xref: /freebsd/sys/dev/fxp/if_fxp.c (revision c4f6a2a9e1b1879b618c436ab4f56ff75c73a0f5)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/mbuf.h>
38 #include <sys/malloc.h>
39 		/* #include <sys/mutex.h> */
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/sysctl.h>
43 
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 
48 #ifdef NS
49 #include <netns/ns.h>
50 #include <netns/ns_if.h>
51 #endif
52 
53 #include <net/bpf.h>
54 #include <sys/sockio.h>
55 #include <sys/bus.h>
56 #include <machine/bus.h>
57 #include <sys/rman.h>
58 #include <machine/resource.h>
59 
60 #include <net/ethernet.h>
61 #include <net/if_arp.h>
62 
63 #include <vm/vm.h>		/* for vtophys */
64 #include <vm/pmap.h>		/* for vtophys */
65 #include <machine/clock.h>	/* for DELAY */
66 
67 #include <net/if_types.h>
68 #include <net/if_vlan_var.h>
69 
70 #include <pci/pcivar.h>
71 #include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/fxp/if_fxpreg.h>
77 #include <dev/fxp/if_fxpvar.h>
78 #include <dev/fxp/rcvbundl.h>
79 
80 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	char 		*name;
140 };
141 
142 /*
143  * Claim various Intel PCI device identifiers for this driver.  The
144  * sub-vendor and sub-device field are extensively used to identify
145  * particular variants, but we don't currently differentiate between
146  * them.
147  */
148 static struct fxp_ident fxp_ident_table[] = {
149     { 0x1229,		"Intel Pro 10/100B/100+ Ethernet" },
150     { 0x2449,		"Intel Pro/100 Ethernet" },
151     { 0x1209,		"Intel Embedded 10/100 Ethernet" },
152     { 0x1029,		"Intel Pro/100 Ethernet" },
153     { 0x1030,		"Intel Pro/100 Ethernet" },
154     { 0x1031,		"Intel Pro/100 Ethernet" },
155     { 0x1032,		"Intel Pro/100 Ethernet" },
156     { 0x1033,		"Intel Pro/100 Ethernet" },
157     { 0x1034,		"Intel Pro/100 Ethernet" },
158     { 0x1035,		"Intel Pro/100 Ethernet" },
159     { 0x1036,		"Intel Pro/100 Ethernet" },
160     { 0x1037,		"Intel Pro/100 Ethernet" },
161     { 0x1038,		"Intel Pro/100 Ethernet" },
162     { 0x1039,		"Intel Pro/100 Ethernet" },
163     { 0x103A,		"Intel Pro/100 Ethernet" },
164     { 0,		NULL },
165 };
166 
167 static int		fxp_probe(device_t dev);
168 static int		fxp_attach(device_t dev);
169 static int		fxp_detach(device_t dev);
170 static int		fxp_shutdown(device_t dev);
171 static int		fxp_suspend(device_t dev);
172 static int		fxp_resume(device_t dev);
173 
174 static void		fxp_intr(void *xsc);
175 static void 		fxp_init(void *xsc);
176 static void 		fxp_tick(void *xsc);
177 static void		fxp_powerstate_d0(device_t dev);
178 static void 		fxp_start(struct ifnet *ifp);
179 static void		fxp_stop(struct fxp_softc *sc);
180 static void 		fxp_release(struct fxp_softc *sc);
181 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
182 			    caddr_t data);
183 static void 		fxp_watchdog(struct ifnet *ifp);
184 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
185 static int		fxp_mc_addrs(struct fxp_softc *sc);
186 static void		fxp_mc_setup(struct fxp_softc *sc);
187 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
188 			    int autosize);
189 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
190 			    u_int16_t data);
191 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
192 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
193 			    int offset, int words);
194 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
195 			    int offset, int words);
196 static int		fxp_ifmedia_upd(struct ifnet *ifp);
197 static void		fxp_ifmedia_sts(struct ifnet *ifp,
198 			    struct ifmediareq *ifmr);
199 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
200 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
201 			    struct ifmediareq *ifmr);
202 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
203 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
204 			    int value);
205 static void		fxp_load_ucode(struct fxp_softc *sc);
206 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
207 			    int low, int high);
208 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
209 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
210 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
211 			    volatile u_int32_t *dst);
212 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
213 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
214 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
215 			    struct fxp_softc *sc);
216 
217 static device_method_t fxp_methods[] = {
218 	/* Device interface */
219 	DEVMETHOD(device_probe,		fxp_probe),
220 	DEVMETHOD(device_attach,	fxp_attach),
221 	DEVMETHOD(device_detach,	fxp_detach),
222 	DEVMETHOD(device_shutdown,	fxp_shutdown),
223 	DEVMETHOD(device_suspend,	fxp_suspend),
224 	DEVMETHOD(device_resume,	fxp_resume),
225 
226 	/* MII interface */
227 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
228 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
229 
230 	{ 0, 0 }
231 };
232 
233 static driver_t fxp_driver = {
234 	"fxp",
235 	fxp_methods,
236 	sizeof(struct fxp_softc),
237 };
238 
239 static devclass_t fxp_devclass;
240 
241 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
242 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
243 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
244 
245 static int fxp_rnr;
246 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
247 
248 /*
249  * Inline function to copy a 16-bit aligned 32-bit quantity.
250  */
251 static __inline void
252 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
253 {
254 #ifdef __i386__
255 	*dst = *src;
256 #else
257 	volatile u_int16_t *a = (volatile u_int16_t *)src;
258 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
259 
260 	b[0] = a[0];
261 	b[1] = a[1];
262 #endif
263 }
264 
265 /*
266  * Wait for the previous command to be accepted (but not necessarily
267  * completed).
268  */
269 static __inline void
270 fxp_scb_wait(struct fxp_softc *sc)
271 {
272 	int i = 10000;
273 
274 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
275 		DELAY(2);
276 	if (i == 0)
277 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
278 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
279 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
280 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
281 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
282 }
283 
284 static __inline void
285 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
286 {
287 
288 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
289 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
290 		fxp_scb_wait(sc);
291 	}
292 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
293 }
294 
295 static __inline void
296 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
297 {
298 	int i = 10000;
299 
300 	while (!(*status & FXP_CB_STATUS_C) && --i)
301 		DELAY(2);
302 	if (i == 0)
303 		device_printf(sc->dev, "DMA timeout\n");
304 }
305 
306 /*
307  * Return identification string if this is device is ours.
308  */
309 static int
310 fxp_probe(device_t dev)
311 {
312 	u_int16_t devid;
313 	struct fxp_ident *ident;
314 
315 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
316 		devid = pci_get_device(dev);
317 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
318 			if (ident->devid == devid) {
319 				device_set_desc(dev, ident->name);
320 				return (0);
321 			}
322 		}
323 	}
324 	return (ENXIO);
325 }
326 
327 static void
328 fxp_powerstate_d0(device_t dev)
329 {
330 #if __FreeBSD_version >= 430002
331 	u_int32_t iobase, membase, irq;
332 
333 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
334 		/* Save important PCI config data. */
335 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
336 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
337 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
338 
339 		/* Reset the power state. */
340 		device_printf(dev, "chip is in D%d power mode "
341 		    "-- setting to D0\n", pci_get_powerstate(dev));
342 
343 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
344 
345 		/* Restore PCI config data. */
346 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
347 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
348 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
349 	}
350 #endif
351 }
352 
353 static int
354 fxp_attach(device_t dev)
355 {
356 	int error = 0;
357 	struct fxp_softc *sc = device_get_softc(dev);
358 	struct ifnet *ifp;
359 	u_int32_t val;
360 	u_int16_t data;
361 	int i, rid, m1, m2, prefer_iomap;
362 	int s;
363 
364 	bzero(sc, sizeof(*sc));
365 	sc->dev = dev;
366 	callout_handle_init(&sc->stat_ch);
367 	sysctl_ctx_init(&sc->sysctl_ctx);
368 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
369 	    MTX_DEF | MTX_RECURSE);
370 
371 	s = splimp();
372 
373 	/*
374 	 * Enable bus mastering. Enable memory space too, in case
375 	 * BIOS/Prom forgot about it.
