xref: /freebsd/sys/dev/fxp/if_fxp.c (revision c37420b0d5b3b6ef875fbf0b84a13f6f09be56d6)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/endian.h>
40 #include <sys/mbuf.h>
41 		/* #include <sys/mutex.h> */
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sysctl.h>
46 
47 #include <net/if.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 
51 #include <net/bpf.h>
52 #include <sys/sockio.h>
53 #include <sys/bus.h>
54 #include <machine/bus.h>
55 #include <sys/rman.h>
56 #include <machine/resource.h>
57 
58 #include <net/ethernet.h>
59 #include <net/if_arp.h>
60 
61 #include <machine/clock.h>	/* for DELAY */
62 
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #ifdef FXP_IP_CSUM_WAR
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <machine/in_cksum.h>
71 #endif
72 
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75 
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 
79 #include <dev/fxp/if_fxpreg.h>
80 #include <dev/fxp/if_fxpvar.h>
81 #include <dev/fxp/rcvbundl.h>
82 
83 MODULE_DEPEND(fxp, pci, 1, 1, 1);
84 MODULE_DEPEND(fxp, ether, 1, 1, 1);
85 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86 #include "miibus_if.h"
87 
88 /*
89  * NOTE!  On the Alpha, we have an alignment constraint.  The
90  * card DMAs the packet immediately following the RFA.  However,
91  * the first thing in the packet is a 14-byte Ethernet header.
92  * This means that the packet is misaligned.  To compensate,
93  * we actually offset the RFA 2 bytes into the cluster.  This
94  * alignes the packet after the Ethernet header at a 32-bit
95  * boundary.  HOWEVER!  This means that the RFA is misaligned!
96  */
97 #define	RFA_ALIGNMENT_FUDGE	2
98 
99 /*
100  * Set initial transmit threshold at 64 (512 bytes). This is
101  * increased by 64 (512 bytes) at a time, to maximum of 192
102  * (1536 bytes), if an underrun occurs.
103  */
104 static int tx_threshold = 64;
105 
106 /*
107  * The configuration byte map has several undefined fields which
108  * must be one or must be zero.  Set up a template for these bits
109  * only, (assuming a 82557 chip) leaving the actual configuration
110  * to fxp_init.
111  *
112  * See struct fxp_cb_config for the bit definitions.
113  */
114 static u_char fxp_cb_config_template[] = {
115 	0x0, 0x0,		/* cb_status */
116 	0x0, 0x0,		/* cb_command */
117 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118 	0x0,	/*  0 */
119 	0x0,	/*  1 */
120 	0x0,	/*  2 */
121 	0x0,	/*  3 */
122 	0x0,	/*  4 */
123 	0x0,	/*  5 */
124 	0x32,	/*  6 */
125 	0x0,	/*  7 */
126 	0x0,	/*  8 */
127 	0x0,	/*  9 */
128 	0x6,	/* 10 */
129 	0x0,	/* 11 */
130 	0x0,	/* 12 */
131 	0x0,	/* 13 */
132 	0xf2,	/* 14 */
133 	0x48,	/* 15 */
134 	0x0,	/* 16 */
135 	0x40,	/* 17 */
136 	0xf0,	/* 18 */
137 	0x0,	/* 19 */
138 	0x3f,	/* 20 */
139 	0x5	/* 21 */
140 };
141 
142 struct fxp_ident {
143 	u_int16_t	devid;
144 	int16_t		revid;		/* -1 matches anything */
145 	char 		*name;
146 };
147 
148 /*
149  * Claim various Intel PCI device identifiers for this driver.  The
150  * sub-vendor and sub-device field are extensively used to identify
151  * particular variants, but we don't currently differentiate between
152  * them.
153  */
154 static struct fxp_ident fxp_ident_table[] = {
155     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
175     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
176     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
177     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
178     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
179     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
180     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
181     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
182     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
183     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
184     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
185     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
186     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
187     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
188     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
189     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
190     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
191     { 0,	-1,	NULL },
192 };
193 
194 #ifdef FXP_IP_CSUM_WAR
195 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
196 #else
197 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
198 #endif
199 
200 static int		fxp_probe(device_t dev);
201 static int		fxp_attach(device_t dev);
202 static int		fxp_detach(device_t dev);
203 static int		fxp_shutdown(device_t dev);
204 static int		fxp_suspend(device_t dev);
205 static int		fxp_resume(device_t dev);
206 
207 static void		fxp_intr(void *xsc);
208 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
209 			    u_int8_t statack, int count);
210 static void 		fxp_init(void *xsc);
211 static void 		fxp_init_body(struct fxp_softc *sc);
212 static void 		fxp_tick(void *xsc);
213 static void 		fxp_start(struct ifnet *ifp);
214 static void 		fxp_start_body(struct ifnet *ifp);
215 static void		fxp_stop(struct fxp_softc *sc);
216 static void 		fxp_release(struct fxp_softc *sc);
217 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
218 			    caddr_t data);
219 static void 		fxp_watchdog(struct ifnet *ifp);
220 static int		fxp_add_rfabuf(struct fxp_softc *sc,
221     			    struct fxp_rx *rxp);
222 static int		fxp_mc_addrs(struct fxp_softc *sc);
223 static void		fxp_mc_setup(struct fxp_softc *sc);
224 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
225 			    int autosize);
226 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
227 			    u_int16_t data);
228 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
229 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
230 			    int offset, int words);
231 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
232 			    int offset, int words);
233 static int		fxp_ifmedia_upd(struct ifnet *ifp);
234 static void		fxp_ifmedia_sts(struct ifnet *ifp,
235 			    struct ifmediareq *ifmr);
236 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
237 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
238 			    struct ifmediareq *ifmr);
239 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
240 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
241 			    int value);
242 static void		fxp_load_ucode(struct fxp_softc *sc);
243 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
244 			    int low, int high);
245 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
246 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
247 static void 		fxp_scb_wait(struct fxp_softc *sc);
248 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
249 static void		fxp_dma_wait(struct fxp_softc *sc,
250     			    volatile u_int16_t *status, bus_dma_tag_t dmat,
251 			    bus_dmamap_t map);
252 
253 static device_method_t fxp_methods[] = {
254 	/* Device interface */
255 	DEVMETHOD(device_probe,		fxp_probe),
256 	DEVMETHOD(device_attach,	fxp_attach),
257 	DEVMETHOD(device_detach,	fxp_detach),
258 	DEVMETHOD(device_shutdown,	fxp_shutdown),
259 	DEVMETHOD(device_suspend,	fxp_suspend),
260 	DEVMETHOD(device_resume,	fxp_resume),
261 
262 	/* MII interface */
263 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
264 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
265 
266 	{ 0, 0 }
267 };
268 
269 static driver_t fxp_driver = {
270 	"fxp",
271 	fxp_methods,
272 	sizeof(struct fxp_softc),
273 };
274 
275 static devclass_t fxp_devclass;
276 
277 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
278 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
279 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
280 
281 /*
282  * Wait for the previous command to be accepted (but not necessarily
283  * completed).
284  */
285 static void
286 fxp_scb_wait(struct fxp_softc *sc)
287 {
288 	int i = 10000;
289 
290 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
291 		DELAY(2);
292 	if (i == 0)
293 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
294 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
295 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
296 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
297 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
298 }
299 
300 static void
301 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
302 {
303 
304 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
305 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
306 		fxp_scb_wait(sc);
307 	}
308 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
309 }
310 
311 static void
312 fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
313     bus_dma_tag_t dmat, bus_dmamap_t map)
314 {
315 	int i = 10000;
316 
317 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
318 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
319 		DELAY(2);
320 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
321 	}
322 	if (i == 0)
323 		device_printf(sc->dev, "DMA timeout\n");
324 }
325 
326 /*
327  * Return identification string if this device is ours.
328  */
329 static int
330 fxp_probe(device_t dev)
331 {
332 	u_int16_t devid;
333 	u_int8_t revid;
334 	struct fxp_ident *ident;
335 
336 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
337 		devid = pci_get_device(dev);
338 		revid = pci_get_revid(dev);
339 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
340 			if (ident->devid == devid &&
341 			    (ident->revid == revid || ident->revid == -1)) {
342 				device_set_desc(dev, ident->name);
343 				return (0);
344 			}
345 		}
346 	}
347 	return (ENXIO);
348 }
349 
350 static void
351 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
352 {
353 	u_int32_t *addr;
354 
355 	if (error)
356 		return;
357 
358 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
359 	addr = arg;
360 	*addr = segs->ds_addr;
361 }
362 
363 static int
364 fxp_attach(device_t dev)
365 {
366 	int error = 0;
367 	struct fxp_softc *sc = device_get_softc(dev);
368 	struct ifnet *ifp;
369 	struct fxp_rx *rxp;
370 	u_int32_t val;
371 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
372 	int i, rid, m1, m2, prefer_iomap, maxtxseg;
373 	int s;
374 
375 	sc->dev = dev;
376 	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
377 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
378 	    MTX_DEF);
379 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
380 	    fxp_serial_ifmedia_sts);
381 
382 	s = splimp();
383 
384 	/*
385 	 * Enable bus mastering.
386 	 */
387 	pci_enable_busmaster(dev);
388 	val = pci_read_config(dev, PCIR_COMMAND, 2);
389 
390 	/*
391 	 * Figure out which we should try first - memory mapping or i/o mapping?
392 	 * We default to memory mapping. Then we accept an override from the
393 	 * command line. Then we check to see which one is enabled.
