xref: /freebsd/sys/dev/fxp/if_fxp.c (revision ca9ac06c99bfd0150b85d4d83c396ce6237c0e05)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/endian.h>
40 #include <sys/mbuf.h>
41 		/* #include <sys/mutex.h> */
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sysctl.h>
46 
47 #include <net/if.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 
51 #include <net/bpf.h>
52 #include <sys/sockio.h>
53 #include <sys/bus.h>
54 #include <machine/bus.h>
55 #include <sys/rman.h>
56 #include <machine/resource.h>
57 
58 #include <net/ethernet.h>
59 #include <net/if_arp.h>
60 
61 #include <machine/clock.h>	/* for DELAY */
62 
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #ifdef FXP_IP_CSUM_WAR
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <machine/in_cksum.h>
71 #endif
72 
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75 
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 
79 #include <dev/fxp/if_fxpreg.h>
80 #include <dev/fxp/if_fxpvar.h>
81 #include <dev/fxp/rcvbundl.h>
82 
83 MODULE_DEPEND(fxp, pci, 1, 1, 1);
84 MODULE_DEPEND(fxp, ether, 1, 1, 1);
85 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86 #include "miibus_if.h"
87 
88 /*
89  * NOTE!  On the Alpha, we have an alignment constraint.  The
90  * card DMAs the packet immediately following the RFA.  However,
91  * the first thing in the packet is a 14-byte Ethernet header.
92  * This means that the packet is misaligned.  To compensate,
93  * we actually offset the RFA 2 bytes into the cluster.  This
94  * alignes the packet after the Ethernet header at a 32-bit
95  * boundary.  HOWEVER!  This means that the RFA is misaligned!
96  */
97 #define	RFA_ALIGNMENT_FUDGE	2
98 
99 /*
100  * Set initial transmit threshold at 64 (512 bytes). This is
101  * increased by 64 (512 bytes) at a time, to maximum of 192
102  * (1536 bytes), if an underrun occurs.
103  */
104 static int tx_threshold = 64;
105 
106 /*
107  * The configuration byte map has several undefined fields which
108  * must be one or must be zero.  Set up a template for these bits
109  * only, (assuming a 82557 chip) leaving the actual configuration
110  * to fxp_init.
111  *
112  * See struct fxp_cb_config for the bit definitions.
113  */
114 static u_char fxp_cb_config_template[] = {
115 	0x0, 0x0,		/* cb_status */
116 	0x0, 0x0,		/* cb_command */
117 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118 	0x0,	/*  0 */
119 	0x0,	/*  1 */
120 	0x0,	/*  2 */
121 	0x0,	/*  3 */
122 	0x0,	/*  4 */
123 	0x0,	/*  5 */
124 	0x32,	/*  6 */
125 	0x0,	/*  7 */
126 	0x0,	/*  8 */
127 	0x0,	/*  9 */
128 	0x6,	/* 10 */
129 	0x0,	/* 11 */
130 	0x0,	/* 12 */
131 	0x0,	/* 13 */
132 	0xf2,	/* 14 */
133 	0x48,	/* 15 */
134 	0x0,	/* 16 */
135 	0x40,	/* 17 */
136 	0xf0,	/* 18 */
137 	0x0,	/* 19 */
138 	0x3f,	/* 20 */
139 	0x5	/* 21 */
140 };
141 
142 struct fxp_ident {
143 	uint16_t	devid;
144 	int16_t		revid;		/* -1 matches anything */
145 	char 		*name;
146 };
147 
148 /*
149  * Claim various Intel PCI device identifiers for this driver.  The
150  * sub-vendor and sub-device field are extensively used to identify
151  * particular variants, but we don't currently differentiate between
152  * them.
153  */
154 static struct fxp_ident fxp_ident_table[] = {
155     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174     { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175     { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
176     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
177     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
178     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
179     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
180     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
181     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
182     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
183     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
184     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
185     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
186     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
187     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
188     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
189     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
190     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
191     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
192     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
193     { 0,	-1,	NULL },
194 };
195 
196 #ifdef FXP_IP_CSUM_WAR
197 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
198 #else
199 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
200 #endif
201 
202 static int		fxp_probe(device_t dev);
203 static int		fxp_attach(device_t dev);
204 static int		fxp_detach(device_t dev);
205 static int		fxp_shutdown(device_t dev);
206 static int		fxp_suspend(device_t dev);
207 static int		fxp_resume(device_t dev);
208 
209 static void		fxp_intr(void *xsc);
210 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
211 			    uint8_t statack, int count);
212 static void 		fxp_init(void *xsc);
213 static void 		fxp_init_body(struct fxp_softc *sc);
214 static void 		fxp_tick(void *xsc);
215 static void 		fxp_start(struct ifnet *ifp);
216 static void 		fxp_start_body(struct ifnet *ifp);
217 static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
218 static void		fxp_stop(struct fxp_softc *sc);
219 static void 		fxp_release(struct fxp_softc *sc);
220 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
221 			    caddr_t data);
222 static void 		fxp_watchdog(struct ifnet *ifp);
223 static int		fxp_add_rfabuf(struct fxp_softc *sc,
224     			    struct fxp_rx *rxp);
225 static int		fxp_mc_addrs(struct fxp_softc *sc);
226 static void		fxp_mc_setup(struct fxp_softc *sc);
227 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
228 			    int autosize);
229 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
230 			    uint16_t data);
231 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
232 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
233 			    int offset, int words);
234 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
235 			    int offset, int words);
236 static int		fxp_ifmedia_upd(struct ifnet *ifp);
237 static void		fxp_ifmedia_sts(struct ifnet *ifp,
238 			    struct ifmediareq *ifmr);
239 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
240 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
241 			    struct ifmediareq *ifmr);
242 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
243 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
244 			    int value);
245 static void		fxp_load_ucode(struct fxp_softc *sc);
246 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
247 			    int low, int high);
248 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
249 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
250 static void 		fxp_scb_wait(struct fxp_softc *sc);
251 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
252 static void		fxp_dma_wait(struct fxp_softc *sc,
253     			    volatile uint16_t *status, bus_dma_tag_t dmat,
254 			    bus_dmamap_t map);
255 
256 static device_method_t fxp_methods[] = {
257 	/* Device interface */
258 	DEVMETHOD(device_probe,		fxp_probe),
259 	DEVMETHOD(device_attach,	fxp_attach),
260 	DEVMETHOD(device_detach,	fxp_detach),
261 	DEVMETHOD(device_shutdown,	fxp_shutdown),
262 	DEVMETHOD(device_suspend,	fxp_suspend),
263 	DEVMETHOD(device_resume,	fxp_resume),
264 
265 	/* MII interface */
266 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
267 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
268 
269 	{ 0, 0 }
270 };
271 
272 static driver_t fxp_driver = {
273 	"fxp",
274 	fxp_methods,
275 	sizeof(struct fxp_softc),
276 };
277 
278 static devclass_t fxp_devclass;
279 
280 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
281 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
282 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
283 
284 /*
285  * Wait for the previous command to be accepted (but not necessarily
286  * completed).
287  */
288 static void
289 fxp_scb_wait(struct fxp_softc *sc)
290 {
291 	int i = 10000;
292 
293 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
294 		DELAY(2);
295 	if (i == 0)
296 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
297 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
298 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
299 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
300 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
301 }
302 
303 static void
304 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
305 {
306 
307 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
308 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
309 		fxp_scb_wait(sc);
310 	}
311 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
312 }
313 
314 static void
315 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
316     bus_dma_tag_t dmat, bus_dmamap_t map)
317 {
318 	int i = 10000;
319 
320 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
321 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
322 		DELAY(2);
323 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
324 	}
325 	if (i == 0)
326 		device_printf(sc->dev, "DMA timeout\n");
327 }
328 
329 /*
330  * Return identification string if this device is ours.
331  */
332 static int
333 fxp_probe(device_t dev)
334 {
335 	uint16_t devid;
336 	uint8_t revid;
337 	struct fxp_ident *ident;
338 
339 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
340 		devid = pci_get_device(dev);
341 		revid = pci_get_revid(dev);
342 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
343 			if (ident->devid == devid &&
344 			    (ident->revid == revid || ident->revid == -1)) {
345 				device_set_desc(dev, ident->name);
346 				return (BUS_PROBE_DEFAULT);
347 			}
348 		}
349 	}
350 	return (ENXIO);
351 }
352 
353 static void
354 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
355 {
356 	uint32_t *addr;
357 
358 	if (error)
359 		return;
360 
361 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
362 	addr = arg;
363 	*addr = segs->ds_addr;
364 }
365 
366 static int
367 fxp_attach(device_t dev)
368 {
369 	struct fxp_softc *sc;
370 	struct fxp_cb_tx *tcbp;
371 	struct fxp_tx *txp;
372 	struct fxp_rx *rxp;
373 	struct ifnet *ifp;
374 	uint32_t val;
375 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
376 	int i, rid, m1, m2, prefer_iomap;
377 	int error, s;
378 
379 	error = 0;
380 	sc = device_get_softc(dev);
381 	sc->dev = dev;
382 	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
383 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
384 	    MTX_DEF);
385 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
386 	    fxp_serial_ifmedia_sts);
387 
388 	s = splimp();
389 
390 	/*
391 	 * Enable bus mastering.
392 	 */
393 	pci_enable_busmaster(dev);
394 	val = pci_read_config(dev, PCIR_COMMAND, 2);
395 
396 	/*
397 	 * Figure out which we should try first - memory mapping or i/o mapping?
398 	 * We default to memory mapping. Then we accept an override from the
399 	 * command line. Then we check to see which one is enabled.