376 	 */
377 	val = pci_read_config(dev, PCIR_COMMAND, 2);
378 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
379 	pci_write_config(dev, PCIR_COMMAND, val, 2);
380 	val = pci_read_config(dev, PCIR_COMMAND, 2);
381 
382 	fxp_powerstate_d0(dev);
383 
384 	/*
385 	 * Figure out which we should try first - memory mapping or i/o mapping?
386 	 * We default to memory mapping. Then we accept an override from the
387 	 * command line. Then we check to see which one is enabled.
388 	 */
389 	m1 = PCIM_CMD_MEMEN;
390 	m2 = PCIM_CMD_PORTEN;
391 	prefer_iomap = 0;
392 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
393 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
394 		m1 = PCIM_CMD_PORTEN;
395 		m2 = PCIM_CMD_MEMEN;
396 	}
397 
398 	if (val & m1) {
399 		sc->rtp =
400 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
401 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
402 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
403 	                                     0, ~0, 1, RF_ACTIVE);
404 	}
405 	if (sc->mem == NULL && (val & m2)) {
406 		sc->rtp =
407 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
408 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
409 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
410                                             0, ~0, 1, RF_ACTIVE);
411 	}
412 
413 	if (!sc->mem) {
414 		device_printf(dev, "could not map device registers\n");
415 		error = ENXIO;
416 		goto fail;
417         }
418 	if (bootverbose) {
419 		device_printf(dev, "using %s space register mapping\n",
420 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
421 	}
422 
423 	sc->sc_st = rman_get_bustag(sc->mem);
424 	sc->sc_sh = rman_get_bushandle(sc->mem);
425 
426 	/*
427 	 * Allocate our interrupt.
428 	 */
429 	rid = 0;
430 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
431 				 RF_SHAREABLE | RF_ACTIVE);
432 	if (sc->irq == NULL) {
433 		device_printf(dev, "could not map interrupt\n");
434 		error = ENXIO;
435 		goto fail;
436 	}
437 
438 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
439 			       fxp_intr, sc, &sc->ih);
440 	if (error) {
441 		device_printf(dev, "could not setup irq\n");
442 		goto fail;
443 	}
444 
445 	/*
446 	 * Reset to a stable state.
447 	 */
448 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
449 	DELAY(10);
450 
451 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
452 	    M_DEVBUF, M_NOWAIT | M_ZERO);
453 	if (sc->cbl_base == NULL)
454 		goto failmem;
455 
456 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
457 	    M_NOWAIT | M_ZERO);
458 	if (sc->fxp_stats == NULL)
459 		goto failmem;
460 
461 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
462 	if (sc->mcsp == NULL)
463 		goto failmem;
464 
465 	/*
466 	 * Pre-allocate our receive buffers.
467 	 */
468 	for (i = 0; i < FXP_NRFABUFS; i++) {
469 		if (fxp_add_rfabuf(sc, NULL) != 0) {
470 			goto failmem;
471 		}
472 	}
473 
474 	/*
475 	 * Find out how large of an SEEPROM we have.
476 	 */
477 	fxp_autosize_eeprom(sc);
478 
479 	/*
480 	 * Determine whether we must use the 503 serial interface.
481 	 */
482 	fxp_read_eeprom(sc, &data, 6, 1);
483 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
484 	    (data & FXP_PHY_SERIAL_ONLY))
485 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
486 
487 	/*
488 	 * Create the sysctl tree
489 	 */
490 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
491 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
492 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
493 	if (sc->sysctl_tree == NULL)
494 		goto fail;
495 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
496 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
497 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
498 	    "FXP driver receive interrupt microcode bundling delay");
499 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
500 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
501 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
502 	    "FXP driver receive interrupt microcode bundle size limit");
503 
504 	/*
505 	 * Pull in device tunables.
506 	 */
507 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
508 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
509 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
510 	    "int_delay", &sc->tunable_int_delay);
511 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
512 	    "bundle_max", &sc->tunable_bundle_max);
513 
514 	/*
515 	 * Find out the chip revision; lump all 82557 revs together.
516 	 */
517 	fxp_read_eeprom(sc, &data, 5, 1);
518 	if ((data >> 8) == 1)
519 		sc->revision = FXP_REV_82557;
520 	else
521 		sc->revision = pci_get_revid(dev);
522 
523 	/*
524 	 * Enable workarounds for certain chip revision deficiencies.
525 	 *
526 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
527 	 * some systems based a normal 82559 design, have a defect where
528 	 * the chip can cause a PCI protocol violation if it receives
529 	 * a CU_RESUME command when it is entering the IDLE state.  The
530 	 * workaround is to disable Dynamic Standby Mode, so the chip never
531 	 * deasserts CLKRUN#, and always remains in an active state.
532 	 *
533 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
534 	 */
535 	i = pci_get_device(dev);
536 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
537 	    sc->revision >= FXP_REV_82559_A0) {
538 		fxp_read_eeprom(sc, &data, 10, 1);
539 		if (data & 0x02) {			/* STB enable */
540 			u_int16_t cksum;
541 			int i;
542 
543 			device_printf(dev,
544 			    "Disabling dynamic standby mode in EEPROM\n");
545 			data &= ~0x02;
546 			fxp_write_eeprom(sc, &data, 10, 1);
547 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
548 			cksum = 0;
549 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
550 				fxp_read_eeprom(sc, &data, i, 1);
551 				cksum += data;
552 			}
553 			i = (1 << sc->eeprom_size) - 1;
554 			cksum = 0xBABA - cksum;
555 			fxp_read_eeprom(sc, &data, i, 1);
556 			fxp_write_eeprom(sc, &cksum, i, 1);
557 			device_printf(dev,
558 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
559 			    i, data, cksum);
560 #if 1
561 			/*
562 			 * If the user elects to continue, try the software
563 			 * workaround, as it is better than nothing.
564 			 */
565 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
566 #endif
567 		}
568 	}
569 
570 	/*
571 	 * If we are not a 82557 chip, we can enable extended features.
572 	 */
573 	if (sc->revision != FXP_REV_82557) {
574 		/*
575 		 * If MWI is enabled in the PCI configuration, and there
576 		 * is a valid cacheline size (8 or 16 dwords), then tell
577 		 * the board to turn on MWI.
578 		 */
579 		if (val & PCIM_CMD_MWRICEN &&
580 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
581 			sc->flags |= FXP_FLAG_MWI_ENABLE;
582 
583 		/* turn on the extended TxCB feature */
584 		sc->flags |= FXP_FLAG_EXT_TXCB;
585 
586 		/* enable reception of long frames for VLAN */
587 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
588 	}
589 
590 	/*
591 	 * Read MAC address.
592 	 */
593 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
594 	device_printf(dev, "Ethernet address %6D%s\n",
595 	    sc->arpcom.ac_enaddr, ":",
596 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
597 	if (bootverbose) {
598 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
599 		    pci_get_vendor(dev), pci_get_device(dev),
600 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
601 		    pci_get_revid(dev));
602 		fxp_read_eeprom(sc, &data, 10, 1);
603 		device_printf(dev, "Dynamic Standby mode is %s\n",
604 		    data & 0x02 ? "enabled" : "disabled");
605 	}
606 
607 	/*
608 	 * If this is only a 10Mbps device, then there is no MII, and
609 	 * the PHY will use a serial interface instead.
610 	 *
611 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
612 	 * doesn't have a programming interface of any sort.  The
613 	 * media is sensed automatically based on how the link partner
614 	 * is configured.  This is, in essence, manual configuration.