394 	 */
395 	m1 = PCIM_CMD_MEMEN;
396 	m2 = PCIM_CMD_PORTEN;
397 	prefer_iomap = 0;
398 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
399 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
400 		m1 = PCIM_CMD_PORTEN;
401 		m2 = PCIM_CMD_MEMEN;
402 	}
403 
404 	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
405 	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
406 	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
407 	if (sc->mem == NULL) {
408 		sc->rtp =
409 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
410 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
411 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
412                                             RF_ACTIVE);
413 	}
414 
415 	if (!sc->mem) {
416 		error = ENXIO;
417 		goto fail;
418         }
419 	if (bootverbose) {
420 		device_printf(dev, "using %s space register mapping\n",
421 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
422 	}
423 
424 	sc->sc_st = rman_get_bustag(sc->mem);
425 	sc->sc_sh = rman_get_bushandle(sc->mem);
426 
427 	/*
428 	 * Allocate our interrupt.
429 	 */
430 	rid = 0;
431 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
432 				 RF_SHAREABLE | RF_ACTIVE);
433 	if (sc->irq == NULL) {
434 		device_printf(dev, "could not map interrupt\n");
435 		error = ENXIO;
436 		goto fail;
437 	}
438 
439 	/*
440 	 * Reset to a stable state.
441 	 */
442 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
443 	DELAY(10);
444 
445 	/*
446 	 * Find out how large of an SEEPROM we have.
447 	 */
448 	fxp_autosize_eeprom(sc);
449 
450 	/*
451 	 * Determine whether we must use the 503 serial interface.
452 	 */
453 	fxp_read_eeprom(sc, &data, 6, 1);
454 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
455 	    (data & FXP_PHY_SERIAL_ONLY))
456 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
457 
458 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
459 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
460 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
461 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
462 	    "FXP driver receive interrupt microcode bundling delay");
463 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
464 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
465 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
466 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
467 	    "FXP driver receive interrupt microcode bundle size limit");
468 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
469 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
470 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
471 	    "FXP RNR events");
472 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
473 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
474 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
475 	    "FXP flow control disabled");
476 
477 	/*
478 	 * Pull in device tunables.
479 	 */
480 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
481 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
482 	sc->tunable_noflow = 0;
483 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
484 	    "int_delay", &sc->tunable_int_delay);
485 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
486 	    "bundle_max", &sc->tunable_bundle_max);
487 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
488 	    "noflow", &sc->tunable_noflow);
489 	sc->rnr = 0;
490 
491 	/*
492 	 * Find out the chip revision; lump all 82557 revs together.
493 	 */
494 	fxp_read_eeprom(sc, &data, 5, 1);
495 	if ((data >> 8) == 1)
496 		sc->revision = FXP_REV_82557;
497 	else
498 		sc->revision = pci_get_revid(dev);
499 
500 	/*
501 	 * Enable workarounds for certain chip revision deficiencies.
502 	 *
503 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
504 	 * some systems based a normal 82559 design, have a defect where
505 	 * the chip can cause a PCI protocol violation if it receives
506 	 * a CU_RESUME command when it is entering the IDLE state.  The
507 	 * workaround is to disable Dynamic Standby Mode, so the chip never
508 	 * deasserts CLKRUN#, and always remains in an active state.
509 	 *
510 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
511 	 */
512 	i = pci_get_device(dev);
513 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
514 	    sc->revision >= FXP_REV_82559_A0) {
515 		fxp_read_eeprom(sc, &data, 10, 1);
516 		if (data & 0x02) {			/* STB enable */
517 			u_int16_t cksum;
518 			int i;
519 
520 			device_printf(dev,
521 			    "Disabling dynamic standby mode in EEPROM\n");
522 			data &= ~0x02;
523 			fxp_write_eeprom(sc, &data, 10, 1);
524 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
525 			cksum = 0;
526 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
527 				fxp_read_eeprom(sc, &data, i, 1);
528 				cksum += data;
529 			}
530 			i = (1 << sc->eeprom_size) - 1;
531 			cksum = 0xBABA - cksum;
532 			fxp_read_eeprom(sc, &data, i, 1);
533 			fxp_write_eeprom(sc, &cksum, i, 1);
534 			device_printf(dev,
535 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
536 			    i, data, cksum);
537 #if 1
538 			/*
539 			 * If the user elects to continue, try the software
540 			 * workaround, as it is better than nothing.
541 			 */
542 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
543 #endif
544 		}
545 	}
546 
547 	/*
548 	 * If we are not a 82557 chip, we can enable extended features.
549 	 */
550 	if (sc->revision != FXP_REV_82557) {
551 		/*
552 		 * If MWI is enabled in the PCI configuration, and there
553 		 * is a valid cacheline size (8 or 16 dwords), then tell
554 		 * the board to turn on MWI.
555 		 */
556 		if (val & PCIM_CMD_MWRICEN &&
557 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
558 			sc->flags |= FXP_FLAG_MWI_ENABLE;
559 
560 		/* turn on the extended TxCB feature */
561 		sc->flags |= FXP_FLAG_EXT_TXCB;
562 
563 		/* enable reception of long frames for VLAN */
564 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
565 	} else {
566 		/* a hack to get long VLAN frames on a 82557 */
567 		sc->flags |= FXP_FLAG_SAVE_BAD;
568 	}
569 
570 	/*
571 	 * Enable use of extended RFDs and TCBs for 82550
572 	 * and later chips. Note: we need extended TXCB support
573 	 * too, but that's already enabled by the code above.
574 	 * Be careful to do this only on the right devices.
575 	 */
576 
577 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C) {
578 		sc->rfa_size = sizeof (struct fxp_rfa);
579 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
580 		sc->flags |= FXP_FLAG_EXT_RFA;
581 	} else {
582 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
583 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
584 	}
585 
586 	/*
587 	 * Allocate DMA tags and DMA safe memory.
588 	 */
589 	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
590 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
591 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
592 	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
593 	if (error) {
594 		device_printf(dev, "could not allocate dma tag\n");
595 		goto fail;
596 	}
597 
598 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
599 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
600 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
601 	    &sc->fxp_stag);
602 	if (error) {
603 		device_printf(dev, "could not allocate dma tag\n");
604 		goto fail;
605 	}
606 
607 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
608 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
609 	if (error)
610 		goto fail;
611 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
612 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
613 	if (error) {
614 		device_printf(dev, "could not map the stats buffer\n");
615 		goto fail;
616 	}
617 
618 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
619 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
620 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
621 	if (error) {
622 		device_printf(dev, "could not allocate dma tag\n");
623 		goto fail;
624 	}
625 
626 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
627 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
628 	if (error)
629 		goto fail;
630 
631 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
632 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
633 	    &sc->fxp_desc.cbl_addr, 0);
634 	if (error) {
635 		device_printf(dev, "could not map DMA memory\n");
636 		goto fail;
637 	}
638 
639 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
640 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
641 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
642 	    &sc->mcs_tag);
643 	if (error) {
644 		device_printf(dev, "could not allocate dma tag\n");
645 		goto fail;
646 	}
647 
648 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
649 	    BUS_DMA_NOWAIT, &sc->mcs_map);
650 	if (error)
651 		goto fail;
652 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
653 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
654 	if (error) {
655 		device_printf(dev, "can't map the multicast setup command\n");
656 		goto fail;
657 	}
658 
659 	/*
660 	 * Pre-allocate the TX DMA maps.
661 	 */
662 	for (i = 0; i < FXP_NTXCB; i++) {
663 		error = bus_dmamap_create(sc->fxp_mtag, 0,
664 		    &sc->fxp_desc.tx_list[i].tx_map);
665 		if (error) {
666 			device_printf(dev, "can't create DMA map for TX\n");
667 			goto fail;
668 		}
669 	}
670 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
671 	if (error) {
672 		device_printf(dev, "can't create spare DMA map\n");
673 		goto fail;
674 	}
675 
676 	/*
677 	 * Pre-allocate our receive buffers.
678 	 */
679 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
680 	for (i = 0; i < FXP_NRFABUFS; i++) {
681 		rxp = &sc->fxp_desc.rx_list[i];
682 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
683 		if (error) {
684 			device_printf(dev, "can't create DMA map for RX\n");
685 			goto fail;
686 		}
687 		if (fxp_add_rfabuf(sc, rxp) != 0) {
688 			error = ENOMEM;
689 			goto fail;
690 		}
691 	}
692 
693 	/*
694 	 * Read MAC address.
695 	 */
696 	fxp_read_eeprom(sc, myea, 0, 3);
697 	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
698 	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
699 	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
700 	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
701 	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
702 	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
703 	if (bootverbose) {
704 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
705 		    pci_get_vendor(dev), pci_get_device(dev),
706 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
707 		    pci_get_revid(dev));
708 		fxp_read_eeprom(sc, &data, 10, 1);
709 		device_printf(dev, "Dynamic Standby mode is %s\n",
710 		    data & 0x02 ? "enabled" : "disabled");
711 	}
712 
713 	/*
714 	 * If this is only a 10Mbps device, then there is no MII, and
715 	 * the PHY will use a serial interface instead.
716 	 *
717 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
718 	 * doesn't have a programming interface of any sort.  The
719 	 * media is sensed automatically based on how the link partner
720 	 * is configured.  This is, in essence, manual configuration.
721 	 */
722 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
723 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
724 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
725 	} else {
726 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
727 		    fxp_ifmedia_sts)) {
728 	                device_printf(dev, "MII without any PHY!\n");
729 			error = ENXIO;
730 			goto fail;
731 		}
732 	}
733 
734 	ifp = &sc->arpcom.ac_if;
735 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
736 	ifp->if_baudrate = 100000000;
737 	ifp->if_init = fxp_init;
738 	ifp->if_softc = sc;
739 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
740 	ifp->if_ioctl = fxp_ioctl;
741 	ifp->if_start = fxp_start;
742 	ifp->if_watchdog = fxp_watchdog;
743 
744 	ifp->if_capabilities = ifp->if_capenable = 0;
745 
746 	/* Enable checksum offload for 82550 or better chips */
747 	if (sc->flags & FXP_FLAG_EXT_RFA) {
748 		ifp->if_hwassist = FXP_CSUM_FEATURES;
749 		ifp->if_capabilities |= IFCAP_HWCSUM;
750 		ifp->if_capenable |= IFCAP_HWCSUM;
751 	}
752 
753 #ifdef DEVICE_POLLING
754 	/* Inform the world we support polling. */
755 	ifp->if_capabilities |= IFCAP_POLLING;
756 	ifp->if_capenable |= IFCAP_POLLING;
757 #endif
758 
759 	/*
760 	 * Attach the interface.
