xref: /freebsd/sys/dev/fxp/if_fxp.c (revision c6ec7d31830ab1c80edae95ad5e4b9dba10c47ac)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/lock.h>
48 #include <sys/module.h>
49 #include <sys/mutex.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 
55 #include <net/bpf.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_vlan_var.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 
70 #include <machine/bus.h>
71 #include <machine/in_cksum.h>
72 #include <machine/resource.h>
73 
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 
80 #include <dev/fxp/if_fxpreg.h>
81 #include <dev/fxp/if_fxpvar.h>
82 #include <dev/fxp/rcvbundl.h>
83 
84 MODULE_DEPEND(fxp, pci, 1, 1, 1);
85 MODULE_DEPEND(fxp, ether, 1, 1, 1);
86 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
87 #include "miibus_if.h"
88 
89 /*
90  * NOTE!  On !x86 we typically have an alignment constraint.  The
91  * card DMAs the packet immediately following the RFA.  However,
92  * the first thing in the packet is a 14-byte Ethernet header.
93  * This means that the packet is misaligned.  To compensate,
94  * we actually offset the RFA 2 bytes into the cluster.  This
95  * alignes the packet after the Ethernet header at a 32-bit
96  * boundary.  HOWEVER!  This means that the RFA is misaligned!
97  */
98 #define	RFA_ALIGNMENT_FUDGE	2
99 
100 /*
101  * Set initial transmit threshold at 64 (512 bytes). This is
102  * increased by 64 (512 bytes) at a time, to maximum of 192
103  * (1536 bytes), if an underrun occurs.
104  */
105 static int tx_threshold = 64;
106 
107 /*
108  * The configuration byte map has several undefined fields which
109  * must be one or must be zero.  Set up a template for these bits.
110  * The actual configuration is performed in fxp_init_body.
111  *
112  * See struct fxp_cb_config for the bit definitions.
113  */
114 static const u_char fxp_cb_config_template[] = {
115 	0x0, 0x0,		/* cb_status */
116 	0x0, 0x0,		/* cb_command */
117 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118 	0x0,	/*  0 */
119 	0x0,	/*  1 */
120 	0x0,	/*  2 */
121 	0x0,	/*  3 */
122 	0x0,	/*  4 */
123 	0x0,	/*  5 */
124 	0x32,	/*  6 */
125 	0x0,	/*  7 */
126 	0x0,	/*  8 */
127 	0x0,	/*  9 */
128 	0x6,	/* 10 */
129 	0x0,	/* 11 */
130 	0x0,	/* 12 */
131 	0x0,	/* 13 */
132 	0xf2,	/* 14 */
133 	0x48,	/* 15 */
134 	0x0,	/* 16 */
135 	0x40,	/* 17 */
136 	0xf0,	/* 18 */
137 	0x0,	/* 19 */
138 	0x3f,	/* 20 */
139 	0x5,	/* 21 */
140 	0x0,	/* 22 */
141 	0x0,	/* 23 */
142 	0x0,	/* 24 */
143 	0x0,	/* 25 */
144 	0x0,	/* 26 */
145 	0x0,	/* 27 */
146 	0x0,	/* 28 */
147 	0x0,	/* 29 */
148 	0x0,	/* 30 */
149 	0x0	/* 31 */
150 };
151 
152 /*
153  * Claim various Intel PCI device identifiers for this driver.  The
154  * sub-vendor and sub-device field are extensively used to identify
155  * particular variants, but we don't currently differentiate between
156  * them.
157  */
158 static const struct fxp_ident fxp_ident_table[] = {
159     { 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
160     { 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
161     { 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
162     { 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
163     { 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164     { 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165     { 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166     { 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167     { 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168     { 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169     { 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170     { 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
171     { 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
172     { 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
173     { 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174     { 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
175     { 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
176     { 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
177     { 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
178     { 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
179     { 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
180     { 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
181     { 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
182     { 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
183     { 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
184     { 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
185     { 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
186     { 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
187     { 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
188     { 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
189     { 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
190     { 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
191     { 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
192     { 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
193     { 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
194     { 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
195     { 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
196     { 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
197     { 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
198     { 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
199     { 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
200     { 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
201     { 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
202     { 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
203     { 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
204     { 0,	-1,	0, NULL },
205 };
206 
207 #ifdef FXP_IP_CSUM_WAR
208 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
209 #else
210 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
211 #endif
212 
213 static int		fxp_probe(device_t dev);
214 static int		fxp_attach(device_t dev);
215 static int		fxp_detach(device_t dev);
216 static int		fxp_shutdown(device_t dev);
217 static int		fxp_suspend(device_t dev);
218 static int		fxp_resume(device_t dev);
219 
220 static const struct fxp_ident *fxp_find_ident(device_t dev);
221 static void		fxp_intr(void *xsc);
222 static void		fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
223 			    struct mbuf *m, uint16_t status, int pos);
224 static int		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
225 			    uint8_t statack, int count);
226 static void 		fxp_init(void *xsc);
227 static void 		fxp_init_body(struct fxp_softc *sc, int);
228 static void 		fxp_tick(void *xsc);
229 static void 		fxp_start(struct ifnet *ifp);
230 static void 		fxp_start_body(struct ifnet *ifp);
231 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
232 static void		fxp_txeof(struct fxp_softc *sc);
233 static void		fxp_stop(struct fxp_softc *sc);
234 static void 		fxp_release(struct fxp_softc *sc);
235 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
236 			    caddr_t data);
237 static void 		fxp_watchdog(struct fxp_softc *sc);
238 static void		fxp_add_rfabuf(struct fxp_softc *sc,
239 			    struct fxp_rx *rxp);
240 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
241 			    struct fxp_rx *rxp);
242 static int		fxp_new_rfabuf(struct fxp_softc *sc,
243 			    struct fxp_rx *rxp);
244 static int		fxp_mc_addrs(struct fxp_softc *sc);
245 static void		fxp_mc_setup(struct fxp_softc *sc);
246 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
247 			    int autosize);
248 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
249 			    uint16_t data);
250 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
251 static void		fxp_load_eeprom(struct fxp_softc *sc);
252 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
253 			    int offset, int words);
254 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
255 			    int offset, int words);
256 static int		fxp_ifmedia_upd(struct ifnet *ifp);
257 static void		fxp_ifmedia_sts(struct ifnet *ifp,
258 			    struct ifmediareq *ifmr);
259 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
260 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
261 			    struct ifmediareq *ifmr);
262 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
263 static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
264 			    int value);
265 static void		fxp_miibus_statchg(device_t dev);
266 static void		fxp_load_ucode(struct fxp_softc *sc);
267 static void		fxp_update_stats(struct fxp_softc *sc);
268 static void		fxp_sysctl_node(struct fxp_softc *sc);
269 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
270 			    int low, int high);
271 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
272 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
273 static void 		fxp_scb_wait(struct fxp_softc *sc);
274 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
275 static void		fxp_dma_wait(struct fxp_softc *sc,
276 			    volatile uint16_t *status, bus_dma_tag_t dmat,
277 			    bus_dmamap_t map);
278 
279 static device_method_t fxp_methods[] = {
280 	/* Device interface */
281 	DEVMETHOD(device_probe,		fxp_probe),
282 	DEVMETHOD(device_attach,	fxp_attach),
283 	DEVMETHOD(device_detach,	fxp_detach),
284 	DEVMETHOD(device_shutdown,	fxp_shutdown),
285 	DEVMETHOD(device_suspend,	fxp_suspend),
286 	DEVMETHOD(device_resume,	fxp_resume),
287 
288 	/* MII interface */
289 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
290 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
291 	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
292 
293 	DEVMETHOD_END
294 };
295 
296 static driver_t fxp_driver = {
297 	"fxp",
298 	fxp_methods,
299 	sizeof(struct fxp_softc),
300 };
301 
302 static devclass_t fxp_devclass;
303 
304 DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, fxp_devclass, NULL, NULL,
305     SI_ORDER_ANY);
306 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
307 
308 static struct resource_spec fxp_res_spec_mem[] = {
309 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
310 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
311 	{ -1, 0 }
312 };
313 
314 static struct resource_spec fxp_res_spec_io[] = {
315 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
316 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
317 	{ -1, 0 }
318 };
319 
320 /*
321  * Wait for the previous command to be accepted (but not necessarily
322  * completed).
323  */
324 static void
325 fxp_scb_wait(struct fxp_softc *sc)
326 {
327 	union {
328 		uint16_t w;
329 		uint8_t b[2];
330 	} flowctl;
331 	int i = 10000;
332 
333 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
334 		DELAY(2);
335 	if (i == 0) {
336 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
337 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
338 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
339 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
340 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
341 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
342 	}
343 }
344 
345 static void
346 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
347 {
348 
349 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
350 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
351 		fxp_scb_wait(sc);
352 	}
353 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
354 }
355 
356 static void
357 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
358     bus_dma_tag_t dmat, bus_dmamap_t map)
359 {
360 	int i;
361 
362 	for (i = 10000; i > 0; i--) {
363 		DELAY(2);
364 		bus_dmamap_sync(dmat, map,
365 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
366 		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
367 			break;
368 	}
369 	if (i == 0)
370 		device_printf(sc->dev, "DMA timeout\n");
371 }
372 
373 static const struct fxp_ident *
374 fxp_find_ident(device_t dev)
375 {
376 	uint16_t devid;
377 	uint8_t revid;
378 	const struct fxp_ident *ident;
379 
380 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
381 		devid = pci_get_device(dev);
382 		revid = pci_get_revid(dev);
383 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
384 			if (ident->devid == devid &&
385 			    (ident->revid == revid || ident->revid == -1)) {
386 				return (ident);
387 			}
388 		}
389 	}
390 	return (NULL);
391 }
392 
393 /*
394  * Return identification string if this device is ours.
395  */
396 static int
397 fxp_probe(device_t dev)
398 {
399 	const struct fxp_ident *ident;
400 
401 	ident = fxp_find_ident(dev);
402 	if (ident != NULL) {
403 		device_set_desc(dev, ident->name);
404 		return (BUS_PROBE_DEFAULT);
405 	}
406 	return (ENXIO);
407 }
408 
409 static void
410 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
411 {
412 	uint32_t *addr;
413 
414 	if (error)
415 		return;
416 
417 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
418 	addr = arg;
419 	*addr = segs->ds_addr;
420 }
421 
422 static int
423 fxp_attach(device_t dev)
424 {
425 	struct fxp_softc *sc;
426 	struct fxp_cb_tx *tcbp;
427 	struct fxp_tx *txp;
428 	struct fxp_rx *rxp;
429 	struct ifnet *ifp;
430 	uint32_t val;
431 	uint16_t data;
432 	u_char eaddr[ETHER_ADDR_LEN];
433 	int error, flags, i, pmc, prefer_iomap;
434 
435 	error = 0;
436 	sc = device_get_softc(dev);
437 	sc->dev = dev;
438 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
439 	    MTX_DEF);
440 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
441 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
442 	    fxp_serial_ifmedia_sts);
443 
444 	ifp = sc->ifp = if_alloc(IFT_ETHER);
445 	if (ifp == NULL) {
446 		device_printf(dev, "can not if_alloc()\n");
447 		error = ENOSPC;
448 		goto fail;
449 	}
450 
451 	/*
452 	 * Enable bus mastering.
453 	 */
454 	pci_enable_busmaster(dev);
455 	val = pci_read_config(dev, PCIR_COMMAND, 2);
456 
457 	/*
458 	 * Figure out which we should try first - memory mapping or i/o mapping?
459 	 * We default to memory mapping. Then we accept an override from the
460 	 * command line. Then we check to see which one is enabled.