615 	 */
616 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
617 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
618 		    fxp_serial_ifmedia_sts);
619 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
620 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
621 	} else {
622 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
623 		    fxp_ifmedia_sts)) {
624 	                device_printf(dev, "MII without any PHY!\n");
625 			error = ENXIO;
626 			goto fail;
627 		}
628 	}
629 
630 	ifp = &sc->arpcom.ac_if;
631 	ifp->if_unit = device_get_unit(dev);
632 	ifp->if_name = "fxp";
633 	ifp->if_output = ether_output;
634 	ifp->if_baudrate = 100000000;
635 	ifp->if_init = fxp_init;
636 	ifp->if_softc = sc;
637 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
638 	ifp->if_ioctl = fxp_ioctl;
639 	ifp->if_start = fxp_start;
640 	ifp->if_watchdog = fxp_watchdog;
641 
642 	/*
643 	 * Attach the interface.
644 	 */
645 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
646 
647 	/*
648 	 * Tell the upper layer(s) we support long frames.
649 	 */
650 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
651 
652 	/*
653 	 * Let the system queue as many packets as we have available
654 	 * TX descriptors.
655 	 */
656 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
657 
658 	splx(s);
659 	return (0);
660 
661 failmem:
662 	device_printf(dev, "Failed to malloc memory\n");
663 	error = ENOMEM;
664 fail:
665 	splx(s);
666 	fxp_release(sc);
667 	return (error);
668 }
669 
670 /*
671  * release all resources
672  */
673 static void
674 fxp_release(struct fxp_softc *sc)
675 {
676 
677 	bus_generic_detach(sc->dev);
678 	if (sc->miibus)
679 		device_delete_child(sc->dev, sc->miibus);
680 
681 	if (sc->cbl_base)
682 		free(sc->cbl_base, M_DEVBUF);
683 	if (sc->fxp_stats)
684 		free(sc->fxp_stats, M_DEVBUF);
685 	if (sc->mcsp)
686 		free(sc->mcsp, M_DEVBUF);
687 	if (sc->rfa_headm)
688 		m_freem(sc->rfa_headm);
689 
690 	if (sc->ih)
691 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
692 	if (sc->irq)
693 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
694 	if (sc->mem)
695 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
696 
697         sysctl_ctx_free(&sc->sysctl_ctx);
698 
699 	mtx_destroy(&sc->sc_mtx);
700 }
701 
702 /*
703  * Detach interface.
704  */
705 static int
706 fxp_detach(device_t dev)
707 {
708 	struct fxp_softc *sc = device_get_softc(dev);
709 	int s;
710 
711 	/* disable interrupts */
712 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
713 
714 	s = splimp();
715 
716 	/*
717 	 * Stop DMA and drop transmit queue.
718 	 */
719 	fxp_stop(sc);
720 
721 	/*
722 	 * Close down routes etc.
723 	 */
724 	ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
725 
726 	/*
727 	 * Free all media structures.
728 	 */
729 	ifmedia_removeall(&sc->sc_media);
730 
731 	splx(s);
732 
733 	/* Release our allocated resources. */
734 	fxp_release(sc);
735 
736 	return (0);
737 }
738 
739 /*
740  * Device shutdown routine. Called at system shutdown after sync. The
741  * main purpose of this routine is to shut off receiver DMA so that
742  * kernel memory doesn't get clobbered during warmboot.
743  */
744 static int
745 fxp_shutdown(device_t dev)
746 {
747 	/*
748 	 * Make sure that DMA is disabled prior to reboot. Not doing
749 	 * do could allow DMA to corrupt kernel memory during the
750 	 * reboot before the driver initializes.
751 	 */
752 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
753 	return (0);
754 }
755 
756 /*
757  * Device suspend routine.  Stop the interface and save some PCI
758  * settings in case the BIOS doesn't restore them properly on
759  * resume.
760  */
761 static int
762 fxp_suspend(device_t dev)
763 {
764 	struct fxp_softc *sc = device_get_softc(dev);
765 	int i, s;
766 
767 	s = splimp();
768 
769 	fxp_stop(sc);
770 
771 	for (i = 0; i < 5; i++)
772 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
773 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
774 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
775 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
776 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
777 
778 	sc->suspended = 1;
779 
780 	splx(s);
781 	return (0);
782 }
783 
784 /*
785  * Device resume routine.  Restore some PCI settings in case the BIOS
786  * doesn't, re-enable busmastering, and restart the interface if
787  * appropriate.
788  */
789 static int
790 fxp_resume(device_t dev)
791 {
792 	struct fxp_softc *sc = device_get_softc(dev);
793 	struct ifnet *ifp = &sc->sc_if;
794 	u_int16_t pci_command;
795 	int i, s;
796 
797 	s = splimp();
798 
799 	fxp_powerstate_d0(dev);
800 
801 	/* better way to do this? */
802 	for (i = 0; i < 5; i++)
803 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
804 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
805 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
806 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
807 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
808 
809 	/* reenable busmastering */
810 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
811 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
812 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
813 
814 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
815 	DELAY(10);
816 
817 	/* reinitialize interface if necessary */
818 	if (ifp->if_flags & IFF_UP)
819 		fxp_init(sc);
820 
821 	sc->suspended = 0;
822 
823 	splx(s);
824 	return (0);
825 }
826 
827 static void
828 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
829 {
830 	u_int16_t reg;
831 	int x;
832 
833 	/*
834 	 * Shift in data.
835 	 */
836 	for (x = 1 << (length - 1); x; x >>= 1) {
837 		if (data & x)
838 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
839 		else
840 			reg = FXP_EEPROM_EECS;
841 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
842 		DELAY(1);
843 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
844 		DELAY(1);
845 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
846 		DELAY(1);
847 	}
848 }
849 
850 /*
851  * Read from the serial EEPROM. Basically, you manually shift in
852  * the read opcode (one bit at a time) and then shift in the address,
853  * and then you shift out the data (all of this one bit at a time).
854  * The word size is 16 bits, so you have to provide the address for
855  * every 16 bits of data.
856  */
857 static u_int16_t
858 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
859 {
860 	u_int16_t reg, data;
861 	int x;
862 
863 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
864 	/*
865 	 * Shift in read opcode.
866 	 */
867 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
868 	/*
869 	 * Shift in address.
870 	 */
871 	data = 0;
872 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
873 		if (offset & x)
874 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
875 		else
876 			reg = FXP_EEPROM_EECS;
877 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
878 		DELAY(1);
879 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
880 		DELAY(1);
881 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
882 		DELAY(1);
883 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
884 		data++;
885 		if (autosize && reg == 0) {
886 			sc->eeprom_size = data;
887 			break;
888 		}
889 	}
890 	/*
891 	 * Shift out data.
892 	 */
893 	data = 0;
894 	reg = FXP_EEPROM_EECS;
895 	for (x = 1 << 15; x; x >>= 1) {
896 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
897 		DELAY(1);
898 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
899 			data |= x;
900 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
901 		DELAY(1);
902 	}
903 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
904 	DELAY(1);
905 
906 	return (data);
907 }
908 
909 static void
910 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
911 {
912 	int i;
913 
914 	/*
915 	 * Erase/write enable.
916 	 */
917 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
918 	fxp_eeprom_shiftin(sc, 0x4, 3);
919 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
920 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
921 	DELAY(1);
922 	/*
923 	 * Shift in write opcode, address, data.
924 	 */
925 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
926 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
927 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
928 	fxp_eeprom_shiftin(sc, data, 16);
929 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
930 	DELAY(1);
931 	/*
932 	 * Wait for EEPROM to finish up.
933 	 */
934 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
935 	DELAY(1);
936 	for (i = 0; i < 1000; i++) {
937 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
938 			break;
939 		DELAY(50);
940 	}
941 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
942 	DELAY(1);
943 	/*
944 	 * Erase/write disable.
945 	 */
946 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
947 	fxp_eeprom_shiftin(sc, 0x4, 3);
948 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
949 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
950 	DELAY(1);
951 }
952 
953 /*
954  * From NetBSD:
955  *
956  * Figure out EEPROM size.
957  *
958  * 559's can have either 64-word or 256-word EEPROMs, the 558
959  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
960  * talks about the existance of 16 to 256 word EEPROMs.