761 	 */
762 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
763 
764 	/*
765 	 * Tell the upper layer(s) we support long frames.
766 	 * Must appear after the call to ether_ifattach() because
767 	 * ether_ifattach() sets ifi_hdrlen to the default value.
768 	 */
769 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
770 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
771 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
772 
773 	/*
774 	 * Let the system queue as many packets as we have available
775 	 * TX descriptors.
776 	 */
777 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
778 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
779 	IFQ_SET_READY(&ifp->if_snd);
780 
781 	/*
782 	 * Hook our interrupt after all initialization is complete.
783 	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
784 	 * however, ifp and its functions are not fully locked so MPSAFE
785 	 * should not be used unless you can handle potential data loss.
786 	 */
787 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
788 			       fxp_intr, sc, &sc->ih);
789 	if (error) {
790 		device_printf(dev, "could not setup irq\n");
791 		ether_ifdetach(&sc->arpcom.ac_if);
792 		goto fail;
793 	}
794 
795 fail:
796 	splx(s);
797 	if (error)
798 		fxp_release(sc);
799 	return (error);
800 }
801 
802 /*
803  * Release all resources.  The softc lock should not be held and the
804  * interrupt should already be torn down.
805  */
806 static void
807 fxp_release(struct fxp_softc *sc)
808 {
809 	struct fxp_rx *rxp;
810 	struct fxp_tx *txp;
811 	int i;
812 
813 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
814 	KASSERT(sc->ih == NULL,
815 	    ("fxp_release() called with intr handle still active"));
816 	if (sc->miibus)
817 		device_delete_child(sc->dev, sc->miibus);
818 	bus_generic_detach(sc->dev);
819 	ifmedia_removeall(&sc->sc_media);
820 	if (sc->fxp_desc.cbl_list) {
821 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
822 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
823 		    sc->cbl_map);
824 	}
825 	if (sc->fxp_stats) {
826 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
827 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
828 	}
829 	if (sc->mcsp) {
830 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
831 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
832 	}
833 	if (sc->irq)
834 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
835 	if (sc->mem)
836 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
837 	if (sc->fxp_mtag) {
838 		for (i = 0; i < FXP_NRFABUFS; i++) {
839 			rxp = &sc->fxp_desc.rx_list[i];
840 			if (rxp->rx_mbuf != NULL) {
841 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
842 				    BUS_DMASYNC_POSTREAD);
843 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
844 				m_freem(rxp->rx_mbuf);
845 			}
846 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
847 		}
848 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
849 		bus_dma_tag_destroy(sc->fxp_mtag);
850 	}
851 	if (sc->fxp_stag) {
852 		for (i = 0; i < FXP_NTXCB; i++) {
853 			txp = &sc->fxp_desc.tx_list[i];
854 			if (txp->tx_mbuf != NULL) {
855 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
856 				    BUS_DMASYNC_POSTWRITE);
857 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
858 				m_freem(txp->tx_mbuf);
859 			}
860 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
861 		}
862 		bus_dma_tag_destroy(sc->fxp_stag);
863 	}
864 	if (sc->cbl_tag)
865 		bus_dma_tag_destroy(sc->cbl_tag);
866 	if (sc->mcs_tag)
867 		bus_dma_tag_destroy(sc->mcs_tag);
868 
869 	mtx_destroy(&sc->sc_mtx);
870 }
871 
872 /*
873  * Detach interface.
874  */
875 static int
876 fxp_detach(device_t dev)
877 {
878 	struct fxp_softc *sc = device_get_softc(dev);
879 	int s;
880 
881 	FXP_LOCK(sc);
882 	s = splimp();
883 
884 	sc->suspended = 1;	/* Do same thing as we do for suspend */
885 	/*
886 	 * Close down routes etc.
887 	 */
888 	ether_ifdetach(&sc->arpcom.ac_if);
889 
890 	/*
891 	 * Stop DMA and drop transmit queue, but disable interrupts first.
892 	 */
893 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
894 	fxp_stop(sc);
895 	FXP_UNLOCK(sc);
896 
897 	/*
898 	 * Unhook interrupt before dropping lock. This is to prevent
899 	 * races with fxp_intr().
900 	 */
901 	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
902 	sc->ih = NULL;
903 
904 	splx(s);
905 
906 	/* Release our allocated resources. */
907 	fxp_release(sc);
908 	return (0);
909 }
910 
911 /*
912  * Device shutdown routine. Called at system shutdown after sync. The
913  * main purpose of this routine is to shut off receiver DMA so that
914  * kernel memory doesn't get clobbered during warmboot.
915  */
916 static int
917 fxp_shutdown(device_t dev)
918 {
919 	/*
920 	 * Make sure that DMA is disabled prior to reboot. Not doing
921 	 * do could allow DMA to corrupt kernel memory during the
922 	 * reboot before the driver initializes.
923 	 */
924 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
925 	return (0);
926 }
927 
928 /*
929  * Device suspend routine.  Stop the interface and save some PCI
930  * settings in case the BIOS doesn't restore them properly on
931  * resume.
932  */
933 static int
934 fxp_suspend(device_t dev)
935 {
936 	struct fxp_softc *sc = device_get_softc(dev);
937 	int i, s;
938 
939 	FXP_LOCK(sc);
940 	s = splimp();
941 
942 	fxp_stop(sc);
943 
944 	for (i = 0; i < 5; i++)
945 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
946 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
947 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
948 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
949 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
950 
951 	sc->suspended = 1;
952 
953 	FXP_UNLOCK(sc);
954 	splx(s);
955 	return (0);
956 }
957 
958 /*
959  * Device resume routine.  Restore some PCI settings in case the BIOS
960  * doesn't, re-enable busmastering, and restart the interface if
961  * appropriate.
962  */
963 static int
964 fxp_resume(device_t dev)
965 {
966 	struct fxp_softc *sc = device_get_softc(dev);
967 	struct ifnet *ifp = &sc->sc_if;
968 	u_int16_t pci_command;
969 	int i, s;
970 
971 	FXP_LOCK(sc);
972 	s = splimp();
973 
974 	/* better way to do this? */
975 	for (i = 0; i < 5; i++)
976 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
977 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
978 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
979 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
980 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
981 
982 	/* reenable busmastering */
983 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
984 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
985 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
986 
987 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
988 	DELAY(10);
989 
990 	/* reinitialize interface if necessary */
991 	if (ifp->if_flags & IFF_UP)
992 		fxp_init_body(sc);
993 
994 	sc->suspended = 0;
995 
996 	FXP_UNLOCK(sc);
997 	splx(s);
998 	return (0);
999 }
1000 
1001 static void
1002 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1003 {
1004 	u_int16_t reg;
1005 	int x;
1006 
1007 	/*
1008 	 * Shift in data.
1009 	 */
1010 	for (x = 1 << (length - 1); x; x >>= 1) {
1011 		if (data & x)
1012 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1013 		else
1014 			reg = FXP_EEPROM_EECS;
1015 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1016 		DELAY(1);
1017 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1018 		DELAY(1);
1019 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1020 		DELAY(1);
1021 	}
1022 }
1023 
1024 /*
1025  * Read from the serial EEPROM. Basically, you manually shift in
1026  * the read opcode (one bit at a time) and then shift in the address,
1027  * and then you shift out the data (all of this one bit at a time).
1028  * The word size is 16 bits, so you have to provide the address for
1029  * every 16 bits of data.
1030  */
1031 static u_int16_t
1032 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1033 {
1034 	u_int16_t reg, data;
1035 	int x;
1036 
1037 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1038 	/*
1039 	 * Shift in read opcode.
1040 	 */
1041 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1042 	/*
1043 	 * Shift in address.
1044 	 */
1045 	data = 0;
1046 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1047 		if (offset & x)
1048 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1049 		else
1050 			reg = FXP_EEPROM_EECS;
1051 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1052 		DELAY(1);
1053 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1054 		DELAY(1);
1055 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1056 		DELAY(1);
1057 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1058 		data++;
1059 		if (autosize && reg == 0) {
1060 			sc->eeprom_size = data;
1061 			break;
1062 		}
1063 	}
1064 	/*
1065 	 * Shift out data.
1066 	 */
1067 	data = 0;
1068 	reg = FXP_EEPROM_EECS;
1069 	for (x = 1 << 15; x; x >>= 1) {
1070 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1071 		DELAY(1);
1072 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1073 			data |= x;
1074 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1075 		DELAY(1);
1076 	}
1077 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1078 	DELAY(1);
1079 
1080 	return (data);
1081 }
1082 
1083 static void
1084 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1085 {
1086 	int i;
1087 
1088 	/*
1089 	 * Erase/write enable.
1090 	 */
1091 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1092 	fxp_eeprom_shiftin(sc, 0x4, 3);
1093 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1094 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1095 	DELAY(1);
1096 	/*
1097 	 * Shift in write opcode, address, data.
1098 	 */
1099 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1100 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1101 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1102 	fxp_eeprom_shiftin(sc, data, 16);
1103 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1104 	DELAY(1);
1105 	/*
1106 	 * Wait for EEPROM to finish up.
1107 	 */
1108 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1109 	DELAY(1);
1110 	for (i = 0; i < 1000; i++) {
1111 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1112 			break;
1113 		DELAY(50);
1114 	}
1115 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1116 	DELAY(1);
1117 	/*
1118 	 * Erase/write disable.