461 	 */
462 	prefer_iomap = 0;
463 	resource_int_value(device_get_name(dev), device_get_unit(dev),
464 	    "prefer_iomap", &prefer_iomap);
465 	if (prefer_iomap)
466 		sc->fxp_spec = fxp_res_spec_io;
467 	else
468 		sc->fxp_spec = fxp_res_spec_mem;
469 
470 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
471 	if (error) {
472 		if (sc->fxp_spec == fxp_res_spec_mem)
473 			sc->fxp_spec = fxp_res_spec_io;
474 		else
475 			sc->fxp_spec = fxp_res_spec_mem;
476 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
477 	}
478 	if (error) {
479 		device_printf(dev, "could not allocate resources\n");
480 		error = ENXIO;
481 		goto fail;
482 	}
483 
484 	if (bootverbose) {
485 		device_printf(dev, "using %s space register mapping\n",
486 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
487 	}
488 
489 	/*
490 	 * Put CU/RU idle state and prepare full reset.
491 	 */
492 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
493 	DELAY(10);
494 	/* Full reset and disable interrupts. */
495 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
496 	DELAY(10);
497 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
498 
499 	/*
500 	 * Find out how large of an SEEPROM we have.
501 	 */
502 	fxp_autosize_eeprom(sc);
503 	fxp_load_eeprom(sc);
504 
505 	/*
506 	 * Find out the chip revision; lump all 82557 revs together.
507 	 */
508 	sc->ident = fxp_find_ident(dev);
509 	if (sc->ident->ich > 0) {
510 		/* Assume ICH controllers are 82559. */
511 		sc->revision = FXP_REV_82559_A0;
512 	} else {
513 		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
514 		if ((data >> 8) == 1)
515 			sc->revision = FXP_REV_82557;
516 		else
517 			sc->revision = pci_get_revid(dev);
518 	}
519 
520 	/*
521 	 * Check availability of WOL. 82559ER does not support WOL.
522 	 */
523 	if (sc->revision >= FXP_REV_82558_A4 &&
524 	    sc->revision != FXP_REV_82559S_A) {
525 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
526 		if ((data & 0x20) != 0 &&
527 		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
528 			sc->flags |= FXP_FLAG_WOLCAP;
529 	}
530 
531 	if (sc->revision == FXP_REV_82550_C) {
532 		/*
533 		 * 82550C with server extension requires microcode to
534 		 * receive fragmented UDP datagrams.  However if the
535 		 * microcode is used for client-only featured 82550C
536 		 * it locks up controller.
537 		 */
538 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
539 		if ((data & 0x0400) == 0)
540 			sc->flags |= FXP_FLAG_NO_UCODE;
541 	}
542 
543 	/* Receiver lock-up workaround detection. */
544 	if (sc->revision < FXP_REV_82558_A4) {
545 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
546 		if ((data & 0x03) != 0x03) {
547 			sc->flags |= FXP_FLAG_RXBUG;
548 			device_printf(dev, "Enabling Rx lock-up workaround\n");
549 		}
550 	}
551 
552 	/*
553 	 * Determine whether we must use the 503 serial interface.
554 	 */
555 	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
556 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
557 	    && (data & FXP_PHY_SERIAL_ONLY))
558 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
559 
560 	fxp_sysctl_node(sc);
561 	/*
562 	 * Enable workarounds for certain chip revision deficiencies.
563 	 *
564 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
565 	 * some systems based a normal 82559 design, have a defect where
566 	 * the chip can cause a PCI protocol violation if it receives
567 	 * a CU_RESUME command when it is entering the IDLE state.  The
568 	 * workaround is to disable Dynamic Standby Mode, so the chip never
569 	 * deasserts CLKRUN#, and always remains in an active state.
570 	 *
571 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
572 	 */
573 	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
574 	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
575 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
576 		if (data & 0x02) {			/* STB enable */
577 			uint16_t cksum;
578 			int i;
579 
580 			device_printf(dev,
581 			    "Disabling dynamic standby mode in EEPROM\n");
582 			data &= ~0x02;
583 			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
584 			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
585 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
586 			cksum = 0;
587 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
588 				cksum += sc->eeprom[i];
589 			i = (1 << sc->eeprom_size) - 1;
590 			cksum = 0xBABA - cksum;
591 			fxp_write_eeprom(sc, &cksum, i, 1);
592 			device_printf(dev,
593 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
594 			    i, sc->eeprom[i], cksum);
595 			sc->eeprom[i] = cksum;
596 			/*
597 			 * If the user elects to continue, try the software
598 			 * workaround, as it is better than nothing.
599 			 */
600 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
601 		}
602 	}
603 
604 	/*
605 	 * If we are not a 82557 chip, we can enable extended features.
606 	 */
607 	if (sc->revision != FXP_REV_82557) {
608 		/*
609 		 * If MWI is enabled in the PCI configuration, and there
610 		 * is a valid cacheline size (8 or 16 dwords), then tell
611 		 * the board to turn on MWI.
612 		 */
613 		if (val & PCIM_CMD_MWRICEN &&
614 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
615 			sc->flags |= FXP_FLAG_MWI_ENABLE;
616 
617 		/* turn on the extended TxCB feature */
618 		sc->flags |= FXP_FLAG_EXT_TXCB;
619 
620 		/* enable reception of long frames for VLAN */
621 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
622 	} else {
623 		/* a hack to get long VLAN frames on a 82557 */
624 		sc->flags |= FXP_FLAG_SAVE_BAD;
625 	}
626 
627 	/* For 82559 or later chips, Rx checksum offload is supported. */
628 	if (sc->revision >= FXP_REV_82559_A0) {
629 		/* 82559ER does not support Rx checksum offloading. */
630 		if (sc->ident->devid != 0x1209)
631 			sc->flags |= FXP_FLAG_82559_RXCSUM;
632 	}
633 	/*
634 	 * Enable use of extended RFDs and TCBs for 82550
635 	 * and later chips. Note: we need extended TXCB support
636 	 * too, but that's already enabled by the code above.
637 	 * Be careful to do this only on the right devices.
638 	 */
639 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
640 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
641 	    || sc->revision == FXP_REV_82551_10) {
642 		sc->rfa_size = sizeof (struct fxp_rfa);
643 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
644 		sc->flags |= FXP_FLAG_EXT_RFA;
645 		/* Use extended RFA instead of 82559 checksum mode. */
646 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
647 	} else {
648 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
649 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
650 	}
651 
652 	/*
653 	 * Allocate DMA tags and DMA safe memory.
654 	 */
655 	sc->maxtxseg = FXP_NTXSEG;
656 	sc->maxsegsize = MCLBYTES;
657 	if (sc->flags & FXP_FLAG_EXT_RFA) {
658 		sc->maxtxseg--;
659 		sc->maxsegsize = FXP_TSO_SEGSIZE;
660 	}
661 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
662 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
663 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
664 	    sc->maxtxseg, sc->maxsegsize, 0,
665 	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
666 	if (error) {
667 		device_printf(dev, "could not create TX DMA tag\n");
668 		goto fail;
669 	}
670 
671 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
672 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
673 	    MCLBYTES, 1, MCLBYTES, 0,
674 	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
675 	if (error) {
676 		device_printf(dev, "could not create RX DMA tag\n");
677 		goto fail;
678 	}
679 
680 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
681 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
682 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
683 	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
684 	if (error) {
685 		device_printf(dev, "could not create stats DMA tag\n");
686 		goto fail;
687 	}
688 
689 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
690 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
691 	if (error) {
692 		device_printf(dev, "could not allocate stats DMA memory\n");
693 		goto fail;
694 	}
695 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
696 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
697 	    BUS_DMA_NOWAIT);
698 	if (error) {
699 		device_printf(dev, "could not load the stats DMA buffer\n");
700 		goto fail;
701 	}
702 
703 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
704 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
705 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
706 	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
707 	if (error) {
708 		device_printf(dev, "could not create TxCB DMA tag\n");
709 		goto fail;
710 	}
711 
712 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
713 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
714 	if (error) {
715 		device_printf(dev, "could not allocate TxCB DMA memory\n");
716 		goto fail;
717 	}
718 
719 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
720 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
721 	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
722 	if (error) {
723 		device_printf(dev, "could not load TxCB DMA buffer\n");
724 		goto fail;
725 	}
726 
727 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
728 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
729 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
730 	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
731 	if (error) {
732 		device_printf(dev,
733 		    "could not create multicast setup DMA tag\n");
734 		goto fail;
735 	}
736 
737 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
738 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
739 	if (error) {
740 		device_printf(dev,
741 		    "could not allocate multicast setup DMA memory\n");
742 		goto fail;
743 	}
744 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
745 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
746 	    BUS_DMA_NOWAIT);
747 	if (error) {
748 		device_printf(dev,
749 		    "can't load the multicast setup DMA buffer\n");
750 		goto fail;
751 	}
752 
753 	/*
754 	 * Pre-allocate the TX DMA maps and setup the pointers to
755 	 * the TX command blocks.
756 	 */
757 	txp = sc->fxp_desc.tx_list;
758 	tcbp = sc->fxp_desc.cbl_list;
759 	for (i = 0; i < FXP_NTXCB; i++) {
760 		txp[i].tx_cb = tcbp + i;
761 		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
762 		if (error) {
763 			device_printf(dev, "can't create DMA map for TX\n");
764 			goto fail;
765 		}
766 	}
767 	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
768 	if (error) {
769 		device_printf(dev, "can't create spare DMA map\n");
770 		goto fail;
771 	}
772 
773 	/*
774 	 * Pre-allocate our receive buffers.
775 	 */
776 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
777 	for (i = 0; i < FXP_NRFABUFS; i++) {
778 		rxp = &sc->fxp_desc.rx_list[i];
779 		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
780 		if (error) {
781 			device_printf(dev, "can't create DMA map for RX\n");
782 			goto fail;
783 		}
784 		if (fxp_new_rfabuf(sc, rxp) != 0) {
785 			error = ENOMEM;
786 			goto fail;
787 		}
788 		fxp_add_rfabuf(sc, rxp);
789 	}
790 
791 	/*
792 	 * Read MAC address.
793 	 */
794 	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
795 	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
796 	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
797 	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
798 	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
799 	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
800 	if (bootverbose) {
801 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
802 		    pci_get_vendor(dev), pci_get_device(dev),
803 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
804 		    pci_get_revid(dev));
805 		device_printf(dev, "Dynamic Standby mode is %s\n",
806 		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
807 		    "disabled");
808 	}
809 
810 	/*
811 	 * If this is only a 10Mbps device, then there is no MII, and
812 	 * the PHY will use a serial interface instead.
813 	 *
814 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
815 	 * doesn't have a programming interface of any sort.  The
816 	 * media is sensed automatically based on how the link partner
817 	 * is configured.  This is, in essence, manual configuration.
818 	 */
819 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
820 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
821 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
822 	} else {
823 		/*
824 		 * i82557 wedge when isolating all of their PHYs.
825 		 */
826 		flags = MIIF_NOISOLATE;
827 		if (sc->revision >= FXP_REV_82558_A4)
828 			flags |= MIIF_DOPAUSE;
829 		error = mii_attach(dev, &sc->miibus, ifp, fxp_ifmedia_upd,
830 		    fxp_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
831 		    MII_OFFSET_ANY, flags);
832 		if (error != 0) {
833 			device_printf(dev, "attaching PHYs failed\n");
834 			goto fail;
835 		}
836 	}
837 
838 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
839 	ifp->if_init = fxp_init;
840 	ifp->if_softc = sc;
841 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
842 	ifp->if_ioctl = fxp_ioctl;
843 	ifp->if_start = fxp_start;
844 
845 	ifp->if_capabilities = ifp->if_capenable = 0;
846 
847 	/* Enable checksum offload/TSO for 82550 or better chips */
848 	if (sc->flags & FXP_FLAG_EXT_RFA) {
849 		ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
850 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
851 		ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
852 	}
853 
854 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
855 		ifp->if_capabilities |= IFCAP_RXCSUM;
856 		ifp->if_capenable |= IFCAP_RXCSUM;
857 	}
858 
859 	if (sc->flags & FXP_FLAG_WOLCAP) {
860 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
861 		ifp->if_capenable |= IFCAP_WOL_MAGIC;
862 	}
863 
864 #ifdef DEVICE_POLLING
865 	/* Inform the world we support polling. */
866 	ifp->if_capabilities |= IFCAP_POLLING;
867 #endif
868 
869 	/*
870 	 * Attach the interface.