400 	 */
401 	m1 = PCIM_CMD_MEMEN;
402 	m2 = PCIM_CMD_PORTEN;
403 	prefer_iomap = 0;
404 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
405 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
406 		m1 = PCIM_CMD_PORTEN;
407 		m2 = PCIM_CMD_MEMEN;
408 	}
409 
410 	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
411 	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
412 	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
413 	if (sc->mem == NULL) {
414 		sc->rtp =
415 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
416 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
417 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
418                                             RF_ACTIVE);
419 	}
420 
421 	if (!sc->mem) {
422 		error = ENXIO;
423 		goto fail;
424         }
425 	if (bootverbose) {
426 		device_printf(dev, "using %s space register mapping\n",
427 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
428 	}
429 
430 	sc->sc_st = rman_get_bustag(sc->mem);
431 	sc->sc_sh = rman_get_bushandle(sc->mem);
432 
433 	/*
434 	 * Allocate our interrupt.
435 	 */
436 	rid = 0;
437 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
438 				 RF_SHAREABLE | RF_ACTIVE);
439 	if (sc->irq == NULL) {
440 		device_printf(dev, "could not map interrupt\n");
441 		error = ENXIO;
442 		goto fail;
443 	}
444 
445 	/*
446 	 * Reset to a stable state.
447 	 */
448 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
449 	DELAY(10);
450 
451 	/*
452 	 * Find out how large of an SEEPROM we have.
453 	 */
454 	fxp_autosize_eeprom(sc);
455 
456 	/*
457 	 * Find out the chip revision; lump all 82557 revs together.
458 	 */
459 	fxp_read_eeprom(sc, &data, 5, 1);
460 	if ((data >> 8) == 1)
461 		sc->revision = FXP_REV_82557;
462 	else
463 		sc->revision = pci_get_revid(dev);
464 
465 	/*
466 	 * Determine whether we must use the 503 serial interface.
467 	 */
468 	fxp_read_eeprom(sc, &data, 6, 1);
469 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
470 	    && (data & FXP_PHY_SERIAL_ONLY))
471 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
472 
473 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
474 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
475 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
476 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
477 	    "FXP driver receive interrupt microcode bundling delay");
478 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
479 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
480 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
481 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
482 	    "FXP driver receive interrupt microcode bundle size limit");
483 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
484 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
485 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
486 	    "FXP RNR events");
487 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
488 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
489 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
490 	    "FXP flow control disabled");
491 
492 	/*
493 	 * Pull in device tunables.
494 	 */
495 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
496 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
497 	sc->tunable_noflow = 1;
498 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
499 	    "int_delay", &sc->tunable_int_delay);
500 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
501 	    "bundle_max", &sc->tunable_bundle_max);
502 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
503 	    "noflow", &sc->tunable_noflow);
504 	sc->rnr = 0;
505 
506 	/*
507 	 * Enable workarounds for certain chip revision deficiencies.
508 	 *
509 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
510 	 * some systems based a normal 82559 design, have a defect where
511 	 * the chip can cause a PCI protocol violation if it receives
512 	 * a CU_RESUME command when it is entering the IDLE state.  The
513 	 * workaround is to disable Dynamic Standby Mode, so the chip never
514 	 * deasserts CLKRUN#, and always remains in an active state.
515 	 *
516 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
517 	 */
518 	i = pci_get_device(dev);
519 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
520 	    sc->revision >= FXP_REV_82559_A0) {
521 		fxp_read_eeprom(sc, &data, 10, 1);
522 		if (data & 0x02) {			/* STB enable */
523 			uint16_t cksum;
524 			int i;
525 
526 			device_printf(dev,
527 			    "Disabling dynamic standby mode in EEPROM\n");
528 			data &= ~0x02;
529 			fxp_write_eeprom(sc, &data, 10, 1);
530 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
531 			cksum = 0;
532 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
533 				fxp_read_eeprom(sc, &data, i, 1);
534 				cksum += data;
535 			}
536 			i = (1 << sc->eeprom_size) - 1;
537 			cksum = 0xBABA - cksum;
538 			fxp_read_eeprom(sc, &data, i, 1);
539 			fxp_write_eeprom(sc, &cksum, i, 1);
540 			device_printf(dev,
541 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
542 			    i, data, cksum);
543 #if 1
544 			/*
545 			 * If the user elects to continue, try the software
546 			 * workaround, as it is better than nothing.
547 			 */
548 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
549 #endif
550 		}
551 	}
552 
553 	/*
554 	 * If we are not a 82557 chip, we can enable extended features.
555 	 */
556 	if (sc->revision != FXP_REV_82557) {
557 		/*
558 		 * If MWI is enabled in the PCI configuration, and there
559 		 * is a valid cacheline size (8 or 16 dwords), then tell
560 		 * the board to turn on MWI.
561 		 */
562 		if (val & PCIM_CMD_MWRICEN &&
563 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
564 			sc->flags |= FXP_FLAG_MWI_ENABLE;
565 
566 		/* turn on the extended TxCB feature */
567 		sc->flags |= FXP_FLAG_EXT_TXCB;
568 
569 		/* enable reception of long frames for VLAN */
570 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
571 	} else {
572 		/* a hack to get long VLAN frames on a 82557 */
573 		sc->flags |= FXP_FLAG_SAVE_BAD;
574 	}
575 
576 	/*
577 	 * Enable use of extended RFDs and TCBs for 82550
578 	 * and later chips. Note: we need extended TXCB support
579 	 * too, but that's already enabled by the code above.
580 	 * Be careful to do this only on the right devices.
581 	 */
582 
583 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C) {
584 		sc->rfa_size = sizeof (struct fxp_rfa);
585 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
586 		sc->flags |= FXP_FLAG_EXT_RFA;
587 	} else {
588 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
589 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
590 	}
591 
592 	/*
593 	 * Allocate DMA tags and DMA safe memory.
594 	 */
595 	sc->maxtxseg = FXP_NTXSEG;
596 	if (sc->flags & FXP_FLAG_EXT_RFA)
597 		sc->maxtxseg--;
598 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
599 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
600 	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
601 	    &sc->fxp_mtag);
602 	if (error) {
603 		device_printf(dev, "could not allocate dma tag\n");
604 		goto fail;
605 	}
606 
607 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
608 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
609 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
610 	    &sc->fxp_stag);
611 	if (error) {
612 		device_printf(dev, "could not allocate dma tag\n");
613 		goto fail;
614 	}
615 
616 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
617 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
618 	if (error)
619 		goto fail;
620 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
621 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
622 	if (error) {
623 		device_printf(dev, "could not map the stats buffer\n");
624 		goto fail;
625 	}
626 
627 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
628 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
629 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
630 	if (error) {
631 		device_printf(dev, "could not allocate dma tag\n");
632 		goto fail;
633 	}
634 
635 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
636 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
637 	if (error)
638 		goto fail;
639 
640 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
641 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
642 	    &sc->fxp_desc.cbl_addr, 0);
643 	if (error) {
644 		device_printf(dev, "could not map DMA memory\n");
645 		goto fail;
646 	}
647 
648 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
649 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
650 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
651 	    &sc->mcs_tag);
652 	if (error) {
653 		device_printf(dev, "could not allocate dma tag\n");
654 		goto fail;
655 	}
656 
657 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
658 	    BUS_DMA_NOWAIT, &sc->mcs_map);
659 	if (error)
660 		goto fail;
661 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
662 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
663 	if (error) {
664 		device_printf(dev, "can't map the multicast setup command\n");
665 		goto fail;
666 	}
667 
668 	/*
669 	 * Pre-allocate the TX DMA maps and setup the pointers to
670 	 * the TX command blocks.
671 	 */
672 	txp = sc->fxp_desc.tx_list;
673 	tcbp = sc->fxp_desc.cbl_list;
674 	for (i = 0; i < FXP_NTXCB; i++) {
675 		txp[i].tx_cb = tcbp + i;
676 		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
677 		if (error) {
678 			device_printf(dev, "can't create DMA map for TX\n");
679 			goto fail;
680 		}
681 	}
682 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
683 	if (error) {
684 		device_printf(dev, "can't create spare DMA map\n");
685 		goto fail;
686 	}
687 
688 	/*
689 	 * Pre-allocate our receive buffers.
690 	 */
691 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
692 	for (i = 0; i < FXP_NRFABUFS; i++) {
693 		rxp = &sc->fxp_desc.rx_list[i];
694 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
695 		if (error) {
696 			device_printf(dev, "can't create DMA map for RX\n");
697 			goto fail;
698 		}
699 		if (fxp_add_rfabuf(sc, rxp) != 0) {
700 			error = ENOMEM;
701 			goto fail;
702 		}
703 	}
704 
705 	/*
706 	 * Read MAC address.
707 	 */
708 	fxp_read_eeprom(sc, myea, 0, 3);
709 	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
710 	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
711 	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
712 	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
713 	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
714 	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
715 	if (bootverbose) {
716 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
717 		    pci_get_vendor(dev), pci_get_device(dev),
718 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
719 		    pci_get_revid(dev));
720 		fxp_read_eeprom(sc, &data, 10, 1);
721 		device_printf(dev, "Dynamic Standby mode is %s\n",
722 		    data & 0x02 ? "enabled" : "disabled");
723 	}
724 
725 	/*
726 	 * If this is only a 10Mbps device, then there is no MII, and
727 	 * the PHY will use a serial interface instead.
728 	 *
729 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
730 	 * doesn't have a programming interface of any sort.  The
731 	 * media is sensed automatically based on how the link partner
732 	 * is configured.  This is, in essence, manual configuration.