961  *
962  * The only known sizes are 64 and 256, where the 256 version is used
963  * by CardBus cards to store CIS information.
964  *
965  * The address is shifted in msb-to-lsb, and after the last
966  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
967  * after which follows the actual data. We try to detect this zero, by
968  * probing the data-out bit in the EEPROM control register just after
969  * having shifted in a bit. If the bit is zero, we assume we've
970  * shifted enough address bits. The data-out should be tri-state,
971  * before this, which should translate to a logical one.
972  */
973 static void
974 fxp_autosize_eeprom(struct fxp_softc *sc)
975 {
976 
977 	/* guess maximum size of 256 words */
978 	sc->eeprom_size = 8;
979 
980 	/* autosize */
981 	(void) fxp_eeprom_getword(sc, 0, 1);
982 }
983 
984 static void
985 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
986 {
987 	int i;
988 
989 	for (i = 0; i < words; i++)
990 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
991 }
992 
993 static void
994 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
995 {
996 	int i;
997 
998 	for (i = 0; i < words; i++)
999 		fxp_eeprom_putword(sc, offset + i, data[i]);
1000 }
1001 
1002 /*
1003  * Start packet transmission on the interface.
1004  */
1005 static void
1006 fxp_start(struct ifnet *ifp)
1007 {
1008 	struct fxp_softc *sc = ifp->if_softc;
1009 	struct fxp_cb_tx *txp;
1010 
1011 	/*
1012 	 * See if we need to suspend xmit until the multicast filter
1013 	 * has been reprogrammed (which can only be done at the head
1014 	 * of the command chain).
1015 	 */
1016 	if (sc->need_mcsetup) {
1017 		return;
1018 	}
1019 
1020 	txp = NULL;
1021 
1022 	/*
1023 	 * We're finished if there is nothing more to add to the list or if
1024 	 * we're all filled up with buffers to transmit.
1025 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1026 	 *       a NOP command when needed.
1027 	 */
1028 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1029 		struct mbuf *m, *mb_head;
1030 		int segment;
1031 
1032 		/*
1033 		 * Grab a packet to transmit.
1034 		 */
1035 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1036 
1037 		/*
1038 		 * Get pointer to next available tx desc.
1039 		 */
1040 		txp = sc->cbl_last->next;
1041 
1042 		/*
1043 		 * Go through each of the mbufs in the chain and initialize
1044 		 * the transmit buffer descriptors with the physical address
1045 		 * and size of the mbuf.
1046 		 */
1047 tbdinit:
1048 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1049 			if (m->m_len != 0) {
1050 				if (segment == FXP_NTXSEG)
1051 					break;
1052 				txp->tbd[segment].tb_addr =
1053 				    vtophys(mtod(m, vm_offset_t));
1054 				txp->tbd[segment].tb_size = m->m_len;
1055 				segment++;
1056 			}
1057 		}
1058 		if (m != NULL) {
1059 			struct mbuf *mn;
1060 
1061 			/*
1062 			 * We ran out of segments. We have to recopy this
1063 			 * mbuf chain first. Bail out if we can't get the
1064 			 * new buffers.
1065 			 */
1066 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1067 			if (mn == NULL) {
1068 				m_freem(mb_head);
1069 				break;
1070 			}
1071 			if (mb_head->m_pkthdr.len > MHLEN) {
1072 				MCLGET(mn, M_DONTWAIT);
1073 				if ((mn->m_flags & M_EXT) == 0) {
1074 					m_freem(mn);
1075 					m_freem(mb_head);
1076 					break;
1077 				}
1078 			}
1079 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1080 			    mtod(mn, caddr_t));
1081 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1082 			m_freem(mb_head);
1083 			mb_head = mn;
1084 			goto tbdinit;
1085 		}
1086 
1087 		txp->tbd_number = segment;
1088 		txp->mb_head = mb_head;
1089 		txp->cb_status = 0;
1090 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1091 			txp->cb_command =
1092 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1093 			    FXP_CB_COMMAND_S;
1094 		} else {
1095 			txp->cb_command =
1096 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1097 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1098 			/*
1099 			 * Set a 5 second timer just in case we don't hear
1100 			 * from the card again.
1101 			 */
1102 			ifp->if_timer = 5;
1103 		}
1104 		txp->tx_threshold = tx_threshold;
1105 
1106 		/*
1107 		 * Advance the end of list forward.
1108 		 */
1109 
1110 #ifdef __alpha__
1111 		/*
1112 		 * On platforms which can't access memory in 16-bit
1113 		 * granularities, we must prevent the card from DMA'ing
1114 		 * up the status while we update the command field.
1115 		 * This could cause us to overwrite the completion status.
1116 		 */
1117 		atomic_clear_short(&sc->cbl_last->cb_command,
1118 		    FXP_CB_COMMAND_S);
1119 #else
1120 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1121 #endif /*__alpha__*/
1122 		sc->cbl_last = txp;
1123 
1124 		/*
1125 		 * Advance the beginning of the list forward if there are
1126 		 * no other packets queued (when nothing is queued, cbl_first
1127 		 * sits on the last TxCB that was sent out).
1128 		 */
1129 		if (sc->tx_queued == 0)
1130 			sc->cbl_first = txp;
1131 
1132 		sc->tx_queued++;
1133 
1134 		/*
1135 		 * Pass packet to bpf if there is a listener.
1136 		 */
1137 		if (ifp->if_bpf)
1138 			bpf_mtap(ifp, mb_head);
1139 	}
1140 
1141 	/*
1142 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1143 	 * going again if suspended.
1144 	 */
1145 	if (txp != NULL) {
1146 		fxp_scb_wait(sc);
1147 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1148 	}
1149 }
1150 
1151 static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count);
1152 
1153 #ifdef DEVICE_POLLING
1154 static poll_handler_t fxp_poll;
1155 
1156 static void
1157 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1158 {
1159 	struct fxp_softc *sc = ifp->if_softc;
1160 	u_int8_t statack;
1161 
1162 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1163 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1164 		return;
1165 	}
1166 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1167 	    FXP_SCB_STATACK_FR;
1168 	if (cmd == POLL_AND_CHECK_STATUS) {
1169 		u_int8_t tmp;
1170 
1171 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1172 		if (tmp == 0xff || tmp == 0)
1173 			return; /* nothing to do */
1174 		tmp &= ~statack;
1175 		/* ack what we can */
1176 		if (tmp != 0)
1177 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1178 		statack |= tmp;
1179 	}
1180 	fxp_intr_body(sc, statack, count);
1181 }
1182 #endif /* DEVICE_POLLING */
1183 
1184 /*
1185  * Process interface interrupts.
1186  */
1187 static void
1188 fxp_intr(void *xsc)
1189 {
1190 	struct fxp_softc *sc = xsc;
1191 	u_int8_t statack;
1192 
1193 #ifdef DEVICE_POLLING
1194 	struct ifnet *ifp = &sc->sc_if;
1195 
1196 	if (ifp->if_flags & IFF_POLLING)
1197 		return;
1198 	if (ether_poll_register(fxp_poll, ifp)) {
1199 		/* disable interrupts */
1200 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1201 		fxp_poll(ifp, 0, 1);
1202 		return;
1203 	}
1204 #endif
1205 
1206 	if (sc->suspended) {
1207 		return;
1208 	}
1209 
1210 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1211 		/*
1212 		 * It should not be possible to have all bits set; the
1213 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1214 		 * all bits are set, this may indicate that the card has
1215 		 * been physically ejected, so ignore it.
1216 		 */
1217 		if (statack == 0xff)
1218 			return;
1219 
1220 		/*
1221 		 * First ACK all the interrupts in this pass.
1222 		 */
1223 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1224 		fxp_intr_body(sc, statack, -1);
1225 	}
1226 }
1227 
1228 static void
1229 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1230 {
1231 	struct ifnet *ifp = &sc->sc_if;
1232 	struct mbuf *m;
1233 	struct fxp_rfa *rfa;
1234 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1235 
1236 	if (rnr)
1237 		fxp_rnr++;
1238 
1239 	/*
1240 	 * Free any finished transmit mbuf chains.