871 	 */
872 	ether_ifattach(ifp, eaddr);
873 
874 	/*
875 	 * Tell the upper layer(s) we support long frames.
876 	 * Must appear after the call to ether_ifattach() because
877 	 * ether_ifattach() sets ifi_hdrlen to the default value.
878 	 */
879 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
880 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
881 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
882 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
883 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
884 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
885 		ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
886 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
887 	}
888 
889 	/*
890 	 * Let the system queue as many packets as we have available
891 	 * TX descriptors.
892 	 */
893 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
894 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
895 	IFQ_SET_READY(&ifp->if_snd);
896 
897 	/*
898 	 * Hook our interrupt after all initialization is complete.
899 	 */
900 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
901 			       NULL, fxp_intr, sc, &sc->ih);
902 	if (error) {
903 		device_printf(dev, "could not setup irq\n");
904 		ether_ifdetach(sc->ifp);
905 		goto fail;
906 	}
907 
908 	/*
909 	 * Configure hardware to reject magic frames otherwise
910 	 * system will hang on recipt of magic frames.
911 	 */
912 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
913 		FXP_LOCK(sc);
914 		/* Clear wakeup events. */
915 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
916 		fxp_init_body(sc, 0);
917 		fxp_stop(sc);
918 		FXP_UNLOCK(sc);
919 	}
920 
921 fail:
922 	if (error)
923 		fxp_release(sc);
924 	return (error);
925 }
926 
927 /*
928  * Release all resources.  The softc lock should not be held and the
929  * interrupt should already be torn down.
930  */
931 static void
932 fxp_release(struct fxp_softc *sc)
933 {
934 	struct fxp_rx *rxp;
935 	struct fxp_tx *txp;
936 	int i;
937 
938 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
939 	KASSERT(sc->ih == NULL,
940 	    ("fxp_release() called with intr handle still active"));
941 	if (sc->miibus)
942 		device_delete_child(sc->dev, sc->miibus);
943 	bus_generic_detach(sc->dev);
944 	ifmedia_removeall(&sc->sc_media);
945 	if (sc->fxp_desc.cbl_list) {
946 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
947 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
948 		    sc->cbl_map);
949 	}
950 	if (sc->fxp_stats) {
951 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
952 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
953 	}
954 	if (sc->mcsp) {
955 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
956 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
957 	}
958 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
959 	if (sc->fxp_rxmtag) {
960 		for (i = 0; i < FXP_NRFABUFS; i++) {
961 			rxp = &sc->fxp_desc.rx_list[i];
962 			if (rxp->rx_mbuf != NULL) {
963 				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
964 				    BUS_DMASYNC_POSTREAD);
965 				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
966 				m_freem(rxp->rx_mbuf);
967 			}
968 			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
969 		}
970 		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
971 		bus_dma_tag_destroy(sc->fxp_rxmtag);
972 	}
973 	if (sc->fxp_txmtag) {
974 		for (i = 0; i < FXP_NTXCB; i++) {
975 			txp = &sc->fxp_desc.tx_list[i];
976 			if (txp->tx_mbuf != NULL) {
977 				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
978 				    BUS_DMASYNC_POSTWRITE);
979 				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
980 				m_freem(txp->tx_mbuf);
981 			}
982 			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
983 		}
984 		bus_dma_tag_destroy(sc->fxp_txmtag);
985 	}
986 	if (sc->fxp_stag)
987 		bus_dma_tag_destroy(sc->fxp_stag);
988 	if (sc->cbl_tag)
989 		bus_dma_tag_destroy(sc->cbl_tag);
990 	if (sc->mcs_tag)
991 		bus_dma_tag_destroy(sc->mcs_tag);
992 	if (sc->ifp)
993 		if_free(sc->ifp);
994 
995 	mtx_destroy(&sc->sc_mtx);
996 }
997 
998 /*
999  * Detach interface.
1000  */
1001 static int
1002 fxp_detach(device_t dev)
1003 {
1004 	struct fxp_softc *sc = device_get_softc(dev);
1005 
1006 #ifdef DEVICE_POLLING
1007 	if (sc->ifp->if_capenable & IFCAP_POLLING)
1008 		ether_poll_deregister(sc->ifp);
1009 #endif
1010 
1011 	FXP_LOCK(sc);
1012 	/*
1013 	 * Stop DMA and drop transmit queue, but disable interrupts first.
1014 	 */
1015 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1016 	fxp_stop(sc);
1017 	FXP_UNLOCK(sc);
1018 	callout_drain(&sc->stat_ch);
1019 
1020 	/*
1021 	 * Close down routes etc.
1022 	 */
1023 	ether_ifdetach(sc->ifp);
1024 
1025 	/*
1026 	 * Unhook interrupt before dropping lock. This is to prevent
1027 	 * races with fxp_intr().
1028 	 */
1029 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1030 	sc->ih = NULL;
1031 
1032 	/* Release our allocated resources. */
1033 	fxp_release(sc);
1034 	return (0);
1035 }
1036 
1037 /*
1038  * Device shutdown routine. Called at system shutdown after sync. The
1039  * main purpose of this routine is to shut off receiver DMA so that
1040  * kernel memory doesn't get clobbered during warmboot.
1041  */
1042 static int
1043 fxp_shutdown(device_t dev)
1044 {
1045 
1046 	/*
1047 	 * Make sure that DMA is disabled prior to reboot. Not doing
1048 	 * do could allow DMA to corrupt kernel memory during the
1049 	 * reboot before the driver initializes.
1050 	 */
1051 	return (fxp_suspend(dev));
1052 }
1053 
1054 /*
1055  * Device suspend routine.  Stop the interface and save some PCI
1056  * settings in case the BIOS doesn't restore them properly on
1057  * resume.
1058  */
1059 static int
1060 fxp_suspend(device_t dev)
1061 {
1062 	struct fxp_softc *sc = device_get_softc(dev);
1063 	struct ifnet *ifp;
1064 	int pmc;
1065 	uint16_t pmstat;
1066 
1067 	FXP_LOCK(sc);
1068 
1069 	ifp = sc->ifp;
1070 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1071 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1072 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1073 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1074 			/* Request PME. */
1075 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1076 			sc->flags |= FXP_FLAG_WOL;
1077 			/* Reconfigure hardware to accept magic frames. */
1078 			fxp_init_body(sc, 1);
1079 		}
1080 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1081 	}
1082 	fxp_stop(sc);
1083 
1084 	sc->suspended = 1;
1085 
1086 	FXP_UNLOCK(sc);
1087 	return (0);
1088 }
1089 
1090 /*
1091  * Device resume routine. re-enable busmastering, and restart the interface if
1092  * appropriate.
1093  */
1094 static int
1095 fxp_resume(device_t dev)
1096 {
1097 	struct fxp_softc *sc = device_get_softc(dev);
1098 	struct ifnet *ifp = sc->ifp;
1099 	int pmc;
1100 	uint16_t pmstat;
1101 
1102 	FXP_LOCK(sc);
1103 
1104 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1105 		sc->flags &= ~FXP_FLAG_WOL;
1106 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1107 		/* Disable PME and clear PME status. */
1108 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1109 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1110 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1111 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1112 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1113 	}
1114 
1115 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1116 	DELAY(10);
1117 
1118 	/* reinitialize interface if necessary */
1119 	if (ifp->if_flags & IFF_UP)
1120 		fxp_init_body(sc, 1);
1121 
1122 	sc->suspended = 0;
1123 
1124 	FXP_UNLOCK(sc);
1125 	return (0);
1126 }
1127 
1128 static void
1129 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1130 {
1131 	uint16_t reg;
1132 	int x;
1133 
1134 	/*
1135 	 * Shift in data.
1136 	 */
1137 	for (x = 1 << (length - 1); x; x >>= 1) {
1138 		if (data & x)
1139 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1140 		else
1141 			reg = FXP_EEPROM_EECS;
1142 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1143 		DELAY(1);
1144 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1145 		DELAY(1);
1146 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1147 		DELAY(1);
1148 	}
1149 }
1150 
1151 /*
1152  * Read from the serial EEPROM. Basically, you manually shift in
1153  * the read opcode (one bit at a time) and then shift in the address,
1154  * and then you shift out the data (all of this one bit at a time).
1155  * The word size is 16 bits, so you have to provide the address for
1156  * every 16 bits of data.
1157  */
1158 static uint16_t
1159 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1160 {
1161 	uint16_t reg, data;
1162 	int x;
1163 
1164 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1165 	/*
1166 	 * Shift in read opcode.
1167 	 */
1168 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1169 	/*
1170 	 * Shift in address.
1171 	 */
1172 	data = 0;
1173 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1174 		if (offset & x)
1175 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1176 		else
1177 			reg = FXP_EEPROM_EECS;
1178 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1179 		DELAY(1);
1180 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1181 		DELAY(1);
1182 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1183 		DELAY(1);
1184 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1185 		data++;
1186 		if (autosize && reg == 0) {
1187 			sc->eeprom_size = data;
1188 			break;
1189 		}
1190 	}
1191 	/*
1192 	 * Shift out data.
1193 	 */
1194 	data = 0;
1195 	reg = FXP_EEPROM_EECS;
1196 	for (x = 1 << 15; x; x >>= 1) {
1197 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1198 		DELAY(1);
1199 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1200 			data |= x;
1201 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1202 		DELAY(1);
1203 	}
1204 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1205 	DELAY(1);
1206 
1207 	return (data);
1208 }
1209 
1210 static void
1211 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1212 {
1213 	int i;
1214 
1215 	/*
1216 	 * Erase/write enable.
1217 	 */
1218 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1219 	fxp_eeprom_shiftin(sc, 0x4, 3);
1220 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1221 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1222 	DELAY(1);
1223 	/*
1224 	 * Shift in write opcode, address, data.
1225 	 */
1226 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1227 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1228 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1229 	fxp_eeprom_shiftin(sc, data, 16);
1230 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1231 	DELAY(1);
1232 	/*
1233 	 * Wait for EEPROM to finish up.
1234 	 */
1235 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1236 	DELAY(1);
1237 	for (i = 0; i < 1000; i++) {
1238 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1239 			break;
1240 		DELAY(50);
1241 	}
1242 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1243 	DELAY(1);
1244 	/*
1245 	 * Erase/write disable.
1246 	 */
1247 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1248 	fxp_eeprom_shiftin(sc, 0x4, 3);
1249 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1250 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1251 	DELAY(1);
1252 }
1253 
1254 /*
1255  * From NetBSD:
1256  *
1257  * Figure out EEPROM size.
1258  *
1259  * 559's can have either 64-word or 256-word EEPROMs, the 558
1260  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1261  * talks about the existance of 16 to 256 word EEPROMs.
1262  *
1263  * The only known sizes are 64 and 256, where the 256 version is used
1264  * by CardBus cards to store CIS information.
1265  *
1266  * The address is shifted in msb-to-lsb, and after the last
1267  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1268  * after which follows the actual data. We try to detect this zero, by
1269  * probing the data-out bit in the EEPROM control register just after
1270  * having shifted in a bit. If the bit is zero, we assume we've
1271  * shifted enough address bits. The data-out should be tri-state,
1272  * before this, which should translate to a logical one.