733 	 */
734 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
735 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
736 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
737 	} else {
738 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
739 		    fxp_ifmedia_sts)) {
740 	                device_printf(dev, "MII without any PHY!\n");
741 			error = ENXIO;
742 			goto fail;
743 		}
744 	}
745 
746 	ifp = &sc->arpcom.ac_if;
747 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
748 	ifp->if_baudrate = 100000000;
749 	ifp->if_init = fxp_init;
750 	ifp->if_softc = sc;
751 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
752 	ifp->if_ioctl = fxp_ioctl;
753 	ifp->if_start = fxp_start;
754 	ifp->if_watchdog = fxp_watchdog;
755 
756 	ifp->if_capabilities = ifp->if_capenable = 0;
757 
758 	/* Enable checksum offload for 82550 or better chips */
759 	if (sc->flags & FXP_FLAG_EXT_RFA) {
760 		ifp->if_hwassist = FXP_CSUM_FEATURES;
761 		ifp->if_capabilities |= IFCAP_HWCSUM;
762 		ifp->if_capenable |= IFCAP_HWCSUM;
763 	}
764 
765 #ifdef DEVICE_POLLING
766 	/* Inform the world we support polling. */
767 	ifp->if_capabilities |= IFCAP_POLLING;
768 	ifp->if_capenable |= IFCAP_POLLING;
769 #endif
770 
771 	/*
772 	 * Attach the interface.
773 	 */
774 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
775 
776 	/*
777 	 * Tell the upper layer(s) we support long frames.
778 	 * Must appear after the call to ether_ifattach() because
779 	 * ether_ifattach() sets ifi_hdrlen to the default value.
780 	 */
781 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
782 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
783 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
784 
785 	/*
786 	 * Let the system queue as many packets as we have available
787 	 * TX descriptors.
788 	 */
789 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
790 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
791 	IFQ_SET_READY(&ifp->if_snd);
792 
793 	/*
794 	 * Hook our interrupt after all initialization is complete.
795 	 */
796 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
797 			       fxp_intr, sc, &sc->ih);
798 	if (error) {
799 		device_printf(dev, "could not setup irq\n");
800 		ether_ifdetach(&sc->arpcom.ac_if);
801 		goto fail;
802 	}
803 
804 fail:
805 	splx(s);
806 	if (error)
807 		fxp_release(sc);
808 	return (error);
809 }
810 
811 /*
812  * Release all resources.  The softc lock should not be held and the
813  * interrupt should already be torn down.
814  */
815 static void
816 fxp_release(struct fxp_softc *sc)
817 {
818 	struct fxp_rx *rxp;
819 	struct fxp_tx *txp;
820 	int i;
821 
822 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
823 	KASSERT(sc->ih == NULL,
824 	    ("fxp_release() called with intr handle still active"));
825 	if (sc->miibus)
826 		device_delete_child(sc->dev, sc->miibus);
827 	bus_generic_detach(sc->dev);
828 	ifmedia_removeall(&sc->sc_media);
829 	if (sc->fxp_desc.cbl_list) {
830 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
831 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
832 		    sc->cbl_map);
833 	}
834 	if (sc->fxp_stats) {
835 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
836 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
837 	}
838 	if (sc->mcsp) {
839 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
840 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
841 	}
842 	if (sc->irq)
843 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
844 	if (sc->mem)
845 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
846 	if (sc->fxp_mtag) {
847 		for (i = 0; i < FXP_NRFABUFS; i++) {
848 			rxp = &sc->fxp_desc.rx_list[i];
849 			if (rxp->rx_mbuf != NULL) {
850 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
851 				    BUS_DMASYNC_POSTREAD);
852 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
853 				m_freem(rxp->rx_mbuf);
854 			}
855 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
856 		}
857 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
858 		for (i = 0; i < FXP_NTXCB; i++) {
859 			txp = &sc->fxp_desc.tx_list[i];
860 			if (txp->tx_mbuf != NULL) {
861 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
862 				    BUS_DMASYNC_POSTWRITE);
863 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
864 				m_freem(txp->tx_mbuf);
865 			}
866 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
867 		}
868 		bus_dma_tag_destroy(sc->fxp_mtag);
869 	}
870 	if (sc->fxp_stag)
871 		bus_dma_tag_destroy(sc->fxp_stag);
872 	if (sc->cbl_tag)
873 		bus_dma_tag_destroy(sc->cbl_tag);
874 	if (sc->mcs_tag)
875 		bus_dma_tag_destroy(sc->mcs_tag);
876 
877 	mtx_destroy(&sc->sc_mtx);
878 }
879 
880 /*
881  * Detach interface.
882  */
883 static int
884 fxp_detach(device_t dev)
885 {
886 	struct fxp_softc *sc = device_get_softc(dev);
887 	int s;
888 
889 	FXP_LOCK(sc);
890 	s = splimp();
891 
892 	sc->suspended = 1;	/* Do same thing as we do for suspend */
893 	/*
894 	 * Close down routes etc.
895 	 */
896 	ether_ifdetach(&sc->arpcom.ac_if);
897 
898 	/*
899 	 * Stop DMA and drop transmit queue, but disable interrupts first.
900 	 */
901 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
902 	fxp_stop(sc);
903 	FXP_UNLOCK(sc);
904 
905 	/*
906 	 * Unhook interrupt before dropping lock. This is to prevent
907 	 * races with fxp_intr().
908 	 */
909 	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
910 	sc->ih = NULL;
911 
912 	splx(s);
913 
914 	/* Release our allocated resources. */
915 	fxp_release(sc);
916 	return (0);
917 }
918 
919 /*
920  * Device shutdown routine. Called at system shutdown after sync. The
921  * main purpose of this routine is to shut off receiver DMA so that
922  * kernel memory doesn't get clobbered during warmboot.
923  */
924 static int
925 fxp_shutdown(device_t dev)
926 {
927 	/*
928 	 * Make sure that DMA is disabled prior to reboot. Not doing
929 	 * do could allow DMA to corrupt kernel memory during the
930 	 * reboot before the driver initializes.
931 	 */
932 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
933 	return (0);
934 }
935 
936 /*
937  * Device suspend routine.  Stop the interface and save some PCI
938  * settings in case the BIOS doesn't restore them properly on
939  * resume.
940  */
941 static int
942 fxp_suspend(device_t dev)
943 {
944 	struct fxp_softc *sc = device_get_softc(dev);
945 	int i, s;
946 
947 	FXP_LOCK(sc);
948 	s = splimp();
949 
950 	fxp_stop(sc);
951 
952 	for (i = 0; i < 5; i++)
953 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
954 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
955 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
956 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
957 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
958 
959 	sc->suspended = 1;
960 
961 	FXP_UNLOCK(sc);
962 	splx(s);
963 	return (0);
964 }
965 
966 /*
967  * Device resume routine.  Restore some PCI settings in case the BIOS
968  * doesn't, re-enable busmastering, and restart the interface if
969  * appropriate.
970  */
971 static int
972 fxp_resume(device_t dev)
973 {
974 	struct fxp_softc *sc = device_get_softc(dev);
975 	struct ifnet *ifp = &sc->sc_if;
976 	uint16_t pci_command;
977 	int i, s;
978 
979 	FXP_LOCK(sc);
980 	s = splimp();
981 
982 	/* better way to do this? */
983 	for (i = 0; i < 5; i++)
984 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
985 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
986 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
987 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
988 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
989 
990 	/* reenable busmastering */
991 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
992 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
993 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
994 
995 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
996 	DELAY(10);
997 
998 	/* reinitialize interface if necessary */
999 	if (ifp->if_flags & IFF_UP)
1000 		fxp_init_body(sc);
1001 
1002 	sc->suspended = 0;
1003 
1004 	FXP_UNLOCK(sc);
1005 	splx(s);
1006 	return (0);
1007 }
1008 
1009 static void
1010 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1011 {
1012 	uint16_t reg;
1013 	int x;
1014 
1015 	/*
1016 	 * Shift in data.
1017 	 */
1018 	for (x = 1 << (length - 1); x; x >>= 1) {
1019 		if (data & x)
1020 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1021 		else
1022 			reg = FXP_EEPROM_EECS;
1023 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1024 		DELAY(1);
1025 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1026 		DELAY(1);
1027 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1028 		DELAY(1);
1029 	}
1030 }
1031 
1032 /*
1033  * Read from the serial EEPROM. Basically, you manually shift in
1034  * the read opcode (one bit at a time) and then shift in the address,
1035  * and then you shift out the data (all of this one bit at a time).
1036  * The word size is 16 bits, so you have to provide the address for
1037  * every 16 bits of data.
1038  */
1039 static uint16_t
1040 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1041 {
1042 	uint16_t reg, data;
1043 	int x;
1044 
1045 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1046 	/*
1047 	 * Shift in read opcode.
1048 	 */
1049 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1050 	/*
1051 	 * Shift in address.
1052 	 */
1053 	data = 0;
1054 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1055 		if (offset & x)
1056 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1057 		else
1058 			reg = FXP_EEPROM_EECS;
1059 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1060 		DELAY(1);
1061 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1062 		DELAY(1);
1063 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1064 		DELAY(1);
1065 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1066 		data++;
1067 		if (autosize && reg == 0) {
1068 			sc->eeprom_size = data;
1069 			break;
1070 		}
1071 	}
1072 	/*
1073 	 * Shift out data.
1074 	 */
1075 	data = 0;
1076 	reg = FXP_EEPROM_EECS;
1077 	for (x = 1 << 15; x; x >>= 1) {
1078 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1079 		DELAY(1);
1080 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1081 			data |= x;
1082 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1083 		DELAY(1);
1084 	}
1085 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1086 	DELAY(1);
1087 
1088 	return (data);
1089 }
1090 
1091 static void
1092 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1093 {
1094 	int i;
1095 
1096 	/*
1097 	 * Erase/write enable.
1098 	 */
1099 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1100 	fxp_eeprom_shiftin(sc, 0x4, 3);
1101 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1102 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1103 	DELAY(1);
1104 	/*
1105 	 * Shift in write opcode, address, data.