1119 	 */
1120 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1121 	fxp_eeprom_shiftin(sc, 0x4, 3);
1122 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1123 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1124 	DELAY(1);
1125 }
1126 
1127 /*
1128  * From NetBSD:
1129  *
1130  * Figure out EEPROM size.
1131  *
1132  * 559's can have either 64-word or 256-word EEPROMs, the 558
1133  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1134  * talks about the existance of 16 to 256 word EEPROMs.
1135  *
1136  * The only known sizes are 64 and 256, where the 256 version is used
1137  * by CardBus cards to store CIS information.
1138  *
1139  * The address is shifted in msb-to-lsb, and after the last
1140  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1141  * after which follows the actual data. We try to detect this zero, by
1142  * probing the data-out bit in the EEPROM control register just after
1143  * having shifted in a bit. If the bit is zero, we assume we've
1144  * shifted enough address bits. The data-out should be tri-state,
1145  * before this, which should translate to a logical one.
1146  */
1147 static void
1148 fxp_autosize_eeprom(struct fxp_softc *sc)
1149 {
1150 
1151 	/* guess maximum size of 256 words */
1152 	sc->eeprom_size = 8;
1153 
1154 	/* autosize */
1155 	(void) fxp_eeprom_getword(sc, 0, 1);
1156 }
1157 
1158 static void
1159 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1160 {
1161 	int i;
1162 
1163 	for (i = 0; i < words; i++)
1164 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1165 }
1166 
1167 static void
1168 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1169 {
1170 	int i;
1171 
1172 	for (i = 0; i < words; i++)
1173 		fxp_eeprom_putword(sc, offset + i, data[i]);
1174 }
1175 
1176 static void
1177 fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1178     bus_size_t mapsize, int error)
1179 {
1180 	struct fxp_softc *sc;
1181 	struct fxp_cb_tx *txp;
1182 	int i;
1183 
1184 	if (error)
1185 		return;
1186 
1187 	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1188 
1189 	sc = arg;
1190 	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1191 	for (i = 0; i < nseg; i++) {
1192 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1193 		/*
1194 		 * If this is an 82550/82551, then we're using extended
1195 		 * TxCBs _and_ we're using checksum offload. This means
1196 		 * that the TxCB is really an IPCB. One major difference
1197 		 * between the two is that with plain extended TxCBs,
1198 		 * the bottom half of the TxCB contains two entries from
1199 		 * the TBD array, whereas IPCBs contain just one entry:
1200 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1201 		 * checksum offload control bits. So to make things work
1202 		 * right, we have to start filling in the TBD array
1203 		 * starting from a different place depending on whether
1204 		 * the chip is an 82550/82551 or not.
1205 		 */
1206 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1207 			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1208 			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1209 		} else {
1210 			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1211 			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1212 		}
1213 	}
1214 	txp->tbd_number = nseg;
1215 }
1216 
1217 /*
1218  * Grab the softc lock and call the real fxp_start_body() routine
1219  */
1220 static void
1221 fxp_start(struct ifnet *ifp)
1222 {
1223 	struct fxp_softc *sc = ifp->if_softc;
1224 
1225 	FXP_LOCK(sc);
1226 	fxp_start_body(ifp);
1227 	FXP_UNLOCK(sc);
1228 }
1229 
1230 /*
1231  * Start packet transmission on the interface.
1232  * This routine must be called with the softc lock held, and is an
1233  * internal entry point only.
1234  */
1235 static void
1236 fxp_start_body(struct ifnet *ifp)
1237 {
1238 	struct fxp_softc *sc = ifp->if_softc;
1239 	struct fxp_tx *txp;
1240 	struct mbuf *mb_head;
1241 	int error;
1242 
1243 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1244 	/*
1245 	 * See if we need to suspend xmit until the multicast filter
1246 	 * has been reprogrammed (which can only be done at the head
1247 	 * of the command chain).
1248 	 */
1249 	if (sc->need_mcsetup) {
1250 		return;
1251 	}
1252 
1253 	txp = NULL;
1254 
1255 	/*
1256 	 * We're finished if there is nothing more to add to the list or if
1257 	 * we're all filled up with buffers to transmit.
1258 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1259 	 *       a NOP command when needed.
1260 	 */
1261 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1262 	    sc->tx_queued < FXP_NTXCB - 1) {
1263 
1264 		/*
1265 		 * Grab a packet to transmit.
1266 		 */
1267 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1268 		if (mb_head == NULL)
1269 			break;
1270 
1271 		/*
1272 		 * Get pointer to next available tx desc.
1273 		 */
1274 		txp = sc->fxp_desc.tx_last->tx_next;
1275 
1276 		/*
1277 		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1278 		 * Ethernet Controller Family Open Source Software
1279 		 * Developer Manual says:
1280 		 *   Using software parsing is only allowed with legal
1281 		 *   TCP/IP or UDP/IP packets.
1282 		 *   ...
1283 		 *   For all other datagrams, hardware parsing must
1284 		 *   be used.
1285 		 * Software parsing appears to truncate ICMP and
1286 		 * fragmented UDP packets that contain one to three
1287 		 * bytes in the second (and final) mbuf of the packet.
1288 		 */
1289 		if (sc->flags & FXP_FLAG_EXT_RFA)
1290 			txp->tx_cb->ipcb_ip_activation_high =
1291 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1292 
1293 		/*
1294 		 * Deal with TCP/IP checksum offload. Note that
1295 		 * in order for TCP checksum offload to work,
1296 		 * the pseudo header checksum must have already
1297 		 * been computed and stored in the checksum field
1298 		 * in the TCP header. The stack should have
1299 		 * already done this for us.
1300 		 */
1301 
1302 		if (mb_head->m_pkthdr.csum_flags) {
1303 			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1304 				txp->tx_cb->ipcb_ip_schedule =
1305 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1306 				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1307 					txp->tx_cb->ipcb_ip_schedule |=
1308 					    FXP_IPCB_TCP_PACKET;
1309 			}
1310 #ifdef FXP_IP_CSUM_WAR
1311 		/*
1312 		 * XXX The 82550 chip appears to have trouble
1313 		 * dealing with IP header checksums in very small
1314 		 * datagrams, namely fragments from 1 to 3 bytes
1315 		 * in size. For example, say you want to transmit
1316 		 * a UDP packet of 1473 bytes. The packet will be
1317 		 * fragmented over two IP datagrams, the latter
1318 		 * containing only one byte of data. The 82550 will
1319 		 * botch the header checksum on the 1-byte fragment.
1320 		 * As long as the datagram contains 4 or more bytes
1321 		 * of data, you're ok.
1322 		 *
1323                  * The following code attempts to work around this
1324 		 * problem: if the datagram is less than 38 bytes
1325 		 * in size (14 bytes ether header, 20 bytes IP header,
1326 		 * plus 4 bytes of data), we punt and compute the IP
1327 		 * header checksum by hand. This workaround doesn't
1328 		 * work very well, however, since it can be fooled
1329 		 * by things like VLAN tags and IP options that make
1330 		 * the header sizes/offsets vary.
1331 		 */
1332 
1333 			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1334 				if (mb_head->m_pkthdr.len < 38) {
1335 					struct ip *ip;
1336 					mb_head->m_data += ETHER_HDR_LEN;
1337 					ip = mtod(mb_head, struct ip *);
1338 					ip->ip_sum = in_cksum(mb_head,
1339 					    ip->ip_hl << 2);
1340 					mb_head->m_data -= ETHER_HDR_LEN;
1341 				} else {
1342 					txp->tx_cb->ipcb_ip_activation_high =
1343 					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1344 					txp->tx_cb->ipcb_ip_schedule |=
1345 					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1346 				}
1347 			}
1348 #endif
1349 		}
1350 
1351 		/*
1352 		 * Go through each of the mbufs in the chain and initialize
1353 		 * the transmit buffer descriptors with the physical address
1354 		 * and size of the mbuf.
1355 		 */
1356 		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1357 		    mb_head, fxp_dma_map_txbuf, sc, 0);
1358 
1359 		if (error && error != EFBIG) {
1360 			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1361 			    error);
1362 			m_freem(mb_head);
1363 			break;
1364 		}
1365 
1366 		if (error) {
1367 			struct mbuf *mn;
1368 
1369 			/*
1370 			 * We ran out of segments. We have to recopy this
1371 			 * mbuf chain first. Bail out if we can't get the
1372 			 * new buffers.
1373 			 */
1374 			mn = m_defrag(mb_head, M_DONTWAIT);
1375 			if (mn == NULL) {
1376 				m_freem(mb_head);
1377 				break;
1378 			} else {
1379 				mb_head = mn;
1380 			}
1381 			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1382 			    mb_head, fxp_dma_map_txbuf, sc, 0);
1383 			if (error) {
1384 				device_printf(sc->dev,
1385 				    "can't map mbuf (error %d)\n", error);
1386 				m_freem(mb_head);
1387 				break;
1388 			}
1389 		}
1390 
1391 		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1392 		    BUS_DMASYNC_PREWRITE);
1393 
1394 		txp->tx_mbuf = mb_head;
1395 		txp->tx_cb->cb_status = 0;
1396 		txp->tx_cb->byte_count = 0;
1397 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1398 			txp->tx_cb->cb_command =
1399 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1400 			    FXP_CB_COMMAND_S);
1401 		} else {
1402 			txp->tx_cb->cb_command =
1403 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1404 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1405 			/*
1406 			 * Set a 5 second timer just in case we don't hear
1407 			 * from the card again.
1408 			 */
1409 			ifp->if_timer = 5;
1410 		}
1411 		txp->tx_cb->tx_threshold = tx_threshold;
1412 
1413 		/*
1414 		 * Advance the end of list forward.