1273  */
1274 static void
1275 fxp_autosize_eeprom(struct fxp_softc *sc)
1276 {
1277 
1278 	/* guess maximum size of 256 words */
1279 	sc->eeprom_size = 8;
1280 
1281 	/* autosize */
1282 	(void) fxp_eeprom_getword(sc, 0, 1);
1283 }
1284 
1285 static void
1286 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1287 {
1288 	int i;
1289 
1290 	for (i = 0; i < words; i++)
1291 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1292 }
1293 
1294 static void
1295 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1296 {
1297 	int i;
1298 
1299 	for (i = 0; i < words; i++)
1300 		fxp_eeprom_putword(sc, offset + i, data[i]);
1301 }
1302 
1303 static void
1304 fxp_load_eeprom(struct fxp_softc *sc)
1305 {
1306 	int i;
1307 	uint16_t cksum;
1308 
1309 	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1310 	cksum = 0;
1311 	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1312 		cksum += sc->eeprom[i];
1313 	cksum = 0xBABA - cksum;
1314 	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1315 		device_printf(sc->dev,
1316 		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1317 		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1318 }
1319 
1320 /*
1321  * Grab the softc lock and call the real fxp_start_body() routine
1322  */
1323 static void
1324 fxp_start(struct ifnet *ifp)
1325 {
1326 	struct fxp_softc *sc = ifp->if_softc;
1327 
1328 	FXP_LOCK(sc);
1329 	fxp_start_body(ifp);
1330 	FXP_UNLOCK(sc);
1331 }
1332 
1333 /*
1334  * Start packet transmission on the interface.
1335  * This routine must be called with the softc lock held, and is an
1336  * internal entry point only.
1337  */
1338 static void
1339 fxp_start_body(struct ifnet *ifp)
1340 {
1341 	struct fxp_softc *sc = ifp->if_softc;
1342 	struct mbuf *mb_head;
1343 	int txqueued;
1344 
1345 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1346 
1347 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1348 	    IFF_DRV_RUNNING)
1349 		return;
1350 
1351 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1352 		fxp_txeof(sc);
1353 	/*
1354 	 * We're finished if there is nothing more to add to the list or if
1355 	 * we're all filled up with buffers to transmit.
1356 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1357 	 *       a NOP command when needed.
1358 	 */
1359 	txqueued = 0;
1360 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1361 	    sc->tx_queued < FXP_NTXCB - 1) {
1362 
1363 		/*
1364 		 * Grab a packet to transmit.
1365 		 */
1366 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1367 		if (mb_head == NULL)
1368 			break;
1369 
1370 		if (fxp_encap(sc, &mb_head)) {
1371 			if (mb_head == NULL)
1372 				break;
1373 			IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
1374 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1375 		}
1376 		txqueued++;
1377 		/*
1378 		 * Pass packet to bpf if there is a listener.
1379 		 */
1380 		BPF_MTAP(ifp, mb_head);
1381 	}
1382 
1383 	/*
1384 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1385 	 * going again if suspended.
1386 	 */
1387 	if (txqueued > 0) {
1388 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1389 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1390 		fxp_scb_wait(sc);
1391 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1392 		/*
1393 		 * Set a 5 second timer just in case we don't hear
1394 		 * from the card again.
1395 		 */
1396 		sc->watchdog_timer = 5;
1397 	}
1398 }
1399 
1400 static int
1401 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1402 {
1403 	struct ifnet *ifp;
1404 	struct mbuf *m;
1405 	struct fxp_tx *txp;
1406 	struct fxp_cb_tx *cbp;
1407 	struct tcphdr *tcp;
1408 	bus_dma_segment_t segs[FXP_NTXSEG];
1409 	int error, i, nseg, tcp_payload;
1410 
1411 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1412 	ifp = sc->ifp;
1413 
1414 	tcp_payload = 0;
1415 	tcp = NULL;
1416 	/*
1417 	 * Get pointer to next available tx desc.
1418 	 */
1419 	txp = sc->fxp_desc.tx_last->tx_next;
1420 
1421 	/*
1422 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1423 	 * Ethernet Controller Family Open Source Software
1424 	 * Developer Manual says:
1425 	 *   Using software parsing is only allowed with legal
1426 	 *   TCP/IP or UDP/IP packets.
1427 	 *   ...
1428 	 *   For all other datagrams, hardware parsing must
1429 	 *   be used.
1430 	 * Software parsing appears to truncate ICMP and
1431 	 * fragmented UDP packets that contain one to three
1432 	 * bytes in the second (and final) mbuf of the packet.
1433 	 */
1434 	if (sc->flags & FXP_FLAG_EXT_RFA)
1435 		txp->tx_cb->ipcb_ip_activation_high =
1436 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1437 
1438 	m = *m_head;
1439 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1440 		/*
1441 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1442 		 * contained in the first active transmit buffer.
1443 		 */
1444 		struct ether_header *eh;
1445 		struct ip *ip;
1446 		uint32_t ip_off, poff;
1447 
1448 		if (M_WRITABLE(*m_head) == 0) {
1449 			/* Get a writable copy. */
1450 			m = m_dup(*m_head, M_NOWAIT);
1451 			m_freem(*m_head);
1452 			if (m == NULL) {
1453 				*m_head = NULL;
1454 				return (ENOBUFS);
1455 			}
1456 			*m_head = m;
1457 		}
1458 		ip_off = sizeof(struct ether_header);
1459 		m = m_pullup(*m_head, ip_off);
1460 		if (m == NULL) {
1461 			*m_head = NULL;
1462 			return (ENOBUFS);
1463 		}
1464 		eh = mtod(m, struct ether_header *);
1465 		/* Check the existence of VLAN tag. */
1466 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1467 			ip_off = sizeof(struct ether_vlan_header);
1468 			m = m_pullup(m, ip_off);
1469 			if (m == NULL) {
1470 				*m_head = NULL;
1471 				return (ENOBUFS);
1472 			}
1473 		}
1474 		m = m_pullup(m, ip_off + sizeof(struct ip));
1475 		if (m == NULL) {
1476 			*m_head = NULL;
1477 			return (ENOBUFS);
1478 		}
1479 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1480 		poff = ip_off + (ip->ip_hl << 2);
1481 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1482 		if (m == NULL) {
1483 			*m_head = NULL;
1484 			return (ENOBUFS);
1485 		}
1486 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1487 		m = m_pullup(m, poff + (tcp->th_off << 2));
1488 		if (m == NULL) {
1489 			*m_head = NULL;
1490 			return (ENOBUFS);
1491 		}
1492 
1493 		/*
1494 		 * Since 82550/82551 doesn't modify IP length and pseudo
1495 		 * checksum in the first frame driver should compute it.
1496 		 */
1497 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1498 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1499 		ip->ip_sum = 0;
1500 		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1501 		    (tcp->th_off << 2));
1502 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1503 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1504 		    m->m_pkthdr.tso_segsz));
1505 		/* Compute total TCP payload. */
1506 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1507 		tcp_payload -= tcp->th_off << 2;
1508 		*m_head = m;
1509 	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1510 		/*
1511 		 * Deal with TCP/IP checksum offload. Note that
1512 		 * in order for TCP checksum offload to work,
1513 		 * the pseudo header checksum must have already
1514 		 * been computed and stored in the checksum field
1515 		 * in the TCP header. The stack should have
1516 		 * already done this for us.
1517 		 */
1518 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1519 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1520 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1521 
1522 #ifdef FXP_IP_CSUM_WAR
1523 		/*
1524 		 * XXX The 82550 chip appears to have trouble
1525 		 * dealing with IP header checksums in very small
1526 		 * datagrams, namely fragments from 1 to 3 bytes
1527 		 * in size. For example, say you want to transmit
1528 		 * a UDP packet of 1473 bytes. The packet will be
1529 		 * fragmented over two IP datagrams, the latter
1530 		 * containing only one byte of data. The 82550 will
1531 		 * botch the header checksum on the 1-byte fragment.
1532 		 * As long as the datagram contains 4 or more bytes
1533 		 * of data, you're ok.
1534 		 *
1535                  * The following code attempts to work around this
1536 		 * problem: if the datagram is less than 38 bytes
1537 		 * in size (14 bytes ether header, 20 bytes IP header,
1538 		 * plus 4 bytes of data), we punt and compute the IP
1539 		 * header checksum by hand. This workaround doesn't
1540 		 * work very well, however, since it can be fooled
1541 		 * by things like VLAN tags and IP options that make
1542 		 * the header sizes/offsets vary.
1543 		 */
1544 
1545 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1546 			if (m->m_pkthdr.len < 38) {
1547 				struct ip *ip;
1548 				m->m_data += ETHER_HDR_LEN;
1549 				ip = mtod(m, struct ip *);
1550 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1551 				m->m_data -= ETHER_HDR_LEN;
1552 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1553 			} else {
1554 				txp->tx_cb->ipcb_ip_activation_high =
1555 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1556 				txp->tx_cb->ipcb_ip_schedule |=
1557 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1558 			}
1559 		}
1560 #endif
1561 	}
1562 
1563 	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1564 	    segs, &nseg, 0);
1565 	if (error == EFBIG) {
1566 		m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1567 		if (m == NULL) {
1568 			m_freem(*m_head);
1569 			*m_head = NULL;
1570 			return (ENOMEM);
1571 		}
1572 		*m_head = m;
1573 		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1574 		    *m_head, segs, &nseg, 0);
1575 		if (error != 0) {
1576 			m_freem(*m_head);
1577 			*m_head = NULL;
1578 			return (ENOMEM);
1579 		}
1580 	} else if (error != 0)
1581 		return (error);
1582 	if (nseg == 0) {
1583 		m_freem(*m_head);
1584 		*m_head = NULL;
1585 		return (EIO);
1586 	}
1587 
1588 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1589 	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1590 
1591 	cbp = txp->tx_cb;
1592 	for (i = 0; i < nseg; i++) {
1593 		/*
1594 		 * If this is an 82550/82551, then we're using extended
1595 		 * TxCBs _and_ we're using checksum offload. This means
1596 		 * that the TxCB is really an IPCB. One major difference
1597 		 * between the two is that with plain extended TxCBs,
1598 		 * the bottom half of the TxCB contains two entries from
1599 		 * the TBD array, whereas IPCBs contain just one entry:
1600 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1601 		 * checksum offload control bits. So to make things work
1602 		 * right, we have to start filling in the TBD array
1603 		 * starting from a different place depending on whether
1604 		 * the chip is an 82550/82551 or not.
1605 		 */
1606 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1607 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1608 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1609 		} else {
1610 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1611 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1612 		}
1613 	}
1614 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1615 		/* Configure dynamic TBD for 82550/82551. */
1616 		cbp->tbd_number = 0xFF;
1617 		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1618 	} else
1619 		cbp->tbd_number = nseg;
1620 	/* Configure TSO. */
1621 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1622 		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1623 		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1624 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1625 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1626 		    FXP_IPCB_TCP_PACKET |
1627 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1628 	}
1629 	/* Configure VLAN hardware tag insertion. */
1630 	if ((m->m_flags & M_VLANTAG) != 0) {
1631 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1632 		txp->tx_cb->ipcb_ip_activation_high |=
1633 		    FXP_IPCB_INSERTVLAN_ENABLE;
1634 	}
1635 
1636 	txp->tx_mbuf = m;
1637 	txp->tx_cb->cb_status = 0;
1638 	txp->tx_cb->byte_count = 0;
1639 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1640 		txp->tx_cb->cb_command =
1641 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1642 		    FXP_CB_COMMAND_S);
1643 	else
1644 		txp->tx_cb->cb_command =
1645 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1646 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1647 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1648 		txp->tx_cb->tx_threshold = tx_threshold;
1649 
1650 	/*
1651 	 * Advance the end of list forward.
1652 	 */
1653 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1654 	sc->fxp_desc.tx_last = txp;
1655 
1656 	/*
1657 	 * Advance the beginning of the list forward if there are
1658 	 * no other packets queued (when nothing is queued, tx_first
1659 	 * sits on the last TxCB that was sent out).