1106 	 */
1107 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1108 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1109 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1110 	fxp_eeprom_shiftin(sc, data, 16);
1111 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1112 	DELAY(1);
1113 	/*
1114 	 * Wait for EEPROM to finish up.
1115 	 */
1116 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1117 	DELAY(1);
1118 	for (i = 0; i < 1000; i++) {
1119 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1120 			break;
1121 		DELAY(50);
1122 	}
1123 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1124 	DELAY(1);
1125 	/*
1126 	 * Erase/write disable.
1127 	 */
1128 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1129 	fxp_eeprom_shiftin(sc, 0x4, 3);
1130 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1131 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1132 	DELAY(1);
1133 }
1134 
1135 /*
1136  * From NetBSD:
1137  *
1138  * Figure out EEPROM size.
1139  *
1140  * 559's can have either 64-word or 256-word EEPROMs, the 558
1141  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1142  * talks about the existance of 16 to 256 word EEPROMs.
1143  *
1144  * The only known sizes are 64 and 256, where the 256 version is used
1145  * by CardBus cards to store CIS information.
1146  *
1147  * The address is shifted in msb-to-lsb, and after the last
1148  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1149  * after which follows the actual data. We try to detect this zero, by
1150  * probing the data-out bit in the EEPROM control register just after
1151  * having shifted in a bit. If the bit is zero, we assume we've
1152  * shifted enough address bits. The data-out should be tri-state,
1153  * before this, which should translate to a logical one.
1154  */
1155 static void
1156 fxp_autosize_eeprom(struct fxp_softc *sc)
1157 {
1158 
1159 	/* guess maximum size of 256 words */
1160 	sc->eeprom_size = 8;
1161 
1162 	/* autosize */
1163 	(void) fxp_eeprom_getword(sc, 0, 1);
1164 }
1165 
1166 static void
1167 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1168 {
1169 	int i;
1170 
1171 	for (i = 0; i < words; i++)
1172 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1173 }
1174 
1175 static void
1176 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1177 {
1178 	int i;
1179 
1180 	for (i = 0; i < words; i++)
1181 		fxp_eeprom_putword(sc, offset + i, data[i]);
1182 }
1183 
1184 /*
1185  * Grab the softc lock and call the real fxp_start_body() routine
1186  */
1187 static void
1188 fxp_start(struct ifnet *ifp)
1189 {
1190 	struct fxp_softc *sc = ifp->if_softc;
1191 
1192 	FXP_LOCK(sc);
1193 	fxp_start_body(ifp);
1194 	FXP_UNLOCK(sc);
1195 }
1196 
1197 /*
1198  * Start packet transmission on the interface.
1199  * This routine must be called with the softc lock held, and is an
1200  * internal entry point only.
1201  */
1202 static void
1203 fxp_start_body(struct ifnet *ifp)
1204 {
1205 	struct fxp_softc *sc = ifp->if_softc;
1206 	struct mbuf *mb_head;
1207 	int error, txqueued;
1208 
1209 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1210 
1211 	/*
1212 	 * See if we need to suspend xmit until the multicast filter
1213 	 * has been reprogrammed (which can only be done at the head
1214 	 * of the command chain).
1215 	 */
1216 	if (sc->need_mcsetup)
1217 		return;
1218 
1219 	/*
1220 	 * We're finished if there is nothing more to add to the list or if
1221 	 * we're all filled up with buffers to transmit.
1222 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1223 	 *       a NOP command when needed.
1224 	 */
1225 	txqueued = 0;
1226 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1227 	    sc->tx_queued < FXP_NTXCB - 1) {
1228 
1229 		/*
1230 		 * Grab a packet to transmit.
1231 		 */
1232 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1233 		if (mb_head == NULL)
1234 			break;
1235 
1236 		error = fxp_encap(sc, mb_head);
1237 		if (error)
1238 			break;
1239 		txqueued = 1;
1240 	}
1241 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1242 
1243 	/*
1244 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1245 	 * going again if suspended.
1246 	 */
1247 	if (txqueued) {
1248 		fxp_scb_wait(sc);
1249 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1250 	}
1251 }
1252 
1253 static int
1254 fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1255 {
1256 	struct ifnet *ifp;
1257 	struct mbuf *m;
1258 	struct fxp_tx *txp;
1259 	struct fxp_cb_tx *cbp;
1260 	bus_dma_segment_t segs[FXP_NTXSEG];
1261 	int chainlen, error, i, nseg;
1262 
1263 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1264 	ifp = &sc->sc_if;
1265 
1266 	/*
1267 	 * Get pointer to next available tx desc.
1268 	 */
1269 	txp = sc->fxp_desc.tx_last->tx_next;
1270 
1271 	/*
1272 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1273 	 * Ethernet Controller Family Open Source Software
1274 	 * Developer Manual says:
1275 	 *   Using software parsing is only allowed with legal
1276 	 *   TCP/IP or UDP/IP packets.
1277 	 *   ...
1278 	 *   For all other datagrams, hardware parsing must
1279 	 *   be used.
1280 	 * Software parsing appears to truncate ICMP and
1281 	 * fragmented UDP packets that contain one to three
1282 	 * bytes in the second (and final) mbuf of the packet.
1283 	 */
1284 	if (sc->flags & FXP_FLAG_EXT_RFA)
1285 		txp->tx_cb->ipcb_ip_activation_high =
1286 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1287 
1288 	/*
1289 	 * Deal with TCP/IP checksum offload. Note that
1290 	 * in order for TCP checksum offload to work,
1291 	 * the pseudo header checksum must have already
1292 	 * been computed and stored in the checksum field
1293 	 * in the TCP header. The stack should have
1294 	 * already done this for us.
1295 	 */
1296 	if (m_head->m_pkthdr.csum_flags) {
1297 		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1298 			txp->tx_cb->ipcb_ip_schedule =
1299 			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1300 			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1301 				txp->tx_cb->ipcb_ip_schedule |=
1302 				    FXP_IPCB_TCP_PACKET;
1303 		}
1304 
1305 #ifdef FXP_IP_CSUM_WAR
1306 		/*
1307 		 * XXX The 82550 chip appears to have trouble
1308 		 * dealing with IP header checksums in very small
1309 		 * datagrams, namely fragments from 1 to 3 bytes
1310 		 * in size. For example, say you want to transmit
1311 		 * a UDP packet of 1473 bytes. The packet will be
1312 		 * fragmented over two IP datagrams, the latter
1313 		 * containing only one byte of data. The 82550 will
1314 		 * botch the header checksum on the 1-byte fragment.
1315 		 * As long as the datagram contains 4 or more bytes
1316 		 * of data, you're ok.
1317 		 *
1318                  * The following code attempts to work around this
1319 		 * problem: if the datagram is less than 38 bytes
1320 		 * in size (14 bytes ether header, 20 bytes IP header,
1321 		 * plus 4 bytes of data), we punt and compute the IP
1322 		 * header checksum by hand. This workaround doesn't
1323 		 * work very well, however, since it can be fooled
1324 		 * by things like VLAN tags and IP options that make
1325 		 * the header sizes/offsets vary.
1326 		 */
1327 
1328 		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1329 			if (m_head->m_pkthdr.len < 38) {
1330 				struct ip *ip;
1331 				m_head->m_data += ETHER_HDR_LEN;
1332 				ip = mtod(mb_head, struct ip *);
1333 				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1334 				m_head->m_data -= ETHER_HDR_LEN;
1335 			} else {
1336 				txp->tx_cb->ipcb_ip_activation_high =
1337 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1338 				txp->tx_cb->ipcb_ip_schedule |=
1339 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1340 			}
1341 		}
1342 #endif
1343 	}
1344 
1345 	chainlen = 0;
1346 	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1347 		chainlen++;
1348 	if (chainlen > sc->maxtxseg) {
1349 		struct mbuf *mn;
1350 
1351 		/*
1352 		 * We ran out of segments. We have to recopy this
1353 		 * mbuf chain first. Bail out if we can't get the
1354 		 * new buffers.
1355 		 */
1356 		mn = m_defrag(m_head, M_DONTWAIT);
1357 		if (mn == NULL) {
1358 			m_freem(m_head);
1359 			return (-1);
1360 		} else {
1361 			m_head = mn;
1362 		}
1363 	}
1364 
1365 	/*
1366 	 * Go through each of the mbufs in the chain and initialize
1367 	 * the transmit buffer descriptors with the physical address
1368 	 * and size of the mbuf.
1369 	 */
1370 	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1371 	    m_head, segs, &nseg, 0);
1372 	if (error) {
1373 		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1374 		m_freem(m_head);
1375 		return (-1);
1376 	}
1377 
1378 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1379 
1380 	cbp = txp->tx_cb;
1381 	for (i = 0; i < nseg; i++) {
1382 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1383 		/*
1384 		 * If this is an 82550/82551, then we're using extended
1385 		 * TxCBs _and_ we're using checksum offload. This means
1386 		 * that the TxCB is really an IPCB. One major difference
1387 		 * between the two is that with plain extended TxCBs,
1388 		 * the bottom half of the TxCB contains two entries from
1389 		 * the TBD array, whereas IPCBs contain just one entry:
1390 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1391 		 * checksum offload control bits. So to make things work
1392 		 * right, we have to start filling in the TBD array
1393 		 * starting from a different place depending on whether
1394 		 * the chip is an 82550/82551 or not.
1395 		 */
1396 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1397 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1398 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1399 		} else {
1400 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1401 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1402 		}
1403 	}
1404 	cbp->tbd_number = nseg;
1405 
1406 	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1407 	txp->tx_mbuf = m_head;
1408 	txp->tx_cb->cb_status = 0;
1409 	txp->tx_cb->byte_count = 0;
1410 	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1411 		txp->tx_cb->cb_command =
1412 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1413 		    FXP_CB_COMMAND_S);
1414 	} else {
1415 		txp->tx_cb->cb_command =
1416 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1417 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1418 		/*
1419 		 * Set a 5 second timer just in case we don't hear
1420 		 * from the card again.