1415 		 */
1416 
1417 #ifdef __alpha__
1418 		/*
1419 		 * On platforms which can't access memory in 16-bit
1420 		 * granularities, we must prevent the card from DMA'ing
1421 		 * up the status while we update the command field.
1422 		 * This could cause us to overwrite the completion status.
1423 		 * XXX This is probably bogus and we're _not_ looking
1424 		 * for atomicity here.
1425 		 */
1426 		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1427 		    htole16(FXP_CB_COMMAND_S));
1428 #else
1429 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1430 		    htole16(~FXP_CB_COMMAND_S);
1431 #endif /*__alpha__*/
1432 		sc->fxp_desc.tx_last = txp;
1433 
1434 		/*
1435 		 * Advance the beginning of the list forward if there are
1436 		 * no other packets queued (when nothing is queued, tx_first
1437 		 * sits on the last TxCB that was sent out).
1438 		 */
1439 		if (sc->tx_queued == 0)
1440 			sc->fxp_desc.tx_first = txp;
1441 
1442 		sc->tx_queued++;
1443 
1444 		/*
1445 		 * Pass packet to bpf if there is a listener.
1446 		 */
1447 		BPF_MTAP(ifp, mb_head);
1448 	}
1449 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1450 
1451 	/*
1452 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1453 	 * going again if suspended.
1454 	 */
1455 	if (txp != NULL) {
1456 		fxp_scb_wait(sc);
1457 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1458 	}
1459 }
1460 
1461 #ifdef DEVICE_POLLING
1462 static poll_handler_t fxp_poll;
1463 
1464 static void
1465 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1466 {
1467 	struct fxp_softc *sc = ifp->if_softc;
1468 	u_int8_t statack;
1469 
1470 	FXP_LOCK(sc);
1471 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1472 		ether_poll_deregister(ifp);
1473 		cmd = POLL_DEREGISTER;
1474 	}
1475 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1476 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1477 		FXP_UNLOCK(sc);
1478 		return;
1479 	}
1480 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1481 	    FXP_SCB_STATACK_FR;
1482 	if (cmd == POLL_AND_CHECK_STATUS) {
1483 		u_int8_t tmp;
1484 
1485 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1486 		if (tmp == 0xff || tmp == 0) {
1487 			FXP_UNLOCK(sc);
1488 			return; /* nothing to do */
1489 		}
1490 		tmp &= ~statack;
1491 		/* ack what we can */
1492 		if (tmp != 0)
1493 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1494 		statack |= tmp;
1495 	}
1496 	fxp_intr_body(sc, ifp, statack, count);
1497 	FXP_UNLOCK(sc);
1498 }
1499 #endif /* DEVICE_POLLING */
1500 
1501 /*
1502  * Process interface interrupts.
1503  */
1504 static void
1505 fxp_intr(void *xsc)
1506 {
1507 	struct fxp_softc *sc = xsc;
1508 	struct ifnet *ifp = &sc->sc_if;
1509 	u_int8_t statack;
1510 
1511 	FXP_LOCK(sc);
1512 	if (sc->suspended) {
1513 		FXP_UNLOCK(sc);
1514 		return;
1515 	}
1516 
1517 #ifdef DEVICE_POLLING
1518 	if (ifp->if_flags & IFF_POLLING) {
1519 		FXP_UNLOCK(sc);
1520 		return;
1521 	}
1522 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1523 	    ether_poll_register(fxp_poll, ifp)) {
1524 		/* disable interrupts */
1525 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1526 		FXP_UNLOCK(sc);
1527 		fxp_poll(ifp, 0, 1);
1528 		return;
1529 	}
1530 #endif
1531 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1532 		/*
1533 		 * It should not be possible to have all bits set; the
1534 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1535 		 * all bits are set, this may indicate that the card has
1536 		 * been physically ejected, so ignore it.
1537 		 */
1538 		if (statack == 0xff) {
1539 			FXP_UNLOCK(sc);
1540 			return;
1541 		}
1542 
1543 		/*
1544 		 * First ACK all the interrupts in this pass.
1545 		 */
1546 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1547 		fxp_intr_body(sc, ifp, statack, -1);
1548 	}
1549 	FXP_UNLOCK(sc);
1550 }
1551 
1552 static void
1553 fxp_txeof(struct fxp_softc *sc)
1554 {
1555 	struct fxp_tx *txp;
1556 
1557 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1558 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1559 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1560 	    txp = txp->tx_next) {
1561 		if (txp->tx_mbuf != NULL) {
1562 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1563 			    BUS_DMASYNC_POSTWRITE);
1564 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1565 			m_freem(txp->tx_mbuf);
1566 			txp->tx_mbuf = NULL;
1567 			/* clear this to reset csum offload bits */
1568 			txp->tx_cb->tbd[0].tb_addr = 0;
1569 		}
1570 		sc->tx_queued--;
1571 	}
1572 	sc->fxp_desc.tx_first = txp;
1573 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1574 }
1575 
1576 static void
1577 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1578     int count)
1579 {
1580 	struct mbuf *m;
1581 	struct fxp_rx *rxp;
1582 	struct fxp_rfa *rfa;
1583 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1584 
1585 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1586 	if (rnr)
1587 		sc->rnr++;
1588 #ifdef DEVICE_POLLING
1589 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1590 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1591 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1592 		rnr = 1;
1593 	}
1594 #endif
1595 
1596 	/*
1597 	 * Free any finished transmit mbuf chains.
1598 	 *
1599 	 * Handle the CNA event likt a CXTNO event. It used to
1600 	 * be that this event (control unit not ready) was not
1601 	 * encountered, but it is now with the SMPng modifications.
1602 	 * The exact sequence of events that occur when the interface
1603 	 * is brought up are different now, and if this event
1604 	 * goes unhandled, the configuration/rxfilter setup sequence
1605 	 * can stall for several seconds. The result is that no
1606 	 * packets go out onto the wire for about 5 to 10 seconds
1607 	 * after the interface is ifconfig'ed for the first time.
1608 	 */
1609 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1610 		fxp_txeof(sc);
1611 
1612 		ifp->if_timer = 0;
1613 		if (sc->tx_queued == 0) {
1614 			if (sc->need_mcsetup)
1615 				fxp_mc_setup(sc);
1616 		}
1617 		/*
1618 		 * Try to start more packets transmitting.
1619 		 */
1620 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1621 			fxp_start_body(ifp);
1622 	}
1623 
1624 	/*
1625 	 * Just return if nothing happened on the receive side.
1626 	 */
1627 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1628 		return;
1629 
1630 	/*
1631 	 * Process receiver interrupts. If a no-resource (RNR)
1632 	 * condition exists, get whatever packets we can and
1633 	 * re-start the receiver.
1634 	 *
1635 	 * When using polling, we do not process the list to completion,
1636 	 * so when we get an RNR interrupt we must defer the restart
1637 	 * until we hit the last buffer with the C bit set.
1638 	 * If we run out of cycles and rfa_headm has the C bit set,
1639 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1640 	 * that the info will be used in the subsequent polling cycle.
1641 	 */
1642 	for (;;) {
1643 		rxp = sc->fxp_desc.rx_head;
1644 		m = rxp->rx_mbuf;
1645 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1646 		    RFA_ALIGNMENT_FUDGE);
1647 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1648 		    BUS_DMASYNC_POSTREAD);
1649 
1650 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1651 		if (count >= 0 && count-- == 0) {
1652 			if (rnr) {
1653 				/* Defer RNR processing until the next time. */
1654 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1655 				rnr = 0;
1656 			}
1657 			break;
1658 		}
1659 #endif /* DEVICE_POLLING */
1660 
1661 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1662 			break;
1663 
1664 		/*
1665 		 * Advance head forward.
1666 		 */
1667 		sc->fxp_desc.rx_head = rxp->rx_next;
1668 
1669 		/*
1670 		 * Add a new buffer to the receive chain.
1671 		 * If this fails, the old buffer is recycled
1672 		 * instead.
1673 		 */
1674 		if (fxp_add_rfabuf(sc, rxp) == 0) {
1675 			int total_len;
1676 
1677 			/*
1678 			 * Fetch packet length (the top 2 bits of
1679 			 * actual_size are flags set by the controller
1680 			 * upon completion), and drop the packet in case
1681 			 * of bogus length or CRC errors.
1682 			 */
1683 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1684 			if (total_len < sizeof(struct ether_header) ||
1685 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1686 				sc->rfa_size ||
1687 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1688 				m_freem(m);
1689 				continue;
1690 			}
1691 
1692                         /* Do IP checksum checking. */
1693 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1694 				if (rfa->rfax_csum_sts &
1695 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1696 					m->m_pkthdr.csum_flags |=
1697 					    CSUM_IP_CHECKED;
1698 				if (rfa->rfax_csum_sts &
1699 				    FXP_RFDX_CS_IP_CSUM_VALID)
1700 					m->m_pkthdr.csum_flags |=
1701 					    CSUM_IP_VALID;
1702 				if ((rfa->rfax_csum_sts &
1703 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1704 				    (rfa->rfax_csum_sts &
1705 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1706 					m->m_pkthdr.csum_flags |=
1707 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1708 					m->m_pkthdr.csum_data = 0xffff;
1709 				}
1710 			}
1711 
1712 			m->m_pkthdr.len = m->m_len = total_len;
1713 			m->m_pkthdr.rcvif = ifp;
1714 
1715 			/*
1716 			 * Drop locks before calling if_input() since it
1717 			 * may re-enter fxp_start() in the netisr case.
1718 			 * This would result in a lock reversal.  Better
1719 			 * performance might be obtained by chaining all
1720 			 * packets received, dropping the lock, and then
1721 			 * calling if_input() on each one.