1241 	 *
1242 	 * Handle the CNA event likt a CXTNO event. It used to
1243 	 * be that this event (control unit not ready) was not
1244 	 * encountered, but it is now with the SMPng modifications.
1245 	 * The exact sequence of events that occur when the interface
1246 	 * is brought up are different now, and if this event
1247 	 * goes unhandled, the configuration/rxfilter setup sequence
1248 	 * can stall for several seconds. The result is that no
1249 	 * packets go out onto the wire for about 5 to 10 seconds
1250 	 * after the interface is ifconfig'ed for the first time.
1251 	 */
1252 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1253 		struct fxp_cb_tx *txp;
1254 
1255 		for (txp = sc->cbl_first; sc->tx_queued &&
1256 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1257 		    txp = txp->next) {
1258 			if (txp->mb_head != NULL) {
1259 				m_freem(txp->mb_head);
1260 				txp->mb_head = NULL;
1261 			}
1262 			sc->tx_queued--;
1263 		}
1264 		sc->cbl_first = txp;
1265 		ifp->if_timer = 0;
1266 		if (sc->tx_queued == 0) {
1267 			if (sc->need_mcsetup)
1268 				fxp_mc_setup(sc);
1269 		}
1270 		/*
1271 		 * Try to start more packets transmitting.
1272 		 */
1273 		if (ifp->if_snd.ifq_head != NULL)
1274 			fxp_start(ifp);
1275 	}
1276 
1277 	/*
1278 	 * Just return if nothing happened on the receive side.
1279 	 */
1280 	if ( (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) == 0)
1281 		return;
1282 
1283 	/*
1284 	 * Process receiver interrupts. If a no-resource (RNR)
1285 	 * condition exists, get whatever packets we can and
1286 	 * re-start the receiver.
1287 	 * When using polling, we do not process the list to completion,
1288 	 * so when we get an RNR interrupt we must defer the restart
1289 	 * until we hit the last buffer with the C bit set.
1290 	 * If we run out of cycles and rfa_headm has the C bit set,
1291 	 * record the pending RNR in an unused status bit, so that the
1292 	 * info will be used in the subsequent polling cycle.
1293 	 */
1294 
1295 #define	FXP_RFA_RNRMARK		0x4000	/* used to mark a pending RNR intr */
1296 
1297 	for (;;) {
1298 		m = sc->rfa_headm;
1299 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1300 		    RFA_ALIGNMENT_FUDGE);
1301 
1302 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1303 		if (count >= 0 && count-- == 0)
1304 			break;
1305 #endif /* DEVICE_POLLING */
1306 
1307 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1308 			break;
1309 
1310 		if (rfa->rfa_status & FXP_RFA_RNRMARK)
1311 			rnr = 1;
1312 		/*
1313 		 * Remove first packet from the chain.
1314 		 */
1315 		sc->rfa_headm = m->m_next;
1316 		m->m_next = NULL;
1317 
1318 		/*
1319 		 * Add a new buffer to the receive chain.
1320 		 * If this fails, the old buffer is recycled
1321 		 * instead.
1322 		 */
1323 		if (fxp_add_rfabuf(sc, m) == 0) {
1324 			int total_len;
1325 
1326 			/*
1327 			 * Fetch packet length (the top 2 bits of
1328 			 * actual_size are flags set by the controller
1329 			 * upon completion), and drop the packet in case
1330 			 * of bogus length or CRC errors.
1331 			 */
1332 			total_len = rfa->actual_size & 0x3fff;
1333 			if (total_len < sizeof(struct ether_header) ||
1334 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1335 				sizeof(struct fxp_rfa) ||
1336 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1337 				m_freem(m);
1338 				continue;
1339 			}
1340 
1341 			m->m_pkthdr.len = m->m_len = total_len;
1342 			ether_input(ifp, NULL, m);
1343 		}
1344 	}
1345 	if (rnr) {
1346 		if (rfa->rfa_status & FXP_RFA_STATUS_C)
1347 			rfa->rfa_status |= FXP_RFA_RNRMARK;
1348 		else {
1349 			fxp_scb_wait(sc);
1350 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1351 			    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1352 				RFA_ALIGNMENT_FUDGE);
1353 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1354 		}
1355 	}
1356 }
1357 
1358 /*
1359  * Update packet in/out/collision statistics. The i82557 doesn't
1360  * allow you to access these counters without doing a fairly
1361  * expensive DMA to get _all_ of the statistics it maintains, so
1362  * we do this operation here only once per second. The statistics
1363  * counters in the kernel are updated from the previous dump-stats
1364  * DMA and then a new dump-stats DMA is started. The on-chip
1365  * counters are zeroed when the DMA completes. If we can't start
1366  * the DMA immediately, we don't wait - we just prepare to read
1367  * them again next time.
1368  */
1369 static void
1370 fxp_tick(void *xsc)
1371 {
1372 	struct fxp_softc *sc = xsc;
1373 	struct ifnet *ifp = &sc->sc_if;
1374 	struct fxp_stats *sp = sc->fxp_stats;
1375 	struct fxp_cb_tx *txp;
1376 	int s;
1377 
1378 	ifp->if_opackets += sp->tx_good;
1379 	ifp->if_collisions += sp->tx_total_collisions;
1380 	if (sp->rx_good) {
1381 		ifp->if_ipackets += sp->rx_good;
1382 		sc->rx_idle_secs = 0;
1383 	} else {
1384 		/*
1385 		 * Receiver's been idle for another second.
1386 		 */
1387 		sc->rx_idle_secs++;
1388 	}
1389 	ifp->if_ierrors +=
1390 	    sp->rx_crc_errors +
1391 	    sp->rx_alignment_errors +
1392 	    sp->rx_rnr_errors +
1393 	    sp->rx_overrun_errors;
1394 	/*
1395 	 * If any transmit underruns occured, bump up the transmit
1396 	 * threshold by another 512 bytes (64 * 8).
1397 	 */
1398 	if (sp->tx_underruns) {
1399 		ifp->if_oerrors += sp->tx_underruns;
1400 		if (tx_threshold < 192)
1401 			tx_threshold += 64;
1402 	}
1403 	s = splimp();
1404 	/*
1405 	 * Release any xmit buffers that have completed DMA. This isn't
1406 	 * strictly necessary to do here, but it's advantagous for mbufs
1407 	 * with external storage to be released in a timely manner rather
1408 	 * than being defered for a potentially long time. This limits
1409 	 * the delay to a maximum of one second.
1410 	 */
1411 	for (txp = sc->cbl_first; sc->tx_queued &&
1412 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1413 	    txp = txp->next) {
1414 		if (txp->mb_head != NULL) {
1415 			m_freem(txp->mb_head);
1416 			txp->mb_head = NULL;
1417 		}
1418 		sc->tx_queued--;
1419 	}
1420 	sc->cbl_first = txp;
1421 	/*
1422 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1423 	 * then assume the receiver has locked up and attempt to clear
1424 	 * the condition by reprogramming the multicast filter. This is
1425 	 * a work-around for a bug in the 82557 where the receiver locks
1426 	 * up if it gets certain types of garbage in the syncronization
1427 	 * bits prior to the packet header. This bug is supposed to only
1428 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1429 	 * mode as well (perhaps due to a 10/100 speed transition).
1430 	 */
1431 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1432 		sc->rx_idle_secs = 0;
1433 		fxp_mc_setup(sc);
1434 	}
1435 	/*
1436 	 * If there is no pending command, start another stats
1437 	 * dump. Otherwise punt for now.
1438 	 */
1439 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1440 		/*
1441 		 * Start another stats dump.
1442 		 */
1443 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1444 	} else {
1445 		/*
1446 		 * A previous command is still waiting to be accepted.
1447 		 * Just zero our copy of the stats and wait for the
1448 		 * next timer event to update them.