1660 	 */
1661 	if (sc->tx_queued == 0)
1662 		sc->fxp_desc.tx_first = txp;
1663 
1664 	sc->tx_queued++;
1665 
1666 	return (0);
1667 }
1668 
1669 #ifdef DEVICE_POLLING
1670 static poll_handler_t fxp_poll;
1671 
1672 static int
1673 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1674 {
1675 	struct fxp_softc *sc = ifp->if_softc;
1676 	uint8_t statack;
1677 	int rx_npkts = 0;
1678 
1679 	FXP_LOCK(sc);
1680 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1681 		FXP_UNLOCK(sc);
1682 		return (rx_npkts);
1683 	}
1684 
1685 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1686 	    FXP_SCB_STATACK_FR;
1687 	if (cmd == POLL_AND_CHECK_STATUS) {
1688 		uint8_t tmp;
1689 
1690 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1691 		if (tmp == 0xff || tmp == 0) {
1692 			FXP_UNLOCK(sc);
1693 			return (rx_npkts); /* nothing to do */
1694 		}
1695 		tmp &= ~statack;
1696 		/* ack what we can */
1697 		if (tmp != 0)
1698 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1699 		statack |= tmp;
1700 	}
1701 	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1702 	FXP_UNLOCK(sc);
1703 	return (rx_npkts);
1704 }
1705 #endif /* DEVICE_POLLING */
1706 
1707 /*
1708  * Process interface interrupts.
1709  */
1710 static void
1711 fxp_intr(void *xsc)
1712 {
1713 	struct fxp_softc *sc = xsc;
1714 	struct ifnet *ifp = sc->ifp;
1715 	uint8_t statack;
1716 
1717 	FXP_LOCK(sc);
1718 	if (sc->suspended) {
1719 		FXP_UNLOCK(sc);
1720 		return;
1721 	}
1722 
1723 #ifdef DEVICE_POLLING
1724 	if (ifp->if_capenable & IFCAP_POLLING) {
1725 		FXP_UNLOCK(sc);
1726 		return;
1727 	}
1728 #endif
1729 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1730 		/*
1731 		 * It should not be possible to have all bits set; the
1732 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1733 		 * all bits are set, this may indicate that the card has
1734 		 * been physically ejected, so ignore it.
1735 		 */
1736 		if (statack == 0xff) {
1737 			FXP_UNLOCK(sc);
1738 			return;
1739 		}
1740 
1741 		/*
1742 		 * First ACK all the interrupts in this pass.
1743 		 */
1744 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1745 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1746 			fxp_intr_body(sc, ifp, statack, -1);
1747 	}
1748 	FXP_UNLOCK(sc);
1749 }
1750 
1751 static void
1752 fxp_txeof(struct fxp_softc *sc)
1753 {
1754 	struct ifnet *ifp;
1755 	struct fxp_tx *txp;
1756 
1757 	ifp = sc->ifp;
1758 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1759 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1760 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1761 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1762 	    txp = txp->tx_next) {
1763 		if (txp->tx_mbuf != NULL) {
1764 			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1765 			    BUS_DMASYNC_POSTWRITE);
1766 			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1767 			m_freem(txp->tx_mbuf);
1768 			txp->tx_mbuf = NULL;
1769 			/* clear this to reset csum offload bits */
1770 			txp->tx_cb->tbd[0].tb_addr = 0;
1771 		}
1772 		sc->tx_queued--;
1773 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1774 	}
1775 	sc->fxp_desc.tx_first = txp;
1776 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1777 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1778 	if (sc->tx_queued == 0)
1779 		sc->watchdog_timer = 0;
1780 }
1781 
1782 static void
1783 fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
1784     uint16_t status, int pos)
1785 {
1786 	struct ether_header *eh;
1787 	struct ip *ip;
1788 	struct udphdr *uh;
1789 	int32_t hlen, len, pktlen, temp32;
1790 	uint16_t csum, *opts;
1791 
1792 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1793 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1794 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1795 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1796 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1797 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1798 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1799 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1800 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1801 				    CSUM_PSEUDO_HDR;
1802 				m->m_pkthdr.csum_data = 0xffff;
1803 			}
1804 		}
1805 		return;
1806 	}
1807 
1808 	pktlen = m->m_pkthdr.len;
1809 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1810 		return;
1811 	eh = mtod(m, struct ether_header *);
1812 	if (eh->ether_type != htons(ETHERTYPE_IP))
1813 		return;
1814 	ip = (struct ip *)(eh + 1);
1815 	if (ip->ip_v != IPVERSION)
1816 		return;
1817 
1818 	hlen = ip->ip_hl << 2;
1819 	pktlen -= sizeof(struct ether_header);
1820 	if (hlen < sizeof(struct ip))
1821 		return;
1822 	if (ntohs(ip->ip_len) < hlen)
1823 		return;
1824 	if (ntohs(ip->ip_len) != pktlen)
1825 		return;
1826 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1827 		return;	/* can't handle fragmented packet */
1828 
1829 	switch (ip->ip_p) {
1830 	case IPPROTO_TCP:
1831 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1832 			return;
1833 		break;
1834 	case IPPROTO_UDP:
1835 		if (pktlen < (hlen + sizeof(struct udphdr)))
1836 			return;
1837 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1838 		if (uh->uh_sum == 0)
1839 			return; /* no checksum */
1840 		break;
1841 	default:
1842 		return;
1843 	}
1844 	/* Extract computed checksum. */
1845 	csum = be16dec(mtod(m, char *) + pos);
1846 	/* checksum fixup for IP options */
1847 	len = hlen - sizeof(struct ip);
1848 	if (len > 0) {
1849 		opts = (uint16_t *)(ip + 1);
1850 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1851 			temp32 = csum - *opts;
1852 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1853 			csum = temp32 & 65535;
1854 		}
1855 	}
1856 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1857 	m->m_pkthdr.csum_data = csum;
1858 }
1859 
1860 static int
1861 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1862     int count)
1863 {
1864 	struct mbuf *m;
1865 	struct fxp_rx *rxp;
1866 	struct fxp_rfa *rfa;
1867 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1868 	int rx_npkts;
1869 	uint16_t status;
1870 
1871 	rx_npkts = 0;
1872 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1873 
1874 	if (rnr)
1875 		sc->rnr++;
1876 #ifdef DEVICE_POLLING
1877 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1878 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1879 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1880 		rnr = 1;
1881 	}
1882 #endif
1883 
1884 	/*
1885 	 * Free any finished transmit mbuf chains.
1886 	 *
1887 	 * Handle the CNA event likt a CXTNO event. It used to
1888 	 * be that this event (control unit not ready) was not
1889 	 * encountered, but it is now with the SMPng modifications.
1890 	 * The exact sequence of events that occur when the interface
1891 	 * is brought up are different now, and if this event
1892 	 * goes unhandled, the configuration/rxfilter setup sequence
1893 	 * can stall for several seconds. The result is that no
1894 	 * packets go out onto the wire for about 5 to 10 seconds
1895 	 * after the interface is ifconfig'ed for the first time.
1896 	 */
1897 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1898 		fxp_txeof(sc);
1899 
1900 	/*
1901 	 * Try to start more packets transmitting.
1902 	 */
1903 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1904 		fxp_start_body(ifp);
1905 
1906 	/*
1907 	 * Just return if nothing happened on the receive side.
1908 	 */
1909 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1910 		return (rx_npkts);
1911 
1912 	/*
1913 	 * Process receiver interrupts. If a no-resource (RNR)
1914 	 * condition exists, get whatever packets we can and
1915 	 * re-start the receiver.
1916 	 *
1917 	 * When using polling, we do not process the list to completion,
1918 	 * so when we get an RNR interrupt we must defer the restart
1919 	 * until we hit the last buffer with the C bit set.
1920 	 * If we run out of cycles and rfa_headm has the C bit set,
1921 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1922 	 * that the info will be used in the subsequent polling cycle.
1923 	 */
1924 	for (;;) {
1925 		rxp = sc->fxp_desc.rx_head;
1926 		m = rxp->rx_mbuf;
1927 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1928 		    RFA_ALIGNMENT_FUDGE);
1929 		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1930 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1931 
1932 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1933 		if (count >= 0 && count-- == 0) {
1934 			if (rnr) {
1935 				/* Defer RNR processing until the next time. */
1936 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1937 				rnr = 0;
1938 			}
1939 			break;
1940 		}
1941 #endif /* DEVICE_POLLING */
1942 
1943 		status = le16toh(rfa->rfa_status);
1944 		if ((status & FXP_RFA_STATUS_C) == 0)
1945 			break;
1946 
1947 		if ((status & FXP_RFA_STATUS_RNR) != 0)
1948 			rnr++;
1949 		/*
1950 		 * Advance head forward.
1951 		 */
1952 		sc->fxp_desc.rx_head = rxp->rx_next;
1953 
1954 		/*
1955 		 * Add a new buffer to the receive chain.
1956 		 * If this fails, the old buffer is recycled
1957 		 * instead.
1958 		 */
1959 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1960 			int total_len;
1961 
1962 			/*
1963 			 * Fetch packet length (the top 2 bits of
1964 			 * actual_size are flags set by the controller
1965 			 * upon completion), and drop the packet in case
1966 			 * of bogus length or CRC errors.
1967 			 */
1968 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1969 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1970 			    (ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1971 				/* Adjust for appended checksum bytes. */
1972 				total_len -= 2;
1973 			}
1974 			if (total_len < (int)sizeof(struct ether_header) ||
1975 			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1976 			    sc->rfa_size) ||
1977 			    status & (FXP_RFA_STATUS_CRC |
1978 			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1979 				m_freem(m);
1980 				fxp_add_rfabuf(sc, rxp);
1981 				continue;
1982 			}
1983 
1984 			m->m_pkthdr.len = m->m_len = total_len;
1985 			m->m_pkthdr.rcvif = ifp;
1986 
1987                         /* Do IP checksum checking. */
1988 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1989 				fxp_rxcsum(sc, ifp, m, status, total_len);
1990 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1991 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1992 				m->m_pkthdr.ether_vtag =
1993 				    ntohs(rfa->rfax_vlan_id);
1994 				m->m_flags |= M_VLANTAG;
1995 			}
1996 			/*
1997 			 * Drop locks before calling if_input() since it
1998 			 * may re-enter fxp_start() in the netisr case.
1999 			 * This would result in a lock reversal.  Better
2000 			 * performance might be obtained by chaining all
2001 			 * packets received, dropping the lock, and then
2002 			 * calling if_input() on each one.
2003 			 */
2004 			FXP_UNLOCK(sc);
2005 			(*ifp->if_input)(ifp, m);
2006 			FXP_LOCK(sc);
2007 			rx_npkts++;
2008 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2009 				return (rx_npkts);
2010 		} else {
2011 			/* Reuse RFA and loaded DMA map. */
2012 			ifp->if_iqdrops++;
2013 			fxp_discard_rfabuf(sc, rxp);
2014 		}
2015 		fxp_add_rfabuf(sc, rxp);
2016 	}
2017 	if (rnr) {
2018 		fxp_scb_wait(sc);
2019 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2020 		    sc->fxp_desc.rx_head->rx_addr);
2021 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2022 	}
2023 	return (rx_npkts);
2024 }
2025 
2026 static void
2027 fxp_update_stats(struct fxp_softc *sc)
2028 {
2029 	struct ifnet *ifp = sc->ifp;
2030 	struct fxp_stats *sp = sc->fxp_stats;
2031 	struct fxp_hwstats *hsp;
2032 	uint32_t *status;
2033 
2034 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2035 
2036 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2037 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2038 	/* Update statistical counters. */
2039 	if (sc->revision >= FXP_REV_82559_A0)
2040 		status = &sp->completion_status;
2041 	else if (sc->revision >= FXP_REV_82558_A4)
2042 		status = (uint32_t *)&sp->tx_tco;
2043 	else
2044 		status = &sp->tx_pause;
2045 	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2046 		hsp = &sc->fxp_hwstats;
2047 		hsp->tx_good += le32toh(sp->tx_good);
2048 		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2049 		hsp->tx_latecols += le32toh(sp->tx_latecols);
2050 		hsp->tx_underruns += le32toh(sp->tx_underruns);
2051 		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2052 		hsp->tx_deffered += le32toh(sp->tx_deffered);
2053 		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2054 		hsp->tx_multiple_collisions +=
2055 		    le32toh(sp->tx_multiple_collisions);
2056 		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2057 		hsp->rx_good += le32toh(sp->rx_good);
2058 		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2059 		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2060 		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2061 		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2062 		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2063 		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2064 		hsp->tx_pause += le32toh(sp->tx_pause);
2065 		hsp->rx_pause += le32toh(sp->rx_pause);
2066 		hsp->rx_controls += le32toh(sp->rx_controls);
2067 		hsp->tx_tco += le16toh(sp->tx_tco);
2068 		hsp->rx_tco += le16toh(sp->rx_tco);
2069 
2070 		ifp->if_opackets += le32toh(sp->tx_good);
2071 		ifp->if_collisions += le32toh(sp->tx_total_collisions);
2072 		if (sp->rx_good) {
2073 			ifp->if_ipackets += le32toh(sp->rx_good);
2074 			sc->rx_idle_secs = 0;
2075 		} else if (sc->flags & FXP_FLAG_RXBUG) {
2076 			/*
2077 			 * Receiver's been idle for another second.