1722 			 */
1723 			FXP_UNLOCK(sc);
1724 			(*ifp->if_input)(ifp, m);
1725 			FXP_LOCK(sc);
1726 		}
1727 	}
1728 	if (rnr) {
1729 		fxp_scb_wait(sc);
1730 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1731 		    sc->fxp_desc.rx_head->rx_addr);
1732 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1733 	}
1734 }
1735 
1736 /*
1737  * Update packet in/out/collision statistics. The i82557 doesn't
1738  * allow you to access these counters without doing a fairly
1739  * expensive DMA to get _all_ of the statistics it maintains, so
1740  * we do this operation here only once per second. The statistics
1741  * counters in the kernel are updated from the previous dump-stats
1742  * DMA and then a new dump-stats DMA is started. The on-chip
1743  * counters are zeroed when the DMA completes. If we can't start
1744  * the DMA immediately, we don't wait - we just prepare to read
1745  * them again next time.
1746  */
1747 static void
1748 fxp_tick(void *xsc)
1749 {
1750 	struct fxp_softc *sc = xsc;
1751 	struct ifnet *ifp = &sc->sc_if;
1752 	struct fxp_stats *sp = sc->fxp_stats;
1753 	int s;
1754 
1755 	FXP_LOCK(sc);
1756 	s = splimp();
1757 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1758 	ifp->if_opackets += le32toh(sp->tx_good);
1759 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1760 	if (sp->rx_good) {
1761 		ifp->if_ipackets += le32toh(sp->rx_good);
1762 		sc->rx_idle_secs = 0;
1763 	} else {
1764 		/*
1765 		 * Receiver's been idle for another second.
1766 		 */
1767 		sc->rx_idle_secs++;
1768 	}
1769 	ifp->if_ierrors +=
1770 	    le32toh(sp->rx_crc_errors) +
1771 	    le32toh(sp->rx_alignment_errors) +
1772 	    le32toh(sp->rx_rnr_errors) +
1773 	    le32toh(sp->rx_overrun_errors);
1774 	/*
1775 	 * If any transmit underruns occured, bump up the transmit
1776 	 * threshold by another 512 bytes (64 * 8).
1777 	 */
1778 	if (sp->tx_underruns) {
1779 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1780 		if (tx_threshold < 192)
1781 			tx_threshold += 64;
1782 	}
1783 
1784 	/*
1785 	 * Release any xmit buffers that have completed DMA. This isn't
1786 	 * strictly necessary to do here, but it's advantagous for mbufs
1787 	 * with external storage to be released in a timely manner rather
1788 	 * than being defered for a potentially long time. This limits
1789 	 * the delay to a maximum of one second.
1790 	 */
1791 	fxp_txeof(sc);
1792 
1793 	/*
1794 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1795 	 * then assume the receiver has locked up and attempt to clear
1796 	 * the condition by reprogramming the multicast filter. This is
1797 	 * a work-around for a bug in the 82557 where the receiver locks
1798 	 * up if it gets certain types of garbage in the syncronization
1799 	 * bits prior to the packet header. This bug is supposed to only
1800 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1801 	 * mode as well (perhaps due to a 10/100 speed transition).
1802 	 */
1803 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1804 		sc->rx_idle_secs = 0;
1805 		fxp_mc_setup(sc);
1806 	}
1807 	/*
1808 	 * If there is no pending command, start another stats
1809 	 * dump. Otherwise punt for now.
1810 	 */
1811 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1812 		/*
1813 		 * Start another stats dump.
1814 		 */
1815 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1816 		    BUS_DMASYNC_PREREAD);
1817 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1818 	} else {
1819 		/*
1820 		 * A previous command is still waiting to be accepted.
1821 		 * Just zero our copy of the stats and wait for the
1822 		 * next timer event to update them.
1823 		 */
1824 		sp->tx_good = 0;
1825 		sp->tx_underruns = 0;
1826 		sp->tx_total_collisions = 0;
1827 
1828 		sp->rx_good = 0;
1829 		sp->rx_crc_errors = 0;
1830 		sp->rx_alignment_errors = 0;
1831 		sp->rx_rnr_errors = 0;
1832 		sp->rx_overrun_errors = 0;
1833 	}
1834 	if (sc->miibus != NULL)
1835 		mii_tick(device_get_softc(sc->miibus));
1836 
1837 	/*
1838 	 * Schedule another timeout one second from now.
1839 	 */
1840 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1841 	FXP_UNLOCK(sc);
1842 	splx(s);
1843 }
1844 
1845 /*
1846  * Stop the interface. Cancels the statistics updater and resets
1847  * the interface.
1848  */
1849 static void
1850 fxp_stop(struct fxp_softc *sc)
1851 {
1852 	struct ifnet *ifp = &sc->sc_if;
1853 	struct fxp_tx *txp;
1854 	int i;
1855 
1856 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1857 	ifp->if_timer = 0;
1858 
1859 #ifdef DEVICE_POLLING
1860 	ether_poll_deregister(ifp);
1861 #endif
1862 	/*
1863 	 * Cancel stats updater.
1864 	 */
1865 	callout_stop(&sc->stat_ch);
1866 
1867 	/*
1868 	 * Issue software reset, which also unloads the microcode.
1869 	 */
1870 	sc->flags &= ~FXP_FLAG_UCODE;
1871 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1872 	DELAY(50);
1873 
1874 	/*
1875 	 * Release any xmit buffers.
1876 	 */
1877 	txp = sc->fxp_desc.tx_list;
1878 	if (txp != NULL) {
1879 		for (i = 0; i < FXP_NTXCB; i++) {
1880  			if (txp[i].tx_mbuf != NULL) {
1881 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1882 				    BUS_DMASYNC_POSTWRITE);
1883 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1884 				m_freem(txp[i].tx_mbuf);
1885 				txp[i].tx_mbuf = NULL;
1886 				/* clear this to reset csum offload bits */
1887 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1888 			}
1889 		}
1890 	}
1891 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1892 	sc->tx_queued = 0;
1893 }
1894 
1895 /*
1896  * Watchdog/transmission transmit timeout handler. Called when a
1897  * transmission is started on the interface, but no interrupt is
1898  * received before the timeout. This usually indicates that the
1899  * card has wedged for some reason.
1900  */
1901 static void
1902 fxp_watchdog(struct ifnet *ifp)
1903 {
1904 	struct fxp_softc *sc = ifp->if_softc;
1905 
1906 	FXP_LOCK(sc);
1907 	device_printf(sc->dev, "device timeout\n");
1908 	ifp->if_oerrors++;
1909 
1910 	fxp_init_body(sc);
1911 	FXP_UNLOCK(sc);
1912 }
1913 
1914 /*
1915  * Acquire locks and then call the real initialization function.  This
1916  * is necessary because ether_ioctl() calls if_init() and this would
1917  * result in mutex recursion if the mutex was held.
1918  */
1919 static void
1920 fxp_init(void *xsc)
1921 {
1922 	struct fxp_softc *sc = xsc;
1923 
1924 	FXP_LOCK(sc);
1925 	fxp_init_body(sc);
1926 	FXP_UNLOCK(sc);
1927 }
1928 
1929 /*
1930  * Perform device initialization. This routine must be called with the
1931  * softc lock held.
1932  */
1933 static void
1934 fxp_init_body(struct fxp_softc *sc)
1935 {
1936 	struct ifnet *ifp = &sc->sc_if;
1937 	struct fxp_cb_config *cbp;
1938 	struct fxp_cb_ias *cb_ias;
1939 	struct fxp_cb_tx *tcbp;
1940 	struct fxp_tx *txp;
1941 	struct fxp_cb_mcs *mcsp;
1942 	int i, prm, s;
1943 
1944 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1945 	s = splimp();
1946 	/*
1947 	 * Cancel any pending I/O
1948 	 */
1949 	fxp_stop(sc);
1950 
1951 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1952 
1953 	/*
1954 	 * Initialize base of CBL and RFA memory. Loading with zero
1955 	 * sets it up for regular linear addressing.
1956 	 */
1957 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1958 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1959 
1960 	fxp_scb_wait(sc);
1961 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1962 
1963 	/*
1964 	 * Initialize base of dump-stats buffer.
1965 	 */
1966 	fxp_scb_wait(sc);
1967 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1968 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1969 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1970 
1971 	/*
1972 	 * Attempt to load microcode if requested.
1973 	 */
1974 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1975 		fxp_load_ucode(sc);
1976 
1977 	/*
1978 	 * Initialize the multicast address list.
1979 	 */
1980 	if (fxp_mc_addrs(sc)) {
1981 		mcsp = sc->mcsp;
1982 		mcsp->cb_status = 0;
1983 		mcsp->cb_command =
1984 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1985 		mcsp->link_addr = 0xffffffff;
1986 		/*
1987 	 	 * Start the multicast setup command.
1988 		 */
1989 		fxp_scb_wait(sc);
1990 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1991 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1992 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1993 		/* ...and wait for it to complete. */
1994 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1995 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1996 		    BUS_DMASYNC_POSTWRITE);
1997 	}
1998 
1999 	/*
2000 	 * We temporarily use memory that contains the TxCB list to
2001 	 * construct the config CB. The TxCB list memory is rebuilt
2002 	 * later.
2003 	 */
2004 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2005 
2006 	/*
2007 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2008 	 * zero and must be one bits in this structure and this is the easiest
2009 	 * way to initialize them all to proper values.