1449 		 */
1450 		sp->tx_good = 0;
1451 		sp->tx_underruns = 0;
1452 		sp->tx_total_collisions = 0;
1453 
1454 		sp->rx_good = 0;
1455 		sp->rx_crc_errors = 0;
1456 		sp->rx_alignment_errors = 0;
1457 		sp->rx_rnr_errors = 0;
1458 		sp->rx_overrun_errors = 0;
1459 	}
1460 	if (sc->miibus != NULL)
1461 		mii_tick(device_get_softc(sc->miibus));
1462 	splx(s);
1463 	/*
1464 	 * Schedule another timeout one second from now.
1465 	 */
1466 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1467 }
1468 
1469 /*
1470  * Stop the interface. Cancels the statistics updater and resets
1471  * the interface.
1472  */
1473 static void
1474 fxp_stop(struct fxp_softc *sc)
1475 {
1476 	struct ifnet *ifp = &sc->sc_if;
1477 	struct fxp_cb_tx *txp;
1478 	int i;
1479 
1480 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1481 	ifp->if_timer = 0;
1482 
1483 #ifdef DEVICE_POLLING
1484 	ether_poll_deregister(ifp);
1485 #endif
1486 	/*
1487 	 * Cancel stats updater.
1488 	 */
1489 	untimeout(fxp_tick, sc, sc->stat_ch);
1490 
1491 	/*
1492 	 * Issue software reset, which also unloads the microcode.
1493 	 */
1494 	sc->flags &= ~FXP_FLAG_UCODE;
1495 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1496 	DELAY(50);
1497 
1498 	/*
1499 	 * Release any xmit buffers.
1500 	 */
1501 	txp = sc->cbl_base;
1502 	if (txp != NULL) {
1503 		for (i = 0; i < FXP_NTXCB; i++) {
1504 			if (txp[i].mb_head != NULL) {
1505 				m_freem(txp[i].mb_head);
1506 				txp[i].mb_head = NULL;
1507 			}
1508 		}
1509 	}
1510 	sc->tx_queued = 0;
1511 
1512 	/*
1513 	 * Free all the receive buffers then reallocate/reinitialize
1514 	 */
1515 	if (sc->rfa_headm != NULL)
1516 		m_freem(sc->rfa_headm);
1517 	sc->rfa_headm = NULL;
1518 	sc->rfa_tailm = NULL;
1519 	for (i = 0; i < FXP_NRFABUFS; i++) {
1520 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1521 			/*
1522 			 * This "can't happen" - we're at splimp()
1523 			 * and we just freed all the buffers we need
1524 			 * above.
1525 			 */
1526 			panic("fxp_stop: no buffers!");
1527 		}
1528 	}
1529 }
1530 
1531 /*
1532  * Watchdog/transmission transmit timeout handler. Called when a
1533  * transmission is started on the interface, but no interrupt is
1534  * received before the timeout. This usually indicates that the
1535  * card has wedged for some reason.
1536  */
1537 static void
1538 fxp_watchdog(struct ifnet *ifp)
1539 {
1540 	struct fxp_softc *sc = ifp->if_softc;
1541 
1542 	device_printf(sc->dev, "device timeout\n");
1543 	ifp->if_oerrors++;
1544 
1545 	fxp_init(sc);
1546 }
1547 
1548 static void
1549 fxp_init(void *xsc)
1550 {
1551 	struct fxp_softc *sc = xsc;
1552 	struct ifnet *ifp = &sc->sc_if;
1553 	struct fxp_cb_config *cbp;
1554 	struct fxp_cb_ias *cb_ias;
1555 	struct fxp_cb_tx *txp;
1556 	struct fxp_cb_mcs *mcsp;
1557 	int i, prm, s;
1558 
1559 	s = splimp();
1560 	/*
1561 	 * Cancel any pending I/O
1562 	 */
1563 	fxp_stop(sc);
1564 
1565 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1566 
1567 	/*
1568 	 * Initialize base of CBL and RFA memory. Loading with zero
1569 	 * sets it up for regular linear addressing.
1570 	 */
1571 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1572 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1573 
1574 	fxp_scb_wait(sc);
1575 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1576 
1577 	/*
1578 	 * Initialize base of dump-stats buffer.
1579 	 */
1580 	fxp_scb_wait(sc);
1581 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1582 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1583 
1584 	/*
1585 	 * Attempt to load microcode if requested.
1586 	 */
1587 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1588 		fxp_load_ucode(sc);
1589 
1590 	/*
1591 	 * Initialize the multicast address list.
1592 	 */
1593 	if (fxp_mc_addrs(sc)) {
1594 		mcsp = sc->mcsp;
1595 		mcsp->cb_status = 0;
1596 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1597 		mcsp->link_addr = -1;
1598 		/*
1599 	 	 * Start the multicast setup command.
1600 		 */
1601 		fxp_scb_wait(sc);
1602 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1603 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1604 		/* ...and wait for it to complete. */
1605 		fxp_dma_wait(&mcsp->cb_status, sc);
1606 	}
1607 
1608 	/*
1609 	 * We temporarily use memory that contains the TxCB list to
1610 	 * construct the config CB. The TxCB list memory is rebuilt
1611 	 * later.
1612 	 */
1613 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1614 
1615 	/*
1616 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1617 	 * zero and must be one bits in this structure and this is the easiest
1618 	 * way to initialize them all to proper values.
1619 	 */
1620 	bcopy(fxp_cb_config_template,
1621 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1622 		sizeof(fxp_cb_config_template));
1623 
1624 	cbp->cb_status =	0;
1625 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1626 	cbp->link_addr =	-1;	/* (no) next command */
1627 	cbp->byte_count =	22;	/* (22) bytes to config */
1628 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1629 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1630 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1631 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1632 	cbp->type_enable =	0;	/* actually reserved */
1633 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1634 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1635 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1636 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1637 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1638 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1639 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1640 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1641 	cbp->ci_int =		1;	/* interrupt on CU idle */
1642 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1643 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1644 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1645 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1646 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1647 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1648 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1649 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1650 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1651 	cbp->csma_dis =		0;	/* (don't) disable link */
1652 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1653 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1654 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1655 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1656 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1657 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1658 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1659 	cbp->loopback =		0;	/* (don't) loopback */
1660 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1661 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1662 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1663 	cbp->promiscuous =	prm;	/* promiscuous mode */
1664 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1665 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1666 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1667 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1668 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1669 
1670 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1671 	cbp->padding =		1;	/* (do) pad short tx packets */
1672 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1673 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1674 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1675 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1676 					/* must set wake_en in PMCSR also */
1677 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1678 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1679 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1680 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1681 
1682 	if (sc->revision == FXP_REV_82557) {
1683 		/*
1684 		 * The 82557 has no hardware flow control, the values
1685 		 * below are the defaults for the chip.
1686 		 */
1687 		cbp->fc_delay_lsb =	0;
1688 		cbp->fc_delay_msb =	0x40;
1689 		cbp->pri_fc_thresh =	3;
1690 		cbp->tx_fc_dis =	0;
1691 		cbp->rx_fc_restop =	0;
1692 		cbp->rx_fc_restart =	0;
1693 		cbp->fc_filter =	0;
1694 		cbp->pri_fc_loc =	1;
1695 	} else {
1696 		cbp->fc_delay_lsb =	0x1f;
1697 		cbp->fc_delay_msb =	0x01;
1698 		cbp->pri_fc_thresh =	3;
1699 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1700 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1701 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1702 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1703 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1704 	}
1705 
1706 	/*
1707 	 * Start the config command/DMA.
1708 	 */
1709 	fxp_scb_wait(sc);
1710 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1711 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1712 	/* ...and wait for it to complete. */
1713 	fxp_dma_wait(&cbp->cb_status, sc);
1714 
1715 	/*
1716 	 * Now initialize the station address. Temporarily use the TxCB
1717 	 * memory area like we did above for the config CB.