1421 		 */
1422 		ifp->if_timer = 5;
1423 	}
1424 	txp->tx_cb->tx_threshold = tx_threshold;
1425 
1426 	/*
1427 	 * Advance the end of list forward.
1428 	 */
1429 
1430 #ifdef __alpha__
1431 	/*
1432 	 * On platforms which can't access memory in 16-bit
1433 	 * granularities, we must prevent the card from DMA'ing
1434 	 * up the status while we update the command field.
1435 	 * This could cause us to overwrite the completion status.
1436 	 * XXX This is probably bogus and we're _not_ looking
1437 	 * for atomicity here.
1438 	 */
1439 	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1440 	    htole16(FXP_CB_COMMAND_S));
1441 #else
1442 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1443 #endif /*__alpha__*/
1444 	sc->fxp_desc.tx_last = txp;
1445 
1446 	/*
1447 	 * Advance the beginning of the list forward if there are
1448 	 * no other packets queued (when nothing is queued, tx_first
1449 	 * sits on the last TxCB that was sent out).
1450 	 */
1451 	if (sc->tx_queued == 0)
1452 		sc->fxp_desc.tx_first = txp;
1453 
1454 	sc->tx_queued++;
1455 
1456 	/*
1457 	 * Pass packet to bpf if there is a listener.
1458 	 */
1459 	BPF_MTAP(ifp, m_head);
1460 	return (0);
1461 }
1462 
1463 #ifdef DEVICE_POLLING
1464 static poll_handler_t fxp_poll;
1465 
1466 static void
1467 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1468 {
1469 	struct fxp_softc *sc = ifp->if_softc;
1470 	uint8_t statack;
1471 
1472 	FXP_LOCK(sc);
1473 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1474 		ether_poll_deregister(ifp);
1475 		cmd = POLL_DEREGISTER;
1476 	}
1477 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1478 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1479 		FXP_UNLOCK(sc);
1480 		return;
1481 	}
1482 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1483 	    FXP_SCB_STATACK_FR;
1484 	if (cmd == POLL_AND_CHECK_STATUS) {
1485 		uint8_t tmp;
1486 
1487 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1488 		if (tmp == 0xff || tmp == 0) {
1489 			FXP_UNLOCK(sc);
1490 			return; /* nothing to do */
1491 		}
1492 		tmp &= ~statack;
1493 		/* ack what we can */
1494 		if (tmp != 0)
1495 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1496 		statack |= tmp;
1497 	}
1498 	fxp_intr_body(sc, ifp, statack, count);
1499 	FXP_UNLOCK(sc);
1500 }
1501 #endif /* DEVICE_POLLING */
1502 
1503 /*
1504  * Process interface interrupts.
1505  */
1506 static void
1507 fxp_intr(void *xsc)
1508 {
1509 	struct fxp_softc *sc = xsc;
1510 	struct ifnet *ifp = &sc->sc_if;
1511 	uint8_t statack;
1512 
1513 	FXP_LOCK(sc);
1514 	if (sc->suspended) {
1515 		FXP_UNLOCK(sc);
1516 		return;
1517 	}
1518 
1519 #ifdef DEVICE_POLLING
1520 	if (ifp->if_flags & IFF_POLLING) {
1521 		FXP_UNLOCK(sc);
1522 		return;
1523 	}
1524 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1525 	    ether_poll_register(fxp_poll, ifp)) {
1526 		/* disable interrupts */
1527 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1528 		FXP_UNLOCK(sc);
1529 		fxp_poll(ifp, 0, 1);
1530 		return;
1531 	}
1532 #endif
1533 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1534 		/*
1535 		 * It should not be possible to have all bits set; the
1536 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1537 		 * all bits are set, this may indicate that the card has
1538 		 * been physically ejected, so ignore it.
1539 		 */
1540 		if (statack == 0xff) {
1541 			FXP_UNLOCK(sc);
1542 			return;
1543 		}
1544 
1545 		/*
1546 		 * First ACK all the interrupts in this pass.
1547 		 */
1548 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1549 		fxp_intr_body(sc, ifp, statack, -1);
1550 	}
1551 	FXP_UNLOCK(sc);
1552 }
1553 
1554 static void
1555 fxp_txeof(struct fxp_softc *sc)
1556 {
1557 	struct fxp_tx *txp;
1558 
1559 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1560 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1561 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1562 	    txp = txp->tx_next) {
1563 		if (txp->tx_mbuf != NULL) {
1564 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1565 			    BUS_DMASYNC_POSTWRITE);
1566 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1567 			m_freem(txp->tx_mbuf);
1568 			txp->tx_mbuf = NULL;
1569 			/* clear this to reset csum offload bits */
1570 			txp->tx_cb->tbd[0].tb_addr = 0;
1571 		}
1572 		sc->tx_queued--;
1573 	}
1574 	sc->fxp_desc.tx_first = txp;
1575 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1576 }
1577 
1578 static void
1579 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1580     int count)
1581 {
1582 	struct mbuf *m;
1583 	struct fxp_rx *rxp;
1584 	struct fxp_rfa *rfa;
1585 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1586 
1587 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1588 	if (rnr)
1589 		sc->rnr++;
1590 #ifdef DEVICE_POLLING
1591 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1592 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1593 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1594 		rnr = 1;
1595 	}
1596 #endif
1597 
1598 	/*
1599 	 * Free any finished transmit mbuf chains.
1600 	 *
1601 	 * Handle the CNA event likt a CXTNO event. It used to
1602 	 * be that this event (control unit not ready) was not
1603 	 * encountered, but it is now with the SMPng modifications.
1604 	 * The exact sequence of events that occur when the interface
1605 	 * is brought up are different now, and if this event
1606 	 * goes unhandled, the configuration/rxfilter setup sequence
1607 	 * can stall for several seconds. The result is that no
1608 	 * packets go out onto the wire for about 5 to 10 seconds
1609 	 * after the interface is ifconfig'ed for the first time.
1610 	 */
1611 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1612 		fxp_txeof(sc);
1613 
1614 		ifp->if_timer = 0;
1615 		if (sc->tx_queued == 0) {
1616 			if (sc->need_mcsetup)
1617 				fxp_mc_setup(sc);
1618 		}
1619 		/*
1620 		 * Try to start more packets transmitting.
1621 		 */
1622 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1623 			fxp_start_body(ifp);
1624 	}
1625 
1626 	/*
1627 	 * Just return if nothing happened on the receive side.
1628 	 */
1629 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1630 		return;
1631 
1632 	/*
1633 	 * Process receiver interrupts. If a no-resource (RNR)
1634 	 * condition exists, get whatever packets we can and
1635 	 * re-start the receiver.
1636 	 *
1637 	 * When using polling, we do not process the list to completion,
1638 	 * so when we get an RNR interrupt we must defer the restart
1639 	 * until we hit the last buffer with the C bit set.
1640 	 * If we run out of cycles and rfa_headm has the C bit set,
1641 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1642 	 * that the info will be used in the subsequent polling cycle.
1643 	 */
1644 	for (;;) {
1645 		rxp = sc->fxp_desc.rx_head;
1646 		m = rxp->rx_mbuf;
1647 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1648 		    RFA_ALIGNMENT_FUDGE);
1649 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1650 		    BUS_DMASYNC_POSTREAD);
1651 
1652 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1653 		if (count >= 0 && count-- == 0) {
1654 			if (rnr) {
1655 				/* Defer RNR processing until the next time. */
1656 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1657 				rnr = 0;
1658 			}
1659 			break;
1660 		}
1661 #endif /* DEVICE_POLLING */
1662 
1663 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1664 			break;
1665 
1666 		/*
1667 		 * Advance head forward.
1668 		 */
1669 		sc->fxp_desc.rx_head = rxp->rx_next;
1670 
1671 		/*
1672 		 * Add a new buffer to the receive chain.
1673 		 * If this fails, the old buffer is recycled
1674 		 * instead.
1675 		 */
1676 		if (fxp_add_rfabuf(sc, rxp) == 0) {
1677 			int total_len;
1678 
1679 			/*
1680 			 * Fetch packet length (the top 2 bits of
1681 			 * actual_size are flags set by the controller
1682 			 * upon completion), and drop the packet in case
1683 			 * of bogus length or CRC errors.
1684 			 */
1685 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1686 			if (total_len < sizeof(struct ether_header) ||
1687 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1688 				sc->rfa_size ||
1689 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1690 				m_freem(m);
1691 				continue;
1692 			}
1693 
1694                         /* Do IP checksum checking. */
1695 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1696 				if (rfa->rfax_csum_sts &
1697 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1698 					m->m_pkthdr.csum_flags |=
1699 					    CSUM_IP_CHECKED;
1700 				if (rfa->rfax_csum_sts &
1701 				    FXP_RFDX_CS_IP_CSUM_VALID)
1702 					m->m_pkthdr.csum_flags |=
1703 					    CSUM_IP_VALID;
1704 				if ((rfa->rfax_csum_sts &
1705 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1706 				    (rfa->rfax_csum_sts &
1707 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1708 					m->m_pkthdr.csum_flags |=
1709 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1710 					m->m_pkthdr.csum_data = 0xffff;
1711 				}
1712 			}
1713 
1714 			m->m_pkthdr.len = m->m_len = total_len;
1715 			m->m_pkthdr.rcvif = ifp;
1716 
1717 			/*
1718 			 * Drop locks before calling if_input() since it
1719 			 * may re-enter fxp_start() in the netisr case.
1720 			 * This would result in a lock reversal.  Better
1721 			 * performance might be obtained by chaining all
1722 			 * packets received, dropping the lock, and then
1723 			 * calling if_input() on each one.