2010 	 */
2011 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2012 
2013 	cbp->cb_status =	0;
2014 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2015 	    FXP_CB_COMMAND_EL);
2016 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2017 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2018 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2019 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2020 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2021 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2022 	cbp->type_enable =	0;	/* actually reserved */
2023 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2024 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2025 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2026 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2027 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2028 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2029 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2030 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2031 	cbp->ci_int =		1;	/* interrupt on CU idle */
2032 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2033 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2034 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2035 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2036 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2037 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2038 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2039 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2040 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2041 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2042 	cbp->csma_dis =		0;	/* (don't) disable link */
2043 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2044 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2045 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2046 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2047 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2048 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2049 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2050 	cbp->loopback =		0;	/* (don't) loopback */
2051 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2052 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2053 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2054 	cbp->promiscuous =	prm;	/* promiscuous mode */
2055 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2056 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2057 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2058 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2059 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2060 
2061 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2062 	cbp->padding =		1;	/* (do) pad short tx packets */
2063 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2064 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2065 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2066 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2067 					/* must set wake_en in PMCSR also */
2068 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2069 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2070 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2071 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2072 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2073 
2074 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2075 		/*
2076 		 * The 82557 has no hardware flow control, the values
2077 		 * below are the defaults for the chip.
2078 		 */
2079 		cbp->fc_delay_lsb =	0;
2080 		cbp->fc_delay_msb =	0x40;
2081 		cbp->pri_fc_thresh =	3;
2082 		cbp->tx_fc_dis =	0;
2083 		cbp->rx_fc_restop =	0;
2084 		cbp->rx_fc_restart =	0;
2085 		cbp->fc_filter =	0;
2086 		cbp->pri_fc_loc =	1;
2087 	} else {
2088 		cbp->fc_delay_lsb =	0x1f;
2089 		cbp->fc_delay_msb =	0x01;
2090 		cbp->pri_fc_thresh =	3;
2091 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2092 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2093 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2094 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2095 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2096 	}
2097 
2098 	/*
2099 	 * Start the config command/DMA.
2100 	 */
2101 	fxp_scb_wait(sc);
2102 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2103 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2104 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2105 	/* ...and wait for it to complete. */
2106 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2107 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2108 
2109 	/*
2110 	 * Now initialize the station address. Temporarily use the TxCB
2111 	 * memory area like we did above for the config CB.
2112 	 */
2113 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2114 	cb_ias->cb_status = 0;
2115 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2116 	cb_ias->link_addr = 0xffffffff;
2117 	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2118 	    sizeof(sc->arpcom.ac_enaddr));
2119 
2120 	/*
2121 	 * Start the IAS (Individual Address Setup) command/DMA.
2122 	 */
2123 	fxp_scb_wait(sc);
2124 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2125 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2126 	/* ...and wait for it to complete. */
2127 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2128 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2129 
2130 	/*
2131 	 * Initialize transmit control block (TxCB) list.
2132 	 */
2133 	txp = sc->fxp_desc.tx_list;
2134 	tcbp = sc->fxp_desc.cbl_list;
2135 	bzero(tcbp, FXP_TXCB_SZ);
2136 	for (i = 0; i < FXP_NTXCB; i++) {
2137 		txp[i].tx_cb = tcbp + i;
2138 		txp[i].tx_mbuf = NULL;
2139 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2140 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2141 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2142 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2143 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2144 			tcbp[i].tbd_array_addr =
2145 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2146 		else
2147 			tcbp[i].tbd_array_addr =
2148 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2149 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2150 	}
2151 	/*
2152 	 * Set the suspend flag on the first TxCB and start the control
2153 	 * unit. It will execute the NOP and then suspend.
2154 	 */
2155 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2156 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2157 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2158 	sc->tx_queued = 1;
2159 
2160 	fxp_scb_wait(sc);
2161 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2162 
2163 	/*
2164 	 * Initialize receiver buffer area - RFA.
2165 	 */
2166 	fxp_scb_wait(sc);
2167 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2168 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2169 
2170 	/*
2171 	 * Set current media.
2172 	 */
2173 	if (sc->miibus != NULL)
2174 		mii_mediachg(device_get_softc(sc->miibus));
2175 
2176 	ifp->if_flags |= IFF_RUNNING;
2177 	ifp->if_flags &= ~IFF_OACTIVE;
2178 
2179 	/*
2180 	 * Enable interrupts.
2181 	 */
2182 #ifdef DEVICE_POLLING
2183 	/*
2184 	 * ... but only do that if we are not polling. And because (presumably)
2185 	 * the default is interrupts on, we need to disable them explicitly!
2186 	 */
2187 	if ( ifp->if_flags & IFF_POLLING )
2188 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2189 	else
2190 #endif /* DEVICE_POLLING */
2191 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2192 
2193 	/*
2194 	 * Start stats updater.
2195 	 */
2196 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2197 	splx(s);
2198 }
2199 
2200 static int
2201 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2202 {
2203 
2204 	return (0);
2205 }
2206 
2207 static void
2208 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2209 {
2210 
2211 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2212 }
2213 
2214 /*
2215  * Change media according to request.
2216  */
2217 static int
2218 fxp_ifmedia_upd(struct ifnet *ifp)
2219 {
2220 	struct fxp_softc *sc = ifp->if_softc;
2221 	struct mii_data *mii;
2222 
2223 	mii = device_get_softc(sc->miibus);
2224 	mii_mediachg(mii);
2225 	return (0);
2226 }
2227 
2228 /*
2229  * Notify the world which media we're using.
2230  */
2231 static void
2232 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2233 {
2234 	struct fxp_softc *sc = ifp->if_softc;
2235 	struct mii_data *mii;
2236 
2237 	mii = device_get_softc(sc->miibus);
2238 	mii_pollstat(mii);
2239 	ifmr->ifm_active = mii->mii_media_active;
2240 	ifmr->ifm_status = mii->mii_media_status;
2241 
2242 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2243 		sc->cu_resume_bug = 1;
2244 	else
2245 		sc->cu_resume_bug = 0;
2246 }
2247 
2248 /*
2249  * Add a buffer to the end of the RFA buffer list.
2250  * Return 0 if successful, 1 for failure. A failure results in
2251  * adding the 'oldm' (if non-NULL) on to the end of the list -
2252  * tossing out its old contents and recycling it.
2253  * The RFA struct is stuck at the beginning of mbuf cluster and the
2254  * data pointer is fixed up to point just past it.
2255  */
2256 static int
2257 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2258 {
2259 	struct mbuf *m;
2260 	struct fxp_rfa *rfa, *p_rfa;
2261 	struct fxp_rx *p_rx;
2262 	bus_dmamap_t tmp_map;
2263 	int error;
2264 
2265 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2266 	if (m == NULL)
2267 		return (ENOBUFS);
2268 
2269 	/*
2270 	 * Move the data pointer up so that the incoming data packet
2271 	 * will be 32-bit aligned.
2272 	 */
2273 	m->m_data += RFA_ALIGNMENT_FUDGE;
2274 
2275 	/*
2276 	 * Get a pointer to the base of the mbuf cluster and move
2277 	 * data start past it.
2278 	 */
2279 	rfa = mtod(m, struct fxp_rfa *);
2280 	m->m_data += sc->rfa_size;
2281 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2282 
2283 	rfa->rfa_status = 0;
2284 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2285 	rfa->actual_size = 0;
2286 
2287 	/*
2288 	 * Initialize the rest of the RFA.  Note that since the RFA
2289 	 * is misaligned, we cannot store values directly.  We're thus
2290 	 * using the le32enc() function which handles endianness and
2291 	 * is also alignment-safe.
2292 	 */
2293 	le32enc(&rfa->link_addr, 0xffffffff);
2294 	le32enc(&rfa->rbd_addr, 0xffffffff);
2295 
2296 	/* Map the RFA into DMA memory. */
2297 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2298 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2299 	    &rxp->rx_addr, 0);
2300 	if (error) {
2301 		m_freem(m);
2302 		return (error);
2303 	}
2304 
2305 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2306 	tmp_map = sc->spare_map;
2307 	sc->spare_map = rxp->rx_map;
2308 	rxp->rx_map = tmp_map;
2309 	rxp->rx_mbuf = m;
2310 
2311 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2312 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2313 
2314 	/*
2315 	 * If there are other buffers already on the list, attach this
2316 	 * one to the end by fixing up the tail to point to this one.
2317 	 */
2318 	if (sc->fxp_desc.rx_head != NULL) {
2319 		p_rx = sc->fxp_desc.rx_tail;
2320 		p_rfa = (struct fxp_rfa *)
2321 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2322 		p_rx->rx_next = rxp;
2323 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2324 		p_rfa->rfa_control = 0;
2325 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2326 		    BUS_DMASYNC_PREWRITE);
2327 	} else {
2328 		rxp->rx_next = NULL;
2329 		sc->fxp_desc.rx_head = rxp;
2330 	}
2331 	sc->fxp_desc.rx_tail = rxp;
2332 	return (0);
2333 }
2334 
2335 static volatile int
2336 fxp_miibus_readreg(device_t dev, int phy, int reg)
2337 {
2338 	struct fxp_softc *sc = device_get_softc(dev);
2339 	int count = 10000;
2340 	int value;
2341 
2342 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2343 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2344 
2345 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2346 	    && count--)
2347 		DELAY(10);
2348 
2349 	if (count <= 0)
2350 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2351 
2352 	return (value & 0xffff);
2353 }
2354 
2355 static void
2356 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2357 {
2358 	struct fxp_softc *sc = device_get_softc(dev);
2359 	int count = 10000;
2360 
2361 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2362 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2363 	    (value & 0xffff));
2364 
2365 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2366 	    count--)
2367 		DELAY(10);
2368 
2369 	if (count <= 0)
2370 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2371 }
2372 
2373 static int
2374 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2375 {
2376 	struct fxp_softc *sc = ifp->if_softc;
2377 	struct ifreq *ifr = (struct ifreq *)data;
2378 	struct mii_data *mii;
2379 	int flag, mask, s, error = 0;
2380 
2381 	/*
2382 	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2383 	 * that by saying we're busy if the lock is already held.
