*
1563 	 * Initialize the rest of the RFA.  Note that since the RFA
1564 	 * is misaligned, we cannot store values directly.  Instead,
1565 	 * we use an optimized, inline copy.
1566 	 */
1567 
1568 	rfa->rfa_status = 0;
1569 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1570 	rfa->actual_size = 0;
1571 
1572 	v = -1;
1573 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1574 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1575 
1576 	/*
1577 	 * If there are other buffers already on the list, attach this
1578 	 * one to the end by fixing up the tail to point to this one.
1579 	 */
1580 	if (sc->rfa_headm != NULL) {
1581 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1582 		    RFA_ALIGNMENT_FUDGE);
1583 		sc->rfa_tailm->m_next = m;
1584 		v = vtophys(rfa);
1585 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1586 		p_rfa->rfa_control = 0;
1587 	} else {
1588 		sc->rfa_headm = m;
1589 	}
1590 	sc->rfa_tailm = m;
1591 
1592 	return (m == oldm);
1593 }
1594 
1595 static volatile int
1596 fxp_miibus_readreg(device_t dev, int phy, int reg)
1597 {
1598 	struct fxp_softc *sc = device_get_softc(dev);
1599 	int count = 10000;
1600 	int value;
1601 
1602 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1603 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1604 
1605 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1606 	    && count--)
1607 		DELAY(10);
1608 
1609 	if (count <= 0)
1610 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1611 
1612 	return (value & 0xffff);
1613 }
1614 
1615 static void
1616 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1617 {
1618 	struct fxp_softc *sc = device_get_softc(dev);
1619 	int count = 10000;
1620 
1621 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1622 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1623 	    (value & 0xffff));
1624 
1625 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1626 	    count--)
1627 		DELAY(10);
1628 
1629 	if (count <= 0)
1630 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1631 }
1632 
1633 static int
1634 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1635 {
1636 	struct fxp_softc *sc = ifp->if_softc;
1637 	struct ifreq *ifr = (struct ifreq *)data;
1638 	struct mii_data *mii;
1639 	int s, error = 0;
1640 
1641 	s = splimp();
1642 
1643 	switch (command) {
1644 	case SIOCSIFADDR:
1645 	case SIOCGIFADDR:
1646 	case SIOCSIFMTU:
1647 		error = ether_ioctl(ifp, command, data);
1648 		break;
1649 
1650 	case SIOCSIFFLAGS:
1651 		if (ifp->if_flags & IFF_ALLMULTI)
1652 			sc->flags |= FXP_FLAG_ALL_MCAST;
1653 		else
1654 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1655 
1656 		/*
1657 		 * If interface is marked up and not running, then start it.
1658 		 * If it is marked down and running, stop it.
1659 		 * XXX If it's up then re-initialize it. This is so flags
1660 		 * such as IFF_PROMISC are handled.
1661 		 */
1662 		if (ifp->if_flags & IFF_UP) {
1663 			fxp_init(sc);
1664 		} else {
1665 			if (ifp->if_flags & IFF_RUNNING)
1666 				fxp_stop(sc);
1667 		}
1668 		break;
1669 
1670 	case SIOCADDMULTI:
1671 	case SIOCDELMULTI:
1672 		if (ifp->if_flags & IFF_ALLMULTI)
1673 			sc->flags |= FXP_FLAG_ALL_MCAST;
1674 		else
1675 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1676 		/*
1677 		 * Multicast list has changed; set the hardware filter
1678 		 * accordingly.
1679 		 */
1680 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
1681 			fxp_mc_setup(sc);
1682 		/*
1683 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
1684 		 * again rather than else {}.
1685 		 */
1686 		if (sc->flags & FXP_FLAG_ALL_MCAST)
1687 			fxp_init(sc);
1688 		error = 0;
1689 		break;
1690 
1691 	case SIOCSIFMEDIA:
1692 	case SIOCGIFMEDIA:
1693 		if (sc->miibus != NULL) {
1694 			mii = device_get_softc(sc->miibus);
1695                         error = ifmedia_ioctl(ifp, ifr,
1696                             &mii->mii_media, command);
1697 		} else {
1698                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1699 		}
1700 		break;
1701 
1702 	default:
1703 		error = EINVAL;
1704 	}
1705 	splx(s);
1706 	return (error);
1707 }
1708 
1709 /*
1710  * Program the multicast filter.