1718 	 */
1719 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1720 	cb_ias->cb_status = 0;
1721 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1722 	cb_ias->link_addr = -1;
1723 	bcopy(sc->arpcom.ac_enaddr,
1724 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1725 	    sizeof(sc->arpcom.ac_enaddr));
1726 
1727 	/*
1728 	 * Start the IAS (Individual Address Setup) command/DMA.
1729 	 */
1730 	fxp_scb_wait(sc);
1731 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1732 	/* ...and wait for it to complete. */
1733 	fxp_dma_wait(&cb_ias->cb_status, sc);
1734 
1735 	/*
1736 	 * Initialize transmit control block (TxCB) list.
1737 	 */
1738 
1739 	txp = sc->cbl_base;
1740 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1741 	for (i = 0; i < FXP_NTXCB; i++) {
1742 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1743 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1744 		txp[i].link_addr =
1745 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1746 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1747 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1748 		else
1749 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1750 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1751 	}
1752 	/*
1753 	 * Set the suspend flag on the first TxCB and start the control
1754 	 * unit. It will execute the NOP and then suspend.
1755 	 */
1756 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1757 	sc->cbl_first = sc->cbl_last = txp;
1758 	sc->tx_queued = 1;
1759 
1760 	fxp_scb_wait(sc);
1761 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1762 
1763 	/*
1764 	 * Initialize receiver buffer area - RFA.
1765 	 */
1766 	fxp_scb_wait(sc);
1767 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1768 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1769 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1770 
1771 	/*
1772 	 * Set current media.
1773 	 */
1774 	if (sc->miibus != NULL)
1775 		mii_mediachg(device_get_softc(sc->miibus));
1776 
1777 	ifp->if_flags |= IFF_RUNNING;
1778 	ifp->if_flags &= ~IFF_OACTIVE;
1779 
1780 	/*
1781 	 * Enable interrupts.
1782 	 */
1783 #ifdef DEVICE_POLLING
1784 	/*
1785 	 * ... but only do that if we are not polling. And because (presumably)
1786 	 * the default is interrupts on, we need to disable them explicitly!
1787 	 */
1788 	if ( ifp->if_flags & IFF_POLLING )
1789 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1790 	else
1791 #endif /* DEVICE_POLLING */
1792 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1793 	splx(s);
1794 
1795 	/*
1796 	 * Start stats updater.
1797 	 */
1798 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1799 }
1800 
1801 static int
1802 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1803 {
1804 
1805 	return (0);
1806 }
1807 
1808 static void
1809 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1810 {
1811 
1812 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1813 }
1814 
1815 /*
1816  * Change media according to request.
1817  */
1818 static int
1819 fxp_ifmedia_upd(struct ifnet *ifp)
1820 {
1821 	struct fxp_softc *sc = ifp->if_softc;
1822 	struct mii_data *mii;
1823 
1824 	mii = device_get_softc(sc->miibus);
1825 	mii_mediachg(mii);
1826 	return (0);
1827 }
1828 
1829 /*
1830  * Notify the world which media we're using.
1831  */
1832 static void
1833 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1834 {
1835 	struct fxp_softc *sc = ifp->if_softc;
1836 	struct mii_data *mii;
1837 
1838 	mii = device_get_softc(sc->miibus);
1839 	mii_pollstat(mii);
1840 	ifmr->ifm_active = mii->mii_media_active;
1841 	ifmr->ifm_status = mii->mii_media_status;
1842 
1843 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1844 		sc->cu_resume_bug = 1;
1845 	else
1846 		sc->cu_resume_bug = 0;
1847 }
1848 
1849 /*
1850  * Add a buffer to the end of the RFA buffer list.
1851  * Return 0 if successful, 1 for failure. A failure results in
1852  * adding the 'oldm' (if non-NULL) on to the end of the list -
1853  * tossing out its old contents and recycling it.
1854  * The RFA struct is stuck at the beginning of mbuf cluster and the
1855  * data pointer is fixed up to point just past it.
1856  */
1857 static int
1858 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1859 {
1860 	u_int32_t v;
1861 	struct mbuf *m;
1862 	struct fxp_rfa *rfa, *p_rfa;
1863 
1864 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1865 	if (m == NULL) { /* try to recycle the old mbuf instead */
1866 		if (oldm == NULL)
1867 			return 1;
1868 		m = oldm;
1869 		m->m_data = m->m_ext.ext_buf;
1870 	}
1871 
1872 	/*
1873 	 * Move the data pointer up so that the incoming data packet
1874 	 * will be 32-bit aligned.
1875 	 */
1876 	m->m_data += RFA_ALIGNMENT_FUDGE;
1877 
1878 	/*
1879 	 * Get a pointer to the base of the mbuf cluster and move
1880 	 * data start past it.
1881 	 */
1882 	rfa = mtod(m, struct fxp_rfa *);
1883 	m->m_data += sizeof(struct fxp_rfa);
1884 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1885 
1886 	/*
1887 	 * Initialize the rest of the RFA.  Note that since the RFA
1888 	 * is misaligned, we cannot store values directly.  Instead,
1889 	 * we use an optimized, inline copy.
1890 	 */
1891 
1892 	rfa->rfa_status = 0;
1893 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1894 	rfa->actual_size = 0;
1895 
1896 	v = -1;
1897 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1898 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1899 
1900 	/*
1901 	 * If there are other buffers already on the list, attach this
1902 	 * one to the end by fixing up the tail to point to this one.
1903 	 */
1904 	if (sc->rfa_headm != NULL) {
1905 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1906 		    RFA_ALIGNMENT_FUDGE);
1907 		sc->rfa_tailm->m_next = m;
1908 		v = vtophys(rfa);
1909 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1910 		p_rfa->rfa_control = 0;
1911 	} else {
1912 		sc->rfa_headm = m;
1913 	}
1914 	sc->rfa_tailm = m;
1915 
1916 	return (m == oldm);
1917 }
1918 
1919 static volatile int
1920 fxp_miibus_readreg(device_t dev, int phy, int reg)
1921 {
1922 	struct fxp_softc *sc = device_get_softc(dev);
1923 	int count = 10000;
1924 	int value;
1925 
1926 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1927 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1928 
1929 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1930 	    && count--)
1931 		DELAY(10);
1932 
1933 	if (count <= 0)
1934 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1935 
1936 	return (value & 0xffff);
1937 }
1938 
1939 static void
1940 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1941 {
1942 	struct fxp_softc *sc = device_get_softc(dev);
1943 	int count = 10000;
1944 
1945 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1946 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1947 	    (value & 0xffff));
1948 
1949 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1950 	    count--)
1951 		DELAY(10);
1952 
1953 	if (count <= 0)
1954 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1955 }
1956 
1957 static int
1958 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1959 {
1960 	struct fxp_softc *sc = ifp->if_softc;
1961 	struct ifreq *ifr = (struct ifreq *)data;
1962 	struct mii_data *mii;
1963 	int s, error = 0;
1964 
1965 	s = splimp();
1966 
1967 	switch (command) {
1968 	case SIOCSIFADDR:
1969 	case SIOCGIFADDR:
1970 	case SIOCSIFMTU:
1971 		error = ether_ioctl(ifp, command, data);
1972 		break;
1973 
1974 	case SIOCSIFFLAGS:
1975 		if (ifp->if_flags & IFF_ALLMULTI)
1976 			sc->flags |= FXP_FLAG_ALL_MCAST;
1977 		else
1978 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1979 
1980 		/*
1981 		 * If interface is marked up and not running, then start it.
1982 		 * If it is marked down and running, stop it.
1983 		 * XXX If it's up then re-initialize it. This is so flags
1984 		 * such as IFF_PROMISC are handled.