2078 			 */
2079 			sc->rx_idle_secs++;
2080 		}
2081 		ifp->if_ierrors +=
2082 		    le32toh(sp->rx_crc_errors) +
2083 		    le32toh(sp->rx_alignment_errors) +
2084 		    le32toh(sp->rx_rnr_errors) +
2085 		    le32toh(sp->rx_overrun_errors);
2086 		/*
2087 		 * If any transmit underruns occured, bump up the transmit
2088 		 * threshold by another 512 bytes (64 * 8).
2089 		 */
2090 		if (sp->tx_underruns) {
2091 			ifp->if_oerrors += le32toh(sp->tx_underruns);
2092 			if (tx_threshold < 192)
2093 				tx_threshold += 64;
2094 		}
2095 		*status = 0;
2096 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2097 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2098 	}
2099 }
2100 
2101 /*
2102  * Update packet in/out/collision statistics. The i82557 doesn't
2103  * allow you to access these counters without doing a fairly
2104  * expensive DMA to get _all_ of the statistics it maintains, so
2105  * we do this operation here only once per second. The statistics
2106  * counters in the kernel are updated from the previous dump-stats
2107  * DMA and then a new dump-stats DMA is started. The on-chip
2108  * counters are zeroed when the DMA completes. If we can't start
2109  * the DMA immediately, we don't wait - we just prepare to read
2110  * them again next time.
2111  */
2112 static void
2113 fxp_tick(void *xsc)
2114 {
2115 	struct fxp_softc *sc = xsc;
2116 	struct ifnet *ifp = sc->ifp;
2117 
2118 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2119 
2120 	/* Update statistical counters. */
2121 	fxp_update_stats(sc);
2122 
2123 	/*
2124 	 * Release any xmit buffers that have completed DMA. This isn't
2125 	 * strictly necessary to do here, but it's advantagous for mbufs
2126 	 * with external storage to be released in a timely manner rather
2127 	 * than being defered for a potentially long time. This limits
2128 	 * the delay to a maximum of one second.
2129 	 */
2130 	fxp_txeof(sc);
2131 
2132 	/*
2133 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2134 	 * then assume the receiver has locked up and attempt to clear
2135 	 * the condition by reprogramming the multicast filter. This is
2136 	 * a work-around for a bug in the 82557 where the receiver locks
2137 	 * up if it gets certain types of garbage in the syncronization
2138 	 * bits prior to the packet header. This bug is supposed to only
2139 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2140 	 * mode as well (perhaps due to a 10/100 speed transition).
2141 	 */
2142 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2143 		sc->rx_idle_secs = 0;
2144 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2145 			fxp_init_body(sc, 1);
2146 		return;
2147 	}
2148 	/*
2149 	 * If there is no pending command, start another stats
2150 	 * dump. Otherwise punt for now.
2151 	 */
2152 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2153 		/*
2154 		 * Start another stats dump.
2155 		 */
2156 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2157 	}
2158 	if (sc->miibus != NULL)
2159 		mii_tick(device_get_softc(sc->miibus));
2160 
2161 	/*
2162 	 * Check that chip hasn't hung.
2163 	 */
2164 	fxp_watchdog(sc);
2165 
2166 	/*
2167 	 * Schedule another timeout one second from now.
2168 	 */
2169 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2170 }
2171 
2172 /*
2173  * Stop the interface. Cancels the statistics updater and resets
2174  * the interface.
2175  */
2176 static void
2177 fxp_stop(struct fxp_softc *sc)
2178 {
2179 	struct ifnet *ifp = sc->ifp;
2180 	struct fxp_tx *txp;
2181 	int i;
2182 
2183 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2184 	sc->watchdog_timer = 0;
2185 
2186 	/*
2187 	 * Cancel stats updater.
2188 	 */
2189 	callout_stop(&sc->stat_ch);
2190 
2191 	/*
2192 	 * Preserve PCI configuration, configure, IA/multicast
2193 	 * setup and put RU and CU into idle state.
2194 	 */
2195 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2196 	DELAY(50);
2197 	/* Disable interrupts. */
2198 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2199 
2200 	fxp_update_stats(sc);
2201 
2202 	/*
2203 	 * Release any xmit buffers.
2204 	 */
2205 	txp = sc->fxp_desc.tx_list;
2206 	if (txp != NULL) {
2207 		for (i = 0; i < FXP_NTXCB; i++) {
2208 			if (txp[i].tx_mbuf != NULL) {
2209 				bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2210 				    BUS_DMASYNC_POSTWRITE);
2211 				bus_dmamap_unload(sc->fxp_txmtag,
2212 				    txp[i].tx_map);
2213 				m_freem(txp[i].tx_mbuf);
2214 				txp[i].tx_mbuf = NULL;
2215 				/* clear this to reset csum offload bits */
2216 				txp[i].tx_cb->tbd[0].tb_addr = 0;
2217 			}
2218 		}
2219 	}
2220 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2221 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2222 	sc->tx_queued = 0;
2223 }
2224 
2225 /*
2226  * Watchdog/transmission transmit timeout handler. Called when a
2227  * transmission is started on the interface, but no interrupt is
2228  * received before the timeout. This usually indicates that the
2229  * card has wedged for some reason.
2230  */
2231 static void
2232 fxp_watchdog(struct fxp_softc *sc)
2233 {
2234 
2235 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2236 
2237 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2238 		return;
2239 
2240 	device_printf(sc->dev, "device timeout\n");
2241 	sc->ifp->if_oerrors++;
2242 
2243 	fxp_init_body(sc, 1);
2244 }
2245 
2246 /*
2247  * Acquire locks and then call the real initialization function.  This
2248  * is necessary because ether_ioctl() calls if_init() and this would
2249  * result in mutex recursion if the mutex was held.
2250  */
2251 static void
2252 fxp_init(void *xsc)
2253 {
2254 	struct fxp_softc *sc = xsc;
2255 
2256 	FXP_LOCK(sc);
2257 	fxp_init_body(sc, 1);
2258 	FXP_UNLOCK(sc);
2259 }
2260 
2261 /*
2262  * Perform device initialization. This routine must be called with the
2263  * softc lock held.
2264  */
2265 static void
2266 fxp_init_body(struct fxp_softc *sc, int setmedia)
2267 {
2268 	struct ifnet *ifp = sc->ifp;
2269 	struct mii_data *mii;
2270 	struct fxp_cb_config *cbp;
2271 	struct fxp_cb_ias *cb_ias;
2272 	struct fxp_cb_tx *tcbp;
2273 	struct fxp_tx *txp;
2274 	int i, prm;
2275 
2276 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2277 	/*
2278 	 * Cancel any pending I/O
2279 	 */
2280 	fxp_stop(sc);
2281 
2282 	/*
2283 	 * Issue software reset, which also unloads the microcode.
2284 	 */
2285 	sc->flags &= ~FXP_FLAG_UCODE;
2286 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2287 	DELAY(50);
2288 
2289 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2290 
2291 	/*
2292 	 * Initialize base of CBL and RFA memory. Loading with zero
2293 	 * sets it up for regular linear addressing.
2294 	 */
2295 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2296 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2297 
2298 	fxp_scb_wait(sc);
2299 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2300 
2301 	/*
2302 	 * Initialize base of dump-stats buffer.
2303 	 */
2304 	fxp_scb_wait(sc);
2305 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2306 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2307 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2308 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2309 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2310 
2311 	/*
2312 	 * Attempt to load microcode if requested.
2313 	 * For ICH based controllers do not load microcode.
2314 	 */
2315 	if (sc->ident->ich == 0) {
2316 		if (ifp->if_flags & IFF_LINK0 &&
2317 		    (sc->flags & FXP_FLAG_UCODE) == 0)
2318 			fxp_load_ucode(sc);
2319 	}
2320 
2321 	/*
2322 	 * Set IFF_ALLMULTI status. It's needed in configure action
2323 	 * command.
2324 	 */
2325 	fxp_mc_addrs(sc);
2326 
2327 	/*
2328 	 * We temporarily use memory that contains the TxCB list to
2329 	 * construct the config CB. The TxCB list memory is rebuilt
2330 	 * later.
2331 	 */
2332 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2333 
2334 	/*
2335 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2336 	 * zero and must be one bits in this structure and this is the easiest
2337 	 * way to initialize them all to proper values.
2338 	 */
2339 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2340 
2341 	cbp->cb_status =	0;
2342 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2343 	    FXP_CB_COMMAND_EL);
2344 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2345 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2346 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2347 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2348 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2349 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2350 	cbp->type_enable =	0;	/* actually reserved */
2351 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2352 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2353 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2354 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2355 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2356 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2357 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2358 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2359 	cbp->ci_int =		1;	/* interrupt on CU idle */
2360 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2361 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2362 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2363 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2364 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2365 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2366 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2367 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2368 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2369 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2370 	cbp->csma_dis =		0;	/* (don't) disable link */
2371 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2372 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
2373 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2374 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2375 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2376 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2377 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2378 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2379 	cbp->loopback =		0;	/* (don't) loopback */
2380 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2381 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2382 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2383 	cbp->promiscuous =	prm;	/* promiscuous mode */
2384 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2385 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2386 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2387 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2388 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2389 
2390 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2391 	cbp->padding =		1;	/* (do) pad short tx packets */
2392 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2393 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2394 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2395 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2396 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2397 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2398 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2399 	cbp->mc_all =		ifp->if_flags & IFF_ALLMULTI ? 1 : prm;
2400 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2401 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2402 	    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2403 
2404 	if (sc->revision == FXP_REV_82557) {
2405 		/*
2406 		 * The 82557 has no hardware flow control, the values
2407 		 * below are the defaults for the chip.
2408 		 */
2409 		cbp->fc_delay_lsb =	0;
2410 		cbp->fc_delay_msb =	0x40;
2411 		cbp->pri_fc_thresh =	3;
2412 		cbp->tx_fc_dis =	0;
2413 		cbp->rx_fc_restop =	0;
2414 		cbp->rx_fc_restart =	0;
2415 		cbp->fc_filter =	0;
2416 		cbp->pri_fc_loc =	1;
2417 	} else {
2418 		/* Set pause RX FIFO threshold to 1KB. */
2419 		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2420 		/* Set pause time. */
2421 		cbp->fc_delay_lsb =	0xff;
2422 		cbp->fc_delay_msb =	0xff;
2423 		cbp->pri_fc_thresh =	3;
2424 		mii = device_get_softc(sc->miibus);
2425 		if ((IFM_OPTIONS(mii->mii_media_active) &
2426 		    IFM_ETH_TXPAUSE) != 0)
2427 			/* enable transmit FC */
2428 			cbp->tx_fc_dis = 0;
2429 		else
2430 			/* disable transmit FC */
2431 			cbp->tx_fc_dis = 1;
2432 		if ((IFM_OPTIONS(mii->mii_media_active) &
2433 		    IFM_ETH_RXPAUSE) != 0) {
2434 			/* enable FC restart/restop frames */
2435 			cbp->rx_fc_restart = 1;
2436 			cbp->rx_fc_restop = 1;
2437 		} else {
2438 			/* disable FC restart/restop frames */
2439 			cbp->rx_fc_restart = 0;
2440 			cbp->rx_fc_restop = 0;
2441 		}
2442 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2443 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2444 	}
2445 
2446 	/* Enable 82558 and 82559 extended statistics functionality. */
2447 	if (sc->revision >= FXP_REV_82558_A4) {
2448 		if (sc->revision >= FXP_REV_82559_A0) {
2449 			/*
2450 			 * Extend configuration table size to 32
2451 			 * to include TCO configuration.