1711  *
1712  * We have an artificial restriction that the multicast setup command
1713  * must be the first command in the chain, so we take steps to ensure
1714  * this. By requiring this, it allows us to keep up the performance of
1715  * the pre-initialized command ring (esp. link pointers) by not actually
1716  * inserting the mcsetup command in the ring - i.e. its link pointer
1717  * points to the TxCB ring, but the mcsetup descriptor itself is not part
1718  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
1719  * lead into the regular TxCB ring when it completes.
1720  *
1721  * This function must be called at splimp.
1722  */
1723 static void
1724 fxp_mc_setup(struct fxp_softc *sc)
1725 {
1726 	struct fxp_cb_mcs *mcsp = sc->mcsp;
1727 	struct ifnet *ifp = &sc->sc_if;
1728 	struct ifmultiaddr *ifma;
1729 	int nmcasts;
1730 	int count;
1731 
1732 	/*
1733 	 * If there are queued commands, we must wait until they are all
1734 	 * completed. If we are already waiting, then add a NOP command
1735 	 * with interrupt option so that we're notified when all commands
1736 	 * have been completed - fxp_start() ensures that no additional
1737 	 * TX commands will be added when need_mcsetup is true.
1738 	 */
1739 	if (sc->tx_queued) {
1740 		struct fxp_cb_tx *txp;
1741 
1742 		/*
1743 		 * need_mcsetup will be true if we are already waiting for the
1744 		 * NOP command to be completed (see below). In this case, bail.
1745 		 */
1746 		if (sc->need_mcsetup)
1747 			return;
1748 		sc->need_mcsetup = 1;
1749 
1750 		/*
1751 		 * Add a NOP command with interrupt so that we are notified when all
1752 		 * TX commands have been processed.
1753 		 */
1754 		txp = sc->cbl_last->next;
1755 		txp->mb_head = NULL;
1756 		txp->cb_status = 0;
1757 		txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1758 		/*
1759 		 * Advance the end of list forward.
1760 		 */
1761 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1762 		sc->cbl_last = txp;
1763 		sc->tx_queued++;
1764 		/*
1765 		 * Issue a resume in case the CU has just suspended.
1766 		 */
1767 		fxp_scb_wait(sc);
1768 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
1769 		/*
1770 		 * Set a 5 second timer just in case we don't hear from the
1771 		 * card again.
1772 		 */
1773 		ifp->if_timer = 5;
1774 
1775 		return;
1776 	}
1777 	sc->need_mcsetup = 0;
1778 
1779 	/*
1780 	 * Initialize multicast setup descriptor.
1781 	 */
1782 	mcsp->next = sc->cbl_base;
1783 	mcsp->mb_head = NULL;
1784 	mcsp->cb_status = 0;
1785 	mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1786 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
1787 
1788 	nmcasts = 0;
1789 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
1790 #if __FreeBSD_version < 500000
1791 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1792 #else
1793 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1794 #endif
1795 			if (ifma->ifma_addr->sa_family != AF_LINK)
1796 				continue;
1797 			if (nmcasts >= MAXMCADDR) {
1798 				sc->flags |= FXP_FLAG_ALL_MCAST;
1799 				nmcasts = 0;
1800 				break;
1801 			}
1802 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1803 			    (void *)(uintptr_t)(volatile void *)
1804 				&sc->mcsp->mc_addr[nmcasts][0], 6);
1805 			nmcasts++;
1806 		}
1807 	}
1808 	mcsp->mc_cnt = nmcasts * 6;
1809 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
1810 	sc->tx_queued = 1;
1811 
1812 	/*
1813 	 * Wait until command unit is not active. This should never
1814 	 * be the case when nothing is queued, but make sure anyway.
1815 	 */
1816 	count = 100;
1817 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1818 	    FXP_SCB_CUS_ACTIVE && --count)
1819 		DELAY(10);
1820 	if (count == 0) {
1821 		device_printf(sc->dev, "command queue timeout\n");
1822 		return;
1823 	}
1824 
1825 	/*
1826 	 * Start the multicast setup command.
1827 	 */
1828 	fxp_scb_wait(sc);
1829 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1830 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1831 
1832 	ifp->if_timer = 2;
1833 	return;
1834 }
1835