1985 		 */
1986 		if (ifp->if_flags & IFF_UP) {
1987 			fxp_init(sc);
1988 		} else {
1989 			if (ifp->if_flags & IFF_RUNNING)
1990 				fxp_stop(sc);
1991 		}
1992 		break;
1993 
1994 	case SIOCADDMULTI:
1995 	case SIOCDELMULTI:
1996 		if (ifp->if_flags & IFF_ALLMULTI)
1997 			sc->flags |= FXP_FLAG_ALL_MCAST;
1998 		else
1999 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2000 		/*
2001 		 * Multicast list has changed; set the hardware filter
2002 		 * accordingly.
2003 		 */
2004 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2005 			fxp_mc_setup(sc);
2006 		/*
2007 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2008 		 * again rather than else {}.
2009 		 */
2010 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2011 			fxp_init(sc);
2012 		error = 0;
2013 		break;
2014 
2015 	case SIOCSIFMEDIA:
2016 	case SIOCGIFMEDIA:
2017 		if (sc->miibus != NULL) {
2018 			mii = device_get_softc(sc->miibus);
2019                         error = ifmedia_ioctl(ifp, ifr,
2020                             &mii->mii_media, command);
2021 		} else {
2022                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2023 		}
2024 		break;
2025 
2026 	default:
2027 		error = EINVAL;
2028 	}
2029 	splx(s);
2030 	return (error);
2031 }
2032 
2033 /*
2034  * Fill in the multicast address list and return number of entries.
2035  */
2036 static int
2037 fxp_mc_addrs(struct fxp_softc *sc)
2038 {
2039 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2040 	struct ifnet *ifp = &sc->sc_if;
2041 	struct ifmultiaddr *ifma;
2042 	int nmcasts;
2043 
2044 	nmcasts = 0;
2045 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2046 #if __FreeBSD_version < 500000
2047 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2048 #else
2049 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2050 #endif
2051 			if (ifma->ifma_addr->sa_family != AF_LINK)
2052 				continue;
2053 			if (nmcasts >= MAXMCADDR) {
2054 				sc->flags |= FXP_FLAG_ALL_MCAST;
2055 				nmcasts = 0;
2056 				break;
2057 			}
2058 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2059 			    (void *)(uintptr_t)(volatile void *)
2060 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2061 			nmcasts++;
2062 		}
2063 	}
2064 	mcsp->mc_cnt = nmcasts * 6;
2065 	return (nmcasts);
2066 }
2067 
2068 /*
2069  * Program the multicast filter.
2070  *
2071  * We have an artificial restriction that the multicast setup command
2072  * must be the first command in the chain, so we take steps to ensure
2073  * this. By requiring this, it allows us to keep up the performance of
2074  * the pre-initialized command ring (esp. link pointers) by not actually
2075  * inserting the mcsetup command in the ring - i.e. its link pointer
2076  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2077  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2078  * lead into the regular TxCB ring when it completes.
2079  *
2080  * This function must be called at splimp.
2081  */
2082 static void
2083 fxp_mc_setup(struct fxp_softc *sc)
2084 {
2085 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2086 	struct ifnet *ifp = &sc->sc_if;
2087 	int count;
2088 
2089 	/*
2090 	 * If there are queued commands, we must wait until they are all
2091 	 * completed. If we are already waiting, then add a NOP command
2092 	 * with interrupt option so that we're notified when all commands
2093 	 * have been completed - fxp_start() ensures that no additional
2094 	 * TX commands will be added when need_mcsetup is true.
2095 	 */
2096 	if (sc->tx_queued) {
2097 		struct fxp_cb_tx *txp;
2098 
2099 		/*
2100 		 * need_mcsetup will be true if we are already waiting for the
2101 		 * NOP command to be completed (see below). In this case, bail.
2102 		 */
2103 		if (sc->need_mcsetup)
2104 			return;
2105 		sc->need_mcsetup = 1;
2106 
2107 		/*
2108 		 * Add a NOP command with interrupt so that we are notified
2109 		 * when all TX commands have been processed.
2110 		 */
2111 		txp = sc->cbl_last->next;
2112 		txp->mb_head = NULL;
2113 		txp->cb_status = 0;
2114 		txp->cb_command = FXP_CB_COMMAND_NOP |
2115 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2116 		/*
2117 		 * Advance the end of list forward.
2118 		 */
2119 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2120 		sc->cbl_last = txp;
2121 		sc->tx_queued++;
2122 		/*
2123 		 * Issue a resume in case the CU has just suspended.
2124 		 */
2125 		fxp_scb_wait(sc);
2126 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2127 		/*
2128 		 * Set a 5 second timer just in case we don't hear from the
2129 		 * card again.
2130 		 */
2131 		ifp->if_timer = 5;
2132 
2133 		return;
2134 	}
2135 	sc->need_mcsetup = 0;
2136 
2137 	/*
2138 	 * Initialize multicast setup descriptor.
2139 	 */
2140 	mcsp->next = sc->cbl_base;
2141 	mcsp->mb_head = NULL;
2142 	mcsp->cb_status = 0;
2143 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2144 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2145 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2146 	(void) fxp_mc_addrs(sc);
2147 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2148 	sc->tx_queued = 1;
2149 
2150 	/*
2151 	 * Wait until command unit is not active. This should never
2152 	 * be the case when nothing is queued, but make sure anyway.
2153 	 */
2154 	count = 100;
2155 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2156 	    FXP_SCB_CUS_ACTIVE && --count)
2157 		DELAY(10);
2158 	if (count == 0) {
2159 		device_printf(sc->dev, "command queue timeout\n");
2160 		return;
2161 	}
2162 
2163 	/*
2164 	 * Start the multicast setup command.
2165 	 */
2166 	fxp_scb_wait(sc);
2167 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2168 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2169 
2170 	ifp->if_timer = 2;
2171 	return;
2172 }
2173 
2174 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2175 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2176 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2177 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2178 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2179 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2180 
2181 #define UCODE(x)	x, sizeof(x)
2182 
2183 struct ucode {
2184 	u_int32_t	revision;
2185 	u_int32_t	*ucode;
2186 	int		length;
2187 	u_short		int_delay_offset;
2188 	u_short		bundle_max_offset;
2189 } ucode_table[] = {
2190 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2191 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2192 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2193 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2194 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2195 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2196 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2197 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2198 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2199 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2200 	{ 0, NULL, 0, 0, 0 }
2201 };
2202 
2203 static void
2204 fxp_load_ucode(struct fxp_softc *sc)
2205 {
2206 	struct ucode *uc;
2207 	struct fxp_cb_ucode *cbp;
2208 
2209 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2210 		if (sc->revision == uc->revision)
2211 			break;
2212 	if (uc->ucode == NULL)
2213 		return;
2214 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2215 	cbp->cb_status = 0;
2216 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2217 	cbp->link_addr = -1;    	/* (no) next command */
2218 	memcpy(cbp->ucode, uc->ucode, uc->length);
2219 	if (uc->int_delay_offset)
2220 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2221 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2222 	if (uc->bundle_max_offset)
2223 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2224 		    sc->tunable_bundle_max;
2225 	/*
2226 	 * Download the ucode to the chip.
2227 	 */
2228 	fxp_scb_wait(sc);
2229 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2230 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2231 	/* ...and wait for it to complete. */
2232 	fxp_dma_wait(&cbp->cb_status, sc);
2233 	device_printf(sc->dev,
2234 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2235 	    sc->tunable_int_delay,
2236 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2237 	sc->flags |= FXP_FLAG_UCODE;
2238 }
2239 
2240 static int
2241 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2242 {
2243 	int error, value;
2244 
2245 	value = *(int *)arg1;
2246 	error = sysctl_handle_int(oidp, &value, 0, req);
2247 	if (error || !req->newptr)
2248 		return (error);
2249 	if (value < low || value > high)
2250 		return (EINVAL);
2251 	*(int *)arg1 = value;
2252 	return (0);
2253 }
2254 
2255 /*
2256  * Interrupt delay is expressed in microseconds, a multiplier is used
2257  * to convert this to the appropriate clock ticks before using.
2258  */
2259 static int
2260 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2261 {
2262 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2263 }
2264 
2265 static int
2266 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2267 {
2268 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2269 }
2270