1724 			 */
1725 			FXP_UNLOCK(sc);
1726 			(*ifp->if_input)(ifp, m);
1727 			FXP_LOCK(sc);
1728 		}
1729 	}
1730 	if (rnr) {
1731 		fxp_scb_wait(sc);
1732 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1733 		    sc->fxp_desc.rx_head->rx_addr);
1734 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1735 	}
1736 }
1737 
1738 /*
1739  * Update packet in/out/collision statistics. The i82557 doesn't
1740  * allow you to access these counters without doing a fairly
1741  * expensive DMA to get _all_ of the statistics it maintains, so
1742  * we do this operation here only once per second. The statistics
1743  * counters in the kernel are updated from the previous dump-stats
1744  * DMA and then a new dump-stats DMA is started. The on-chip
1745  * counters are zeroed when the DMA completes. If we can't start
1746  * the DMA immediately, we don't wait - we just prepare to read
1747  * them again next time.
1748  */
1749 static void
1750 fxp_tick(void *xsc)
1751 {
1752 	struct fxp_softc *sc = xsc;
1753 	struct ifnet *ifp = &sc->sc_if;
1754 	struct fxp_stats *sp = sc->fxp_stats;
1755 	int s;
1756 
1757 	FXP_LOCK(sc);
1758 	s = splimp();
1759 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1760 	ifp->if_opackets += le32toh(sp->tx_good);
1761 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1762 	if (sp->rx_good) {
1763 		ifp->if_ipackets += le32toh(sp->rx_good);
1764 		sc->rx_idle_secs = 0;
1765 	} else {
1766 		/*
1767 		 * Receiver's been idle for another second.
1768 		 */
1769 		sc->rx_idle_secs++;
1770 	}
1771 	ifp->if_ierrors +=
1772 	    le32toh(sp->rx_crc_errors) +
1773 	    le32toh(sp->rx_alignment_errors) +
1774 	    le32toh(sp->rx_rnr_errors) +
1775 	    le32toh(sp->rx_overrun_errors);
1776 	/*
1777 	 * If any transmit underruns occured, bump up the transmit
1778 	 * threshold by another 512 bytes (64 * 8).
1779 	 */
1780 	if (sp->tx_underruns) {
1781 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1782 		if (tx_threshold < 192)
1783 			tx_threshold += 64;
1784 	}
1785 
1786 	/*
1787 	 * Release any xmit buffers that have completed DMA. This isn't
1788 	 * strictly necessary to do here, but it's advantagous for mbufs
1789 	 * with external storage to be released in a timely manner rather
1790 	 * than being defered for a potentially long time. This limits
1791 	 * the delay to a maximum of one second.
1792 	 */
1793 	fxp_txeof(sc);
1794 
1795 	/*
1796 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1797 	 * then assume the receiver has locked up and attempt to clear
1798 	 * the condition by reprogramming the multicast filter. This is
1799 	 * a work-around for a bug in the 82557 where the receiver locks
1800 	 * up if it gets certain types of garbage in the syncronization
1801 	 * bits prior to the packet header. This bug is supposed to only
1802 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1803 	 * mode as well (perhaps due to a 10/100 speed transition).
1804 	 */
1805 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1806 		sc->rx_idle_secs = 0;
1807 		fxp_mc_setup(sc);
1808 	}
1809 	/*
1810 	 * If there is no pending command, start another stats
1811 	 * dump. Otherwise punt for now.
1812 	 */
1813 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1814 		/*
1815 		 * Start another stats dump.
1816 		 */
1817 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1818 		    BUS_DMASYNC_PREREAD);
1819 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1820 	} else {
1821 		/*
1822 		 * A previous command is still waiting to be accepted.
1823 		 * Just zero our copy of the stats and wait for the
1824 		 * next timer event to update them.
1825 		 */
1826 		sp->tx_good = 0;
1827 		sp->tx_underruns = 0;
1828 		sp->tx_total_collisions = 0;
1829 
1830 		sp->rx_good = 0;
1831 		sp->rx_crc_errors = 0;
1832 		sp->rx_alignment_errors = 0;
1833 		sp->rx_rnr_errors = 0;
1834 		sp->rx_overrun_errors = 0;
1835 	}
1836 	if (sc->miibus != NULL)
1837 		mii_tick(device_get_softc(sc->miibus));
1838 
1839 	/*
1840 	 * Schedule another timeout one second from now.
1841 	 */
1842 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1843 	FXP_UNLOCK(sc);
1844 	splx(s);
1845 }
1846 
1847 /*
1848  * Stop the interface. Cancels the statistics updater and resets
1849  * the interface.
1850  */
1851 static void
1852 fxp_stop(struct fxp_softc *sc)
1853 {
1854 	struct ifnet *ifp = &sc->sc_if;
1855 	struct fxp_tx *txp;
1856 	int i;
1857 
1858 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1859 	ifp->if_timer = 0;
1860 
1861 #ifdef DEVICE_POLLING
1862 	ether_poll_deregister(ifp);
1863 #endif
1864 	/*
1865 	 * Cancel stats updater.
1866 	 */
1867 	callout_stop(&sc->stat_ch);
1868 
1869 	/*
1870 	 * Issue software reset, which also unloads the microcode.
1871 	 */
1872 	sc->flags &= ~FXP_FLAG_UCODE;
1873 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1874 	DELAY(50);
1875 
1876 	/*
1877 	 * Release any xmit buffers.
1878 	 */
1879 	txp = sc->fxp_desc.tx_list;
1880 	if (txp != NULL) {
1881 		for (i = 0; i < FXP_NTXCB; i++) {
1882  			if (txp[i].tx_mbuf != NULL) {
1883 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1884 				    BUS_DMASYNC_POSTWRITE);
1885 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1886 				m_freem(txp[i].tx_mbuf);
1887 				txp[i].tx_mbuf = NULL;
1888 				/* clear this to reset csum offload bits */
1889 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1890 			}
1891 		}
1892 	}
1893 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1894 	sc->tx_queued = 0;
1895 }
1896 
1897 /*
1898  * Watchdog/transmission transmit timeout handler. Called when a
1899  * transmission is started on the interface, but no interrupt is
1900  * received before the timeout. This usually indicates that the
1901  * card has wedged for some reason.
1902  */
1903 static void
1904 fxp_watchdog(struct ifnet *ifp)
1905 {
1906 	struct fxp_softc *sc = ifp->if_softc;
1907 
1908 	FXP_LOCK(sc);
1909 	device_printf(sc->dev, "device timeout\n");
1910 	ifp->if_oerrors++;
1911 
1912 	fxp_init_body(sc);
1913 	FXP_UNLOCK(sc);
1914 }
1915 
1916 /*
1917  * Acquire locks and then call the real initialization function.  This
1918  * is necessary because ether_ioctl() calls if_init() and this would
1919  * result in mutex recursion if the mutex was held.
1920  */
1921 static void
1922 fxp_init(void *xsc)
1923 {
1924 	struct fxp_softc *sc = xsc;
1925 
1926 	FXP_LOCK(sc);
1927 	fxp_init_body(sc);
1928 	FXP_UNLOCK(sc);
1929 }
1930 
1931 /*
1932  * Perform device initialization. This routine must be called with the
1933  * softc lock held.
1934  */
1935 static void
1936 fxp_init_body(struct fxp_softc *sc)
1937 {
1938 	struct ifnet *ifp = &sc->sc_if;
1939 	struct fxp_cb_config *cbp;
1940 	struct fxp_cb_ias *cb_ias;
1941 	struct fxp_cb_tx *tcbp;
1942 	struct fxp_tx *txp;
1943 	struct fxp_cb_mcs *mcsp;
1944 	int i, prm, s;
1945 
1946 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1947 	s = splimp();
1948 	/*
1949 	 * Cancel any pending I/O
1950 	 */
1951 	fxp_stop(sc);
1952 
1953 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1954 
1955 	/*
1956 	 * Initialize base of CBL and RFA memory. Loading with zero
1957 	 * sets it up for regular linear addressing.
1958 	 */
1959 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1960 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1961 
1962 	fxp_scb_wait(sc);
1963 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1964 
1965 	/*
1966 	 * Initialize base of dump-stats buffer.
1967 	 */
1968 	fxp_scb_wait(sc);
1969 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1970 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1971 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1972 
1973 	/*
1974 	 * Attempt to load microcode if requested.
1975 	 */
1976 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1977 		fxp_load_ucode(sc);
1978 
1979 	/*
1980 	 * Initialize the multicast address list.
1981 	 */
1982 	if (fxp_mc_addrs(sc)) {
1983 		mcsp = sc->mcsp;
1984 		mcsp->cb_status = 0;
1985 		mcsp->cb_command =
1986 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1987 		mcsp->link_addr = 0xffffffff;
1988 		/*
1989 	 	 * Start the multicast setup command.
1990 		 */
1991 		fxp_scb_wait(sc);
1992 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1993 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1994 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1995 		/* ...and wait for it to complete. */
1996 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1997 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1998 		    BUS_DMASYNC_POSTWRITE);
1999 	}
2000 
2001 	/*
2002 	 * We temporarily use memory that contains the TxCB list to
2003 	 * construct the config CB. The TxCB list memory is rebuilt
2004 	 * later.
2005 	 */
2006 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2007 
2008 	/*
2009 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2010 	 * zero and must be one bits in this structure and this is the easiest
2011 	 * way to initialize them all to proper values.