2452 			 */
2453 			cbp->byte_count = 32;
2454 			cbp->ext_stats_dis = 1;
2455 			/* Enable TCO stats. */
2456 			cbp->tno_int_or_tco_en = 1;
2457 			cbp->gamla_rx = 1;
2458 		} else
2459 			cbp->ext_stats_dis = 0;
2460 	}
2461 
2462 	/*
2463 	 * Start the config command/DMA.
2464 	 */
2465 	fxp_scb_wait(sc);
2466 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2467 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2468 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2469 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2470 	/* ...and wait for it to complete. */
2471 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2472 
2473 	/*
2474 	 * Now initialize the station address. Temporarily use the TxCB
2475 	 * memory area like we did above for the config CB.
2476 	 */
2477 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2478 	cb_ias->cb_status = 0;
2479 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2480 	cb_ias->link_addr = 0xffffffff;
2481 	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2482 
2483 	/*
2484 	 * Start the IAS (Individual Address Setup) command/DMA.
2485 	 */
2486 	fxp_scb_wait(sc);
2487 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2488 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2489 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2490 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2491 	/* ...and wait for it to complete. */
2492 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2493 
2494 	/*
2495 	 * Initialize the multicast address list.
2496 	 */
2497 	fxp_mc_setup(sc);
2498 
2499 	/*
2500 	 * Initialize transmit control block (TxCB) list.
2501 	 */
2502 	txp = sc->fxp_desc.tx_list;
2503 	tcbp = sc->fxp_desc.cbl_list;
2504 	bzero(tcbp, FXP_TXCB_SZ);
2505 	for (i = 0; i < FXP_NTXCB; i++) {
2506 		txp[i].tx_mbuf = NULL;
2507 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2508 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2509 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2510 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2511 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2512 			tcbp[i].tbd_array_addr =
2513 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2514 		else
2515 			tcbp[i].tbd_array_addr =
2516 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2517 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2518 	}
2519 	/*
2520 	 * Set the suspend flag on the first TxCB and start the control
2521 	 * unit. It will execute the NOP and then suspend.
2522 	 */
2523 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2524 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2525 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2526 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2527 	sc->tx_queued = 1;
2528 
2529 	fxp_scb_wait(sc);
2530 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2531 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2532 
2533 	/*
2534 	 * Initialize receiver buffer area - RFA.
2535 	 */
2536 	fxp_scb_wait(sc);
2537 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2538 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2539 
2540 	if (sc->miibus != NULL && setmedia != 0)
2541 		mii_mediachg(device_get_softc(sc->miibus));
2542 
2543 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2544 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2545 
2546 	/*
2547 	 * Enable interrupts.
2548 	 */
2549 #ifdef DEVICE_POLLING
2550 	/*
2551 	 * ... but only do that if we are not polling. And because (presumably)
2552 	 * the default is interrupts on, we need to disable them explicitly!
2553 	 */
2554 	if (ifp->if_capenable & IFCAP_POLLING )
2555 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2556 	else
2557 #endif /* DEVICE_POLLING */
2558 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2559 
2560 	/*
2561 	 * Start stats updater.
2562 	 */
2563 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2564 }
2565 
2566 static int
2567 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2568 {
2569 
2570 	return (0);
2571 }
2572 
2573 static void
2574 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2575 {
2576 
2577 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2578 }
2579 
2580 /*
2581  * Change media according to request.
2582  */
2583 static int
2584 fxp_ifmedia_upd(struct ifnet *ifp)
2585 {
2586 	struct fxp_softc *sc = ifp->if_softc;
2587 	struct mii_data *mii;
2588 	struct mii_softc	*miisc;
2589 
2590 	mii = device_get_softc(sc->miibus);
2591 	FXP_LOCK(sc);
2592 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2593 		PHY_RESET(miisc);
2594 	mii_mediachg(mii);
2595 	FXP_UNLOCK(sc);
2596 	return (0);
2597 }
2598 
2599 /*
2600  * Notify the world which media we're using.
2601  */
2602 static void
2603 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2604 {
2605 	struct fxp_softc *sc = ifp->if_softc;
2606 	struct mii_data *mii;
2607 
2608 	mii = device_get_softc(sc->miibus);
2609 	FXP_LOCK(sc);
2610 	mii_pollstat(mii);
2611 	ifmr->ifm_active = mii->mii_media_active;
2612 	ifmr->ifm_status = mii->mii_media_status;
2613 	FXP_UNLOCK(sc);
2614 }
2615 
2616 /*
2617  * Add a buffer to the end of the RFA buffer list.
2618  * Return 0 if successful, 1 for failure. A failure results in
2619  * reusing the RFA buffer.
2620  * The RFA struct is stuck at the beginning of mbuf cluster and the
2621  * data pointer is fixed up to point just past it.
2622  */
2623 static int
2624 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2625 {
2626 	struct mbuf *m;
2627 	struct fxp_rfa *rfa;
2628 	bus_dmamap_t tmp_map;
2629 	int error;
2630 
2631 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2632 	if (m == NULL)
2633 		return (ENOBUFS);
2634 
2635 	/*
2636 	 * Move the data pointer up so that the incoming data packet
2637 	 * will be 32-bit aligned.
2638 	 */
2639 	m->m_data += RFA_ALIGNMENT_FUDGE;
2640 
2641 	/*
2642 	 * Get a pointer to the base of the mbuf cluster and move
2643 	 * data start past it.
2644 	 */
2645 	rfa = mtod(m, struct fxp_rfa *);
2646 	m->m_data += sc->rfa_size;
2647 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2648 
2649 	rfa->rfa_status = 0;
2650 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2651 	rfa->actual_size = 0;
2652 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2653 	    sc->rfa_size;
2654 
2655 	/*
2656 	 * Initialize the rest of the RFA.  Note that since the RFA
2657 	 * is misaligned, we cannot store values directly.  We're thus
2658 	 * using the le32enc() function which handles endianness and
2659 	 * is also alignment-safe.
2660 	 */
2661 	le32enc(&rfa->link_addr, 0xffffffff);
2662 	le32enc(&rfa->rbd_addr, 0xffffffff);
2663 
2664 	/* Map the RFA into DMA memory. */
2665 	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2666 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2667 	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2668 	if (error) {
2669 		m_freem(m);
2670 		return (error);
2671 	}
2672 
2673 	if (rxp->rx_mbuf != NULL)
2674 		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2675 	tmp_map = sc->spare_map;
2676 	sc->spare_map = rxp->rx_map;
2677 	rxp->rx_map = tmp_map;
2678 	rxp->rx_mbuf = m;
2679 
2680 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2681 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2682 	return (0);
2683 }
2684 
2685 static void
2686 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2687 {
2688 	struct fxp_rfa *p_rfa;
2689 	struct fxp_rx *p_rx;
2690 
2691 	/*
2692 	 * If there are other buffers already on the list, attach this
2693 	 * one to the end by fixing up the tail to point to this one.
2694 	 */
2695 	if (sc->fxp_desc.rx_head != NULL) {
2696 		p_rx = sc->fxp_desc.rx_tail;
2697 		p_rfa = (struct fxp_rfa *)
2698 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2699 		p_rx->rx_next = rxp;
2700 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2701 		p_rfa->rfa_control = 0;
2702 		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2703 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2704 	} else {
2705 		rxp->rx_next = NULL;
2706 		sc->fxp_desc.rx_head = rxp;
2707 	}
2708 	sc->fxp_desc.rx_tail = rxp;
2709 }
2710 
2711 static void
2712 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2713 {
2714 	struct mbuf *m;
2715 	struct fxp_rfa *rfa;
2716 
2717 	m = rxp->rx_mbuf;
2718 	m->m_data = m->m_ext.ext_buf;
2719 	/*
2720 	 * Move the data pointer up so that the incoming data packet
2721 	 * will be 32-bit aligned.
2722 	 */
2723 	m->m_data += RFA_ALIGNMENT_FUDGE;
2724 
2725 	/*
2726 	 * Get a pointer to the base of the mbuf cluster and move
2727 	 * data start past it.
2728 	 */
2729 	rfa = mtod(m, struct fxp_rfa *);
2730 	m->m_data += sc->rfa_size;
2731 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2732 
2733 	rfa->rfa_status = 0;
2734 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2735 	rfa->actual_size = 0;
2736 
2737 	/*
2738 	 * Initialize the rest of the RFA.  Note that since the RFA
2739 	 * is misaligned, we cannot store values directly.  We're thus
2740 	 * using the le32enc() function which handles endianness and
2741 	 * is also alignment-safe.
2742 	 */
2743 	le32enc(&rfa->link_addr, 0xffffffff);
2744 	le32enc(&rfa->rbd_addr, 0xffffffff);
2745 
2746 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2747 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2748 }
2749 
2750 static int
2751 fxp_miibus_readreg(device_t dev, int phy, int reg)
2752 {
2753 	struct fxp_softc *sc = device_get_softc(dev);
2754 	int count = 10000;
2755 	int value;
2756 
2757 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2758 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2759 
2760 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2761 	    && count--)
2762 		DELAY(10);
2763 
2764 	if (count <= 0)
2765 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2766 
2767 	return (value & 0xffff);
2768 }
2769 
2770 static int
2771 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2772 {
2773 	struct fxp_softc *sc = device_get_softc(dev);
2774 	int count = 10000;
2775 
2776 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2777 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2778 	    (value & 0xffff));
2779 
2780 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2781 	    count--)
2782 		DELAY(10);
2783 
2784 	if (count <= 0)
2785 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2786 	return (0);
2787 }
2788 
2789 static void
2790 fxp_miibus_statchg(device_t dev)
2791 {
2792 	struct fxp_softc *sc;
2793 	struct mii_data *mii;
2794 	struct ifnet *ifp;
2795 
2796 	sc = device_get_softc(dev);
2797 	mii = device_get_softc(sc->miibus);
2798 	ifp = sc->ifp;
2799 	if (mii == NULL || ifp == NULL ||
2800 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2801 	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2802 	    (IFM_AVALID | IFM_ACTIVE))
2803 		return;
2804 
2805 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2806 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2807 		sc->cu_resume_bug = 1;
2808 	else
2809 		sc->cu_resume_bug = 0;
2810 	/*
2811 	 * Call fxp_init_body in order to adjust the flow control settings.
2812 	 * Note that the 82557 doesn't support hardware flow control.
2813 	 */
2814 	if (sc->revision == FXP_REV_82557)
2815 		return;
2816 	fxp_init_body(sc, 0);
2817 }
2818 
2819 static int
2820 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2821 {
2822 	struct fxp_softc *sc = ifp->if_softc;
2823 	struct ifreq *ifr = (struct ifreq *)data;
2824 	struct mii_data *mii;
2825 	int flag, mask, error = 0, reinit;
2826 
2827 	switch (command) {
2828 	case SIOCSIFFLAGS:
2829 		FXP_LOCK(sc);
2830 		/*
2831 		 * If interface is marked up and not running, then start it.
2832 		 * If it is marked down and running, stop it.
2833 		 * XXX If it's up then re-initialize it. This is so flags
2834 		 * such as IFF_PROMISC are handled.