2384 	 */
2385 	if (FXP_LOCKED(sc))
2386 		return (EBUSY);
2387 
2388 	FXP_LOCK(sc);
2389 	s = splimp();
2390 
2391 	switch (command) {
2392 	case SIOCSIFFLAGS:
2393 		if (ifp->if_flags & IFF_ALLMULTI)
2394 			sc->flags |= FXP_FLAG_ALL_MCAST;
2395 		else
2396 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2397 
2398 		/*
2399 		 * If interface is marked up and not running, then start it.
2400 		 * If it is marked down and running, stop it.
2401 		 * XXX If it's up then re-initialize it. This is so flags
2402 		 * such as IFF_PROMISC are handled.
2403 		 */
2404 		if (ifp->if_flags & IFF_UP) {
2405 			fxp_init_body(sc);
2406 		} else {
2407 			if (ifp->if_flags & IFF_RUNNING)
2408 				fxp_stop(sc);
2409 		}
2410 		break;
2411 
2412 	case SIOCADDMULTI:
2413 	case SIOCDELMULTI:
2414 		if (ifp->if_flags & IFF_ALLMULTI)
2415 			sc->flags |= FXP_FLAG_ALL_MCAST;
2416 		else
2417 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2418 		/*
2419 		 * Multicast list has changed; set the hardware filter
2420 		 * accordingly.
2421 		 */
2422 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2423 			fxp_mc_setup(sc);
2424 		/*
2425 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2426 		 * again rather than else {}.
2427 		 */
2428 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2429 			fxp_init_body(sc);
2430 		error = 0;
2431 		break;
2432 
2433 	case SIOCSIFMEDIA:
2434 	case SIOCGIFMEDIA:
2435 		if (sc->miibus != NULL) {
2436 			mii = device_get_softc(sc->miibus);
2437                         error = ifmedia_ioctl(ifp, ifr,
2438                             &mii->mii_media, command);
2439 		} else {
2440                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2441 		}
2442 		break;
2443 
2444 	case SIOCSIFCAP:
2445 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2446 		if (mask & IFCAP_POLLING)
2447 			ifp->if_capenable ^= IFCAP_POLLING;
2448 		if (mask & IFCAP_VLAN_MTU) {
2449 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2450 			if (sc->revision != FXP_REV_82557)
2451 				flag = FXP_FLAG_LONG_PKT_EN;
2452 			else /* a hack to get long frames on the old chip */
2453 				flag = FXP_FLAG_SAVE_BAD;
2454 			sc->flags ^= flag;
2455 			if (ifp->if_flags & IFF_UP)
2456 				fxp_init_body(sc);
2457 		}
2458 		break;
2459 
2460 	default:
2461 		/*
2462 		 * ether_ioctl() will eventually call fxp_start() which
2463 		 * will result in mutex recursion so drop it first.
2464 		 */
2465 		FXP_UNLOCK(sc);
2466 		error = ether_ioctl(ifp, command, data);
2467 	}
2468 	if (FXP_LOCKED(sc))
2469 		FXP_UNLOCK(sc);
2470 	splx(s);
2471 	return (error);
2472 }
2473 
2474 /*
2475  * Fill in the multicast address list and return number of entries.
2476  */
2477 static int
2478 fxp_mc_addrs(struct fxp_softc *sc)
2479 {
2480 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2481 	struct ifnet *ifp = &sc->sc_if;
2482 	struct ifmultiaddr *ifma;
2483 	int nmcasts;
2484 
2485 	nmcasts = 0;
2486 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2487 #if __FreeBSD_version < 500000
2488 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2489 #else
2490 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2491 #endif
2492 			if (ifma->ifma_addr->sa_family != AF_LINK)
2493 				continue;
2494 			if (nmcasts >= MAXMCADDR) {
2495 				sc->flags |= FXP_FLAG_ALL_MCAST;
2496 				nmcasts = 0;
2497 				break;
2498 			}
2499 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2500 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2501 			nmcasts++;
2502 		}
2503 	}
2504 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2505 	return (nmcasts);
2506 }
2507 
2508 /*
2509  * Program the multicast filter.
2510  *
2511  * We have an artificial restriction that the multicast setup command
2512  * must be the first command in the chain, so we take steps to ensure
2513  * this. By requiring this, it allows us to keep up the performance of
2514  * the pre-initialized command ring (esp. link pointers) by not actually
2515  * inserting the mcsetup command in the ring - i.e. its link pointer
2516  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2517  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2518  * lead into the regular TxCB ring when it completes.
2519  *
2520  * This function must be called at splimp.
2521  */
2522 static void
2523 fxp_mc_setup(struct fxp_softc *sc)
2524 {
2525 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2526 	struct ifnet *ifp = &sc->sc_if;
2527 	struct fxp_tx *txp;
2528 	int count;
2529 
2530 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2531 	/*
2532 	 * If there are queued commands, we must wait until they are all
2533 	 * completed. If we are already waiting, then add a NOP command
2534 	 * with interrupt option so that we're notified when all commands
2535 	 * have been completed - fxp_start() ensures that no additional
2536 	 * TX commands will be added when need_mcsetup is true.
2537 	 */
2538 	if (sc->tx_queued) {
2539 		/*
2540 		 * need_mcsetup will be true if we are already waiting for the
2541 		 * NOP command to be completed (see below). In this case, bail.
2542 		 */
2543 		if (sc->need_mcsetup)
2544 			return;
2545 		sc->need_mcsetup = 1;
2546 
2547 		/*
2548 		 * Add a NOP command with interrupt so that we are notified
2549 		 * when all TX commands have been processed.
2550 		 */
2551 		txp = sc->fxp_desc.tx_last->tx_next;
2552 		txp->tx_mbuf = NULL;
2553 		txp->tx_cb->cb_status = 0;
2554 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2555 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2556 		/*
2557 		 * Advance the end of list forward.
2558 		 */
2559 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2560 		    htole16(~FXP_CB_COMMAND_S);
2561 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2562 		sc->fxp_desc.tx_last = txp;
2563 		sc->tx_queued++;
2564 		/*
2565 		 * Issue a resume in case the CU has just suspended.
2566 		 */
2567 		fxp_scb_wait(sc);
2568 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2569 		/*
2570 		 * Set a 5 second timer just in case we don't hear from the
2571 		 * card again.
2572 		 */
2573 		ifp->if_timer = 5;
2574 
2575 		return;
2576 	}
2577 	sc->need_mcsetup = 0;
2578 
2579 	/*
2580 	 * Initialize multicast setup descriptor.
2581 	 */
2582 	mcsp->cb_status = 0;
2583 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2584 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2585 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2586 	txp = &sc->fxp_desc.mcs_tx;
2587 	txp->tx_mbuf = NULL;
2588 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2589 	txp->tx_next = sc->fxp_desc.tx_list;
2590 	(void) fxp_mc_addrs(sc);
2591 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2592 	sc->tx_queued = 1;
2593 
2594 	/*
2595 	 * Wait until command unit is not active. This should never
2596 	 * be the case when nothing is queued, but make sure anyway.
2597 	 */
2598 	count = 100;
2599 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2600 	    FXP_SCB_CUS_ACTIVE && --count)
2601 		DELAY(10);
2602 	if (count == 0) {
2603 		device_printf(sc->dev, "command queue timeout\n");
2604 		return;
2605 	}
2606 
2607 	/*
2608 	 * Start the multicast setup command.
2609 	 */
2610 	fxp_scb_wait(sc);
2611 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2612 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2613 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2614 
2615 	ifp->if_timer = 2;
2616 	return;
2617 }
2618 
2619 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2620 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2621 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2622 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2623 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2624 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2625 
2626 #define UCODE(x)	x, sizeof(x)
2627 
2628 struct ucode {
2629 	u_int32_t	revision;
2630 	u_int32_t	*ucode;
2631 	int		length;
2632 	u_short		int_delay_offset;
2633 	u_short		bundle_max_offset;
2634 } ucode_table[] = {
2635 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2636 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2637 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2638 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2639 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2640 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2641 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2642 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2643 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2644 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2645 	{ 0, NULL, 0, 0, 0 }
2646 };
2647 
2648 static void
2649 fxp_load_ucode(struct fxp_softc *sc)
2650 {
2651 	struct ucode *uc;
2652 	struct fxp_cb_ucode *cbp;
2653 
2654 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2655 		if (sc->revision == uc->revision)
2656 			break;
2657 	if (uc->ucode == NULL)
2658 		return;
2659 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2660 	cbp->cb_status = 0;
2661 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2662 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2663 	memcpy(cbp->ucode, uc->ucode, uc->length);
2664 	if (uc->int_delay_offset)
2665 		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2666 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2667 	if (uc->bundle_max_offset)
2668 		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2669 		    htole16(sc->tunable_bundle_max);
2670 	/*
2671 	 * Download the ucode to the chip.
2672 	 */
2673 	fxp_scb_wait(sc);
2674 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2675 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2676 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2677 	/* ...and wait for it to complete. */
2678 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2679 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2680 	device_printf(sc->dev,
2681 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2682 	    sc->tunable_int_delay,
2683 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2684 	sc->flags |= FXP_FLAG_UCODE;
2685 }
2686 
2687 static int
2688 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2689 {
2690 	int error, value;
2691 
2692 	value = *(int *)arg1;
2693 	error = sysctl_handle_int(oidp, &value, 0, req);
2694 	if (error || !req->newptr)
2695 		return (error);
2696 	if (value < low || value > high)
2697 		return (EINVAL);
2698 	*(int *)arg1 = value;
2699 	return (0);
2700 }
2701 
2702 /*
2703  * Interrupt delay is expressed in microseconds, a multiplier is used
2704  * to convert this to the appropriate clock ticks before using.
2705  */
2706 static int
2707 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2708 {
2709 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2710 }
2711 
2712 static int
2713 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2714 {
2715 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2716 }
2717