2012 	 */
2013 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2014 
2015 	cbp->cb_status =	0;
2016 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2017 	    FXP_CB_COMMAND_EL);
2018 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2019 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2020 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2021 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2022 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2023 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2024 	cbp->type_enable =	0;	/* actually reserved */
2025 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2026 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2027 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2028 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2029 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2030 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2031 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2032 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2033 	cbp->ci_int =		1;	/* interrupt on CU idle */
2034 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2035 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2036 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2037 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2038 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2039 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2040 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2041 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2042 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2043 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2044 	cbp->csma_dis =		0;	/* (don't) disable link */
2045 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2046 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2047 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2048 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2049 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2050 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2051 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2052 	cbp->loopback =		0;	/* (don't) loopback */
2053 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2054 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2055 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2056 	cbp->promiscuous =	prm;	/* promiscuous mode */
2057 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2058 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2059 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2060 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2061 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2062 
2063 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2064 	cbp->padding =		1;	/* (do) pad short tx packets */
2065 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2066 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2067 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2068 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2069 					/* must set wake_en in PMCSR also */
2070 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2071 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2072 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2073 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2074 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2075 
2076 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2077 		/*
2078 		 * The 82557 has no hardware flow control, the values
2079 		 * below are the defaults for the chip.
2080 		 */
2081 		cbp->fc_delay_lsb =	0;
2082 		cbp->fc_delay_msb =	0x40;
2083 		cbp->pri_fc_thresh =	3;
2084 		cbp->tx_fc_dis =	0;
2085 		cbp->rx_fc_restop =	0;
2086 		cbp->rx_fc_restart =	0;
2087 		cbp->fc_filter =	0;
2088 		cbp->pri_fc_loc =	1;
2089 	} else {
2090 		cbp->fc_delay_lsb =	0x1f;
2091 		cbp->fc_delay_msb =	0x01;
2092 		cbp->pri_fc_thresh =	3;
2093 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2094 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2095 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2096 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2097 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2098 	}
2099 
2100 	/*
2101 	 * Start the config command/DMA.
2102 	 */
2103 	fxp_scb_wait(sc);
2104 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2105 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2106 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2107 	/* ...and wait for it to complete. */
2108 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2109 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2110 
2111 	/*
2112 	 * Now initialize the station address. Temporarily use the TxCB
2113 	 * memory area like we did above for the config CB.
2114 	 */
2115 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2116 	cb_ias->cb_status = 0;
2117 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2118 	cb_ias->link_addr = 0xffffffff;
2119 	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2120 	    sizeof(sc->arpcom.ac_enaddr));
2121 
2122 	/*
2123 	 * Start the IAS (Individual Address Setup) command/DMA.
2124 	 */
2125 	fxp_scb_wait(sc);
2126 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2127 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2128 	/* ...and wait for it to complete. */
2129 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2130 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2131 
2132 	/*
2133 	 * Initialize transmit control block (TxCB) list.
2134 	 */
2135 	txp = sc->fxp_desc.tx_list;
2136 	tcbp = sc->fxp_desc.cbl_list;
2137 	bzero(tcbp, FXP_TXCB_SZ);
2138 	for (i = 0; i < FXP_NTXCB; i++) {
2139 		txp[i].tx_mbuf = NULL;
2140 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2141 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2142 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2143 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2144 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2145 			tcbp[i].tbd_array_addr =
2146 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2147 		else
2148 			tcbp[i].tbd_array_addr =
2149 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2150 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2151 	}
2152 	/*
2153 	 * Set the suspend flag on the first TxCB and start the control
2154 	 * unit. It will execute the NOP and then suspend.
2155 	 */
2156 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2157 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2158 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2159 	sc->tx_queued = 1;
2160 
2161 	fxp_scb_wait(sc);
2162 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2163 
2164 	/*
2165 	 * Initialize receiver buffer area - RFA.
2166 	 */
2167 	fxp_scb_wait(sc);
2168 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2169 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2170 
2171 	/*
2172 	 * Set current media.
2173 	 */
2174 	if (sc->miibus != NULL)
2175 		mii_mediachg(device_get_softc(sc->miibus));
2176 
2177 	ifp->if_flags |= IFF_RUNNING;
2178 	ifp->if_flags &= ~IFF_OACTIVE;
2179 
2180 	/*
2181 	 * Enable interrupts.
2182 	 */
2183 #ifdef DEVICE_POLLING
2184 	/*
2185 	 * ... but only do that if we are not polling. And because (presumably)
2186 	 * the default is interrupts on, we need to disable them explicitly!
2187 	 */
2188 	if ( ifp->if_flags & IFF_POLLING )
2189 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2190 	else
2191 #endif /* DEVICE_POLLING */
2192 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2193 
2194 	/*
2195 	 * Start stats updater.
2196 	 */
2197 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2198 	splx(s);
2199 }
2200 
2201 static int
2202 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2203 {
2204 
2205 	return (0);
2206 }
2207 
2208 static void
2209 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2210 {
2211 
2212 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2213 }
2214 
2215 /*
2216  * Change media according to request.
2217  */
2218 static int
2219 fxp_ifmedia_upd(struct ifnet *ifp)
2220 {
2221 	struct fxp_softc *sc = ifp->if_softc;
2222 	struct mii_data *mii;
2223 
2224 	mii = device_get_softc(sc->miibus);
2225 	mii_mediachg(mii);
2226 	return (0);
2227 }
2228 
2229 /*
2230  * Notify the world which media we're using.
2231  */
2232 static void
2233 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2234 {
2235 	struct fxp_softc *sc = ifp->if_softc;
2236 	struct mii_data *mii;
2237 
2238 	mii = device_get_softc(sc->miibus);
2239 	mii_pollstat(mii);
2240 	ifmr->ifm_active = mii->mii_media_active;
2241 	ifmr->ifm_status = mii->mii_media_status;
2242 
2243 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2244 		sc->cu_resume_bug = 1;
2245 	else
2246 		sc->cu_resume_bug = 0;
2247 }
2248 
2249 /*
2250  * Add a buffer to the end of the RFA buffer list.
2251  * Return 0 if successful, 1 for failure. A failure results in
2252  * adding the 'oldm' (if non-NULL) on to the end of the list -
2253  * tossing out its old contents and recycling it.
2254  * The RFA struct is stuck at the beginning of mbuf cluster and the
2255  * data pointer is fixed up to point just past it.
2256  */
2257 static int
2258 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2259 {
2260 	struct mbuf *m;
2261 	struct fxp_rfa *rfa, *p_rfa;
2262 	struct fxp_rx *p_rx;
2263 	bus_dmamap_t tmp_map;
2264 	int error;
2265 
2266 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2267 	if (m == NULL)
2268 		return (ENOBUFS);
2269 
2270 	/*
2271 	 * Move the data pointer up so that the incoming data packet
2272 	 * will be 32-bit aligned.
2273 	 */
2274 	m->m_data += RFA_ALIGNMENT_FUDGE;
2275 
2276 	/*
2277 	 * Get a pointer to the base of the mbuf cluster and move
2278 	 * data start past it.
2279 	 */
2280 	rfa = mtod(m, struct fxp_rfa *);
2281 	m->m_data += sc->rfa_size;
2282 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2283 
2284 	rfa->rfa_status = 0;
2285 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2286 	rfa->actual_size = 0;
2287 
2288 	/*
2289 	 * Initialize the rest of the RFA.  Note that since the RFA
2290 	 * is misaligned, we cannot store values directly.  We're thus
2291 	 * using the le32enc() function which handles endianness and
2292 	 * is also alignment-safe.
2293 	 */
2294 	le32enc(&rfa->link_addr, 0xffffffff);
2295 	le32enc(&rfa->rbd_addr, 0xffffffff);
2296 
2297 	/* Map the RFA into DMA memory. */
2298 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2299 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2300 	    &rxp->rx_addr, 0);
2301 	if (error) {
2302 		m_freem(m);
2303 		return (error);
2304 	}
2305 
2306 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2307 	tmp_map = sc->spare_map;
2308 	sc->spare_map = rxp->rx_map;
2309 	rxp->rx_map = tmp_map;
2310 	rxp->rx_mbuf = m;
2311 
2312 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2313 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2314 
2315 	/*
2316 	 * If there are other buffers already on the list, attach this
2317 	 * one to the end by fixing up the tail to point to this one.
2318 	 */
2319 	if (sc->fxp_desc.rx_head != NULL) {
2320 		p_rx = sc->fxp_desc.rx_tail;
2321 		p_rfa = (struct fxp_rfa *)
2322 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2323 		p_rx->rx_next = rxp;
2324 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2325 		p_rfa->rfa_control = 0;
2326 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2327 		    BUS_DMASYNC_PREWRITE);
2328 	} else {
2329 		rxp->rx_next = NULL;
2330 		sc->fxp_desc.rx_head = rxp;
2331 	}
2332 	sc->fxp_desc.rx_tail = rxp;
2333 	return (0);
2334 }
2335 
2336 static volatile int
2337 fxp_miibus_readreg(device_t dev, int phy, int reg)
2338 {
2339 	struct fxp_softc *sc = device_get_softc(dev);
2340 	int count = 10000;
2341 	int value;
2342 
2343 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2344 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2345 
2346 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2347 	    && count--)
2348 		DELAY(10);
2349 
2350 	if (count <= 0)
2351 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2352 
2353 	return (value & 0xffff);
2354 }
2355 
2356 static void
2357 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2358 {
2359 	struct fxp_softc *sc = device_get_softc(dev);
2360 	int count = 10000;
2361 
2362 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2363 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2364 	    (value & 0xffff));
2365 
2366 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2367 	    count--)
2368 		DELAY(10);
2369 
2370 	if (count <= 0)
2371 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2372 }
2373 
2374 static int
2375 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2376 {
2377 	struct fxp_softc *sc = ifp->if_softc;
2378 	struct ifreq *ifr = (struct ifreq *)data;
2379 	struct mii_data *mii;
2380 	int flag, mask, s, error = 0;
2381 
2382 	/*
2383 	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2384 	 * that by saying we're busy if the lock is already held.