2835 		 */
2836 		if (ifp->if_flags & IFF_UP) {
2837 			if (((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) &&
2838 			    ((ifp->if_flags ^ sc->if_flags) &
2839 			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0)
2840 				fxp_init_body(sc, 0);
2841 			else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2842 				fxp_init_body(sc, 1);
2843 		} else {
2844 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2845 				fxp_stop(sc);
2846 		}
2847 		sc->if_flags = ifp->if_flags;
2848 		FXP_UNLOCK(sc);
2849 		break;
2850 
2851 	case SIOCADDMULTI:
2852 	case SIOCDELMULTI:
2853 		FXP_LOCK(sc);
2854 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2855 			fxp_init_body(sc, 0);
2856 		FXP_UNLOCK(sc);
2857 		break;
2858 
2859 	case SIOCSIFMEDIA:
2860 	case SIOCGIFMEDIA:
2861 		if (sc->miibus != NULL) {
2862 			mii = device_get_softc(sc->miibus);
2863                         error = ifmedia_ioctl(ifp, ifr,
2864                             &mii->mii_media, command);
2865 		} else {
2866                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2867 		}
2868 		break;
2869 
2870 	case SIOCSIFCAP:
2871 		reinit = 0;
2872 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2873 #ifdef DEVICE_POLLING
2874 		if (mask & IFCAP_POLLING) {
2875 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2876 				error = ether_poll_register(fxp_poll, ifp);
2877 				if (error)
2878 					return(error);
2879 				FXP_LOCK(sc);
2880 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2881 				    FXP_SCB_INTR_DISABLE);
2882 				ifp->if_capenable |= IFCAP_POLLING;
2883 				FXP_UNLOCK(sc);
2884 			} else {
2885 				error = ether_poll_deregister(ifp);
2886 				/* Enable interrupts in any case */
2887 				FXP_LOCK(sc);
2888 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2889 				ifp->if_capenable &= ~IFCAP_POLLING;
2890 				FXP_UNLOCK(sc);
2891 			}
2892 		}
2893 #endif
2894 		FXP_LOCK(sc);
2895 		if ((mask & IFCAP_TXCSUM) != 0 &&
2896 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2897 			ifp->if_capenable ^= IFCAP_TXCSUM;
2898 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2899 				ifp->if_hwassist |= FXP_CSUM_FEATURES;
2900 			else
2901 				ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
2902 		}
2903 		if ((mask & IFCAP_RXCSUM) != 0 &&
2904 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
2905 			ifp->if_capenable ^= IFCAP_RXCSUM;
2906 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2907 				reinit++;
2908 		}
2909 		if ((mask & IFCAP_TSO4) != 0 &&
2910 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2911 			ifp->if_capenable ^= IFCAP_TSO4;
2912 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2913 				ifp->if_hwassist |= CSUM_TSO;
2914 			else
2915 				ifp->if_hwassist &= ~CSUM_TSO;
2916 		}
2917 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2918 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2919 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2920 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2921 		    (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
2922 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2923 			if (sc->revision != FXP_REV_82557)
2924 				flag = FXP_FLAG_LONG_PKT_EN;
2925 			else /* a hack to get long frames on the old chip */
2926 				flag = FXP_FLAG_SAVE_BAD;
2927 			sc->flags ^= flag;
2928 			if (ifp->if_flags & IFF_UP)
2929 				reinit++;
2930 		}
2931 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2932 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2933 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2934 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2935 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2936 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2937 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2938 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2939 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2940 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2941 				ifp->if_capenable &=
2942 				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2943 			reinit++;
2944 		}
2945 		if (reinit > 0 && ifp->if_flags & IFF_UP)
2946 			fxp_init_body(sc, 0);
2947 		FXP_UNLOCK(sc);
2948 		VLAN_CAPABILITIES(ifp);
2949 		break;
2950 
2951 	default:
2952 		error = ether_ioctl(ifp, command, data);
2953 	}
2954 	return (error);
2955 }
2956 
2957 /*
2958  * Fill in the multicast address list and return number of entries.
2959  */
2960 static int
2961 fxp_mc_addrs(struct fxp_softc *sc)
2962 {
2963 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2964 	struct ifnet *ifp = sc->ifp;
2965 	struct ifmultiaddr *ifma;
2966 	int nmcasts;
2967 
2968 	nmcasts = 0;
2969 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2970 		if_maddr_rlock(ifp);
2971 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2972 			if (ifma->ifma_addr->sa_family != AF_LINK)
2973 				continue;
2974 			if (nmcasts >= MAXMCADDR) {
2975 				ifp->if_flags |= IFF_ALLMULTI;
2976 				nmcasts = 0;
2977 				break;
2978 			}
2979 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2980 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2981 			nmcasts++;
2982 		}
2983 		if_maddr_runlock(ifp);
2984 	}
2985 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2986 	return (nmcasts);
2987 }
2988 
2989 /*
2990  * Program the multicast filter.
2991  *
2992  * We have an artificial restriction that the multicast setup command
2993  * must be the first command in the chain, so we take steps to ensure
2994  * this. By requiring this, it allows us to keep up the performance of
2995  * the pre-initialized command ring (esp. link pointers) by not actually
2996  * inserting the mcsetup command in the ring - i.e. its link pointer
2997  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2998  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2999  * lead into the regular TxCB ring when it completes.
3000  */
3001 static void
3002 fxp_mc_setup(struct fxp_softc *sc)
3003 {
3004 	struct fxp_cb_mcs *mcsp;
3005 	int count;
3006 
3007 	FXP_LOCK_ASSERT(sc, MA_OWNED);
3008 
3009 	mcsp = sc->mcsp;
3010 	mcsp->cb_status = 0;
3011 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3012 	mcsp->link_addr = 0xffffffff;
3013 	fxp_mc_addrs(sc);
3014 
3015 	/*
3016 	 * Wait until command unit is idle. This should never be the
3017 	 * case when nothing is queued, but make sure anyway.
3018 	 */
3019 	count = 100;
3020 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3021 	    FXP_SCB_CUS_IDLE && --count)
3022 		DELAY(10);
3023 	if (count == 0) {
3024 		device_printf(sc->dev, "command queue timeout\n");
3025 		return;
3026 	}
3027 
3028 	/*
3029 	 * Start the multicast setup command.
3030 	 */
3031 	fxp_scb_wait(sc);
3032 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3033 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3034 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3035 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3036 	/* ...and wait for it to complete. */
3037 	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3038 }
3039 
3040 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3041 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3042 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3043 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3044 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3045 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3046 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3047 
3048 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3049 
3050 static const struct ucode {
3051 	uint32_t	revision;
3052 	uint32_t	*ucode;
3053 	int		length;
3054 	u_short		int_delay_offset;
3055 	u_short		bundle_max_offset;
3056 } ucode_table[] = {
3057 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3058 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3059 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3060 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3061 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3062 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3063 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3064 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3065 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3066 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3067 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3068 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3069 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3070 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3071 	{ 0, NULL, 0, 0, 0 }
3072 };
3073 
3074 static void
3075 fxp_load_ucode(struct fxp_softc *sc)
3076 {
3077 	const struct ucode *uc;
3078 	struct fxp_cb_ucode *cbp;
3079 	int i;
3080 
3081 	if (sc->flags & FXP_FLAG_NO_UCODE)
3082 		return;
3083 
3084 	for (uc = ucode_table; uc->ucode != NULL; uc++)
3085 		if (sc->revision == uc->revision)
3086 			break;
3087 	if (uc->ucode == NULL)
3088 		return;
3089 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3090 	cbp->cb_status = 0;
3091 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3092 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3093 	for (i = 0; i < uc->length; i++)
3094 		cbp->ucode[i] = htole32(uc->ucode[i]);
3095 	if (uc->int_delay_offset)
3096 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3097 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3098 	if (uc->bundle_max_offset)
3099 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3100 		    htole16(sc->tunable_bundle_max);
3101 	/*
3102 	 * Download the ucode to the chip.
3103 	 */
3104 	fxp_scb_wait(sc);
3105 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3106 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3107 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3108 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3109 	/* ...and wait for it to complete. */
3110 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3111 	device_printf(sc->dev,
3112 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3113 	    sc->tunable_int_delay,
3114 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3115 	sc->flags |= FXP_FLAG_UCODE;
3116 	bzero(cbp, FXP_TXCB_SZ);
3117 }
3118 
3119 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3120 	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3121 
3122 static void
3123 fxp_sysctl_node(struct fxp_softc *sc)
3124 {
3125 	struct sysctl_ctx_list *ctx;
3126 	struct sysctl_oid_list *child, *parent;
3127 	struct sysctl_oid *tree;
3128 	struct fxp_hwstats *hsp;
3129 
3130 	ctx = device_get_sysctl_ctx(sc->dev);
3131 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3132 
3133 	SYSCTL_ADD_PROC(ctx, child,
3134 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
3135 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3136 	    "FXP driver receive interrupt microcode bundling delay");
3137 	SYSCTL_ADD_PROC(ctx, child,
3138 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
3139 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3140 	    "FXP driver receive interrupt microcode bundle size limit");
3141 	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3142 	    "FXP RNR events");
3143 
3144 	/*
3145 	 * Pull in device tunables.
3146 	 */
3147 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3148 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3149 	(void) resource_int_value(device_get_name(sc->dev),
3150 	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3151 	(void) resource_int_value(device_get_name(sc->dev),
3152 	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3153 	sc->rnr = 0;
3154 
3155 	hsp = &sc->fxp_hwstats;
3156 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3157 	    NULL, "FXP statistics");
3158 	parent = SYSCTL_CHILDREN(tree);
3159 
3160 	/* Rx MAC statistics. */
3161 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3162 	    NULL, "Rx MAC statistics");
3163 	child = SYSCTL_CHILDREN(tree);
3164 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3165 	    &hsp->rx_good, "Good frames");
3166 	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3167 	    &hsp->rx_crc_errors, "CRC errors");
3168 	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3169 	    &hsp->rx_alignment_errors, "Alignment errors");
3170 	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3171 	    &hsp->rx_rnr_errors, "RNR errors");
3172 	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3173 	    &hsp->rx_overrun_errors, "Overrun errors");
3174 	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3175 	    &hsp->rx_cdt_errors, "Collision detect errors");
3176 	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3177 	    &hsp->rx_shortframes, "Short frame errors");
3178 	if (sc->revision >= FXP_REV_82558_A4) {
3179 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3180 		    &hsp->rx_pause, "Pause frames");
3181 		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3182 		    &hsp->rx_controls, "Unsupported control frames");
3183 	}
3184 	if (sc->revision >= FXP_REV_82559_A0)
3185 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3186 		    &hsp->rx_tco, "TCO frames");
3187 
3188 	/* Tx MAC statistics. */
3189 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3190 	    NULL, "Tx MAC statistics");
3191 	child = SYSCTL_CHILDREN(tree);
3192 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3193 	    &hsp->tx_good, "Good frames");
3194 	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3195 	    &hsp->tx_maxcols, "Maximum collisions errors");
3196 	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3197 	    &hsp->tx_latecols, "Late collisions errors");
3198 	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3199 	    &hsp->tx_underruns, "Underrun errors");
3200 	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3201 	    &hsp->tx_lostcrs, "Lost carrier sense");
3202 	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3203 	    &hsp->tx_deffered, "Deferred");
3204 	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3205 	    &hsp->tx_single_collisions, "Single collisions");
3206 	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3207 	    &hsp->tx_multiple_collisions, "Multiple collisions");
3208 	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3209 	    &hsp->tx_total_collisions, "Total collisions");
3210 	if (sc->revision >= FXP_REV_82558_A4)
3211 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3212 		    &hsp->tx_pause, "Pause frames");
3213 	if (sc->revision >= FXP_REV_82559_A0)
3214 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3215 		    &hsp->tx_tco, "TCO frames");
3216 }
3217 
3218 #undef FXP_SYSCTL_STAT_ADD
3219 
3220 static int
3221 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3222 {
3223 	int error, value;
3224 
3225 	value = *(int *)arg1;
3226 	error = sysctl_handle_int(oidp, &value, 0, req);
3227 	if (error || !req->newptr)
3228 		return (error);
3229 	if (value < low || value > high)
3230 		return (EINVAL);
3231 	*(int *)arg1 = value;
3232 	return (0);
3233 }
3234 
3235 /*
3236  * Interrupt delay is expressed in microseconds, a multiplier is used
3237  * to convert this to the appropriate clock ticks before using.
3238  */
3239 static int
3240 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3241 {
3242 
3243 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3244 }
3245 
3246 static int
3247 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3248 {
3249 
3250 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3251 }
3252