2385 	 */
2386 	if (FXP_LOCKED(sc))
2387 		return (EBUSY);
2388 
2389 	FXP_LOCK(sc);
2390 	s = splimp();
2391 
2392 	switch (command) {
2393 	case SIOCSIFFLAGS:
2394 		if (ifp->if_flags & IFF_ALLMULTI)
2395 			sc->flags |= FXP_FLAG_ALL_MCAST;
2396 		else
2397 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2398 
2399 		/*
2400 		 * If interface is marked up and not running, then start it.
2401 		 * If it is marked down and running, stop it.
2402 		 * XXX If it's up then re-initialize it. This is so flags
2403 		 * such as IFF_PROMISC are handled.
2404 		 */
2405 		if (ifp->if_flags & IFF_UP) {
2406 			fxp_init_body(sc);
2407 		} else {
2408 			if (ifp->if_flags & IFF_RUNNING)
2409 				fxp_stop(sc);
2410 		}
2411 		break;
2412 
2413 	case SIOCADDMULTI:
2414 	case SIOCDELMULTI:
2415 		if (ifp->if_flags & IFF_ALLMULTI)
2416 			sc->flags |= FXP_FLAG_ALL_MCAST;
2417 		else
2418 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2419 		/*
2420 		 * Multicast list has changed; set the hardware filter
2421 		 * accordingly.
2422 		 */
2423 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2424 			fxp_mc_setup(sc);
2425 		/*
2426 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2427 		 * again rather than else {}.
2428 		 */
2429 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2430 			fxp_init_body(sc);
2431 		error = 0;
2432 		break;
2433 
2434 	case SIOCSIFMEDIA:
2435 	case SIOCGIFMEDIA:
2436 		if (sc->miibus != NULL) {
2437 			mii = device_get_softc(sc->miibus);
2438                         error = ifmedia_ioctl(ifp, ifr,
2439                             &mii->mii_media, command);
2440 		} else {
2441                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2442 		}
2443 		break;
2444 
2445 	case SIOCSIFCAP:
2446 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2447 		if (mask & IFCAP_POLLING)
2448 			ifp->if_capenable ^= IFCAP_POLLING;
2449 		if (mask & IFCAP_VLAN_MTU) {
2450 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2451 			if (sc->revision != FXP_REV_82557)
2452 				flag = FXP_FLAG_LONG_PKT_EN;
2453 			else /* a hack to get long frames on the old chip */
2454 				flag = FXP_FLAG_SAVE_BAD;
2455 			sc->flags ^= flag;
2456 			if (ifp->if_flags & IFF_UP)
2457 				fxp_init_body(sc);
2458 		}
2459 		break;
2460 
2461 	default:
2462 		/*
2463 		 * ether_ioctl() will eventually call fxp_start() which
2464 		 * will result in mutex recursion so drop it first.
2465 		 */
2466 		FXP_UNLOCK(sc);
2467 		error = ether_ioctl(ifp, command, data);
2468 	}
2469 	if (FXP_LOCKED(sc))
2470 		FXP_UNLOCK(sc);
2471 	splx(s);
2472 	return (error);
2473 }
2474 
2475 /*
2476  * Fill in the multicast address list and return number of entries.
2477  */
2478 static int
2479 fxp_mc_addrs(struct fxp_softc *sc)
2480 {
2481 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2482 	struct ifnet *ifp = &sc->sc_if;
2483 	struct ifmultiaddr *ifma;
2484 	int nmcasts;
2485 
2486 	nmcasts = 0;
2487 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2488 #if __FreeBSD_version < 500000
2489 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2490 #else
2491 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2492 #endif
2493 			if (ifma->ifma_addr->sa_family != AF_LINK)
2494 				continue;
2495 			if (nmcasts >= MAXMCADDR) {
2496 				sc->flags |= FXP_FLAG_ALL_MCAST;
2497 				nmcasts = 0;
2498 				break;
2499 			}
2500 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2501 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2502 			nmcasts++;
2503 		}
2504 	}
2505 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2506 	return (nmcasts);
2507 }
2508 
2509 /*
2510  * Program the multicast filter.
2511  *
2512  * We have an artificial restriction that the multicast setup command
2513  * must be the first command in the chain, so we take steps to ensure
2514  * this. By requiring this, it allows us to keep up the performance of
2515  * the pre-initialized command ring (esp. link pointers) by not actually
2516  * inserting the mcsetup command in the ring - i.e. its link pointer
2517  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2518  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2519  * lead into the regular TxCB ring when it completes.
2520  *
2521  * This function must be called at splimp.
2522  */
2523 static void
2524 fxp_mc_setup(struct fxp_softc *sc)
2525 {
2526 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2527 	struct ifnet *ifp = &sc->sc_if;
2528 	struct fxp_tx *txp;
2529 	int count;
2530 
2531 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2532 	/*
2533 	 * If there are queued commands, we must wait until they are all
2534 	 * completed. If we are already waiting, then add a NOP command
2535 	 * with interrupt option so that we're notified when all commands
2536 	 * have been completed - fxp_start() ensures that no additional
2537 	 * TX commands will be added when need_mcsetup is true.
2538 	 */
2539 	if (sc->tx_queued) {
2540 		/*
2541 		 * need_mcsetup will be true if we are already waiting for the
2542 		 * NOP command to be completed (see below). In this case, bail.
2543 		 */
2544 		if (sc->need_mcsetup)
2545 			return;
2546 		sc->need_mcsetup = 1;
2547 
2548 		/*
2549 		 * Add a NOP command with interrupt so that we are notified
2550 		 * when all TX commands have been processed.
2551 		 */
2552 		txp = sc->fxp_desc.tx_last->tx_next;
2553 		txp->tx_mbuf = NULL;
2554 		txp->tx_cb->cb_status = 0;
2555 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2556 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2557 		/*
2558 		 * Advance the end of list forward.
2559 		 */
2560 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2561 		    htole16(~FXP_CB_COMMAND_S);
2562 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2563 		sc->fxp_desc.tx_last = txp;
2564 		sc->tx_queued++;
2565 		/*
2566 		 * Issue a resume in case the CU has just suspended.
2567 		 */
2568 		fxp_scb_wait(sc);
2569 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2570 		/*
2571 		 * Set a 5 second timer just in case we don't hear from the
2572 		 * card again.
2573 		 */
2574 		ifp->if_timer = 5;
2575 
2576 		return;
2577 	}
2578 	sc->need_mcsetup = 0;
2579 
2580 	/*
2581 	 * Initialize multicast setup descriptor.
2582 	 */
2583 	mcsp->cb_status = 0;
2584 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2585 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2586 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2587 	txp = &sc->fxp_desc.mcs_tx;
2588 	txp->tx_mbuf = NULL;
2589 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2590 	txp->tx_next = sc->fxp_desc.tx_list;
2591 	(void) fxp_mc_addrs(sc);
2592 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2593 	sc->tx_queued = 1;
2594 
2595 	/*
2596 	 * Wait until command unit is not active. This should never
2597 	 * be the case when nothing is queued, but make sure anyway.
2598 	 */
2599 	count = 100;
2600 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2601 	    FXP_SCB_CUS_ACTIVE && --count)
2602 		DELAY(10);
2603 	if (count == 0) {
2604 		device_printf(sc->dev, "command queue timeout\n");
2605 		return;
2606 	}
2607 
2608 	/*
2609 	 * Start the multicast setup command.
2610 	 */
2611 	fxp_scb_wait(sc);
2612 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2613 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2614 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2615 
2616 	ifp->if_timer = 2;
2617 	return;
2618 }
2619 
2620 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2621 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2622 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2623 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2624 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2625 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2626 
2627 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2628 
2629 struct ucode {
2630 	uint32_t	revision;
2631 	uint32_t	*ucode;
2632 	int		length;
2633 	u_short		int_delay_offset;
2634 	u_short		bundle_max_offset;
2635 } ucode_table[] = {
2636 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2637 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2638 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2639 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2640 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2641 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2642 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2643 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2644 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2645 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2646 	{ 0, NULL, 0, 0, 0 }
2647 };
2648 
2649 static void
2650 fxp_load_ucode(struct fxp_softc *sc)
2651 {
2652 	struct ucode *uc;
2653 	struct fxp_cb_ucode *cbp;
2654 	int i;
2655 
2656 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2657 		if (sc->revision == uc->revision)
2658 			break;
2659 	if (uc->ucode == NULL)
2660 		return;
2661 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2662 	cbp->cb_status = 0;
2663 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2664 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2665 	for (i = 0; i < uc->length; i++)
2666 		cbp->ucode[i] = htole32(uc->ucode[i]);
2667 	if (uc->int_delay_offset)
2668 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2669 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2670 	if (uc->bundle_max_offset)
2671 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2672 		    htole16(sc->tunable_bundle_max);
2673 	/*
2674 	 * Download the ucode to the chip.
2675 	 */
2676 	fxp_scb_wait(sc);
2677 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2678 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2679 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2680 	/* ...and wait for it to complete. */
2681 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2682 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2683 	device_printf(sc->dev,
2684 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2685 	    sc->tunable_int_delay,
2686 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2687 	sc->flags |= FXP_FLAG_UCODE;
2688 }
2689 
2690 static int
2691 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2692 {
2693 	int error, value;
2694 
2695 	value = *(int *)arg1;
2696 	error = sysctl_handle_int(oidp, &value, 0, req);
2697 	if (error || !req->newptr)
2698 		return (error);
2699 	if (value < low || value > high)
2700 		return (EINVAL);
2701 	*(int *)arg1 = value;
2702 	return (0);
2703 }
2704 
2705 /*
2706  * Interrupt delay is expressed in microseconds, a multiplier is used
2707  * to convert this to the appropriate clock ticks before using.
2708  */
2709 static int
2710 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2711 {
2712 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2713 }
2714 
2715 static int
2716 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2717 {
2718 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2719 }
2720